000203966 001__ 203966
000203966 005__ 20181203023715.0
000203966 0247_ $$2doi$$a10.1016/j.mee.2014.04.005
000203966 022__ $$a0167-9317
000203966 02470 $$2ISI$$a000343364400029
000203966 037__ $$aARTICLE
000203966 245__ $$aProcess optimisation of a MEMS based PZT actuated microswitch
000203966 260__ $$bElsevier Science Bv$$c2014$$aAmsterdam
000203966 269__ $$a2014
000203966 300__ $$a4
000203966 336__ $$aJournal Articles
000203966 520__ $$aIn this work the fabrication of a piezoelectrically actuated microswitch for high current applications is proposed. The device was obtained by assembling two silicon substrates: one containing the signal lines and the other enclosing a silicon nitride (Si3N4) microcantilever. This latter operates as a switch by closing the circuit with a metal electrode on its tip. A layer of lead zirconate titanate (PZT), deposited by sol gel method, constitutes the actuation element of the microcantilever. The bottom and top electrodes of the PZT were respectively made of thin Ta/Pt and Au layers while the signal lines and the contact electrode on the microcantilever tip were made of Ti/Al. A comparison between microcantilevers characterised by different bottom electrodes is presented: (i) Ta/Pt deposited at 300 degrees C and patterned by wet etching, (ii) Ta/Pt deposited at 100 degrees C and patterned by lift-off. The microcantilevers fabricated with the latter metallisation show a considerable symmetry of the piezoelectric response and a wide microcantilever displacement. Thus, in this device the cantilever microstructures are able to close the gap between the signal lines with a resulting contact resistance of about 2 Omega. (C) 2014 Elsevier B.V. All rights reserved.
000203966 6531_ $$aMEMS
000203966 6531_ $$aMicroswitch
000203966 6531_ $$aMicrocantilever
000203966 6531_ $$aPZT
000203966 700__ $$uPolitecn Torino, Dept Appl Sci & Technol, Xlab Mat & Microsyst Lab, IT-10034 Chivasso, Italy$$aTommasi, A.
000203966 700__ $$uPolitecn Torino, Dept Appl Sci & Technol, Xlab Mat & Microsyst Lab, IT-10034 Chivasso, Italy$$aColetta, G.
000203966 700__ $$aBalma, D.
000203966 700__ $$uPolitecn Torino, Dept Appl Sci & Technol, Xlab Mat & Microsyst Lab, IT-10034 Chivasso, Italy$$aMarasso, S. L.
000203966 700__ $$uItalian Inst Technol, Ctr Space & Human Robot, IT-10129 Turin, Italy$$aPerrone, D.
000203966 700__ $$uItalian Inst Technol, Ctr Space & Human Robot, IT-10129 Turin, Italy$$aCanavese, G.
000203966 700__ $$uItalian Inst Technol, Ctr Space & Human Robot, IT-10129 Turin, Italy$$aStassi, S.
000203966 700__ $$uItalian Inst Technol, Ctr Space & Human Robot, IT-10129 Turin, Italy$$aBianco, S.
000203966 700__ $$uPolitecn Torino, Dept Appl Sci & Technol, Xlab Mat & Microsyst Lab, IT-10034 Chivasso, Italy$$aCocuzza, M.
000203966 700__ $$uPolitecn Torino, Dept Appl Sci & Technol, Xlab Mat & Microsyst Lab, IT-10034 Chivasso, Italy$$aPirri, C. F.
000203966 773__ $$j119$$tMicroelectronic Engineering$$q137-140
000203966 909C0 $$xU10334$$0252012$$pLC
000203966 909CO $$pSTI$$particle$$ooai:infoscience.tind.io:203966
000203966 917Z8 $$x105945
000203966 937__ $$aEPFL-ARTICLE-203966
000203966 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000203966 980__ $$aARTICLE