000203960 001__ 203960
000203960 005__ 20190317000052.0
000203960 022__ $$a0002-9947
000203960 02470 $$2ISI$$a000344826000017
000203960 0247_ $$a10.1090/S0002-9947-2014-06103-5$$2doi
000203960 037__ $$aARTICLE
000203960 245__ $$aFurther Refinement Of Strong Multiplicity One For Gl(2)
000203960 269__ $$a2014
000203960 260__ $$bAmerican Mathematical Society$$c2014$$aProvidence
000203960 300__ $$a21
000203960 336__ $$aJournal Articles
000203960 520__ $$aWe obtain a sharp refinement of the strong multiplicity one theorem for the case of unitary non-dihedral cuspidal automorphic representations for GL(2). Given two unitary cuspidal automorphic representations for GL(2) that are not twist-equivalent, we also find sharp lower bounds for the number of places where the Hecke eigenvalues are not equal, for both the general and non-dihedral cases. We then construct examples to demonstrate that these results are sharp.
000203960 700__ $$g208476$$0245149$$aWalji, Nahid
000203960 773__ $$j366$$tTransactions Of The American Mathematical Society$$k9$$q4987-5007
000203960 8564_ $$uhttps://infoscience.epfl.ch/record/203960/files/S0002-9947-2014-06103-5.pdf$$zn/a$$s294587$$yn/a
000203960 909C0 $$xU11828$$0252238$$pTAN
000203960 909CO $$qGLOBAL_SET$$pSB$$ooai:infoscience.tind.io:203960$$particle
000203960 917Z8 $$x178545
000203960 937__ $$aEPFL-ARTICLE-203960
000203960 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000203960 980__ $$aARTICLE