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In the context of anomaly detection in cyber physical systems (CPS), spatiotemporal correlations are crucial for high detection
rate. This work presents a new quarter sphere support vector machine (QS-SVM) formulation based on the novel concept of
attribute correlations. Our event detection approach, SensGru, groups multiple sensors on a single node and thus eliminates
communication between sensor nodes without compromising the advantages of spatial correlation. It makes use of temporal-
attribute (TA) correlations and is thus a TA-QS-SVM formulation. We show analytically that SensGru (or interchangeably TA-QS-
SVM) results in a reduced node density and gives the same event detection performance as more dense Spatiotemporal-Attribute
Quarter-Sphere SVM (STA-QS-SVM) formulation which exploits both spatiotemporal and attribute correlations. Moreover, this
paper develops theoretical bounds on the internode distance, the optimal number of sensors, and the sensing range with SensGru
so that the performance difference with SensGru and STA-QS-SVM is negligibly small. Both schemes achieve event detection rates
as high as 100% and an extremely low false positive rate.

1. Introduction

In cyber physical systems (CPS), monitoring and control
applications usingwireless sensor networks (WSN) have been
gaining interest [1–3]; however, such systems are vulnerable
to anomalies (malicious attacks, noise, and errors) [4–6].
Therefore, it is essential to identify anomalies to provide
reliable functioning of network [7–9]. Anomalies may result
from sensor faults (errors or outliers) or from an event of
interest [10]. Anomaly and event detection in WSNs finds
various applications [11–14], especially, disaster prevention,
detection, and identification, for instance, in underground
mine wells and volcanic sites [4].

A comparison of various types of outlier detection
techniques for WSNs has been carried out in [1]. Classifi-
cation based techniques learn a classification model in the
training phase and then classify the data instance to one
of the training classes [15]. They are grouped into Support
Vector Machine (SVM) based and Bayesian Network based
approaches, depending upon the type of classification model

that is used [1, 16]. In wireless sensor networks, a majority of
energy is consumed in radio communication rather than in
computation [1]. Hence, in order to make the system energy
efficient, it is advantageous to decrease the communication
overhead at the cost of increasing computational overhead in
the network. SVM based approaches naturally fit in for these
requirements, as they are unsupervised and nonparametric
and perform in-network processing.

The earliest known formulations of Support Vector
Machines construct a set of hyperplanes [17, 18], hyper-
spheres [19], quarter-spheres (QS-SVM) [20], hyperellipsoids
(TOCC) [21], centered hyperellipsoids [22] (CESVM), or
conic segments (CS-SVM) [23] in a high dimensional space,
which can be used for separation of normal and anomalous
data (outliers and events). QS-SVM and CE-SVM have an
advantage of linear optimization formulation as compared
to the quadratic optimization for other. CS-SVM is more
suited to multiclass problems; therefore, it is not used for
outlier detection (one-class problem). A detailed analysis
of one-class SVM based outlier detection techniques has
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Figure 1: Regions 𝑅 and 𝑅
󸀠 for STA-QS-SVM and TA-QS-SVM approaches.

been carried out in [24]. Amongst online schemes, QS-SVM
scheme is more communication efficient as compared to
online CE-SVM [25] and is therefore preferred over CE-
SVM for outlier detection inWSNs [26]. QS-SVM techniques
for outlier detection use only spatiotemporal correlations of
nodes’ data, (hence, we call them Spatiotemporal Quarter-
Sphere SVM (ST-QS-SVM)), ignoring the attribute correla-
tions which must be incorporated for better outlier and event
detection rates [1] (event detection rates have never been
presented for these techniques).

In our previous work, STA-QS-SVM formulation has
been proposed [27] which incorporates attribute correlations
into ST-QS-SVM and achieves better detection and false pos-
itive rates as compared to ST-QS-SVM.This paper introduces
SensGru, a novel energy efficient, temporal-attribute based
(TA-QS-SVM) formulation, which groups multiple sensors
at a single node, and presents a thorough analysis of event
detection performance of STA-QS-SVM and SensGru. We
show analytically that SensGru (or interchangeably TA-QS-
SVM) results in a reduced (as much as 75%) node density
and gives the same event detectionperformance asmore dense
STA-QS-SVM formulation. Moreover, this paper develops
theoretical bounds on the internode distance, the optimal
number of sensors, and the sensing range with SensGru
so that the performance difference with SensGru and STA-
QS-SVM is negligibly small. Both schemes achieve event
detection rates as high as 100% and an extremely low false
positive rate.

The main contributions of this paper are as follows.

(1) It establishes that SensGru can give a performance
which is within a negligible difference to STA-QS-
SVM. With this benchmark performance with Sens-
Gru, this paper further derives.

(2) The ratio of internode distance with SensGru to
internode distance with STA-QS-SVM.

(3) Maximum sensing range with both schemes.

(4) The optimal value of the number of sensors with
SensGru.

(5) The worst case performance analysis and distance
ratio.

(6) The complexity analysis of both schemes.

2. Problem Statement

Figure 1 presents the network model for both STA-QS-
SVM and SensGru. The model for STA-QS-SVM considers
a densely deployed homogeneous wireless sensor network
in a stationary environment (whose spatial and temporal
characteristics do not change), where the sensor nodes are
localized and connected to each other, such that the sensor
data are correlated in time and space. The nodes in the
network are represented as 𝑆

𝑖
. In a neighborhood, represented

as 𝑁(𝑆
𝑖
), 𝑘 boundary nodes are connected to a central

node with an internode distance of 𝑟
𝑐
units (as shown in

Figure 1(a)). For TA-QS-SVM based SensGru, the internode
distance is 𝑟

󸀠

𝑐
; however, 𝑘 sensors per attribute are grouped

together on each node (as shown in Figure 1(b)). Hence,
no communication is required for event detection based on
temporal and attribute correlations. In case an anomaly gets
detected, the nodes transmit with a higher power in order
to increase their transmission radius and communicate with
each other (details follow).

2.1. Spatiotemporal and Attribute Correlations Based Outlier
Detection in WSNs (STA-QS-SVM). For STA-QS-SVM, the
central node 𝑆

𝑖
is considered to be within the radio trans-

mission range 𝑟
𝑐
of all other nodes in 𝑁(𝑆

𝑖
). The 𝑘 spatially

neighboring nodes of 𝑆
𝑖
are represented by 𝑆

𝑖𝑗
, such that {𝑗 =

1, 2, . . . , 𝑘}. At each time interval 𝑚, each sensor node 𝑆
𝑖
in

the set𝑁(𝑆
𝑖
)measures a 𝑑- dimensional data vector󳨀→

𝑥
𝑚
.Thus,

a sensor node equipped with 𝑑 different types of sensors will

sense a 𝑑-point data vector. Let
󳨀→

𝑥
0

𝑚
,

󳨀→

𝑥
1

𝑚
,

󳨀→

𝑥
2

𝑚
, . . . ,

󳨀→

𝑥
𝑘

𝑚
denote the

𝑑-point data vectors at 𝑆
𝑖
, 𝑆

𝑖1
, 𝑆

𝑖2
, . . . , 𝑆

𝑖𝑘
, in the set 𝑁(𝑆

𝑖
), at

the𝑚th time instant, respectively.The goal is to identify every
new measurement arriving at 𝑆

𝑖
as normal or anomalous in

real-time. STA-QS-SVM determines the radius of quarter-
sphere based on attribute correlations in addition to the
spatiotemporal correlations.
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Let 𝑅
𝑖 and 𝑅

∗𝑖 be temporal and attribute radii of quarter-
spheres that have to be determined during the training

phase from a set of 𝑛 measurements X
𝑖

= {

󳨀→

𝑥
𝑖

1
,

󳨀→

𝑥
𝑖

2
, . . . ,

󳨀→

𝑥
𝑖

𝑛
}

at the nodes 𝑆
𝑖
in the set 𝑁(𝑆

𝑖
), corresponding to 𝑛 time

instants, where 𝑑 is the number of attributes/data points

corresponding to each vector. Let the vectors
󳨀→

𝑥
𝑖

𝑚
at each time

instant 𝑚 be mapped onto feature space via some function
𝜙(𝑥

𝑖

𝑚
).

The constrained optimization problem of the one-class
centered quarter-sphere SVM based on spatiotemporal cor-
relations (ST-QS-SVM) is formulated as in [26] to obtain
the radius 𝑅

𝑖 and identify support, nonsupport, and border
support vectors based on the Lagrangian multiplier 𝛼

𝑚

values. The other part of this problem consists of applying
the quarter-sphere SVM formulation along the 𝑑 attributes

of received vectors
󳨀→

𝑥
𝑖

𝑚
. This is done at each node 𝑆

𝑖
of the set

𝑁(𝑆
𝑖
) and at each time instant 𝑚, to determine the radius 𝑅

∗𝑖

and the set of support vectors based on attribute correlations
[27].

Consider the training data set X
𝑖
consisting of 𝑛, 𝑑 point

data vectors
󳨀→

𝑥
𝑖

1
,

󳨀→

𝑥
𝑖

2
,

󳨀→

𝑥
𝑖

3
, . . . ,

󳨀→

𝑥
𝑖

𝑛
, at node 𝑆

𝑖
and let the vectors

󳨀→

𝑥
𝑖

𝑚
at each time instant 𝑚 be mapped onto feature space

via some function 𝜙
∗
(𝑥

𝑖

𝑚
). We divide the received data

set X
𝑖
of dimension 𝑛 × 𝑑 into ⌊𝑛/𝑑⌋ portions of 𝑑 × 𝑑

dimensions each named as X𝑝

𝑖
. Each row of X𝑝

𝑖
corresponds

to a data measurement at a specific time instant, whereas
each column corresponds to a specific attribute over different
time instants. Our approach, based on attribute correlations,
applies the constrained optimization problem of one-class
quarter-sphere to each X𝑝

𝑖
, where 𝑝 = 1, 2, . . . , ⌊𝑛/𝑑⌋, using

each column of X𝑝

𝑖
as a 𝑑-point data vector. Thus, we treat a

single attribute of the 𝑑 consecutive time measurements as a
vector for optimization purpose, in contrast to the previous
spatiotemporal approach (ST-QS-SVM), which takes into
account each row of X

𝑖
as a vector for optimization. For

details on formulation of ⌊𝑛/𝑑⌋ dimensional vector optimiza-
tion problem and its solution and the algorithm for outlier
and event detection, the reader is referred to [27].

By using some effective linear optimization techniques,
we can compute the Lagrangian multipliers, 𝛼

∗𝑖

𝑝,𝑞
, ∀𝑞 =

1, 2, . . . , 𝑑, 𝑝 = 1, 2, . . . , ⌊𝑛/𝑑⌋. We obtain ⌊𝑛/𝑑⌋ sets of 𝛼
∗𝑖

𝑝,𝑞
,

corresponding to ⌊𝑛/𝑑⌋ portions of X
𝑖
, each set containing

𝑑 number of 𝛼
∗𝑖

𝑝,𝑞
. The vectors present in each of the 𝑝th

portion of X
𝑖
can be further classified depending on the

results of 𝛼
∗𝑖

𝑝,𝑞
. The data vectors with 𝛼

∗𝑖

𝑝,𝑞
= 0, which

fall inside the quarter-sphere and whose distances from the
origin are smaller than the radius of the quarter-sphere, are
called nonsupport vectors. The data vectors with 𝛼

∗𝑖

𝑝,𝑞
> 0 are

called margin support vectors. Their distances to the origin
indicate the radius of the quarter-sphere. Support vectors
with 𝛼

∗𝑖

𝑝,𝑞
= 1/V𝑑, which fall outside the quarter-sphere and

whose distances from the origin are larger than the radius
of the quarter-sphere, are called nonmargin support vectors.
These data vectors are called outliers. The norm of support

vectors with 0 < 𝛼
∗𝑖

𝑝,𝑞
< 1/V𝑑 determines the radius 𝑅

∗𝑖. Since
we have ⌊𝑛/𝑑⌋ sets of support vectors, we determine ⌊𝑛/𝑑⌋

values of radius 𝑅
∗𝑖

𝑝
from each set using these support vectors

𝑅
∗𝑖

𝑝

2

= 𝑘
∗

𝑐
(

󳨀󳨀→

𝑥
𝑖

𝑝,𝑞
,

󳨀󳨀→

𝑥
𝑖

𝑝,𝑞
) , (1)

where 𝑘
∗

𝑐
(

󳨀󳨀→

𝑥
𝑖

𝑝,𝑞
,

󳨀󳨀→

𝑥
𝑖

𝑝,𝑞
) is a centralized kernel function.The final

attribute radius is then determined by taking the median of
all ⌊𝑛/𝑑⌋ radii:

𝑅
∗𝑖

= median {𝑅
∗𝑖

1
, 𝑅

∗𝑖

2
, . . . , 𝑅

∗𝑖

⌊𝑛/𝑑⌋
} . (2)

2.2. SensGru: The Communication Independent Approach to
Anomaly Detection. Now, consider the problem of a wireless
sensor network, consisting of localized nodes 𝑆

𝑖
. Assume that

the nodes do not lie in a closed neighborhood to any other
nodes and are separated by a distance 𝑟

󸀠

𝑐
. Also, let 𝑟

󸀠

𝑐
= 𝐶 ⋅ 𝑟

𝑐
,

where 𝐶 > 1. Also, assume that each region 𝑅
󸀠 contains

only one node 𝑆
𝑖
(as shown in Figure 1(b)) with 𝑘 sensors

for each attribute. Hence, no communication is required
for majority voting based event detection. The SVM based
approaches identify outliers based on temporal deviations
and then exploit spatial information of neighboring nodes
to identify events from the detected outliers. This approach,
however, considers exploiting only the temporal and attribute
information at each node 𝑆

𝑖
, to identify both outliers and

events. Assuming that an event at node 𝑆
𝑖
is equally likely

to be detected in the neighborhood 𝑁(𝑆
𝑖
) due to spatial

correlations [12], events are identified by introducing a
consensus of multiple sensors at 𝑆

𝑖
.The probability of a faulty

node reporting a lowmeasurement in an event region cannot
be ignored [12]. Thus, the presence of multiple sensors for
each attribute at eachnode incorporates the flexibility of some
faulty sensors at each 𝑆

𝑖
. Assuming that the probability of all

sensor nodes being faulty together is very low, this system
detects events at a high rate based on majority voting.

The node 𝑆
𝑖
in 𝑅

󸀠, thus, has 𝑘 sensors for measuring
each of the 𝑑 attributes, where 𝑘 = {2, 3, . . . , 𝑡}, 𝑡 being the
maximum number of sensors which can be deployed at 𝑆

𝑖
.

We define a sensor array as a group of sensors whichmeasure
𝑑 different attributes. Let 𝑠

𝑖

𝑗
represent the 𝑗th sensor array for

measuring 𝑑 attributes at 𝑖th node:

S
𝑖
= {s𝑖

1
, s𝑖

2
, . . . , s𝑖

𝑘
} , (3)

where each s𝑖

𝑗
measures 𝑑 different attributes

s𝑖

𝑗
= [𝑠

𝑖

1𝑗
𝑠
𝑖

2𝑗
⋅ ⋅ ⋅ 𝑠

𝑖

𝑑𝑗
]

𝑇

. (4)

Let x𝑗

𝑑𝑚
be the 𝑑 attribute data vector corresponding to

the 𝑗th sensor arraymeasured at𝑚th time instant at 𝑖th node,
such that 𝑗 = {1, 2, . . . , 𝑘} and 𝑚 = {1, 2, . . . , 𝑛}. Thus, a set of
𝑘 data vectors X

𝑚
, at the 𝑗th node, corresponding to 𝑘 sensor

arrays will be obtained at the 𝑚th time instant:

X
𝑚

= {x1

𝑑𝑚
, x2

𝑑𝑚
, . . . , x𝑘

𝑑𝑚
} ,

where x𝑗

𝑑𝑚
= [𝑥

𝑗

1𝑚
𝑥

𝑗

2𝑚
⋅ ⋅ ⋅ 𝑥

𝑗

𝑑𝑚
]

𝑇

.

(5)
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The problem is to identify each newly arrived data vector
x𝑗

𝑑𝑚
at each of the 𝑘 sensor arrays as normal or anomalous

in real time using temporal and attribute correlations only,
based on quarter-sphere one-class SVM formulation.

When a new data measurement 𝑥
𝑗

new arrives at node 𝑆
𝑖
,

it computes the distance 𝑑(𝑥)
𝑗

𝑐
, which is the mean of the

distances between 𝑥
𝑗

new and origin of its centered quarter-
spheres in the feature space, using the kernels.Thus, a set of 𝑘

distances 𝑑(𝑥)
𝑗

𝑐
, corresponding to 𝑘 sensor arrays, is obtained

at each node 𝑆
𝑖
. Now, we make use of the reading from 𝑘

sensors to find the spatial radius 𝑅
𝑖. The temporal radius 𝑅

∗𝑖

is found in a similar manner described above. Once we have
both these radii, we use the algorithm presented in [27] to
identify an outlier or event at each sensor node. The two
approaches are linked by the analysis that follows.This paper
addresses several unanswered questions.Themost important
contribution of this paper is that it develops theoretical
bounds on important parameters with SensGru required
to achieve the same performance as the spatiotemporal-
attribute approach. It serves as a mathematical justification
of the fact that SensGru is feasible (muchmore cost efficient),
at a cost of deploying a few additional sensors at each node.

3. Analysis of Event Detection in
STA-QS-SVM and TA-QS-SVM

Let 𝑅 be a uniform circular region consisting of exactly 𝑘

sensors for the STA-QS-SVM approach. 𝑘 − 1 of the 𝑘 sensors
are uniformly distributed around the boundary at a distance
of 𝑟

𝑐
from the sensor present at the center of the region.

Also, consider another similar region𝑅
󸀠, consisting of a single

sensor node with exactly 𝑘 sensors, for the TA-QS-SVM
approach. Let 𝑟

󸀠

𝑐
= 𝐶 ⋅ 𝑟

𝑐
, where 𝐶 > 1, (we call 𝐶 the

distance ratio) be the distance between the node of the region
𝑅

󸀠 and nodes in similar neighboring regions. Each sensor in
regions 𝑅 and 𝑅

󸀠 has a radio communication range 𝑟
𝑐
and a

sensing range 𝑟
𝑠
. The problem is to evaluate 𝐶, such that the

performance of the event detection techniques in both the
deployments is approximately the same:

󵄨󵄨󵄨󵄨DRSTA − DRTA
󵄨󵄨󵄨󵄨 < 𝜖, (6)

where 𝜖 ≪ 1 and DRSTA and DRTA are the detection rates of
STA-QS-SVMandTA-QS-SVM techniques, respectively, and
𝐶 is defined as the distance ratio:

𝐶 =

Distance between the nodes in TA-QS-SVM (𝑟
󸀠

𝑐
)

Distance between the nodes in STA-QS-SVM (𝑟
𝑐
)
.

(7)

Let 𝑛 be the total number of measurements in time
interval 𝑇 and let 𝑛(𝐸

𝑎
) be the number of events in a region

𝑅 or 𝑅
󸀠. Then, 𝑛(𝐸

𝑎
) = 𝑛𝜇, where 𝜇 is the fraction of events

occurring in𝑇. Also, let 𝑛(𝐸STA) and 𝑛(𝐸TA) be the number of

events correctly detected by STA-QS-SVM and TA-QS-SVM
approaches, respectively. Then,

DRSTA =
𝑛 (𝐸STA)

𝑛 (𝐸
𝑎
)

,

DRTA =
𝑛 (𝐸TA)

𝑛 (𝐸
𝑎
)

.

(8)

Substituting (8) in (6), we get
󵄨󵄨󵄨󵄨𝑛 (𝐸STA) − 𝑛 (𝐸TA)

󵄨󵄨󵄨󵄨 < 𝑛𝜖𝜇. (9)

Proposition 1. Let 𝐷𝑅
𝑆𝑇𝐴

and 𝐷𝑅
𝑇𝐴

be the event detection
rates for STA-QS-SVM and TA-QS-SVM approaches; then,
𝐷𝑅

𝑆𝑇𝐴
= 𝑝(𝐸

𝑆𝑇𝐴
| 𝐸

𝑎
) and 𝐷𝑅

𝑇𝐴
= 𝑝(𝐸

𝑇𝐴
| 𝐸

𝑎
), where

𝑝(𝐸
𝑆𝑇𝐴

| 𝐸
𝑎
) and 𝑝(𝐸

𝑇𝐴
| 𝐸

𝑎
) are the probabilities of

event detection by STA-QS-SVMandTA-QS-SVMapproaches,
respectively, given that an event has occurred.

Proof. Let 𝑝
𝑑
be the probability of the detection of a sensor

given as

𝑝
𝑑

= {
𝑒

−𝛽𝑥 if 𝑥 ≤ 𝑟
𝑠
,

0 else,
(10)

where 𝑥 is the distance of a sensor from event/outlier
location and 𝛽 is a constant that depends on the physical
characteristics of an environment. We make the following
assumptions in order to prove this proposition.

(1) Let 𝑝
𝑒
be the probability of the error of a sensor; then,

𝑝
𝑒

≈ 0.
(2) An outlier (extreme condition) can occur uniformly

in a region.
(3) An outlier occurring in a given region is independent

of other regions.
(4) An event is reported if there is an outlier on ⌈𝑘/2⌉ + 1

sensors in the region.
(5) An event is within the sensing range of all the sensors

in the region.
(6) The probability of detection of a sensor at 𝑥 = 𝑟

𝑠
, that

is, 𝑝
𝑑
(𝑥 = 𝑟

𝑠
) ≥ 1/2.

(7) The probability of detection of an event, given that
assumption (6) is satisfied, is

𝑝 (𝐸STA | 𝐸
𝑎
) ≥ 1 − 𝛿STA,

𝑝 (𝐸TA | 𝐸
𝑎
) ≥ 1 − 𝛿TA,

(11)

where 𝛿STA and 𝛿TA are the SVMgeneralization errors
for STA-QS-SVM and TA-QS-SVM approaches,
respectively.

We analyze a set of 𝑛measurements in a time interval𝑇.Thus,
each instant corresponds to the small interval 𝜏 = 𝑇/𝑛. Let
𝜆 be the rate of arrival of an outlier in a region per 𝜏. The
rate of arrival of outliers can be modeled as a Poisson process
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with parameter 𝜆. Assuming that 𝜆 ≪ 1 and only one outlier
arrives at an instant 𝜏, the probability of the arrival of one
outlier in an instant 𝜏 is

𝑝 (1, 𝜏) = 𝜆𝜏𝑒
−𝜆𝜏

. (12)

Further, we assume that an arriving outlier is equally likely
to touch all the sensors. Thus, the probability that an outlier
occurs and affects the sensor is

𝑝
𝑜

=
𝜆𝜏𝑒

−𝜆𝜏

𝑘
. (13)

Thus, the probability of outlier detection at an instant 𝜏, using
(10) and (13), is given as

𝑝
𝑂𝑑

=
𝜆𝜏𝑒

−𝜆𝜏
𝑒

−𝛽𝑥

𝑘
; (14)

also,

𝑝
𝑂𝑑

= 𝑝 (𝑂
𝑑

| 𝑂) 𝑝
𝑜

+ 𝑝 (𝑂
𝑑

| 𝑂
𝑐
) 𝑝

󸀠

𝑜
, (15)

where 𝑝(𝑂
𝑑

| 𝑂) is the probability of detection of an outlier
given that an outlier occurs and 𝑝(𝑂

𝑑
| 𝑂

𝑐
) is the probability

of detection of an outlier given that an outlier does not occur.
From the first assumption 𝑝

𝑒
≈ 0, thus, 𝑝(𝑂

𝑑
| 𝑂

𝑐
) = 𝑝

𝑒
= 0.

Comparing (13), (14), and (15) we get

𝑝 (𝑂
𝑑

| 𝑂
𝑐
) = 𝑒

−𝛽𝑥
. (16)

Again from assumption (1), as 𝑝(𝑂
𝑑

| 𝑂
𝑐
) = 𝑝

𝑒
= 0,

we need not consider the interarrival times of outlier in the
outlier detection or event detection performance. Hence, the
problem of comparing the event detection rates of both the
techniques becomes independent of the interarrival times.
Hence,

𝑝 (𝐸STA | 𝐸
𝑎
) =

𝑘

∑

𝑗=⌈𝑘/2⌉+1

(
𝑘

𝑗
)

∑

𝑙=1

(𝑒
−𝛽𝑥
𝑗

𝑙 )

𝑗

(1 − 𝑒
−𝛽𝑥
𝑗

𝑙 )

𝑘−𝑗

,

𝑝 (𝐸TA | 𝐸
𝑎
) =

𝑘

∑

𝑗=⌈𝑘/2⌉+1

(
𝑘

𝑗
) (𝑒

−𝛽𝑥𝑗)
𝑗

(1 − 𝑒
−𝛽𝑥𝑗)

𝑘−𝑗

.

(17)

Thus, using the assumptions (5) and (6) and the abovemen-
tioned facts, the detection rates DRSTA and DRTA are equal to
the probabilities of the detection of an event given in which
an event occurs, that is, 𝑝(𝐸STA | 𝐸

𝑎
) and 𝑝(𝐸TA | 𝐸

𝑎
).

Thus, (6) can be written as

󵄨󵄨󵄨󵄨𝑝 (𝐸STA | 𝐸
𝑎
) − 𝑝 (𝐸TA | 𝐸

𝑎
)
󵄨󵄨󵄨󵄨 < 𝜖. (18)

Using (17) in (18) we obtain

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑘

∑

𝑗=⌈𝑘/2⌉+1

(
𝑘

𝑗
)

∑

𝑙=1

(𝑒
−𝛽𝑥
𝑗

𝑙 )

𝑗

(1 − 𝑒
−𝛽𝑥
𝑗

𝑙 )

𝑘−𝑗

(19)

−

𝑘

∑

𝑗=⌈𝑘/2⌉+1

(
𝑘

𝑗
) (𝑒

−𝛽𝑥𝑗)
𝑗

(1 − 𝑒
−𝛽𝑥𝑗)

𝑘−𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

< 𝜖. (20)

The exact value of 𝑝(𝐸STA | 𝐸
𝑎
) in (19) is complex to evaluate,

since the value of 𝑥
𝑗

𝑙
is different for different combinations

of sensors. Hence, we perform an average case analysis for
𝑝(𝐸STA | 𝐸

𝑎
). We find the expected value of distance, that is,

𝑥STA, between the event and sensors, for the STA-QS-SVM
approach. Let (𝜌

1
, 𝜃

1
) be the coordinates of the event in the

region 𝑅, centered at the origin. Then, PDF of 𝜌
1
and 𝜃

1
are

𝑓
𝜌1

(𝜌
1
) =

{

{

{

1

𝑟
𝑐

for 0 ≤ 𝜌
1

≤ 𝑟
𝑐
,

0 else,

𝑓
𝜃1

(𝜃
1
) =

{

{

{

1

2𝜋
for 0 ≤ 𝜃

1
≤ 2𝜋,

0 else.

(21)

Let (𝜌
2
, 𝜃

2
) be the coordinates of the sensors present at the

boundary of region 𝑅:

𝑓
𝜌2

(𝜌
2
) =

{{{{

{{{{

{

𝑘 − 1

𝑘
for 𝜌

2
= 𝑟

𝑐
,

1

𝑘
for 𝜌

2
= 0,

0 else.

(22)

Thus, for STA-QS-SVM, the expected value of the distance of
a sensor from the event location 𝑥STA is given using the cosine
law and Jensen’s inequality as

𝐸 [√𝜌
2

1
+ 𝜌

2

2
− 2𝜌

1
𝜌

2
cos (𝜃

1
− 𝜃

2
)]

≥ √𝐸 [𝜌
2

1
] + 𝐸 [𝜌

2

2
] − 2𝐸 [𝜌

1
𝜌

2
cos (𝜃

1
− 𝜃

2
)].

(23)

Assuming that cos(𝜃
1

− 𝜃
2
) is independent of 𝜌

1
, we get

𝑥STA = 𝑟
𝑐
√

1

3
+ (

𝑘 − 1

𝑘
)

2

. (24)

For the TA-QS-SVM approach, we note that 𝑟
󸀠

𝑐
is the distance

between the sensor nodes. Since the sensor nodes need not
communicate with each other, in the worst case, a sensor
node can detect an event at a distance of 𝑟

󸀠

𝑐
/2. Assume that

the event is equally likely to occur in the range of 0 to 𝑟
󸀠

𝑐
/2.

Thus, the expected distance of a sensor from event location
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(𝑥TA) = 𝑟
󸀠

𝑐
/4 = (𝐶⋅𝑟

𝑐
)/4. Since we are evaluating𝑝(𝐸STA | 𝐸

𝑎
)

and 𝑝(𝐸TA | 𝐸
𝑎
) for the expected value of distances, that is,

𝑥STA and 𝑥TA, (19) transforms to the following form:
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑘

∑

𝑗=⌈𝑘/2⌉+1

(
𝑘

𝑗
) (𝑒

−𝛽𝑥STA)
𝑗

(1 − 𝑒
−𝛽𝑥STA)

𝑘−𝑗

×

𝑘

∑

𝑗=⌈𝑘/2⌉+1

(
𝑘

𝑗
) (𝑒

−𝛽𝑥TA)
𝑗

(1 − 𝑒
−𝛽𝑥TA)

𝑘−𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

< 𝜖.

(25)

Further, we assume that the central sensor always detects the
event

𝑘−1

∑

𝑗=⌈𝑘/2⌉

(
𝑘 − 1

𝑗
)

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑒
−𝛽𝑗𝑟𝑐

√1/3+((𝑘−1)/𝑘)
2

(1 − 𝑒
−𝛽𝑟𝑐

√1/3+((𝑘−1)/𝑘)
2

)

𝑘−𝑗

− 𝑒
−𝑗𝛽((𝐶⋅𝑟𝑐)/4)

(1 − 𝑒
−𝛽((𝐶⋅𝑟𝑐)/4)

)
𝑘−𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

< 𝜖.

(26)

Solving the above equation using Taylor expansion,

∞

∑

𝑚=1

󵄩󵄩󵄩󵄩(−1)
𝑚󵄩󵄩󵄩󵄩

𝑘−1

∑

𝑗=⌈𝑘/2⌉

(
𝑘 − 1

𝑗
)

𝑚

∑

𝑖=1

𝑗
𝑚−𝑖

(𝑘 − 𝑗 − 1)
𝑖

𝑖! (𝑚 − 𝑖)!
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜆𝑚

𝛽
𝑚

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑟
𝑚

𝑐
(

1

3
+ (

𝑘 − 1

𝑘
)

2

)

𝑚/2

− (
𝐶 ⋅ 𝑟

𝑐

4
)

𝑚
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

< 𝜖.

(27)

Bounding the above summation by a finite number of
terms, that is, 𝑙, we obtain the following expression for 𝐶:

𝐶 = 4
𝑙

√(
1

3
+ (

𝑘 − 1

𝑘
)

2

)

𝑙/2

− 𝜖. (28)

The above equation gives an expression of distance ratio
(𝐶). Thus, the events would be detected with approximately
the same detection rates for both STA-QS-SVM and TA-QS-
SVM approaches if 𝑟

󸀠

𝑐
= 𝐶 ⋅ 𝑟

𝑐
. A plot of 𝐶 for different

values of 𝑘 is shown in Figure 2. The figure shows that 𝐶

increases with an increase in the corresponding value of
𝑘.

3.1. Maximum Sensing Ranges 𝑟
𝑠
for STA-QS-SVM and TA-

QS-SVM (SensGru). Let 𝑟
𝑠
and 𝑟

𝑐
be the sensing and com-

munication ranges of each of the 𝑘 sensors deployed in a
region 𝑅 consisting of a central sensor at a distance of 𝑟

𝑐
from

uniformly deployed sensors at the border of the region for
the STA-QS-SVM approach. Then, the maximum value of 𝑟

𝑠

required for event detection is 2𝑟
𝑐
.

Proof. Given that region 𝑅 consists of exactly 𝑘 sensors, 𝑘 − 1

of which are deployed uniformly along the circumference of
the region and are at a distance 𝑟

𝑐
apart from the central

sensor; event detection occurs when at least ⌈𝑘/2⌉ + 1

sensors detect it. In the worst case, an event occurring
at the border of region 𝑅 should be detected. Two cases
arise.

Case I (⌈𝑘/2⌉ + 1 sensors detect the event). In this case, the
⌈𝑘/2⌉ + 1 nearest sensors detect the event. Thus, a sensor
present at the distance √2𝑟

𝑐
√1 − cos(⌈(𝑘 − 1) /2⌉ 𝜋/(𝑘 − 1))

should be able to detect it. Moreover, from assumption (7)
and (27) and using finite number of 𝑙 terms to bound the
summation, we have

𝜆
1
𝛽𝑥STA + 𝜆

2
𝛽

2
𝑥

2

STA + ⋅ ⋅ ⋅ + 𝜆
𝑙
𝛽

𝑙
𝑥

𝑙

STA ≥ 1 − 𝛿STA. (29)

Let 𝜅 be the real root of this equation; then, using
the above relation between the minimum possible 𝑟

𝑠
, 𝑘,

and 𝑟
𝑐
, we get 𝑟

𝑠
≥ 𝜅√2√1 − cos(⌈(𝑘 − 1)/2⌉ 𝜋/(𝑘 − 1))/

2𝛽
𝑙

√(1/3 + ((𝑘 − 1)/𝑘)
2
)
𝑙/2

− 𝜖. Hence,

𝑟
𝑠

≥ max(𝑟
𝑐
,

𝜅

2𝛽
𝑙

√(1/3 + ((𝑘 − 1) /𝑘)
2
)

𝑙/2

− 𝜖

) √2√1 − cos(
⌈(𝑘 − 1) /2⌉ 𝜋

(𝑘 − 1)
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Ω

. (30)

Case II (all the sensors detect the event). In this case, a sensor
present at the maximum distance, that is, 2𝑟

𝑐
, from the event

must detect the event.
Hence, the range of 𝑟

𝑠
for event detection is

Ω ≤ 𝑟
𝑠

≤ 2𝑟
𝑐
. (31)

Proposition 2. Let 𝑟
𝑠
and 𝑟

𝑐
be the sensing and communica-

tion ranges of each of the 𝑘 sensors deployed in a region 𝑅
󸀠 at

a central node for SensGru. Each node is at a distance of 𝑟󸀠

𝑐
from

nodes in the neighboring regions. Then, the maximum value of
𝑟
𝑠
required for event detection is (𝐶 ⋅ 𝑟

𝑐
)/2.

Proof. Given that the region 𝑅
󸀠 consists of exactly 𝑘 sensors

at a central node and each node is at a distance of 𝐶 ⋅ 𝑟
𝑐

from other neighboring nodes, event detection occurs when
at least ⌈𝑘/2⌉ + 1 sensors detect it. In the worst case, an
event occurring at the border of the region 𝑅

󸀠 should be
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Figure 2: Variation of distance ratio (𝐶)with number of sensors (𝑘).

detected. Since the border of the region𝑅
󸀠 is at the distance of

(𝐶 ⋅ 𝑟
𝑐
) /2 = 2𝑟

𝑐

𝑙
√(1/3 + ((𝑘 − 1) /𝑘)

2
)
𝑙/2

− 𝜖 from the nodes,
the event at the border will be detected if all the sensors have

𝑟
𝑠

= 2𝑟
𝑐

𝑙
√(

1

3
+ (

𝑘 − 1

𝑘
)

2

)

𝑙/2

− 𝜖. (32)

A plot of maximum 𝑟
𝑠
for various values of 𝑘 and

𝜖 = 0.001 for STA-QS-SVM and SensGru (TA-QS-SVM)
approaches is shown in Figure 3.The figure indicates that the
maximum value of 𝑟

𝑠
required for SensGru increases with an

increase in the number of sensors per subregion 𝑘. However,
as the value of 𝑘 increases, the increase in the maximum 𝑟

𝑠

reduces.

Proposition 3. The optimal value of 𝑘, that is, 𝑘
𝑜𝑝𝑡
, for event

detection in STA-QS-SVM and SensGru is 7.

Proof. Theoptimal value of 𝑘 is defined as the value for which
maximum reduction in computation complexity and sensor
node density is attained in SensGru, given that the event
detection performance with both schemes is approximately
the same.Themaximum reduction in computation complex-
ity and cost is attained when the sensors deployed in both
regions 𝑅 and 𝑅

󸀠 have the same maximum sensing ranges 𝑟
𝑠

(as shown in Figure 3).Thus, equating themaximum 𝑟
𝑠
values

for STA-QS-SVM and SensGru, we get

2𝑟
𝑐

𝑙
√(

1

3
+ (

𝑘opt − 1

𝑘opt
)

2

)

𝑙/2

− 𝜖 = 2𝑟
𝑐
,

𝑘opt =
1

1 − √(1 + 𝜖)
2/𝑙

− 1/3

.

(33)
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Figure 3: Variation of maximum sensing range with number of
sensors (𝑘).

The above equation indicates that the optimal value
of 𝑘, that is, 𝑘opt, depends only on 𝜖 and 𝑙. Hence, as
evident from the figures, the optimal value 𝑘opt = 5.5.
Thus, for experimental purposes, 𝑘opt = 6 can be chosen.
However, since we prove in the following that the detection
probabilities for even number of sensors are less as compared
to odd number of sensors, we choose 𝑘opt = 7.

3.2. Worst Case Analysis

Proposition 4. For the worst case analysis,

{𝑝 (𝐸
𝑆𝑇𝐴

| 𝐸
𝑎
)}

󵄨󵄨󵄨󵄨𝑘=𝑜𝑑𝑑
> {𝑝 (𝐸

𝑆𝑇𝐴
| 𝐸

𝑎
)}

󵄨󵄨󵄨󵄨𝑘=𝑒V𝑒𝑛
. (34)

Proof. The worst case analysis is made assuming that the
event is located at the boundary of region 𝑅

󸀠 for the SensGru
and in between the two sensors present along the boundary of
𝑅 for the STA-QS-SVM approach. The worst case probabili-
ties of event detection in regions𝑅 are greater for odd number
of sensors as compared to the even number of sensors. When
the number of sensors are even, one of the 𝑘 sensors will
always be located at maximum distance, that is, 2𝑟

𝑐
from the

event location, whereas when the number of sensors is odd,
no sensor is located at maximum distance from the event
location; hence, the probability of detection increases. This is
shown in Figures 4 and 5 for the STA-QS-SVMapproach.

Proposition 5. The worst case distance ratio (𝐶
𝑤𝑜𝑟𝑠𝑡

) is equal
to 2.36.

Proof. The worst case distance ratio 𝐶worst was evaluated
assuming that the event is located at the boundary of region
𝑅

󸀠 for SensGru and in between the two sensors present
along the boundary of 𝑅 for the STA-QS-SVM approach.
The optimal value 𝑘opt was assumed for 𝑅 and 𝑅

󸀠. The worst
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Figure 4: Worst case probability of detection for STA-QS-SVM for
even number of sensors (𝑘).
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Figure 5: Worst case probability of detection for STA-QS-SVM for
odd number of sensors (𝑘).

case distance ratio 𝐶worst was found such that probabilities
of detection 𝑝(𝐸STA | 𝐸

𝑎
) and 𝑝(𝐸TA | 𝐸

𝑎
) differ by 𝜖.

𝑝(𝐸STA | 𝐸
𝑎
) and 𝑝(𝐸TA | 𝐸

𝑎
) were evaluated for various

values of 𝛽. An example plot of worst case distance ratio for
various values of𝛽 is shown in Figure 6.The figure shows that
the worst case distance ratio 𝐶worst does not vary significantly
with𝛽.The results shown in Figure 6 also prove that theworst
case distance ratio is equal to 2.36. The value of 𝐶worst = 2.36

implies that, for the worst case scenario, where the event is
located at the boundary of regions𝑅 and𝑅

󸀠, distance between
sensor nodes in 𝑅

󸀠 = 2.36 × (distance between sensor nodes

𝛽 = 0.3
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Figure 6: Variation of 𝐶worst with 𝛽.

in 𝑅). Thus, if this condition is satisfied, 𝑝(𝐸STA | 𝐸
𝑎
) and

𝑝(𝐸TA | 𝐸
𝑎
) will differ by 𝜖.

4. Complexity Analysis

Let 𝑛 be the total number of datameasurements at a node and
let 𝑑 be the number of data attributes. Let 𝑘 be the number
of sensors in the region 𝑅 for STA-QS-SVM approach and
region 𝑅

󸀠 for SensGru approach.

4.1. Computation Complexity

4.1.1. ST-QS-SVM. ST-QS-SVM requires the computation of
𝑛 × 𝑛 kernel matrix 𝐾 which poses a complexity of 𝑂(𝑛

2
).

The radius is computed at each node via a linear optimization
problem. Hence, the radius computation poses a complexity
of 𝑂(𝑛). Each node then broadcasts its radius information to
the central node. On the receipt of radius information, the
central node computes the global radius in 𝑂(𝑘) complexity
(𝑘 being the number of nodes). Hence, the total computation
complexity is 𝑂(𝑛

2
).

4.1.2. STA-QS-SVM. Online STA-QS-SVM requires the com-
putation of 𝑛 × 𝑛 kernel matrix 𝐾 and 𝑑 × 𝑑 matrix 𝐾

∗ which
poses a complexity of 𝑂(𝑛

2
+ 𝑛𝑑

2
). The radii (temporal and

attribute) are computed at each node via a linear optimization
problem. Hence, the radius computation poses a complexity
of𝑂(𝑛+𝑛𝑑). Eachnode then broadcasts its radius information
to the central node. On the receipt of radius information, the
central node computes the global radius in 𝑂(𝑘) complexity
(𝑘 being the number of nodes). Hence, the total computation
complexity is 𝑂(𝑛

2
+ 𝑛𝑑

2
). In offline STA-QS-SVM, the

matrix 𝐾
∗ is computed at the beginning only; hence, the

computation complexity is 𝑂(𝑛
2
).
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Figure 7: Number of subregions in 𝐴 and 𝐴
󸀠 for a fixed area.

4.1.3. SensGru (TA-QS-SVM). SensGru requires the com-
putation of 𝑛 × 𝑛 kernel matrix 𝐾 and 𝑑 × 𝑑 matrix 𝐾

∗

which poses a complexity of 𝑂(𝑛
2

+ 𝑛𝑑
2
). The radii (temporal

and attribute) are computed at each sensor via a linear
optimization problem. Hence, the radius computation poses
a complexity of 𝑂(𝑛 + 𝑛𝑑). Each sensor then sends its radius
information to the central sensor. On the receipt of radius
information, the central sensor computes the global radius
in 𝑂(𝑘) complexity (𝑘 being the number of nodes). Hence,
the total computation complexity is 𝑂(𝑛

2
+ 𝑛𝑑

2
). Note that

SensGru can have online and offline versions.

4.2. Communication Complexity

4.2.1. ST-QS-SVM. ST-QS-SVM requires the broadcast of
temporal radius to the central node which poses a commu-
nication complexity of 𝑂(𝑛).

4.2.2. STA-QS-SVM. STA-QS-SVM requires the broadcast of
the temporal and the attribute radii to the central node which
poses a communication complexity of 𝑂(𝑛 + 𝑑).

4.2.3. TA-QS-SVM. TA-QS-SVM poses no communication
complexity as it does not require the broadcast of radii to the
central sensor.

4.3. Sensor Node Density. Consider regions 𝐴 (for STA-
QS-SVM) and 𝐴

󸀠 (for SensGru) having the same physical
characteristics (the same values of 𝛽). Assume that region
𝐴 = 𝑏

2
⋅𝑅 and region𝐴

󸀠
= 𝑐

2
⋅𝑅

󸀠.Thus,𝐴 and𝐴
󸀠 (of the same

area) contain 𝑏
2 and 𝑐

2 number of closely packed subregions
𝑅 and 𝑅

󸀠. Further, we assume that the subregions 𝑅 and 𝑅
󸀠

are hexagon shaped, since they can then be closely packed to
form𝐴 and𝐴

󸀠. Let each of the subregions𝑅 and𝑅
󸀠 have radii

𝑟
𝑐
and 𝑟

󸀠

𝑐
; then, the radii of 𝐴 and 𝐴

󸀠 are 𝑏 ⋅ 𝑟
𝑐
and (𝑐 ⋅ 𝑟

󸀠

𝑐
) /2

approximately. Further, assume that each of the subregions 𝑅

in 𝐴 has 𝑘 number of sensors, of which one is the central and
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Figure 8: Variation of the total number of sensors in 𝐴 and 𝐴
󸀠 with

the parameter 𝑏.

𝑘 − 1 are located uniformly along the boundary of 𝑅. Each
of the subregions 𝑅 will then have some sensors in common
with the neighboring subregions. Also let the subregions𝑅

󸀠 in
𝐴

󸀠 have a single node located at the center and have 𝑘 sensors
on it. Thus, the number of sensors in region 𝐴 will be given
as

𝑘 +

𝑏/2

∑

𝑖=1

(
𝑘

2
(

𝑖
2

+ 7𝑖

2
− 3)) =

𝑘𝑏
3

96
+

𝑘𝑏
2

32
−

71𝑘𝑏

48
. (35)

Since we want to evaluate the number of sensors for equal
areas of 𝐴 and 𝐴

󸀠, equating the two areas and using (28), we
get the number of sensors in 𝐴

󸀠:

𝑁 (𝐴
󸀠
) = (

𝑏

2
𝑙

√(1/3 + ((𝑘 − 1) /𝑘)
2
)

𝑙/2

− 𝜖

)

2

𝑘. (36)

Figure 7 shows the number of subregions required for the
same area of 𝐴 and 𝐴

󸀠. The figure clearly shows that the
number of subregions 𝑅

󸀠 in 𝐴
󸀠 is less as compared to the

number of regions 𝑅 in 𝐴. Figure 8 shows the variation
of total number of sensors in regions 𝐴 and 𝐴

󸀠 with the
parameter 𝑏 of the regions. Clearly the number of sensors
for region 𝐴 is much greater as compared to the number of
sensors for region 𝐴

󸀠 for larger values of 𝑏. The results also
indicate that with an increase in the parameter 𝑏, the increase
in 𝑁(𝐴) will be much greater as compared to 𝑁(𝐴

󸀠
). Similar

results are shown in Figure 9, which gives the total number
of sensors in regions 𝐴 and 𝐴

󸀠 for different values of 𝑘. The
number of sensors 𝑁(𝐴) and 𝑁(𝐴

󸀠
) increases linearly with

an increase in 𝑘. Thus, the sensor density required in TA-
QS-SVM approach is significantly less as compared to that
required for the STA-QS-SVM approach.
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5. Simulations and Results

Experimental evaluation was performed on matlab with a
synthetic data set that consists of a mixture of Type-1, Type-
2, Type-3, and Type-4 outliers. Type-1 and Type-2 outliers
are isolated errors which may occur due to noise at random
time instants in the data set, whereas Type-3 and Type-4
outliers consist of sequences of Type-1 and Type-2 outliers
[10, 28–30]. The data set consists of a mixture of various
Gaussian distributions, with mean randomly selected from
(0.03–0.6) and standard deviation 0.03, along each of the
attributes. The number of Gaussian distributions depends on
the number of attributes. The testing data set consisted of
2500 measurements. The training window 𝑛 was kept equal
to 250. Performance evaluation was done for data vectors
with 2 to 15 attributes (𝐴), with 5% of uniformly distributed
outliers in the range [0.65, 1] along each of the attributes. RBF
Kernel function is used to generate the results with sigma
0.2, because it has infinite VC dimension. The simulation
environment assumed a central node surrounded by 6–9 (𝑁
or 𝑘) spatially correlated neighboring nodes. The distance
between the nodes in STA-QS-SVM is kept equal to the
maximum 𝑟

𝑠
as given in (32). Further, all the assumptions

have been taken into account as described in the above
sections.

The comparison of event detection rates for STA-QS-
SVMand SensGru is presented in Figures 10 and 11. Assuming
that the probability of all the sensors being faulty at the
same time instant at a node 𝑆

𝑖
is negligible and that the

spatial correlations of erroneous measurements indicate an
event, our technique identifies a measurement as an event
if it has temporal-attribute deviation with itself and a strong
correlation with a majority of sensors deployed at the node.
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Figure 10: Event detection rates for STA-QS-SVMandTA-QS-SVM
(nodes = 7).
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Figure 11: Event detection rates for STA-QS-SVM and TA-QS-SVM
(nodes = 10).

5.1. Discussion on Results. Figures 10 and 11 show that
SensGru always gives equal or better performance than STA-
QS-SVM at a small cost of slightly increasing the sensing
range 𝑟

𝑠
and increasing the number of sensors per node.

Communication overhead gets totally eliminated and node
density gets greatly reduced. Since the spatial correlations
are only used to determine an event and temporal-attribute
correlations determine outliers, TA-QS-SVM based SensGru
exploits the temporal and attribute correlations to identify
outliers and invoke a consensus of all the 𝑘 sensor arrays
to identify an event, without using spatial correlations of
neighboring nodes. The consensus of 𝑘 sensor arrays at a
node 𝑆

𝑖
is thus equivalent to the spatial information of 𝑘
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neighboring nodes of 𝑆
𝑖
in a region and thus makes the

outlier and event detection process free of communication
cost and highly energy efficient. Since increasing the sensing
range is cost effective as compared to the communication
cost, SensGru is much more communicationally and compu-
tationally effective as compared to STA-QS-SVM approach.
However, there is a trade-off associated with the increase in
the sensing range and detection probabilities of event in STA-
QS-SVM and TA-QS-SVM based SensGru.The trade-off can
be explained in terms of Figures 4, 5, and 3. The figures show
that on choosing the optimal value of 𝑘 = 𝑘opt = 7 the sensing
range for STA-QS-SVM and SensGru will be 𝑟

𝑠
. However,

the detection probabilities for both the approaches (Figures 4
and 5) are less than ideal 100%. If we increase the number of
sensors 𝑘, the sensing range of sensors for STA-QS-SVM can
be maintained equal to 𝑟

𝑠
, and an increase in 𝑝(𝐸STA | 𝐸

𝑎
)

is obtained. However, in order to obtain the corresponding
increase in 𝑝(𝐸TA | 𝐸

𝑎
), an increase in the sensing range

of sensor is required. However, reduction in sensor node
density outweighs this increase in the sensing range and
the overall computation cost is reduced. A more involved
reader might come across the thought that using the optimal
value of 𝑘 = 𝑘opt for both STA-QS-SVM and SensGru,
the sensor node density will become the same. However, as
evident from (28), when the sensing ranges are the same, the
distance between the nodes in SensGru will still be twice that
of the distance between the nodes in STA-QS-SVM. Hence,
the sensor density will still increase quadratically with 𝑏 for
SensGru and cubically with 𝑏 for STA-QS-SVM.

6. Conclusion

This paper proposes an energy efficient event detection
and identification approach for cyber physical systems. A
thorough analysis on the impact of groupingmultiple sensors
on a single node has been conducted where each node runs
an event detection and identification algorithm based on
quarter-sphere SVM formulation. Huge power savings are
guaranteed in the proposed scheme as it gets rid of the
communication overhead before declaring an event with a
node density reduced by 75%. Furthermore, all these gains are
achieved while maintaining the same performance as power
inefficient STA-QS-SVM formulation.
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