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Functional brain networks reconfigure spontaneously during rest. Such network dynamics can be studied by
dynamic functional connectivity (dynFC); i.e., sliding-window correlations between regional brain activity. Key
parameters—such as window length and cut-off frequencies for filtering—are not yet systematically studied. In
this letter we provide the fundamental theory from signal processing to address these parameter choices
when estimating and interpreting dynFC. We guide the reader through several illustrative cases, both simple
analytical models and experimental fMRI BOLD data. First, we show how spurious fluctuations in dynFC can
arise due to the estimation method when the window length is shorter than the largest wavelength present in
both signals, even for deterministic signals with a fixed relationship. Second, we study how real fluctuations of
dynFC can be explained using a frequency-based view, which is particularly instructive for signals with multiple
frequency components such as fMRI BOLD, demonstrating that fluctuations in sliding-window correlation
emerge by interaction between frequency components similar to the phenomenon of beat frequencies. We
conclude with practical guidelines for the choice and impact of the window length.

© 2014 Elsevier Inc. All rights reserved.
Introduction We first break sliding-window correlation into several components
Functional magnetic resonance imaging (fMRI) has become a key
tool to probe the large-scale organization of the brain. Functional
connectivity (FC), which is estimated by correlation of BOLD activity,
identifies coherent brain activity in distributed and reproducible net-
works. FC has revealed reorganization of brain networks during cogni-
tive tasks (Ekman et al., 2012; Lewis et al., 2009; Richiardi et al., 2011,
2013; Shirer et al., 2012), but also at rest (Allen et al., 2014; Chang
and Glover, 2010; Hutchison et al., 2013b; Kang et al., 2011; Leonardi
et al., 2013; Majeed et al., 2011; Smith et al., 2012). To study changes
in FC over time sliding-window correlation analysis, where the correla-
tion is estimated for brain activity duringmultiple, possibly overlapping
temporal segments (typically 30–60 s), has been widely deployed
(Allen et al., 2014; Chang and Glover, 2010; Hutchison et al., 2013a;
Sakoglu et al., 2010). A caveat of analyzing dynamic FC (dynFC) by
sliding-window correlation is that the small number of time points ren-
ders the estimates unreliable and might lead to spurious variability of
dynFC (Hutchison et al., 2013a; Smith et al., 2012). However, there is
no systematic account that perspicuously indicates the trade-off that is
made by choosing the window length, and its implications for filtering
of BOLD activity time series and dynFC itself.
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to facilitate its study. Then,wepresent a simple yet instructive analytical
model to study the emergence of spurious variability of dynFC in
stationary signals. In particular, we investigate the influence of various
parameters such as frequency, phase lag, and window length. Next,
we introduce a small change to our analytical model to study how real
variability of dynFC due to non-stationarity might arise. To provide the
best possible insights for signals with many frequency components,
we present a frequency-based view on dynFC. This provides an elegant
explanation of how fluctuations of dynFC emerge through the interac-
tion between different frequency components. Finally, we illustrate
dynFC between two main regions of the default-mode network with
experimental fMRI data.

Breaking down sliding-window correlations

We start by reformulating sliding-window correlation into simpler
terms. In particular, we first look at sliding-window covariance, which
for two time series x and ywith sampling period TR is defined as follows
at scan n:

cxy n½ � ¼ cov x n−Δ;nþ Δ�; y½n−Δ;nþ Δ½ �ð Þ

¼ TR
w

XnþΔ

i¼n−Δ

xi−xnð Þ yi−ynð Þ; ð1Þ
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where w = (2Δ + 1)TR is the odd window length in seconds, i sums
only over the scans inside the window, and

xn ¼ TR
w

XnþΔ

i¼n−Δ

xi

is the local average inside the window at position n. This calculation is
then repeated for all values of n (“sliding" the window across time).
After some elementary manipulations, we arrive at the following
equality:

cxy n½ � ¼ TR
w

XnþΔ

i¼n−Δ

xi−xnð Þ yi−ynð Þ

¼ TR
w

XnþΔ

i¼n−Δ

xi yi−ynð Þ−TR
x
w

XnþΔ

i¼n−Δ

yi−ynð Þ¼að ÞTR
w

XnþΔ

i¼n−Δ

xi yi−ynð Þ

¼ TR
w

XnþΔ

i¼n−Δ

xiyi−yn
TR
w

XnþΔ

i¼n−Δ

xi ¼
TR
w

XnþΔ

i¼n−Δ

xiyi|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
I

−ynxn|ffl{zffl}
II

;

ð2Þ

where (a) simplifies as the second term equals zero. Thus, cxy[n] can
be separated into two terms, which are the local average of the
cross-product xy (I) minus the product of the local averages of x
and y (II).

The sliding-window correlation is then obtained by normalizing at
each window by the local variances:

ρxy n½ � ¼ cxy n½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cxx n½ �cyy n½ �

q : ð3Þ

Having identified the components that constitute sliding-window
correlation, we can now analyze and understand dynFC more easily.

Spurious fluctuations in dynFC

Effect of the window length

We want to understand how spurious fluctuations of dynFC might
arise even for deterministic signals with a fixed relationship; i.e., we
consider two pure sinusoidal signals that are phase-locked. Specifically,
we take

xi ¼
ffiffiffi
2

p
cos 2π f i TRð Þ; yi ¼

ffiffiffi
2

p
cos 2π f i TR þ θð Þ; ð4Þ

where the factor
ffiffiffi
2

p
normalizes both signals for variance equal to one

per time unit. This normalizationmakes the sliding-window covariance
comparable to sliding-window correlation as a first approximation;
i.e., we have the asymptotic equivalence limw → ∞ρxy[n] = cxy[n].

To investigate the influence of the key parameters frequency f,
phase lag θ, and window length w, we derive the analytical form
of cxy[n] for the signals of Eq. (4). First, we approximate yn by
integration as follows:

yn ¼ TR
w

XnþΔ

i¼n−Δ

ffiffiffi
2

p
cos 2π f i TR þ θð Þ≈

ffiffiffi
2

p

w

Z nþΔð ÞTR

n−Δð ÞTR
cos 2π f t þ θð Þdt

¼
ffiffiffi
2

p

w
1

2π f
sin 2π f t þ θð Þ

� � nþΔð ÞTR

n−Δð ÞTR
¼

ffiffiffi
2

p

w2π f
sin 2π f nþ Δð ÞTR þ θðð Þ

− sin 2π f n−Δð ÞTR þ θÞð Þ ¼
ffiffiffi
2

p

wπ f
cos 2π f nTR þ θð Þsin 2π fΔTRð Þ:
On similar grounds, we also find xn ¼
ffiffi
2

p
wπ f cos 2π f nTRð Þsin 2π fΔTRð Þ.

Therefore, the second term xnyn of Eq. (2) reverts to

xnyn ¼ 2
w2π2 f 2

cos 2π f nTRð Þcos 2π f nTR þ θð Þsin2 2π fΔTRð Þ:

To estimate the first term of Eq. (2), we use the product-to-sum
trigonometric identity

2cos 2π f iTRð Þcos 2π f iTR þ θð Þ ¼ cos 4π f iTR þ θð Þ þ cos θð Þ;

which, after integration, leads to

cos θð Þ þ 1
wπ f

cos 2π f nTR þ θð Þsin 2π fΔTRð Þ:

By combining both terms, we retrieve the expression

cxy n½ � ¼ cos θð Þ þ 1
wπ f

cos 2π f nTR þ θð Þsin 2π fΔTRð Þ

− 2
w2π2 f 2

cos 2π f nTRð Þcos 2π f nTR þ θð Þsin2 2π fΔTRð Þ:
ð5Þ

As a sanity check, we see that in the limit of stationary covariance
(i.e., infinite window length), we have

lim
w→þ∞

cxy n½ � ¼ cos θð Þ:

We now use this expression to efficiently trace cxy[n] as function of
frequency f, phase lag θ, window length w, and window position n. In
Fig. 1a, cxy[n] is plotted for f= 0.025 Hz and zero phase lag, as a function
of window length w. The dashed lines are for different window
positions n, and the thick line corresponds to the mean cxy ¼ E cxy n½ �� �

.
We observe considerable fluctuations of cxy[n] for short window
lengths, and crossings with the true value (i.e., 1) exactly for multiples
of the window length because the term sin(2πfΔTR) in Eq. (5) vanishes
for 2ΔTR = 1/f. Importantly, only when the window length is larger
than the first crossing, which corresponds to the wavelength 1/f = 40
s, fluctuations of cxy[n] diminish and converge to the true value of cos(θ).

The same observations can be made from Figs. 1b and c, where we
plot cxy for various frequencies, and the difference between maximal
and minimal cxy[n] in Fig. 1d. Spurious fluctuations of cxy[n] occur
when the window length is too short with respect to the underlying
frequency component. We propose the following rule of thumb for
minimal window length when observing underlying frequencies of
fmin or higher:

w≥ 1
fmin:

Therefore, high-pass filtering that removes frequency components
below 1/w can be recommended; see also Smith et al. (2012) and
Hutchison et al. (2013a) for similar recommendations. The cut-off
frequency fmin is indicated in Fig. 1. It should be noted that these plots
only depend on the window length in seconds, not in TRs.

Sliding-window correlation ρxy[n] (and its fluctuations) can be
obtained by normalizing cxy[n] according to Eq. (3). In the ideal case
with zero phase lag, sliding-window correlation clamps to 1; however,
even a small phase lag is sufficient to introduce the same spurious
fluctuations as we observed for sliding-window covariance. In Fig. 2,
we plot sliding-window correlation and its extrema for phase lags of
θ = π/16 and θ = π/4, respectively. The variability of sliding-window
correlation is decreased compared to sliding-window covariance, but
still the true correlation of cos(θ) is recovered only for window lengths
above wmin, in accordance with the previous rule of thumb.
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Fig. 1. Sliding-window covariance cxy[n] for two pure sinusoidswithout phase lag; i.e., the true covariance is always 1. (a) For frequency f= 0.025Hz as a function of window length. Thick
line indicates the mean cxy over all shifts n of the window position. Dashed lines indicate cxy[n] for different n. (b) For different frequencies f= 0.01, 0.025, 0.05, 0.10 Hz as a function of
window length. Thick line indicatescxy, dashed lines indicateminncxy[n] andmaxncxy[n], and vertical lines indicate theminimalwindow lengthsw=1/fmin. (c) Landscape ofcxy as a function
of frequency and window length. The dashed line indicates w = 1/fmin. (d) Landscape of maximum− minimum of cxy[n] as a function of frequency and window length.

432 N. Leonardi, D. Van De Ville / NeuroImage 104 (2015) 430–436
Effect of sampling and noise

Up to now, we did not take into account the effect of sampling or
noise contributions, which can also drive fluctuations even if appropri-
ate high-pass filtering has been applied. For the estimation of sliding-
window correlation, we can use the 5 % confidence interval for the
standard test of significant non-zero correlation:

ρ� ¼ tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w=TR−2þ t2

q ;

where t follows Student's t-distribution withw/TR− 2 degrees of free-
dom. The confidence intervals for several TRs are shown in Fig. 2b and
we list ρ∗ for common choices of w and TR in the Appendix. Clearly,
the number of scans included inside the window is an important factor
for the estimator and thus depends on the TR for fixed window length
(in seconds).

In sum,we have shown that spurious fluctuations of dynFC can arise
by analyzing components with wavelengths larger than the window
length, and that the limited number of data points inflates the influence
of noise on the correlation estimates. The latter effect has also been
referred to as “poor sampling of correlation” (Smith et al., 2012).
Real fluctuations in dynFC due to non-stationarity

Effect of modulatory component

We now first make a slight modification to the analytical model to
introduce non-stationary relationship between both signals and thus
true variability in dynFC. Specifically, we modify y by multiplying it
with a low-frequency component (f0 ≪ f),

yi ¼
ffiffiffi
2

p
cos 2π f iTRð Þcos 2π f 0iTRð Þ:

Then, dynFC between x and ywill vary between+1 and−1 depend-
ing on the phase with respect to the low-frequency component. We note
that the signal y is equivalent to

yi ¼
ffiffiffi
2

p

2
cos 2π f þ f 0ð ÞiTRð Þ þ cos 2π f− f 0ð ÞiTRð Þð Þ;

which shows that low-frequencymodulation is equivalent to introducing
more frequency components. Repeating the analytical derivation of the
previous section is possible, but the formulas rapidly become involved
due to the interaction of many sinusoids. Instead, we revisit the sliding-
window covariance of Eq. (2) and provide a Fourier interpretation that
shows more easily how interactions between frequency components



433N. Leonardi, D. Van De Ville / NeuroImage 104 (2015) 430–436
can contribute to dynFC. Such a frequency-based view of dynFC is partic-
ularly helpful for real fMRI data with broad spectra.

The repeated calculation of local averages by shifting the window
can be written as the convolution with a rectangular window h

cxy ¼ xyð Þ � h− x � hð Þ y � hð Þ; ð6Þ

where * denotes convolution and h is defined as

h n½ � ¼ TR
w

rect
nTR
w

� 	
¼

TR
w

; for nj j≤Δ;

0; otherwise:

(

For a tapered window, the local sums become weighted sums.
Using the convolution theorem,1 the discrete Fourier transform

(DFT) of Eq. (6) can be obtained as

Cxy ¼ X � Yð ÞH− XHð Þ � YHð Þ; ð7Þ

where capital letters denote the discrete Fourier transform (DFT) of the
signals, in particular:

X k½ � ¼ F x n½ �f g ¼ 1
N

XN−1

n¼0

x n½ �exp − j2π
kn
N

� 	
; k ¼ 0;1;…;N−1;

where N is the full length of the signal. For a signal sampled with period
TR, the corresponding frequencies in Hz are given by fk = k/(NTR).

The DFT of the rectangular window h is well-known to be the
Dirichlet kernel

H k½ � ¼ TR
w

sin πkw= NTRð Þð Þ
sin πk= NTRð Þð Þ ;

which can be seen as the discrete version of the common sinc-function.
Fig. 3a shows the window function and Fig. 3b its spectrum, where the
width of the main lobe is 1/w [Hz]. The convolution of x, y and xy can
thus be seen as low-pass filtering operations.

The DFT of our signals x and y can be obtained as2

X k½ � ¼
ffiffiffi
2

p

2
δ f NTR k½ � þ δ− f NTR k½ �


 �
;

Y k½ � ¼
ffiffiffi
2

p

4
δ fþ f 0ð ÞNTR k½ � þ δ− fþ f 0ð ÞNTR k½ �þ



δ f− f 0ð ÞNTR k½ � þ δ− f− f 0ð ÞNTR k½ �

�
;

where δ is the Kronecker-delta function (i.e., δ0[k] = 1 for k = 0, and 0
otherwise). Exemplary signals x and y and their frequency spectra are
shown in Figs. 3c and d. Since we deal with real-valued signals, all
amplitude spectra are Hermitian symmetric andwe only depict positive
frequencies in the plots. The convolution X ∗ Y then redistributes the
delta functions as

X � Yð Þ k½ � ¼ 1
2

δ f 0NTR k½ � þ δ− f 0NTR k½ �

 �

þ 1
4

δ 2 f− f 0ð ÞNTR k½ � þ δ 2 fþ f 0ð ÞNTR k½ �þ



δ −2 f− f 0ð ÞNTR k½ � þ δ −2 fþ f 0ð ÞNTR k½ �
�
;

which is illustrated in Fig. 3f. Assuming that the window length has
been chosen according to the rule of thumb (i.e., we have w N 1/fmin

and thus also f N fmin), frequency components at ± 2f ± f0 are well
suppressed by the filtering operation (X ∗ Y)H, as well as those at ± f
1 Convolution in the time domain corresponds to multiplication in the frequency do-
main and vice versa.

2 Without any loss of generality, we have assumed here that fNTR corresponds to an in-
teger number.
and ± f ± f0 in XH and YH, respectively. Consequently, the second
term of Eq. (7) vanishes and the first term simplifies, leading to

Cxy k½ � ¼ TR
w

sin π f 0wð Þ
sin π f 0ð Þ

δ f 0NTR k½ � þ δ− f 0NTR k½ �
2

� 	
;

where only k=± f0NTR survives. The remaining frequency component
at f0 is also illustrated in Fig. 3d. Cxy can be identified as the DFT of

cxy n½ � ¼ TR
w

sin π f 0wð Þ
sin π f 0ð Þ cos 2π f 0nTRð Þ;

shown in Fig. 3e. Because fluctuations in xy are low-pass filtered by the
convolution with hwith cut-off frequency 1/w= fmin, the slowmodula-
tion term—which in this case is a true fluctuation of dynFC—is recovered
as long as f0 b fmin and f − f0 ≈ f N fmin. The influence of the window
length on its low-pass filtering effect has previously been noted by
Handwerker et al. (2012) and less variable dynFC with longer windows
is a well documented empirical observation (e.g., Chang and Glover,
2010; Hutchison et al., 2013b; Leonardi et al., 2013). The spectral selec-
tivity of the windowing operation can be improved by using tapering;
e.g., Hamming filter (Handwerker et al., 2012), Gaussian filter (Allen
et al., 2014), or other windows with smooth roll-off at the edges
(Smith et al., 2012). In such case, the window length should be replaced
by the “equivalentwindow length” that corresponds to the cut-off wave-
length of the tapered window. It is essential to note that the frequency
component f0 emerges by “interaction” between both spectra and is
not present as such in the original spectra. Mathematically, the beat
frequency is recovered bymultiplication in the time-domain, or, equiva-
lently, convolution in the Fourier domain.

Example of experimental fMRI data

The frequency-based view is particularly instructive for experimental
BOLDdata because they have broad spectra that are not easily understood
in terms of single frequency components. We illustrate dynFC between
two key regions of the default-mode network: the posterior cingulate
cortex (PCC) and left angular gyrus (AG). Changes of FC over time
between these regions have been previously demonstrated (e.g. Chang
and Glover, 2010).

Two regionally-averaged time serieswere extracted froma10-minute
long resting-state fMRI scan (data acquisition and preprocessing as
described in Shirer et al. (2012)). We choose the window length to be
w=50 s, or 25 scans. Consequently, we high-pass filtered the time series
with a cut-off frequency of 1/w = 0.02 Hz; see Figs. 4a and b. Next, the
point-wise multiplication of both time series and cxy (~ low-pass filtered
xy) are computed, shown in Fig. 4c. Clearly, these time series are similar
during a majority of the scan, but their similarity is strongly diminished
during two periods in time (around 90 and 270 s) and another small
dip is visible at 420 s. In the Fourier domain, shown in Fig. 4d, this
variability is apparent from new low-frequency components, notably a
peak at 0.006 Hz, which appears to be approximately the wavelength of
the interaction cycles. Because of the broad spectra of X and Ymultiple fre-
quency components contribute to these new low-frequency components.

In Figs. 4c and d, we also show sliding-window correlation ρxy in
time and frequency. While the normalization reduces some fluctua-
tions, itsmain characteristics are the same as for cxy and are determined
by (X ∗ Y)H.

Conclusion

Taking advantage of an analytical model, we have derived some
important properties of dynFC that explain the emergence of spurious
fluctuations due to amismatch between the choice of the window length
and high-pass filtering of the original timecourses, as well as how poten-
tially real fluctuations can arise due to modulatory components. We
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Fig. 2. (a) Sliding-window correlation ρxy[n] for two pure sinusoids with phase lag π/16. (b) Sliding-window correlation ρxy[n] for phase lag π/4. The gray shaded area indicates the 5 %
confidence interval of significant correlation for different TRs = 1, 2, 3 s.
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conclude that the window length w, specified in seconds, is the key
parameter that needs to be chosen carefully as it sets following trade-offs:

1. Spurious fluctuations of dynFC due to the nature of the estimation
method are limited by high-pass filtering of the original time series
with cut-off frequency 1/w.

2. Remaining fluctuations of dynFC are low-pass filtered with cut-off
frequency 1/w.
Fig. 3.Window h in time (a) and its frequency spectrum (b). The frequency selection of the filte
at f0, in time (b) and in frequency domain (c). Themodulation of y corresponds to two slightly sh
as they are beyond themain side lobe of thefilterH. The point-wise product xy and sliding-wind
X ∗ Y from the interaction of the frequency components: f0, 2f − f0, and 2f + f0. Only the peak
3. Variability due to the influence of sampling and noise on the estimator
increases with smaller window lengths or longer TR.

These different criteria should be balanced well. For example, win-
dows as short as 20 s would require the removal of low-frequency com-
ponents up to 0.05 Hz, which are typically of interest in resting-state
studies, and the confidence interval for significant correlations would
be very high (ρ N 0.63 for a TR of 2 s). Given these considerations, typical
r is governed by 1/w. Two cosines x and y, where y is modulated by a low-frequency cosine
ifted peaks inY at f− f0 and f+ f0. Thepeaks at f− f0, f and f+ f0will befilteredout by xtitH
ow covariance cxy in time (e) and frequency (f). Three newpeaks appear in the convolution
at f0 is retained by the sliding-window covariance.

image of Fig.�2


Fig. 4. (a–b) PCC and left AG time series and their frequency spectra. (c–d) Illustration of sliding-window covariance and correlation estimation in time and frequency. xy is the point-wise
multiplication of the two time series, cxy the sliding-window covariance and ρxy the sliding-window correlation. Note that the Fourier spectra of cxy and ρxy are similar.ρxy is the average of
dynFC across time, corresponding to a static FC estimate.
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choices of window lengths (30–60 s) appear reasonable and these
lengthshave also been backed up by empirical studies that discriminated
between cognitive states (Gonzalez-Castillo et al., 2013; Shirer et al.,
2012). Therefore, when interpreting dynFC spectra, we suggest to focus
on the frequency interval [0− 1/w] Hz because of the low-pass filtering
effect of thewindow on dynFC, whichmeans that themodulatory effects
that can be observed are relatively slow; e.g., up to 0.16 Hz for a 60 s
window length.

One promising future avenue to overcome the choice of a fixed
window length is the use of the wavelet transform, which would
allow to conveniently focus on particular frequencies (scales). In partic-
ular, thewavelet transform coherence (WTC) has been suggested as one
alternative to estimate instantaneous “correlation coefficients" at differ-
ent frequency bands, with a window length adjusted to the frequency
content of the signal (Chang and Glover, 2010; Hutchison et al.,
2013a; Torrence and Webster, 1999). In particular, the signal at each
wavelet scale has been band-pass filtered with a high-pass cut-off
according to the rule of the thumb, and, consequently, temporal varia-
tions in the scale-dependent correlations are limited to the same
frequency. While this gives access to a rich amount of information,
one remaining issue is how to combine scales into a concise and
meaningful summarizing measure. Recent approaches in EEG analy-
sis have employed a combination of windowed Fourier analysis and
principal component analysis (PCA) for that purpose (Mehrkanoon
et al., 2014).

Fluctuations of dynFC can be driven by noise, and, therefore, should
be tested for significance using parametric testing as suggested before,
or, alternatively, surrogate date using autoregressive models (Chang
and Glover, 2010) or phase randomization (Handwerker et al., 2012;
Prichard and Theiler, 1994) that preserve temporal correlation proper-
ties. Finally, it is important to note that while fluctuations of dynFC
might be driven by true non-stationarities and interactions of the time
series, the origin of these signals could be both neurological and non-
neurological. Ongoing and future research should further validate to
what extent these origins can be disentangled (Chang et al., 2013);
e.g., using concurrent measurements such as electroencephalography
(EEG) and non-neurophysiological signals.
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Appendix

Table 1
ρ∗ for significant non-zero correlation (5 % confidence level). Different window lengths
and TRs (w/ TR was rounded to the nearest integer).
TR
Window length
 1 s
 2 s
 3 s
20 s
 0.44
 0.63
 0.75

30 s
 0.36
 0.51
 0.63

40 s
 0.31
 0.44
 0.55

50 s
 0.28
 0.40
 0.48

60 s
 0.25
 0.36
 0.44

120 s
 0.18
 0.25
 0.31
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