
PBCOV: a property-based coverage criterion

Kassem Fawaz • Fadi Zaraket • Wes Masri • Hamza Harkous

Published online: 31 May 2014
� Springer Science+Business Media New York 2014

Abstract Coverage criteria aim at satisfying test requirements and compute metrics

values that quantify the adequacy of test suites at revealing defects in programs. Typically,

a test requirement is a structural program element, and the coverage metric value repre-

sents the percentage of elements covered by a test suite. Empirical studies show that

existing criteria might characterize a test suite as highly adequate, while it does not

actually reveal some of the existing defects. In other words, existing structural coverage

criteria are not always sensitive to the presence of defects. This paper presents PBCOV, a

Property-Based COVerage criterion, and empirically demonstrates its effectiveness. Given

a program with properties therein, static analysis techniques, such as model checking,

leverage formal properties to find defects. PBCOV is a dynamic analysis technique that

also leverages properties and is characterized by the following: (a) It considers the state

space of first-order logic properties as the test requirements to be covered; (b) it uses logic

synthesis to compute the state space; and (c) it is practical, i.e., computable, because it

Electronic supplementary material The online version of this article (doi:10.1007/s11219-014-9237-3)
contains supplementary material, which is available to authorized users.

This paper builds on the short position paper (2 pages) entitled: ‘‘Property-based Coverage Criterion,’’
presented at the DEFECTS Workshop, Chicago, IL, July 2009. This research was supported in part by NSF
(Grant# 0819987) and by the AUB University Research Board.

K. Fawaz
University of Michigan, Ann Arbor, MI, USA
e-mail: kmfawaz@umich.edu

F. Zaraket (&) � W. Masri
American University of Beirut, Beirut, Lebanon
e-mail: fz11@aub.edu.lb

W. Masri
e-mail: wm13@aub.edu.lb

H. Harkous
Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
e-mail: hamza.harkous@epfl.ch

123

Software Qual J (2015) 23:171–202
DOI 10.1007/s11219-014-9237-3

http://dx.doi.org/10.1007/s11219-014-9237-3

considers an over-approximation of the reachable state space using a cut-based abstrac-

tion.We evaluated PBCOV using programs with test suites comprising passing and failing

test cases. First, we computed metrics values for PBCOV and structural coverage using the

full test suites. Second, in order to quantify the sensitivity of the metrics to the absence of

failing test cases, we computed the values for all considered metrics using only the passing

test cases. In most cases, the structural metrics exhibited little or no decrease in their

values, while PBCOV showed a considerable decrease. This suggests that PBCOV is more

sensitive to the absence of failing test cases, i.e., it is more effective at characterizing test

suite adequacy to detect defects, and at revealing deficiencies in test suites.

Keywords Software testing � Coverage criteria � Property-based coverage � State

space coverage � Specification-based coverage � Test suite evaluation � Reachability

analysis � Logic synthesis

1 Introduction

The number of potential test cases of most software programs is practically infinite, which

makes exhaustive testing infeasible. Alternatively, the testing community believes that

effective use of coverage criteria provides informal assurance that the software program is

reliable. That is, coverage criteria provide practical rules for how to select tests and when

to stop testing (Ammann and Offutt 2008). Testers leverage coverage criteria and con-

figure their coverage requirements to maintain test suites for the purpose of (1) fully

exercising the functionality of the system under test (validation testing), (2) guarding

against previously detected defects (regression testing), and (3) increasing the likelihood of

detecting undiscovered defects (defect testing). Researchers have proposed several tech-

niques that use coverage criteria to augment, minimize, and build test suites (Harder et al.

2003; Ammann and Black 2001; Khurshid and Marinov 2004; Boyapati et al. 2002;

Gligoric et al. 2010; Santelices et al. 2008). Most of those techniques incorporate a given

test case in the test suite if its inclusion results in increasing the adopted coverage metric

and excludes it otherwise.

Consider a test suite T with passing and failing test cases, Tpass and Tfail, respectively.

This work deems a coverage metric that reports no increase in coverage between Tpass and

T ¼ Tfull ¼ Tpass [Tfail as ineffective at measuring the adequacy of a test suite for

regression and defect testing.1 This is key to our experimental setup when comparatively

evaluating the effectiveness of coverage criteria. This experimental approach is justified by

the fact that it is possible for a coverage criterion to report high coverage, and even full

coverage, for test suites that do not reveal existing defects.

Unlike testing, formal verification methods use static analysis and do not require the

execution of a test suite (Holzmann 1997; Visser et al. 2003; Torlak and Jackson 2007;

Clarke et al. 2004). For example, model checkers for decidable fragments of logics such as

first-order logic (FOL), computational tree logic (CTL), or linear temporal logic (LTL)

take as input a program and a set of formal properties therein and check whether the

properties hold for the program. In general, model checkers either return with a proof that

the properties hold for the program, return a counter example illustrating how the program

violates the properties, or return an inconclusive result when they reach computational

1 Please refer to Table 6 for a glossary of all the symbols used in this paper.

172 Software Qual J (2015) 23:171–202

123

bounds such as memory or timeout limits. Such techniques can handle safety properties

such as null pointer and array boundary checks, assume guarantee properties such as

preconditions and postconditions, invariants such as data structure or loop invariants, as

well as user assert statements. Existing dynamic analysis tools (Yang and Evans 2004;

Ernst et al. 2007) can automatically infer such properties in case they were not specified.

In the presence of a set of properties P in a program S and a test suite T , our work aims

at evaluating the quality of T and its adequacy at revealing defects in S. Specifically, this

paper presents PBCOV, a new coverage approach that comprises a property-based cov-

erage criterion, an associated metric, and a supporting tool. PBCOV that builds on the

approach of the position paper (Zaraket and Masri 2009) is a dynamic analysis technique

that leverages program properties and considers the state space of the properties as the test

requirements to be covered. Our experiments show that PBCOV is more effective for

regression and defect testing than existing structural coverage criteria.

The rest of this paper is organized as follows. In Sect. 2, we overview PBCOV and list

our contributions. Section 3 walks through a motivating example that highlights the

advantages of covering properties as opposed to structural elements. Section 4 provides a

detailed description of PBCOV. Section 5 describes its implementation. Section 6

describes our experimental study and presents our results. We compare against related

work in Sect. 7. Finally, we conclude and discuss future work in Sect. 8. Supplementary

appendices are available online (PBCOV-APPENDICES 2013); Appendix A illustrates

symbolic execution with an example, Appendix B details the PBCOV analysis of the

motivating example, Appendix C describes the subject programs and their properties, and

Appendices D and E list the results of the PBCOV and the structural coverage metrics in

tabular form.

2 Overview and contributions

We consider a property P expressed as a first-order and temporal logic formula over a

selected set of program and property variables, x1; x2; . . .; xm where each variable xi ranges

over a domain Di; 1� i�m. Note that in our experiments, we did not need temporal

operators to express the properties specified within the studied C programs, as first-order

logic was enough to express those properties. For correctness, P must evaluate to true at

the time of its execution for all test cases. We consider the smallest terms in P that evaluate

to Boolean values to be atomic predicate terms, p1; p2; . . .; pn, and we consider the state

space of P as all the 2n possible valuations of the atomic predicate terms. The PBCOV

metric measures the states of P covered by T against the reachable state space of P,

knowing that many states may be infeasible.

Notice that D ¼ D1 � D2. . .� Dm, the domain of the first-order variables occurring in

P, is practically infinite since the variables may be scalars. Note also that the atomic

predicate terms have a large, yet a finite number of valuations (2n) that partition D into 2n

equivalence classes where each class maps to the same value under P. For example,

consider the property x\y ^ y\z ^ x\z and its atomic predicates p1 ¼ x\y,p2 ¼ y\z,

and p3 ¼ x\z. The valuations h2; 3; 4i and h3; 4; 5i for variables x; y; and z are equivalent

under the atomic predicate valuation htrue; true; truei and are both mapped to trueby the

property. Thus, we consider the finite valuations of the atomic predicates as states when

computing the state space coverage value of P. We still reason (with an SMT solver) about

the domain of the first-order variables of P when considering the feasibility of a state

Software Qual J (2015) 23:171–202 173

123

(valuation of atomic predicates). For example, the valuation htrue; true; falsei of

hp1; p2; p3i is not feasible and thus should not count in the reachable state space.

We use logic synthesis techniques (ABC 2007) to compute a symbolic representation of

P that comprises the state elements of P and the transition relation between its states.

PBCOV computes an over-approximation of the reachable states of P using a cut

abstraction of S and P. A cut C is a set of control points of S that split S into SC and SC such

that SC contains P and over-approximates S. The over-approximation is necessary since

reachability analysis is expensive in nature.

We first instrument S and P and execute the instrumented program in a fashion similar

to concolic execution (Burnim and Sen 2008; Godefroid et al. 2005) in order to identify the

covered states. Second, we identify the states that were not covered (referred to as missing

states hereafter) using an equivalence check (ABC 2007) between a symbolic definition of

P and a truth table definition of the covered states. Many of the missing states could be

infeasible; therefore, we compute an over-approximation of the reachable state space by

performing feasibility checks on the missing states against a symbolic abstraction of S

using a satisfiability modulo theory (SMT) solver (Dutertre 2006). We compute our

property-based coverage metric and present to the user the feasible missing states based on

which new test cases could be manually inferred. It should be noted that other researchers

(Ammann and Black 2001; Ernst et al. 2007; Heimdahl et al. 2003) have previously

proposed techniques based on coverage of specifications; we will compare our work to

theirs in Sect. 7.

Logic coverage criteria such as multiple condition and modified condition/decision

coverage (MC/DC) consider the Boolean predicates of a program and their valua-

tions (Ammann and Offutt 2008). Considering the code equivalent to the synthesized

property, PBCOV belongs to the family of logic coverage criteria. PBCOV differs from

logic coverage criteria in that (1) it considers properties and not predicates in S, (2) the

properties are not simple propositional formulae, but first-order and temporal logic formulae

which PBCOV synthesizes into executable logic, and (3) it uses a cut abstraction to over-

approximate the reachable state space of the properties. Specifically, we designed the metric

associated with PBCOV to be similar to the multiple condition criterion modulo reachable

states as opposed to the widely accepted MC/DC criterion for the following reason. MC/DC

cannot be fully satisfied if the property can never evaluate to false, i.e., the program was

correct. In other words, MC/DC may report the same partial coverage from when the

program has a defect, and the test suite does not exercise it, to when the defect is fixed.

In order to evaluate PBCOV, we used several faulty versions of five C subject programs

from different sources each annotated with properties and associated with a test suite (Do

et al. 2005; Cormen et al. 2009; Baudin et al. 2009; Barr 2004; Coen-Porisini et al. 2001).

Except for one program (RBBST), all the defects in the faulty versions of the programs

were provided by the original sources as detailed in Table 1.

For each program, we computed the PBCOV metric and several existing structural

coverage metrics once for Tpass [Tfail and then for Tpass only. We observed that in most

cases, structural coverage techniques exhibited little or no decrease in their associated

metrics values, while the PBCOV metric showed considerable decrease. This indicates that

PBCOV is more sensitive to the presence of defects, and thus, more effective at including

test cases that exercise defects; hereafter, we refer to this as sensitivity to the presence of

defects. Also, PBCOV identified missing states that suggested new test cases to augment

the test suite. We considered existing standard tools, namely, GCOV (Gough and Stallman

2005) and ATAC (Horgan and London 1991), used as baseline in the recent literature

174 Software Qual J (2015) 23:171–202

123

(Jaygarl et al. 2010), to measure structural coverage metrics for function calls, statements,

basic blocks, branches, decisions, and defuses.

We identify four key advantages to deploying PBCOV as a coverage technique in the

production of software programs.

Advantage 1 PBCOV is sensitive to program defects that might evade structural coverage

techniques. This is mainly because PBCOV relies on the semantics of the program

expressed in properties as opposed to code constructs.

Advantage 2 The quality of the PBCOV metric can be enhanced by modifying the

properties to better describe the program. This is not possible with structural coverage

metrics since modification of the structural elements of the program modifies the program

itself.

Advantage 3 Adopting PBCOV as the means to evaluate test suites promotes the use of

formal properties in code. In the long run, this will lead to quality programs with less

ambiguous documentation and will enable a plethora of automated and interactive speci-

fication-based dynamic and static analysis tools that are not applicable in the absence of

properties.

Advantage 4 In practice, test engineers look at coverage metrics after fixing defects

induced by the test suite. The over-approximation of the reachable state space may still

contain states that do not satisfy the properties. PBCOV provides a second metric that

quantifies the level of confidence of a test engineer when he or she deems a test suite

adequate by considering only states that satisfy the properties.

In this paper, we make the following contributions.

1. We present a coverage approach based on formal properties that describe program

correctness.

2. We use an over-approximation of the reachable state space of the program properties

to compute the PBCOV coverage metric. The over-approximation uses a cut

abstraction of the program.

3. We present an implementation of PBCOV and demonstrate experimentally that it can

detect deficiencies in test suites deemed effective with other traditional coverage

techniques. The tool is available online at (PBCOV-TOOL 2013).

Table 1 Summary of subject programs

Program Source of

properties

Source of

test suite

#Tests Source

of defects

LOC #Properties #APTerms

in property

of

versions

of interest

GZIP Formalized

comments

SIR 214 SIR 5,680 16 3–13 7

RBBST Textbook (Cormen

et al. 2009)

Auto 616 Authors 511 2 17–18 12 9 2

MMan ACSL (Baudin

et al. 2009)

Auto 1,124 FTB (Barr

2004

212 1 5 6

TCAS Coen-Porisini

et al. (2001)

SIR 1,608 SIR 173 5 4–8 41

SLL Textbook (Cormen

et al. 2009)

Auto 1,751 FTB (Barr

2004)

130 1 6 6 9 2

Software Qual J (2015) 23:171–202 175

123

4. We took known benchmark programs with seeded defects, e.g., TCAS and GZIP, from

several sources (Cormen et al. 2009; Baudin et al. 2009; Barr 2004; Coen-Porisini

et al. 2001; Do et al. 2005) and augmented them with properties collected from the

literature, textbooks, and existing semi-formal English comments. Table 1 provides

details on the benchmarks including the source of the programs, the defects, and the

properties. We provide the resulting code as useful annotated programs.

3 Motivation

We use the function sort in Fig. 1, a faulty implementation of selection sort (Barr 2004),

to illustrate the advantages of covering properties as opposed to structural elements. The

function takes as input an array ‘a’ of size ‘n’; current and ‘j’ are the iterators of the

outer and inner loops, respectively; lowestindex holds the index of the minimum

element so far in the array; and temp is used to perform the swap on Line 13. Line 9 has a

defect as the inner loop does not always select the minimum and erroneously compares

against a[current] instead of a[lowestindex]. But due to coincidental correct-

ness (Masri 2010), the defect at Line 9 could be exercised without leading to failure. For

example, the test cases in test suite T shown in Fig. 1 result in the sorted arrays in A and

none of them leads to a failure. T apparently seems reasonable as it consists of non-sorted

arrays of different sizes, a sorted array t1, a reverse-sorted array t2, and test cases that test

boundary conditions such as t7 and t8.

We computed the structural coverage metrics resulting from executing T using GCOV

and ATAC. GCOV computes four coverage metrics, the percentage of executed state-

ments, executed branches, branches taken at least once, and invoked functions. ATAC

measures basic block, decision, C-use, and P-use coverage. Basic block coverage is similar

to statement coverage but might yield slightly different metric values. Decision coverage

reports whether each condition in the program evaluates to both true and false at least

once during test suite execution. Computational use (C-use) and predicate use (P-use) track

the definitions and usages of variables. A C-use is a use of the variable in a computation

such as an arithmetic expression, and a P-use is a use of the variable in a predicate

Fig. 1 Selection sort motivating example

176 Software Qual J (2015) 23:171–202

123

expression that evaluates to a Boolean value. The C-use measure ensures that there is at

least one path between the definition and a computational use of a variable. The P-use

measure ensures that there is at least one path between the definition of the variable and

both the true and false valuations of a predicate containing the variable (Rapps 1982).

T achieves full C-use coverage except for one infeasible def-use pair consisting of the

definition lowestindex = current on Line 6 and the use a[current] =
a[lowestindex] of lowestindex on Line 16. This def-use pair is not feasible

because the execution of the use is in contradiction with the if condition predicate

lowestindex != current on Line 14. T also achieves full P-use coverage except for

three infeasible P-use pairs. The first is the definition j = current ? 1 on Line 7, and the

false value of the loop predicates j\n on Line 8. This is infeasible since current is

bounded by current\n� 1 on Line 4. The second infeasible pair is the definition low-
estindex = current on Line 6 and the true value of predicate lowestindex !=
current on Line 14. The last infeasible pair is the definition lowestindex = j on

Line 10 and the false value of the predicate lowestindex != current on Line 14.

This is infeasible since ‘j’ is guaranteed to be different than current as it starts at

current?1 on Line 7 and only gets incremented later. T achieves full coverage for all

the other GCOV and ATAC metrics. We conclude that T is a deficient test suite that

attained full coverage using traditional structural techniques, which motivates our work on

property-based coverage.

We introduce a property P in sort specifying that at the end of execution every two

arbitrary neighboring elements a[k] and a[k?1] within the bounds of the array must be

in order.

P ¼ ð0� kÞ ^ ðk\n� 1Þ ! a½k� � a½k þ 1�

Formally, k 2 Z; n 2 Z and the array a : Z7!Z maps an index to a value.

The property P has three atomic predicate terms p1 ¼ ð0� kÞ, p2 ¼ ðk\n� 1Þ and

p3 ¼ ða½k� � a½k þ 1�Þ where piðk; n; aÞ : Z� Z� ðZ7!ZÞ7!B for 1� i� 3 and

P ¼ p1 ^ p2 ! p3.

Let ai 2 A be the array resulting from executing sort with test case ti 2 T .

Consider Pcover ¼ fhb1;b2;b3i;b1 ¼ p1ðk;n;aiÞ;b2 ¼ p2ðk;n;aiÞ;b3 ¼ p3ðk;n;aiÞ;k 2 Z;
ai 2 A;n¼ jaijg the set of all valuations of hp1;p2;p3i 2 B3 over all test cases in T . Note

that a test case t 2 T assigns values for a and n, while k remains a free variable in P. We

compute the set of all feasible states from a test case t using a satisfiability check on each

state, or by covering the full range of the free variable k when k is bounded.

The set Pcover contains all feasible valuations of hp1; p2; p3i except for the valuation

e ¼ h true ; true ; false i which describes two valid array elements that are not in order.

Executing sort with test input h3 1 2 4i results in the array h2 1 3 4i (a[0] = 2, a[1] =
1, a[2]= 3, a[3] = 4) where e is satisfied for k ¼ 0 since a[0][a[1]. In this

example, PBCOV reports that T did not achieve full coverage and that, specifically, e is

missing. This suggests that T must be augmented until e is covered, which will help induce

a failure and thus reveal the defect. Appendix B elaborates more on PBCOV using this

same example.

One could argue that using MC/DC on the synthesized property2 would be as effective

as PBCOV. In fact, MC/DC for the synthesized property will require the inclusion of e and

2 Typically MC/DC considers the coverage of a code decision predicate in terms of its clauses. Here the
property and its atomic predicates are presented to MC/DC as the predicate and its clauses, respectively.

Software Qual J (2015) 23:171–202 177

123

will report partial coverage. However, when the defect is fixed, MC/DC will still report the

same partial coverage. On the other hand, coverage of the reachable states exhibits a

difference from when the property is violated to when it is not. This motivates the design

decision for the PBCOV metric that considers the covered reachable state space.

4 PBCOV

We now describe the PBCOV approach, its mechanism to over-approximate the reachable

property state space, its cut-based abstraction, and its metrics. An illustration of symbolic

execution which we use in over-approximating the reachable property state space is pre-

sented in Appendix A.

The flow diagram in Fig. 2 and the algorithm in Fig. 3 illustrate the PBCOV process.

PBCOV takes as input the source code of the program S with a set of properties therein, P,

as well as a test suite T and reports the adequacy of T in assessing the behavior of S as

formally specified by P. The instrumentation generates an instrumented program Si. The

analysis generates the following: (a) a symbolic representation Psym of P, and (b) a

symbolic representation Ssym of S or part of S.

Line 3 of the algorithm computes n atomic predicates hp1; p2; . . .; pni from the property

P. Line 4 returns a symbolic representation of P in terms of the atomic predicates. If P has

temporal components, then P is translated into a finite state machine using textbook

transformations (Linz 2012), and the states of the machine are considered for coverage and

feasibility as follows in the paper. For example, the property ‘‘o;r*;c’’ specifying that a file

open ‘o’ must be followed by zero or more file read ‘r’, then followed by a file close ‘c’ can

be translated to the state machine in Fig. 4.

Line 8 builds the instrumented program Si that takes a test case t and computes and

returns values for the atomic predicates and program variables.

Line 12 runs Si with a test case t 2 T and returns/saves the values of the program

variables in a corresponding formula V . The formula V is a conjunction of equivalence

statements constraining each variable to its assigned value. For example, the formula

a½0� ¼ 1 ^ a½1� ¼ 2 ^ n ¼ 2 corresponds to an array a with size n equal to 2 and with

Fig. 2 Flow diagram of PBCOV

178 Software Qual J (2015) 23:171–202

123

values h1; 2i. Lines 15 and 18 compute the feasible states with the formula V that satisfy

and fail P and add them to Ppass and Pfail, respectively. PBCOV uses an SMT solver to

compute whether a state s is feasible in case the free variables in s ^ P ^ V were not

bounded.

Line 22 computes the states of P that are observed by S and T and represents the

observed values faithfully in Pcover. For the states that are not observed by S and T , Line 22

leaves Pcover undetermined by setting it to a free Boolean variable. Intuitively, Pcover is

true when Ppass is true, false when Pfail is true, and free otherwise, where free is a

nondeterministic variable.

Fig. 3 The PBCOV algorithm

Fig. 4 Finite state machine
corresponding to temporal
property ‘‘o;r*;c’’

Software Qual J (2015) 23:171–202 179

123

Line 24 computes the missing states as the difference between Psym and the covered

states. runs an equivalence check Psym ¼ Pcover to compute the missing states Pmiss.

The missing states may be:

• states where P evaluates to true, and in that case, it is likely that T may not be

executing all the specified behavior of S.

• states where P evaluates to false, and in that case, it is likely that T may not be

inducing failures that are due to defects in S.

• unreachable states due to the dependencies among the atomic predicate terms or due to

the details of the implementation and the structure of S. In this case, they should not be

considered by the coverage metric.

PBCOV uses an SMT solver to check the feasibility of the missing states. We express the

conjunction of Ssym and each missing state smiss 2 Pmiss as an SMT formula and pass that to

the SMT solver with a satisfiability check. An SMT solver returns either a satisfiable

answer in case the SMT formula is satisfiable, an unsatisfiable answer in case the SMT

formula is unsatisfiable, or an inconclusive answer in case the solver exhausted its

computational resources before reaching an answer. The following should be noted about

the outcome of the reachability analysis.

a. It computes the exact reachable state space if it provides conclusive results for the

complete program.

b. In case the solver returns a satisfiable answer, it also returns a model with input values

that induce the missing state. PBCOV can use these input values to augment T with a

new test case that covers the missing state in question. Concolic testing tools such as

that in Burnim and Sen (2008) can be readily used for test generation given the

valuation of the program variables that satisfy the missing state.

c. When the solver returns an inconclusive results, PBCOV over-approximates the

reachable state space via assuming that the state is reachable. This is one source of the

reachable state space over-approximation, and the second source is the cut abstraction

discussed in Sect. 4.2. If the number of inconclusive results is high, PBCOV computes

a cut abstraction of the program and performs the inconclusive feasibility checks

again.

d. Finally, PBCOV computes a metric, mpbcov, which compares the covered states to the

reachable states of the program, as described in Sect. 4.3.

4.1 Over-approximation of the reachable property state space

The diagram in Fig. 5 shows a program S with n statements l1 to ln. Each statement li,

1� i� n, is paired with pci, its associated path condition that we compute using symbolic

execution as illustrated in Appendix A. A path condition associated with a line of code is

the condition necessary for the program to execute that line of code. For instance, the path

condition resulting from an if (b) { I } else { E } statement is a disjunction of the

path conditions of both branches and is of the form
�
pcb ^ pcI _ pc:b ^ pcE

�
. The path

condition resulting from a loop statement while (b) { W } is of the form

ðpcb ^ pcWÞ� _ pc:b, where the Kleene star operator � stands for zero or more iterations of

the loop.

The path conditions form Ssym, the symbolic SMT representation of S. The box on the

left represents the state space of the property P and the horizontal ellipse labeled ½P� is the

180 Software Qual J (2015) 23:171–202

123

subset of states where P holds. The solid (inner) vertical ellipse labeled ½S� is the subset of

states reachable within the program S. Consequently, s3 is a reachable state where P holds,

while s4 is a reachable state where P does not hold, and thus, s4 is a bad state associated

with a defect. The test case t1 passes P since P holds in all of its states, and test case t2 fails

P since s4 belongs to it.

Test suite T ¼ ft1; t2g does not cover states s1, s2, and s5 among other states. These states

are not reachable. States s1 and s2 are passing states, and state s5 is a failing state. PBCOV

checks these states against Ssym with the SMT solver. If the solver returns a satisfiable

solution for a state, then the state is considered in the computation of the coverage metric, but

if it returns an unsatisfiable result, then the state will not be considered.

In case the solver returns an inconclusive result, PBCOV computes a cut of the program

with corresponding path conditions S0 as an approximation of the program. The over-

approximation of the program is defined by the following: (a) selecting a boundary in the

program and considering the path conditions between the boundary and the property, thus

defining a partial program, and (b) treating the variables that are not defined in the partial

program as free unconstrained variables. This is an over-approximation of the reachable

states of S since the free variables can assume all possible values while the removed

clauses assume only a subset of these values. Figure 5 illustrates the partial program

statements ln�1 and ln, and path conditions pcn�1 and pcn.

The dashed ellipse labeled ½S0� shows the state space reachable by S0 and contains ½S� as

it is an over-approximation of it. As a result, s2 is now considered when computing the

PBCOV metric as it falls in the over-approximation of the state space, while s1 and s5 are

still not considered. This example shows how over-approximation might lead to over-

estimating state space coverage.

4.2 Computing the cut abstraction

Let X be the set of variables of S. Let G ¼ hV;Ei be the control flow graph of S where a

node in V represents a statement or a function call and E � V � V � 2X is the transition

relation from one node to the other labeled with the set of variables used or defined in the

source node. For example, the edge ðu; v; fx; y; zgÞ 2 E represents the transition from u to

v, the two nodes corresponding to the two consecutive statements x = y ? z; w??,

respectively.

Fig. 5 Over-approximation of reach/able state space

Software Qual J (2015) 23:171–202 181

123

A cut of a graph is a partition of V into two sets: C and C ¼ V n C. A cut induces two

sets of cut nodes VC ¼ fu 2 C : 9v 2 C:9x 2 2X:
�
ðu; v; xÞ 2 E

�
g and VC ¼ fv 2 C : 9u 2 C:

9x 2 2X:
�
ðu; v; xÞ 2 E

�
g. For example, Fig. 6 shows the control flow graph of the sort

example from Fig. 1 assuming the correctness property is inserted at the end. A cut

between nodes 1 and 2 separates the graph into C ¼ f1g and C ¼ f2; 3; 4; 5; 6;
7; 8; 9; 10; 11; 12; 13; 14g where VC ¼ f1g and VC ¼ f2g. Another cut where VC ¼ f2g and

VC ¼ f3; 4; 14g separates the graph into C ¼ f1; 2g and C ¼ f3; 4; 5; 6; 7; 8; 9;
10; 11; 12; 13; 14g.

An s-t cut (source-target cut) is a cut seeded with sets s 	 C and t 	 C. An s-t mincut

refers to an s-t cut where the set of variables referred in the transitions from VC to VC is of

minimal cardinality as follows.

argminVC jfx : x 2 X; ðu; v;XÞ 2 E; u 2 VC; v 2 VCgj

PBCOV computes S0 to be the VC resulting from an s-t mincut of G where s is the node in V

referring to the first statement of S and t refers to the node in V representing the property.

For example, the cut between 1 and 2 is the s-t mincut of the graph in Fig. 6 where

s ¼ f1g and t ¼ f14g. We proceed by computing the symbolic representation of the

sorting routine less the initialization current=0 and use that to check for the feasibility

of the missing states. This obviously over-approximates the reachable state space. We use

the augmenting-path algorithm to compute the s-t mincut, which yields practically linear

runtimes even on large graphs (Ford and Fulkerson 1956).

In case the feasibility solver returns an inconclusive result for S0, PBCOV iteratively

computes the s-t mincut of S0 considering VC as s this time. This terminates when the solver

returns a conclusive result, or when the s-t mincut returns S0 ¼ VC ¼ t.

In cases where loop boundaries may separate VC from the property, we unroll the last K

loop iteration where K is an unrolling bound and consider that the behavior of the previous

Fig. 6 Control flow graph of the sort example of Fig. 1

182 Software Qual J (2015) 23:171–202

123

iterations is nondeterministic. This is similar to the abstraction of weakest precondition

computations (Ball et al. 2011, 2001; Yang et al. 2010). We handle recursion similarly.

4.3 The PBCOV metric and the confident PBCOV metric

Letntrue
cov be the number of covered states that evaluate P to true, nfalse

cov the number of

covered states that evaluate P to false, ntrue
feas the number of feasible states that evaluate P

to true, and n
false
feas the number of feasible states that evaluate P to false. We define the

PBCOV metric to be:

mpbcov ¼ logð1þ ntrue
cov þ nfalse

cov Þ= logð1þ ntrue
feas þ n

false
feas Þ ð1Þ

We use a logarithmic scale for practical reasons to yield metrics that are in the same order

of magnitude as of the traditional structural metrics, as illustrated in Table 4 for example.

We justify that by the fact that the number of over-approximated feasible states is of

exponential nature because of the state explosion problem that characterizes static analysis.

Meanwhile, the number of covered states is of polynomial nature since test suites are

designed such that the program terminates within a reasonable time.

In practice, programmers fix the defects revealed by T and P, and run T again on the

fixed program to compute coverage. Consequently, all the covered states evaluate P to

true. The feasible states however may still contain states that are not induced by the test

suite and evaluate the properties to false. Nevertheless, the programmer may be inter-

ested in evaluating T in terms of property coverage assuming that the code is correct. We

define an confident version of PBCOV that measures the covered states against the feasible

states that evaluate P to true as:

mcon
pbcov ¼ logð1þ ntrue

cov Þ= logð1þ ntrue
feasÞ ð2Þ

The difference between the confident and the actual PBCOV metrics, mpbcov � mcon
pbcov,

quantifies the level of confidence of a test engineer when he or she deems a test suite to be

adequate. A large difference means that he or she is too confident.

The two metrics are good indicators in programs where reachability analysis works well

and concludes on significant cuts of the program. However, the denominator grows

exponentially where the reachability analysis does not conclude except on small parts of

the program, and thus, the magnitude values of the metrics may mislead the user to doubt

the test suite. In such cases, programmers should not use values of mpbcov as absolute

indicators; rather they should consider them relative to other instances of mpbcov computed

with different test suites, as done in our experiments in Sect. 6.

5 Implementation and tools utilized

The current implementation of PBCOV supports C programs with user assertions.

PBCOV makes use of the concolic testing tool Crest (Burnim and Sen 2008) to instru-

ment and build the symbolic representation of the program, the ABC (ABC 2007) model

checker to perform the equivalence check, and the SMT version of the tool

CBMC (Clarke et al. 2004) powered by the Yices (Dutertre 2006) solver to compute the

reachability analysis.

Software Qual J (2015) 23:171–202 183

123

5.1 Instrumentation

Crest takes a program written in the C programming language and instruments it using the

C intermediate language (CIL) (Necula et al. 2002) platform. The instrumented code

follows the execution of the program over a concrete input while constructing a Boolean

expression U representing the path condition of the program at every executed statement.

Once the execution is done, Crest modifies U to represent a path that the program has not

taken yet and stores that in W. It then passes W to Yices, to compute a valuation e of the

program input variables that can take the program to the desired path. If the query is

satisfiable, Crest executes again with e as input. Crest repeats this procedure until all paths

have been covered.

PBCOV modifies and leverages Crest to instrument the atomic predicate terms of the

specified properties and computes the path conditions of the code.

5.2 Missing states and reachability analysis

PBCOV runs the test suite T against the instrumented program Si as computed in Sect. 5.1

and collects the covered states in a truth table to build the equivalence check Pcover ¼ Psym

as shown in Fig. 3 and discussed in Sect. 4. PBCOV passes the Pcover ¼ Psym as a circuit

and passes that to the ABC model checker. ABC uses transformation-based verification

techniques to check properties of sequential circuits. A sequential circuit is a Boolean

formula with memory elements that can simulate the execution of transition systems and is

thus well suited to represent temporal properties. The memory elements arise from

quantifiers and temporal operators that might be used in the property. The ABC model

checker detects the states where the two formulas Pcover and Psym differ; these constitute the

missing states Pmiss.

PBCOV uses CBMC and Yices to check whether these missing states are feasible by

running a satisfiability check of each state against the symbolic representation of the

program Ssym: the path conditions that describe the program. PBCOV discards the missing

states reported as not satisfiable by Yices from the reachable state space and then computes

the coverage metric. Satisfiability is an intractable problem in theory. In practice, and for

formulas arising from logic design and software contexts, satisfiability solvers emerged

lately that use the structure of the formula in question to answer the satisfiability query in

reasonable time. To guarantee polynomial running time, PBCOV sets a timeout when it

makes a call to the satisfiability solver. In case the satisfiability solver does not return a

conclusive result before the timeout, PBCOV computes an abstraction of the formula that

over-approximates the reachable state space and passes that to the solver for at most LIMIT

times, where LIMIT was set to 5 in our experiments.

6 Experimental study

In this section, we empirically demonstrate that PBCOV is (1) more sensitive to the

presence of defects than other structural coverage techniques, and we show that (2) there is

a correlation between the PBCOV metrics computed for a test suite and the defect

detection capabilities of the test suite. We describe the setup of our experiments and

present the subject programs and the results. We comment on the results, and we finally

discuss the validity of the PBCOV metric.

184 Software Qual J (2015) 23:171–202

123

6.1 Experimental setup

In order to demonstrate the potential of PBCOV, we applied it along with several structural

coverage techniques to five subject programs with property annotations as described in

Table 1. Each program is associated with a test suite exhibiting high structural coverage

and one or more program versions that are seeded with defects. The diagram in Fig. 7

illustrates a unit experiment. A version of one of the subject programs is selected and

executed against the full test suite Tfull. The passing tests are identified and collected in a

subset of Tfull denoted by Tpass. A test is considered passing if it produces the expected

output while noting that a passing test may still violate a property. Where appropriate, e.g.,

with TCAS, we form Tpass�assert to contain those test cases that passed and did not violate

the properties.

Consequently, the unit experiment is setup such that (a) each subject program is

associated with a single Tfull, (b) each seeded version is associated with its own Tpass,

(c) the failing tests

(Tfail ¼ Tfull n Tpass) are capable of revealing the seeded defects, and (d) Tpass does not

reveal the defect in the seeded version.

We compute the structural coverage attained for each seeded version using GCOV and

ATAC. To comparatively evaluate PBCOV and the structural coverage techniques, we

compute the percent decrease in coverage for each coverage metric, denoted by %dcov,

from when Tfull was applied to when only Tpass was applied. For a specific metric, %dcov

assesses whether the metric is of utility to uncover the seeded defects. For PBCOV, %dcov

expresses the total number of states induced by Tfull versus the total number of states

induced by Tpass and is defined as the following expression:

%dPBCOV
cov ¼ ntrue

cov þ nfalse
cov

� �
jTfull
� ntrue

cov þ nfalse
cov

� �
jTpass

= ntrue
cov þ nfalse

cov

� �
jTfull

� �
ð3Þ

We computed %dcov for the structural coverage metrics in a similar fashion. For a struc-

tural metric K, let Kfull and Kpass be the number of structural elements covered by Tfull and

Tpass, respectively, and let Ktotal be the total number of structural elements. The structural

coverage metric is the ratio of the covered elements over the total elements, i.e., mK
full ¼

Kfull=Ktotal and mK
pass ¼ Kpass=Ktotal. The percent decrease is defined as follows:

Fig. 7 Experimental setup flow diagram

Software Qual J (2015) 23:171–202 185

123

%dK
cov ¼ Kfull � Kpass

� �
=Kfull ¼ mK

full � mK
pass

� �
=mK

full ð4Þ

6.2 Subject programs, properties, and test suites

Table 1 lists the subject programs, their sizes in terms of lines of code (LOC), the sizes of

the test suites associated with them, and the sources of the properties, test suites, and

defects. The table also provides the number of atomic predicate terms (APTerms) in the

properties. TCAS and GZIP have several properties with a varying number of terms, and

the property of RBBSTInsert has one term more than that of RBBSTRemove.

Appendix C describes the programs and the properties in detail. Briefly, the TCAS and

GZIP programs along with their test suites and seeded defects were downloaded from the

SIR repository (Do et al. 2005). The properties of TCAS originated from the work in

Coen-Porisini et al. (2001). The properties for GZIP are user assert statements already

embedded in the code and selected English pre-/postcondition comments for functions that

are two levels deep in the call chain that the authors formalized verbatim. The memory

manager (MMan) program and its properties are provided with the Frama-C ANSI C

Specification Language (ACSL) (Baudin et al. 2009). The Red Black Binary Search Tree

(RBBST) originates from (Martinian 2010), and its properties along with the Sorted

Linked List (SLL) and its properties originate from textbook implementations.

The defects seeded in SLL and MMan are equivalent to defects found in several buggy

programs described in (Barr 2004), which involved linked lists and memory allocators. For

SLL, RBBST, and MMan, we automatically generated test suites using available tools such

as UDITA (Gligoric et al. 2010) and Crest. Note that we used UDITA when Crest was not

applicable. The two tools differ in the techniques they use to select concrete inputs that

under-approximate the symbolic representation of a program. Notice also that test case

generation and over-approximation reachability analysis using symbolic execution differ in

that the first tries to under-approximate the symbolic representation of a program. In all

cases, we specified the properties independent from the seeded defects. Table 2 presents

the rates of structural and PBCOV coverage for the subject programs; clearly, structural is

higher than the more conservative PBCOV coverage except for the GZIP program. This is

due to (1) legacy dead code that is not covered, and (2) we only formalized functions that

are two levels deep in the call chain. This is evidence that for realistic size programs like

GZIP, more specifications need to be added. Table 2 also shows the average running time

of the structural coverage metrics, versus the running time for PBCOV. PBCOV was at

worst three times slower than the structural coverage metrics. This is due to the several

calls to the SMT solver that timed out. This is acceptable in most cases since regression

testing typically takes place overnight or on weekends. Further work to reduce the running

time of PBCOV could make use of computing the unsatisfiable core of an unsatisfiable

formula and using it to eliminate SAT solver calls.

6.3 Percent decrease of coverage results

For each seeded version, we report %dcov from when Tfull is used to when Tpass is used.

Here, we provide a summary of our results, and the full set of data is available in

Appendices D and E. As shown in Table 1, there are a total of 90 versions which consist of

41 TCAS versions, 12 RBBST versions studied once for the Insert function and once for the

Remove function, 6 SLL versions studied once for the Insert function and once for the

186 Software Qual J (2015) 23:171–202

123

T
a

b
le

2
S

tr
u

ct
u

ra
l

co
v

er
ag

e
an

d
P

B
C

O
V

re
su

lt
s

w
it

h
T

fu
ll

an
d

w
it

h
o

u
t

th
e

se
ed

ed
d

ef
ec

ts

P
ro

g
ra

m
G

C
O

V
(%

)
A

T
A

C
(%

)
T

im
e

(h
)

m
p

b
co

v
m

co
n

p
b

co
v

T
im

e
(h

)

L
in

e
B

ra
n

ch
B

ra
n

ch
o

n
ce

C
al

l
B

lo
ck

D
ec

is
io

n
C

-u
se

P
-u

se

T
C

A
S

1
0

0
1

0
0

9
4

1
0

0
1

0
0

9
1

1
0

0
9

3
0

.4
2

9
1

.5
7

N
/A

0
.5

7

R
B

B
S

T
In

se
rt

1
0

0
1

0
0

9
2

1
0

0
1

0
0

9
6

8
5

8
0

2
.7

3
3

.6
5

6
.5

9
5

.9

R
B

B
S

T
R

em
o

v
e

9
2

9
3

8
4

1
0

0
9

1
8

9
6

7
5

3
3

.1
3

5
.9

8
5

6
.6

5
7

.8

M
M

an
1

0
0

1
0

0
1

0
0

1
0

0
1

0
0

1
0

0
1

0
0

1
0

0
1

.6
2

8
.2

3
3

0
.2

1
3

.8

S
L

L
In

se
rt

1
0

0
1

0
0

1
0

0
–

1
0

0
1

0
0

1
0

0
1

0
0

2
.3

8
6

.1
4

1
0

0
4

.8

S
L

L
R

em
o

v
e

1
0

0
1

0
0

1
0

0
–

1
0

0
1

0
0

1
0

0
1

0
0

2
.8

6
9

.9
8

2
.7

1
7

.3

G
Z

IP
7

4
.6

9
7

5
.8

1
5

9
.0

1
5

0
.1

5
8

5
0

5
6

4
2

4
.5

6
8

.3
6

5
8

.3
5

1
0

.2

T
h

er
e

w
er

e
n

o
fu

n
ct

io
n

ca
ll

s
in

ei
th

er
o

f
th

e
S
L

L
In

se
rt

o
r

S
L

L
R

em
o

ve
fu

n
ct

io
n

s

Software Qual J (2015) 23:171–202 187

123

Remove function, 7 GZIP versions of interest, and 6 MMan versions. Based on the %dcov

results, we recognize six categories that divide the 90 versions.

Category 1 The first category consists of 13 versions where no change occurs in cov-

erage for both the structural and PBCOV metrics. We refined the properties to include

terms related to the seeded defects. We reran our experiments and obtained significant

PBCOV decrease for 10 out of the 13 versions. This shows that the quality of PBCOV can

be enhanced while that is not possible for the structural coverage metrics. In future work,

we will investigate methods to refine properties by seeding defects and observing the effect

of that on the PBCOV metrics.

Category 2 The second category contains 19 versions where no change occurred with the

structural coverage metrics but significant change occurred with PBCOV.

Figure 8 shows %dPBCOV
cov as a function of the version ID and the maximum %dK

cov

among the structural coverage metrics. Figures 8, 9, 10, and 11 use the legends of the

maximum %dK
cov to distinguish the subject programs. For readability, the horizontal axis is

sorted by the subject program then by %dPBCOV
cov . Note that structural coverage is high for

all the 19 versions as shown in Appendix E. This category shows that PBCOV can detect

deficient test suites where structural coverage metrics fail to do so.

Category 3 Category 3 shown in Fig. 9 has 8 versions. They exhibit little structural

coverage decrease, but significant PBCOV decreases. Along with the category 2 versions,

M1 M3 RI10 RI11 RI12 RR6 SI4 SR3 SR4 T41 T6 T32 T1 T10 T11 T31 T28 T35 T37

0

10

20

30

40

50

60

Version ID

%
δ c

ov

PBCOV
MMan

RBBSTInsert
RBBSTRemove

SLLInsert
SLLRemove

TCAS

Fig. 8 Category 2 versions with no structural and with significant PBCOV decrease

G5 G1 M2 RI5 RR8 RR2 RR9 SR2

0

10

20

30

40

50

60

70

Version ID

%
δ c

ov

PBCOV
GZIP
MMan

RBBSTInsert
RBBSTRemove

SLLRemove

Fig. 9 Category 3 with little structural and significant PBCOV coverage decrease

188 Software Qual J (2015) 23:171–202

123

these versions show the utility of PBCOV to reveal defects that have little or no effect on

structural elements.

Category 4 This category includes 17 versions, shown in Fig. 10, that exhibit significant

decrease of structural coverage metrics, i.e., structural coverage is sensitive to the defects

in these versions. Nevertheless, Fig. 10 shows that PBCOV is more sensitive in most cases.

This category describes defects where the missing states correspond to predicates in the

programs that directly affect the structural elements.

Category 5 Category 5 shown in Fig. 11 has 4 versions exhibiting no change in PBCOV

and a little change with structural coverage. Tpass violates properties with versions GZIP-4

and TCAS-40 which is sufficient to alarm the test engineer to fix the program before

checking coverage results. Note that %dK
cov for both versions is small (4 and 7 %) and the

high structural coverage values of TCAS may still mislead the test engineer. GZIP-4

computes the header length of the output file in an erroneous manner. All test cases

compute the length, but only failing ones display it. So, even though Tpass exhibits a slight

4 % reduction in structural coverage, it does not reveal the defect. On the other hand,

PBCOV exhibits no reduction but alarms the user due to a property (which checks the

header length) that gets violated by all test cases.

SLLRemove-5 and SLLInsert-5 share the same code, and the seeded defect therein is not

exercised in the Remove function but in the Insert function where %dPBCOV
cov =60 % (see Fig.

G7 G6 G3 M4 M6 M5 RI8 RI1 RI2 RI9 RR7 RR4 SI1 SI5 SR1 T4 T36

0

20

40

60

80

100

Version ID

%
δ c

ov

PBCOV
GZIP

MMan
RBBSTInsert

RBBSTRemove
SLLInsert

SLLRemove
TCAS

Fig. 10 Category 4 versions with significant structural and PBCOV coverage decrease

G4 RR3 SR5 T40

0

1

2

3

4

5

6

7

Version ID

%
δ c

ov

PBCOV
GZIP
MMan

RBBSTRemove
SLLRemove

Fig. 11 Category 5 versions with no PBCOV and little structural coverage decrease

Software Qual J (2015) 23:171–202 189

123

10). RBBSTRemove-3 shows a 1.3 % decrease in decision coverage. This version is the

only case we encountered in our study in which structural coverage was sensitive to the

defect, whereas PBCOV was not. Even though the decrease is minor, it is evidence that

structural coverage metrics should still be used to reveal defects that correlate with

structural features and that do not affect the state space of the current property annotations.

Category 6 Category 6 contains 29 versions where no structural or PBCOV change

occured but where Tpass violated the properties, which is sufficient to alarm the test

engineer. These 29 versions show the utility of property annotations to uncover defects.

In all, we observe that PBCOV was very sensitive to 27 defects (Categories 2 and 3)

where structural coverage exhibited no or little decrease and was more sensitive to the rest

of the defects in most cases.

The results for SLL differ from the trend we have seen with other programs:

1. For example, structural coverage yields better results for versions 1 and 5 as shown in

Fig. 10, but still PBCOV decreased significantly. The defects in versions 1 and 5 are

trivial and can be revealed by a majority of the test cases. As a result, Tpass included

only 73 out of 1,751 test cases, as shown in Table E.4 in Appendix E, that did not

execute most of the code. The defects in versions 2, 3, and 6 are not accessible from

SLLInsert, and thus, they did not cause any reduction in coverage.

2. The defect in version 6 of SLL is seeded in the pointer of the removed element, and since

failure is determined by comparing the resulting lists only, this defect goes undetected by

all test cases. Nevertheless, the properties annotating SSLRemove check the return

pointer. Therefore, on the one hand, PBCOV does not decrease because Tpass and Tfull are

identical, but on the other hand, one of the properties evaluates to false on two of the

test cases, which alarms the tester to either fix the code or check the test suite.

TCAS is the only program where a considerable number of passing test cases violated the

properties. Therefore, for each seeded version of TCAS, we also considered Tpass�assert,

which is a subset of Tpass that excludes the test cases that violate properties. While Tpass�assert

is designed to have less state space coverage, we are interested in evaluating it using the

structural coverage techniques. Our experiments show that compared to both Tfull and Tpass,

in most cases Tpass�assert exhibits the same structural coverage. Figure 12 presents the results

for the Combined-Property, i.e., the conjunction of the five TCAS properties. In the rest of

the cases, Tpass�assert exhibits sharper decrease in PBCOV relative to structural coverage.

22 29 40 9 23 30 2 3 5 7 8 12 13 14 15 16 17 18 19 20 21 24 25 26 27 28 34 35 36 38 39 33 4 41 6 32 1 10 11 31 37
12

14

16

18

20

22

24

26

28

30

32

Version ID

%
δ c

ov

PBCOV
Max-structural

Fig. 12 TCAS–%dcov–Combined-Property: Tfull vs. Tpass�assert

190 Software Qual J (2015) 23:171–202

123

This is evidence of the utility of PBCOV in detecting deficiencies of test suites. The results

for the five TCAS properties are detailed in Tables D.7–11 in Appendix D.

As expected, for each version where PBCOV decreased for any of the individual five

properties, PBCOV also decreased for the Combined-Property. Interestingly, PBCOV

decreased significantly for the Combined-Property in versions where it decreased slightly

for only one of the individual five properties. This is due to the fact that the Combined-

Property annotates the same position of code as the individual five properties, and thus, its

state space is a product rather than a simple union of the state spaces of the five individual

properties. To clarify, consider properties P1 and P2 each comprising two terms and four

states. Consider property P that combines P1 and P2 and has four terms and 16 states.

Given a test suite T ¼ ft1; t2; t3; t4g that covers the states f0000; 0001; 0100; 0101g over P

and the states f00; 01g over each of P1 and P2. A reduced test suite T 0 ¼ ft1; t4g that

covers only f0000; 0101g over P also covers f00; 01g over each of P1 and P2. Note how

when going from T to T 0 state coverage decreased for the combined property P but it did

not decrease for P1 and P2. Consequently, many states of the Combined-Property that can

be excited with Tfull cannot be excited with Tpass. This shows that by adding more prop-

erties to a program, one can scrutinize the efficiency of a test suite in an exponential

fashion. This is a qualification that has no counterpart with structural coverage metrics.

6.4 PBCOV metric results

We used the SMT version of the tool CBMC (Clarke et al. 2004) to perform the feasibility

checks as described in Sect. 3. We inserted the formula expressing the state smiss as an

assertion statement in S and asked the SMT version of CBMC to check for satisfiability.

We allowed the CBMC tool to run for 30 min for each missing state and considered it to

return an inconclusive result in case it timed out. We also set the LIMIT parameter from the

algorithm in Figs. 3, 4 and 5. In practice, the cut-based abstraction ignored the whole

program and only kept the property included in the formula before the fourth iteration of

the cut-based abstraction. As for the timeout parameter, almost every inconclusive result

from the checker took between 3 and 12 min and the few checks that took more than

12 min all timed out. So, the same PBCOV metric values would have been returned

whether LIMIT was set to 3 or 5, and timeout was set to 12 or 30 min.

In this section, we present the results of the RBBST program in Tables 3 and 4. We

summarize the rest of the results and discuss interesting cases. The rest of the results is

described in Appendices D and E. The rows in the tables are merged when distinct versions

Table 3 PBCOV results for RBBSTInsert

Version ntrue
cov nfalse

cov
ntrue

feas n
false
feas

mpbcov mcon
pbcov

Original 18 0 181 6,219 33.6 56.59

1 18 12 181 6,219 39.19 N/A

2 18 14 181 6,219 39.9 N/A

3, 4, 6, 7 18 0 181 6,219 33.6 56.59

5 19 3 181 6,219 35.78 N/A

8 18 10 181 6,219 38.43 N/A

9 24 26 181 6,219 44.87 N/A

10, 11 18 4 181 6,219 35.78 N/A

12 18 5 181 6,219 36.27 N/A

Software Qual J (2015) 23:171–202 191

123

of a subject program yield similar results, as in the case of versions 3, 4, 6, and 7 in

Table 3. We also do not compute the confident metric %dcon
cov where it is not defined such as

for version 1 in Table 3 where the property is violated. The user needs to fix the code to

satisfy the property before evaluating the confident metric.

The results in Table 3 shows the PBCOV metric results for the RBBSTInsert function.

The RBBST property included 18 distinct terms, and thus, the state space comprises

218 ¼ 256K states. The reachability analysis did not provide conclusive results on the full

program, and thus, PBCOV used a cut of the program that included the property with the

last two calls to the recursive Insert function to over-approximate the reachable state space

of the program. This cut did not include any of the seeded defects, and thus, the number of

feasible states was the same across all versions. This yielded a significant reduction from

the possible state space (6,400 out of 256K states). The over-approximation with Insert was

also due to some features of the CBMC tool. For example, CBMC considers pointer

dereferencing as uninterpreted functions to account for pointer arithmetic. Thus, CBMC

translates the expression n-[left-[color, where ‘n’, left, and color denote the

node, a field therein pointing to the left RBBST, and the color of the node, respectively, to

color1(left1(n)). It translates another occurrence of the expression n-[left-
[color in the same property to color2(left2(n)). We did not attempt to fix this as

we wanted our PBCOV results to reflect the existing state of the art tools. The fix could

have been to store the result n-[left-[color in a temporary variable and use the

variable in the property instead.

The PBCOV results of RBBSTInsert illustrate the utility of the logarithmic scale as a

pedagogical tool to compensate for the notorious exponential explosion in the over-

approximation of the reachable state space. For example, compared to the reported 33.6 %

in Table 3, the ratio without the logarithmic scale for the original program would have

reported 18/6,400 = 0.28 %, which might be misleading to a test engineer accustomed to

existing coverage metrics.

The structural coverage metrics for the RBBSTInsert function in Table 2 show a high

confidence in the test suite as they range between 80 and 100 %, while PBCOV shows little

confidence with a metric value of 33.6 %. This is mainly due to the complex and pointer

operations used in Insert function where reachability analysis does not scale well. PBCOV

in here is a good indicator of the complexity of the subject program since test suites for

complex programs should require continuous maintenance and PBCOV suggests exactly

that in this case.

Table 4 shows the PBCOV metric results for the RBBSTRemove function. The state

space includes 217 ¼ 128K states. Similar to RBBSTInsert, the reachability analysis did not

Table 4 PBCOV results for RBBSTremove

Version ntrue
cov nfalse

cov
ntrue

feas n
false
feas

mpbcov mcon
pbcov

Original 18 0 180 3,404 35.98 56.65

1 19 0 180 3,404 36.61 57.63

2 18 7 180 3,404 39.81 N/A

3, 5 18 0 180 3,404 35.98 56.65

4 20 42 180 3,404 50.63 N/A

6 18 16 180 3,404 43.44 N/A

7 18 1 180 3,404 36.61 N/A

8 18 4 180 3,404 38.32 N/A

192 Software Qual J (2015) 23:171–202

123

provide conclusive results on the full program, and thus, PBCOV used a cut of the program

that included the property with the last two calls to the recursive Remove function to over-

approximate the reachable state space. This cut did not include any of the seeded defects,

and thus, the number of feasible states was the same across all versions. Similar to Insert,

the PBCOV coverage numbers in Table 4 show more conservative results compared to the

structural coverage metrics in Table 2.

Similar to RBBST, the reachability analysis did not provide conclusive results for GZIP,

MMan, and SLL. PBCOV used an abstraction of each program to over-approximate the

reachable state space. The GZIP cut and MMan cut did not include the seeded defects, and

thus, the number of feasible states was the same across all versions. SLL cut included the

seeded defects and produced different numbers of feasible states across versions. The

reachability analysis returned conclusive results on the TCAS program, and no abstraction

was needed. The over-approximation of the reachable state space computed the number of

feasible states to be up to: 8 out of 8K states for GZIP, 48 out of 256 states for MMan, 10

out of 64 states for SLL, and 20 out of 256 states for TCAS. This shows that the over-

approximation can produce tight results even on programs with complex operations such as

GZIP, unlike what we have seen with RBBST.

Property-15 for GZIP is interesting as it evaluated to false for all versions including

the original version, i.e., the program originally violates Property-15. We checked the

original version of the subsequent releases of GZIP and found out that release 1.3 available

at SIR does not violate Property-15 and shows a higher coverage with a higher ntrue
cov and a

zero nfalse
cov . This shows the utility of property-based testing in finding defects and of

PBCOV as an indicator of the adequacy of the test suite.

Finally, the original 8 user assertions of GZIP guard against erroneous inputs and

boundary conditions and do not describe the general behavior of the program. The PBCOV

metrics related to those assertions did not exhibit changes, whereas the 8 properties that we

added by formalizing the English pre- and postconditions from comments that described

the general behavior of GZIP better described the seeded defects. This shows that the

quality of PBCOV can be enhanced by modifying the properties, which cannot be done for

other coverage metrics.

6.5 Discussion of the results

We make the following additional observations in regard to Sects. 6.3 and 6.4.

1. In the presence of complex defects, PBCOV is likely to perform better than GCOV and

ATAC. This is because these two structural coverage tools monitor relatively simple

structural elements that might not be able to characterize complex defects (Masri et al.

2007; Masri 2010), whereas PBCOV monitors properties that typically describe the

values and relationships of multiple variables and might lead to a better characterization

of complex defects. This is illustrated in version 1 of GZIP shown in Fig. 9.

2. In most cases, the structural coverage metrics behave similarly, i.e., they either all

decrease or they all remain unchanged. This could be explained by the subsumption

relationships (Ammann and Offutt 2008) that exist between them, e.g., given that

branch coverage subsumes statement coverage, a decrease in branch coverage should

be accompanied by a decrease in statement coverage.

3. The PBCOV metric is very conservative compared to the GCOV and ATAC metrics.

ATAC and GCOV predominantly reported structural coverage that exceeded 90%,

Software Qual J (2015) 23:171–202 193

123

while PBCOV reported coverage that ranged between 30% and 98% while on the

lower side in most cases.

4. Whenever a version seeded with defects reported higher coverage than the original

version, and the seeded version did not violate the property, the difference between the

confident and the actual coverage metrics either remained the same or increased

indicating that the user is too confident to accept Tfull (check version 1 in Table 4).

5. Whenever the reachability analysis reached a conclusive result on a missing state, it

produced an input valuation that works well as a test case. This means that the PBCOV

technique can be extended in future work to augment test suites.

6.6 Threats to validity

The first external threat to the validity of PBCOV is that it is not applicable in the absence

of properties in source code. We admit that it was a hard task to find public programs

already adequately annotated with meaningful properties. We think that with the emer-

gence of formal verification tools, annotating code with properties will be a more common

practice. In fact, Microsoft reports that in some of its most successful projects, the ratio of

annotations to code is 1–10 (Woodcock et al. 2009).

The internal validity of PBCOV may be in question under the following conditions.

1. PBCOV is as good as the properties embedded in the code. The properties must

describe the general behavior of the program and not only guard against illegal

boundary behaviors. It is not trivial to write such properties, and PBCOV does not

provide the means to assess the quality of the claimed properties, for example, in the

form of a metric. We will explore providing such a metric in future work. Intuitively,

we suggest considering a property to completely define the behavior of an output

variable if it deterministically defines its value for each acceptable input.

2. Although the over-approximation of reachable states using symbolic analysis yielded

significant reductions in the considered state space, it did not provide a tight

approximation when the program had complex constructs, e.g., the RBBST program.

This is expected to persist even with advances in static analysis research because of the

nature of the reachability analysis notorious state explosion problem. A loose over-

approximation of the feasible state space leaves the PBCOV metric with values lower

than what testers are accustomed to with other coverage metrics. On the other hand,

this can be viewed positively as an indication that the program is complex and requires

continuous maintenance.

3. Satisfiability analysis often takes long before returning a non-satisfiable result,

especially when dealing with large state spaces such as in the case of RBBSTInsert.

This can be remedied by checking for the feasibility of sets of states that can be

encoded with simpler formulae instead of checking one state at a time. For example, if

a check returned that term p1 is not satisfiable, then all the missing states containing p1

as a factor would be dismissed.

7 Related work

Given a program with properties therein, PBCOV evaluates a test suite by studying the

state space it covers. Below, we review and compare against several related approaches,

194 Software Qual J (2015) 23:171–202

123

namely, specification-based test generation, state-based coverage, specification-based

coverage, and operational specifications. PBCOV computes the sensitivity of a test suite to

the presence of defects to compare against existing techniques. This is similar to checked

coverage that assesses oracle quality based on the ratio of program elements covered by

oracle checks (Schuler and Zeller 2011). Table 5 provides a comparative summary to

related techniques.

Specification-based test generation Previous work on coverage and testing that

involves specifications focused on methods and techniques to automatically generate test

suites from specifications and properties (Khurshid and Marinov 2004; Boyapati et al.

2002; Gligoric et al. 2010). These techniques consider a precondition P as a conditional

statement C and compute a test suite that provides full branch coverage to the conditions in

C. TestEra (Khurshid and Marinov 2004) takes a program with a precondition and a

postcondition and generates a test suite with all nonisomorphic test cases with respect to

the structure of the precondition; the postcondition is used as an oracle. This test suite may

produce high state coverage for the precondition, but does not deal with the state space of

the postcondition. Also, TestEra does not generate test cases that violate the precondition.

In practice, programs should return an error code on such test cases.

Korat (Boyapati et al. 2002) improves on TestEra by synthesizing the precondition into

a Java predicate that can be executed to select test cases. UDITA (Gligoric et al. 2010) is a

nondeterministic input specification language that specifies input descriptions. It is used to

automatically generate complex input test cases that meet the UDITA description.

PBCOV differs in that it considers the reachable state space of all properties in the code

including preconditions, postconditions, and invariants.

State-based coverage The closest work to PBCOV in state-based coverage is that of

Ball (Ball 2004) as it introduces a theory for predicate-complete test coverage and gen-

eration. Given a program with n statements including m predicates, the full predicate state

space of the program is n� 2m states including all valuations of the predicates for each

statement. The coverage metric proposed by Ball is the ratio of the covered predicate states

against an approximation of the reachable observable predicate states. PBCOV differs in

that (1) it considers only the atomic predicates in the properties and not in the code, as the

code is suspect; (2) it computes the covered states in the context of the property, i.e., when

the program counter is referring to the property, as opposed to program statements; and

finally, (3) it uses symbolic execution with SMT and a cut-based abstraction to provide an

over-approximation of the reachable property state space as opposed to the predicate

abstraction and modal transitions used in (Ball 2004).

The work of Santelices et al. (Santelices et al. 2008) performs test suite augmentation

for evolving software (TSAES). It takes the latest version of a program P, its previous

version Q the set of changes c between P and Q and a distance d. It computes a slice of P

that includes c and the statements in P which c depends on such that they are at a distance d

from c. Then, TSAES performs symbolic execution on the slice to extract path conditions

necessary for c to be exercised. TSAES checks whether the test suite covers these con-

ditions using dependence chain and state difference coverage. This is similar to computing

a precondition that is necessary to exercise c and then applying the precondition specifi-

cation-based techniques discussed above (Khurshid and Marinov 2004; Boyapati et al.

2002; Gligoric et al. 2010). The dependence chain coverage requires that all dependency

chains in c are covered. The state difference coverage computes the difference between the

state space of the slice in P and that of the slice in Q and requires that all the difference

states be covered.

Software Qual J (2015) 23:171–202 195

123

T
ab

le
5

S
u

m
m

ar
y

o
f

co
m

p
ar

is
o

n
to

re
la

te
d

w
o

rk

T
ec

h
n

iq
u

e
D

es
cr

ip
ti

o
n

C
o

m
p
ar

is
o

n

S
p
ec

ifi
ca

ti
o
n
-b

as
ed

te
st

g
en

er
at

io
n

K
h

u
rs

h
id

an
d

M
ar

in
o

v
(2

0
0

4
),

B
o
y
ap

at
i

et
al

.
(2

0
0

2
),

G
li

g
o

ri
c

et
al

.
(2

0
1

0
)

U
se

a
p

re
co

n
d

it
io

n
p

re
d

ic
at

e
th

at
co

n
st

ra
in

s
th

e
in

p
u

ts
o

f
a

p
ro

g
ra

m
to

g
en

er
at

e
te

st
ca

se
s

an
d

at
ta

in
ac

ce
p
ta

b
le

co
v
er

ag
e

m
et

ri
cs

P
B

C
O

V
co

n
si

d
er

s
th

e
re

ac
h
ab

le
st

at
e

sp
ac

e
o
f

th
e

p
ro

p
er

ty
w

h
et

h
er

it
w

as
a

p
re

co
n

d
it

io
n

,
a

p
o

st
co

n
d

it
io

n
,

an
in

v
ar

ia
n

t,
o

r
an

as
se

rt
io

n
to

co
m

p
u

te
a

co
v

er
ag

e
m

et
ri

c

P
re

d
ic

at
e-

co
m

p
le

te
te

st
co

v
er

ag
e

an
d

g
en

er
at

io
n

B
al

l
(2

0
0

4
)

C
o
n

si
d

er
s

al
l

v
al

u
at

io
n

s
o

f
al

l
th

e
p

re
d

ic
at

es
o

f
th

e
p

ro
g

ra
m

ac
ro

ss
al

l
it

s
st

at
em

en
ts

.
T

h
e

co
v
er

ag
e

m
et

ri
c

p
ro

p
o
se

d
b
y

B
al

l
is

th
e

ra
ti

o
o

f
th

e
co

v
er

ed
p

re
d

ic
at

e
st

at
es

ag
ai

n
st

an
ap

p
ro

x
im

at
io

n
o

f
th

e
re

ac
h
ab

le
o
b
se

rv
ab

le
p
re

d
ic

at
e

st
at

es
.

T
h
e

ap
p
ro

x
im

at
io

n
is

b
as

ed
o

n
p

re
d

ic
at

e
ab

st
ra

ct
io

n
an

d
m

o
d

al
tr

an
si

ti
o

n
s

P
B

C
O

V
co

n
si

d
er

s
o

n
ly

th
e

at
o

m
ic

p
re

d
ic

at
es

in
th

e
p

ro
p

er
ti

es
an

d
n

o
t

in
th

e
co

d
e,

as
th

e
co

d
e

is
su

sp
ec

t

P
B

C
O

V
co

m
p

u
te

s
th

e
co

v
er

ed
st

at
es

in
th

e
co

n
te

x
t

o
f

th
e

p
ro

p
er

ty
o

n
ly

an
d

n
o
t

al
l

th
e

st
at

em
en

ts
o
f

th
e

co
d
e.

P
B

C
O

V
u

se
s

sy
m

b
o

li
c

ex
ec

u
ti

o
n

w
it

h
S

M
T

an
d

a
cu

t-
b

as
ed

ab
st

ra
ct

io
n

to
p
ro

v
id

e
an

o
v
er

-a
p
p
ro

x
im

at
io

n
o
f

th
e

re
ac

h
ab

le
st

at
e

sp
ac

e
o

f
th

e
p

ro
p

er
ty

T
es

t
su

it
e

au
g

m
en

ta
ti

o
n

fo
r

ev
o

lv
in

g
so

ft
w

ar
e

(T
S

A
E

S
)

S
an

te
li

ce
s

et
al

.
(2

0
0

8
)

A
u

g
m

en
ts

ex
is

ti
n

g
te

st
su

it
e

w
it

h
ad

d
it

io
n

al
te

st
ca

se
s

to
co

v
er

th
e

ch
an

g
es

b
et

w
ee

n
tw

o
v
er

si
o
n
s

o
f

a
p
ro

g
ra

m
.

It
m

ea
su

re
s

th
e

co
v
er

ag
e

o
f

p
at

h
co

n
d
it

io
n
s

n
ec

es
ar

y
to

ex
er

ci
se

th
e

co
d
e

ch
an

g
es

u
si

n
g

d
ep

en
d
en

ce
ch

ai
n
st

at
e

d
if

fe
re

n
ce

co
v

er
ag

e.
T

h
is

re
q

u
ir

es
th

at
th

e
d

if
fe

re
n

ce
st

at
e

sp
ac

e
in

cu
rr

ed
b

y
th

e
ch

an
g

es
b

e
al

l
co

v
er

ed

P
B

C
O

V
d

if
fe

rs
in

th
at

it
u

se
s

sy
m

b
o

li
c

ex
ec

u
ti

o
n

to
o

v
er

-a
p

p
ro

x
im

at
e

th
e

re
ac

h
ab

le
st

at
e

sp
ac

e
w

h
il

e
T

S
A

E
S

u
se

s
it

to
co

m
p
u
te

co
n
d
it

io
n
s

fo
r

co
v

er
ag

e
P

B
C

O
V

u
se

s
st

at
e

d
if

fe
re

n
ci

n
g

to
co

m
p

u
te

th
e

m
is

si
n

g
st

at
es

an
d

re
p
o

rt
th

e
co

v
er

ag
e

m
et

ri
c,

w
h

er
ea

s
T

S
A

E
S

u
se

s
it

to
co

m
p

u
te

st
at

e
co

v
er

ag
e

re
q

u
ir

em
en

ts
P

B
C

O
V

ch
ec

k
s

th
e

ad
eq

u
ac

y
o

f
th

e
te

st
su

it
e

ag
ai

n
st

th
e

w
h

o
le

p
ro

g
ra

m
o
n

ex
is

ti
n
g

re
q
u
ir

em
en

ts
th

at
ex

p
re

ss
th

e
in

te
n
d
ed

b
eh

av
io

r
w

h
er

ea
s

T
S

A
E

S
ch

ec
k

s
w

h
et

h
er

th
e

te
st

su
it

e
is

ad
eq

u
at

e
fo

r
te

st
in

g
th

e
n

ew
b

eh
av

io
r

in
P

S
p
ec

ifi
ca

ti
o
n
-b

as
ed

co
v

er
ag

e
(S

B
C

)
A

m
m

an
n

an
d

B
la

ck
(2

0
0

1
)

C
o
m

p
u
te

s
ex

ec
u
ti

o
n

tr
ac

es
fr

o
m

te
st

ca
se

s
an

d
co

m
p

u
te

s
m

u
ta

te
d

sp
ec

ifi
ca

ti
o

n
s

b
y

al
te

ri
n

g
sp

ec
ifi

ca
ti

o
n

el
em

en
ts

,
an

d
th

en
u
se

s
m

o
d
el

ch
ec

k
in

g
to

ch
ec

k
w

h
et

h
er

th
e

te
st

ca
se

s
ca

n
ki

ll
th

e
m

u
ta

n
t

sp
ec

ifi
ca

ti
o

n
s.

T
h

e
m

o
re

m
u

ta
n

ts
th

e
te

st
ca

se
s

ca
n

k
il

l,
th

e
b
et

te
r

th
ey

ar
e

P
B

C
O

V
su

b
su

m
es

S
B

C
co

v
er

ag
e

si
n

ce
S

B
C

re
q

u
ir

es
te

st
ca

se
s

th
at

co
v

er
fe

as
ib

le
st

at
es

in
th

e
sp

ec
ifi

ca
ti

o
n

P
B

C
O

V
re

q
u
ir

es
an

o
v
er

ap
p
ro

x
im

at
io

n
o
f

th
e

re
ac

h
ab

le
st

at
es

,
w

h
er

as
S

B
C

m
u
ta

n
ts

ar
e

b
as

ed
o

n
sy

n
ta

ct
ic

ru
le

s
w

h
ic

h
m

ay
in

cl
u

d
e

m
u

ta
n

ts
th

at
ca

n
o

n
ly

b
e

k
il

le
d

th
ro

u
g

h
u

n
re

ac
h

ab
le

st
at

es
P

B
C

O
V

re
q

u
ri

es
co

v
er

ag
e

o
f

al
l

th
e

st
at

e
sp

ac
e

o
f

th
e

sp
ec

ifi
ca

ti
o

n
,

w
h
er

ea
s

th
e

m
u
ta

n
ts

g
en

er
at

ed
b
y

S
B

C
m

ig
h
t

al
l

b
e

k
il

le
d

b
y

te
st

ca
se

s
th

at
al

l
co

rr
es

p
o

n
d

to
o

n
e

st
at

e

O
p

er
at

io
n

al
sp

ec
ifi

ca
ti

o
n

s
H

ar
d

er
et

al
.

(2
0

0
3
)

U
se

s
D

ai
k

o
n

an
d

th
e

ex
is

ti
n

g
te

st
su

it
e

to
g

en
er

at
e

an
o

p
er

at
io

n
al

ab
st

ra
ct

io
n

o
f

th
e

p
ro

g
ra

m
,

re
q
u

ir
es

te
st

ca
se

s
th

at
m

o
d

if
y

th
e

ab
st

ra
ct

io
n

,
an

d
d

o
es

n
o

t
p

ro
v

id
e

a
q

u
an

ti
fi

ab
le

m
et

ri
c

P
B

C
O

V
re

q
u

ir
es

a
se

t
o

f
p

ro
p

er
ti

es
,

m
ea

su
re

s
th

e
ab

il
it

y
o

f
th

e
te

st
su

it
e

to
co

v
er

th
e

re
ac

h
ab

le
st

at
e

sp
ac

e
o
f

th
e

p
ro

p
er

ti
es

,
an

d
p
ro

v
id

es
a

m
et

ri
c

196 Software Qual J (2015) 23:171–202

123

Similar to PBCOV, TSAES uses partial symbolic execution and symbolic state dif-

ferencing. However, TSAES uses partial symbolic execution to compute conditions for

coverage, while PBCOV differs in that it symbolically over-approximates the reachable

state space. TSAES uses state differencing to compute state coverage requirements,

whereas PBCOV uses state differencing to compute the missing states. TSAES computes

full state coverage for the difference states obtained from the generated transient

requirements, while PBCOV computes coverage of an over-approximation of the reachable

state space.

At a higher level, TSAES checks whether the test suite is adequate for testing the new

behavior in P while PBCOV differs in that it checks the adequacy of the test suite against

the whole program on existing requirements that express the intended behavior of P.

Specification-based coverage Ammann and Black (Ammann and Black 2001) intro-

duced specification-based coverage (SBC) using specification mutation analysis. SBC

measures the adequacy of a test suite against a set of specifications expressed in compu-

tational tree logic (CTL) (Clarke et al. 1999). It uses mutation analysis (DeMillo et al.

1978) where it mutates specification elements such as variables and operators to compute

several inaccurate specifications. It computes execution traces from the test cases and

passes the specification mutants, and the execution traces to a model checker (McMillan

1998) where the execution traces are the reference. The model checker reports the mutant

specifications that fail as killed by the test cases. The more mutants the test cases can kill,

the better they are. The mutant space is infinite, and SBC can only generate a finite set of

mutants.

Consider Q, a mutant of a specification P that may introduce new atomic predicates to

P, and consider the state space that includes all valuations to the atomic predicates

fp1; p2; . . .; png in P and Q. SBC deems a test suite inadequate if it contains no test case

that kills/violates Q. Requiring such a test case is equivalent to requiring a test case that

covers a state where P is met and Q is violated, which implies covering some feasible state

of P. Thus PBCOV subsumes killing the specification mutants without the need to

explicitly generate those mutants. In fact, PBCOV considers only an over-approximation of

the reachable states, while SBC generate mutants based on syntactic rules which may

include mutants that can only be killed through unreachable states. For example, in a

correct program, a specification P will not be violated and a trivial mutant (:P) could

never be killed.

On the other hand, one may fulfill the SBC requirements without fulfilling the PBCOV

requirements. Given a specification P, let SðTÞ be the set of states covered by the test suite

T , and let SðQ1Þ; SðQ2Þ; . . .; and SðQmÞ be the sets of states that satisfy each of the m

mutants of P generated by SBC, respectively. SBC requires that the set SðTÞ \ Sð:QiÞ be

not empty for all 1� i�m. One possibility to meet this condition is for the set fSðTÞ \
Sð:Q1Þ \ ð:Q2Þ \ . . . \ Sð:QmÞg to contain only one state e that can kill all the mutants.

PBCOV requires all the reachable state space to be covered, including e, which suggests

that PBCOV subsumes SBC. On the other hand, given that SðTÞ satisfies SBC does not

imply that PBCOV is also satisfied, because SðTÞ might not include a number of reachable

states of P.

Earlier work introduced ADLscope (Chang and Richardson 1999), a tool that measures

the adequacy of test suites with respect to specifications written in the ADL specification

language. The ADLscope tool computes coverage metrics that are associated with the

expression syntax of the ADL language. The multiple condition strategy is used with

logical expressions; weak mutation testing is used with relational expressions, and other

ADLscope-specific metrics are used with the rest of the expressions such as conditionals,

Software Qual J (2015) 23:171–202 197

123

quantifiers, and others. The paper omits the details about these metrics and refers to earlier

work that in turn refers to a technical report that we were not able to locate.

Operational specifications Harder et al (Harder et al. 2003) present the operational

difference (OD) technique for generating, augmenting, and minimizing test suites. Given a

program S and a test suite T , the technique uses Daikon (Ernst et al. 2007), an automatic

invariant detection tool, to generate a set of formal specifications and calls them an

operational abstraction of the program. If a test case modifies the operational abstraction

of the program, then it is added to the test suite; otherwise, it is discarded if appropriate.

The OD technique measures the ability of the test suite to generate an ideal operational

Table 6 Glossary table

Term Description

P First-order and temporal logic property

S Program under test

T Full test suite used used interchageably with Tfull

Tfull Full test suite used to stress the fact that the full test suite is used

Tpass Subset of Tfull that comprises only passing test cases

Tpass�assert Subset of Tpass that comprises only passing test cases that did not violate the property

Tfail Subset of Tfull that comprises only failing test cases

mpbcov Property-based coverage metric

mcon
pbcov Confident property-based coverage metric

K Structural coverage metric

Kfull The number of structural elements covered by Tfull

Kpass The number of structural elements covered by Tpass

Ktotal The total number of structural elements

%dcov Percentage decrease in coverage for coverage metrics

Psym Symbolic representation of P

Term Description

Ppass The set of feasible states that satisfy the property P

Pfail The set of feasible states that fail the property P

Pmiss The missing states that are not covered and are deemed in the over-approximation
of the reachable state space

Pcover Symbolic representation of covered states that is deterministic for states observed
by T and S, and nondeterministic for the rest

C A cut in the program which is a set of control points that split S into SC and SC

SC A cut of S along C that contains the property P

SC A cut of S along C that does not contain the property P

Si Instrumented version of S

xi Program and property variable where 1� i�m and m is the number of variables

Di Domain of variable xi

D Domain of property variables D ¼ D1 � D2 � . . .Dm

pi Atomic predicate in property P, 1� i� n and n is the number of atomic predicates in P

ti A test case in T such that 1� i� jT j

198 Software Qual J (2015) 23:171–202

123

abstraction that is not available at hand; thus, it does not provide a quantifiable metric. In

contrast, PBCOV requires a set of properties, measures the ability of the test suite to cover

the reachable state space of the properties, and provides a metric.

8 Conclusion and future work

Verification engineers leverage coverage metrics to acquire informal assurance of the

adequacy of test suites so that testing could be stopped. In recent years, annotating code

with formal properties in the form of preconditions, postconditions, and invariants has

become more practiced. Formal properties describe the behavior of a program and act as a

reference of its correctness. Given a program with properties therein and a test suite, this

paper presented PBCOV, a property-based coverage metric that measures the adequacy of

the test suite at revealing the defects in the program. PBCOV measures the covered state

space of the properties against an over-approximation of the reachable state space of the

properties. The paper also compared the PBCOV metric to traditional structural coverage

metrics, and the experimental results showed that PBCOV was in most cases more sen-

sitive to the presence of defects than the structural coverage metrics are. PBCOV reports an

additional confident coverage metric that serves as an indicator of how much a test

engineer is confident when he or she deems a test suite adequate.

The quality of the PBCOV metric depends on the quality of the properties embedded in

the code. In the future, we will explore techniques to check how complete these properties

are with respect to the program.

When PBCOV reports missing states, it also reports values for program variables that

may be at the input level, and in that case, those values can be used directly to augment the

test suite. More often, those values are for internal program variables. In the future, we

will enhance PBCOV to compute test cases that induce the values of the reported internal

variables using SAT techniques.

References

ABC. (2007). ABC: Berkeley logic synthesis and verification group. a system for sequential synthesis and
verification, release 70930. http://www.eecs.berkeley.edu/alanmi/abc/.

Ammann, P., & Black, P. E. (2001). A specification-based coverage metric to evaluate test sets. Interna-
tional Journal of Reliability, Quality and Safety Engineering, 8(4), 239–248.

Ammann, P., & Offutt, J. (2008). Introduction to software testing (1st ed.). New York, NY: Cambridge
University Press.

Ball, T. (2004). A theory of predicate-complete test coverage and generation. In In FMCO 2004: Symposium
on formal methods for components and objects, pp 1–22.

Ball, T., Majumdar, R., Millstein, T., & Rajamani, SK. (2001). Automatic predicate abstraction of c
programs. In Programming language design and implementation, ACM, New York, NY, USA, PLDI
’01, pp. 203–213.

Ball, T., Levin, V., & Rajamani, S. K. (2011). A decade of software model checking with slam. Commu-
nications of the ACM, 54, 68–76.

Barr, A. (2004). Find the bug: A iook of incorrect programs. Reading: Addison-Wesley Professional.
Baudin, P., Filliâtre, J.C., Hubert, T., Marché, C., Monate, B., Moy, Y., et al. (2009). ACSL: ANSI C

specification language (preliminary design V1.9). http://www.frama-c.cea.fr/acsl.html.
Boyapati, C., Khurshid, S., & Marinov, D. (2002). Korat: Automated testing based on java predicates. In

International symposium on software testing and analysis (ISSTA), pp. 123–133.
Burnim, J., & Sen, K. (2008). Heuristics for scalable dynamic test generation. In International conference on

automated software engineering, pp. 443–446.

Software Qual J (2015) 23:171–202 199

123

http://www.eecs.berkeley.edu/alanmi/abc/
http://www.frama-c.cea.fr/acsl.html

Chang, J., & Richardson, DJ. (1999). Structural specification-based testing: Automated support and
experimental evaluation. In European, software engineering conference, ESEC/FSE-7, pp. 285–302.

Clarke, E., Brumberg, J. O., & Peled, D. A. (1999). Model checking. Cambridge: MIT Press.
Clarke, E., Kroening, D., & Lerda, F. (2004). A tool for checking ansi-c programs. In Tools and algorithms

for the construction and analysis of systems, pp. 168–176.
Coen-Porisini, A., Denaro, G., Ghezzi, C., & Pezzé, M. (2001). Using symbolic execution for verifying

safety-critical systems. ACM SIGSOFT Software Engineering Notes, 26, 142–151.
Cormen, T. H., Stein, C., Rivest, R. L., & Leiserson, C. E. (2009). Introduction to algorithms (3rd ed.).

Cambridge: MIT Press.
DeMillo, R. A., Lipton, R. J., & Sayward, F. G. (1978). Hints on test data selection: Help for the practicing

programmer. Computer, 11, 34–41.
Do, H., Elbaum, S., & Rothermel, G. (2005). Supporting controlled experimentation with testing techniques:

An infrastructure and its potential impact. Empirical Software Engineering, 10, 405–435.
Dutertre, B., & Moura, L. M. D. (2006). A fast linear-arithmetic solver for dpll(t). Computer Aided

Verification.
Ernst, M. D., Perkins, J. H., Guo, P. J., McCamant, S., Pacheco, C., Tschantz, M. S., & Xiao, C. (2007). The

daikon system for dynamic detection of likely invariants. Science of Computer Programming, 69,
35–45.

Ford, L. R., & Fulkerson, D. R. (1956). Maximal flow through a network. Canadian Journal of Mathematics,
8, 399–404.

Gligoric, M., Gvero, T., Jagannath, V., Khurshid, S., Kuncak, V., & Marinov, D. (2010). Test generation
through programming in udita. In International conference on software engineering, ACM, ICSE ’10.

Godefroid, P., Klarlund, N., & Sen, K. (2005). Dart: Directed automated random testing. In Proceedings of
the 2005 ACM SIGPLAN conference on programming language design and implementation, ACM,
PLDI ’05.

Gough, B. J., & Stallman, R. M. (2005). An introduction to GCC. Network Theory Ltd
Harder, M., Mellen, J., & Ernst, M. D. (2003). Improving test suites via operational abstraction. In Inter-

national conference on software engineering, pp. 60–71.
Heimdahl, M. P. E., Rayadurgam, S., Visser, W., Devaraj, G., & Gao, J. (2003). Auto-generating test

sequences using model checkers: A case study. In Workshop on formal approaches to testing of
software, pp 42–59.

Holzmann, G. J. (1997). The model checker spin. IEEE Transactions on Software Engineering, 23, 279–295.
Horgan, J. R., & London, S. (1991). Data flow coverage and the c language. In Proceedings of the

symposium on testing, analysis, and verification, TAV4, pp. 87–97.
Jaygarl, H., Lu, K. S., & Chang, C. K. (2010). Genred: A tool for generating and reducing object-oriented

test cases. In IEEE annual computer software and applications conference, pp. 127–136.
Khurshid, S., & Marinov, D. (2004). Testera: Specification-based testing of java programs using sat.

Automated Software Engineering, 11, 403–434.
Linz, P. (2012). An introduction to formal languages and automata (5th ed.). Burlington: Jones and Bartlett

Learning.
Martinian, E. (2010). Red-black tree c code. http://www.mit.edu/emin/source_code/red_black_tree.
Masri, W. (2010). Fault localization based on information flow coverage. Software Testing, Verification and

Reliability, 20, 121–147.
Masri, W., & Abou-Assi, R. (2010). Cleansing test suites from coincidental correctness to enhance fault-

localization. In International conference on software testing, verification and validation, ICST ’10.
Masri, W., Podgurski, A., & Leon, D. (2007). An empirical study of test case filtering techniques based on

exercising information flows. IEEE Transactions on Software Engineering, 33, 454–477.
McMillan, K. L. (1998). The smv language: Cadence berkeley labs. Technical report.
Necula, G. C., Mcpeak, S., Rahul, S. P., & Weimer, W. (2002). Cil: Intermediate language and tools for

analysis and transformation of c programs. In International conference on compiler, construction,
pp. 213–228.

PBCOV-APPENDICES. (2013). PBCOV-APPENDICES. http://webfea.fea.aub.edu.lb/fadi/dkwk/doku.
php?id=pbcov.

PBCOV-TOOL. (2013). PBCOV-TOOL. http://webfea.fea.aub.edu.lb/fadi/dkwk/doku.php?id=pbcov.
Rapps, S., & Weyuker, E. J. (1982). Data flow analysis techniques for test data selection. In International

conference on Software engineering (pp. 272–278). CA, USA: Los Alamitos.
Santelices, R. A., Chittimalli, P. K., Apiwattanapong, T., Orso, A., & Harrold, M. J. (2008). Test-suite

augmentation for evolving software. In ASE, pp 218–227.
Schuler, D., & Zeller, A. (2011). Assessing oracle quality with checked coverage. In International con-

ference on software testing, verification and validation, pp. 90–99.

200 Software Qual J (2015) 23:171–202

123

http://www.mit.edu/emin/source_code/red_black_tree
http://webfea.fea.aub.edu.lb/fadi/dkwk/doku.php?id=pbcov
http://webfea.fea.aub.edu.lb/fadi/dkwk/doku.php?id=pbcov
http://webfea.fea.aub.edu.lb/fadi/dkwk/doku.php?id=pbcov

Torlak, E., & Jackson, D. (2007). Kodkod: A relational model finder. In Proceedings of the 13th interna-
tional conference on tools and algorithms for the construction and analysis of systems, TACAS’07.

Visser, W., Havelund, K., Brat, G. P., Park, S., & Lerda, F. (2003). Model checking programs. Automated
Software Engineering Journal, 10(2), 203–232.

Woodcock, J., Larsen, P. G., Bicarregui, J., & Fitzgerald, J. (2009). Formal methods: Practice and expe-
rience. ACM Computing Surveys, 41, 19:1–19:36.

Yang, J., & Evans, D. (2004). Dynamically inferring temporal properties. In SIGPLAN-SIGSOFT workshop
on program analysis for software tools and engineering, PASTE ’04, pp 23–28.

Yang, X., Wang, J., & Yi, X. (2010). Slicing execution with partial weakest precondition for model
abstraction of c programs. The Computer Journal, 53(1), 37–49.

Zaraket, F., & Masri, W. (2009). Property based coverage criterion. In International workshop on defects in
large software systems, DEFECTS ’09, pp. 27–28.

Kassem Fawaz received the BE degree with high distinction and the
ME degree in computer and communications engineering from the
American University of Beirut in 2009 and 2011, respectively. Cur-
rently, he is a PhD candidate at the University of Michigan, where he is
doing work in the areas of mobile computing and privacy. He received
the Distinguished Graduate Award upon graduation in 2009 and has
published 15 papers in web systems and pervasive computing.

Fadi Zaraket is an Assistant Professor in the Electrical and Computer
Engineering Department at the American University of Beirut (AUB).
His research interests are logic synthesis and verification, and natural
language processing. He received his PhD in computer engineering
from the University of Texas at Austin, and his Masters and Bachelor
of Engineering degrees from AUB. From 2001 until 2009, Fadi worked
in the design automation technology and logic verification field for
IBM. Before that, he worked for several companies including Sun
Microsystems and SCO on building kernel modules.

Software Qual J (2015) 23:171–202 201

123

Wes Masri is an Associate Professor in the Electrical and Computer
Engineering Department at the American University of Beirut. He
received his PhD in computer engineering from Case Western Reserve
University in 2005, his MS in electrical engineering from Penn State in
1988, and BS in electrical engineering also from CWRU in 1986. His
research interest is in devising software analysis techniques that
enhance software testing, software security, and fault localization. He
also spent over fifteen years in the software industry mainly as a
software architect and developer. Some of the industries he was
involved in include medical imaging, middleware, telecom, genomics,
semiconductor, document imaging, and financial.

Hamza Harkous is a PhD student in the School of Computer and
Communication Sciences at École Polytechnique Fédérale de Lau-
sanne (EPFL). His current research revolves around privacy of infor-
mation sharing, especially in personal cloud computing systems. He
completed his masters studies in Communication Systems at EPFL,
conducting his thesis project in collaboration with Nokia Research
Center, and received his Bachelor of Computer and Communications
Engineering from the American University of Beirut. He previously
joined research projects on adhoc networks privacy, software verifi-
cation, and natural language processing.

202 Software Qual J (2015) 23:171–202

123

	PBCOV: a property-based coverage criterion
	Abstract
	Introduction
	Overview and contributions
	Motivation
	PBCOV
	Over-approximation of the reachable property state space
	Computing the cut abstraction
	The PBCOV metric and the confident PBCOV metric

	Implementation and tools utilized
	Instrumentation
	Missing states and reachability analysis

	Experimental study
	Experimental setup
	Subject programs, properties, and test suites
	Percent decrease of coverage results
	PBCOV metric results
	Discussion of the results
	Threats to validity

	Related work
	Conclusion and future work
	References

