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ABSTRACT: A probabilistic approach is necessary to estimate the magnitude of the braking force that 
compares in terms of return period with the vertical traffic loads present in bridge design codes. A  
data set from a Danish Field Operational Test served as support to identify hard braking episodes and 
to compute travelled distances by road hierarchy. The rate of braking events per vehicle travelled 
distance is used as estimate of the braking probability. Concurrently a structural model was developed 
for stochastic analysis of the dynamic response of bridges to braking events from realistic traffic 
configurations. This paper presents results for extreme braking forces on bridges with site-specific 
traffic data and within a probabilistic framework. Such evaluation is economically advantageous when 
compared to the application of structural codes, while still meeting the reliability targets they impose. 

 

1. INTRODUCTION 
In many European countries the design 

value of the braking force on road bridges 
significantly increased when the Eurocodes came 
into force replacing each country’s national 
standards. Hence, safety assessments of existing 
bridges may show a lack of compliance with the 
new safety requirements of the Eurocodes. In 
such cases, uneconomical structural retrofitting 
operations may be avoided if the safety 
verification to the braking force follows a 
probabilistic site-specific approach instead of 
applying the load model enforced by EN 1991-2 

(Eurocode 1 - Part 2) [European Committee for 
Standardization (CEN 2003)]. In fact, the 
braking force model from (CEN 2003) was 
derived from deterministically defined simplistic 
traffic scenarios with characteristics that do not 
correspond with actual traffic measurements, as 
described in the background studies of the 
Eurocodes’ traffic load models by (Merzenich 
and Sedlacek 1995).  

As a consequence of following a 
deterministic approach, the return period of the 
braking force defined in (CEN 2003) is unclear 
and might deviate significantly from the 1000-
year target used to calibrate the vertical traffic 
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load models. Consequently, further investigation 
into the braking force model is relevant not only 
for assessment of existing bridges, but also to 
derive a load model for the braking forces that 
compares in terms of return period with the 
vertical load models. In this context, it is the 
purpose of this study to develop a probabilistic 
framework to derive site-specific braking force 
models considering real-world traffic data and 
aiming at a magnitude of the braking force that 
verifies a return period of 1000 years.  

There are two main types of sources of real-
world traffic data that will be used to realistically 
model traffic loads on road bridges. The first 
type is measurement stations installed on roads. 
In this group Weigh-in-Motion (WIM) stations 
are the most used for estimating traffic loads on 
bridges because they measure axle weights of 
moving vehicles. The second type is on-road 
studies. The data collected with these studies 
usually comes from instrumented vehicles and 
focuses on aspects of driving behaviour, as 
discussed by (Carsten et al. 2013).  

The model presented in this paper resorts to 
Monte Carlo simulations to combine both types 
of traffic data and reproduce the randomness of 
braking events. The result is a probability 
distribution of the braking force that is specific 
for a given bridge on a given point of the road 
network where traffic characteristics are known.  

In order to identify the quantile of the 
probability distribution of the braking force that 
corresponds to a 1000-year return period, 
information about the rate of braking events is 
also necessary. In the case of vertical loads, the 
time frame associated to the history of loading 
events is simply equal to the period of traffic 
flow considered. However, a time-history of 
crossing vehicles can be decomposed in much 
more convoy configurations than those that are 
likely to brake on a bridge during this period of 
time. In order to be able to estimate the expected 
number of braking events as a function of the 
number of vehicles and travelled distance, the 
concept of braking probability is introduced in 
Section 2 of this paper. 

In Section 3 of this paper, the analysis of 
data from an on-road study held in Denmark 
illustrates the proposed procedure to estimate the 
braking probability. This is applied in Section 4 
to compute extreme values of the braking force 
from realistic traffic situations, which are taken 
from traffic microsimulation. Finally, Section 5 
concludes the paper with some final remarks and 
an outlook on future developments. 

2. BRAKING PROBABILITY 
In this paper the braking probability β is defined 
as the likelihood that a vehicle will engage in a 
hard braking event per metre travelled for a 
reason unrelated to road infrastructure 
constraints, such as traffic lights or pedestrian 
crossings. This definition aims at isolating the 
situations that are most likely to occur on road 
bridges. In this definition, a hard braking event 
consists of a continuous period of time during 
which brakes are applied and the maximum 
deceleration reached is higher than 4 m/s2. This 
threshold should have little influence in the 
computed value of the braking force for a 1000-
year return period. However, if this threshold is 
too high, the number of braking events identified 
in on-road studies is too small to statistically 
characterize them, and the severity of the design 
situation may be exceeded. Also, if the threshold 
is too low, there is a waste of computational time 
with simulations of braking events that are not 
relevant for safety assessment because the 
associated braking forces are too small. 

Following the definition above, an estimate 
of the braking probability is given by the rate of 
braking events per vehicle travelled distance in 
meters. Hence, the braking probability is 
dimensionless and associated to a Bernoulli trial 
of initiating or not initiating braking for every 
meter travelled. As a consequence, the rate of 
braking events has to be computed per vehicle 
meter travelled [(veh·m)-1] in order to match the 
proposed definition of the braking probability. In 
the definition of the distance of reference, which 
in this study measures one meter, it is important 
that it is short enough to only have two possible 
outcomes: one hard braking event or none at all. 
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The initiation of more than one hard braking 
episode is unrealistic in one meter travelled. 

It is assumed that the probability of being 
involved in a braking event is the same for all 
vehicles and constant along a road section of 
length l, in meters, since further detailing is 
impossible with the available data. Hence, the 
expected number of vehicles braking, nb v, for a 
given traffic flow q, during a period of time Δt in 
this road section, is given by 

 nb v = β·q·Δt·l (1) 

Furthermore, the braking force that 
corresponds to a return period of 1000 years 
depends directly on the number of braking 
events, not vehicles, in 1000 years, nb ev1000. This 
variable is computed as the ratio between the 
total number of braking vehicles in 1000 years, 
from equation (1), and the average number of 
vehicles per braking event with a deceleration 
higher than 4 m/s2. Hence, the quantile of the 
probability distribution of the braking force that 
corresponds to a 1000-year return period has a 
probability of non-exceedance P given by 

 P = 1 – 1 nb ev1000�  (2) 

Virginia Tech Transportation Institute has 
supported several on-road traffic studies. The  
first large scale one was the 100-Car Naturalistic 
Driving Study described by (Dingus et al. 2006), 
which collected data from 100 light vehicles 
covering a total of 3.3 MVKT (million vehicle 
kilometre travelled). A total of 233 incidents 
were identified for a deceleration threshold of  
4 m/s2, yielding a rate of braking events of 
7.1×10-8 (veh·m)-1. In this study, incidents were 
defined as conflict situations that required an 
evasive manoeuvre, such as braking or steering, 
to avoid crashing.  

Moreover, (Olson et al. 2009) combined two 
data sets from on-road studies with commercial 
vehicles to investigate driver distraction. In a 
total of approximately 5 MVKT, the number of 
conflicts analysed was 3,237, comprising crash, 
near-crash and other crash-relevant conflicts. 
One of the triggers used to identify these 

conflicts was a deceleration higher than 2 m/s2, 
but swerving or activating the critical incident 
button also signalled a conflict. A rate of events 
of 6.5×10-7 (veh·m)-1 is computed using this total 
number of conflicts. This value is about ten times 
higher than the rate of braking events computed 
with data from the 100-Car study, but it is less 
coherent with the proposed definition of braking 
probability, since it classifies as relevant events 
other episodes than just hard braking events. 

3. ANALYSIS OF ON-ROAD DATA 
The aforementioned studies indicate an order of 
magnitude of the braking probability between  
10-8 and 10-6. However, these studies focus on 
safety issues and, therefore, hard braking events 
in situations that represented no risk to the driver 
might be neglected, whereas conflict situations 
with evasive manoeuvres other than hard braking 
might be counted.  

In order to estimate the braking probability 
in a way that unequivocally fits in this study, a 
series of procedures was specifically developed. 
Data from an on-road study conducted in North 
Denmark is used to illustrate these procedures. 
This data includes speed and GPS coordinates, 
measured with 1 Hz frequency, of five vehicles 
that travelled a total of approximately  
3.2×103 km in October 2013.  

Section 3.1 shows the methodology 
proposed to identify braking events in agreement 
with the definition of braking probability and to 
categorize them by road hierarchy. In section 3.2, 
an algorithm is introduced to estimate the 
distance travelled distinguishing roads of 
different hierarchies. Finally, section 3.3 presents 
the estimates of the braking probability 
computed using the rate of braking events per 
vehicle meter travelled. 

3.1. Identifying braking events 
The travelled distance, speed and longitudinal 
acceleration computed from GPS coordinates are 
similar to those computed having speed records 
as starting point, but not perfectly coincident. 
The acceleration computed from speed records 
was chosen to identify braking events, since it 
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only requires one derivative. As a result, 31 
braking events were identified, leading to a rate 
of braking events of 9.7×10-6 (veh·m)-1.  

Using a free online convertor from UTM 
coordinates to latitude and longitude 
(http://users.tpg.com.au/adslly6v/UtmGoogleStre
etView.html accessed in October 2014) and 
analysing the location of the braking events with 
Google Maps (http://maps.google.com accessed 
in October 2014), braking events were 
categorized by road hierarchy in local, regional 
(an intermediate level of the road hierarchy that 
comprises A-class routes) and motorway. It was 
also possible to identify braking events that were 
most likely initiated by road constraints, such as 
traffic lights, pedestrian crossings or road 
junctions. The other braking events occurred in 
road sections that are straight or slight curves, 
and have no road constraints in sight. As Table 1 
shows, the majority of braking events, 22 out of 
31, was likely caused by road constraints.  

 
Table 1: Categorization of braking events. 

 Road 
constraint 

No road 
constraint 

 Sum 

Local 9 1 10 
Regional 12 7 19 
Motorway 1 1 2 

     

Sum 22 9  31 
 
Updating the rate of braking events to 

consider only the events that most likely were 
unrelated to road constraints, the value computed 
is reduced to 2.8×10-6 (veh·m)-1. The statistical 
significance of this result is weak, given the 
small size of the sample, but the procedure is 
simple enough to be efficiently reproduced in a 
larger set of data.  

3.2. Travelled distance by road type 
Unlike the case of braking events, which 
represent only a reduced number of points in the 
dataset, a user-based categorization of all road 
sections in the dataset is very cumbersome. 
However, in order to estimate the travelled 
distance by road type, each instant of the dataset 

must be associated to local road, regional road or 
motorway. To that end, a supervised learning 
classification algorithm was developed to 
expedite the classification of all the locations 
recorded in the data set. Following a 
metaheuristic procedure the algorithm was run 
several times varying the values of several 
parameters and aiming at an optimization of the 
algorithm’s capacity of correctly predicting the 
road hierarchy using only the speed profile. 

In order to assess the algorithm’s capacity of 
predicting the road hierarchy, 500 instants from 
the data set were randomly chosen. This training 
dataset includes 134 instances of motorway, 225 
regional roads and 141 local roads, classified 
using the same interface and criteria as for 
braking events. This information was used as 
baseline to compute a confusion matrix for each 
run of the algorithm, quantifying all possible 
combinations between predicted and real road 
category. The matrices were computed in 
percentage terms relative to the user 
identifications because the data set is unbalanced 
due to the preponderance of regional roads. 

The developed algorithm, designed for 
speed measurements recorded with a frequency 
of 1 Hz, consists of the following steps, where 
the variable parameters are identified in italic: 

1. Every instant the speed is larger than vminM 
the road section is classified as motorway. 

2. For every situation identified as entering 
motorway, the following nclust1 instants are 
analysed. If the percentage of instants 
identified as motorway is lower than %min, 
the first consecutive set of instants identified 
as motorway goes back to being unclassified. 
Isolated excessive speed situations are thus 
obliterated. 

3. For every situation identified as entering 
motorway, the previous nclust nearM instants are 
analysed. If the maximum speed is larger 
than vmax nearM or the mean speed is larger 
than vmean nearM, they are classified as being 
motorway. They might be temporary 
episodes of travelling at lower speed on a 
motorway. 

http://users.tpg.com.au/adslly6v/UtmGoogleStreetView.html
http://users.tpg.com.au/adslly6v/UtmGoogleStreetView.html
http://maps.google.com/
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4. For every situation identified as exiting 
motorway, if in less than nclust2 instants the 
classification goes back to motorway, this 
gap is considered still motorway. Otherwise, 
the verification of step 3 is repeated in the 
following nclust nearM instants, thus discarding 
temporary lower speed episodes. 

5. Every remaining instant that registered a 
speed larger than vminR is classified as 
regional road (similar to step 1). 

6. Repeat steps 2 to 4, for regional roads instead 
of motorway, using nclust nearR, vmax nearR and 
vmean nearR, instead of nclust nearM, vmax nearM and 
vmean nearM. 

7. Remaining road sections are classified as 
local roads. 
 
Table 2 presents the mean and standard 

deviation, for random number generation using 
the Gaussian distribution, of the parameters that 
the algorithm requires. The presented values are 
already the result of an iterative procedure that 
starts with more disperse distributions. At each 
step of the procedure, the algorithm is run 500 
times, and the mean and standard deviation for 
each random variable of the 100 runs that 
produce the best confusion matrices are stored 
for the next iteration, until an acceptable degree 
of convergence is achieved. The performance of 
each run of the algorithm is measured by 
computing the average of the diagonal terms of 
the confusion matrix. To promote accurateness in 
all road types, terms of the diagonal below 70% 
are penalized by 3%, and terms between 70% 
and 80% (exclusive) are penalized by 1%. 

The algorithm was run 2000 times, which 
took less than 20 minutes, with the top 500 runs 
showing a performance criterion higher than 
81.5%. Table 3 shows the 90% two-sided 
confidence intervals of each entry of the 
confusion matrices of the final top 500 runs of 
the algorithm, as well as the associated travelled 
distance in each type of road. L, R and M stand 
for local road, regional road and motorway, and 
travelled distances were computed from the GPS 
data, instead of integration of the speed profile. 

Table 2: Mean and standard deviation for random 
number generation of the algorithm’s parameters. 

 Mean Standard 
deviation 

vminM (km/h) 93 3 
vminR (km/h) 49 2 

nclust1 367 10 
nclust2 245 20 
%min 70% 5% 

nclust nearM 127 15 
vmax nearM (km/h) 127 6 
vmean nearM (km/h) 81 2 

nclust nearR 40 20 
vmax nearR (km/h) 100 12 
vmean nearR (km/h) 42 5 
 

Table 3: 90% confidence interval of confusion 
matrices and travelled distances. 

 Predicted 
L R M 

Real 
L 80%-89% 8%-17% 2%-4% 
R 13%-20% 75%-82% 3%-7% 
M 7%-10% 4%-10% 81%-87% 

     

Travelled km 410-561 1179-1350 1382-1469 
 
The high relative values in Table 3, larger 

than 80%, show a good performance of the 
algorithm in correctly identifying local roads and 
motorways, and reasonably good, higher than 
75%, for regional roads. Table 3 also reveals a 
bias of the predictions since the components in 
the lower triangle are significantly larger than 
their “mirror” entries in the upper triangle. This 
means that the algorithm tends to downgrade the 
road hierarchy. A possible explanation is that 
there are more situations leading to a speed 
profile more indicative of a road of lower 
hierarchy, for instance lower speeds in traffic 
jams, than situations of excessive speed. As a 
consequence, the travelled distance in local roads 
is probably overestimated, while being 
underestimated for regional roads and 
motorways. 

This biased behaviour of the algorithm 
might actually lead to a better estimation of the 
braking probability. In fact, since braking events 
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near road constraints are discarded, the travelled 
distance around these points of the road should 
also be discarded, thus keeping focus on 
circumstances that might occur on bridges.  
Table 4 shows that with this procedure up to 
17% less road sections than the original 225 are 
identified as regional, and, for motorways, up to 
10% less than the original 134. On the other 
hand, the upper bounds of the confidence 
intervals do not exceed the original number of 
identifications. 

 
Table 4: 90% confidence interval of confusion 
matrices (absolute values). 

 Predicted 
L R M 

Real 
L 113-126 11-24 3-6 
R 30-46 168-185 7-15 
M 10-14 6-13 109-116 

     

Total 155-185 187-219 121-134 
 
The algorithm was validated with a 

validation dataset of 100 additional road sections 
randomly picked. As in the training dataset, the 
top 500 of 2000 runs of the algorithm showed a 
performance criterion based only on these 100 
locations higher than 81.5%. Since this threshold 
is equal to the one computed during the 
calibration, the algorithm is deemed valid to 
analyse the whole dataset. 

3.3. Braking probability by road type 
The ratios between the number of braking events 
identified (Table 1) and the estimated travelled 
distances (Table 3) yield a set of intervals for the 
rate of braking events per vehicle meter 
travelled. These values are presented in Table 5 
as intervals for the braking probability that are fit 
to use in the determination of extreme braking 
forces on road bridges given the definition 
proposed in this paper. Table 5 also includes the 
values of the braking probability that consider all 
events. If the data set had not included GPS 
positioning, road constraints would not have 
been identified and these would have been the 
only values computed.  

Table 5: Braking probability from on-road data. 
 No road 

constraint All events 

Regional (5.2-5.9)×10-6 (1.4-1.6)×10-5 
Motorway (6.8-7.2)×10-7 (1.4-1.4)×10-6 

   

All roads 2.8×10-6 9.7×10-6 
 
Table 5 shows an order of magnitude of 

difference between the braking probability on 
motorways and regional roads, while the braking 
probability for all road types has an intermediate 
value. Moreover, only the estimate of the braking 
probability for motorway bridges lies in the 
range between 10-8 and 10-6 mentioned before. 
This range might be inadequate for regional 
roads because it was deduced from a 
combination of all road types or due to 
fundamental differences in driver behaviour and 
traffic conditions between both studies. On the 
other hand, the estimates in Table 5 have less 
statistical significance, since they are based on an 
on-road study with approximately 1000 times 
less travelled distance than the ones in Section 2. 
In fact, the estimation of the braking probability 
on motorways is based on only one braking 
event in about 1400 km. Therefore, the presented 
values are provisional and depend on validation 
from estimations with larger datasets.  

This study produces no conclusions 
regarding braking on local roads because a 
probabilistic approach does not make sense in a 
location where it is certain that most vehicles 
will brake. A realistic worst-case scenario should 
be considered instead. 

4. EXTREME BRAKING FORCES 
The values of the braking force presented in this 
paper result from Monte Carlo simulations of the 
dynamic response of bridges to braking vehicles. 
The traffic configurations used to model the 
braking events are captured from a time-history 
of bridge crossing vehicles generated with traffic 
microsimulation tools. A previous version of this 
model is presented by (Martins et al. 2014). The 
simulations are able to take into account the 
dynamic response of the bridge based on its 
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dynamic properties, while reproducing the 
randomness associated to drivers’ reactions in 
case of braking events and the statistical 
characteristics of traffic.  

A linear elastic viscously damped single 
degree of freedom (SDOF) system is used to 
compute the dynamic response of the bridge to 
the action of braking vehicles. The SDOF system 
is characterized by the natural vibration period 
and damping ratio of the bridge in the 
longitudinal direction. The braking force is 
computed via closed-form expressions so that it 
matches the static force that causes a longitudinal 
displacement of the bridge equal to the 
maximum displacement computed for the SDOF 
system. Thus, it can be directly compared with 
the braking force model from (CEN 2003). 

The excitation force is built as a succession 
of possibly overlapping braking reactions of 
vehicles that travel in a convoy. The maximum 
deceleration of each vehicle and the response 
time of following drivers are randomly generated 
with parameters taken from studies of driver 
behaviour and braking systems. These studies are 
beyond the scope of this paper.  

The set of braking forces that results from 
the Monte Carlo simulations serves as support to 
define an empirical probability distribution of the 
braking force, which is specific of the bridge and 
traffic conditions that are given as input. The 
characteristic value of the braking force Fk, i.e., 
the value of the braking force that has a return 
period of 1000 years and should be used in safety 
verifications, is the quantile of the braking force 
distribution that has the probability of non-
exceedance given by equation (2). 

Figure 1 shows the variation of Fk as a 
function of the bridge length. It results from 
Monte Carlo simulations performed for bridges 
with a length between 25 and 200 m, a damping 
ratio of 0.07 and a natural frequency in the 
longitudinal direction of 1 Hz. The traffic input 
was a time-history of vehicles covering a period 
of one week with the statistical characteristics of 
traffic on a Swiss motorway. To that end, traffic 
simulation software Aimsun developed by 

[Transportation Simulation System (TSS 2011)] 
was used to combine data from a WIM station on 
Switzerland’s A2 motorway near Monte Ceneri 
(2 lanes and traffic flow q ≈ 20×103 veh/day in 
each direction) with records from a close by 
Swiss automatic road traffic count station. The 
values of Fk were computed for a braking 
probability β between 10-8 and 10-6. Figure 1 also 
shows the load model for the braking force in 
Eurocode 1 - Part 2 (EC1-2) (CEN 2003). 

 

 
Figure 1: Characteristic braking forces from EC1-2 
(CEN 2003) model and probabilistic approach.  

 
Figure 1 shows that a probabilistic approach 

to compute the characteristic value of the braking 
force with site-specific data may yield a force 
with lower magnitude than what the load model 
in EC1-2 (CEN 2003) provides. This is 
particularly clear for lower values of the braking 
probability and bridges longer than 100 m. The 
highest estimate of the braking probability on 
motorways, 10-6, yields values of the braking 
force that concur with the code model up to a 
bridge length of 100 m but flattens after that, 
unlike the load model. This indicates that the 
deterministic scenarios from (Merzenich and 
Sedlacek 1995) having four or more 25-tonne 
vehicles braking simultaneously is too 
conservative, even for a 1000-year return period. 

Due to the sparseness of braking events, one 
week of traffic configurations is enough to model 
more braking events than it is expected to occur 
in 1000 years. Therefore, there was no need to 
resort to extreme value theory to compute the 
quantile of the empirical probability distribution 
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that corresponds to the characteristic value of the 
braking force. 

5. CONCLUSIONS 
This paper presents a site-specific probabilistic 
model to compute the characteristic value of the 
braking force on road bridges. The model 
simulates realistic traffic conditions from a Swiss 
motorway and takes into account the length and 
dynamic properties of the bridge. Results show 
that such evaluation leads to lower values than 
those included in structural codes, while more 
accurately meeting the safety criterion target of a 
1000-year return period. Therefore, for existing 
bridges, this type of models might safely discard 
the need to retrofit or, at least, endorse retrofit 
solutions that are less expensive than those 
required when load models from the codes are 
applied. This holds in particular for long bridges, 
where the assumptions behind the load model in 
the Eurocode seem to be extremely conservative. 

To enable a probabilistic approach to the 
estimation of extreme values of the braking force 
on road bridges, the concept of braking 
probability is introduced and the braking 
probability is defined as the likelihood that a 
vehicle will engage in a braking event per metre 
travelled for a reason unrelated to road 
infrastructure constraints. Results from previous 
studies indicate a range for the braking 
probability between 10-8 and 10-6, but do not 
distinguish between different road hierarchies. 

This paper presents a supervised learning 
algorithm to compute the distance travelled per 
road type. With this information and a matching 
categorization of the braking events, it was 
possible to estimate a braking probability on 
motorways of circa 7×10-7 and on regional road 
of circa 5.5×10-6.  

The goal of this research is to update the 
braking force model from (CEN 2003) using the 
probabilistic framework here outlined. That will 
require a more thorough evaluation, considering 
traffic from different locations and, ideally, 
larger data sets of on-road studies to improve the 
statistical characterization of braking events and 
the estimates of the braking probability. The 

dynamic model and the selection of traffic 
configurations can still be improved too, but it is 
beyond the scope of this paper to give further 
details concerning these aspects. 
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