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Abstract

This thesis studies carbon nanotubes using state-of-the-art computational methods. Using

large-scale quantum-mechanical calculations, based on density-functional-theory (DFT), we

investigate several important aspects of the physics and chemistry of single-walled-nanotubes.

The focus is on the effect of defects, namely adparticles and vacancies, on the structural,

electronic and dynamical properties of the nanotubes. We also present preliminary results of

simulations exploring a possible route for the formation of carbon nanotubes from graphene

nanoflakes. Adparticles include atomic hydrogen, oxygen, sulfur at different concentrations

as well as nitrogen–oxides. Chemisorption of hydrogen as well as oxygen and isoelectronic

species results in the formation of clusters on the sidewall, with characteristic structures

corresponding to characteristic signatures in the electronic spectra.

Especially in the case of oxygen, we find that relatively high energy barriers separate different

structures: this shows that not only thermodynamically favored configurations are relevant

for the understanding of oxygen chemisorption but the presence of traps cannot be neglected.

The fingerprint of these traps is confirmed by scanning-tunneling spectroscopy.

Trends with size and chirality of the nanotubes and oxygen coverage are studied in detail

and also explained in terms of simple chemical descriptors. The importance of large-scale

atomistic models is also emphasized to obtain convergent results and thus reliable predictions,

and comparison is made of results we obtain using different gradient-corrected exchange-

correlation functionals and in part with hybrid functionals. The study of nitrogen-oxides faces

the difficulty to correctly represent physisorption, also with empirically corrected gradient-

corrected exchange-correlation and hybrid functionals. Still our calculations of vibrational

frequencies of different molecules on the sidewall, once compared with experiment, are able

to distinguish the specific species observed in infrared spectra.

Part of our work is centered on the comparison of widely used classical potentials (reac-

tive force fields) with DFT results. Specifically we use them to study hydrogen and oxygen

chemisorption, and especially examine the validity of several different force-fields for the

description of the structure and energetics of single and double vacancies. In all cases, we

find rather limited agreement with DFT results, showing the intrinsic difficulty to represent

the subtle and intrinsic quantum effects governing the physico-chemical behavior of carbon

nanotubes. Still, the wealth of results we have obtained might be useful for an improvement

of these classical schemes for a specific application or other semi-classical models.

Keywords: carbon nanotubes, density functional theory, classical potentials, chemisorption,

physisorption, vacancies, nanotube growth
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Résumé

Le travail de recherche présenté dans cette thèse porte sur l’étude des nanotubes de carbone

à l’aide de méthodes numériques de pointe. Des simulations à grandes échelle basées sur

la théorie de la fonctionnelle de la densité (DFT) sont effectuées dans le but d’examiner des

aspects importants de la physique et de la chimie des nanotubes. Nous étudions principa-

lement les défauts, tels que les particules adsorbées et les lacunes, ainsi que leurs effets sur

la structure géometrique et électronique des nanotubes. Nous présentons également une

nouvelle méthode de fabrication des nanotubes à partir de nanoflakes de graphène. Les parti-

cules adsorbées considérées comprennent les atomes d’hydrogène, d’oxygène et de soufre à

diverses concentrations, ainsi que les oxides d’azote. L’hydrogène et l’oxygène s’assemblent

sur la surface et forment des structures identifiables dans le spectre électronique.

Dans le cas de l’oxygène, les barrières de diffusion, relativement hautes, piègent les atomes

dans leurs positions, montrant ainsi non seulement l’importance des structures thermody-

namiquement favorables mais aussi que les "pièges atomiques" ne peuvent être négligés. La

signature de ces pièges apparaît en spectroscopie tunnel à balayage.

De plus, les effets de la chiralité du nanotube et de la taille des particules adsorbées sur sa

surface sont examinées en détails et expliqués en termes de paramètres géométriques. Les

modèles de grandes tailles se révèlent importants pour obtenir des résultats convergés. En

outre, une comparaison est effectuée entre des résultats obtenus sous différentes approxima-

tions pour la fonctionnelle d’échange et corrélation de la DFT. Les difficultés de la DFT à bien

réprésenter la physisorption rendent particulièrement complexes les études des oxides d’azote.

Malgré ces complications, nous démontrons qu’il est possible de distinguer les différentes

espèces présentes par des calculs de fréquences vibrationnelles moléculaires.

Une partie de ce travail se focalise sur la comparaison entre nos résultats obtenus ab initio et

les calculs avec des potentiels classiques. En particulier, pour l’hydrogène et l’oxygène et les

lacunes atomiques, nous testons différents potentiels classiques disponibles. Dans tous les

cas considérés, nous trouvons de forts écarts avec les résultats obtenus en DFT. Ceci montre la

difficulté intrinsèque aux nanotubes de carbone où les effets quantiques dominent les intérac-

tions physiques et chimiques. Cependant, la majorité des comparaisons effectuées peuvent

servir à de futures améliorations de ces potentiels ou d’autres modèles semi-classiques.

Mots clés : nanotubes de carbone, théorie de la fonctionnelle de la densité, potentiels clas-

siques, chimisorption, physisorption, lacunes, croissance des nanotubes
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1 Motivation

The work presented in this thesis was primarily motivated by the interest in the physico-

chemical behavior of single-walled nanotubes (SWNT) as they were explored within the

Nanotera project “CabTuRes”. More generally, a deep understanding of the fundamental

properties of SWNTs is often missing and several issues needed being revisited with accurate

ab initio simulations and experimental methods. Part of our theoretical work has indeed

been in collaboration with experimental groups, the one of Oliver Gröning at EMPA — for the

investigation of chemisorption — and with the one directed by Christofer Hierold at ETHZ

— for the study of the nitrogen oxides-nanotube interactions. Also, the need for simulations

of nanotubes with larger sizes (lengths of the order of the micrometer) was felt allowing for

the study of growth and of mechanical properties of realistic systems under different physical

conditions. These studies however are not affordable yet with ab initio methods and have

motivated us to verify whether reliable classical force fields were available through extensive

comparison with ab initio methods.
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2 Introduction to the Physics and
Chemistry of Nanotubes

2.1 Description of Carbon Nanotubes

Carbon nanotubes (CNTs) are part of the family of carbon allotropes (see Fig. 2.1). CNTs were

discovered by Iijima in 1993 1 when making detailed tunneling electron microscopy (TEM)

micrographs of carbon soot. Since then they have been the topic of both fundamental research

as well as provided new opportunities for nanotechnology.

Figure 2.1: Five allotropes of carbon: (a) diamond, (b) graphite, (c) graphene, (d) fullerenes and (e)
nanotubes.

The fundamental study of CNTs is primarily complicated because there is not a unique CNT

structure. CNTs may appear as single-walled CNTs (SWNTs) or multi-walled, they may be

isolated or bundled, or may form more complicated structures. Also isolated SWNTs are not

unique, but instead represent a family of structures classified according to their chirality Ch .

Ch describes the folding edge to theoretically form a SWNT from a graphene sheet and is

defined in terms of the graphene unit vectors as Ch = na1+m a2 ≡ (n , m ) (see Fig. 2.2). The

number of atoms in the unit cell (N ) of a SWNT is given by 2

N = 4
n 2+m 2+nm

GCD(2m +n , m +2n )
.

where GCD(a ,b ) denotes the greatest common denominator of a and b . The smallest unit

cells are those of the achiral nanotubes, where n =m (armchair CNTs) or m = 0 (zigzag CNTs),

containing 2n and 4n atoms respectively. The unit cell of a chiral CNT (n 6=m and n 6= 0) is
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(0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0)
(1,1)

(2,2)
(2,1) (3,1) (4,1) (5,1)

(3,2) (4,2) (5,2)
(3,3) (4,3) (5,3)

(4,4)metallic semiconducting

zigzag

armchair
Figure 2.2: Illustration of the chiral indices of a carbon nanotube. The chiral vector Ch is the folding
vector along the tube circumference in terms of the graphene unit vectors a1 = a CC (

p
3/2, 1/2) and

a2 = a CC (
p

3/2,−1/2)with a CC ≈ 1.42 Å. Encircled dots indicate metallic CNTs where mod(n −m ,3) = 0.
Image based on Fig. 2b in Ref.3.

easily much larger. For example the unit cell of the (zigzag) (17,0)-CNT contains 68 atoms

whereas the chiral (17,1)-CNT contains 1,228 atoms. This complicates the theoretical study of

CNTs and forms a simple reason why many studies are based on achiral CNTs.

By applying periodic boundary conditions along Ch an approximate band structure for CNTs

can be constructed from that of graphene, following the zone-folding approximation. 2 Dis-

cretization of wave vectors along Ch , combined with graphene’s zero-gap transition high-

symmetry (K) points, then leads to the result that CNTs are metallic if n −m is a multiple of 3

and semiconducting otherwise. Using a tight-binding model Hamiltonian, moreover leads

to an exact expression for the band energies from which it can be shown that the bandgap is

inversely proportional to the CNT diameter 4–6 (Egap =α/D). The proportionality constant α

is experimentally found to be 0.7–0.75 eV·nm. 7,8

The zone-folding approximation does not account for curvature effects. As such, it breaks

down in the case of small diameter CNTs where deviations from ideal sp2-hybridized C become

significant. For example, in the case of the "metallic" (9,0)-CNT a small (0.08 eV) bandgap has

been measured 9 using low-temperature atomically resolved scanning tunneling microscopy

(STM). Nevertheless, this gap remains significantly smaller than that of typical semiconducting

nanotubes, 7,8 which have a gap in the range of 0.5–2 eV. Curvature also breaks the symmetry

between the three bonds formed by each C atom, leading to different bond lengths and an

increased chemical surface reactivity. 10–13

Experimentally used CNTs are most commonly grown using chemical vapor deposition (CVD)

from hydrocarbon precursor gases on catalytic metal nano-particles (see e.g. Ref.14). Recent

advances in the understanding of CVD growth conditions have enabled selective growth of

either semi-conducting or metallic CNTs with a certainty of 99.9%, 15 CNT-lengths of up to half

a meter in length, 16 ultra high density (1.6 g cm−3) CNT forest growths, 17 and chirality selective
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growth to an accuracy of more than 90%. 18 These advances in controlled and selective growth

pave the way for future chirality-specific applications, as well as one-to-one comparison with

theoretical predictions.

2.2 Current State of Knowledge

2.2.1 Chemisorption of Hydrogen, Oxygen and Sulfur

Covalent sidewall functionalization 19 is of special relevance for CNTs because of their in-

solubility in water and most organic solvents. This need for covalent functionalization has

driven a widespread effort to understand chemical reactions on the CNT surface. While the

bulk of experimental studies have focussed on physisorbed molecular H2 and O2, several

studies have considered the interactions with atomic hydrogen 20–25 and oxygen 26–29 and the

chemisorption that may take place on the nanotube surface.

Thin-film sensor response combined with temperature programmed desorption studies of

chemisorbed hydrogen on SWNT thin-films 25 show that hydrogen atoms tend to cluster on the

surface and their desorption follows a simple Arrhenius law corresponding to a desorption en-

ergy of 1.7± 0.04 eV. STM measurements 23 further indicate that chemisorbed hydrogen atoms

lead to new states in the electronic bandgap of semiconducting nanotubes. Chemisorbed

hydrogen atoms are further identified in infrared spectroscopy by the CH stretching modes

which are found 20 at a frequency of 2924 cm−1, or, in the presence of CH2-groups 22 by two

main peaks at 2850 and 2920 cm−1.

For oxygen in particular, the oxygen-based functional groups and the role of oxygen as com-

mon attacking agent 30 has driven a number of investigations. Near-edge X-ray adsorption

fine-structure (NEXAFS) spectroscopy measurements of oxidized SNWTs 26 show the presence

of carbonyl (C=O) and ether (C-O-C) groups, associated with π?(CO) andσ?(CO) resonances

in the C K-edge spectra respectively. Upon heating to 500–600 K the π?(CO) spectral features

are removed whereas theσ?(CO) features are found to disappear at an increased temperature

(1073 K), suggesting a thermodynamic preference for ethers. This observation is further cor-

roborated by infrared spectroscopy measurements which show the relative intensities of peaks

associated with carbonyl groups to disappear first, followed by ether and quinone groups. The

tendency for single (ether-like) C-O bonds was further confirmed by XPS experiments, 27 where

upon 300 eV O+2 irradiation of SWNT bucky paper O(1s)-levels characteristic of a single bond

are observed. Also on double-walled nanotubes, XPS measurements 31 show a thermodynamic

preference for ether-like configurations.

Thiolation experiments 32 on MWNTs has shown that sulfur chemisorbs on the CNT surface

and may be identified through new modes in the Raman spectra near 500 cm−1. Tunneling

Electronic Microscopy (TEM) scanning of the resulting CNTs suggests a homogeneous surface

coverage of sulfur atoms. Complementary EELS measurements further indicate a sulfur

content of ∼ 0.6%.
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2.2.2 CNT-based Nitrogen-Oxides Sensors

In the seminal paper by Kong et al. 33 strong reversible changes in conductivity were observed

as a result of CNT exposure to NO2 gas. This response was explained by hole doping of the

CNT by the adduct. Since then, several experiments have reproduced these results. However,

differences in the details of the experimental set-up have lead to large variations in response

and recovery timescales and sensitivity. A recent overview of these experimental results can be

found in e.g. Ref.34. Two main problems obstruct a clear understanding of the interaction of

nitrogen oxides with carbon nanotubes. First, the contribution of the CNT relative to the metal

contacts to the device response is unclear. Second, the nature of the chemical generating the

response of the device is difficult to ascertain.

The CNTs are coupled to a metal, so that the integrated device is a field-effect transistor where

the electronic transport is dominated by the Schottky barrier at the contact. 35 Therefore both

the metal and the CNT work functions are relevant as well as the metal-CNT interactions at

the interface. 36 The results however appear to depend on the specific experimental setting.

For example, it has been shown that replacing Pd or Cr by Al as electrodes in a SWNT-bundle

based device, produces a response one order of magnitude faster and qualitatively different. 37

On the other hand, more recent experimental measurements on SWNT based sensors 38

demonstrated that the tubes mainly responsible for the response to NO2.

X-ray photoemission spectra (XPS) 39 taken on mixed metallic and semiconducting SWNTs

exposed to NO2 in the range of 150–200 K revealed N(1s) core level shifts typical of NO3. More

recently XPS and X-ray Absorption Spectra (XAS) were taken over a range of temperatures, from

100 to 300 K. 40 At 100 K evidence was given for the presence NO2, N2O4 on both metallic and

semiconducting nanotubes, whereas data at room temperature were interpreted as due to the

presence of defects like metal adparticles. Moreover, NO2 was found to desorb spontaneously

at 140 K. The desorption energy was estimated to be ∼ 0.4 eV for metallic SWNTs and 0.2 eV

for semiconducting ones,

Infrared spectra measured for a CNT-bundle exposed to NO2 exhibited an anomalous strong

feature that was interpreted as due to NO2 in interstitial positions within the bundle. 41,42

2.2.3 Vacancies

Vacancies, interstitials, bond-rotations and non-hexagonal rings are common intrinsic defects

of graphitic surfaces in general. Pristine nanotubes are often described as defect-free to

a large extent. However, given their reduced dimensionality, a single defect is expected to

have stronger effects on their physical and chemical properties than on graphite or also

graphene. This explains the great interest in identifying defects on nanotubes also at very low

concentration and even in trying to engineering defected SWNTs so as to tailor their electronic

properties. 43
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Several techniques are able to detect the presence of defects on the sidewall of nanotubes, 44

but identifying their nature is a more challenging task. For example, Raman spectroscopy is

particularly sensitive to structural changes induced by any type of defects through intensity

variations of specific phonon bands, shifts and appearance of new features. 45,46 However, also

in this case, the source of these "anomalies" is not easy to identify unless combined with cal-

culations (see e.g. Ref. 47). Direct imaging of defects is provided by STM 48 or high-resolution

aberration-corrected TEM 49 at atomic resolution. In particular, imaging is combined with

high-energy electrons or ions irradiation, which artificially generates different types of de-

fects. 50,51 In particular, artificial generation of vacancies is crucial to allow for systematic

studies also for different concentrations. Two main characteristics were identified: the ten-

dency of vacancies to coalesce and a relatively facile of self-healing. 51–53

2.2.4 Top-down CNT Formation from Graphene Nanoflakes

It is natural to consider graphene as "the basic building block for graphitic materials of all

other dimensionalities" 54 and thus to investigate possible routes to fold it into diverse nanos-

tructures. This possibility is of special interest for nanotubes, for which different methods

are explored for chirality-selective synthesis. Experimental evidence exists from aberration-

corrected HRTEM 55 that graphene nanoribbons (GNR) tend to warp and ripple at the edges.

These observations are also supported by a number of simulations . 56–60 Moreover, GNRs

were observed to roll up onto nanoscrolls 61 and small flakes to fold into fullerenes . 62 The

latter possibility has recently emerged also in ab initio dynamical simulations. 63 Suggestions

have also come from computations on the formation of GNRs with nanotube-terminated

edges. 64,65 More recently, it has been demonstrated 66,67 that seamless wrapping of GNR —

in direct analogy with the chiral vector — leads to chirality selective growth of nanotubes.

Two different folding approaches have been proposed, of which one based on the twisting

of the edges 67 - as suggested by previous simulations 68 - and the other based on graphite

ultrasonication in the presence of a templating molecule (ferrocene aldehyde). 66,69 Discussion

of related calculations is postponed to Chapter 7. A third method was proposed on the basis

from molecular dynamics simulations, based on controlled hydrogenation of the GNR surface

to induce curvature. 70,71 However no experimental confirmation has followed.

7





3 Theoretical & Computational Methods

This chapter provides a brief background to the theoretical and computational methods applied

in this thesis. Section 1 recalls the fundamentals of density-functional theory (DFT) and some

approximations to the exchange–correlation functional. Section 2 introduces the classical poten-

tials most widely employed to simulate carbon aggregates and that we examine in comparison

to DFT-based approaches. Section 3 describes the algorithms we apply to simulate "rare events".

3.1 The Atomistic Model and Basic Equations

We consider a mixed nuclear-electron system in mutual interaction, in which nuclei are treated

classically and relativistic effects are not taken into account in the solution of the electronic

problem. Moreover, our approach is based on (i) Density-Functional Theory for the description

of the electron subsystem; (ii) The Born-Oppenheimer approximation, that allows to separately

solve for the electronic and ionic variables; and (iii) The pseudopotential framework in which

only valence electrons are explicitly treated and interact with core electrons via an effective

potential.

3.1.1 Density Functional Theory and Kohn-Sham formulation

Density Functional Theory (DFT) is a mean-field theory for the ground state of a many-particle

system. Let N be the number of particles and define its density as n (r) such that

∫

d rn (r) =N . (3.1)

DFT relies on two theorems due to Hohenberg and Kohn, 72 having the density as the key

quantity:

1. For any system of interacting electrons in an external potential vext(r), this is determined

uniquely, except for a constant, by the ground state electron density n (r)GS .
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2. A universal functional for the energy E [n (r)] can be defined for any external potential

vext(r).

E [n (r)] = T [n (r)]+Vee[n (r)]+

∫

d rvext(r)n (r) (3.2)

where T [n (r)] is the kinetic energy of the interacting electrons, Vee[n (r)] is the electron-

electron interaction. For any particular vext(r), the exact ground-state energy of the

system E [n(r)]GS is the global minimum of this functional and the density that mini-

mizes this functional is the exact ground-state density n (r)GS .

By recognizing the unique and key role of the electron density, DFT avoids the determination

of the many-electron wavefunction which is also a functional of the density, as any other

property of the system. This is a great advantage when trying to solve for the ground-state of a

many-body problem but important steps are necessary before a practical application can be

realised. The first big step was realised by Kohn and Sham 73 (KS). Kohn-Sham’s ansatz consists

in defining an auxiliary system of non-interacting electrons having the same ground-state

density as that of interacting electrons:

n (r)GS = n (r)GS,K S =
∑

ioc c

|φi (r)|2 (3.3)

where the φi s are independent one-electron wavefunctions in terms of which the many-

electron wavefunctions of the non-interacting system - a Slater determinant - is expressed,

and the sum is over the occupied states. In spite of the resemblance with the Hartree-Fock

formulation, theφi s have no physical meaning. Kohn–Sham’s ansatz allows to write the energy

functional of the interacting system as

EKS[n (r)] = Ts [n (r)]+Eext[n (r)]+EHartree[n (r)]+Exc[n (r)] (3.4)

Eext[n (r)] =

∫

d rvext(r)n (r )(r) (3.5)

EHartree[n (r)] =
1

2

∫

n (r)n (r′)
|r− r′|

d rd r′ (3.6)

where Ts is the kinetic energy of the non-interacting electrons

Ts [n (r )] =
∑

ioc c

−
1

2

∫

d rφ?i∇
2
iφi (r) (3.7)

and the electron-electron interaction Ve e has been partitioned in the Hartree term EHartree,

classical Coulomb e-e repulsion, and the exchange-correlation energy Exc which contains the

quantum contribution to the e-e interaction and is only defined by Eq. 3.4 itself. As such, the

Ex c [n] functional is unknown.
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In the KS approach, applying the variational principle to obtain the ground-state density,

reduces to minimizing the total energy with respect to the independent one-electron wave-

functionφi under the orthonormalization constraints

∫

d rφ?iφi (r) =δi j (3.8)

The Kohn–Sham Schrödinger-like equations thus obtained are

HKSφi ≡
�

−
1

2
∇2+ v̂s

�

φi = εiφi (3.9)

v̂s = v̂e x t (r)+ v̂H (r)+ v̂x c (r) (3.10)

Both theφi s and the energies εi have no physical meaning.

The external potential represents in general the interaction of the electron system with the

nuclei:

v̂e x t =
∑

I

Ve I (r−RI ); v̂H (r) =
1

2

∫

d r′
n (r′)
|r− r′|

(3.11)

The total energy of the mixed nuclear-electron system is thus

E t ot = EK S +EN (3.12)

where

EN =
∑

I<J

WI J (3.13)

and WI J represents the Coulomb repulsion of the nuclei.

So far, we have assumed that the many-electrons system has the density of electrons with

spin-up n↑ as with spin-down n↓. In many cases, however, one needs to account for spin-

polarization, and thus a spin-dependent functional E [n↑,n↓].

3.1.2 Approximations to the Exchange-Correlation Functional

A major theoretical effort has been directed towards finding reliable approximations to the

functional Exc[n (r)]. Only the most common approximations are discussed here, that are used

in this thesis.
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Local Density Approximation In the local density approximation (LDA), the xc-energy is a

local functional of the density, namely

E LDA
xc [n (r)] =

∫

�

εh
x (n (r))+ε

h
c (n (r)

�

n (r)d r, (3.14)

where at any r the energy density is expressed as that of the homogeneous electron gas (HEG).

In particular, for the density n 0, the HEG exchange energy density has a simple analytic

expression 74:

εh
x =−

3

4π

�

9π

4

�1/3 1

rs

where rs is the Wigner–Seitz radius

rs =
�

3

4πn 0

�1/3

and the correlation energy density has analytical expressions only in limit of high 75 and low

densities. 76

εc =







A log rs + B + rs (C log rs +D) for high densities,
1
2

�

g 0

rs
+ g 1

r 3/2
s
+ g 2

r 2
s
+ . . .

�

for low densities,

For intermediate values of the density, εc is known in numerical form from the results of

quantum Monte Carlo calculations . 77 In practice, several parametrizations are used (e.g., Ref.s

78,79).

The spin-density-dependent version of the LDA — called local spin-density approximation

(LSDA) — is constructed in a similar way. 80

The L(S)DA is known to give good results especially for structural properties of metals and semi-

conductors but also significantly underestimate bond lengths (both is solids and molecules)

and strongly overestimate atomization energies. However its success is not limited to systems

with slowly varying densities. This has been mainly attributed to the fact that the exchange-

correlation hole satisfies the correct sum rule which excludes one electron from the vicinity of

of another. 81

3.1.2.1 Gradient Corrected Exchange-Correlation Functionals

The first natural extension of Exc[n(r)] beyond the LDA is a semi-local approximation includ-

ing the local gradient of the density. Initial attempts known under the Gradient Expansion

Approximation (GEA) to 2nd order (GE2) led to worsening of the LDA results and especially

to spurious divergences, which forced the introduction of a real-space cutoff to correct the

long-range behavior. This was achieved in the scheme referred to as the generalized gradient
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approximation (GGA). 82–84 The GGA formulation of the xc-functional also satisfies a number

of fundamental constraints of the HEG, including the xc-hole sum rule. In this way, just as the

LDA, it does not contain any empirical parameter.

In GGA the exchange functional is written as

E GG A
x [n ] =

∫

d rn (r)εh
x (n (r))Fx (s )

where

s = |∇n |/2kF n ; kF = (3πn )1/3

and the correlation functional is written as

E GG A
c [n ] = Ec (LDA)+ Fc (rs ,ζ, t )

where

ζ= n↑−n↓; t =
∇n (r)

2ksφn (r)
; ks = 2

p

kF /π; φ =
(1+ζ)2/3+(1−ζ)2/3

2

where n↑(↓) is the density of the electrons with spin ↑ (↓).

The simplest and most widely used form of a GGA functional is the so-called Perdew-Bruke-

Erzenhof (PBE) approximation, 85 in which

Fx (s ) = 1+k −
k

1+µs 2/k
,

where k and µ are constants, and

Fc (rs ,ζ, t ) = γφ3 log

�

1+
β

γ
t 2 1+At 2

1+At 2+A2t 4

�

where

A =
β

γ

�

exp

�

−εh
c

γφ3

�

−1

�−1

,

ks is the inverse Thomas-Fermi screening wavelength and β and γ are constants.

The expression of Becke’s gradient-corrected exchange energy functional is

Ex (Becke) = Ex (LSDA)−β
∑

σ

∫

d rn 4/3
σ B (nσ)
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where

B (nσ) = x 2
σ/(1+6βxσ sinh−1 xσ)

and

xσ = |∇nσ|/n 4/3
σ

The so-called BLYP gradient-corrected functional combines Becke’s formulation for the ex-

change functional, 86 that corresponds to a GGA, with the Lee-Yang-Parr (LYP) approximation

to the correlation functional. 87 The expression of Becke’s gradient-corrected exchange energy

functional is

Ex (Becke) = Ex (LSDA)−β
∑

σ

∫

d rn 4/3
σ B (nσ)

where

B (nσ) = x 2
σ/(1+6βxσ sinh−1 xσ)

and

xσ = |∇nσ|/n 4/3
σ .

Here one parameter β is present, which is fitted to the exact HF exchange energies of selected

rare gases. The LYP functional was derived as a simplification and fitting of a more complicated

(and rigorous) functional. 88

Grimme’s corrections One of the major failures of LSDA and gradient-corrected functionals

is that they are unable to represent dispersion forces, due to the short-ranged character of the

approximated correlation energy functional. Therefore systems where the long-range part

of the van-der-Waals (vdW) interactions are relevant cannot be treated correctly. In order to

overcome this problem, a variety of corrections have been proposed. One simple method

to achieve this aim is by adding a long-range interaction tail of the form r−6. A few models

have been introduced by Grimme. 89,90 In particular the so-called Grimme-D2 correction is

expressed as

E D2
Grimme =−s6

∑

I>J

C I J
6

R6
I J

f damp(RI J ), (3.15)

with C I J
6 a constant and the function f damp damps the interactions at short distances so that

the description of chemical bonds remains unchanged. The parameter s6 is a scaling factor

depending on the xc-functional to which the correction is applied.
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3.1.2.2 Hybrid Functionals

The common idea of this class of functionals is adding a fraction of the exact Hartree-Fock

exchange to the GGA expressions, with

E HF
x =

∑

i j

∫ ∫

φi (r)φj (r)φ?i (r
′)φ?j (r

′)

|r− r′|
d rd r′. (3.16)

This explicitly includes a dependence of the functional on the KS one-electron wavefunctions.

The hybrid functionals used in this thesis are PBE0 91 and B3LYP 92 functionals. In PBE0 the

xc–energy is given by 91

E PBE0
xc = (1−a 0)E PBE

xc +a 0E HF
x , (3.17)

with the coefficient a 0 = 0.25. In analogy with PBE, also PBE0 does not contain any empirical

parameter. PBE0 is known to lead to remarkable improvement e.g. in the values molecular

dissociation energies and the description of charged defects in solids.

The B3LYP functional 92 is defined as

E B3LYP
xc = E LDA+a 1(E HF

x −E LDA
x )+a 2(E B

x −E LDA
x )+a 3(E LYP

c −E LDA
c ). (3.18)

The three coefficients (a i ) depend on the choice of the particular parametrization used for

LDA and on the fitting data set. In the original formulation, these were sets of thermochemical

data. In general, this is the preferred functional used to study molecular systems and complex

bonding situations.

Adding the non-local exchange term makes calculations with hybrid functional computation-

ally much more demanding than LDA or GGA. In many cases, the gain in accuracy is significant.

For example, the partial inclusion of exact exchange cancels in part the self-interaction of the

Hartree term, thus improving e.g. the calculation of the electron affinity. Also, a byproduct is

the opening of the HOMO-LUMO gap or the valence-conduction bandgap in the KS spectrum.

3.1.3 The Pseudopotential Approach

In the pseudopotential scheme one reduces the electronic problem to that of the valence

electrons, which interact with the core-electrons via an effective potential. The inherent

approximation is the so-called "frozen-core approximation" that ignores any variation of the

core-electron distribution under the effect of any physical or chemical stimulus. The effect

of core electrons on the valence electrons is a fixed potential that includes the screening of

the nuclear charge and mimics the repulsion due to orthogonality constraints. There are

numerous techniques for the construction of atomic pseudopotentials. The most commonly

procedure is the one leading to "norm-conserving" pseudopotentials, 93 namely such as to

ensure that the pseudo-wavefunction very closely corresponds to the all-electron wavefunc-
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tion beyond a certain "core" radius (rc ), fixed a priori, within which the norm (integral of the

probability density) of the pseudo- and all-electron wavefunctions are the same. Clearly, this

choice is crucial in determining the accuracy of the pseudopotential. The general criterion

for a "good" atomic pseudopotential is its transferability, namely its ability to describe the

core effects in different states of the valence electrons. In practice, this can be verified e.g.

at different ionized or excited states in the atom, and globally when passing to molecules

and condensed matter systems. Adding to accuracy is also the "non-local" representation of

pseudopotential, namely the inclusion of an explicit dependence on the angular momentum

of the valence electron state in the atom.

In the following pseudopotentials constructed with the algorithms by Martins-Troullier 94

(MT) and Goedecker-Tetter-Hutter (GTH) pseudopotentials 95 will be used. The former have a

numerical form; the latter have an analytical form - separable in real- and reciprocal-space -

which is particularly convenient for our computations.

3.1.4 Basis Sets

The solution to the KS equations is generally obtained after expanding the wavefunctions is a

given basis set. Depending on the atomistic model either localized basis functions (Gaussians,

Slater orbitals or numerical) or plane waves are selected.

Apart from some tests we have made to validate or compare our results for simple molecules

with all-electron calculations, we have used plane waves as basis functions. A number of

requirements make this basis set convenient in general: they constitute an orthonormal and

complete basis set. In particular, completeness allows to control the convergence of the results

via simple tests by increasing the expansion cutoff. Plane waves are especially suited for our

calculations which are performed in the pseudopotential scheme and use periodic boundary

conditions. Several matrix elements can also be expressed analytically. Moreover, ab initio

molecular dynamics benefits from the use of plane waves 96 because they are independent

from the atomic coordinates and also the calculation of the forces acting on the atoms can be

done on the same footing as the energies. We use the well-established schemes implemented

in the CPMD code. 97

3.1.5 Ab initio Molecular Dynamics

With ab initio MD, one generally refers to molecular dynamics (MD) in which the forces acting

on the nuclear coordinates are explicitly calculated within DFT. The direct procedure obviously

consists of a dynamics, in which at each step of the nuclei Kohn-Sham equations are solved

and forces are calculated that drive the next step. This is the so-called Born-Oppenheimer

MD. It guarantees decoupling of electronic and nuclear variables and high accuracy in the

forces. However it is not computationally efficient and for this reason it is only rarely used. An

elegant and efficient algorithm unifying DFT and MD was first proposed by Car and Parrinello

in their seminal paper. 98 There they introduced a new type of MD (Car-Parrinello MD) based
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on the following (CP) Lagrangian

L CP =
∑

i

µ〈ψ̇i |ψ̇i 〉+
∑

I

1

2
M I ṘI −EKS[n (r)]+

∑

i j

Λi j

�

〈ψi |ψj 〉−δi j

�

.

The electronic variables are one-electron wavefunctions (ψi ) and are treated on the same foot-

ing as the nuclear variables (RI ): this is accomplished by associating a fictitious mass µ to the

ψi s and thus a kinetic energy term. The functional E DFT plays the role of the potential energy

and is expressed as in the Kohn-Sham formulation. Given the orthonormality propriety of the

electronic wavefunctions, this has to be explicitly imposed as a constraint, using Lagrange

multipliers Λi j . The equations of motion are derived from the Euler-Lagrange equations

d

d t

∂L CP

∂ p
−
∂L CP

∂ q
= 0,

where q and p represent the nuclear and electronic coordinates (ri and RI ) and conjugate

momenta. We thus get

M I R̈I =−∇I EKS, µψ̈i =−
δEKS

δψ?i
+
∑

j

Λi jψj . (3.19)

By applying a unitary transformation, so that Λ becomes diagonal, the latter is equivalent to a

KS equation, with Λi i the one-electron energies.

Note that the fictitious mass µ is a "free" parameter and is chosen so as to ensure that the cou-

pling between electronic and nuclear degrees of freedom remains weak during the simulation

(see e.g., Ref.99). To integrate the equations of motion, the Verlet algorithm 100 is commonly

used with a time step that depends on the specific system. Given the different time scales of

the motion of electronic and nuclear variables, time step to be used in Car-Parrinello MD is

significantly smaller than for classical and also Born-Oppenheimer MD. A combination of the

Car-Parrinello and Born-Oppenheimer MD has also been proposed 101 that enables significant

acceleration of the former.

Several extensions of the original CP Lagrangian have been made and successfully applied:

for example, the formulation in terms of Mermin finite-temperature functional 102 to treat

non-zero gap systems, the addition of Nose’-Hoover constraints 103,104 to allow for simulations

at constant temperature (canonical ensemble) or also Parrinello-Rahman constraints 105 to

allow for simulations at constant pressure. 106

In this thesis, Car-Parrinello MD is applied only in Chapter 7 to simulate the folding of a GNR-

model to a nanotube at 1000 K. However, we have also made use of it to verify the stability of

various structures at low temperatures.
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3.2 Classical Potentials

Real nanoscale systems have often a size that cannot allow for an accurate modeling with

ab initio calculations. In these case, simulations are made using classical potentials which

generally have also simple and physically appealing analytical expressions. The force-fields we

consider here are called "reactive" because they aim at representing situations with difference

bonding pattern and also chemical processes. This requirement is particularly intriguing for

carbon, given its high chemical versatility.

3.2.1 The "Reactive Bond-Order" family

The potential called Reactive Bond Order (REBO 107) is the "parent" of a class of potentials

whose key ingredient is indeed the bond-order, which was originally introduced in the context

of classical potentials by Tersoff. 108 The value of the bond-order changes with varying envi-

ronment in the attempt to simulate the change in the electronic structure of the quantum

system.

The REBO bond order is defined as

b REBO
i j =

1

2

h

bσ−πi j +bσ−πj i

i

+bπ,RC
i j +bπ,DH

i j .

where the separate terms represent different aspects of the chemical environment which

may reduce the attraction between the atom pair: bσ−πi j and bσ−πj i account for the angular

dependence and the coordination numbers; bπ,RC
i j accounts for radical character and bond

conjugation; bπ,DH
i j is responsible for the energy change associated with dihedral rotations.

The expression of the REBO potential energy reads

E REBO =
1

2

∑

i 6=j

[VR (ri j )−b i j VA (ri j )], (3.20)

where ri j is the distance between atom i and j and VR and VA are repulsive and attractive pair

potentials respectively:

VR (r ) = f c (r )
∑

n=1,3

Bn exp(−βn r ), VA (r ) = f c (r )(1+Q/r )A exp(−αr ),

where f c (r ) is a switching function varying smoothly from one to zero in the cutoff region

(between 1.7 and 2.0 Å for carbon). The constants A, Q , α, Bn and βn are fitted to a database

of mixed empirical and computed physical properties like relevant energies (e.g., atomization

18



3.2. Classical Potentials

energies, heat of formation), bond-lengths and force constants. In the case of carbon, 107 these

refer to crystal structures (diamond, graphite, simple-cubic and face-centered-cubic) and

hydrocarbons (ethyne, ethene, ethane, cyclohexane, benzene).

The Adaptive Intermolecular Reactive Bond Order (AIREBO 109) potential adds the Lennard-

Jones(LJ) interaction term as well as a torsional contribution to the REBO expression:

E AIREBO = E REBO+E LJ+E torsion.

In order to preserve the reactive nature of the REBO potential, the LJ-interaction between two

atoms i and j is only added in specific situations, defined on the basis of their distance (ri j ),

the bond strength (through a modified b i j ) and the bond network between them. In the case

of carbon and hydrogen only empirical data were used for the fitting of the LJ parameters: the

interlayer spacing and the c33 elastic constant of graphite for the C-C potential; the structure

and vaporization energy of liquid methane and ethane for the H-H potential, and simple

combination rules for the C-H interaction.

The torsional energy is given by

E torsion =
1

2

∑

l 6=k 6=j 6=i

f c (ri j ) f c (rj k ) f c (rk l )V torsion(ωi j k l ),

with

V torsion(ωi j k l ) = εi j k l

�

256

405
cos10

�ωi j k l

2

�

−
1

10

�

,

whereωi j k l is the torsional angle and ε is a constant related to the energy barriers for dihedral

rotations. For carbon-hydrogen systems, εi j k l is fitted so as to reproduce experimental bond

rotation barriers for ethane and propane as well as different conformers identified in liquid

butane.

Another potential of the REBO family, especially targeted to carbon aggregates in condensed

phases, is the so-called Long-Range Carbon Bond Order Potential of which two versions have

been applied over the years: LCBOPI 110 and LCBOPII. 111

The LCBOPI energy is written as

E LCBOPI =
1

2

∑

i 6=j

[Sdown(ri j )V SR
i j (ri j )+Sup

i j (ri j )V LR (ri j )],

where S are switching functions (with Sup(r ) = 1−Sdown(r )) designed to smoothly switch

between short- and long-ranged interaction terms V SR and V LR . The contribution from the

short-range interaction is similar to the REBO expression for the total energy (Eq. 3.20), namely
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for each pair

V SR (ri j ) =VR (ri j )−b i j VA (ri j ),

with

VA (r ) = A exp(−αr ), VR (r ) =
∑

n=1,2

Bn exp(−βn r ).

The bond order in LCBOPI is defined as

b LCBOPI
i j =

1

2

�

b̃ i j + b̃ j i

�

+ F conj,

where b̃ i j contains the angular dependence and F conj is a complicated function aimed at

describing conjugation effects.

The long-range term V LR (r ) is written as

V LR (r ) = θ (r0− r )V M
1 (r )+θ (r − r0)V M

2 (r ),

where θ is the step function and V M
k (r ) (k=1,2) are Morse potentials.

The parameters entering both short- and long-range potentials were fitted to reproduce the

values of several bulk and surface properties of graphite and diamond obtained with DFT-LDA

calculations.

The energy expression of the LCBOPII scheme is

E LCBOPII = E LCBOPI+
1

2

∑

i 6=j

Sup
m r,i j V m r

i j .

where the short-range potential of LCBOPI is modified and new medium-ranged interactions

are added (covering the range from 1.7 to 4 Å).

Changes in the former are introduced through variations in the definition of the bond-order,

b LCBOPII
i j =

1

2

h

b̃ ′i j + b̃ ′j i

i

+ F̃ conj+A i j +Ti j ,

where, in particular, F̃ conj is augmented to describe the occurrence of multiple fractional

bonds, and A i j and Ti j are added to account for the presence of occupied anti-bonding states

and torsional terms.

The inclusion of a middle-range coordination-dependent term is aimed at improving the per-

formance of the force-field in complex coordination situations and to describe bond-breaking

and bond-formation events. The reference database include dissociation curves for the triple,

double and single bonds in (CH3)C≡C(CH3), (CH3)2C=C(CH3)2 and (CH3)3C−C(CH3)3 respec-

tively, obtained with the GGA Becke-Perdew xc functional.
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3.2.2 ReaxFF

The Reactive Force-Field (ReaxFF) 112 corresponds to a general and comprehensive scheme,

originally developed for hydrocarbons, and later extended to systems of diverse types of bond-

ing, from covalent to metallic . 113–116 In particular, a specific parametrization was performed

to describe the catalytic formation of carbon nanotubes. 117

The ReaxFF potential energy is written as

E ReaxFF = Ebond+Eover+Eunder+E lp+Eval+Etor+EvdW+ECoulomb.

The different terms represent the bond energy, energy penalties due to over- and under-

coordination and the presence of lone-pairs, bond-angle explicit dependence and torsional

contribution, as well van-der-Waals and Coulomb interactions.

The concept of bond-order is crucial also in this approach and all interaction terms explicitly

depend on its value (b ReaxFF), apart from EvdW and ECoulomb. In particular, the bond energy is

written as

Ebond =−Db ReaxFF
i j exp

�

p
�

1− (b ReaxFF
i j )p

��

,

where D and p are constants. However its definition differs from the REBO and related

potentials and is given by

b ReaxFF
i j =b B

i j f 1(∆′i ,∆′j ) f 4(∆′i ,b B
i j ) f 5(∆′j ,b B

i j ),

where b B
i j is the bare bond order, further decomposed as

b B
i j =bσi j +bπi j +bππi j ,

where each of the b x
i j has the form of an exponential and the f i s (ranging from 0 to 1) introduce

corrections depending on the deviation (∆′i ) of the sum of all bond orders around the ith-atom

with respect to its nominal valency.

EvdW is approximated with a sum of Morse potentials and ECoulomb as a sum of modified

point-charge Coulomb interaction terms:

ECoulomb =
∑

i<j

C
qi qj

h

r 3
i j +γ

−3
i j

i1/3
,

where C , and γi j are constants and the atomic charges (qi ) are calculated using a charge

equilibration method.

For hydrocarbons, 112 parameters were adjusted to reproduce a database including empirical

heats of formation, bond lengths and bond angles, complemented by DFT-B3LYP calculations.

In the construction specific to simulate the catalytic formation of nanotubes, 117 an additional
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term was incorporated in the energy expression so as to help destabilize the carbon dimer

and the training set was extended to include results of DFT-B3LYP calculations on the relative

stabilities of different nanotubes.

3.3 Simulation of Rare Events

Rare events in chemical physics are processes which involve barriers significantly greater than

thermal energy fluctuations. Because the probability to find the system in a state decreases

exponentially with the energy of the state, the time needed to wait (in an MD simulation) for

a system spontaneously overcome such barriers increases exponentially. To speed up such

calculations a number of techniques exist and in this section I will describe the methods

applied in this thesis for this purpose.

3.3.1 Nudged Elastic Band

The Nudged Elastic Band (NEB) method is a method to compute the potential energy barrier

for activated processes by finding a transition state between an initial and final state. In the

NEB method a collection of N images, each with their own set of coordinates Ri , is used to

form a path between the initial and final state. An initial guess for such a path may for example

be obtained by linear interpolation of coordinates between the reactant and product.

R

P

τCI

τi

MEPτi

F⊥

F||

-∇V
FNEB

-∇V
FNEBCI FNEBi

Figure 3.1: Illustration of the Nudged Elastic Band method. Evaluation of the image forces on the
potential energy surface (gray background), forces from the potential energy surface use dashed lines
and NEB forces with solid lines. Circles represent images with the climbing image in green.

The force on each image then consists of two parts: (i) in the direction parallel to the path

(τ̂‖i ) a spring force is applied to keep the image separation constant and (ii) in the direction

perpendicular (τ̂⊥i ) to the path minus the force from the potential energy surface is applied
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so that the path converges to a minimum energy path with the highest point close to the

transition state between the two minima. Thus the total force in the NEB scheme on image

i ∈ {2, 3, . . . , N −1}may be expressed as

FNEB
i =−(∇V · τ̂⊥i )τ̂

⊥
i

︸ ︷︷ ︸

perpendicular

+−k i (|Ri −Ri−1| − |Ri+1−Ri |) τ̂‖i
︸ ︷︷ ︸

parallel

.

The first and last image are generally either kept fixed, or are otherwise subject to the forces

from the potential energy surface. It can easily be seen that the forces on all images are zero

exactly when (i) the path follows the steepest descent path so that∇V · τ̂⊥ = 0 and perpendic-

ular forces are zero, and (ii) the images are equally spaced so that the parallel forces are zero.

The direction τ̂‖, defining the path, can be defined from linear differences or neighbouring

image coordinates or more sophisticated approaches such as a spline interpolation between

different images. The spring constants k i may be further adjusted to increase the accuracy in

the description of the transition state. The NEB method is a local optimization, and therefore

does not necessarily converge to the global minimum energy transition state.

3.3.1.1 Climbing image

Because the replicas are equally spaced, the highest point does not necessary correspond to

the exact transition state. In order to overcome this problem, one of the replicas may act as a

climbing image (CI). 118 The CI does not experience the spring forces but instead is pushed in

the direction of the transition state as illustrated in Fig. 3.1. The forces on the CI are given by

FNEB
CI =−∇V +2 (∇V · τ̂) τ̂.

If the starting path is a NEB path without CI, switching on the CI will thus make this image

climb to the transition state.

3.3.2 Metadynamics and the Choice of Collective Variables

Energy barriers at finite temperature are more complicated to compute in general. To obtain a

well converged free energy landscape, an accurate sampling of the phase space is necessary.

For this purpose a variety of different sampling methods exist (see e.g. Ref.119). In this thesis

work I have used metadynamics 120 for this purpose, a dynamical non-equilibrium sampling

method. During a metadynamics run a bias is slowly added to the potential energy (making

this is a non-equilibrium method) which enables the system to overcome barriers. The added

bias potential consists of (small) Gaussian hills placed at regular time intervals, so that the

total history-dependent biased potential is given by

V bias(ζ) =V pot(ζ)+
∑

i<n

h exp

�

−
|ζ−ζi |2

2σ2

�

,
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where ζ is some collective variable able to distinguish reactants from products. The choice for

the h andσ depend on the studied system. Metadynamics can serve two different purposes:

(i) to explore possible rare events and predict inexpensive free energy pathways for the system

to evolve and (ii) to estimate free energy barriers between different states of the system.

3.3.3 Collective Variables

For metadynamics to work in practice, a set of collective variables (CVs) specific to the process

must be specified that are able to follow the evolution of the activated process from reactants

to products. These CVs must be chosen with care and their construction is a non-trivial

procedure in general. Some basic examples of CVs include for example the bond length

between two atoms to study a bond-breaking process, or the atom density to simulate a phase

transition. To assess the validity of the chosen collective variables and convergence of the free

energy barrier several criteria exist. First, several crossings of a barrier must be observed to

obtain convergence, where after some time parallel growth of the bias profile must observed.

Hysteresis would otherwise indicate a hidden slow degree of freedom not included in the

simulation. A more stringent test (commitor analysis) can be performed a posteriori, once

the relevant state basins (initial, intermediates and final) and transition states are identified

as is done in the work of Geissler et al. 121 This consists of generating many short MD-runs

starting from each sample in the putative transition state with random initial velocities. If the

chosen CVs are a good approximation of the true reaction coordinate, the trajectories from

each sample will fall into A or B with probability 1/2, if this is not the case then the chosen CVs

are inadequate for the system.

Path Collective Variables The Path Collective Variables (path-CVs 122) are a set of coordi-

nates to simulate the transition between two known metastable states (A and B) of the system,

similar in spirit to the NEB procedure. First an initial guess for path Rpath(τ) is constructed,

where τ goes from 0 to 1 as Rpath changes contiuously from the product to the react coordi-

nates. Then, given the atom coordinates R, two CVs are defined, one parallel (s ) and another

perpendicular to the path (z )

s (R) =

∫ 1

0
τexp

�

−λ(Rpath(τ)−R)2
�

dτ
∫ 1

0
exp

�

−λ(Rpath(τ)−R)2
�

dτ
, (3.21)

z (R) =
−1

λ
log

∫ 1

0

exp[−λ(Rpath(τ)−R)2]dτ. (3.22)

The perpendicular coordinate (z ) allows the simulation to sample not merely along the origi-

nally constructed path, but also to discover new paths passing through different transition

states in the vicinity of the original path, a significant advantage over the local optimization

nature of the NEB method. In practice, the parameter λ is chosen such that different states
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are numerically well separated, which is achieved if

λ〈Rpath(τ)−R(t ))2〉 ≈ 1.

Moreover the path is normally discretized so that the integrals are to be replaced by sums.

SPRINT The SPRINT (Social Permutation Invariant) coordinates 123 are a set of collective

variables. To each atom is assigned a scalar coordinate sensitive to the topology of surrounding

network of chemical bonds, which can be used to push topological change and explore

different chemical structures. The sprint-coordinates (S) are defined as the product of the

principal eigenvector vn and corresponding eigenvalue λn of the (n ×n) contact matrix D

which defines the connection of atoms i and j through a switching function going smoothly

from 1 to 0, where n is the number of atoms included for the calculation of S.

S=
p

N λn sorted(vn ) (3.23)

In order to perform molecular dynamics simulations not only the vector S, but also the forces

on each atom resulting from the bias potential Vbias(S) are needed. We therefore need to

compute the derivatives with respect to atomic coordinates x i . Using perturbation theory

one can show that a small change in the matrix D, δD, leads to a perturbative change in the

eigenvalues (δλ) and eigenvectors (δv ) given by

δλn = 〈vn |δD |vn 〉, (3.24)

δvn =
∑

α6=n

®

vα

�

�

�

�

δD

λn −λα

�

�

�

�

vn

¸

vα. (3.25)

The bias force on atom i = 1, . . . , N can then be computed using

Fi =−
d

d xi
Vbias =−

∑

α,β ,γ

∂ Vbias

∂ sα

∂ sα
∂ Dβγ

∂ Dβγ
∂ xi

(3.26)

The computational complexity of the forces from SPRINT coordinates (O (n 4)) can notice-

ably slow down MD simulations with more than ∼ 100 atoms. To reduce the complexity of

this calculation we have parallelized this code. Details on this implementation are given in

Appendix A.
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4 Chemisorption

In this chapter we study the chemisorption of different adducts on CNT sidewalls using DFT. The

adducts we consider include hydrogen and oxygen as well as species isoelectronic to oxygen: NH,

CH2, SiH2 and sulphur. Using large-scale DFT calculations we estimate the thermodynamic

stability of different chemisorption configurations and correlate different configurations to

(electronic and vibrational) spectral fingerprints. Our DFT results are further compared to

classical force-field predictions — AIREBO is used for hydrogen chemisorption and ReaxFF for

oxygen.

4.1 Hydrogen

4.1.1 Status of Simulations and Models

Several calculations have been published on the chemisorption of hydrogen on CNT surfaces.

Table 4.1 summarized the methods used in referenced work. The predicted binding energies

and structural characteristics are summarized in Table 4.2. Atomic hydrogen chemisorbs

on top of a carbon atom, creating an sp3-like hybridized carbon. 11,124 B3LYP calculations 11

on armchair CNTs have shown exohedral chemisorption to be favoured over endohedral by

∼ 1 eV for a 1-nm diameter CNT. Endohedral chemisorption moreover becomes increasingly

disfavoured at smaller diameters until it finally becomes unstable for CNTs with a diameter

smaller than ∼ 0.5 nm. Chemisorbed hydrogen atoms are thermodynamically expected to

favour clustering: going from one isolated chemisorbed H to 100 % coverage, binding en-

ergies are predicted to increase slightly. GGA and hybrid functionals were found to predict

comparable chemisorption structures and energetics in this case. 124 However intermediate

coverages have received little attention so far. Other DFT calculations 48,125,126 considered the

chemisorption of two hydrogen atoms from the dissociation of molecular hydrogen. Specif-

ically, calculations using the PW91 (GGA) functional 125 found binding energies in between

1.8 and 2.0 eV, with the most favourable structure having two H atoms on neighbouring sites

of a double bond along the (10,0)-CNT axis. GGA calculations in Ref. 48 found hydrogen

chemisorption to lead to a nodal structure in the differential electronic density where the

cusps correspond to energetically favourable chemisorption sites. The occurrence of double

peaks in the local DOS as a result of chemisorbed hydrogen pairs was further proposed as

explanation for the double-peak structures observed in STS measurements. However this
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Reference Functional Algorithm CNT [N]

[124]a LSDA AE (10,0) [40]
[124]b PBE 85 AE (10,0) [40]
[124]c HSE03 128 AE (10,0) [40]
[129] PW91 130 UPP 131 (10,0) [40]
[125] PW91 AE-DND (10,0) [80]

Table 4.1: Methods and models used in various referenced papers. CNT models are H-terminated with
the exception of Ref.124 which uses PBCs. Note: DND=double-numerical-depolarised basis functions;
UPP=ultrasoft pseudopotentials.

Ref. n Ch E B (eV) d(C–H) (Å) d(C–C) (Å)

[124]a 1 (10,0) 1.9 1.119 1.511, 1.484
[124]b 1 (10,0) 1.5 1.116 1.534, 1.502
[124]c 1 (10,0) 1.5 1.085 1.522, 1.493
[125] 2 (10,0) 2.0 1.10 1.56, 1.52
[129] 1 (10,0) 2.7 1.087 1.556, 1.572

Table 4.2: Literature results: number of chemisorbed H atoms (n), tube chirality (Ch ), binding energy
(E B ), and typical distances (d ). For n=2 only the most stable configurations are reported here.

analysis did not refer to the most stable configuration.

Hydrogenation of SWNTs was also studied with molecular dynamics and Monte-Carlo sim-

ulations using the AIREBO force-field 127 over a range of concentrations up to full coverage.

The authors concluded that hydrogen atoms and also non–hydrogenated sites tend to cluster

leading to a rippled surface morphology. However no clear evidence was brought up and

the binding energy found to monotonically decrease up to full coverage in parallel with the

behaviour for a random distribution.

4.1.2 Clustering on the (10,0)–CNT: Structures, Energetics and Mechanisms

We have studied hydrogen chemisorption on the (10,0)–CNT sidewall 132 using a CNT model

containing 240 C atoms of which the outermost are H2 saturation. We verified selected

calculations using 360 C atoms in a periodic orthorhombic cell of length (38.40 Å) and a

perpendicular box length of 21 Å. Our main DFT results refer to the PBE xc functional. We

investigate the effect of this approximation by performing several calculations with another

GGA (BLYP) and hybrid functional (PBE0). We compare our ab initio results to predictions

from the AIREBO forcefield. 109 Details of the methods are given in Appendix C.

Fig. 4.1 shows the system configurations that we considered. Binding energies and geometric

characteristics for the lowest energy configurations (series (a)) are given in Table 4.3. In

good agreement with previous work, chemisorption of a single H atom induces a strong

rehybridization of the carbon orbitals leading an sp3–like hybridized structure. Geometrically
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Figure 4.1: CNT:nH, all configurations considered here for the systems with n=1 (side view) and n=2–8
(top view). Note that in 8(d), both exohedrally and endohedrally chemisorbed hydrogens are present.

this is characterised by an increase in the C pyramidalization angle 133 from 5◦ to 17◦. The

binding energy, defined as E B (n) = (E (CNT)− E (CNT+nH))/n + E (H), shows a monotonic

increase with n and an energy gain for n = 8 of more than 0.7 eV, indicating a strong tendency

for the H atoms to cluster on the CNT surface rather than remaining sparse. In Tables 4.4 and

4.5 the binding energies, deformation energy (ED , defined as the energy difference between

the pristine CNT and the carbon lattice in the CNT:nH configuration) and the confinement

energy gain (EC = E B (n)− E B (1)) are given for the various configurations considered and

compared to calculations with the AIREBO potential. Two general observations can be made

on the basis of these results. First, results from other xc functionals (specifically BLYP) leave

our conclusion on clustering unmodified. Calculations with the PBC model show slightly

lower binding energies (differences are less than 0.1 eV). These differences can be understood

from the artificial strain due to periodicity. Second, the classical potential (AIREBO) fails to

reproduce both binding and deformation energies accurately. Most importantly, AIREBO does

not predict H atoms to cluster on the surface (EC < 0).

To understand why these specific pattern are favoured it is instructive to look at changes in

charge density as shown by the differential Mulliken population (∆MP, between the pristine

and hydrogenated CNT) in Fig. 4.2. The covalent adsorption of one H atom (top panel) by the

formation of a C–Hσ–bond leads to a negative differential charge (-0.175) on the C attached

to H. This perturbs the π–system and leads to a charge wave around the defect. An excess

charge density (∆MP=0.03) accumulates on the C atom in the ortho–position (leading to

2(a)) while the para–position (2(b)) is deprived of charge (∆MP=-0.02). This explains why

the 2(a) configuration is favoured for subsequent attack by H chemisorption. Moreover the
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n(conf) E B d(C–H) d(C–C?x ) d(C–C?) α(C?CH) β (C?CC?) θ

1 1.64 1.120 1.501 1.522 108; 106 109; 114 17.0
2(a) 2.13 1.109 1.558 1.526 106 106; 116 16.0
3(a) 2.13 1.113 1.556; 1.500 1.525 106.5 106; 115 16.5
4(a) 2.28 1.109 1.560 1.526 107 106; 116 16.6
5(a) 2.235 1.112 1.550; 1.493 1.526 107 105; 116 16.7
5(b) 2.22 1.110 1.559; 1.498 1.516; 1.583 104; 106 113; 114 14.8
6(a) 2.34 1.109 1.556 1.527 107 104; 116 16.7
7(a) 2.27 1.111 1.557; 1.498 1.527 107 104; 116 16.8
8(a) 2.385 1.109 1.555 1.527 107 103; 116 16.8

Table 4.3: Binding energies (E B in eV/H), bond lengths (d in Å), angles (α,β in deg.) and pyramidal-
ization angles (θ in deg.) for the lowest energy configurations in Fig. 4.1. For n > 2 averages are given
when values are close. C indicate the carbon atoms bound to H and C? only to carbon.

n (conf)

1 2(a) 2(b) 3(a) (3b) 3(c) 4(a) 4(b) 4(c) 4(d)

E B (QM) 1.64 2.13 1.85 2.13 2.05 1.73 2.28 2.23 1.88 1.85
[PBC] 1.56 1.97 1.90 1.99 1.97 2.11 2.07
[BLYP] 1.65 2.16 1.87 2.14 2.09 2.29 2.26

ED (QM) -0.76 -0.52 -0.76 -0.84 -0.842 -0.83 -0.86 -0.72 -0.86 -0.73
EC (QM) 0.485 0.21 0.485 0.41 0.09 0.64 0.59 0.24 0.21
[PBC] 0.41 0.34 0.43 0.41 0.55 0.51
[BLYP] 0.51 0.23 0.49 0.44 0.64 0.62

E B (A) 3.13 2.82 3.12 2.92 2.82 2.91 2.82 2.79 2.40 3.13
ED (A) -1.23 -1.08 -1.25 -1.13 -1.06 -1.22 -1.06 -1.05 -1.12 -1.26
EC (A) -0.31 -0.01 -0.21 -0.31 -0.22 -0.31 -0.33 -0.73 0.00

Table 4.4: Chemisorption configurations for n=1–4 : binding energies (E B ) per H atom and correspond-
ing loss due to deformation (ED ) and "confinement" gain (EC ) for DFT–PBE (QM) and AIREBO (A).
DFT–PBE results are further compared to our PBC model and the BLYP functional.

mechanical deformation energy (ED ) is 0.24 eV smaller in the 2(a) configuration than for 2(b)

which further favours the 2(a) site. The PBE energy difference of 0.3 eV between 2(a) and

2(b) remains unchanged when considering the PBE0 and M06 functionals. This result agrees

with previous GGA calculations 23,125,126 but the mechanism and sizeable difference were not

explained before.

4.1.3 Electronic and Vibrational Signatures

In Refs.23 doublets were found in the experimental DOS which were associated with hydrogen

dimers by calculations on several high–energy isomers of CNT-2H. The ground state structure

2(a) was not considered and 2(b) was not found to induce any perturbations in the gap.

Our calculations with PBCs show an interesting scenario. The gap of the pristine CNT with

PBE is 0.78 eV. When a single hydrogen is chemisorbed, it creates an impurity state 0.2 eV

above the highest occupied molecular orbital level (HOMO) of the pristine CNT . If hydrogen
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n (conf)

5(a) 5(b) 5(c) 6(a) 6(b) 6(c) 7(a) 7(b) 8(a) 8(b) 8(c) 8(d)

E B (QM) 2.22 2.235 2.22 2.34 2.31 2.26 2.27 2.29 2.385 2.35 2.33 1.92
[BLYP] 2.22 2.24 2.35 2.33 2.28 2.31 2.39 2.37

ED (QM) -0.93 -0.65 -0.68 -1.18 -0.57 -0.59 -1.08 -0.97 -0.63 -0.89 -0.89 -1.68
EC (QM) 0.58 0.59 0.58 0.70 0.67 0.62 0.63 0.65 0.74 0.71 0.69 0.28
[BLYP] 0.57 0.59 0.71 0.68 0.63 0.66 0.74 0.72

E B (A) 2.88 2.78 2.82 2.82 2.77 2.81 2.86 2.77 2.82 2.76 2.80 2.60
ED (A) -1.09 -1.03 -1.04 -1.05 -1.01 -1.03 -1.08 -1.01 -1.04 -0.99 -1.04 -1.41
EC (A) -0.25 0.35 -0.31 -0.31 -0.36 -0.32 -0.27 -0.35 -0.31 -0.37 -0.33 -0.33

Table 4.5: Chemisorption configurations for n=5–8 : notation as in Table 4.4.

Figure 4.2: ∆MP for 1, 2(a) and 2(b). Red (blue) indicates positive (negative) charge.

atoms were sparsely chemisorbed on the CNT surface, we would thus expect a dispersionless

band at this energy. In 2(a) a doublet is found in the DOS which reduces the band gap by 0.3

eV. On the contrary, in 2(b) the gap remains that of the pristine tube (within 0.02 eV). The

corresponding states are shown in Fig. 4.3. For (2a) the HOMO is simply that of the bare tube,

whereas the lowest unoccupied molecular orbital (LUMO) corresponds to the impurity state

and is more localized around the chemisorption region. In 2(b) occupied impurity levels are

found 0.6 and 0.2 eV below the HOMO and in the unoccupied states at 1.1 eV above the HOMO.

This 1.3 eV splitting corresponds well with the 1.4 eV calculated in Ref.23.

The gap is further reduced for configurations with four hydrogen atoms to 0.3 eV for both

the 4(a) and 4(b) configuration. The HOMO (Fig. 4.4A for 4(a)) is delocalized and the LUMO

(Fig. 4.4B and C for 4(a) and 4(b) respectively) has a larger amplitude near the chemisorption

region. At 0.6 eV below the HOMO, impurity levels are again found in both configurations. An

example of these impurity levels is shown for 4(b) in Fig. 4.4D. Upon increasing the number

of chemisorbed hydrogen atoms further to 6H and 8H, the gap is reduced to 0.2 and 0.02 eV

respectively, with similar characteristic levels as for the 4(a) isomer.
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Figure 4.3: Wavefunction isosurface of the HOMO (A, B), LUMO (C, D) and occupied impurity state (E,
F) in 2(a) (left) and 2(b) (right).

Despite that DFT–PBE calculations are known to systematically underestimate the size of

the band gap, we can conclude that the gap tends to decrease with increasing number of

chemisorbed hydrogen atoms by simultaneously destabilizing the HOMO levels and stabilizing

the LUMOs. This will eventually lead to closing of the gap at some critical number/concentra-

tion n c (> 8).

Finally we computed the infrared active spectrum in the harmonic approximation. We

used the CH2 terminated CNT model to enable comparison with experimental spectra on

CNT systems 20,22 that contain not only CH units but also hydrogen atoms bonded to under-

coordinated carbons at defect sites and at the ends of suspended CNTs. The infrared spectrum

of 4(a) is shown in Fig. 4.5. To understand the effect of the CH2–groups at the end we projected

out their contributions.

The CH stretching modes are easily detectable as they separated by a gap of about 1200

cm−1 from the C–only modes which end near 1600 cm−1 in agreement with typical IR CNT

spectra. 134 This part of the spectrum, shown in detail in the inset of Fig. 4.5, is bimodal. The

first peak, at 2780 cm−1, corresponds to symmetric stretching of the CH2 groups. The second

peak, at 2890 cm−1, comprises both the asymmetric CH2 stretching modes as well as the four

CH stretching modes. We find the oscillator strengths corresponding to symmetric ( f s ) and

asymmetric ( f a ) CH2 stretching and CH stretching ( f 1) in the ratio f s : f a : f 1 = 12 : 4 : 1. Our

observations agree with the experimental findings of Ref. 22 for both the assignment and

relative intensities of these two peaks. PBE however predicts too soft modes as usual: in Ref.22

the CH band extends from 2750 to 3000 cm−1 with peaks centred at 2850 and 2920 cm−1. Also in
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Figure 4.4: Wavefunction isosurface of the HOMO (A) and LUMO (B) for 4(a), and LUMO (C) and
HOMO-2 (D) for 4(b).

other measurements 20 the CH stretching modes were assigned to a peak at 2924 cm−1. As long

as CH2 moieties are dominantly present, the overlap of the CH2 and CH peaks complicates the

use of IR spectra for the characterization of hydrogenated CNTs. However, a careful analysis of

the fine structure of these two peaks under controlled hydrogenation may allow to distinguish

the two groups.

The AIREBO potential is known 1 too predict a more extended CNT vibrational spectrum. In

our model, calculated CC stretching frequencies extend to above 1900 cm−1. The AIREBO

potential also predict a double peak associated with symmetric and asymmetric stretching of

the CH2 moieties, at 2870 and 2935 cm−1 respectively. However the CH stretching overlaps the

(softer) symmetric stretching mode, contrary to our DFT results. As a result AIREBO would

predict a relative change of intensities inverted with respect our DFT–PBE findings upon

hydrogenation.

1See e.g. Refs.127,135. Despite the claimed agreement with DFT calculations, the reported findings are fully in
agreement with
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Figure 4.5: Infrared spectrum for 4(a).

4.1.4 Conclusions

Our DFT–PBE results clarify the tendency for hydrogen atoms to cluster on the CNT sidewall.

Preferential configurations are moreover identified which can be rationalized by examining

the charge redistribution and mechanical strain resulting from chemisorption. These trends

are different from those predicted for graphene where only low concentrations are predicted

stable. 136 The AIREBO potential fails to capture these differences due to curvature and instead

predicts sparsely chemisorbed hydrogen.

We have shown that the electronic states near the gap are strongly modified upon hydrogena-

tion and tends to close gap for the considered coverages. At full coverage however the system

is nevertheless expected to be semiconducting 137 due the sp3–like nature of this system. This

can be expected to lead to non–trivial transient response behaviour in CNT based hydrogen

sensors. Our DFT–PBE calculation of the CNT:4H infrared spectrum give further clear indica-

tions which may aid in the characterization of hydrogenated CNTs and the differentiate CH

and CH2 groups.
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4.2 Oxygen and Other [2+1] Cycloadditions

This section summarizes our published work 28,138 on the chemisorption of oxygen and isoelec-

tronic species on SWNT surfaces. After a brief summary of previous calculations we start by

considering the case of a single O on the (10,0)-CNT. We then extend our results to (i) determine

chemisorption patterns and dynamics on CNTs of different chiralities, (ii) identify fingerprints of

adducts in electronic spectra, (iii) and to assess the validity of geometrical descriptors to predict

chemisorption products. Our study is further extended to isoelectronic species, specifically

sulphur. Finally, we repeat the CNT:O calculations with ReaxFF 117 to compare predictions of

this force-field to our DFT results.

4.2.1 Status of Simulations and Models

Carbon chemistry suggests two most probable configurations for an oxygen on a graphitic

surface, namely either forming an ether (ET) or an epoxide (EP). In the ET configuration

the C-C bond on breaks, whereas in the EP it stays as shown in Fig. 4.6. It is however not

a priori obvious which one is favored on the sidewall of a given nanotube. Several works

have estimated the energy difference between the two adsorbant configurations and aimed

to determine criteria for the formation of one or the other. The methods and results of these

referenced works are reported in Tables 4.6 and 4.7. However, given the small size of the

atomistic models adopted to represent the nanotube, none of these calculations are adequate

to assess the energetics of the low-coverage situations.

Reference Functional Algorithm CNT [N]

[139] PW91 UPP 140 (3,3) [24], (4,2) [56], (5,0) [20]
[141]a PBE AE (10,0) [40], (8,4) [112]
[141]b HSE03 AE (10,0) [40], (8,4) [112]
[142] B3LYP AE (4,4) [56]
[143] B3LYP AE (5,0) [40]
[144] PW91 UPP 131 (8,0) [32]

Table 4.6: Methods and models used in various referenced papers. Calculations use periodic boundary
conditions (PBCs) with the exception of H-terminated models in Ref.s 142 and 143. CNT=pristine
nanotube chirality; N=the number of carbon atoms, AE=all-electron, UPP=ultrasoft pseudopotentials.

The effect of curvature on the CNT surface reactivity has been investigated 145–148 for the

chemisorption of O and isoelectronic species NH and CH2. DFT-B3LYP calculations pre-

dicted an inverse proportionality of the binding energy to the CNT diameter for armchair

CNTs 145 for these adducts. A limiting CNT diameter (of 1.5 nm 146 – 2.4 nm 147) was moreover

identified above which no bond cleavage takes place and thus oxygen can form only EPs.

These results have been generalized to CNTs of different chiralities using the concept of local

curvature. 148,149 The existence of a limiting curvature dependence for bond cleavage has also

led to the proposal of switchable CNT-devices. 150
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Ref. CNT ref. O E ET
B E EP

B ∆E

[139] (3,3) in O2 1.97 0.10 1.87
[139] (4,2) in O2 1.77 0.38 1.39
[139] (5,0) in O2 1.06 0.94 0.12
[141]a (8,4) singlet O 6.54 5.69/5.64 0.85/0.90
[141]b (8,4) singlet O 6.04 5.10/5.05 0.96/1.01
[141]a (10,0) singlet O 6.25 6.22 0.03
[141]b (10,0) singlet O 5.73 5.74 -0.01
[142] (4,4) triplet O 4.19 2.72 1.47
[143] (5,0) triplet O 2.95 2.82 0.13
[144] (8,0) triplet O 3.18 3.16 0.02

Table 4.7: Binding energies for SWNT:O. The oxygen reference system (E(O)) is used for the binding
energy E B=E(CNT:O)-E(CNT)-E(O);∆E=E B (ET)-E B (EP). Energies are in eV. In our (PBE) calculations
singlet atomic O is 2.23 eV higher in energy than triplet O, and the binding energy of O in (triplet) O2

with respect to triplet atomic O is 2.81 eV.

For sulfur only a limited number of calculations can be found in literature thus far, 151,152

despite its recognized role in the growth of CNTs. 153 Specifically, DFT-PBE calculations 152

found S to chemisorb with a binding energy of 1.4 eV on the (10,0)-CNT. The binding energy

was further found to increase by 0.4 eV if S atoms are chemisorbed in a line along the CNT-axis.

4.2.2 ET versus EP: 1O on the (10,0)-CNT

We first consider the chemisorption of a single O atom on the (10,0)-CNT. Two types of bonds

present on the (10,0)-CNT, an armchair- (A) and a zigzag-bond (Z) (see the insets of Fig. 4.6).

When O atoms chemisorbs on the A bond it preserves it, whereas chemisorption on the Z

bond breaks the underlying bond. The difference in bonding is clearly demonstrated by the

electron localization function (ELF), which shows the absence of a bond between the carbon

neighbours of oxygen for the ET.

Figure 4.6: ELF (at isovalue 0.8) showing the broken bond in the ET and the bond that remains in the
EP. Insets show the (10,0)-CNT carbon network with the bonds on which chemisorption takes place.
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Figure 4.7: Convergence of the energy difference (∆E = E EP−E ET) as function of the number of unit
cells (40 C atoms each) for periodic (PBC) and H-terminated models.

Our DFT-PBE calculations predict that the ET is thermodynamically favoured over the EP on

the (10,0)-CNT by∆E=0.4 eV. Fig. 4.7 shows that in order to obtain a converged value for∆E

a cell size containing at least 200 atoms (N = 5) is needed. The smallest supercell, containing

40 C atoms (N = 1), was used in Ref.141 where a negligible energy difference of∆E = 0.02 eV

was found. Indeed, our calculations give a similar value2 for N = 1. However it is important to

realize that this calculation represents a high density linear row of oxygen atoms, rather than

sparsely chemisorption. The same can be concluded for other calculations such as in Ref.142,

where DFT-PW 130 calculations of a 64 C atom model of the (8,0)-CNT lead to a negligible∆E

of 0.02 eV.

We examined both periodic and hydrogen saturated boundary conditions. As expected both

models converge to the same energy difference (∆E = 0.4 eV), however the model sizes needed

in the H-terminated model are significantly larger. The slow convergence of H-terminated

model can be understood from the perturbation caused by the oxygen chemisorption on the

electronic rather than the geometric structure. Indeed the binding energy of the EP converges

slower than that of the ET, despite that the ET induces a much longer ranged strain field on

the CNT structure as shown in Fig. 4.8.

The influence of the exchange-correlation (xc) functional in the prediction of the relative

stability of ET versus EP is found small, BLYP and PBE0 calculations give∆E =0.5 and 0.4 eV

respectively. Moreover, the PBE0 geometry optimizations lead to only minor changes from the

PBE results: the CNT diameter is reduced by less than 1 % and binding energies are increased

by ∼ 2%. This agrees with the negligible differences noted between PBE and the hybrid HSE03

functional in Ref.141.

2We find ∆E = −0.04 eV for N = 1. These small differences (< 0.1 eV) can easily be ascribed to differences
in computational set-up. Most importantly in Ref. 141 a localized all-electron basis set is used, whereas our
calculations use a plane wave basis set with pseudopotentials.
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Figure 4.8: (10,0)-CNT:O. Displacement of the C atoms after O chemisorption.

4.2.3 CNT:1O Kohn-Sham Spectra and STS

The Kohn-Sham (KS) density of states (DOS) shown in Fig. 4.9(a) unambiguously reflect the

difference between one oxygen as ET or EP adsorbent. The pristine (10,0)-CNT has a PBE

bandgap of 0.76 eV. The ET does not significantly alter the π-system and therefore results

only in minor changes near the band edges. On the contrary, the EP strongly affects the

π-bonding network and induces a new localized impurity state in the gap. This (unoccupied)

impurity state, shown in Fig. 4.9(b), is a combination of the oxygen lone pair with the CNT

orbitals. In combination with the modifications near the occupied band edge this leads

to a ∼ 0.3 eV reduction of the gap. Our PBE0 calculations confirm this picture. As usual

PBE0 predicts a significantly larger gap for the pristine CNT (1.4 eV), but otherwise the result

remains unchanged: a similar impurity state is found near the pristine LUMO resulting in a

gap reduction of 0.3 eV when oxygen is chemisorbed as EP.

In Ref.141 both the ET and EP were predicted to lead to a strong gap reduction of 0.35 and 0.20

eV respectively. Our calculations for the small (N=1) cell indeed predict similar gap reductions

of 0.4 and 0.25 respectively. The discrepancy with our results presented above can be ascribed

to inadequacies of the N=1 CNT model and can be compared neither to our N=9 CNT model,

nor to the experimental data presented together with our calculations in Ref. 28 Indeed the gap

converges slowly with N as shown in Table 4.8.

In the scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS)

measurements presented together with our computational results in Ref.28 a large number

of defect sites induced by atomic oxygen on semiconducting and metallic SWNTs were con-

sidered by the exposure of purified HiPco SWNTs with a defect density below 1 defect per

200 nm to atomic oxygen from a catalytic gas cracker. The oxygen defects are characterised
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Figure 4.9: (10,0)-CNT:O KS density of states (a) near the band edges. The impurity state (b) is at ∼0.2
eV from the pristine LUMO in the EP.

N E g (CNT) E g (O-ET) E g (O-EP)

1 (Ref.141) 0.76 0.41 0.56
1 0.78 0.37 0.53
6 0.77 0.73 0.46
9 0.75 0.73 0.43

Table 4.8: (10,0)-CNT:O bandgap (E g in eV) convergence as function of N (N=1 contains 40 C atoms).
In each case k-point convergence is ensured and the transition is a direct gap at Γ.

by hillock type features in the STM topography with typical heights ranging from 0.5 to 2 Å.

The STS measured electronic signatures in an energy window of ± 1 eV around the midgap

(Fermi) level exhibit significant variations. Clear defect states are frequently observed in the

gap of semiconducting tubes above the midgap position. Fig. 4.10 shows an example of such a

defect for a sample after exposure to atomic oxygen for four minutes, at a chamber pressure

of 1.2·10−7 mbar and 40 W heating power of the gas cracker. STM (Fig. 4.10(a)) reveals the

atomically resolved structure of a SWNT close to an oxygen induced defect whose image has a

spatial extent of 1.3 nm fwhm (full-width at half maximum) in the topography and a height of

0.85 Å. The corresponding STS map is shown in Fig. 4.10(b), away from the defect. The typical

density of states (DOS) of a semiconducting SWNT can be recognised, with an E11 gap of

1.1 ± 0.1 eV and the valence band edge of the E22 gap at -0.4 eV. The chirality of this nanotube,

estimated from E11 and a chiral angle θ = 19±2◦, is either (8,3) or (7,3). At the defect position

a state is identified at 0.3 eV below the conduction band edge of the pristine nanotube and

is strongly localized in energy (80 meV fwhm). These characteristics correspond well to the

impurity levels that our calculations identified as fingerprints of the EP sites.

Our theoretical findings clearly show that ETs are thermodynamically favoured but that STS

cannot distinguish them from the pristine CNT regions. To understand why EPs are detected

in STS experiments, we computed the energy barrier that an oxygen should overcome to go

from EP on the armchair bond to ET on the zigzag bond. Our NEB calculation gives a PBE
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barrier of 0.8 eV for this process, which shows that an oxygen atom could indeed be kinetically

trapped in this metastable state at low temperatures. The functional dependence on this result

is small: BLYP gives a barrier of 0.6 and PBE0 (at PBE geometries) a barrier of 0.7 eV.

Figure 4.10: STS-map of a semiconducting CNT showing an impurity state assigned to atomic O. The
image is composed of 50 individual dI/dV spectra with a 1.5 Å spacing.

Finally, we remark that midgap levels in the STS could also be associated with the presence of

vacancies. DFT calculations 43 have predicted that vacancies, both single and double, would

generate characteristic states near the Fermi level. These results were used to interpret STS

data on SWNTs subjected to Ar+ ions bombardment. Our calculations of single and double

vacancies on the (N=9) (10,0)-CNT confirm these findings. However, vacancies give rise to

strong electron scattering, 154 which was not observed in the experiments discussed here.

The low concentration as well as low kinetic energy of the impinging oxygen atoms (∼ 0.1

eV) further support our conviction that the probability of finding generated vacancies was

negligible.

4.2.4 Dependence on Concentration and Chirality

To establish the dependence of our results on the CNT diameter we considered a range of

zigzag nanotubes with diameters (D) from 0.6 to 1.5 nm, i.e. (n ,0)-CNTs with n from 8 to

19. We also considered the (8,4)-, (6,5)- and (12,10)-CNT (chiral angles of 19◦ and 27◦) as

representative of other chiralities. All chiralities considered correspond to semiconducting

tubes. Our CNT models contain ∼300 to ∼700 atoms in an orthorhombic cell (a ,b ,b )with a

between 34 and 41 Å and b between 21 and 30 Å. For zigzag CNTs this corresponds to the N=9

model for the (10,0)-CNT of the preceding section. The diameters of SWNTs obtained from

high pressure CO disproportionation (HiPco) range from 0.8 to 1.2 nm. 155 Our considered

range of CNT diameters exceed this 1.2 nm (extending to ∼1.5 nm) to attempt comparison

with graphene.

To investigate the dependence on concentration, we consider adsorbate configurations con-

sisting of n=1 to 4 oxygen atoms on the (10,0)-CNT. We find that with increasing CNT length,

from 240 to 360 to 480 C atoms, the binding energy of four oxygen atoms increasing from
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2.99 to 3.10 to 3.11 eV. Therefore our calculations on the (10,0)-CNT use a 360-atom unit cell.

Binding energies E B are given per adduct and relative to the atomic (triplet) ground state

of oxygen. Deformation energies ED are total energy differences of the deformed carbon

structure with respect the pristine CNT. We use the aggregation (or confinement) energy EC ,

defined as the difference in E B with respect to the ET configuration, to quantify the tendency

to cluster.

On all (n , 0) tubes of diameter D<1.2 nm (n < 16) we find that an ET forms on the zigzag-bond

(Z) and that this is thermodynamically favoured over the EP on the armchair bond (A) as

shown in Fig. 4.11(a). Also on the (8,4) and (6,5)-CNT bond cleavage takes place on one bond

only. With increasing diameter the surface flattens, up to the point where the zigzag-bond

can no longer sustain the cleavage for D > 1.2 nm. Indeed, in the limiting case of graphene

only the EP is stable. 148,156,157 Fig. 4.11(b) shows the variation of the two C-C bond lengths

relative to the pristine tube. As long as significant difference exists between the two bonds,

the most stable site remains the Z-bond, despite that it generates a more sizeable (localized)

strain on the sidewall (Fig. B.1). In the (17,0) the corresponding deformation energy ED is

0.15 eV higher than with oxygen on the A-bond, and the binding energy EB is 0.2 eV higher.

These values should be compared to an ED difference of 2.4 eV in the (10,0)-CNT where the

Z-bond is broken and the ET is more strongly bound than the EP by 0.4 eV.

Figure 4.11: (n,0)-CNTs. Variation of (a) the oxygen binding energy and (b) C-C bond-length on Z
(blue) and A (red) bonds as a function of n. Circles and triangles refer to ETs and EPs respectively.

Fig. 4.12 illustrates the low-energy oxygen configurations on a (10,0)-CNT with between one

and four oxygen atoms. Other configurations at higher energy are shown in Fig. B.2. In each of

the configurations shown in Fig. 4.12 for n=2, 3 and 4, the binding energy (EB ) per oxygen is

higher than for sparsely chemisorbed ETs (n=1). Oxygen atoms thus show a clear tendency

to cluster in these configuration, especially when aligned as in 4a. If we consider aggregates

consisting of only EPs (Fig. B.2), also EPs tend to cluster, however the resulting binding energies

remain below that of sparse ETs. On the (8,4)-CNT, we considered n=1 and 2 (Fig. 4.13), and

again we find two aligned ETs to correspond to the lowest-energy structure 2a while two EPs
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Figure 4.12: (10,0)-CNT:nO (n=1–4). Structures of chemisorbed oxygen for n=1 and for all cases with
aggregation energy Ec >0. Binding energies (in eV) refer to triplet O. A small triangle indicates an EP.

(see e.g. 2f in Fig. B.3) are highly disfavoured.

BLYP binding energies (in Fig.s 4.12, 4.13, 4.14, 4.15, B.2 and B.3) are lower than the PBE values

by ∼15%. However, the two GGA functionals are in close agreement for the prediction of the

clustering energy and energetic ranking of configurations. Small differences are found in the

predicted geometric characteristics (see Tables B.2, B.3 and B.4). PBE0 calculations on the PBE

geometries resulted in a decrease of the binding energies of 0.4–0.5 eV.

On tubes of diameter larger than that of the (10,0) and (8,4) (D=0.8nm) ETs remain dominant.

Considering only one oxygen, we would predict that for D > 1.2 nm no bond opening is allowed

and only EPs are found. However, with increasing concentration the EPs are destabilized with

respect to ETs and clustering may lead to bond cleavage. In Fig. 4.15 stable configurations

on the (17,0) are shown. The lowest energy configuration is again a linear chain of ETs. The

associated aggregation energy is moreover to be higher than in the case of the (10,0). Fig. 4.16

shows the pattern of atom displacements in the adsorbate with four aligned ETs 4a and in one

with two aligned ETs and two EPs 4e. The presence of EPs in 4e decreases the energy loss ED

due to structural deformation by 1.4 eV relative to 4a. In spite of it, in analogy with the n=1

case on CNTs of higher curvature, the electronic contribution dominates the binding energy

and here favours 4a by 0.2 eV. For structural characteristics see Table B.5.

It should be emphasized that our findings regarding the thermodynamic preference for ETs is

in agreement with NEXAFS and infrared spectroscopy measurements 26 on oxidized SWNTs
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Figure 4.13: (8,4)-CNT:nO. Structures of chemisorbed oxygen for n=1 and for all cases with aggregation
energy Ec >0. Notation as in Fig. 4.12.

Figure 4.14: (6,5)-CNT:nO. Structures of chemisorbed oxygen for n=1. Notation as in Fig. 4.12.

that revealed a higher relative stability for ETs.

The nanotubes with diameters exceeding 1.2 nm should be relevant to a discussion of limiting

case of a flat graphitic surface (graphene). Similar to our calculations on the (17,0)-CNT,

the most stable structures for n=2 and n=3 on graphene also consist of ETs, 157 but having

a remarkably different energetic ranking of configurations. Such predictions on graphene

are however strongly dependent on the employed graphene model. 148,156,157 For example,

calculations on a C54H12 as "a piece of graphene" 148 predict that two aligned ETs (2a in

Fig. 4.12) are the preferred configuration and that in particular this is 0.05 eV lower than

the two EPs as in 2e in Fig. B.2. On the contrary, calculations using a periodically extended

surface 157 predict two NNN EPs and three ETs on the same hexagonal ring (2e and 3e of

Fig. B.2 and 4.12 respectively) to be the thermodynamically favoured with an energy gain

of 0.2 eV and 0.6 eV compared to the aligned ET pair. As mentioned above, in the case of

a (17,0)-CNT, we again find the aligned ETs as ground state configuration for n=2, 3 and 4.

Moreover, the EP pair in 2e is even higher in energy than two isolated oxygen atoms and the

3e is slightly higher than the ground state (by less than 0.1 eV). Given that Ref.157 uses the

same PBE functional and a computational scheme very similar to ours, we could conclude

that there is still a qualitative difference in the reactivity to oxygen of graphene and nanotubes

of diameter 1.3nm. Experiments on SiC-supported graphene 158 seem to suggest a uniform

oxygen distribution and "relatively long-range perturbation of the surface electronic structure

around the chemisorbed oxygen" which, as we have shown for O on the (10,0)-CNT and will

show in more generality below, is characteristic of EPs only.
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Figure 4.15: (17,0)-CNT:nO (n=1–4). Structures of chemisorbed oxygen for n=1 and for selected
configurations with aggregation energy Ec >0. Notation as in Fig. 4.12.

4.2.5 Kinetic Barriers: Trapping and Hopping

In the case of a single oxygen (n=1 on the (10,0)-CNT) we have remarked that the adsorbent

could be easily trapped in the (metastable) EP configuration because of the high energetic

barrier to diffuse to the nearest-neighbour (NN) zigzag site. On the (10,0) tube, the (PBE)

energy barrier is as high as 0.8 eV. On passing to the (14,0)-CNT, despite a significant decrease

in ∆E (the EP-ET energy difference) from 0.4 to 0.2 eV, we find that the barrier increases

by 0.1 eV. The transition state (TS) for the hopping barriers corresponds in both cases to a

configuration where the oxygen is on top of a carbon atom, with both Z and A bond-lengths of

∼1.5 Å.

Next we considered how the oxygen hopping barrier is modified in the presence of other

oxygen atoms. In particular, we considered the transitions: 2d to 2b and 4e to 4a that both

involve one and two EPs respectively, adjacent to an ET. The paths of these transformations

confirm the role of the on-top positions as transition states. In particular, Fig. 4.17 reveals

a two-step mechanism, namely the oxygen detachment from one of the carbon atoms is

preceded by the EP to ET transformation on the zigzag bond. In both 2d to 2b and 4e to 4a

transitions, the barriers are still of the order of 1 eV (Table 4.9). We can then conclude that

also in the presence of other oxygens in an ET or in aligned ETs, an additional oxygen can still

be easily trapped in an EP configuration. Other types of transformations, involving oxygen

hopping between one ET to another ET on a different bond may imply even larger barriers. As

an example, Fig. 4.18 illustrates the transition from 2b to 2a, that goes through an intermediate

(2f in Fig. B.2) involving an EP.
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Figure 4.16: (17,0)-CNT:4O. Displacements (in Å) of the C atoms induced by oxygen chemisorption.

I [conf ] F [conf ] ∆E ?

1b [EP] 1a [ET] 0.8
2b [ET] 2a [ET] 1.8†

2d [EP] 2b [ET] 1.2
4e [EP] 4a [ET] 0.7

Table 4.9: (10,0)-CNT. Energy barriers∆E ? (in eV) for the hopping of one oxygen from an EP or ET in
structure (I) to an ET in a lower-energy isomer (F).
† This value refers to the higher barrier of the two-step mechanism shown in Fig. 4.18.
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Figure 4.17: (10,0)-CNT:4O - Transformation from 4e to 4a (see Fig. 4.12). (a) Energy profile and sketch
of the relevant structures; (b) Variation of the relevant distances.

Figure 4.18: (10,0)-CNT:2O - Transformation from 2b to 2a (see Fig. 4.12). Energy profile and sketch of
the relevant structures.
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Kohn-Sham Electron States. For the (10,0)-CNT we showed that an ET leaves the KS-DOS

essentially unperturbed at the band edges, whereas an EP generates a peculiar impurity level

in the gap of the pristine tube. A more complex scenario appears to emerge from our results

for the (17,0)-CNT. Here, as we have seen above, both the A and Z lead to an EP (Fig. 4.15) but

in neither case is a level seen in the gap of the pristine nanotube (Fig. B.4). On the other hand,

the (16,0)-CNT exhibits the same behaviour as the (10,0)-CNT. The (8,4)- and (6,5) nanotubes

— which both have three inequivalent bonds, two of which lead to an EP (Fig.s 4.13 and 4.14) —

show a midgap impurity level only for one specific bond (see e.g. Fig. 4.19 for the (6,5)-CNT).
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Figure 4.19: (6,5)-CNT:O KS density of states (left) near the band edges.

This situation is only apparently complicated because it has a simple explanation. The appear-

ance of an unoccupied level below the conduction band of the nanotube depends both on the

spatial localization of the low-lying unoccupied levels of the nanotube and on the coupling

strength with the chemisorbed atom. In the zigzag pristine nanotubes, the π-states can be

classified as "delocalized over" one type of bond or the other. This is not always the case in the

chiral ones, in which they can be "delocalized over" two out of three types of bond. Still the

sequence depends on the characteristics of the tube. In the zigzag class this is governed by

mod(n,3) and is thus the same for (10,0) and (16,0)-CNTs, where it is located on the Z-bonds,

but different for the (17,0)-CNT, where it is on the A-bonds. Some examples are shown in

Fig. 4.20. This clarifies, for example, why the formation of an EP involving the A-bond as in

1(b) hybridizes with the LUMO and thus tends to localize and lower the corresponding energy

level. The coupling strength diminishes with the tube diameter. On passing from the (10,0)

(D=0.79nm) to the (16,0)-CNT (D=1.26nm), the LUMO-shift diminishes from 0.3 to 0.1 eV. On

the contrary, in the (14,0) and (17,0)-CNTs, the HOMO is on the A bonds whereas the LUMO is

on the Z-bonds. Also, in both (6,5) and (8,4) nanotubes the LUMO is on one specific bond (the

one of lowest curvature again) and is shifted by 0.25 eV when an oxygen is chemisorbed there

(corresponding to the 1c in Fig.s 4.13 and 4.14).

With increasing concentration, clustered-ET configurations continue to elude spectroscopies

in the range of the gap of the CNT, as well as EPs on bonds of relatively high curvature (Z-sites
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Figure 4.20: Electronic density of the (10,0) HOMO (a) and (n ,0) LUMOs (b-d). Isovalue=0.0003 (au)−3.

in the (n,0)-CNTs), whereas fingerprints of EPs on bonds of relatively low curvature can still be

recognised. In analogy with the case of the (10,0)-CNT, 28 we find that in the (16,0)-CNT:4O

EPs on the A-sites continue to generate dispersionless bands in the gap (see Fig. 4.21 (a) and

(b)), whereas in the (17,0)-CNT:4O (see Fig. 4.21(c)), due to weaker coupling, the EPs-related

states are at the conduction band-edge (see, for example, Fig. 4.21(d) for the 4e structure).

The effects of clustering on inequivalent positions is manifest in the distribution of the 2s-

oxygen levels, located about 3 eV below the rest of the valence bands. In the case of one oxygen,

we find a clear separation — from 0.3 to 0.7 eV — between different configurations, depending

on the specific nanotube. These values would thus correspond to isolated dispersed ET/EP

groups. On the other hand, in adsorbates with 4O on the (n,0)-CNTs the four dispersionless

bands cover an interval ranging from 0.8 eV for relatively distant groups (e.g., the four aligned

ETs in the 4a structure) to 1.8–1.9 eV for mixed arrangements with two groups on adjacent

bonds (bonding-antibonding splitting).
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Figure 4.21: DOS (a and c) and probability density (b and d) corresponding to the LUMO in two
adsorbate structures with mixed ET and EP populations. Isosurfaces=0.0012, 0.002 (au)−3.

4.2.6 Chemical Descriptors

The chemical anisotropy of carbon nanotubes has attracted great interest and has resulted in

the proposal of several descriptors for an a priori understanding of their chemical behavior. In

particular, the "directional curvature" (KD ) introduced in Ref.148, has provided a valuable tool

for prediction of ET versus EP formation of sparse [2+1] adducts such as oxygen or methylene

(CH2), as well as trends in reactivity and binding energies for ETs. KD refers to a pristine

SWNT and is defined as in Fig. 4.22, where α is the angle between the bond direction and the

CNT-axis. Thus, for any bond type on a SWNT of a fixed chiral angle, the value of KD depends

only on the tube diameter. Here we identify an angle ΘB , as in Fig. 4.22, that is also related to

the "curvature" of a given bond and can be more easily updated for any deformation of the

SWNT structure. We verified that in pristine tubesΘB and KD are proportional (see Fig. 4.22)

and thus there is no difference between their predictions for a single [2+1] adduct (see Table

B.4). Since any chemisorption event induces a local deformation, we can use ΘB — referred to

the bare bond (without O attached) — to answer the question: “Given an adsorbate with a

certain concentration, will a certain C-C bond open or not if an additional oxygen binds to

it?”. First we considered an oxygen chemisorbed on a coronene molecule and bent it so that
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SWNT bond di
c c ΘB B.O. d

f
c c [conf.] pred.

(8,0) Z 1.43 57 1.21 2.12 [ET] ET
A 1.42 0 1.31 1.48 [EP] EP

(10,0) Z 1.43 46 1.23 2.08 [ET] ET
A 1.42 0 1.29 1.49 [EP] EP

(14,0) Z 1.43 33 1.24 2.06 [ET] ET
A 1.42 0 1.29 1.49 [EP] EP

(16,0) Z 1.43 29 1.25 1.58 [EP] EP
A 1.42 0 1.28 1.50 [EP] EP

(17,0) Z 1.43 27 1.25 1.58 [EP] EP
A 1.42 0 1.29 1.50 [EP] EP

(19,0) Z 1.42 24 1.25 1.56 [EP] EP
A 1.42 0 1.28 1.50 [EP] EP

Table 4.10: One oxygen on semiconducting (n,0) nanotubes. Z=zigzag; A=axial; di
c c and d f

c c are the
bond-lengths prior to chemisorption (pristine tube) and in the adsorbate configuration (ET or EP)
respectively. Values (in Å) are from PBE calculations. pred = prediction based on limits defined for
oxygen on coronene. Both ΘB (in degrees) and B.O. refer to the pristine tube. Both give the same
prediction for the final configuration.

ΘB would vary in the range 0–80 ◦. The transition from EP to ET is sharp and takes place at

ΘB = 32◦. Our calculated limits are in the range 29◦–33◦ forΘB (see Table 4.10) — in perfect

agreement with the case of coronene — and 1.13–1.37 nm−1 for KD . This is in good agreement

with the limit value of 1.5 obtained in Ref.148, where different models, DFT functional and

basis set were used.

Figure 4.22: Curvature : definition of the "directional curvature" KD and of the "bond curvature"ΘB .
KD is defined as sinα

D
, with D = the tube diameter.

Any structural parameter, be it a local curvature or bond-length, contains a complex infor-

mation, with both geometrical and electronic ingredients. The notion of bond-order (B.O.),

instead, is directly related to the local electronic configuration. One may as such expect a

lower B.O. to be symptomatic of ET formation. Therefore we also examined to what extent the
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from bond di
c c ΘB [pred] B.O. [pred] to d

f
c c [conf ]

1a Z 1.45 53 [ET] 1.25 [ET] 2a 2.20 [ET]
1a Z 1.45 53 [ET] 1.19 [ET] 2b 2.18 [ET]
1a Z 1.42 58 [ET] 1.32 [EP] 2c 2.17 [ET]
1a A 1.45 12 [EP] 1.28 [EP] 2d 1.47 [EP]
1b Z 1.49 53 [ET] 0.98 [ET] 2d 2.27 [ET]
1b Z 1.41 46 [ET] 1.37 [EP] 2e 1.55 [EP]
1b A 1.41 0 [EP] 1.35 [EP] 2i 1.48 [EP]
1b A 1.41 5 [EP] 1.35 [EP] 2j 1.48 [EP]
1b Z 1.43 46 [ET] 1.23 [ET] 2k 2.07 [ET]

2a Z 1.44 63 [ET] 1.28 [EP] 3a 2.18 [ET]
2a Z 1.46 54 [ET] 1.15 [ET] 3b 2.20 [ET]
2a A 1.39 14 [EP] 1.36 [EP] 3c 1.46 [EP]
2a Z 1.41 55 [ET] 1.37 [EP] 3d 1.54 [EP]
2b Z 1.45 53 [ET] 1.25 [ET] 3b 2.19 [ET]
2c Z 1.43 53 [ET] 1.32 [EP] 3d 2.21 [ET]
2d Z 1.47 55 [ET] 1.19 [ET] 3c 2.23 [ET]
2d A 1.44 8 [EP] 1.31 [EP] 3f 1.52 [EP]
2i Z 1.49 56 [ET] 0.99[ET] 3f 2.28 [ET]

3a Z 1.44 53 [ET] 1.29 [EP] 4a 2.17 [ET]
3c Z 1.43 53 [ET] 1.36 [EP] 4b 2.18 [ET]

Table 4.11: (10,0)-CNT. Example of the building up of the map in Fig. 4.23(a). Notation as in Table 4.10.
Here the initial (from) and final (to) contain n and n+1 O atoms respectively. Bold-faced items highlight
deviations where the prediction deviates from the obtained configuration.

B.O. — calculated according to Mayer’s prescription 159 — can be used to predict the response

of a given bond to a [2+1] adduct. The above-mentioned calculation on coronene showed

that EPs become unstable on a bond with Mayer B.O. lower than 1.25. Table 4.10 shows that,

when using this limit, the predictions from the bare-bond order are correct for all the (n,0)

nanotubes we have considered.

Tables 4.11 and 4.12 extend the above concepts to cases of multiple chemisorbed oxygens.

With reference to Fig. 4.12, we consider one bare-bond in a CNT:nO adsorbate and verify

whether itsΘB and B.O. values can be used to predict the chemisorption product (ET or EP)

in the CNT:(n+1)O structure. The correlation between the final value of the C-C distance

and the bare-bond curvature in Fig. 4.23 confirms the predictive value of the latter. We

have emphasized with empty symbols special circumstances for which the prediction fails

because under the addition of an extra oxygen the local structure changes so that other bonds

— near the one targeted — open or close, or, in other words, the final configuration is the

result of concerted or multi-step bond reconstructions. Only a few failures are visible: the

transformations from 1b to 2e and from 2a to 3d. These cases correspond to "extreme" values

of the B.O. (1.37) and show the predominance of the electronic factor in determining whether

cleavage takes place.
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from bond di
c c ΘB BO to d

f
c c [conf.]

1a Z 1.45 33 [ET] 1.16 [ET] 2a 2.19 [ET]
1a Z 1.41 31 [EP] 1.28[EP] 2b 1.56 [EP]
1a A 1.41 4 [EP] 1.35 [EP] 2c 1.50 [EP]
1b Z 1.41 30 [EP] 1.38 [EP] 2c 1.54 [EP]

2a Z 1.45 37 [ET] 1.29 [EP] 3a 2.18 [ET]
2a Z 1.46 35 [ET] 1.16 [ET] 3b 2.21 [ET]
2a A 1.39 14 [EP] 1.35 [EP] 3c 1.47 [EP]
2b Z 1.44 33 [ET] 1.17 [ET] 3b 2.19 [ET]
2b A 1.40 8 [EP] 1.45 [EP] 3e 2.21 [ET]
2c Z 1.40 33 [ET] 1.46 [EP] 3e 2.24 [ET]

3a Z 1.44 38 [ET] 1.30 [EP] 4a 2.17 [ET]
3a A 1.41 18 [EP] 1.33[EP] 4b 1.50 [EP]

Table 4.12: (17,0)-CNT. Notation as in Table 4.11.

from bond di
c c ΘB [pred] BO [pred] to d

f
c c [conf.]

(8,4)
n=0 1 1.43 57 [ET] 1.28 [EP] 1a 2.08 [ET]

2 1.43 25 [EP] 1.22 [ET] 1b 1.54 [EP]
3 1.43 6 [EP] 1.26 [ET] 1c 1.50 [EP]

1a 1 1.44 65 [ET] 1.31 [EP] 2a 2.17 [ET]
1b 1 1.43 55 [ET] 1.27 [EP] 2b 2.23 [ET]
1b 1 1.40 59 [ET] 1.40 [EP] 2d 2.18 [ET]
1c 1 1.49 65 [ET] 1.01 [ET] 2c 2.25 [ET]

(6,5)
n=0 1 1.43 65 [ET] 1.29 [EP] 1a 2.09 [ET]

2 1.42 19 [EP] 1.23 [ET] 1b 1.52 [EP]
3 1.42 13 [EP] 1.24 [ET] 1c 1.51 [EP]

(12,10)
n=0 1 1.42 33 [ET] 1.27 [EP] 1a 2.07 [ET]

2 1.42 10 [EP] 1.25 [EP] 1b 1.52 [EP]
3 1.42 7 [EP] 1.26 [EP] 1c 1.51 [EP]

Table 4.13: Examples on chiral CNTs. Notation as in Table 4.11.
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Figure 4.23: C-C distance in the ET or EP groups as a function of the angle ΘB which refers to the bond
before chemisorption. Triangles and open circles represent EPs and ETs respectively. These symbols
represent the configurations calculated for oxygen adsorbates on (n,0), (8,4), (6,5), (12,10) nanotubes
discussed in the text and also the (6,6) bond of fullerene (highest value of ΘB .).

On the contrary, the B.O., which is highly sensitive to variations in the distribution of the π

states, appears to fail more frequently than ΘB as concentrations increase. However these

"failures" can be rationalized. For example, in 2a and 3a the B.O. of the Z-bond aligned with

the ETs increases beyond the coronene limit, so that one would not predict an easy cleavage

as it happens in 3a and 4a. This increase is more dramatic in 3c, where the Z-bond is near an

EP (and two ETs). The threshold could be easily modified from coronene to the CNT domain.

On the other hand, failures in correspondence to "extreme" values of the bond curvature can

be expected: the structural constraint is then prevailing in the ET vs. EP competition. This

is the case of the (6,5)-CNT in which an ET forms on a high-B.O. bond (Table 4.13) where

also the variation of B.O.s with bond-lengths is anomalous. Indeed, on passing from zigzag

to chiral nanotubes, it is important to note that structural constraints are more severe and

in particular do not allow the higher-B.O. bonds to relax. This explains also the case of the

(8,4)-CNT (Table 4.13). For large-enough sizes, the ΘB -B.O. consistency is expected to recover.

However, this is not yet the case for the (12,10)-CNT (D=1.50nm) as shown in Table 4.13.

4.2.7 Comparison with ReaxFF

When applied to determine the stable structures of chemisorbed oxygen, ReaxFF presents a

serious problem: an arrangement of isolated oxygens on on-top positions is the ground state

(I in Fig. 4.24). On the contrary, these structures are unstable in our — and previous 144 — ab

initio calculations. We notice that in ReaxFF clustering of on-top oxygens is disfavoured; for

example pairing on ortho positions as in (IIa) corresponds to a loss of 0.2 eV per atom.

However, if we only compare the geometrical characteristics and the relative stability of
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Chapter 4. Chemisorption

Figure 4.24: (10,0)-CNT:nO structures from ReaxFF. Notation as in Fig. 4.12 apart from Roman numerals
that refer to cases with oxygen on on-top positions. Note: d(O-O)=1.25Åin (IIa). Note that E(O)=0 in
this scheme.

configurations found stable with DFT-PBE, the agreement with the ab initio description is

rather good. This can be argued from the plot of binding energies in Fig. B.5a and through

comparison of Fig. 4.24 and Fig. 4.12. More precisely, ETs are predicted to be more stable than

EPs and the relative ranking is similar although EPs are less disfavoured. Extensive details are

given in Tables B.6, B.7, B.8 and B.9. We remark "spurious" values for the C-C distances (from

1.6 to 1.8 Å), which lie between those of an sp2 C-C bond (like in the EP) and of an ET.

We also analysed the validity of the ΘB and B.O. ReaxFF values (Tables B.11, B.12 and B.13) as

chemical descriptors, and in particular whether the bare-bond curvature correlates well with

the result of chemisorption (Fig.4.25(b)). We note that the B.O. values intrinsic to this scheme

scale well with the Mayer B.O.s, as can be seen in Fig. B.5b. This correspondence allows

one to classify final configurations with "spurious" distances as ETs. Moreover, calculations

on coronene suggest not too different ranges for the EP-ET transition: 32.5◦ for ΘB and

between 1.270 and 1.265 for the B.O. However, a number of discrepancies can be recognised,

and especially the lower performance of the bare-bond curvature and the frequent lack of

consistency between the two descriptors also for the (n,0)-CNTs. Comparing hopping paths

and barriers is meaningless because the TS configurations in DFT are minima of the potential

energy surface of the ReaxFF potential. These can then act either as sink or intermediates also

for transitions from EP.
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Figure 4.25: Same as Fig. 4.23 for ReaxFF.

4.2.8 CH2, NH, SiH2 and Sulphur Compared with Oxygen

Our results for O are compared to other species in Table 4.14. To avoid confusion with oxygen

chemisorption we refer to the ETs and EPs as the open and 3-member rings in this section.

B.L.(Z) EB (Z ) B.L.(A) EB (A) Z-A ∆E ∗

O 2.082 2.66 1.489 2.25 0.41 [1.11] 0.8
NH 2.124 2.09 1.512 1.57 0.40/0.501 1.4

[1.28]
CH2 2.113 2.93 1.539 2.44 0.49 [1.33] 1.9
SiH2 1.666 0.62 1.557 0.52 0.10 [0.89] 0.4

S 1.561 1.22 1.498 1.32 -0.10 [-] 0.5

Table 4.14: (10,0)-CNT. Bond-length (B.L.) (in Å) of Z and A bonds after chemisorption and correspond-
ing binding energy EB (in eV), and energy barrier∆E ∗ (in eV) for the hopping of a [2+1] adduct from
the metastable to the ground state. Note that in all cases, but sulphur, Z corresponds to the ground
state and A to the metastable state. Also the Z-A energy difference is reported explicitly to allow for
comparison with previous calculations — in brackets — performed for the (8,0)-CNT (Ref.160).
1 The two values correspond to the two adjacent Z bonds that in this case are inequivalent

Chemisorption of one CH2 or NH group on nanotubes has often been considered at the same

time as oxygen (see Ref.s 160 and 145). We have considered both functional groups on the

(10,0)-CNT and found that, as expected, the ET on the zigzag bond is strongly favoured over

the EP on the axial bond as in the case of oxygen and also by a comparable amount (∆(ET-EP)

' 0.5 eV). Also the electronic structure close to the band-edges closely resembles the case of

oxygen chemisorption. In particular, the EP introduces a midgap level a few tenths of an eV

below the bottom of the conduction band of the pristine tube (at about 0.2 and 0.1 eV for CH2

and NH respectively).
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A more sizeable difference is found for the values of the binding energies and of the energy

barriers for the hopping from the metastable EP to the ET state (Table 4.14). Previous calcu-

lations for the (8,0)-CNT, using relatively small hydrogen-terminated models, (see Ref.160)

predict values 2-3 times larger for∆(ET-EP) for O, CH2 and NH. Our value for the (8,0)-CNT is

0.4 eV as for the(10,0)-CNT (see Fig. 4.11(a)). Again we attribute this discrepancy to the slow

convergence of the binding energy as a function of the model size. 28 However the trend is the

same.

SiH2 does not behave in a similar way as its counterpart methylene (Table 4.14): It still tends to

preferentially sit on the zigzag bond and to stretch it but not as strongly as to break it, as can be

argued from the ELF in Fig. 4.26. The more delocalized nature of the electron wavefunctions

of the adduct strongly decreases the binding energy and makes it less sensitive to the C-C

bond specificity (∆(ET-EP) is only 0.1 eV to be compared to 0.9 eV in Ref.160). This tendency

is clearer in the case of sulphur (Table 4.14), which is bound to the nanotube in the form of an

EP on both C-C bonds (Fig. 4.26). We also notice that sulphur has a larger binding energy on

the axial bond. An increase of concentration confirms the fact that the thermodynamically

favoured structures are EPs only (Fig. 4.27). Clear preference for clustering also emerges from

Fig. 4.27, with alternating patterns on the A sites. Z-bonds are disfavoured for n>1 and can

either be preserved or cleaved upon chemisorption, depending on concentration (see Fig. B.6).

PBE0 calculations on the PBE geometries resulted in a decrease of the binding energies of

∼ 0.2 eV.

Figure 4.26: (10,0)-CNT:SiH2/S. ELF (at isovalue 0.8) at the EP on the Z-bond.

Comparison with oxygen EPs shows that the bond-angle reduces from about 60◦ (61◦-66◦)

by at least 10◦ (45◦-49◦)in the sulphur 3-member rings - an obvious size effect - whereas the

pyramidalization angles of the carbon atoms are still about 10◦ and the deformation energy

ED is less than 1 eV (e.g., 0.8 eV in both S-1a and S-1b (Fig. 4.27) to be compared to 0.7 eV

in 1b (Fig. 4.12). However, the binding energy is much weaker as found in previous model

calculations 151,152 and in agreement with indications from experiment. 32 Details of these

structures are reported in Table B.10.

From the above, it is clear that the idea that an adsorbate structure is determined only by the

pristine CNT is no longer valid. This works as long as only first-row elements were involved in

the bonding with carbon. If we want to use KD or ΘB or B.O. as predictors for S chemisorption
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4.2. Oxygen and Other [2+1] Cycloadditions

Figure 4.27: (10,0)-CNT:nS (n=1–4). Structures and binding energies EB (in eV) referred to triplet
sulphur. A small triangle indicates an EP.

products, their limiting values must be adjusted to the characteristics (e.g., size) of the head-

atom. Calculations of S adsorbed on coronene would predict a less sharp correlation between

ΘB and the "final" C-C distance than the one observed for oxygen: 3-member rings are stable

up to∼60◦ whereas the open-ring configuration is stable from∼69◦. The critical B.O. range

is instead limited between 1.13 and 1.15. Clearly, a much higher curvature (what we called

"extreme" for the case of oxygen) and sizeably lower B.O. is necessary for bond cleavage to

occur. The cases presented here for sulphur on nanotubes indicate that thioethers could

form on bonds of high but somewhat smaller curvature (ΘB ∼ 55◦) than in coronene (see

Table B.14).

Both SiH2 and sulphur must overcome lower barriers than their counterparts to hop from

one bond to the other (Table 4.14). The case of SiH2 is more interesting because the molecule

undergoes two transformations as illustrated in Fig. 4.28.

Both 3s- and 3p-levels of the sulphur atom resonate with the valence band of the nanotube and

induce changes delocalized over several eV. In particular, a non-negligible mixing and a shift

of the highest-occupied molecular orbitals of the nanotube is observed. The characteristic

mid-gap level associated with the EP at the A-site appears also in this case (see Fig. 4.29). The

increase in concentration adds other such levels and may tend to rapidly close the gap (see

Fig. 4.30). We remark that these results were calculated with the PBE0 functional and that in

PBE the gap would close already for the (10,0):4S CNT.
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Figure 4.28: CNT:SiH2. Energy profile and sketch of the relevant structure in the transformation
between chemisorption on the A and Z bond.

Figure 4.29: 10,0)-CNT:nS. Probability density corresponding to the LUMO in the (a) S-1a and (b) S-4a
structures (see Fig. 4.27). Isosurfaces = 0.008, 0.002 (au)−3.

Figure 4.30: (10,0)-CNT:nS. Kohn-Sham DOS for n=1 and n=4.
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4.2.9 Conclusions

We have shown that, with increasing concentration, oxygen atoms (Os) tend to cluster more

and more, with ETs energetically preferred and thus an increasing structural deformation

of the nanotube. Metastable EP configurations act as kinetic traps. They tend to avoid this

deformation of the sidewall but generate ring strain (local loss of conjugation). Progressive

changes of the neighbouring bonds induced by the presence of other chemisorbed oxygens

do not allow to predict whether an additional oxygen will be chemisorbed in an ET or an

EP on the basis of the characteristics of the pristine nanotube alone. An update of the bare-

bond curvature, which accounts for the modifications induced by nearby chemisorption, still

provides good predictions on possible bond cleavage, at least in the coverage-range considered

here, unless other local modifications of the bond pattern take place.

Other moieties isoelectronic to O behave similarly if the head-atom belongs to the first row

of the periodic table. On passing from oxygen to sulphur and from CH2 to SiH2, instead, the

opening of the C-C bonds becomes improbable apart from cases of high curvature attained in

chiral nanotubes of diameter less than 0.8nm. Given the preference for EPs, sulphur preserves

the closed carbon rings but may induce sizeable changes in the electronic properties of the

nanotube. In particular, by introducing the EP-characteristic levels in the gap, sulphur will

tend to close it for lower concentrations than oxygen.

Comparison of the outcome of the reactive force-field ReaxFF and DFT-GGA shows similar

results for the ET-EP competition but reveals that the most probable arrangement predicted

by ReaxFF at low temperature consists of oxygen atoms in on-top sites and dispersed on the

sidewall. On the contrary, on-top positions are unstable sites in the DFT-GGA and in the

hybrid PBE0 functional frameworks. Therefore ReaxFF and DFT descriptions of the reaction

dynamics are bound to be very different. The database resulting from our detailed comparison

could be useful for an improvement of the classical potential.

Comparison with similar but partial calculations of a few oxygens on graphene models, still

shows important differences between graphene and nanotubes of 1.3nm diameter. In par-

ticular, oxygen chemisorption does not seem to provide a way to unzip the sidewall of these

SWNTs: EPs are effective traps for oxygen (hopping from an EP corresponds to high energy

barriers) and ETs — especially clustered — are stable.

As a concluding remark, we note that, provided specific catalysts are devised, hopping of

a divalent chemisorbed atom or functional group between an EP and an ET configuration

could provide a mechanism for the control and tuning of bond-cleavage on the sidewall of a

nanotube, in alternative to the on-site bond-switch induced by adduct rotation suggested in

Ref.147,150,161 for adducts like dichlorocarbene.
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5 Physisorption: The Case of
Nitrogen-Oxides

In this chapter we apply different DFT functional schemes for the description of the adsorp-

tion of NOx species, and also examine results obtained previously. Two main problems are

approached: the difficulty of describing and quantitatively assessing the NOx -CNT interaction

and the identification of the species mainly responsible for the change of resistance (sensing

response) measured on various nanotube settings.

5.1 Status of Ab Initio Calculations

A number of calculations have been published on the adsorption of NO2 and NO3 molecules

on the sidewall of nanotubes. Table 5.1 reports the methods and the models used and Table 5.2

gives the results for the binding energy and the (minimum) distance from the tube. The

tendency of LDA to bind NO2 strongly is not surprising, and also the strong decrease in

binding energy (0.03-0.04 eV) and larger distances (>3 Å) obtained within spin-polarised PBE.

The only comparison possible of NO2 and NO3 is from Ref. 162 on the (8,0)-CNT, showing

higher binding energy for the latter (by one order of magnitude) in spite of a large distance

(>3 Å). This relatively large distance for the stable configuration of NO3 is confirmed in Ref.

163 on the (13,0)-CNT. However no information is given for the binding energy. This is defined

as the "physisorbed state". Indeed, in this same reference, another energy minimum is found

— the "chemisorbed state" — which is 0.64 eV higher and corresponds to a shorter distance of

1.6 Å. In Ref.162 also the co-adsorption NO and NO3 was considered on the (8,0)-CNT. The

pair was found to be stable at close distances (∼ 1.5 Å) and have higher binding energies (up

to 1.5 eV). These configurations were interpreted as chemisorbed states.

For comparison, in Table 5.2 we give the experimental values of the activation energies for

desorption measured in different experiments. No calculations were made for desorption

barriers.
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Reference Functional Algorithm CNT [N]

[164] LDA MT-PP 94 (10,0) [40]
[165] LDA 166 AE-DND (10,0) [80]
[41] LDA 166 MT-PP 94-pw or AE-DND (5,5) & (10,0) [40]; (17,0) [68]
[167]a LDA AE-numerical basis (10,0) [80]
[167]b LSDA AE-numerical basis (10,0) [80]
[167]c PBE 85 AE-numerical basis (10,0) [80]
[167]d SP-PBE 85 AE-numerical basis (10,0) [80]
[168]a LDA MT-PP 94 (10,0) [80]
[168]b LSDA MT-PP 94 (10,0) [80]
[162] SP-PBE 85 UPP 131 (8,0) [64]
[163] SP-PBE 85 UPP 131 (13,0) [103]

Table 5.1: Methods and models used in various referenced papers. All these calculations use PBC but
with different unit cells. The number of atoms in the unit cell is give in parenthesis. Note: SP=spin-
polarised; DND=double-numerical-depolarised basis functions; pw=plane-waves.

Ref. Ch E B (eV) c.t. (e−) d (Å)

NO2

[162] (8,0) 0.03 — 3.5
[41] (5,5) 0.4 0.07 2.2
[41] (17,0) 0.7 0.09 2.1
[41] (10,0) 0.8 0.06 1.9
[164] (10,0) 0.4 0.1 2.5
[165] (10,0) 0.42 0.11 2.3
[168]a (10,0) 0.64 0.1 2.7
[168]b (10,0) 0.50 0.1 2.7
[167]a (10,0) 0.27 0.10 2.9
[167]b (10,0) 0.15 0.02 3.3
[167]c (10,0) 0.11 0.12 3.3
[167]d (10,0) 0.04 0.01 3.3

NO3

[162] (8,0) 0.5 — 3.3
[163] (13,0) — 0.4 3.1
[168]a (10,0) 1.37 — 2.87
[168]b (10,0) 1.17 0.14 2.87

experiment material Edes (eV)

[169] graphite 0.4
[40] s.c. SWNTs 0.4
[40] metal SWNTs 0.2
[42] CNT bundles 1.2
[38] SWNT (D=1.5–2.5 nm) 1-1.1

Table 5.2: Binding energies (E B ), charge transfer (c.t.) and minimal distance from the tube (d ). the
tube chirality (Ch ). For experimental results the desorption energy (Edes).
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5.2 Our results

5.2.1 (10,0)-CNT : Description of the binding

We consider three molecules: NO2, NO3 and N2O4. Indeed the dimer — not treated earlier —

is of interest because in the gas phase the monomer and the dimer are in equilibrium at room

temperature.

We start by remarking that the description of the (isolated) dimer itself is non-trivial. 170 The

thermodynamic ground state (at 0 K) of molecular NO2 is in the form of a dimer with a

relatively weak N-N covalent bond. Its formation is barrierless in all our calculations. However,

the values of the binding energy are strongly dependent on the DFT-functional, as shown in

Table 5.3. This table also shows a possible dependence on the atomic pseudopotential (which

is BLYP, see Appendix C) for our B3LYP value and/or a basis-set effect. The CCSD(T) value

of 0.73 eV 170 could be considered as reference. However the value reported in experimental

papers for the dissociation energy of the dimer is 0.57 eV. 171

PBE PBE-D2 PBE0 BLYP BLYP-D2 B3LYP B3LYP 170 CCSD(T) 170

0.88 0.92 0.64 0.61 0.61 0.45 0.59 0.73

Table 5.3: Dimerization energy (2E (NO2)− E (N2O4) in eV) for the different functionals considered.
Our results are further compared to calculations from Ref. 170.

We are particularly interested in testing the effect of Grimme’s corrections to the gradient

corrected functionals (PBE-D2 and BLYP-D2) and also of the inclusion of a fraction of exact

exchange as in PBE0. As we have discussed earlier, previous calculations used LDA or PBE,

namely xc-functionals that do not represent the long-range van der Waals like interactions

and thus are unable to give physically reasonable results for "physisorbed states". Our results

are summarized in Tables 5.4 and 5.5.

No appreciable structural change is found in either the molecule or the nanotube. Only PBE0

predicts a slightly different ground state structure for the isolated molecule NO3 (Table 5.4.

The cases of NO2 and N2O4 are similar and also the effect of the changes in the xc-functionals.

The results are consistent with physisorption. This is confirmed by the absence of a chemical

bond, as shown by the electron-localization-function (ELF) in Figure 5.1(a-b) and also the

plot of the differential densities Figs. 5.1(d,e,g,h). Regarding the charge transfer, our estimate

through the Mulliken population analysis, gives values even less than 0.1e. This localized weak

charge transferred from the nanotube to the molecule is seen in the differential density (Fig-

ure 5.1 (d,e,g,h)). Grimme’s empirical corrections strengthen the interactions — as expected —

leading to an increase of the binding energy and a decrease the molecule-nanotube distance.

The hybrid functionals have a different effect and a weak effect on the binding. This is also

not surprising because the correlation part remains the same as in PBE/BLYP, in spite of the

improvement of the long-range potential. BLYP does not bind N2O4.

63



Chapter 5. Physisorption: The Case of Nitrogen-Oxides

NO2 (gas) (10,0)-CNT:NO2

dNO (gas) θONO (gas) dNO θONO d CN

PBE 1.21 134 1.21 131 3.05
PBE-D2 1.21 134 1.21 132 2.87
PBE0 1.19 135 1.19 135 3.22
BLYP 1.22 134 1.23 129 3.40
BLYP-D2 1.22 134 1.23 129 2.86

NO3 (gas) (10,0)-CNT:NO3

dNO (gas) θONO (gas) dNO θONO d CN

PBE 1.25 120 1.26 120 3.28
PBE-D2 1.25 120 1.26 120 3.08
PBE0 1.20, 1.25 111, 125 1.24 120 3.12
BLYP 1.26 120 1.27 120 3.45
BLYP-D2 1.26 120 1.27 120 3.06

N2O4 (gas) (10,0)-CNT:N2O4

dNO (gas) θONO (gas) d NN (gas) dNO θONO d CN d NN

PBE 1.20 134 1.86 1.20 135 3.52 1.86
PBE-D2 1.20 135 1.87 1.20 135 3.14 1.86
PBE0 1.18 135 1.75 1.18 135 3.27 1.74
BLYP 1.21 134 1.92
BLYP-D2 1.21 134 1.91 1.21 134 3.12 1.92

Table 5.4: NOx structural characteristics in gas phase and on the (10,0)-CNT surface: bond lengths (in
Å) and bond angles (in degrees) in the molecule and minimum distance (in Å) from the tube.

PBE PBE-D2 PBE0 BLYP BLYP-D2

NO2 0.05 0.17 0.04 0.06 0.19
N2O4 0.08 0.28 0.05 — 0.32
NO3 0.63 0.80 0.44 0.69 0.94

Table 5.5: (10,0)-CNT: binding energies of different molecules obtained with different xc-functionals.

Measurements on graphite in Ref.169 reported an N2O4 structure perpendicular to the surface

(O-down). We find that it is unstable and spontaneously transforming to the flat configuration.

In the case of NO3 the estimated charge transfer is ∼0.4e (see Figure 5.1(f,i)). The calculated

binding energies are clearly higher, which could erroneously be interpreted as a sign of

chemisorption. Indeed the equilibrium minimum distance is still about 3 Åand the electron

localization function (ELF) shows also in this case that no chemical bond forms (Fig. 5.1(c))

between the molecules and the CNT. This is again consistent with physisorption. The increase

of the binding energy relative to the dioxide can be understood as due to the interaction of the

localized charge with the delocalized, highly polarizable density of the π states on the tube

surface. This is similar to what is found in the case of DNA on the CNT surface. 172

Finally, for additional comparison with Ref.162 we considered the co-adsorption of the NO–
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(a) ELF: NO2
(b) ELF: N2O4 (c) ELF: NO3

(d)∆ρ: NO2 (e) NO2 (top) (f )∆ρ: N2O4 (g) N2O4 (top) (h)∆ρ: NO3 (i) NO3 (top)

Figure 5.1: ELF ((a-c), isovalue 0.8) and differential charge (∆ρ) side- and top views (d-i) for the
different considered nitrogen oxides on the (10,0)-CNT. For ∆ρ, the green (white) shows a positive
(negative) differential charge, i.e. donating electrons to (from) this position.

NO3 pair configuration on the (8,0)-CNT and also on the (10,0)-CNT. By using the same unit

cell as in Ref.162 for the (8,0)-CNT we also find it stable and at smaller distances. However by

increasing the cell size it becomes unstable. The same is true on the (10,0)-CNT. Therefore, the

enhancement of binding with co-adsorption was only an artifact of the 64 atom-model for the

unit cell. This is clearly inadequate to represent these adsorbates at very low concentration.

It is clear that more advanced quantum chemical methods are necessary to treat the problem

of NOx and any other physisorbed species on nanotubes. Unfortunately, more sophisticated

calculations — MP2 173 and quantum Monte Carlo 174 — have so far been possible only on very

small fragments.

5.2.2 Indications from KS and Vibrational Spectra

In Fig. 5.2 the Kohn–Sham spectra calculated with the PBE-D2 functional at the Γ point of

our supercell. In all cases considered, new levels appear in the gap of the pristine CNT. The

orbitals (shown in the insets) are linear combinations of the NOx molecular orbitals with CNT

orbitals. These results hint at the possibility that some signatures of the different molecules

could be found with electronic excitation spectra.

More direct information can be found in the vibrational spectra, for which experiments

are available 42 reporting on infrared spectra of CNTs recorded after exposure to NO2 gas.

The data for the frequencies in Table 5.6 shows a remarkable difference with the isolated

molecule, which cannot be understood on the basis of the knowledge of a weak NO2-CNT

interaction inducing no special deformation. In Ref.42 the data were thus explained as due to

the formation of a nitrito configuration in which the NO2 molecule sits inside the CNT bundle

with the two oxygen atoms bound to different CNTs.
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Figure 5.2: (10,0)-CNT: NOx Kohn-Sham (KS) density of states (DOS) for the different molecules
considered. Occupied (filled curves) and unoccupied (open curves) impurity states are shown as inset.

theory

NO2 (gas) 741 1320 1608
NO2 (CNT) 669 1216 1567

NO3 (gas) 471 (2) 767 1076 1195 (2)
NO3 (CNT) 614 (2) 783 1042 1243 (2)
NO3− (gas) 689 (2) 803 1023 1310 (2)

N2O4 (gas) 90 245 296 393 467 633
734 822 1254 1394 1718 1746

N2O4 (CNT) 141 200 262 401 452 615
723 816 1245 1375 1712 1735

experiment

NOx (CNT, exp. 42) 808 1026 1302
NO2 (gas, exp. 175 ) 750 1325 1612
NO2 (gas 176) 750 1319 1617

N2O4 (gas 177) 752 1274 1754
N2O4 (gas 178 ) 750 1261 1748
N2O4 (gas 169) 270 430 740–760 1270–1280 1760–1770
N2O4 (graphite 169) 290 450 780 1290 1770

Table 5.6: Calculated fundamental frequencies (in cm−1) of the different molecules in gas–phase and
on the (10,0)-CNT (PBE-D2). (2) indicates double degeneracy. Experimental values from different
sources are given for reference.
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We computed the vibrational frequencies of the three different molecules considered in

the linear response scheme, 179 both in gas phase as well as on the (10,0)-CNT surface (see

Appendix C). Comparison in Table 5.6 with experimental data is self-explanatory. In particular,

for the gas-phase NO2 the agreement is excellent. Changes due to the adsorption are not

negligible but not such as to explain the observations. A simpler explanation can however be

suggested, namely that the species detected with IR after adsorption of NO2 is indeed NO3.

The presence of a localized fractional charge on the physisorbed NO3 explains the difference,

as shown by comparison with NO−3 . Weak effects are found for the dimer, in agreement with

experimental data on graphite.

5.2.3 Dependence on Diameter

For NO2 and NO3 the dependence of the binding energy dependence on zigzag CNT diameter

is shown in Fig. 5.3. The results from two computational models are shown: (i) for the 360 C

atom periodically repeated model with Γ-point only and (ii) using a 80 C model with k-points.

Details on the methods are given in Appendix C.

We remark that, contrary to the case of oxygen chemisorption, the binding energy increases

with increasing diameter for both molecules for semiconducting nanotubes. The effect is

sizeable and the relative change from one case to the other is essentially the same for NO2

and NO3. This behavior is consistent with the increase of polarization of the CNT electron

states with decreasing gap (increasing diameter). For metallic nanotubes, the binding energy

is indeed higher, in agreement also with experimental data 40 and no appreciable variation

with diameter is found.

Figure 5.3: PBE-D2: (n ,0)-CNT with NO2 (left) and NO3 (right). The dependence of the binding energy
on the diameter for zigzag-nanotubes. Stars (circles) are used for computational model i (ii).
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6 Intrinsic Defects: Single and Double
Vacancies on the (10,0)-CNT

Vacancies are not expected to form at high concentration during synthesis of carbon nan-

otubes which takes place at temperatures of the order of 3000 ◦C. Still, as for any other defect,

their presence is supposed to strongly influence the physical behavior of a nanotube, in

particular when combined with interstitials or adatoms. The role of vacancies is also often

invoked to explain unexpected strong effects, e.g. in the binding of molecules like NO2
180 or

to characterize oxidation processes. 181 Therefore modelling of realistic systems cannot ignore

their presence.

Systematic studies have required artificial generation of vacancies from irradiation with high-

energy electrons or ions. 50 Their characterization is not immediate however. Our understand-

ing relies on a thorough theoretical investigation. In particular, STM/STS experiments and

DFT-GGA calculations of the local-density of electron states of single and double vacancy

configurations, also coupled with interstitials and Stone-Wales defects.

Our primary aim is twofold: (i) comparing the predictions of commonly used carbon force-

fields to those of DFT calculations, and (ii) within DFT investigate the dependence of the

results on the xc functional. In particular, for the latter, we are interested in identifying the

changes induced by introducing partial effects of the exact exchange on passing from PBE to

PBE0. The physical quantities we consider are formation energies, structural characteristics,

reconstruction and migration barriers. As working example, we consider the (10,0) nanotube.

This choice allows us also comparison with previous calculations. Our results refer to Ref.182.

6.1 Our Results and Comparison with Previous DFT Calculations

No systematic work on vacancies on nanotubes exists. However, several DFT-based calcula-

tions have been published aimed at establishing the thermodynamically favoured configura-

tions of vacancies formed by the loss of few atoms and their formation energies, 183–188 how

they modify the characteristics of the pristine nanotube 29,167,189 and also how their presence

might manifest itself, e.g. in Raman spectra. 47 In the following we will mention some of these

calculations for comparison with our results. In particular, the selected calculations use peri-
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Chapter 6. Intrinsic Defects: Single and Double Vacancies on the (10,0)-CNT

Reference Functional Algorithm Size (N)

[183] PW 84 PAW 190 120
[185]a PBE 85 MT-PP 94-DZ 120
[185]b PBE 85 MT-PP 94-DZ 240
[186]a PW 84 PAW 190 120
[186]b PW 84 TB 120
[191] PW 84 UPP 131 120

Table 6.1: Methods used in various referenced works.

Figure 6.1: Single vacancy structures

odic boundary conditions and GGA functionals. The details in Table 6.1 help understanding

possible differences in the results reported below.

We have considered a few single- and double vacancy configurations, which are shown in

Figure 6.1 and 6.2 respectively. In order to explore a larger set of geometries than those

sporadically considered in the literature, the starting step of our investigation consisted in

classical MD simulations (using AIREBO) of a large-size model for the nanotube (10,000

atoms) in a range of temperatures (300 – 2500 K). We considered the configurations with

higher population and optimised their structure ab initio. Eventually, however, only a few

could be classified as local minima of either the DFT-PBE or the DFT-BLYP potential energy

surface (see Figures 6.1 and 6.2). Geometries denoted as 12r and 14r are plotted as reference,

and represent the holes left by stripping one or two atoms, with three or four dangling bonds

(DBs). These are unstable in our calculations, as will be discussed below, but are metastable

states in most of the other approaches we considered.
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6.1. Our Results and Comparison with Previous DFT Calculations

Figure 6.2: Double vacancy structures

The vacancy formation energy ε f is defined as

ε f = (Evac−nµ−E0)/n ,

where Evac and E0 are the total energies of the defective and pristine nanotubes respectively

and µ is chemical potential of carbon, which should be referred to its most stable structure. In

general, however, this value is approximated as the energy per atom in the pristine nanotube:

µ= E0/N . In the Tables below, we will report the values E f = nε f .

In analogy to the case of oxygen chemisorption, we find — as shown in Figure 6.3 — that in

some cases smaller-size CNT-models can be used for the calculation of vacancy formation

energies, but also that in others (see double vacancy 5r8r5r-Z) convergence of E f is attained

very slowly (600 atoms). This behavior depends on whether the perturbation induced by atom

loss is more or less localized, as shown in the plot of the structural changes (strain distribution)

(Figure 6.4). Apart from the case of the double vacancy 5r8r5r-Z for which we refer to the

PBC-600-atom model, the results refer to calculations with the 360-atom unit cell.

As shown in Table 6.2(A), PBE and BLYP functionals are in close agreement regarding the

values the formation energies and in most cases, BLYP tends to reduce them. Adding part of

the exact exchange as in the PBE0 functional increases the formation energies significantly but

preserved the ranking. The same conclusion can be derived from the energy gain in Table 6.3.

On the other hand, we have also verified that including Grimme’s corrections 89 for van-der-

Waals interactions has no appreciable effect. In Table 6.4 comparison is made with previous

GGA calculations is clarified. Ref. 183 apparently found the 12r geometry to correspond to a

local energy minimum, in analogy with other LDA computations. 184 The progress of one of

our geometry optimizations — leading to the 5r9r-Z — is illustrated in Figure 6.5. The plateau
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(A) XC-funct. 12r 5r9r-A 5r9r-Z 5r5r 5r9r7r5r 7r5r8r

PBE ? 5.54 6.51 ? 7.89 9.49
BLYP ? 5.47 6.26 ? 7.50 9.13
PBE0 ? 6.01 7.27 ? — —

14r–A 14r–Z 5r8r5r-A 5r8r5r-Z 9r5r9r5r

PBE ? ? 3.92 4.98 11.96
BLYP ? ? 3.97 4.77 11.61
PBE0 ? ? 4.28 5.96 13.60

(B) Force-field 12r 5r9r-A 5r9r-Z 5r5r 5r9r7r5r 7r5r8r

ReaxFF 8.04 5.44 7.17 6.09 8.40 8.91
AIREBO 6.71 4.87 5.94 4.81 7.57 7.43
REBO 8.04 5.70 6.72 4.45 8.32 8.78
LCBOPI 7.11 4.62 5.80 5.70 7.14 7.33
LCBOPII 7.17 5.16 6.18 4.81 7.21 8.27

14r–A 14r–Z 5r8r5r-A 5r8r5r-Z 9r5r9r5r

ReaxFF 9.96 10.61 3.31 6.08 12.22
AIREBO 8.90 9.08 4.26 6.31 10.49
REBO 10.55 10.80 4.78 6.46 12.28
LCBOPI 9.24 9.49 3.22 5.42 10.19
LCBOPII 9.45 9.47 3.92 5.38 11.25

Table 6.2: Vacancy formation energies (? = unstable) E f in eV.

(A) XC-functional 12r 5r9r-A 5r9r-Z 5r5r 14r–A 14r–Z 5r8r5r-A 5r8r5r-Z

PBE ? 2.32 1.36 ? ? ? 5.59 4.59
BLYP ? 2.08 1.29 ? ? ? 5.09 4.32
PBE0 ? 2.62 1.40 ? ? ? 6.09 4.41

(B) Force-field 12r 5r9r-A 5r9r-Z 5r5r 14r–A 14r–Z 5r8r5r-A 5r8r5r-Z

ReaxFF 3.34 5.94 4.21 5.30 4.46 4.16 11.11 8.96
AIREBO 0.91 2.75 1.69 3.17 1.28 1.11 5.92 3.87
REBO 0.65 2.98 1.96 4.07 0.99 0.79 6.76 5.13
LCBOPI 0.91 3.39 2.21 2.31 1.20 0.90 7.22 4.97
LCBOPII 0.83 2.84 1.82 3.19 0.94 0.85 6.47 4.93

Table 6.3: Energy gain corresponding to metastable and stable structures, relative to the pristine
nanotube. 12r and 14r are optimised structures for the classical potential schemes (? = unstable).
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6.1. Our Results and Comparison with Previous DFT Calculations

Figure 6.3: Formation energies for different sizes of the periodically repeated unit cell.

XC-functional 5r9r-A 5r9r-Z 12r 5r8r5r-A 5r8r5r-Z

PBE (this work) 5.54 6.51 ? 3.92 4.98
BLYP (this work) 5.47 6.26 ? 3.97 4.77
PBE0 (this work) 6.01 6.83 ? 4.29 5.96
PW 183 5.5 6.7 7.4 – –
PBE 185a 5.67 7.11 – 3.90 6.65
PBE 185b 5.65 – – 4.06 –
PW 186a 5.6 – – 3.5 –
PW 186b 6.4 – – 4.2 –
PBE 191 – – 3.61 6.07

Table 6.4: (10,0)-CNT: Comparison of several DFT-based calculations of vacancy formation energies
E f in eV (? = unstable).

corresponds to the 12r geometry after mere relaxation from the pristine structure with one

vacancy, which amounts to a gain of∼0.5 eV. Apart from this case, there is a global consistency

among all these calculations.
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Chapter 6. Intrinsic Defects: Single and Double Vacancies on the (10,0)-CNT

Figure 6.4: Displacements (in Å) of the carbon positions induced by the most stable single and double
vacancies. The employed cell size contains to 600 C atoms. Smaller cells are indicated for illustration.
The red line serves as a guide-to-the-eye for the lattice mismatch in smaller smells.

Figure 6.5: Geometry optimization starting from the pristine nanotube after loss of one atom.
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6.2. Results using Classical Force-fields

5r9r-A d 1 d 2 d 3 θ1 d 4 θ4

PBE 1.54 1.44 1.41 105 1.39 116
ReaxFF 1.45 1.46 1.47 107 1.37 149
AIREBO 1.47 1.46 1.42 107 1.41 117

5r9r-Z d 1 d 2 ; d ′2 d 3; d ′3 θ1 ; θ ′1 d 4; d ′4 θ4

PBE 1.68 1.45; 1.43 1.41; 1.40 104; 100 1.37; 1.36 124
ReaxFF 1.50 1.45; 1.45 1.46; 1.46 109; 100 1.36; 1.36 141
AIREBO 1.66 1.46; 1.48 1.40; 1.39 105; 98 1.40; 1.40 117

Table 6.5: Single vacancy configurations. Bond distances (d ) are in Å, angles in degrees.

5r8r5r-A d 1 d 2 d 3 θ1 d 4

PBE 1.50 1.42 1.42 106 1.46
ReaxFF 1.44 1.46 1.47 108 1.42
AIREBO 1.44 1.45 1.42 107 1.40

5r8r5r-Z d 1 d 2; d ′2 d 3 ; d ′3 θ1; θ ′1 d 4

PBE 1.58 1.44; 1.43 1.41; 1.40 106; 102 1.48
ReaxFF 1.48 1.46; 1.45 1.47; 1.45 108; 102 1.45
AIREBO 1.55 1.46; 1.47 1.41; 1.40 106; 102 1.43

Table 6.6: Double vacancy configurations. Geometric characteristics as in Table 6.5.

6.2 Results using Classical Force-fields

Comparison of force-fields and DFT predictions for defective structures of graphitic surfaces

is essentially missing in the literature, apart from some regarding the REBO potentials in Ref.s

192 and187. This same potential was used to study the effect of vacancies on the mechanical

properties of CNTs. 193

Here we make a first attempt toward a systematic comparison. First, we compare geometrical

characteristics for the relevant structures found in the DFT schemes with the most com-

monly used potentials. In this respect, AIREBO gives results close to PBE, whereas significant

discrepancies are found for the single vacancy in ReaxFF.

Formation energies are given in Table 6.2. Here one can see remarkable differences, especially

for most potentials of the REBO-family, that — as already pointed out in Ref.187 — predict an

unexpected configuration (5r5r in Figure 6.6) as the lowest one of all those considered. It is a

local minimum of the potential energy surface in the other force fields and unstable in our

DFT calculations.

However, an ever more serious concern regards the kinetics. As clarified above, in our ab initio

calculations the 12r and 14r structures spontaneously reconstruct. On the contrary, in all the

classical potential schemes we have considered these reconstructions requires a complicated

path (in two-steps for the double vacancy) and a high energy barrier, as shown in Table 6.7.

This is the primary bottleneck one encounters when attempting to use these force-fields.
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Figure 6.6: Lowest-energy structure in REBO, AIREBO and LCBOPII schemes.

Force-field R(5r9r-A) R(5r9r-Z) R(5r8r5r-A) R(5r8r5r-Z)

ReaxFF 2.96 2.76 2.58 ; 1.71 2.86 ; 2.37
AIREBO 1.08 1.32 1.37 ; 0.61 1.01 ; 0.79
REBO 0.97 1.23 1.24 ; 0.41 0.88 ; 0.37
LCBOPI 1.34 1.02 1.11 ; 0.11 0.88 ; 0.71

Table 6.7: Force-field: Energy barriers (in eV) for defect reconstruction on the (10,0)-CNT. The double
vacancy reconstruction consists of two successive steps, each corresponding to the formation of one
bond. In our DFT calculations, these reconstructions are barrierless.
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Figure 6.7: Distance variation along the transformation from
the 5r9r-Z to the 5r9r-A structure (see Figure 6.1).

PBE 0.65

PBE0 0.68

PW [186] 0.45

ReaxFF 1.21 ; 0.64

AIREBO 1.85

REBO 2.60

LCBOPI 2.29

Table 6.8: Energy barrier (in
eV) for single vacancy migra-
tion from the 5r9r-Z to the
5r9r-A structure.

As shown in Figure 6.8, in the ReaxFF approach, the migration of the single vacancy is also

more complicated than in DFT-PBE and all other potentials considered here: For the latter,

the transition involves one single step whereas it is a two-step process in ReaxFF potential

implying as intermediate state the 5r5r configuration (Figure 6.6).

6.3 Elastic Properties: Young’s modulus

To make a further comparison between classical potentials and DFT-PBE, the effect of vacan-

cies on the Young’s modulus is estimated in several schemes, using the same CNT models,

namely a supercell comprising nine unit cells. This model represents the case of isolated

(non-interacting) vacancies. Only the ground states are considered for both SV and DV. The

length L optimised in the pristine nanotube is kept. The Young’s modulus under uniaxial
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6.4. Conclusions

Figure 6.8: Single vacancy migration for DFT-PBE and ReaxFF.

PBE LCBOPI LCBOPII AIREBO REBO ReaxFF

L (Å) 4.267 4.246 4.228 4.183 4.194 4.318
a1

CC (Å) 1.421 1.421 1.425 1.401 1.401 1.435
a2

CC (Å) 1.428 1.425 1.427 1.405 1.406 1.454
Y0 (GPa) 983 931 1004 988 1014 920

YSV (GPa) 947 917 990 964 990 892
∆YSV (%) 3.6 1.6 1.3 2.5 2.3 3.1
YDV-A (GPa) 966 905 963 958 988 897
∆YDV-A (%) 1.7 2.8 4.1 3.1 2.6 2.6
YDV-Z (GPa) 935 886 963 943 977 900
∆YDV-Z (%) 4.9 4.8 4.0 4.6 3.6 2.2

Table 6.9: Young’s modulus Y of the defective (10,0)-CNT and reduction relative to the pristine CNT
(∆Y ) obtained in DFT-PBE and several reactive force-fields. Also given are the values of the supercell
length (L) and of the bond lengths (dCC) in the pristine nanotube.

strain is calculated from the harmonic approximation

E (ε) = E0+
1

2
Y L Aε2,

where A = 2πr t is the effective CNT surface area (r=4.07 Å and t=3.35 Å). Because the absolute

value depends on the precise definition of the CNT surface area, the relative changes due to the

presence of vacancies are also given. As a single quantity representing a global characteristic

of the system, Y is less sensitive to the local rearrangement of the carbon bonds. Therefore,

the agreement between different schemes for the prediction of the modifications induced by

1-2 atoms loss is in general better than what we discussed above.

6.4 Conclusions

The study presented in this chapter clearly shows that the most widely used classical potentials

for carbon aggregates, from graphite to fullerenes to nanotubes to graphene, have difficulties

to represent defective nanotube structures with simple vacancies. This is especially true

because, contrary also to intuition, unreconstructed structures — with dangling bonds — are

metastable states separated by high-energy barriers from the low-energy geometries.
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7 Top-down CNT formation from
Graphene Nanoflakes

This chapter reports on on-going work aimed at gaining more insight into the mechanisms

leading to folding of graphene into nanotubes. The calculations presented here refer to a

model of 142 carbon atoms, initially arranged in a (nano)flake and eventually folded into

a tubular structure. The main results we can achieve with this model are: (i) comparison

of different metadynamics strategies, namely employing either path 122- or SPRINT 123- CVs

(see Chapter 3); and (ii) within path metadynamics, comparison of the predictions obtained

from calculations based on DFT-PBE (with and without Grimme’s corrections 89) and the

LCBOPII 111 force-field that includes van-der-Waals interactions (see Chapter 3).

7.1 Previous related calculations

No simulation of the folding of a graphene flake or a GNR into a nanotube caused by thermal

activation only has ever been attempted. However, it is worth mentioning here two compu-

tational approaches to GNR–nanotube transformations which were related to experiments

mentioned in Chapter 2. In Ref.s 66,69 classical MD using the Brenner potential 194 and a

simple reaction coordinate (distance between the edges of the CNT) were applied to simulate

the unzipping of a (8,8)-CNT at 600K to a GNR. In the absence of the template molecule, this

process found to have a barrier of about 5 eV. In Ref.68. Folding through twisting was studied

for several cases with DFT-TB based MD at room temperature. A barrier of the order of 1.5 eV/Å
was calculated for a 2.4nm-wide GNR (similar to our 238-atom flake model) transforming to a

(9,3) nanotube.

7.2 Our results

Molecular dynamics simulations were performed at 1000 K. This choice is consistent with

typical CVD temperatures and also with previous studies using SPRINT-CVs metadynamics 63

that succeeded to obtain the folding of a nanoflake into a fullerene-like cage. Computational

details are given in Appendix C.
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Chapter 7. Top-down CNT formation from Graphene Nanoflakes

Figure 7.1: Structures of (a) the 142-atom nanoflake, (b) zigzag- and (c) armchair- folded configurations.
Lx=17.9 Å, and L y=18.9 Å for the 142 C nanoflake.

Method Eflake EZ? EZ EA

PBE 0 -48 -85[-117] -91[-80]
PBE-D2 0 -59 -98[-125] -102[-89]
LCBOPII 0 -35 -93[-95] -53[-101]

Table 7.1: Energies (in meV/atom) of the (optimised) structures in Fig. 7.1. In parenthesis we report
the values obtained starting from the 238 C nanoflake.

The nanoflake model is depicted in Fig. 7.1(a). Two orthogonal folding edges can be identified:

the armchair edge leading to a zigzag-CNT (Z) (Fig. 7.1(b)) and the zigzag edge leading to an

armchair-CNT (A) (Fig. 7.1(c)). The tubular structures obtained from the 142 C flake have (8,0)

and (4,4) chiralities, whereas those generated from the 238 C flake correspond to (10,0) and

(5,5) chiralities.

The energy gain associated with folding is given in Table 7.1 for both cases. Energies are

reported per atom so as to better compare also with our calculations using a larger model

with 238 atoms. In the case of the Z-CNT, an intermediate structure (Z*) is found in which

only 2-fold coordinated atoms exists at the termination. Further bond formation (closure to

pentagons) leads to the metastable zigzag conformation.

In all calculations, folding corresponds to an important energy gain. As expected, Grimme’s

correction for dispersion energy further lowers the energy of the folded structures (by ∼1.5-

2 eV). This does not change the ranking of A and Z. Comparison with LCBOPII appears to be

size-dependent but in both cases the relative stability of the two tubular structures is inverted

with respect to DFT-PBE and DFT-PBE-D2.

Using path–metadynamics, we determined how the folding takes place and estimated the

free energy barrier∆F*, in both directions (see Table 7.2. A few snapshots along the pathway

are shown in Fig. 7.2 and Fig. 7.3, where (a) and (a’) indicate "incipient" edge-driven folding.
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7.2. Our results

Method ∆F ∗Z ∆F ∗A

PBE-D2 5 17
LCBOPII 36 41

Table 7.2: Free energy barriers (in eV) for the folding of the 142 C flake into the Z and A tubular
structures, as estimated from path-metadynamics

Neither defects nor edge reconstructions were observed. The barrier corresponds to bending

of the flake; after the first bond(s) is (are) formed, the transformation is barrierless. Folding

along the armchair-edge requires a significantly lower barrier: indeed this edge is known to be

more reactive than the zigzag-edge. We note that LCBOPII largely overestimates both these

barriers. A possible explanation for this discrepancy could come from the unusually strained

configurations that the system has to visit (transition state region) that were very different

from the fitting/training sets originally used for the construction of the potential.

(a) Z: 29.6 ps (b) Z: 34.7 ps (c) Z: 36.1 ps (d) Z: 38.0 ps (e) left (f ) right

Figure 7.2: Ab initio path-metadynamics: snapshots along the path leading the nanoflake to the zigzag
(Z) CNT and sideviews of the final structure (e,f). Time denotes the MTD-time.

(a) A: 40.0 ps (b) A: 72.7 ps (c) A: 72.9 ps (d) A: 73.2 ps (e) left (f ) right

Figure 7.3: Ab initio path-metadynamics: snapshots along the path leading the nanoflake to the
armchair (A) CNT and sideviews of the final structure (e,f). Time denotes the MTD-time.

Starting from the same nanoflake model (Fig. 7.1(a)) we also performed one metadynamics

simulation with the SPRINT CVs 123 at 1000 K. These coordinates are particularly useful in this

case, since they do not require a predetermined structure for the product and may predict

different final configurations and alternative pathways. Indeed we observed a transformation

leading to the Z-nanotube through a very different path. Relevant steps are illustrated in

Fig. 7.4. The first dramatic transformation corresponds to the closure of a 9-fold ring on one

side (Fig. 7.4(a)), after which the edges progressively approach (Fig. 7.4(b)) and defects form

and self-heal (c)-(d). The structure in (Fig. 7.4(d)) is still defective, having some non-hexagonal

rings and two undercoordinated atoms. Once quenched, it is about 2eV higher than the "ideal"

structure (Fig. 7.1(b)). This simulation will be continued also with simulated annealing. Others

at higher temperature and starting from different initial conditions are also planned. Moreover,

a separate series of metadynamics simulations using path-CVs will have to be applied to the

"transition state" region to obtain a reasonably accurate estimate of the free energy barrier. 63
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(a) (43 ps) cone

(b) (54 ps) initial fold

(c) (63 ps) healing (1)

(d) (65 ps) healing (2)

Figure 7.4: Structures (top- and side-views) along the SPRINT pathway toward the Z-nanotube.

The results presented above have provided hints on possible pathways for the folding of a

small nanoflake and estimates for the associated barrier. One interesting message can already

be derived from these preliminary calculations: the free-energy barriers to obtain tubular

structures of different chirality can be very different, and much more sensitive than the relative

energy differences.
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A MPI Implementation of SPRINT

To reduce scaling and thereby the time needed for the SPRINT calculation we parallelized

the code. An MPI communicator is used to reduce the group to the MPI size, in case more

processors than atoms are used. Between the serial and MPI SPRINT implementation, the

collective variables remain equal within printing accuracy (9 digits after the comma) during

the a molecular dynamics run as shown in Fig. A.1. Adding the SPRINT forces of course changes

the forces and therefore the evolution of the collective variables is different as can be seen in

the right figure (black curves).

1 #ifdef SPRINT_MPI
2 int mpirank , mpisize , mysize;
3 MPI_Comm mycom; // decrease mpi -size in

case nat <mpisize
4 MPI_Group mygroup , oldgroup;
5 MPI_Comm_rank(MPI_COMM_WORLD ,& mpirank);
6 MPI_Comm_size(MPI_COMM_WORLD ,& mpisize);
7 MPI_Comm_group(MPI_COMM_WORLD , &oldgroup); // create a new MPI

group
8 mysize = (mpisize >nat?nat:mpisize); // number of procs used

for computation
9 int *ranks = int_1d_array_alloc(mysize);

10 for(i=0;i<mysize;i++) ranks[i]=i; // include 0... mysize -1
11 MPI_Group_incl(oldgroup , mysize , ranks , &mygroup); // create a group based

on these ranks
12 MPI_Comm_create(MPI_COMM_WORLD , mygroup , &mycom); // create a communicator

for this group
13 int bufsize = 3*nat;
14 real *in = float_1d_array_alloc(bufsize);
15 real *buf = float_1d_array_alloc(bufsize);
16 #endif
17 [[[ ........ DO THE REST OF THE SPRINT CALCULATION ...... ]]]
18 real **D = sprint_data.cm; // diagonalized contact

matrix
19 real *lambda = sprint_data.lambda; // eigenvalues
20 rvec *deriv = colvar.myder[i_c]; // derivatives
21 #ifdef SPRINT_MPI
22 for (i=mpirank;i<nat -1;i+= mysize) { // loop -2 over cm (MPI)
23 #else
24 for (i=0;i<nat -1;i++) { // loop -2 over cm
25 #endif
26 for (j=i+1;j<nat;j++) { // loop -3 grad
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27 tmp1 = 2.*D[i][nat -1]*D[j][nat -1]; // d lambda_N / d a_ij
28 tmp2 = 0.; // d v_ii^N / d a_ij
29 for(k=0;k<nat -1;k++) { // loop -4
30 tmp2 += D[ind_sorted ][k] * (D[i][k]*D[j][nat -1] + D[j][k]*D[i][nat

-1])
31 / (lambda[nat -1]- lambda[k]);
32 } // END loop -4
33 tmp3 = tmp1*D[ind_sorted ][nat -1]+ lambda[nat -1]* tmp2; // deriv of

product lambda*v_i
34 for(ix=0;ix <3;ix++) {
35 deriv[i][ix]+= sqrtn*tmp3* sprint_data.grad[i][j][ix];
36 deriv[j][ix]-=sqrtn*tmp3* sprint_data.grad[i][j][ix];
37 }
38 } // END loop -3
39 } // END loop -2 over cm
40 #ifdef SPRINT_MPI
41 // gather data from procs
42 for(i=0;i<nat;i++) { for(j=0;j<3;j++) in[3*i+j]=deriv[i][j]; } // matrix ->

vector
43 // all CP_GROUP master -nodes need the correct result: send sum to all procs
44 MPI_Allreduce(in, buf , bufsize , MPI_DOUBLE_PRECISION , MPI_SUM , mycom);
45 for(i=0;i<nat;i++) { for(j=0;j<3;j++) deriv[i][j]=buf[3*i+j]; } // vector ->

matrix
46 // free arrays and MPI handles declared at the start of this function
47 MPI_Comm_free(& mycom); MPI_Group_free(& mygroup);
48 free_1dr_array_alloc(in);
49 free_1dr_array_alloc(buf);
50 free_1di_array_alloc(ranks);
51 #endif
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Figure A.1: The collective variables as function of the number of MD steps. On the left the values of 18
selected collective variables are shown. On the right, the difference between the different simulations
are given: plain MD (without SPRINT), adding the SPRINT bias forces and using the MPI implementation
of SPRINT.
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B Oxygen Chemisorption

B.1 Atomic Ground State Reference

Binding energies in the main text are relative to the triplet ground state of atomic oxygen and

sulfur. The energy difference between the triplet and spherical singlet is reported in Table. B.1.

xc–functional O [pseudo] O [AE] S [pseudo] S [AE]

BLYP 2.20 1.82 1.02 0.90

PBE 2.23 1.89 1.03 1.10

PBE0 5.11 4.91 2.88 2.84

Table B.1: Singlet–triplet energy splitting for oxygen and sulfur with the different functionals consid-
ered. All–electron (AE) calculations used the NWChem 195 code with the aug-cc–pVTZ basis set.

B.2 Structures and Binding Energies

Conf. CC CO CC CO

(2a)
PBE 2.20 1.39, 1.40 2.20 1.40, 1.39
BLYP 2.24 1.40, 1.41 2.24 1.41, 1.40

(2b)
PBE 2.18 1.38, 1.40 2.18 1.40, 1.38
BLYP 2.22 1.39, 1.41 2.22 1.41, 1.39

(2c)
PBE 2.16 1.36, 1.41 2.16 1.36, 1.41
BLYP 2.20 1.37, 1.42 2.20 1.37, 1.42

(2d)
PBE 1.47 1.41, 1.51 2.27 1.37, 1.39
BLYP 1.47 1.42, 1.55 2.29 1.38, 1.40

Table B.2: (10,0) CNT:2O. Comparison of some structural features and binding energies calculated
within the PBE and BLYP functional schemes. In parenthesis the difference relative to the pristine CNT.
Distances are in Å, angles in degrees. See Fig. 4.12.
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Appendix B. Oxygen Chemisorption

Figure B.1: (17,0) CNT:O. Displacements (in Å) of the C positions induced by O chemisorption.

Figure B.2: (10,0) CNT:nO (n=1-4). Structures of chemisorbed oxygen for all cases with aggregation
energy Ec < 0. Binding energies (in eV) refer to triplet oxygen. A small triangle indicates an EP.

Figure B.3: (8,4) CNT:nO (n=1-2). Structures of chemisorbed oxygen for all cases with aggregation
energy Ec < 0. Binding energies (in eV) refer to triplet oxygen. A small triangle indicates an EP.
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B.2. Structures and Binding Energies
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Figure B.5: CNT:nO binding energy and bond order correlation between PBE and ReaxFF.

Figure B.6: (10,0) CNT:nO (n=1-4). Structures of chemisorbed sulphur for all cases with aggregation
energy Ec < 0. Binding energies (in eV) refer to triplet sulphur. A small triangle indicates an EP.
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Appendix B. Oxygen Chemisorption

Conf. CC CO CC CO CC CO

(3a)
PBE 2.18 1.39, 1.40 2.27 1.40, 1.40 2.18 1.40, 1.39
BLYP 2.22 1.40, 1.41 2.32 1.41, 1.41 2.22 1.41, 1.40

(3b)
PBE 2.20 1.38, 1.40 2.27 1.40, 1.39 2.19 1.40, 1.39
BLYP 2.24 1.39, 1.41 2.31 1.41, 1.41 2.23 1.41, 1.40

(3c)
PBE 1.46 1.41, 1.51 2.35 1.37, 1.40 2.23 1.40, 1.39
BLYP 1.46 1.42, 1.54 2.37 1.38, 1.42 2.26 1.41, 1.40

(3d)
PBE 2.21 1.39, 1.40 1.54 1.49, 1.40 2.31 1.38, 1.40
BLYP 2.24 1.40, 1.41 1.53 1.52, 1.42 2.34 1.40, 1.41

(3e)
PBE 2.23 1.39, 1.39 2.24 1.37, 1.37 2.23 1.39, 1.39
BLYP 2.26 1.41, 1.41 2.25 1.38, 1.38 2.26 1.41, 1.41

(3f)
PBE 1.45 1.40, 1.53 2.28 1.37, 1.39 1.52 1.46, 1.45
BLYP 1.45 1.41, 1.57 2.31 1.38, 1.41 1.53 1.49, 1.47

Table B.3: (10,0) CNT:3O. Comparison of some structural features and binding energies calculated
within the PBE and BLYP functional schemes. In parenthesis the difference relative to the pristine CNT.
Distances are in Å, angles in degrees. See Fig. 4.12.

Conf. CC CO CC CO CC CO CC CO

(4a)
PBE 2.17 1.39, 1.40 2.25 1.40, 1.40 2.25 1.40, 1.40 2.17 1.40, 1.39
BLYP 2.21 1.40, 1.41 2.29 1.41, 1.41 2.29 1.41, 1.41 2.21 1.41, 1.40

(4b)
PBE 2.21 1.39, 1.39 2.40 1.41, 1.38 1.49 1.51, 1.40 2.18 1.40, 1.39
BLYP 2.24 1.40, 1.41 2.44 1.42, 1.39 1.49 1.55, 1.41 2.22 1.41, 1.39

(4c)
PBE 2.24 1.39, 1.39 2.26 1.37, 1.36 2.30 1.40, 1.40 2.18 1.39, 1.39
BLYP 2.27 1.40, 1.40 2.28 1.38, 1.37 2.33 1.41, 1.42 2.21 1.41, 1.40

(4d)
PBE 2.21 1.37, 1.39 1.54 1.48, 1.41 2.37 1.41, 1.40 2.18 1.40, 1.38
BLYP 2.25 1.38, 1.40 1.54 1.51, 1.42 2.40 1.43, 1.41 2.22 1.41, 1.39

(4e)
PBE 1.50 1.45, 1.46 1.57 1.43, 1.45 2.23 1.39, 1.39 2.21 1.40, 1.39
BLYP 1.50 1.47, 1.49 1.57 1.44, 1.47 2.27 1.40, 1.40 2.24 1.41, 1.40

(4f)
PBE 2.17 1.39, 1.40 2.28 1.39, 1.40 2.24 1.39, 1.39 1.54 1.46, 1.46
BLYP 2.21 1.40, 1.41 2.32 1.40, 1.41 2.28 1.41, 1.40 1.54 1.48, 1.49

(4g)
PBE 1.46 1.41, 1.51 2.36 1.36, 1.40 2.27 1.40, 1.39 1.51 1.47, 1.46
BLYP 1.45 1.42, 1.55 2.38 1.37, 1.42 2.30 1.41, 1.40 1.52 1.50, 1.48

Table B.4: (10,0) CNT:4O. Comparison of some structural features and binding energies calculated
within the PBE and BLYP functional schemes. In parenthesis the difference relative to the pristine CNT.
Distances are in Å, angles in degrees. See Fig. 4.12.
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B.2. Structures and Binding Energies

Conf. CC CO CC CO CC CO CC CO

(1a) 1.58 1.44, 1.44
(1b) 1.50 1.47, 1.47
(2a) 2.19 1.39, 1.39 2.19 1.39, 1.39
(2b) 1.56 1.43, 1.46 1.56 1.46, 1.43
(2c) 1.50 1.45, 1.47 1.54 1.43, 1.46
(3a) 2.18 1.39, 1.39 2.29 1.39, 1.39 2.19 1.39, 1.39
(3b) 2.19 1.39, 1.39 2.30 1.39, 1.40 2.21 1.39, 1.38
(3c) 2.23 1.38, 1.39 2.35 1.40, 1.36 1.47 1.52, 1.41
(3e) 2.24 1.39, 1.39 2.21 1.38, 1.38 2.24 1.39, 1.39
(4a) 2.17 1.39, 1.39 2.28 1.39, 1.39 2.28 1.39, 1.39 2.17 1.39, 1.39
(4b) 2.22 1.38, 1.39 2.41 1.40, 1.38 1.50 1.51, 1.40 2.18 1.39, 1.39
(4e) 1.51 1.45, 1.46 1.57 1.43, 1.45 2.24 1.39, 1.39 2.21 1.39, 1.39

Table B.5: (17,0) CNT:nO. Distances for the selected structures of the main text as Table 1.

Conf. CC CO CC CO

(2a)
PBE 2.20 1.39, 1.40 2.20 1.40, 1.39
ReaxFF 2.24 1.36, 1.37 2.24 1.37, 1.36

(2b)
PBE 2.18 1.38, 1.40 2.18 1.40, 1.38
ReaxFF 2.26 1.39, 1.37 2.26 1.37, 1.39

(2c)
PBE 2.16 1.36, 1.41 2.16 1.36, 1.41
ReaxFF 2.32 1.38, 1.37 2.32 1.38, 1.37

(2d)
PBE 1.47 1.41, 1.51 2.27 1.37, 1.39
ReaxFF 1.51 1.37, 1.42 2.27 1.35, 1.42

Table B.6: (10,0) CNT:2O. Comparison of some structural features and binding energies calculated
within the PBE and BLYP functional schemes. In parenthesis the difference relative to the pristine CNT.
Distances are in Å, angles in degrees. Structures are in Fig. 4.24.
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Appendix B. Oxygen Chemisorption

Conf. CC CO CC CO CC CO

(3a)
PBE 2.18 1.39, 1.40 2.27 1.40, 1.40 2.18 1.40, 1.39
ReaxFF 2.24 1.36, 1.37 2.35 1.37, 1.37 2.24 1.37, 1.36

(3b)
PBE 2.20 1.38, 1.40 2.27 1.40, 1.39 2.19 1.40, 1.39
ReaxFF 2.25 1.39, 1.37 2.34 1.36, 1.38 2.23 1.37, 1.37

(3c)
PBE 1.46 1.41, 1.51 2.35 1.37, 1.40 2.23 1.40, 1.39
ReaxFF 1.41 1.37, 1.41 2.40 1.33, 1.47 2.24 1.37, 1.38

(3d)
PBE 2.21 1.39, 1.40 1.54 1.49, 1.40 2.31 1.38, 1.40
ReaxFF 2.24 1.36, 1.38 1.53 1.52, 1.34 2.35 1.35, 1.44

(3e)
PBE 2.23 1.39, 1.39 2.24 1.37, 1.37 2.23 1.39, 1.39
ReaxFF 2.23 1.39, 1.39 2.24 1.37, 1.37 2.23 1.39, 1.39

(3f)
PBE 1.45 1.40, 1.53 2.28 1.37, 1.39 1.52 1.46, 1.45
ReaxFF 1.47 1.34, 1.49 2.32 1.35, 1.40 1.52 1.37, 1.42

Table B.7: (10,0) CNT:3O. Comparison of some structural features and binding energies calculated
within the PBE and BLYP functional schemes. In parenthesis the difference relative to the pristine CNT.
Distances are in Å, angles in degrees. Structures are in Fig. 4.24.

Conf. CC CO CC CO CC CO CC CO

(4a)
PBE 2.17 1.39, 1.40 2.25 1.40, 1.40 2.25 1.40, 1.40 2.17 1.40, 1.39
ReaxFF 2.23 1.36, 1.37 2.34 1.37, 1.37 2.34 1.37, 1.37 2.23 1.37, 1.36

(4b)
PBE 2.21 1.39, 1.39 2.40 1.41, 1.38 1.49 1.51, 1.40 2.18 1.40, 1.39
ReaxFF 2.25 1.37, 1.37 2.54 1.52, 1.32 1.42 1.48, 1.34 2.33 1.38, 1.36

(4c)
PBE 2.24 1.39, 1.39 2.26 1.37, 1.36 2.30 1.40, 1.40 2.18 1.39, 1.39
ReaxFF 2.30 1.38, 1.39 2.26 1.37, 1.37 2.35 1.39, 1.37 2.22 1.37, 1.37

(4d)
PBE 2.21 1.37, 1.39 1.54 1.48, 1.41 2.37 1.41, 1.40 2.18 1.40, 1.38
ReaxFF 2.30 1.40, 1.36 1.92 1.38, 1.39 2.70 1.28, 1.59 2.30 1.38, 1.36

(4e)
PBE 1.50 1.45, 1.46 1.57 1.43, 1.45 2.23 1.39, 1.39 2.21 1.40, 1.39
ReaxFF 1.64 1.40, 1.38 1.76 1.36, 1.38 2.26 1.36, 1.37 2.23 1.37, 1.36

(4f)
PBE 2.17 1.39, 1.40 2.28 1.39, 1.40 2.24 1.39, 1.39 1.54 1.46, 1.46
ReaxFF 2.24 1.36, 1.37 2.35 1.36, 1.36 2.29 1.37, 1.36 1.84 1.36, 1.44

(4g)
PBE 1.46 1.41, 1.51 2.36 1.36, 1.40 2.27 1.40, 1.39 1.51 1.47, 1.46
ReaxFF 1.41 1.37, 1.41 2.45 1.34, 1.46 2.34 1.37, 1.37 1.50 1.52, 1.40

Table B.8: (10,0) CNT:4O. Comparison of some structural features and binding energies calculated
within the PBE and BLYP functional schemes. In parenthesis the difference relative to the pristine CNT.
Distances are in Å, angles in degrees. Structures are in Fig. 4.24.
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B.2. Structures and Binding Energies

Conf. CC CO CC CO CC CO CC CO

(1a) 1.76 1.39, 1.39
(1b) 1.47 1.52, 1.39
(2a) 2.23 1.36, 1.37 2.23 1.37, 1.36
(2b) 1.80 1.38, 1.38 1.80 1.38, 1.38
(2c) 1.50 1.47, 1.37 1.71 1.37, 1.40
(3a) 2.24 1.36, 1.37 2.37 1.37, 1.37 2.24 1.37, 1.36
(3b) 2.23 1.37, 1.37 2.37 1.38, 1.36 2.26 1.36, 1.39
(3c) 2.24 1.38, 1.36 2.38 1.45, 1.34 1.42 1.42, 1.37
(3e) 2.31 1.38, 1.39 2.24 1.38, 1.38 2.31 1.39, 1.38
(4a) 2.24 1.36, 1.37 2.38 1.37, 1.37 2.38 1.37, 1.37 2.24 1.37, 1.36
(4b) 2.26 1.38, 1.36 2.55 1.51, 1.32 1.43 1.49, 1.35 2.33 1.37, 1.36
(4e) 1.51 1.50, 1.37 1.74 1.36, 1.39 2.27 1.36, 1.37 2.23 1.37, 1.36

Table B.9: (17,0) CNT:nO - ReaxFF. Distances for the selected structures of the main text as Table 1.

Conf. CC CO CC CO CC CO CC CO

(S-1a) 1.56 1.87, 1.87
(S-1b) 1.50 1.87, 1.87
(S-2a) 1.50 1.86, 1.87 1.50 1.87, 1.86
(S-2b) 1.50 1.84, 1.88 1.50 1.88, 1.84
(S-2c) 1.50 1.85, 1.88 1.53 1.84, 1.88
(S-3a) 1.50 1.84, 1.87 1.50 1.84, 1.84 1.50 1.87, 1.84
(S-3b) 1.49 1.86, 1.87 1.50 1.85, 1.85 1.49 1.87, 1.86
(S-3c) 1.50 1.85, 1.88 1.53 1.83, 1.83 1.50 1.88, 1.85
(S-3d) 1.50 1.85, 1.88 1.53 1.84, 1.88 1.50 1.87, 1.85
(S-3e) 1.50 1.85, 1.87 1.50 1.84, 1.84 1.50 1.87, 1.85
(S-4a) 1.50 1.84, 1.87 1.50 1.83, 1.84 1.50 1.84, 1.83 1.50 1.87, 1.84
(S-4b) 1.49 1.84, 1.87 1.50 1.84, 1.84 1.50 1.85, 1.83 1.49 1.87, 1.86
(S-4c) 1.49 1.85, 1.88 1.49 1.85, 1.86 1.49 1.86, 1.85 1.49 1.88, 1.85
(S-4d) 1.49 1.82, 1.87 1.51 1.84, 1.84 1.51 1.84, 1.84 1.49 1.87, 1.82
(S-4e) 1.49 1.83, 1.87 1.50 1.84, 1.83 1.50 1.84, 1.83 1.50 1.87, 1.85

Table B.10: (10,0) CNT:nS. Distances for selected structures of the main text as in Table 1.
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B.3 Building up the Maps

SWNT bond di
c c ΘB BO d f

c c [conf.] pred.

(8,0) Z 1.46 58 1.25 2.16 [ET] ET

A 1.43 0 1.31 1.57 [EP] EP

(10,0) Z 1.45 46 1.25 2.15 [ET] ET

A 1.43 0 1.31 1.57 [EP] EP

(14,0) Z 1.44 33 1.26 2.12 [ET] ET

A 1.44 0 1.30 1.57 [EP] EP

(16,0) Z 1.45 29 1.26 2.12 [ET] EP

A 1.44 0 1.29 1.57 [EP] EP

(17,0) Z 1.45 27 1.26 1.76 [EP/ET] EP

A 1.44 0 1.29 1.47 [EP] EP

(19,0) Z 1.45 24 1.26 1.76 [EP/ET] EP

A 1.44 0 1.29 1.57 [EP] EP

Table B.11: (ReaxFF) Case n=1 of different nanotubes: Z=zigzag, A=axial, di
c c=BL prior to chemisorp-

tion (pristine tube), d f
c c=BL in the final configuration (ET or EP), pred=prediction from limit-values

FROM bond di
c c ΘB BO TO d f

c c [conf.] pred.

1a Z 1.44 51 1.30 2a 2.24 [ET] ET; EP

1a Z 1.48 56 1.19 2b 2.26 [ET] ET; ET

1a Z 1.41 53 1.37 2c 2.32 [ET] ET; EP

1a A 1.41 28 1.37 2d 1.51 [EP] EP; EP

1b Z 1.50 55 1.12 2d 2.27 [ET] ET; ET

1b Z 1.43 47 1.33 2e 1.76 [ET/EP] ET; EP

1b A 1.42 1 1.34 2h 1.55 [EP] EP; EP

1b A 1.43 4 1.32 2i 1.47 [EP] EP; EP

1b Z 1.45 43 1.26 2j 2.12 [ET] ET; EP

2a Z 1.43 50 1.32 3a 2.24 [ET] ET; EP

2a Z 1.49 54 1.17 3b 2.25 [ET] ET; ET

2a A 1.39 16 1.42 3c 1.41 [EP] EP; EP

2a Z 1.39 55 1.42 3d 1.53 [EP] ET; EP

2b Z 1.44 52 1.29 3b 2.23 [ET] ET; EP

2c Z 1.43 52 1.32 3d 2.24 [ET] ET; EP

2d Z 1.45 53 1.24 3c 2.24 [ET] ET; ET

2d A 1.44 9 1.29 3f 1.52 [EP] EP; EP

2e A 1.43 9 1.30 3f 1.47 [EP] EP; EP

2e Z 1.45 49 1.25 3g 2.23 [ET] ET; EP

2h Z 1.49 58 1.16 3f 2.32 [ET] ET; ET

3a Z 1.43 50 1.32 4a 2.23 [ET] ET; EP

3c Z 1.43 52 1.31 4b 2.33 [ET] ET; EP

3g Z 1.48 57 1.19 4c 2.30 [ET] ET; ET

3g Z 1.45 50 1.26 4e 2.23 [ET] ET; EP

Table B.12: ReaxFF - Data for the map.
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FROM bond di
c c ΘB BO TO d f

c c [conf.] pred.

1a Z 1.46 32 1.25 2a 2.23 [ET] ET; EP
1a Z 1.45 32 1.27 2b 1.80 [ET/EP] ET; EP
1a A 1.43 4 1.30 2c 1.50 [EP] EP; EP
1b Z 1.43 30 1.25 2c 1.71 [ET/EP] EP; ET
2a Z 1.42 34 1.33 3a 2.24 [ET] ET; EP
2a Z 1.48 35 1.17 3b 2.26 [ET] ET; ET
2a A 1.39 15 1.42 3c 1.42 [EP] EP; EP
2b Z 1.45 33 1.26 3b 2.23 [ET] ET; EP
2b A 1.43 8 1.31 3e 2.24 [ET] EP; EP
2c Z 1.43 40 1.25 3e 2.31 [ET] ET; EP
3a Z 1.42 34 1.34 4a 2.24 [ET] ET; EP
3a A 1.39 16 1.43 4b 1.43 [EP] EP; EP

Table B.13: (17,0):nO - (ReaxFF) Data for the map as in the tables above.

FROM bond di
c c ΘB BO TO d f

c c [conf.]

(8,0)
n=0 A 1.42 0 1.31 S-1a 1.50 [EP]

Z 1.43 57 1.21 S-1b 2.19 [EP]
(10,0)

n=0 A 1.42 0 1.29 S-1a 1.50 [EP]
Z 1.43 46 1.23 S-1b 1.56 [EP]

S-1a Z 1.49 56 1.01 S-2i 2.48 [ET]
S-1a Z 1.41 47 1.37 S-2c 1.54 [EP]
S-1a A 1.41 1 1.32 S-2b 1.50 [EP]
S-1b A 1.47 6 1.37 S-2i 1.48 [EP]
S-2a A 1.40 1 1.41 S-3a 1.50 [EP]
S-2a A 1.41 5 1.35 S-3b 1.49 [EP]
S-2b A 1.40 4 1.37 S-3a 1.50 [EP]
S-3a A 1.40 3 1.28 S-4a 1.50 [EP]

Table B.14: (10,0):nS - Data for the map as in the tables above.

93





C Details of the Calculations

Ab Initio Calculations The main part of our DFT calculations rely on the CPMD code 97 using

Martins-Troullier pseudopotentials 94 and a plane-wave basis set. PBE0 (B3LYP) calculations

use the PBE (BLYP) pseudopotential so that the functional variation in the core-valence

interaction is neglected. The results on oxygen, isoelectronic species and vacancies were

obtained with a plane-wave cutoff of 100 Ry, whereas the results on hydrogen chemisorption

and the folding were obtained with a cutoff of 55 Ry. For the total density a four times higher

cutoff was used. Bond orders in Sec. 4.2 and projections for charge transfer in Ch. 5 were

computed using the Slater TZ2Pfc (triple zeta frozen core 2-polarization) basis functions. 196

Mulliken populations in Sec. 4.1 were computed by projection on the pseudo atomic orbitals.

Unless stated otherwise, all calculations were done using the Γ-point only of the corresponding

Brillouin zone and considering only the lowest spin-multiplicity. The DOS figures shown

in Chapter 4 were constructed using a 9 k-point Monkhorst-Pack grid 197 and unoccupied

levels were shifted to match the PBE0 gap. Geometries were optimized using the quasi-

Newton limited-memory Broyden-Fletcher-Goldfarb-Shanno method 198 until all nuclear

gradients were less than 10−4 Ha/Bohr. For the computation of frequencies associated with

the NOx molecules on the CNT surface we consider only the partial Hessian associated with

the nitrogen and oxygen atoms, neglecting possible off-diagonal elements. This choice is

motivated by the fact that the interaction with the adducts is not of chemical nature, so that

the effect of this approximation may be expected to be minimal. The periodic images in the

isolated system calculations (for hydrogen chemisorption and folding) were decoupled using

Hockney’s Poisson solver 199 ensuring a vacuum between the molecules and cell edges of at

least 10 Å.

All-electron calculations were performed with NWChem. 195 For hydrogen chemisorption

we used the meta-hybrid M06 functional 200 with the aug-cc-pVDZ basis set for all atoms.

The calculations of the singlet-triplet energy differences in Sec. B.1 were computed using the

aug-cc-pVTZ basis set. Geometries were optimized using the "tight" settings in NWChem,

corresponding to a maximum gradient of 1.5 ·10−5 Ha/bohr.

For NOx , PBE-D2 calculations of zigzag-CNTs for Fig. 5.3 were made with Quantum Espresso. 201

These calculations used ultrasoft van-der-Bilt pseudopotentials 131 with a plane-wave expan-

sion up to 25 Ry (200 Ry for the density), Methfessel-Paxton 202 smearing of the occupation
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numbers with a width of 0.01 Ry (i.e. similar to the methods in Ref.162). We used a double unit

cell (Lx ≈ 8.5 Å) with an 8×1×1 Monkhorst-Pack k-point grid. Geometries were optimized

using the same scheme and criteria as for CPMD calculations described earlier.

Unless mentioned otherwise, the unit cells of our considered CNTs contain 36 rings for the

(n,0) CNTs, and 336, 364 and 728 atoms for the (8,4), (6,5) and (12,10) CNTs respectively. Except

for the calculations of Young’s moduli, the unit cell is kept fixed at the value of the pristine

CNT to facilitate total energy comparisons. Reference energies of the atoms and molecules

are computed in the same cell.

Classical Calculations Calculations with REBO, AIREBO and LCBOP were done using the

LAMMPS 203 code. The Reax code, kindly provided by prof. Adri van Duin, was used for calcu-

lations with ReaxFF. LCBOPII calculations were done with the Stamp code, kindly provided by

dr. Nicolas Pineau of the Alternative Energies and Atomic Energy Commission (CEA) in France.

Geometries for classical potentials were optimized to the same level as our ab initio results

(maximum gradient of 10−4 Ha/Bohr) using the conjugate-gradient method in LAMMPS and

Reax, and steepest-descent in the Stamp code.

Rare Events Static barriers were evaluated using the nudged elastic band method with a

climbing image. The NEB implementation for CPMD was provided by gNEB. 204

Temperature in our molecular dynamics (MD) simulations is controlled using a Nosé-Hoover

chain thermostat. 104 The equations of motion are integrated using the velocity Verlet algorithm

with a timestep of 3 atomic units for ab initio MD and 0.2 fs for classical MD. In the biased

Car-Parrinello-MD simulations, the energy is quenched to the Born-Oppenheimer surface

every 2000 time steps.

Finite temperature barriers computed with metadynamics used the PLUMED 205 code. A set of
14 frames was used to define the folding path in the path-CVs (so that 1≥ s ≤ 14). Starting from
a perfectly flat sample, reference frames were generated from the parametric transformation
(x , y , 0)→ (x , y sinτi , y cosτi ), where τi = 2θi

x−xC M
Lx

with 0≥ θi ≥π chosen such that sequen-
tial frames are equidistant under the l 2-metric of the path-CVs. The perpendicular direction
(z ) is restricted by an additional spring force to prevent further unwanted exploration in the
direction perpendicular to the constructed path. All atoms are used in the definition of the
SPRINT coordinates, while the bias during the metadynamics was applied to every tenth CV
including the highest and lowest eigenvalues.
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Atomic Oxygen Chemisorption on Carbon Nanotubes Revisited with Theory and
Experiment, J. Phys. Chem. C 117, 1948 2013

• W. Andreoni, A. Curioni, J. M. H. Kroes, F. Pietrucci and O. Gröning, Exohedral
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