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Types of draft tube vortex ropes 
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Low Discharge : Co-rotating swirl               High Discharge : Counter-Rotating Swirl 
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Full load draft tube surge - fundamentals 
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■ Vortex volume depends on: 
■ More discharge -> more swirl -> bigger volume 
■ Lower tail water level -> lower pressure in draft tube -> bigger  volume 

■ Self excitation mechanism via positive damping from mass flow gain factor ? 
 

C = - ∂V/∂HDT  Cavitation compliance 

χ = - ∂V/∂Q  Mass flow gain factor 

1D-model of power plant for  
system stability analysis 
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Outline 

■Previous Work 
■ Steady state methods to determine basic model parameters 
■ 2D unsteady isolated draft tube model – assuming DT inlet profiles 

■ Free oscillation – Numerical parameter studies 
■ Response on external excitation – Parameter identification and stability studies 

■Axisymmetric transient coupled draft tube and runner segment simulation 
■ Further auto-excitation mechanism for small vortex rope 
■ Regular cycles with total collapse of vortex rope 

■Conclusions on numerical modelling influence factors in draft tube full load surge 
■ Nonlinear effects well modelled by CFD including runner 

■Outlook and discussion 
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Focus on CFD Methods to determine vortex rope dynamics 
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 Francis full-load surge mechanism – the object 

medium-head Francis turbine 

CFD done in 350 mm model scale 

point used for example 
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Basic parameters of full load vortex rope from steady state CFD 
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Mass flow gain and cavitation compliance under steady conditions 

influence of discharge Q 
⇒  mass flow gain χ 

influence of DT pressure 
⇒ compliance CC 
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■Some improvement obtained by mesh refinement on runner trailing edge 
■ Smaller vortex rope size coincides better with observations 



1DOF Free oscillator numerical experiments 
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■ Typical decaying free oscillation, slightly nonlinear with high amplitudes 

Frequency, damping ratio 
CC: Cavitation compliance  
I: Inertia of DT flow 
R: Friction coefficient 
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Unsteady simulations with excitation by Q1 and p2 
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Parameter identification from response of system  

excitation  
Q1(t), H2(t) 

system response 
V(t), Q2(t) 

H2(t) Q1(t) 

V(t) Q2(t) 
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Response on chirp excitation: Fluctuation around average size 
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Good identification of lumped parameters 

excitation  
Q1(t), H2(t) 

system response 
V(t), Q2(t) 
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Obtaining model parameters from system response  
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■Set of parameters for lumped parameter model  
■ To be used in system simulations and stablity analysis 

■ Extended 1D-model: 
■ Vortex Volume depends on both Q1 and Q2 

■ Vortex Volume depends on local head Hc, linked 
to inlet and outlet by simple "pipes": 
 

(I)    H1 – Hc = R1* Q1 + I1*dQ1/dt  
 

(II)  Vc = - CC⋅Hc - χ⋅(κ⋅Q1(t-td) + (1- κ)⋅Q2) 
 

(III)    Hc – H2 = R2*Q2 + I2*dQ2/dt  
 

■ CC: Cavitation compliance  
■ χ : Mass flow gain factor  
■ κ : Portion of mass flow factor acting on inlet 

discharge Q1, (1- κ) on Q2  
■ td : Time delay between Q1 -> Vc 

 



Formerly identified numerical shortcomings solved 
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Coupled volume fraction solution solves conservation inconsistency 
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■ Limitation to small timesteps (512 per 

estimated period) can be released 

■ Free oscillation frequency slightly 
changed from dt > 1 / 64 fn 

■ Coarser mesh gives only slightly 
higher frequency  (3%) 

■ Inlet swirl uncertainty has a much 
bigger influence 

Numerics ts per 
period 

Mesh refinement Frequen
cy 

Ratio αQV 

dV/dT : Qdiff 

1 ms, CFX12.1, segregated multiphase 1024 Fine (1mm) 1.20 Hz 0.987 

1 ms, CFX14.5, segregated multiphase 1024 Fine (1mm) 1.20 Hz 0.995 

1 ms, CFX14.5, coupled multiphase 1024 Coarse (3mm) 1.24 Hz 1.00 

4 ms, CFX14.5, coupled multiphase 256 Coarse (3mm) 1.24 Hz, 0.99 

8 ms, CFX14.5, coupled multiphase 128 Coarse (3mm) 1.235 Hz 0.985 

16 ms, CFX14.5, coupled multiphase 64 Coarse (3mm) 1.22 Hz 0.97 

32 ms, CFX14.5, coupled multiphase 32 Coarse (3mm) 1.16 Hz 0.96 
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New Measurements :Pressure at the draft tube cone 
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Operating condition: OP1 

PC1 

PC2 

■Highly nonlinear behavior 
■ Pressure peak indicates total collapse of DT vortex – as reported from observation 
■ Cyclic phenomenon, average frequency 3.33 Hz, period 0.3 s 
■ Individual peak-to peak cycles last from 0.275 to 0.312 s (~12.5%) 
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Numerical investigation coupling runner and draft tube 

■Coupled simulation by Chirkov et al, 2012 
■ 1D acoustic model of penstock  
■ 3D model of 1 WG + RN passage + Draft Tube 
■ Periodic but nonlinear behaviour obtained  
■ No experimental comparison 

 

■Application to the present study case 
■ No penstock model to begin with: QRunner = const 
■ Runner channel with cylindrical velocity components 
■ Angular segment: 1 Runner channel passage (22.5°) + DT 
■ Transient rotor stator interface –  

■ Best conservation properties and pressure feedback 
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Pressure fluctuations obtained in coupled CFD 
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Existence of instability mechanism regardless of Q1 fluctuation 
Boundary Condition Inlet Cylindrical velocity components, flow angle from GV-RN simulation, Q1=const 

Interface RN-DT Transient Rotor-Stator 

Outlet Parabolic pressure profile according to swirl - Stable 

Wall Smooth walls, No slip 

CFD Setup Domain RN: 1 channel, standard mesh (220.000 elements) 
DT: axisymmetric segment (22.5°) – inner pinch cut out (2mm), (480.000 elements) 

Turbulence Model k-omega SST 

Multiphase Model Homogeneous Model 

Mass Transfer Model Rayleigh Plesset Cavitation model (CFX standard), Coupled multiphase solver 

Time Scale Control Physical Timescale, 1.125° of runner revolution 

Advection Scheme High Resolution 

Convergence Criteria Res.Max <= 1E-4, 10 coefficient loops limites, mostly achieves 3e-4 ResMax 

Simulation duration One cycle of instability, Numerical issues after infinite pressure peak 

■Good agreement ! 
■ Cycle well reproduced by 

simple setup with Q1=const 

■Possible shift by including 
system 
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Further comparisons of measurements and simulation 

■Estimate VC based on pressure fluctuations measured close to rope (HC) 
■ Assumption: Q1 fluctuations much smaller than Q2 fluctuations 
■ dVC/dt = Q2 – Q1 = (1+a) Q’2 with |a| <<1 
■ dQ2/dt = (Hc – H2 - R2*Q2 ) / I2 

■ Observation: «Slender, unstable rope, grows & disappears in regular cycles» 
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Approximative Integration of vapor volume from pressure Hc 
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■No perfect fit obtained yet, more thorough parameter fitting to follow 
■ Include upstream part into model 
■ Simplistic model consistent with Volume from CFD simulation 
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What is the mechanism behind it ?  

Pressure at cone level 
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Influence of DT pressure fluctuations into the runner flow ? 

Swirl at DT Inlet 

■Correlation of pressure and runner outlet swirl  
■ Possible influence of cavitation on runner flow ? 
■ Trailing edge separation with cavitation ? 

■To be further investigated 
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Conclusions 

■Parameter identification from small fluctuations around average value  
■ Using decoupled approach, Velocity inlet profiles interpolated  
■ Presented in 2010, some numerical improvements meanwhile  
■ Good prediction of frequencies of pulsations  

■CFD simulations coupling runner and draft tube reproduce cyclic collapse of rope 
■ Influence of upstream impedance and compressibility to be included in future studies 

 

■Further experimental and numerical investigations: HYPERBOLE 
■ EU-Funded project focussing on integration of new renewables into the networks 
■ Role of hydraulic energy to provide even more balancing power 

 

■Thank you for listening ! Time for questions ! 
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