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Abstract

Cortical neurons continuously transform sets of incoming spike trains into output spike trains.

This input-output transformation is referred to as single-neuron computation and constitutes

one of the most fundamental process in the brain. A deep understanding of single-neuron

dynamics is therefore required to study how neural circuits support complex behaviors such

as sensory perception, learning and memory.

The results presented in this thesis focus on single-neuron computation. In particular, I

address the question of how and why cortical neurons adapt their coding strategies to the

statistical properties of their inputs. A new spiking model and a new fitting procedure are

introduced that enable reliable nonparametric feature extraction from in vitro intracellular

recordings. By applying this method to a new set of data from L5 pyramidal neurons, I found

that cortical neurons adapt their firing rate over multiple timescales, ranging from tens of

milliseconds to tens of second. This behavior results from two cellular processes, which are

triggered by the emission of individual action potentials and decay according to a power-law.

An analysis performed on in vivo intracellular recordings further indicates that power-law

adaptation is near-optimally tuned to efficiently encode natural inputs received by single

neurons in biologically relevant situations. These results shade light on the functional role of

spike-frequency adaptation in the cortex.

The second part of this thesis focuses on the long-standing question of whether cortical neu-

rons act as temporal integrators or coincidence detectors. According to standard theories

relying on simplified spiking models, cortical neurons are expected to feature both coding

strategies, depending on the statistical properties of their inputs. A model-based analysis

performed on a second set of in vitro recordings demonstrates that the spike initiation dynam-

ics implements a complex form of adaptation to make cortical neurons act as coincidence

detectors, regardless of the input statistics. This result indicates that cortical neurons are

well-suited to support a temporal code in which the relevant information is carried by the

precise timing of spikes.

The spiking model introduced in this thesis was not designed to study a particular aspect

of single-neuron computation and achieves good performances in predicting the spiking

activity of different neuronal types. The proposed method for parameter estimation is efficient
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Abstract

and only requires a limited amount of data. If applied on large datasets, the mathematical

framework presented in this thesis could therefore lead to automated high-throughput single-

neuron characterization.

Keywords: Single-neuron computation – Spike-frequency adaptation – Adaptive coding –

Spiking-neuron model – Patch-clamp recordings – Parameter estimation
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Riassunto

Il sistema nervoso centrale è composto da un elevato numero di neuroni che, connessi tra loro,

processano, codificano e trasmettono informazioni sotto forma di segnali elettrici chiamati im-

pulsi nervosi. Generalmente un neurone è costituito da tre parti funzionali distinte: i dendriti,

il soma e l’assone. I dendriti ricevono gli impulsi nervosi in entrata e li dirigono verso il soma

dove sono trasformati in una serie di impulsi di uscita che, a loro volta, vengono trasmessi

lungo l’assone a migliaia di altri neuroni. La trasformazione di impulsi nervosi effettuata da

parte di singoli neuroni, comunemente chiamata calcolo neurale, è uno dei processi cerebrali

più importanti e costituisce l’oggetto principale di questo studio. In particolare, questa tesi

verte sui principi computazionali, i meccanismi biologici e le ragioni per cui il calcolo e la

codifica di informazioni neurali si adattano in funzione delle proprietà statistiche degli impulsi

nervosi di entrata.

Nella prima parte di questa tesi, viene presentato un nuovo modello matematico capace di

predire con grande precisione temporale l’emissione di impulsi nervosi da parte di singoli

neuroni. I risultati ottenuti applicando questo modello matematico a dati ottenuti tramite

esperimenti elettrofisiologici eseguiti in vitro indicano che i neuroni corticali piramidali adat-

tano il loro comportamento su più scale temporali, comprese tra il millisecondo e la decina

di secondi. Questo fenomeno è originato da due processi cellulari attivati dall’emissione di

singoli impulsi nervosi e il cui decadimento segue una legge di potenza. Tramite un’analisi

spettrale di dati sperimentali ottenuti in vivo, viene inoltre dimostrato che l’adattamento

neurale basato su una legge di potenza permette la codifica ottimale di stimoli ricevuti da

singoli neuroni corticali in condizioni naturali. Globalmente, questi risultati dimostrano il

ruolo dell’adattamento neurale nella corteccia cerebrale.

La seconda parte di questa tesi ha come scopo quello di capire se i neuroni corticali operino

come integratori di impulsi nervosi asincroni o come rilevatori di impulsi nervosi tempo-

ralmente coincidenti. Secondo i modelli standard di dinamica neurale, i neuroni corticali

adottano l’una o l’atra modalità in funzione delle proprietà statistiche degli impulsi nervosi

afferenti. Un’analisi basata su risultati ottenuti usando un nuovo modello matematico e un

nuovo set di dati sperimentali rivela che la complessa dinamica sottostante la generazione di

impulsi neurali implementa una forma di adattamento che, indipendentemente dai segnali in

entrata, forza i neuroni ad agire come rilevatori di coincidenza temporale. Indirettamente,
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Abstract

questo risultato indica che, nella corteccia cerebrale, l’informazione neurale è rappresentata

dalla precisa sequenza temporale con la quale gli impulsi nervosi vengono emessi.

Le proprietà elettrofisiologiche e computazionali dei neuroni possono variare notevolmente

a seconda del tipo cellulare e dell’area cerebrale in questione. Essendo robusti e flessibili, i

modelli e i metodi matematici presentati in questa tesi potranno in futuro essere impiegati

al fine di caratterizzare e classificare automaticamente i dati ottenuti mediante esperimenti

elettrofisiologici.

Parole chiave: Modello matematico di dinamica neurale – Calcolo e adattamento neurale –

Informazione neurale – Registrazioni intracellulari da singoli neuroni – Estrazione di parametri

da dati sperimentali
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1 Introduction

The brain is composed of a large number of neurons that communicate between each others

by means of short electrical pulses called action potentials or spikes. Since neurons are the

fundamental building blocks of the central nervous system, it is of crucial importance to

understand their electrical properties and the way in which they process information. Single-

neurons continuously transform incoming spike trains into output spike trains, which are

then transmitted to neighboring neurons. This input-output transformation is often referred

to as single-neuron computation and is one of the most fundamental process occurring in the

brain.

The main goal of this thesis is to investigate single-neuron computation by means of accurate

mathematical models capable of describing the single-neuron response as it is observed

experimentally. Rather then modeling in great detail all of the biophysical processes known to

occur in single neurons, the applied strategy is to keep the mathematical models as simple as

possible in order to identify and understand the fundamental principles underlying single-

neuron computation. In particular, a central aim of this thesis is to understand how single

neurons adapt their coding strategy to the statistical properties of the incoming signals.

This Introduction is divided in three sections and reviews some important results about the

electrical properties of single-neurons, sensory adaptation and single-neuron adaptation.

1



Chapter 1. Introduction

1.1 Basic notions

1.1.1 The brain’s fundamental building blocks

Neurons are highly specialized cells and constitute the fundamental building blocks of the

central nervous system. Like all the other cells, neurons are enclosed by a lipid bilayer, which

forms a membrane impermeable to ions. The electrical properties of neurons result from

specific protein complexes called ion-pumps and ion-channels, which are embedded into the

cell membrane and through which ions flow generating membrane currents (Fig. 1.1a). The

most important ions underlying these currents are: sodium (Na+), potassium (K+), calcium

(Ca2+) and chloride (Cl−) (Dayan and Abbott, 2001).

Ion-pumps actively move specific ions inside and outside the cell (Fig. 1.1a). As a result,

intracellular and extracellular ion concentrations differ creating both a chemical and an

electrical gradient across the cell membrane. The sum of all the electrical gradients generated

by different ions is called membrane potential and its temporal evolution constitutes one of

the most relevant signals in the brain. Typically, there is an excess of positive charges outside

the cell that results in a negative membrane potential of around -70 mV. During an action

potential, the membrane potential transiently rises to around +50 mV and then, after one or

two milliseconds, returns to its normal values (Dayan and Abbott, 2001). In contrast to small

membrane potential fluctuations, action potentials are actively transmitted to neighboring

neurons.

Chemical and electrical gradients counteract each others by moving ions in opposite directions.

A dynamic equilibrium between inwards and outwards ion-fluxes is achieved at a specific

membrane potential E , known as reversal potential. According to the Nernst equation, the

specific value of E is proportional to the logarithm of the ratio between the extracellular and

the intracellular concentration of a positively charged particle, as well as to the temperature of

the system (Kandel et al., 2000). Since different ions have different concentrations, reversal

potentials are ion-dependent. For example, Na+ and Ca2+ are much more concentrated

outside than inside the cell. Consequently, their reversal potentials ENa ≈+70 mV and ECa ≈
+140 mV are positive. Conversely, K+ is more concentrated inside the cell and its reversal

potential EK ≈−90 mV is negative (Izhikevich, 2007). Ion-pumps are constantly at work to

maintain these reversal potentials over time.

A number of ion-conducting channels are embedded into the cell membrane and confer to

neurons their specific electrical properties (Kandel et al., 2000) (Fig. 1.1a). The net conduc-

tance mediated by an ion-channel typically varies over time and depends on one or more

of the following factors: i) the membrane potential (voltage-gated channels), ii) the concen-

tration of a neurotransmitter such as glutamate or GABA (ligand-gated channels) and iii)

other signals such as the intracellular Ca2+ or Na+ concentration (Ca2+- or Na+-dependent

channels) (Kandel et al., 2000). Some ion-channels are permeable to several particles, others

are highly selective to particular ions. In the latter case, the resulting current drives the mem-
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Figure 1.1: Schematic representation of an excitable membrane and its equivalent electric cir-

cuit. a) Schematic illustration of a patch of membrane (black) embedding (from left to right): a

sodium-potassium pump that actively moves Na+ in the extracellular space and K+ inside the cell; a

non-selective conductance implementing a leakage through the membrane, a voltage-activated Na+-

channel and a voltage-activated K+-channel. As a result of the constant action of different ion-pumps,

Na+ and Ca2+ are more concentrated in the extracellular space and K+ and Cl− are more concentrated

in the intracellular space. While pumps actively move ions against chemical gradients, ion-channels

mediate passive currents that follow these gradients. In the schematic representation, both Na+- and

K+-channels are open. In reality, these channels open and close depending on the electrical potential

V across the membrane. b) Equivalent circuit representing the patch of membrane shown in panel b.

As indicated in the scheme, the leak conductance gL is constant and does not depend on V . Panel b

was adapted from Gerstner and Kistler (2002).

brane potential to the reversal potential associated with the ion underlying the current. For

example, during the emission of an action potential, the transient opening of Na+-channels

initially rises the membrane potential to ENa ≈+70 mV (i.e., to the reversal potential of Na+).

A few milliseconds later, the delayed activation of rectifying K+-channels hyperpolarizes the

membrane potential towards EK ≈−90 mV (Dayan and Abbott, 2001).

A large variety of ion-channels exists with different selectivities, kinematics and activation

properties (Hille, 1992; Kandel et al., 2000). A mathematical formalism introduced more than

sixty years ago by Alan Hodgkin and Andrew Huxley enables to study how the overall electrical

properties of different neurons emerge from specific sets of ion-channels (Koch, 1999).

1.1.2 The Hodgkin-Huxley model

The electrical behavior of a neuron is accurately described by an analogue electrical circuit

composed of a capacitor, which describes how opposite charges accumulate on both sides

of the cell membrane, and a set of time-dependent conductances gi (t ), for the different ion

channels (Fig. 1.1b). The chemical gradients generated by ion-pumps are assumed to be

constant over time and, in the analogue electrical circuit, act as batteries providing the driving

force for ions to flow through selective channels (Dayan and Abbott, 2001).

The Hodgkin-Huxley model of membrane potential dynamics is obtained by applying the

Kirchhoff’s law of current to the electrical circuit shown in Figure 1.1b (Gerstner and Kistler,
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2002):

CV̇ (t ) =−∑
i

Ii (t )+ Iext(t )+ Isyn(t ), (1.1)

where the dot denotes the first-order temporal derivative, IC(t) = CV̇ (t) is the capacitive

current (see Fig. 1.1b), C is the membrane capacitance, {Ii (t)} is the set of ion-currents

mediated by different channels expressed by the neuron, Iext(t ) is an external input that can

be experimentally controlled and Isyn(t ) is the net synaptic input received from neighboring

neurons.

Membrane currents Ii (t) mediated by persistent channels1 are typically described by the

following equation:

Ii (t ) = ḡi ·m(t ) · (V (t )−Ei ) , (1.2)

where ḡi is the maximal conductance (i.e., the total conductance obtained when all of the

expressed channels of type i are simultaneously open), Ei is the reversal potential of the ion

to which the channel is permeable and m(t ) is a gating variable describing the probability of

the channel being active at a given moment in time2 (Dayan and Abbott, 2001). In the case of

voltage-dependent channels, the gating variable m depends on the membrane potential and

its temporal dynamics is modeled by the following equation:

τ(V )ṁ =−m +m∞(V ), (1.3)

where τ(V ) is the voltage-dependent timescale over which m tends to its steady-state value

m∞(V ). Voltage-dependent channels are typically activated at high potentials and m∞(V ) is

approximated by a sigmoidal function of V ranging from m∞ = 0 at low voltages to m∞ = 1 at

high voltages. However, there are ion channels that activate when the membrane potential is

hyperpolarized. These channels are known as hyperpolarization-activated channels and their

steady-state functions are described by inverse sigmoidal functions of V (Dayan and Abbott,

2001).

Another class of voltage-dependent channels, known as transient channels, only mediate

transient currents. These channels are characterized by the fact that activation is followed

by inactivation. The sodium channels responsible for spike emission belong to this category.

To accurately model the membrane currents mediated by transient conductances, Eq. 1.2

has to be extended with an inactivation gating variable h modeled with an equation similar

to the one used to describe the dynamics of m (i.e., Eq. 1.3). Activation and inactivation are

generally assumed to be independent processes. Consequently, the net membrane current

1In contrast to transient channels, persistent channels do not undergo inactivation. Consequently, their
dynamics can be modeled using a single gating variable (i.e., the activation gating variable), which describes the
activation probability.

2Since single-neurons express multiple ion-channels of the same type, the gating variable m(t) can also be
interpreted as the fraction of channels that are simultaneously open at a given moment in time t .
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Ii (t) mediated by a transient conductance is modeled as

Ii (t ) = ḡi ·m(t ) ·h(t ) · (V (t )−Ei ) , (1.4)

where, compared to m∞(V ), the steady-state function h∞(V ) of the inactivation variable

features an opposite voltage dependence (Dayan and Abbott, 2001). In the particular case

of Na+-channels responsible for spike emission, the interplay between activation and fast

inactivation results in a strong but transient current which is responsible for the voltage rise

observed during the initial phase of an action potential. As discussed in Chapter 4, fast Na+-

channel inactivation also affects single-neuron computation by enhancing sensitivity to rapid

input fluctuations (Platkiewicz and Brette, 2011).

The mathematical framework presented in the previous pages was introduced in the 1950s in

order to explain how the combined action of different voltage-dependent channels confer to

neurons the ability of generating action potentials (Hodgkin and Huxley, 1952). The original

Hodgkin-Huxley (HH) model is defined as:

CV̇ (t ) =−gL(V −EL)− ḡNam3h(V −ENa)− ḡKn4h(V −EK)+ Iext(t ), (1.5)

where the first three terms on the right hand side of the equation respectively describes: a

leakage current (IL) mediated by different ions types and characterized by a constant con-

ductance gL, a transient Na+-current (INa) responsible for the action potential upswing and a

delayed-rectifying K+-current (IK) responsible for the action potential downswing (Fig. 1.1b).

According to the HH model, when a neuron is stimulated with a positive current Iext(t ) > 0, the

membrane potential rises. If the input is sufficiently strong, the membrane potential reaches

-50 mV, where Na+-channels rapidly activate (i.e., where the activation variable m rapidly

grows to one) mediating a positive feedback current which further increases the membrane

potential up to +50 mV. Immediately after the action potential upswing, Na+-channels inacti-

vates (i.e., the inactivation variable h drops to zero) and rectifying K+-channels activates (i.e.,

the activation variable n goes to one) mediating a current that restores a negative membrane

potential3(Hodgkin and Huxley, 1952).

After the seminal work of Hodgkin and Huxley, conductance-based models became a standard

mathematical framework used to build biophysical models of single neurons (Catterall et al.,

2012). In particular, the original HH model has been extended with different active conduc-

tances in order to understand how different ion-channels interact to shape the electrical

behavior of single-neurons (see, e.g., Connor and Stevens (1971); Morris and Lecar (1981)).

The HH model also provides the starting point to develop multi-compartmental models that

take into account the spatial structure of single-neurons (Rall, 1977; De Schutter and Bower,

1994; Mainen and Sejnowski, 1996; Stuart and Spruston, 1998; Howell et al., 2000). In contrast

to single-compartmental models, these models are generally based on anatomical reconstruc-

3A detailed description of the dynamics of the HH model during the emission of an action potential can be
found in Dayan and Abbott (2001).
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tions of single-neuron morphologies and explicitly describe the temporal evolution of the

membrane potential V (t , x) at different spatial locations x. When active conductances are

accounted for in different parts of a neuron (e.g., when nonlinear dendritic conductances are

considered), the single-neuron morphology is generally discretized in a finite set of compart-

ments Vx (t), and each of them is modeled using the standard HH formalism4 (Dayan and

Abbott, 2001). For this reason, modern conductance-based models, and in particular multi-

compartmental models (see, e.g., Hay et al. (2011)), consist of a complicated set of coupled

nonlinear differential equations, whose understanding mostly relies on intensive numerical

simulations (Herz et al., 2006). Developing multi-compartmental models and increasing the

level of detail included in conductance-based models are nowadays active fields of research

(Markram, 2006; Waldrop, 2012).

Mainly because of their extreme complexity, such detailed biophysical (DB) models suffer

from several drawbacks. In particular, DB models are analytically intractable, require high-

computing power and have an extremely large number of parameters, which are difficult to

extract from experimental data5(Herz et al., 2006). A second class of spiking neuron models,

known as simplified single-compartment threshold models (i.e., integrate-and-fire models),

exists in which the spatial structure of the neuron is neglected and where the intricate dy-

namics of different ion-channels is accounted for by simpler phenomenological descriptions

(Lapicque, 1907; Gerstner and Kistler, 2002; Izhikevich, 2007). In contrast to DB models,

simplified threshold models are analytically tractable, are suitable for large-scale network

simulations and have a smaller number of parameters that can be extracted from intracellular

recordings (Herz et al., 2006). For all these reasons, integrate-and-fire (IF) models are often

preferred by computational neuroscientist aiming at understanding the principles underlying

single-neuron computation and the emergent properties of neural networks.

1.1.3 Simplified threshold models

The leaky integrate-and-fire (LIF) model is probably the most popular model amongst simpli-

fied threshold models and is obtained by replacing the complex dynamics of the Na+- and

K+-channels in the standard HH model with a simple threshold process. In the LIF model,

the subthreshold dynamics of the membrane potential is governed by the following linear

differential equation (Gerstner and Kistler, 2002):

CV̇ (t ) =−gL(V −EL)+ Iext(t ), (1.6)

where, in comparison to Eq. 1.5, only the passive properties of the membrane are retained.

The LIF model does not explicitly model the voltage dynamics during an action potential, but

4In multi-compartmental models, the Hodgkin-Huxley equations are extended in order to account for the
passive currents flowing across neighboring compartments.

5Inferring DB model parameters from simple intracellular recordings is an ill-posed problem. Indeed, as it has
been experimentally demonstrated, different combinations of ion-channel densities can give rise to similar firing
behaviors (Goaillard et al., 2009).
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simply states that, each time V crosses a certain threshold VT from below, an action potential

is fired and the membrane potential is reset to a low value Vreset < VT. The LIF model can

equivalently be formulated in its integral version given by:

V (t ) = EL +
∫ t

t̂last

Km(t − s)Iext(s)d s +ηR(t − t̂last) (1.7)

where t̂last denotes the time of the last spike before time t , Km(t) = Θ(t) ·C−1 exp
(
− t
τm

)
is

the membrane filter of timescale τm = C /gL and ηR(t) = C (Vreset −EL)Km(t) describes the

after-spike reset V →Vreset, withΘ(t ) being the Heaviside step function (Gerstner and Kistler,

2002).

The first IF model was introduced more than a century ago6 (Lapicque, 1907; Hill, 1936; Brunel

and Van Rossum, 2007) and is still nowadays widely adopted to investigate the emergent

properties of neural networks. While capturing the most essential feature of single-neurons,

namely the fact that the neural information is encoded by means of action potentials, the LIF

model is oversimplified and poorly captures the spiking activity of real neurons (Jolivet et al.,

2008b). During the last century, the LIF model has been continuously revisited and extended7

in order to account for different features such as smooth spike-initiation (Abbott and van

Vreeswijk, 1993; Latham et al., 2000; Feng, 2001; Fourcaud-Trocmé et al., 2003; Badel et al.,

2008), subthreshold resonance (Izhikevich, 2001; Richardson et al., 2003), spike-frequency

adaptation (Baldissera et al., 1976; Benda and Herz, 2003; Paninski et al., 2005; La Camera

et al., 2006), firing threshold dynamics (Hill, 1936; Fuortes and Mantegazzini, 1962; Geisler

and Goldberg, 1966; Jolivet et al., 2006b; Badel et al., 2008; Kobayashi et al., 2009; Platkiewicz

and Brette, 2011) and stochastic spike emission (Stein, 1965; Gluss, 1967; Plesser and Gerstner,

2000; Pillow et al., 2005; Truccolo et al., 2005). Modern integrate-and-fire models (Izhike-

vich et al., 2003; Brette and Gerstner, 2005; Truccolo et al., 2005; Mihalaş and Niebur, 2009),

sometimes called generalized integrate-and-fire (GIF) models, provide good descriptions of

single-neurons responding to somatically injected currents (Jolivet et al., 2008b,a; Gerstner

and Naud, 2009).

1.1.4 Synaptic connections

The most important connection points between neurons are called chemical synapses8. At

these places, an intricate biological machinery actively transforms the action potentials emit-

ted by a presynaptic neuron into transient postsynaptic currents Isyn(t). Briefly, when an

6Note that the first IF model was proposed before the biophysical mechanisms underlying action potential
generation were discovered.

7Exhaustive reviews about existing simplified threshold models are provided by Gerstner and Kistler (2002);
Izhikevich (2007); Naud and Gerstner (2013).

8Neurons also communicate with each other by means of electrical synapses (gap junctions), consisting of
conductive links between the membranes of two neurons. Compared to chemical synapses, gap junctions are fast
and often bidirectional. Electrical synapses cannot amplify the strength of the transmitted signal and mainly act as
passive couplings between neurons (Dayan and Abbott, 2001).
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action potential reaches a presynaptic terminal, the release of a specific neurotransmitter

(e.g., glutamate, GABA) is triggered9. Neurotransmitters then bind to and activate specific

ion-channels (e.g., AMPA, NMDA, GABAA and GABAB receptors), which are embedded in

the membrane of the postsynaptic neuron. Depending on the specific ions to which these

channels are selective to, synaptic inputs can either depolarize (excitatory synapses) or hyper-

polarize (inhibitory synapses) the postsynaptic neuron (Kandel et al., 2000).

In the HH formalism, the total postsynaptic current Isyn(t ) is modeled by the following equa-

tion (Dayan and Abbott, 2001):

Isyn(t ) =−gsyn(t ) · (V −Esyn), (1.8)

where Esyn is the reversal potential of the postsynaptic channel10 and gsyn(t ) is the total synap-

tic conductance induced by a presynaptic spike train S(t ) =∑
t̂ δ(t − t̂ j ), with δ(·) denoting the

δ-Dirac function and {t̂ j } being the presynaptic spike times. Different models exist that de-

scribe how incoming spike trains are transformed into time-dependent synaptic conductances.

These models range from complex ones, accounting for nonlinear voltage dependences (Jahr

and Stevens, 1990) and short-term plasticity (Abbott et al., 1997; Tsodyks and Markram, 1997),

to simpler ones stating that gsyn(t ) equals a filtered version of the input spike train (Destexhe

et al., 2001):

gsyn(t ) =
∫ ∞

0
εg(s)S(t − s)d s =∑

t̂ j

εg(t − t̂ j ). (1.9)

According to Eq. 1.9, each individual spike triggers a postsynaptic conductance with stereo-

typical shape εg(t ) and the effects induced by different spikes add up linearly. An even more

simplistic but widely adopted model of synaptic transmission is obtained by neglecting the

fact that Isyn(t ) depends on the postsynaptic voltage. In this model, informally referred to as

current-based synaptic model, Isyn(t ) is simply given by (Brunel and Hakim, 1999; Richardson,

2004):

Isyn(t ) =
∫ ∞

0
ε(s)S(t − s)d s =∑

t̂ j

ε(t − t̂ j ), (1.10)

where ε(t ) describes the time course of a postsynaptic current (PSC) induced by a presynaptic

spike. In computational and theoretical studies, PSCs are typically modeled using a single

9According to Dale’s principle, a neuron releases the same transmitters at all of its synapses. For example, all of
the presynaptic terminals of GABAergic inhibitory neurons release GABA and all of the presynaptic terminals of
glutamatergic excitatory neurons release glutamate.

10While for glutamatergic excitatory synapses the reversal potential is Esyn ≈ 0 mV, the reversal potential of
GABAergic inhibitory synapses is defined by the reversal potential of Chloride ions Esyn ≈ −80 mV. This fact
explains why excitatory and inhibitory synapses generally depolarize and hyperpolarize the postsynaptic neuron,
respectively (Dayan and Abbott, 2001).
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exponential function (Vogels et al., 2005):

ε(t ) = w ·τ−1
syn ·exp

(
− t

τsyn

)
, (1.11)

with w being the strength of the synaptic connection and τsyn ≈ 3−10 ms being the timescale

over which the PSCs decay (Vogels et al., 2005). In current-based synaptic models, a synaptic

connection is defined as excitatory if w > 0 and as inhibitory otherwise.

Although neuronal plasticity is not the topic of this thesis, it is worth mentioning that the

strength of a synapse is not static, but evolves over time. In particular, the amplitude w

of a PSC is subject to long-lasting changes induced by the activity of both the presynaptic

and the postsynaptic neurons, as well as by the presence of other factors such as different

neuromodulators. This important phenomenon is known as synaptic plasticity and is currently

thought to be the neural basis of memory formation and learning (Kandel et al., 2000). In

particular, synaptic changes have been shown to depend on the precise timing of presynaptic

and postsynaptic spikes (Markram et al., 1997; Bi and Poo, 1998). Amongst others, this result

highlights the importance of spiking models capable of capturing the activity of single neurons

with a high degree of accuracy.

1.1.5 Studying single-neuron computation in vitro

In vivo, cortical neurons continuously receive inputs from thousands of other neurons. The

ideal goal of single-neuron computation studies is to understand how nerve cells transform

arbitrary sets of incoming spike trains {S(in)
i (t)} into output spike trains Sout(t) (Fig. 1.2). In

reality, given the complexity of this transformation, as well as the experimental difficulties in

independently and simultaneously controlling the activity of multiple synapses (Boucsein

et al., 2005; Branco et al., 2010), single-neuron computation is often studied in vitro using

simplified paradigms based on somatic current-clamp injections11. In these experimental

paradigms, active dendritic processes are generally neglected (but see, e.g., Häusser et al.

(2000); Larkum et al. (2009)) and single-neuron coding is investigated by studying how somatic

input currents Isyn(t ) are transformed into output spike trains S(out)(t ) (Fig. 1.2). The injected

currents Isyn(t ) are generally constructed in such a way as to mimic the net somatic currents

resulting from dendritic integration (Fig. 1.2c).

According to Eqs. 1.10-1.11, in a realistic scenario where a neuron receives independent

Poisson spike-trains from two homogeneous populations of NI inhibitory and NE excitatory

neurons, Isyn(t) can be approximated by a continuous Gaussian process called Ornstein-

Uhlenbeck process (Van Kampen, 1992), which is defined by the following stochastic differen-

11Single-neuron computation is also studied in vitro using a more sophisticated technique called dynamic-
clamp (Destexhe and Bal, 2009). In contrast to current-clamp, dynamic-clamp makes it possible to introduce
artificial synaptic conductances into biological neurons. With this technique, single neurons can be tested using
conductance-based synaptic currents (e.g., Eq. 1.8) (Destexhe et al., 2003).
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Figure 1.2: Single-neuron computation. a) Schematic representation of a cortical neuron divided

in three functional parts: dendritic tree, soma and axon. b) Spiking input {Sin(t)} sent by a number

of presynaptic neurons and integrated at the dendritic tree of the postsynaptic neuron. Each row

indicates the spike train sent by a single presynaptic neuron. c) Total current Isyn(t) resulting from

dendritic integration and sent to the soma. d) The total synaptic current Isyn(t) is converted into an

output spike train Sout(t) and then sent through the axon to other neurons. The horizontal axes in

panels b-d indicate time. Ideally, single-neuron computation studies aim at understanding how an

arbitrary set of incoming spike trains {Sin(t )} (panel b) is transformed into an output spike train Sout(t )

(panel d). In practice, single neuron computation is often investigated by studying how somatically

injected currents (panel c) are transformed into output spike trains Sout(t ) (panel d).

tial equation (Tuckwell, 1988) (Fig. 1.3a):

τsyn İsyn(t ) =−I (t )+µI +
√

2τsynσIξ(t ), (1.12)

where τsyn is the characteristic timescale over which excitatory and inhibitory PSCs decay, ξ(t )

is a zero-mean white-noise process with unitary variance. The mean µI and the variance σ2
I of

the total synaptic current Isyn(t ) are given by (Brunel, 2000):

µI = NEwEλE −NIwIλI (1.13)

σ2
I = 1

2

(
NEw2

EλE/τE +NIw2
I λI/τI

)
(1.14)

with wE (and wI) and τE (and τI) denoting the amplitude and the timescale of individual

excitatory (and inhibitory) PSCs, and λE (and λI) being the average firing rates of individual

excitatory (and inhibitory) neurons12. Since the in vivo activity of neuronal populations is

not constant, Eqs. 1.13 and 1.14 indicate that both the mean and the variance of the total

synaptic input received at the soma of single neurons are likely to change over time. Moreover,

12Total synaptic currents described as Ornstein-Uhlenbeck processes play a crucial role in mean-field analysis of
random networks (Brunel and Wang, 2003). Understanding how single neurons respond to this type of currents is
therefore of great theoretical importance.
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Figure 1.3: Comparison between a LIF model and a L5 pyramidal neuron responding to a set of

stationary fluctuating currents with different statistics. a) Top: example of a fluctuating current

Iext(t ) (gray) generated according to an Ornstein-Uhlenbeck process (see Eq. 1.12). Solid and dashed

black lines indicate the mean µI and the standard deviation σI of Iext(t), respectively. Bottom: LIF

model activity evoked by the input current shown in gray. Black: membrane potential, V ; red: voltage

threshold, VT. b) The average firing rate of a LIF model responding to an Ornstein-Uhlenbeck current

is plotted as a function of µI. Different colors indicate different levels of input fluctuations σI. At high

µI, the LIF model loses sensitivity to input fluctuations and the output firing rate does not depend

on σI. c) The average firing rate of a layer 5 pyramidal neuron responding to an Ornstein-Uhlenbeck

current is plotted as a function of µI. Conventions are as in panel b (black: 50 pA; blue: 150 pA; red: 300

pA). At odds with the prediction of the LIF model, layer 5 pyramidal neurons maintain sensitivity to

input fluctuations over a broad range of depolarizing offsets µI. Panel c was adapted from Arsiero et al.

(2007).

single-neuron input statistics are also affected by changes in the input synchrony, changes

in brain state and external stimuli. One of the main questions addressed in this thesis is to

understand how and why single-neuron computation changes depending on input statistics.

Theoretical studies based on the LIF model predict that, in response to increased levels of

input fluctuations (i.e., in response to increased values of σI), the output firing rate of a

neuron rises, but only when the mean input µI is not sufficiently strong to evoke spikes by

itself (Tuckwell, 1988) (Fig. 1.3b). In this regime, technically called subthreshold regime13, the

voltage threshold for spike initiation is only reached in response to input fluctuations induced

by the coincident arrival of several input spikes. Neurons operating in the subthreshold regime

are therefore thought to act as coincidence detectors of synchronous spikes. In response

to currents characterized by a strong mean µI, input fluctuations are expected to lose the

ability to raise the average firing rate of a neuron, output spikes are mainly driven by µI and

input fluctuations are simply expected to introduce little jitters in the spike train (Fig. 1.3b).

In this regime, known as suprathreshold regime, the instantaneous firing rate of a neuron

simply reflects the average strength of the input current (i.e., the net number of excitatory

inputs received during an interspike interval) and neurons are thought to operate as temporal

integrators. To summarize, according to the LIF model, a smooth transition from coincidence

13A neuron is said to operate in the subthreshold regime when the mean of Iext(t) is not sufficiently strong to
drive the membrane potential above the firing threshold.
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detection to temporal integration is expected to occur when the mean current µI crosses the

rheobase14 (Fig. 1.3b). A long-standing debate persists over whether in vivo cortical neurons

operate as coincidence detectors, thereby supporting a neural code in which the precise timing

of individual spikes matters, or as temporal integrators, thereby supporting a rate code in

which the information is simply carried by spike counts (see, e.g., Abeles (1982); Softky and

Koch (1993); Shadlen and Newsome (1994); König et al. (1996); Rossant et al. (2011b); Bruno

(2011); Stanley (2013); Ratté et al. (2013)).

The theoretical prediction of the LIF model (see Fig. 1.3b) has initially been confirmed by

different studies performed in cortical pyramidal neurons (Chance et al., 2002; Rauch et al.,

2003; Shu et al., 2003). However, more recent results from rat prefrontal cortex (Arsiero et al.,

2007) and hippocampus (Fernandez et al., 2011), have demonstrated that pyramidal neurons

maintain sensitivity to input fluctuations over a broad range of depolarizing currents µI (Fig.

1.3c). These results are of particular importance because they suggest that pyramidal neurons

could act as coincidence detectors regardless of the strength of µI. The origins of enhanced

sensitivity to input fluctuations remain unclear and are investigated in Chapter 4.

Understanding how single neurons adapt their coding strategy to different input statistics

is one of the central questions of this thesis. In the past, a lot of effort has been put into

understanding how early sensory systems adaptively encode external stimuli with changing

statistics. The most important theoretical concepts and experimental findings obtained in the

field of sensory coding are reviewed in the next section.

14That is, when the mean current µI becomes sufficiently strong to evoke spikes by itself.
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1.2. Sensory coding and sensory adaptation

1.2 Sensory coding and sensory adaptation

Making sense of the electrical activity generated by groups of neurons is one of the central

topics of systems neuroscience. In particular, sensory neuroscience aims at understanding

how sequences of action potentials represent relevant information about the external world.

During the last decades, information theory (Shannon, 1949) has been successfully applied to

understand several aspects of the neuronal activity of different sensory systems, such as the

retina, the lateral geniculate nucleus (LGN), the motion sensitive (H1) neurons of the fly or the

rodent barrel cortex.

This section reviews some fundamental concepts and the most relevant results obtained by

previous studies of sensory adaptation. For readers interested in a more detailed introduction

to this topic, I highly recommend the textbooks of Rieke et al. (1997) and Dayan and Abbott

(2001). A good review about sensory adaptation is provided by Wark et al. (2007).

1.2.1 The efficient coding hypothesis

In 1961, Horace Barlow proposed that, given a limited capacity of transmitting information,

sensory systems evolved to efficiently represent (i.e., encode) relevant stimuli of the external

world. In particular, Barlow hypothesized that one of the main operations performed by early

sensory pathways is to discard redundant information (Barlow, 1961). As it will be discussed, a

central prediction of this theory is that the input-output transformation of a sensory system

should be matched to the statistical properties of the signal that has to be encoded. This

theory is nowadays known as Barlow’s efficient coding hypothesis and has been very successful

in explaining different aspects of the neural code such as sensory adaptation.

To introduce the concept of efficient coding, it is convenient to consider a simple situation in

which an external stimulus s (e.g. the light intensity at a particular location of the visual field)

has to be encoded by some neuronal activity r (e.g. the firing rate of a retinal ganglion cell)

(Laughlin et al., 1981; Dayan and Abbott, 2001; Wark et al., 2007). In particular, it is assumed

that both r and s are scalar quantities and that, at each moment in time, a new stimulus s

is independently drawn from a probability distribution P (s). For simplicity, a situation is

considered in which the input-output transformation performed by a neural system of interest

can be described by the following model:

r = f (s)+η, (1.15)

where f is a nonlinear function of the stimulus and η is a noise term modeled as a random

variable independently drawn from the noise distribution P (η). The amount of information

I (s,r ) that the response r carries about the stimulus s is quantified by the mutual information

defined as:

I (s,r ) = H [P (r )]−H [P (r |s)], (1.16)

13



Chapter 1. Introduction

where H [P (r )] is the entropy of the response (i.e. the entropy of the distribution P (r )) and

H [P (r |s)] is the noise entropy (i.e., the average entropy of the distribution P (r |s), where the

average is taken with respect to s), which describes the variability of the response once the

stimulus is determined (Cover and Thomas, 2012).

In the absence of noise and under the assumption that f is a monotonic function of s, each

stimulus corresponds to a unique response. Consequently the noise entropy vanishes and,

according to Eq. 1.16, optimal coding maximizing the mutual information I (s,r ) is obtained by

maximizing the entropy of the response H [P (r )]. Given a fixed dynamic range∆r = rmax−rmin

(i.e., assuming that r can only range between a minimal value rmin and a maximal value rmax),

H [P (r )] is maximized when P (r ) is uniform on the support [rmin,rmax] (Dayan and Abbott,

2001):

P (r ) =
∆r−1 , if r ∈ [rmin,rmax]

0 ,otherwise.
(1.17)

This theoretical result, known as histogram equalization, implies that the optimal way of

encoding a stimulus s is to use an input-output function f with shape defined by the integral

of the input distribution (Dayan and Abbott, 2001) (Fig. 1.4a):

f (s) = rmin +∆r ·
∫ x

−∞
P (s)d s. (1.18)

In 1981, this theoretical principle was successfully applied by Simon Laughlin to show that

information theory, and in particular the principle of maximum entropy encoding, provides a

theoretical explanation for how the membrane potential fluctuations of large monopolar cells

(LMC) in the visual system of the fly represent contrast fluctuations (Laughlin et al., 1981).

In particular, it was shown that the input-output function of LMCs matched the theoretical

prediction obtained by integrating the distribution of contrasts present in the visual scenes

encountered by flies in their natural environments (Laughlin et al., 1981).

In the case of spiking neurons, constraining the maximal firing rate might not be an appro-

priate choice. A more reasonable constraint would for example be to impose the average

of the output firing rate, which is related to the energy required to represent the stimulus15

(Attwell and Laughlin, 2001). Under this constraint, the output distribution P (r ) maximizing

the entropy of the response is not the uniform distribution, but is the exponential distribution

(Cover and Thomas, 2012).

Despite its simplicity, and regardless of the particular constraint used to determine the maxi-

mum entropy solution, the simplified scenario discussed in this section is important because

it illustrates the theoretical result that the optimal coding strategy is not universal, but depends

15It has been proposed that sensory systems evolved to maximize the information transfer while minimizing
energy consumption. While constraining the average firing rate goes in the right direction, the accurate study of
the information-energy tradeoff probably requires more sophisticated models of energy consumption (see, e.g.,
Sengupta et al. (2014)).
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1.2. Sensory coding and sensory adaptation

on the input statistics (Wark et al., 2007).

1.2.2 Adaptive coding

The external world is complex and the statistics of relevant stimuli are not constant, but change

over time. For example, the average intensity of visual scenes observed in different locations

or at different moments in time can differ by up to nine orders of magnitude (Rushton, 1965).

This means that local input statistics (i.e., the input distributions observed during restricted

intervals of time or space) can strongly differ from the global distribution. As shown in the

previous section, optimal coding requires a match between the input-output transformation

performed by a neural system and the input distribution. Consequently, optimal coding

predicts that, in response to changes in the input statistics, sensory systems should adapt their

coding strategies (Wark et al., 2007). For example, if the mean of an external input increases,

neurons should in principle modify their behavior in such a way as to shift their input-output

function f (s) horizontally (Fig. 1.4b). Similarly, a change in the input contrast (i.e., a change

in the variance of the input distribution) should be accompanied by a rescaling of the input-

output gain (Fig. 1.4c). The latter form of adaptation, also known as adaptive gain control,

has been shown to occur in retinal ganglion cells (Smirnakis et al., 1997; Brenner et al., 2000),

in motion sensitive neurons of the fly (Fairhall et al., 2001b) and in the mouse barrel cortex

(Maravall et al., 2007).
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Figure 1.4: Efficient coding of non-stationary signals requires sensory adaptation. a) Efficient

coding of a stimulus s with stationary statistics by histogram equalization. Given a stimulus distribution

P (s) (red) and a limited dynamic range r ∈ [rmin,rmax], the optimal solution maximizing the entropy of

the output distribution P (r ) (blue) is achieved by means of a nonlinear transformation f (s), whose

shape is defined by the cumulative distribution of the stimulus (see Eq. 1.18). With this coding strategy,

the local gain of f is large in regions where P (s) is large and low where P (s) is low. This way, all possible

responses r between rmin and rmax occur with equal probability (blue). b) In response to an increase

in the mean of the input distribution (bottom), efficient coding by histogram equalization requires

an optimal system to adapt its coding strategy by shifting f (s) to the right (top). c) In response to a

decrease in the variance of the input distribution (bottom), an optimal encoder should increase its gain

(top). Panel a was adapted from Laughlin et al. (1981). Panels b and c were adapted from Wark et al.

(2007).

15



Chapter 1. Introduction

1.2.3 The timescale of spike-frequency adaptation

Over the last decade, inspired by the dynamic aspects of natural input statistics, sensory adap-

tation has been often investigated using an experimental paradigm known as the switching

experiment (Smirnakis et al., 1997) (Fig. 1.5). In a switching experiment, the spiking activity

r (t) of a single neuron is recorded in vivo in response to a controlled sensory stimulus s(t)

that rapidly fluctuates over time. To assess contrast adaptation to local input statistics, the

stimulus is generated according to a random process whose standard deviation is periodically

switched between two values, with a cycle period T (Fig. 1.5a).

In response to a sudden increase in the input variance, sensory neurons generally increase

their output firing rate, which then slowly decays until a steady-state is reached. Similarly,

when the input variance is suddenly decreased, the firing rate response initially drops and

then slowly recover to a new steady-state value (Smirnakis et al., 1997; Fairhall et al., 2001b)

(Fig. 1.5b). This form of adaptation, known as spike-frequency adaptation, is ubiquitous in the

central nervous system and was observed for the first time in 1926 by Adrian and Zotterman

(1926)16.
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Figure 1.5: Sensory adaptation by motion-sensitive neurons in the fly visual system. The spiking

activity of motion sensitive neurons (H1 neurons) was recorded in response to a controlled visual

stimulus consisting of a vertical bar pattern moving horizontally. H1 neurons encode the instantaneous

velocity s(t ) at which the visual input moves across the visual field (Fairhall et al., 2001b). a) The external

signal s(t) was generated according to a white-noise process whose standard deviation periodically

changed between two values, σlow and σhigh, with cycle period T (only one cycle is shown). The same

experiment was repeated four times using different cycle periods T , ranging from 5 to 40 seconds.

b) The average firing rate of an H1 neuron is plotted as a function of time. Different gray levels

show the responses to different periods T (see legend). The light gray line indicates the firing rate

response evoked by a stimulus with cycle period T = 40 s (see panel a). c) Effective timescale τA of

spike-frequency adaptation as a function of the cycle period T . The timescale of adaptation τA was

16In the experiments conducted by Adrian and Zotterman (1926), spike-frequency adaptation was discovered by
studying the electrical activity of a stretch receptor evoked by the application of a static load.
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1.2. Sensory coding and sensory adaptation

extracted from the data shown in panel b by fitting a single exponential function to the firing rate

decay after an upward switch in σ. The linear relationship between τA and T is a signature of scale-free

(i.e. power-law) adaptation. d) Same data as in panel b, but plotted with the time axis normalized

by the cycle period T (i.e., time is shown in units of T ). The responses to different periods T were

also normalized to obtain a mean of zero and a standard deviation of one. The normalized responses

are nearly invariant with respect to the cycle period T , indicating that spike-frequency adaptation is

scale-free. e) The firing rate response of an H1 neuron was fitted with a LN model (see Eq. 1.23). The LN

model was independently fitted four times using data observed at different moments in time relative

to the cycle period (see panel f ). In response to an external input of low variance, the input-output

transformation is characterized by a steep nonlinearity f (s̃). While responding to a signal of high

variance, the gain of f (s̃) is reduced, indicating optimal gain control. While spike-frequency adaptation

lasts for several seconds, the adjustment of f (s̃) is extremely rapid (compare the late response to σhigh

with the early response to σlow). This result suggests that spike-frequency adaptation and contrast

adaptation are two different forms of adaptation. f ) Firing rate response to a cycle period T = 20 s.

Different gray areas indicate the data used to fit the LN models shown in panel e. All panels were

adapted from Fairhall et al. (2001b).

In motion sensitive neurons of the fly, the effective timescale τA of spike-frequency adaptation

was shown to scale linearly with the period T of the switching experiment (Fairhall et al.,

2001a,b) (Fig. 1.5c). This result demonstrates that adaptation occurs on multiple timescales

ranging from hundreds of milliseconds to tens of seconds. Moreover, the linear relation-

ship between τA and T indicates that spike-frequency adaptation does not have a preferred

timescale, but is characterized by a scale-invariant (i.e., power-law) process (Thorson and

Biederman-Thorson, 1974; Drew and Abbott, 2006). When the data shown in Figure 1.5b are

replotted by normalizing the time axis by T , recordings acquired with different cycle periods

tend indeed to superimpose on each other (Fig. 1.5d). Since the seminal studies of Landgren

(1952) on mammalian baroreceptors, power-law adaptation has been observed in a variety

of systems such as the retina (Wark et al., 2009), the auditory cortex (Ulanovsky et al., 2003,

2004), the barrel cortex (Lundstrom et al., 2010), the mechanoreceptors of insects (French and

Torkkeli, 2008) and the electrosensory system of the weakly electric fish (Xu et al., 1996). From

a biophysical perspective, it remains unclear whether power-law adaptation is implemented

by a single mechanism (Toib et al., 1998) or if it emerges from the interaction of multiple

processes operating on different timescales (Drew and Abbott, 2006; Lundstrom et al., 2008).

From a functional perspective, since many natural stimuli change over multiple timescales

(Simoncelli and Olshausen, 2001), it has been proposed that power-law adaptation might be

advantageous because it could confer to sensory systems the ability of matching the timescales

of adaptation to the timescales of external stimuli (Fairhall et al., 2001b; Lundstrom et al.,

2008).

What is the optimal timescale of adaptation? If a sensory system adapts its coding strategy too

rapidly, slow input fluctuations would be incorrectly interpreted as changes in the local input

statistics and the system would erroneously modify its input-output function. On the other

hand, if the timescale of adaptation is too slow, the input-output transformation would not be
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able to rapidly track real changes in the local input statistics and the encoded signal would

not be optimal (Dunn and Rieke, 2006; Wark et al., 2007). Overall, sensory systems face the

problem of finding the correct balance between adapting too rapidly and adapting too slowly

(Wark et al., 2007). In a recent study, Wark et al. (2009) showed that, in retinal ganglion cells,

the timescale of adaptation to changes in both mean luminescence and contrast is correctly

predicted by the time that an optimal Bayesian observer would require to detect a change in

the input statistics. In particular, adaptation was slow when the discriminability of the change

was low and fast when the discriminability was high. Overall, this result provides a powerful

theory to explain why sensory adaptation occurs on multiple timescales.

An alternative theory exists according to which spike-frequency adaptation implements a

form of high-pass filtering to remove temporal correlations from the encoded signals (Dong

and Atick, 1995a; Rieke et al., 1997; Fairhall and Bialek, 2002). This theory, known as temporal

decorrelation (or temporal whitening), plays a central role in the results presented in Chapter

2 and is further discussed in the next section.

1.2.4 Efficient coding of time-dependent signals by temporal whitening

In the simple encoding problem discussed in Section 1.2.1, the external stimulus s was mod-

eled as a random variable that is independently drawn at each time step. Consequently, the

optimal solution was obtained by considering both s and r as scalar values and not as contin-

uous functions of time. However, in many relevant situations, the stimuli that sensory systems

have to encode are characterized by strong temporal correlations. In these situations, efficient

coding theory has to be extended to time-dependent signals (Rieke et al., 1997).

In this section a scenario is considered in which a neural system of interest has to represent

a time dependent signal s(t) by its electrical activity r (t). For simplicity, it will be assumed

that the encoding process can be modeled by a linear filter H(t ) and by the presence of two

independent sources of noise denoted η1(t ) and η2(t ). Mathematically, the encoding model

reads (Rieke et al., 1997):

r (t ) =
∫ t

−∞
H(τ) · [s(t −τ)+η1(t −τ)]dτ+η2(t ). (1.19)

Assuming that s(t), η1(t) and η2(t) are well approximated by random Gaussian processes,

their statistical properties are completely characterized by their power spectral densities S( f ),

N1( f ) and N2( f ). Under these assumptions, the amount of information per unit of time Irate

(i.e., the information rate) that the response carries about the stimulus is given by (Shannon,

1949)

Irate(s,r ) = 1

2

∫ +∞

−∞
log2(1+SNR( f ))d f , (1.20)

where the signal-to-noise ratio SNR( f ) depends on the power spectral densities S( f ), N1( f )
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1.2. Sensory coding and sensory adaptation

and N2( f ) and on the squared amplitude response |Ĥ( f )|2 of the encoder (Rieke et al., 1997):

SNR( f ) = |Ĥ( f )|2 ·S( f )

|Ĥ( f )|2 ·N1( f )+N2( f )
. (1.21)

At high signal-to-noise ratio, and under the constraint that the total variance of the output

fluctuations is fixed (i.e., that the total energy of r (t ) is fixed), the optimal encoding strategy

maximizing Irate(s,r ) is such that17 (Rieke et al., 1997):

|Ĥ( f )|2 ·S( f ) = Const. (1.22)

This theoretical result tells us that, at high SNR, the information transfer is maximized when

the filtered signal has a flat power spectrum. Consequently, optimal encoding is achieved by

removing all temporal correlations from the signal that has to be transmitted. For this reason,

this encoding strategy is often referred to as temporal decorrelation or, due to the analogy

with the flat spectrum of white light, as temporal whitening. This result can be intuitively

understood by remembering that, in the absence of noise, the mutual information between

stimulus and response is the highest when the response entropy is maximal (see Eq. 1.16).

Since correlations reduce the total entropy of a signal, maximizing the information transfer

requires temporal decorrelation18.

The theoretical principle of efficient coding by decorrelation was originally developed in the

spatial domain to explain why retinal ganglion cells encode the light intensity at the center of

their receptive fields relative to their surroundings (Srinivasan et al., 1982; Atick and Redlich,

1990, 1992). Center-surround receptive fields, as well as nonlinear processing (Pitkow and

Meister, 2012), have been shown to decorrealate the spiking activity of neighboring retinal

cells and can therefore be understood as optimal filters designed19 to remove the strong spatial

correlations that characterize natural visual scenes (Field, 1987). The theory of efficient coding

by decorrelation was later extended to the temporal domain in order to provide a theoretical

explanation for the high-pass filtering properties of neurons in the lateral geniculate nucleus20

(Dong and Atick, 1995a).

A key aspect of efficient coding theory is that, given the statistical properties of natural stimuli,

it makes clear predictions about how sensory systems should operate (Dong and Atick, 1995a).

Natural stimuli are often characterized by scale-invariant power-spectra of the type S( f ) ∝
1/ f α (Field, 1987; Dong and Atick, 1995a; Simoncelli and Olshausen, 2001). Consequently, at

low frequencies, the signal power is extremely strong and the SNR is likely high. According

17The full derivation of this analytical result can be found in Appendix 19 of Rieke et al. (1997).
18Note, however, that in the presence of significant levels of noise, removing all temporal correlations from the

encoded signal is not the optimal strategy. Redundancy can indeed improve the quality of a code by conferring
robustness against noise (Shannon, 1949; Van Hateren, 1992; Van Steveninck and Laughlin, 1996; Cover and
Thomas, 2012).

19I am neither a creationist nor a defender of intelligent design (Pozzorini et al., 2008).
20Natural visual inputs are characterized by strong temporal correlations (Dong and Atick, 1995b; Van Hateren

and Van Der Schaaf, 1996).
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to efficient coding theory, sensory systems are thus expected to operate as high-pass filters

H (t ) with squared aptitude response |Ĥ ( f )|2 = f α (see Eq. 1.22)(Rieke et al., 1997). The results

presented in Chapter 2 provide evidence that this occurs in adapting neurons.

1.2.5 The timescale of contrast adaptation

In a switching experiment (see Section 1.2.3), contrast adaptation is typically assessed by

fitting linear-nonlinear (LN) models (Schwartz et al., 2006) to the responses evoked by inputs

with different contrast levels. In the LN model, the stimulus s(t) is first passed through a

linear filter KLN(t ) and then transformed into an instantaneous firing rate r (t ) by a pointwise

nonlinearity. Mathematically, the LN model is defined as

r (t ) = f

(∫ ∞

0
KLN(τ)s(t −τ)dτ

)
, (1.23)

where the linear filter KLN(t ) describes the feature of the stimulus to which the neuron is most

sensitive21 and f (s̃) maps the filtered input s̃ = ∫ ∞
0 KLN(τ)s(t −τ)dτ into an instantaneous fir-

ing rate. Despite its simplicity, the LN model provides a fairly good description of experimental

data collected in many early sensory systems22. Moreover, its parameters (i.e., the linear filter

KLN and the nonlinearity f ) can be easily extracted from experimental data using a technique

called spike-triggered analysis (Schwartz et al., 2006). Mainly for these reasons, the LN model

is nowadays one of the most popular tools used to study how the activity of individual neurons

is related to external stimuli. The LN model does not account for adaptation, but simply

describes how rapid input fluctuations are transformed into output firing rates. However, by

independently fitting the data acquired with different input statistics, the LN model allows to

characterize sensory adaptation.

By estimating the steady-state nonlinear function f (s̃) at different stimulus contrast levels

σs, it was shown that many sensory systems can perform optimal gain control (Brenner et al.,

2000; Fairhall et al., 2001b; Maravall et al., 2007, 2013). Indeed, when the nonlinear functions

f (s̃) observed in response to different σs are plotted as a function of the normalized filtered

stimulus s̃norm = s̃/σs, they tend to superimpose (see Fairhall et al. (2001b)). In a switching

experiment, the temporal evolution of adaptive gain rescaling can be tracked over time by

extracting the LN model parameters from different chunks of data recorded at different times

relative to the stimulus switch. While Smirnakis et al. (1997) reported that the timescale τC of

contrast gain control was similar to the timescale of spike-frequency adaptation, other studies

showed that the readjustment of the input-output nonlinearity f (s̃) requires less than 100 ms

and is at least one order of magnitude faster than spike-frequency adaptation (Fairhall et al.,

2001b; Baccus and Meister, 2002) (Fig. 1.5e,f). Moreover, Baccus and Meister (2002) showed

that in the retina, changes in the input contrast are also accompanied by fast changes in the

21The filter KLN(t ) can be interpreted as the receptive field of the neuron.
22However, the accuracy of the model is significantly improved if spike-history effects are taken into account

(Pillow et al., 2005).
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single-neuron receptive field KLN(t ), which converge much earlier than rate adaptation23. This

separation of timescales suggests that spike-frequency adaptation, adaptive gain control and

receptive field changes are distinct forms of adaptation, possibly controlled by independent

mechanisms24.

In most sensory coding studies, the spiking activity of a neuron (e.g., a retinal ganglion cell) is

directly related to an external input of interest (e.g. light intensity). With this experimental

paradigm, it is therefore difficult, if not impossible, to understand whether sensory adaptation

requires network effects and identifying its underlying biological mechanisms is even harder.

The forms of sensory adaptation discussed in the previous sections are widespread across

sensory systems, which raises the appealing hypothesis that adaptation processes could result

from the intrinsic properties of single neurons. Several experimental studies have shown that

single neurons responding to in vitro current injections adapt their coding strategy to the

input statistics. It remains however unclear whether and how spike-frequency adaptation,

contrast gain control and receptive field changes can be simultaneously supported by the

intrinsic properties of single neurons.

23The same result was reported by Fairhall et al. (2001b), but data were not shown.
24Contrast gain adaptation has been proposed to simply result from the static nonlinearity associated with the

threshold process for spike generation (Sakai et al., 1995; Paninski et al., 2003), rather than from a real adaptation
process. But see, e.g., Yu et al. (2005).
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1.3 The adaptive properties of single neurons

Single neurons face a problem which closely resembles the one that sensory systems have to

solve, namely to efficiently represent a continuous signal using a train of action potentials. It

is indeed possible to interpret the total synaptic current Isyn(t ) as the result of single-neuron

computation and the soma25 as an analog-digital converter that transforms Isyn(t ) into a spike

train for transmission to neighboring neurons (see Fig. 1.2). Consequently, it is reasonable to

hypothesize that some of the computational principles underlying sensory adaptation also

apply to single neurons.

The following sections discuss some important experimental results about single-neuron

adaptation, as well as some popular spiking models that describe this phenomenon.

1.3.1 Spike-frequency adaptation in single neurons

When stimulated in vitro with a depolarizing current step, single neurons initially respond

by emitting action potentials at a high firing rate. However, if the stimulus persists, the firing

rate of many types of neurons declines until a steady-state is reached. This phenomenon has

been experimentally observed in a large number of different preparations, demonstrating that

spike-frequency adaptation is a common feature of spiking neurons.

Biophysically, spike-frequency adaptation can be induced by different cellular mechanisms

such as (Benda and Herz, 2003): M-currents mediated by voltage-dependent high-threshold

K+-channels (Brown and Adams, 1980) and AHP-currents mediated by Ca2+-activated (Madi-

son and Nicoll, 1984) or Na+-activated (Bhattacharjee and Kaczmarek, 2005) K+-channels. All

of these mechanisms induce spike-frequency adaptation by means of a common working-

principle: the emission of an action potential rapidly triggers a cascade of biophysical events

that ultimately activate a hyperpolarizing current that decays slowly. Compared to processes

responsible for spike generation, the biophysical mechanisms underlying spike-frequency

adaptation generally operate on much slower timescales. Consequently, the effects induced

by consecutive spikes accumulate, progressively strengthening the total adaptation current

and therefore decreasing the output firing rate.

Spike-frequency adaptation can also result from slow inactivation of Na+-channels (Flei-

dervish et al., 1996; Mickus et al., 1999; Henze and Buzsaki, 2001; Benda and Herz, 2003; Jolivet

et al., 2006b). After the emission of an action potential, Na+-channels inactivate, effectively re-

ducing the number of channels available for the initiation of future action potentials and thus

increasing the voltage threshold for spike initiation (Hodgkin and Huxley, 1952). Similar to the

dynamics of channels mediating adaptation currents, recovery from inactivation can occur

on relatively slow timescales such that the effect induced by consecutive spikes accumulate.

As a result, in response to a step of current evoking repetitive firing, the voltage threshold for

spike initiation progressively increases, producing a negative feedback process that gradually

25More precisely the axon hillock, where action potentials are initiated.
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Figure 1.6: Fractional differentiation by cortical pyramidal neurons. Layer 2/3 and layer 5 pyrami-

dal neurons from rat somatosensory cortex were tested in vitro with a set of six square-wave currents

of different cycle periods T ∈ [1,32] s (panels a-c), as well as with a set of sinusoidal-wave currents of

different cycle periods T ∈ [1,32] s (panels d-f ). a) Typical response (black) of a pyramidal neuron to

a square-wave current (gray) with T = 2 s. b) The average firing rate evoked by a set of square-wave

currents of different periods T = {4,8,16} s is plotted as a function of time, relative to the cycle onset.

For each cycle period, upward adaptation (i.e., the firing rate decay after a sudden increase of the

input current) and downward adaptation (i.e., the firing rate recovery after a sudden decrease of the

input current) were independently fitted with single-exponential functions (blue). c) The effective

timescale τA of both upward (blue) and downward (black) adaptation scales linearly with the cycle

period T . This result indicates that spike-frequency adaptation does not have a preferred timescale,

but is nearly scale-free (i.e., power-law). The effective timescale τA of adaptation was estimated by

single-exponential fits (see panel b). Error bars indicate one standard deviation across 8 different

neurons. d) Typical firing rate response (black) to a sinusoidal current of period T = 16 s (gray). In

order to characterize the transfer function Ĥ( f ) of single neurons, the same experiment was repeated

multiple times by varying the period T of the sinusoidal current. e-f ) Average amplitude response ĤA

and average phase response ĤΦ of 8 neurons estimated by measuring the amplitude and the phase

of the firing rate relative to the sinusoidal input. Dashed red lines indicate the best fits of a fractional

differentiation model (see Eq. 1.26) of order α. Black lines with squares indicate the result obtained

from 11 neurons using a different protocol in which the input current was generated according to a

Gaussian process of constant mean and sinusoidally modulated standard deviation. In this case, the

transfer function Ĥ ( f ) links the standard deviation of the input to the output firing rate. e) In agreement

with the fractional differentiation model, single neurons act as high-pass filters ĤA( f ) ∝ f α = T −α. f )

In agreement with the fractional differentiation model, the phase response ĤΦ(T ) of single neurons is

nearly constant, reflecting scale-invariance. All panels were adapted from Lundstrom et al. (2008).

reduces the output firing rate26 (Fleidervish et al., 1996).

26In the HH model, slow Na+-channel inactivation is generally modeled by extending the Na+-current (see Eq.
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Chapter 1. Introduction

To characterize the effective timescale over which spike-frequency adaptation occurs, a classi-

cal protocol consists of fitting the firing rate response induced in vitro by a depolarizing step

of current with a single exponential function (see, e.g., Sanchez-Vives et al. (2000b)). Using

this approach, spike-frequency adaptation has been shown by different studies to occur on

a large variety of temporal scales, ranging from tens of millisecond up to several seconds.

Other experimental studies demonstrated that to accurately capture the firing rate response of

individual neurons, adaptation had to be described with two or more independent processes

operating on different timescales (La Camera et al., 2006). An even more surprising result

was later obtained by measuring the effective timescale of spike-frequency adaptation τA in

cortical pyramidal neurons responding in vitro to a set of square-wave currents with different

cycle periods T (Fig. 1.6a,b). Similar to the activity recorded in vivo from H1 neurons of

the fly visual system (see Fig. 1.5), Lundstrom et al. (2008) demonstrated that the effective

timescale over which cortical pyramidal neurons adapt their firing rate scales linearly with

the characteristic timescale of the input T used in the experiment (Fig. 1.6c), indicating that

spike-frequency adaptation is a scale-free process (i.e., power law).

1.3.2 Single neurons as fractional differentiators

The linear relationship between τA and T suggests that spike-frequency adaptation is mediated

by a scale invariant process with power-law memory (Drew and Abbott, 2006). Lundstrom

et al. (2008) demonstrated that this particular behavior is consistent with a model of fractional

differentiation (Miller, 1995), according to which the firing rate response r (t) to a current

whose average µI(t ) is slowly modulated in time27 is given by:

r (t ) = r0 +k · dα

d tα
µI(t ) (1.24)

where r0 and k are constants and the fractional differentiation dα

d tα of order α ∈ [0,1] is a linear

operator defined in the frequency domain as (Lundstrom et al., 2008):

dα

d tα
x(t )

FT−→ (i 2π f )α ·X ( f ), (1.25)

with x(t ) being a function of time, X ( f ) being its Fourier transform (FT) and Ĥ( f ) = (i 2π f )α

being the characteristic transfer function of a fractional differentiator28. By rewriting the

1.4) with a third gating variable which is similar to h, but operates on much slower timescales (Fleidervish et al.,
1996).

27The fractional differentiation model is also valid in cases where the standard deviation σI(t ) of the input, and
not the mean, is slowly modulated in time (see. Fig. 1.6e,f). In this case, the output firing rate of the neuron is
correctly described as a fractional derivative of σI(t ) (Lundstrom et al., 2008).

28Fractional derivatives extend the concept of integer-order derivatives (e.g., d
d t , d 2

d t 2 , . . . , d n

d t n , with n being an

integer number) to non-integer orders α (e.g., d 0.1

d t 0.1 , d 0.2

d t 0.2 , . . . , dα

d tα , with α being a real number). This can be
understood by noting that, in the Fourier domain, the transfer function of a differentiator of integer order n is
given by Ĥ( f ) = (i 2π f )n .
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1.3. The adaptive properties of single neurons

transfer function Ĥ( f ) in polar coordinates one obtains:

Ĥ( f ) = (2π f )α ·exp
(
i
απ

2

)
. (1.26)

Eq. 1.26 tells us that fractional differentiators act as high-pass filters with amplitude response

ĤA( f ) = (2π f )α and are characterized by a phase response ĤΦ( f ) = απ
2 that does not depend

on the frequency f of the input. By testing cortical neurons with sinusoidal currents of

different frequencies29 (Fig. 1.6d), Lundstrom et al. (2008) demonstrated the validity of this

model and found the fractional order of differentiation that best captures the data was around

α ≈ 0.15 (Fig. 1.6e-f). In response to a step of current, the fractional differentiation model

predicts that the firing rate decay induced by spike-frequency adaptation follows a power-law

r (t ) ∝ t−α (Lundstrom et al., 2008). Since power-laws are scale-invariant functions, this result

explains why the effective timescale of adaptation estimated by forcing an exponential fit to

the data depends on the duration of the experiment (Drew and Abbott, 2006).

The fractional differentiation model provides a compact and elegant mathematical formu-

lation that nicely captures multiple timescales of spike-frequency adaptation with a single

parameter α. However, despite its beauty, the model only provides a description of the experi-

mental data without explaining the origin of power-law adaptation. In principle, a power-law

decay can be approximated with a sum of single exponential processes covering a large range

of timescales (Anderson, 2001), indicating that power-law adaptation could emerge in single

neurons from the combined action of different ion-channels mediating adaptation currents on

different timescales (Drew and Abbott, 2006). In agreement with this hypothesis, Lundstrom

et al. (2008) demonstrated that an HH model extended with several active conductances was

sufficient to qualitatively reproduce the experimental data shown in Figure 1.6e-f (Lundstrom

et al., 2008). Alternatively, power-law adaptation could be implemented with a single channel

type that intrinsically features a scale-free dynamics (Toib et al., 1998; Gilboa et al., 2005).

Also, the fractional differentiation model only accounts for firing rate modulations induced by

slow changes in the input statistics and is therefore not suitable to describe the neural activity

evoked by rapidly fluctuating inputs. Ideally, one would like a spiking model that, while being

consistent with a fractional differentiator, also captures the occurrence of individual spikes

with millisecond precision.

The functional role of power-law adaptation remains poorly understood. A previous study

demonstrated that due to its high-pass filtering properties, spike-frequency adaptation over

multiple timescales might improve the information transfer by removing temporal correlations

from relevant signals that single-neurons have to encode (Wang et al., 2003). However, to

carefully test this hypothesis, one should first characterize the statistics, and in particular

the temporal correlations, of the total synaptic currents Isyn(t ) received at the soma of single

neurons in biologically relevant stimulations (see Section 1.2.4). The results presented in

Chapter 2 address, and partially solve, these issues.

29The fractional differential model also captures the average firing rate response evoked by a fluctuating current
whose standard deviation σI(t ) is modulated by a sum of sinusoidal functions.
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1.3.3 Spiking models of spike-frequency adaptation

To accurately predict the spiking activity of single neurons, accounting for spike-frequency

adaptation is of crucial importance (Jolivet et al., 2008b,a; Gerstner and Naud, 2009). In

order to capture spike-frequency adaptation, the LIF model (i.e., Eq. 1.7) can be extended

by including a set of N ≥ 1 adaptation currents Ai (t) that phenomenologically describe the

activity of multiple channels (Izhikevich et al., 2003; Brette and Gerstner, 2005; Paninski et al.,

2005; Pillow et al., 2005; Drew and Abbott, 2006):

CV̇ =−gL(V −EL)+ Iext(t )−
N∑

i=1
Ai (t ). (1.27)

A common approach followed in previous studies consists of modeling the dynamics of each

of individual adaptation current Ai(t ) with a linear differential equation (Izhikevich et al., 2003;

Brette and Gerstner, 2005):

τi Ȧi =−Ai +biτi ·
∑

t̂ j<t

δ(t − t̂j), (1.28)

where {t̂j} denotes the timing of previous spikes. According to Eq. 1.28, each time an action

potential is emitted, the adaptation current Ai(t) is instantaneously increased by a certain

amount defined by bi and then decays to zero with a single timescale τi. Since the contribu-

tions of multiple action potentials accumulate, the more the neuron spikes the more the total

adaptation current IA(t ) =∑
i Ai (t ) rises, delaying the emission of future spikes (Fig. 1.7a,b).

By integrating Eq. 1.28 over time, it is easy to show that the total adaptation current is given by

a sum of spike-triggered currents IA(t ) =∑
t̂j<t η(t − t̂j), defined as η(t ) =Θ(t )·∑N

i=1 bi exp
(
− t
τi

)
,

where Θ(t) denotes the Heaviside step function. Consequently, in a spiking neuron model

defined by Eqs. 1.27-1.28, the number of timescales over which spike-frequency adaptation is

modeled is directly controlled by the parameter N .

By relaxing the assumption that spike-triggered currents are generated by sums of single

exponential processes, it is possible to define a more general model, according to which the

membrane potential dynamics is governed by the following differential equation (Fig. 1.7a):

CV̇ =−gL(V −EL)+ Iext(t )− ∑
t̂ j<t

η(t − t̂j) (1.29)

where η(t) is now an arbitrary function of time (Paninski et al., 2005; Pillow et al., 2005) . By

defining the spike-triggered current as a power-law function η(t ) ∝ (t +b)−a , one obtains the

LIF model with power-law adaptation that was successfully used by Drew and Abbott (Drew

and Abbott, 2006) to describe sensory adaptation, as it is observed in the weak electric fish (Xu

et al., 1996). This model is particularly interesting because, similar to the fractional differenti-

ation model of Lundstrom et al. (2008), it accounts for multiple timescales of adaptation by

means of only two parameters a and b.
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Figure 1.7: LIF models extended to account for spike-frequency adaptation. a) Schematic repre-
sentation of a LIF model extended with a spike-triggered current η(t) (Eq. 1.29). The input current
Iext(t) is transformed into a membrane potential V by means of a convolution with an exponential
filter (leaky integration). Each time the voltage reaches the firing threshold V ∗

T , an action potential
is fired and an adaptation current η(t) is triggered. b) Response of the model shown in panel a to a
step of current (gray). Each spike triggers an adaptation current η(t ). Adaptation currents triggered by
consecutive spikes accumulate. As a result, the total adaptation current I A slowly increases over time
(blue), progressively reducing the output firing rate. Membrane potential and constant firing threshold
are shown in black and red, respectively. c) Schematic representation of a LIF model extended with
a dynamic threshold (Eq. 1.30). This model closely resembles to the one shown in panel a. Each
time an action potential is fired, a movement of the firing threshold VT is triggered. The model does
not feature a spike-triggered current. d) In response to a step of current (gray), the model shown in
panel d features spike-frequency adaptation. Each spike triggers a movement of the firing threshold
γ(t). Similar to the dynamics of IA in panel b, threshold movements induced by consecutive spikes
accumulate progressively increasing the firing threshold (red). The schematic representations in panels
a and c omit the voltage reset occurring after a spike.

Alternatively, spike-frequency adaptation can be accounted for by a dynamic threshold (Fig.

1.7c,d). Soon after its introduction, the original LIF model was extended by making VT spike-

dependent. In the resulting model, the voltage dynamics is exactly as in the standard LIF

model (see Eq. 1.7), but the firing threshold VT is defined as (Hill, 1936; Kobayashi et al., 2009;

Jolivet et al., 2006b; Mihalaş and Niebur, 2009):

VT(t ) =V ∗
T + ∑

t̂ j<t

γ(t − t̂j) (1.30)

where V ∗
T is a baseline and, similar to η(t ), γ(t ) describes the stereotypical trajectory followed

by VT after each spike. Compared to a LIF in which spike-frequency adaptation is modeled

with a spike-triggered current, Eq. 1.30 is more appropriate in situations where adaptation
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results from Na+-channel inactivation and modify the spiking activity without affecting the

subthreshold dynamics of the membrane potential (Fleidervish et al., 1996).

Since in the LIF model action potentials are emitted each time the condition V =VT is verified,

decreasing V by means of a spike-triggered current η(t) or of increasing VT with a spike-

triggered movement of the firing threshold have a similar impact on the spiking activity of the

model. However, to accurately capture the subthreshold dynamics of the membrane potential,

the dynamics of these two forms of adaptation have to be independently modeled. In Chapters

2 and 3, a new fitting procedure is introduced that solves this problem.

1.3.4 Stochastic spike emission and Generalized Linear Model

When stimulated in vitro with multiple injections of the same fluctuating current Iext(t),

cortical neurons emit quasi-reliable trains of action potentials in which the precise timing

of individual spikes shows trial-to-trial variability (Mainen and Sejnowski, 1995; Jolivet et al.,

2006b). This important result indicates that the spiking response of a single neuron can

not be predicted with certainty and that single-neuron computation should in principle be

characterized with a stochastic model determining the conditional probability of observing an

output spike train Sout(t ) given an input current Iext(t ) (Pillow, 2007). Estimating P (Sout|Iext)

for any possible input Iext(t ) is obviously impossible. A better approach to tackle this problem

is to first define a model Pθ(Sout|Iext) that could provide a good approximation of the real

distribution P (Sout|Iext) and then extract the model parameters θ from an available set of

experimental data (Pillow, 2007).

Any integrate-and-fire model can be transformed into a probabilistic spiking model by defining

that action potentials are generated according to a point process with firing intensity λ(t)

given by (Plesser and Gerstner, 2000; Gerstner and Kistler, 2002):

λ(t ) =λ0 ·exp

(
V (t )−VT(t )

∆V

)
, (1.31)

where the dynamics of V (t) and VT(t) is deterministic, λ0 is a constant and ∆V defines the

level of stochasticity30 (Fig. 1.8a). According to point process theory (Gerstner and Kistler,

2002), the probability of observing an action potential at time t̂ ∈ [t , t +∆t ] is:

P (t̂ ∈ [t , t +∆T ]) = 1−exp

(
−

∫ t+∆t

t
λ(s)d s

)
≈λ(t )∆t , (1.32)

and, in the limit of ∆V → 0, spike generation becomes again deterministic and action poten-

tials are fired whenever V (t) =VT(t). This model is commonly referred to as the escape-rate

model (Gerstner and Kistler, 2002) and has been shown to accurately describe stochastic spike

generation in cortical neurons responding to fluctuating currents (Jolivet et al., 2008a).

30Alternatively, deterministic IF models can be made stochastic by corrupting the external input Iext(t) with
a noise current Inoise(t ) typically modeled as a white-noise process (see, e.g., Pillow et al. (2005)). The resulting
models are referred to as IF models with diffusive noise (Gerstner and Kistler, 2002).
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1.3. The adaptive properties of single neurons

The Generalized Linear Model (GLM) (Truccolo et al., 2005; Pillow et al., 2008) provides a

simple but powerful model that simultaneously accounts for stochastic spike emission and

spike-frequency adaptation (Fig. 1.8b). Similarly to an IF model equipped with the escape-rate

mechanism, GLMs generate action potentials according to a point process with conditional

firing intensity λGLM(t ) defined as:

λGLM(t |Iext,θ) =λ0 ·exp

∫ ∞

0
KGLM(s)Iext(t − s)d s −∑

t̂ j

hGLM(t − t̂j)

 , (1.33)

where λ0 is a constant, KGLM(t ) is a linear filter acting on the external current and defining the

features of the input to which the neuron is most sensitive, hGLM(t ) is a filter accounting for

spike-history effects and θ = {λ0,KGLM,hGLM} denotes the model parameters31. Importantly,

the log-probability of an output spike-train Sout(t ) =∑
t̂ j
δ(t − t̂ j ) being generated by a GLM in

response to an input current Iext(t ) can be computed and reads (Brillinger, 1988; Pillow, 2007):

logPθ(Sout|Iext) = Z +∑
t̂ j

logλGLM(t̂ j |Iext,θ)−
∫ T

0
λGLM(t |Iext,θ)d t (1.34)

where T denotes the total duration of the observations and Z is a normalization constant.

Moreover, since the nonlinearity used in Eq. 1.33 is at the same time convex and log-concave

in its argument, the log-likelihood logPθ(Sout|Iext) is guaranteed to be a convex function of

θ (Paninski, 2004), making Eq. 1.34 an extremely powerful tool to extract model parameters

from experimental data (see Chapter 3).

The GLM does not simply provide a good model for spiking neurons responding in vitro to

fluctuating currents (Mease et al., 2014), but has also been successfully employed to charac-

terize the activity of individual neurons responding in vivo to sensory stimuli s(t ) (Paninski

et al., 2007; Calabrese et al., 2011). In this case, the input current Iext(t) in Eq. 1.33 is sim-

ply replaced by s(t) and KGLM(t) is interpreted as a receptive field32. GLMs can also be

extended to model the spiking activity {S(out)
i (t)}N

i=1 recorded in vivo from a population of

N > 1 connected neurons (Truccolo et al., 2005; Pillow et al., 2008). Indeed, if the interac-

tion between neurons is described with an additional set of linear filters {εji(t )}j,i describing

how a spike emitted by neuron i affects the spiking probability of neuron j , the likelihood

function logPθ({S(out)
i (t )}N

i=1|s(t )) closely resembles Eq. 1.34 and remains convex in the model

parameters θ = {λ0,i,KGLM,i,hGLM,i,εij} (Pillow, 2007). GLMs can thus be used to analyze multi-

electrode recordings and infer the functional connectivity between neurons (Okatan et al.,

2005; Pillow et al., 2008; Gerhard et al., 2013).

31In contrast to IF models extended with the escape-rate mechanism (see Eq. 1.32), GLMs do not explicitly model
the membrane potential and the firing threshold, but directly relate the input current to the spiking response.
Consequently, the parameter ∆V does not appear explicitly in Eq. 1.33, but is absorbed as a scaling factor in the
KGLM and hGLM. Also, the GLM does not feature an after-spike reset.

32Note that the GLM can be interpreted as an LN model (see Eq. 1.23) extended with a mechanism for stochastic
spike generation (i.e., a Linear-Nonlinear Poisson model) as well as with a term accounting for spike-history effects.
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Figure 1.8: Escape-rate mechanism for stochastic spike generation and Generalized Linear Model.

a) Schematic representation of the escape rate model. The probability λ(t) of emitting an action

potential at time t depends on the distance between membrane potential V (t) (black) and firing

threshold VT(t) (red). Spikes can occur even if V (t) < VT(t). It is also possible that the membrane

potential crosses the threshold without spiking. b) Schematic representation of the GLM. The input

current Iext(t ) is first passed through the linear filter KGLM(t ). The resulting signal is then transformed by

an exponential nonlinearity into a firing intensity λGLM(t ), according to which spikes are stochastically

emitted. Each time an action potential is fired, a feedback process hGLM(t ) is triggered that accounts

for all spike-history effects (e.g., adaptation currents, threshold movements and after-spike reset).

Importantly, the functional shapes of KGLM(t ) and hGLM(t ) are not defined a priori and can be extracted

from experimental data using a non-parametric method. Panel a and panel b were adapted from

Gerstner and Kistler (2002) and Pillow (2007), respectively.

1.3.5 Complex forms of single-neuron adaptation

In a recent study, Mease et al. (2014) used a GLM to characterize the spiking activity of cortical

neurons responding to a set of fluctuating currents Iext(t) with different DC components

µI. When fitted independently on different experiments, GLMs were able to capture the

experimental data with great accuracy and outperformed the other models considered in

that study. However, the GLM parameters extracted from different experiments were not

identical, but changed systematically with µI. In particular, increasing the DC component

of Iext(t ) resulted in a progressive shortening of the linear filter KGLM(t ), reflecting increased

sensitivity to rapid input fluctuations. Moreover, the adaptation filter hGLM(t ) also changed

with µI, revealing the existence of meta-adaptation33. Overall, these results demonstrate that

single-neurons feature complex forms of adaptation that GLMs cannot explain.

Since the output firing rate of single neurons generally increases with µI, the shortening in

KGLM(t) reported by Mease et al. (2014) could possibly be captured by replacing the spike-

triggered adaptation current in Eq. 1.29 by a conductance-based current defined as (MacGre-

33Since the spike-history filter hGLM(t) accounts for adaptation, changes in its functional shape can be inter-
preted as a form of meta-adaptation.
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1.3. The adaptive properties of single neurons

gor and Sharpless, 1973; Dayan and Abbott, 2001):

IA(t ) =∑
t̂ j

ηg(t − t̂j)(V (t )−EA), (1.35)

where EA is a reversal potential and ηg(t ) describes the conductance change triggered by the

emission of a previous spike. Alternatively, since increasing µI also shifts the subthreshold

voltage distribution towards more depolarized potentials, single neurons could in principle

regulate their effective timescale of integration by means of a subthreshold adaptation current

IV(t ) governed by the following differential equation (Deemyad et al., 2012):

τV İV(t ) = −IV(t )+ f (V (t )), (1.36)

where τV is a timescale and f is a nonlinear function of the subthreshold membrane potential.

Since GLMs do not explicitly model the subthreshold dynamics of the membrane potential,

KGLM(t) cannot be directly interpreted as a membrane filter mapping Iext(t) to V (t)34. It is

thus possible that adaptive changes in KGLM(t ) arise from dynamical properties of the firing

threshold. In a recent theoretical study, Platkiewicz and Brette (2010) demonstrated that

fast Na+-channel inactivation can implement a nonlinear coupling between subthreshold

membrane potential V (t ) and firing threshold VT(t ). This mechanism can be included in a LIF

model by defining its firing threshold dynamics as (Platkiewicz and Brette, 2011):

τTV̇T(t ) = −(VT(t )−V ∗
T )+ f (V (t )), (1.37)

where τT is the timescale of fast Na+-channel inactivation and f is a nonlinear function of

the subthreshold membrane potential V (t ). Similar to a nonlinear subthreshold adaptation

current, the threshold equation of Platkiewicz and Brette (2011) adaptively shortens the

effective timescale over which input currents are integrated. Moreover, Eq. 1.37 has recently

been shown to provide a good description of the firing threshold dynamics, as it is observed in

vitro (Higgs and Spain, 2011) and in vivo (Fontaine et al., 2014b).

As we have seen, during the last decades, the LIF model has been repeatedly extended with

different mechanisms in order to account for single-neuron adaptation. When considered

independently, these forms of adaptation are well understood. Whether and how multiple

adaptation mechanisms interact remains however poorly understood. Another important

problem that has not yet been solved is how to efficiently extract model parameters from

experimental data when complex forms of adaptation are taken into account. In Chapter

4, a new generalized IF model is introduced that simultaneously features: the escape-rate

mechanism for stochastic spike emission (Eq. 1.32), a spike-triggered conductance (Eq. 1.35),

a spike-triggered movement of the firing threshold (Eq. 1.30) as well as a nonlinear coupling

34The standard procure used for GLM parameter extraction does not exploit the information provided by
subthreshold voltage fluctuations, but only relies on spiking data (Pillow, 2007). Consequently, when extracted
from experimental data, the linear filter KGLM(t ) also accounts for mechanisms that change the spiking probability
without affecting the membrane potential (see Chapter 3).
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between membrane potential and firing threshold (Eq. 1.37). Despite its relative complexity,

the model remains amenable to analytical treatment and its parameters can be efficiently

extracted from intracellular recordings with a maximum-likelihood approach. As we will see,

a non-trivial interaction between different adaptation mechanisms explains and unifies the

phenomenon of enhanced sensitivity to input fluctuations (Arsiero et al. (2007), see Fig. 1.3)

as well as the complex forms of single-neuron adaptation recently observed by Mease et al.

(2014).
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1.4 Thesis contribution

This thesis summarizes the main results I have obtained during my PhD at EPFL between

2010 and 2014 under the supervision of Prof. Wulfram Gerstner and in collaboration with

Skander Mensi, Richard Naud, Olivier Hagens and other colleagues. The main goal of this

thesis was to investigate how single neurons transform in vivo-like fluctuating currents into

output spike trains. In particular, I focused on the question of how and why single-neurons

adapt their coding strategies to the statistical properties of their inputs. To answer these

questions, electrophysiological patch-clamp recordings of cortical neurons were combined

with mathematical models and numerical simulations. The thesis is divided in three chapters.

In Chapter 2, a new Generalized Integrate-and-Fire (GIF) model is introduced to study spike-

frequency adaptation over multiple timescales. The model features both a spike-triggered

current η(t) (see Eq. 1.29) and a spike-triggered movement of the firing threshold γ(t) (see

Eq. 1.30). By applying a non-parametric fitting procedure to intracellular recordings obtained

from L5 pyramidal neurons, we found that both adaptation processes feature a power-law

decay extending from tens of milliseconds to tens of seconds. This finding provides an

explanation to a previous result of Lundstrom et al. (2008) that, in cortical pyramidal neurons,

the effective timescale of spike-frequency adaptation is not fixed, but appears to scale linearly

with the duration of the experiment (see Fig. 1.6). In contrast to the fractional differentiation

model of Lundstrom et al. (2008) (see Section 1.3.2), the GIF model was additionally able to

predict the occurrence of individual spikes with millisecond precision. In the second part of

Chapter 2, the GIF model is combined with efficient coding theory and in vivo patch-clamp

recordings to demonstrate that power-law spike-frequency adaptation is near-optimally tuned

to remove temporal correlations from natural inputs received by single-neurons in biologically

relevant situations. This result provides insights about the functional role of spike-frequency

adaptation in cortical neurons.

The last years have seen a growing interest in automating electrophysiological patch-clamp

recordings. To make sense of the large amount of data that emergent technologies will make

available in the near future, adequate computational tools are required. In Chapter 3, the GIF

model and the fitting procedure introduced in Chapter 2 are proposed as a powerful tool to

perform high-throughput single-neuron characterization based on automated patch-clamp

recordings. By extracting GIF model parameters from in silico data generated by the GIF model

itself, from in silico data generated using the multi-compartmental model of Hay et al. (2011)

and from in vitro patch-clamp recordings performed in L5 pyramidal neurons, we demon-

strate that a short experimental protocol of around 5 minutes is sufficient to characterize

the electrical properties of single neurons. This chapter also provides a concise review of

simplified threshold models as well as of existing methods to extract model parameters from

intracellular recordings.

Chapter 4 focuses on complex forms of single-neuron adaptation and on the question of

whether cortical neurons operate as temporal integrators or coincidence detectors. A new set
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of in vitro patch-clamp recordings is introduced, in which cortical neurons are tested with

fluctuating currents generated by systematically varying the intensity of the mean current µI

and the amplitude of rapid input fluctuations σI (see Eq. 1.12). In agreement with previous

results (see Fig. 1.3), we found that the average firing rate of L5 pyramidal neurons always

increased with σI, even in the case of strong depolarizing offsets µI. Explaining why pyramidal

neurons maintain sensitivity to rapid input fluctuations, a GLM-based data analysis revealed

that the effective timescale over which the input current is integrated progressively shortened

with increasingµI. To identify the computational principles underlying this form of adaptation,

the GIF model introduced in Chapter 2 was extended with a dynamic coupling between firing

threshold and subthreshold membrane potential (see Eq. 1.37). In the following, we refer

to this new model as the inactivating Generalized Integrate-and-Fire (iGIF) model. Results

obtained by extracting iGIF model parameters from in vitro recordings indicate that, in L5

pyramidal neurons, the voltage threshold for spike initiation depends nonlinearly on the

subthreshold membrane potential and linearly on previous spikes. This result is consistent

with a previous biophysical model in which Na+–channel inactivation is accounted for with

both a fast and a slow gating variable (Fleidervish et al., 1996; Platkiewicz and Brette, 2011).

The analysis of the iGIF model’s dynamics further revealed that a non-trivial interaction

between spike-dependent and voltage-dependent threshold movements adaptively regulates

the effective timescale of somatic integration. Overall, the results reported in this chapter

demonstrate that the firing threshold dynamics implements a complex form of adaptation,

which in turn makes single neurons act as coincidence detectors over a broad range of input

statistics. These findings indicate that cortical pyramidal neurons are well-suited to support a

temporal code in which the precise timing of individual spikes conveys relevant information.

My contribution to each of these findings is summarized in the next section and at the end of

each chapter in a specific section called Author contributions.
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1.5 Personal contribution

The work presented in Chapter 2 was done in collaboration with Richard Naud, Skander

Mensi, Shovan Naskar, Carl Petersen and Wulfram Gerstner. During my master thesis (at the

Laboratory of Computational Neuroscience, EPFL), Richard Naud gave me the original idea

of explaining scale-free spike-frequency adaptation (Lundstrom et al., 2008) by means of a

power-law spike-triggered current that could possibly be extracted from experimental data

using mathematical methods. In a parallel project, Skander Mensi was working on determinis-

tic spiking models and in particular on a linear regression method to extract the time course

of adaptation currents from intracellular voltage recordings. During the first year of my PhD,

I extended the method of Skander Mensi by making the spiking model stochastic with the

final goal of extracting from data the dynamics of the firing threshold (maximum likelihood

method). The fitting procedure obtained by combining the method of Skander Mensi (linear

regression on subthreshold voltage fluctuations) and mine (maximum likelihood on spiking

response) was first published as a Methods paper in Journal of Neurophysiology in 2011 (see

Mensi et al. (2011)). To obtain a reliable estimate of the adaptation current up to several sec-

onds after spike generation, the accuracy of the linear regression method originally published

in Mensi et al. (2011) was further improved by extending the model with an hidden current

aimed at absorbing experiential drifts. This improvement was an original idea of Skander

Mensi, which I personally implemented. All of the in vitro recordings reported in Chapter

2 were designed by me and performed by Shovan Naskar in the laboratory of Carl Petersen

(EPFL) using a graphical user interface that I personally developed to execute and calibrate the

whole-cell current-clamp injections in a semi-automated way. During the early phase of the

in vitro experiments, I assisted Shovan Naskar with the goal of gaining a better understanding

of the experimental setup and to improve the protocol. Carl Petersen supervised the experi-

mental side of the project. The hypothesis that power-law adaptation could implement a form

of efficient coding by temporal whitening of the natural inputs received by cortical neurons in

biologically relevant situations originated from several discussions between Richard Naud and

me. The in vivo recordings that have been used to verify this hypothesis were kindly provided

by Sylvain Crochet and were acquired in the laboratory of Carl Petersen. This dataset was

previously published by Crochet et al. (2011). The spectral analysis of the in vivo recordings

has been originally performed by Skander Mensi and redone by me before final publication.

All of the data preprocessing (i.e., Active Electrode Compensation), numerical simulations,

model fitting and data analysis reported in Chapter 2 were implemented and performed by

me. I produced all of the figures and I wrote most of the text. Wulfram Gerstner and Richard

Naud contributed to the writing of the manuscript and supervised the project.

The work presented in Chapter 3 was done in collaboration with Skander Mensi, Olivier Ha-

gens, Richard Naud, Christof Koch and Wulfram Gerstner. The original idea of combining

the mathematical methods presented in Mensi et al. (2011) and in Pozzorini et al. (2013) with

high-throughput patch-clamp recordings originated from a discussion between Wulfram
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Gerstner, Christof Koch and me. The study was designed by Skander Mensi, Christof Koch,

Wulfram Gerstner and me. In particular Christof Koch proposed to assess the performance of

our GIF model using artificial data generated by simulating the multi-compartmental model

of Hay et al. (2011). Skander Mensi performed all of the numerical simulations and the data

analysis reported in the manuscript (except for Active Electrode Compensation that was

done by me). The structure of the manuscript was conceived by me with the help of Skander

Mensi and Wulfram Gerstner. I wrote the initial draft and Skander Mensi produced all the

figures (except for the schematic drawings appearing in Boxes 1-4, which were done by me).

Christof Koch, Wulfram Gerstner, Skander Mensi and Richard Naud contributed to the writing

of the manuscript by correcting and improving the original draft. A previous version of this

manuscript appeared in the thesis of Skander Mensi, was later improved and is currently under

review at PLOS Computational Biology. In Chapter 3 of this thesis, the original manuscript has

been modified and extended by me with the main goal of making the article accessible to a

broader audience, including experimentalists. The structure of the paper has been modified,

two new sections have been written by me to review previous efforts in designing and fitting

simplified spiking neuron models to in vitro electrophysiological recordings, a new section

was written by Richard Naud to discuss the limitations of point-neuron models and four boxes

have been written by me to make the technical aspects of the manuscript accessible to a broad

audience. The improved manuscript was corrected and improved by Wulfram Gerstner and

Christof Koch. Since Skander Mensi has been less involved in this second part of the project,

Skander Mensi and I took the decision to modify the order of the authors list by putting my

name as the first coauthor.

The work presented in Chapter 4 was done in collaboration with Skander Mensi, Olivier Ha-

gens and Wulfram Gerstner. I had the original idea of explaining enhanced sensitivity to input

fluctuations (Arsiero et al., 2007) by extending the GIF model with a nonlinear coupling be-

tween firing threshold and membrane potential (Brette, 2011) that could possibly be extracted

from in vitro intracellular recordings. I also had the original idea of linking our results to

previous findings about sensory adaptation (Fairhall et al., 2001b; Baccus and Meister, 2002).

During the exploratory phase of the project, Skander Mensi and I worked in parallel to test

different models, fitting strategies and theories. More precisely, Skander Mensi mostly focused

on the fitting procedure and model validation. I mostly worked on data analysis (i.e., f-I curves

and model-free firing threshold estimation), protocol design and model reduction. Based on

the results obtained during this exploratory phase, Skander Mensi and I designed the figures

and the structure of the paper, Skander Mensi redid all of the fits, model validation, model

reduction and produced Figures 4.2, 4.5-4.8. In parallel, I redid the data analysis, produced

Figures 4.1, 4.3, 4.4 and entirely wrote the manuscript. All of the in vitro experiments included

in the manuscript were performed by Olivier Hagens in the lab of Henry Markram. During

the exploratory phase of the project, I assisted Olivier Hagens to improve the protocol design.

Wulfram Gerstner supervised the project. A previous version of this manuscript appeared

in the thesis of Skander Mensi. At this stage of the project, the main goal of the study was to
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understand the differences between pyramidal and fast spiking neurons. The main results

supporting our early conclusions were therefore provided by model fitting and validation,

in which Skander Mensi was clearly more involved than me. For this reason, Skander Mensi

appears in his thesis as the first coauthor of the manuscript (this decision was taken with my

approval). In the late phase of the project, Skander Mensi and I decided to focus more in depth

on pyramidal neurons and the results obtained from fast spiking neurons were removed from

the manuscript. In the version of the manuscript reported in Chapter 4, the central aspect

of the study is to understand and explain the differences between the membrane timescales

and effective timescale of somatic integration (which turns out to be affected by the firing

threshold dynamics). Since I was more involved in the theoretical aspect of the project and in

understanding the functional implications of our results, Skander and I took the decision to

modify the order of the authors list by putting my name as the first coauthor.
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2 Temporal whitening by power-law
adaptation in neocortical neurons

Christian Pozzorini, Richard Naud, Skander Mensi and Wulfram Gerstner (published in

Nature Neuroscience)

Abstract

Spike-frequency adaptation is widespread in the central nervous system, but its functional

role remains unclear. In neocortical pyramidal neurons, adaptation manifests itself by an

increase in neuronal firing threshold and by adaptation currents triggered after each spike.

Combining electrophysiological recordings with modeling, we found that in mice these adap-

tation processes last for more than 20 seconds and decay over multiple time scales according

to a power-law. The power-law decay associated with adaptation mirrors and cancels the

temporal correlations of input current received in vivo at the soma of L2/3 somatosensory

pyramidal neurons. These findings suggest that, in the cortex, spike-frequency adaptation

causes temporal decorrelation of output spikes (temporal whitening), an energy efficient

coding procedure that, at high signal-to-noise ratio, improves the information transfer.

2.1 Introduction

Neural signaling requires a large amount of metabolic energy (Attwell and Laughlin, 2001).

Consequently, neurons are thought to communicate using efficient codes in which redundant

information is discarded (Laughlin, 2001). Theories of efficient coding (Barlow, 1961) success-

fully predict several features of sensory systems. At early stages of visual processing, inputs

coming from the external world are decorrelated both in space and time (Srinivasan et al., 1982;

Dong and Atick, 1995a; Dan et al., 1996; Pitkow and Meister, 2012); through sensory adaptation

(Wark et al., 2007), codes are dynamically modified so as to maximize information transmis-

sion (Wainwright, 1999; Brenner et al., 2000; Fairhall et al., 2001b; Maravall et al., 2007); and

sensory adaptation on multiple timescales (Fairhall et al., 2001b; Baccus and Meister, 2002;

Ulanovsky et al., 2004) could possibly reflect the statistics of the external world (Simoncelli

and Olshausen, 2001).
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Sensory adaptation is at least partially due to intrinsic properties of individual neurons and, in

particular, to spike-frequency adaptation (SFA). SFA is not only observed at the early stages of

sensory processing, but is also widespread in cortical neurons embedded in highly recurrent

networks. Often modeled by a single process with one specific timescale (Izhikevich et al., 2003;

Brette and Gerstner, 2005), SFA also occurs on multiple timescales (Spain and Schwindt, 1991;

Gilboa et al., 2005; La Camera et al., 2006). In pyramidal neurons of the rat somatosensory

cortex, three or more processing steps away from the sensory receptors, SFA is scale-free

(Lundstrom et al., 2008), meaning that the effective speed at which individual neurons adapt is

not fixed but depends on the input. Scale-free adaptation can be captured by simple threshold

models with a power-law decaying spike-triggered process (Drew and Abbott, 2006) that

possibly describes the combined action of Na+-channel inactivation (Fleidervish et al., 1996;

Mickus et al., 1999; Melnick et al., 2004) and ionic channels mediating adaptation currents

(Madison and Nicoll, 1984; Schwindt et al., 1989; Sanchez-Vives et al., 2000a).

Three questions therefore arise: First, can the temporal features of spike-triggered currents

and spike-triggered changes in the firing threshold, possibly spanning multiple timescales,

directly be extracted from experimental data? Second, can SFA be explained by these spike-

triggered effects? And finally, do the timescales of SFA match the temporal statistics of the

inputs received by individual neurons? If temporal characteristics of inputs and SFA were

matched, SFA could lead to a perfect decorrelation of the information contained in one spike

with that of the previous one of the same neuron, a phenomenon called temporal whitening

(Wang et al., 2003). Temporal whitening in turn implies that, at high signal-to-noise ratio,

information transmission is enhanced (Rieke et al., 1997).

2.2 Results

The question of whether SFA is optimally designed for efficient coding can only be addressed if

both the dynamics of SFA and the statistical properties of the inputs generated in biologically

relevant situations are known. Therefore, the Results section is organized as follow. We start

with a combined theoretical and experimental approach so as to extract the dynamics of

spike-triggered processes and SFA directly from in vitro recordings of cortical neurons. Then,

we analyze the synaptically driven membrane potential dynamics recorded in vivo from

somatosensory neurons during active whisker sensation (data from Crochet et al. (2011)). Our

overall goal is to study whether adaptation optimally removes the temporal correlations in the

input to single neurons embedded in the highly recurrent network of the cortex.

2.2.1 SFA is mediated by two power-law spike-triggered processes

To reveal adaptation on multiple timescales, we stimulated L5 somatosensory pyramidal neu-

rons with sinusoidal noisy currents of period T (see Materials and Methods) chosen between

500 ms and 16 s (Fig. 2.1). Single neurons responded with a firing rate r (t) characterized by
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fast fluctuations around a sinusoidal mean rmean(t ) given by the first-order approximation

rmean(t ) = r0 + ĤA(w) ·∆Imean sin(w t + ĤΦ(w)), (2.1)

where w = 2π/T is the angular frequency of the input modulation, r0 ≈ 4 Hz is the aver-

age firing rate, ĤA(w) is the amplitude response and ĤΦ(w) is the phase response. In the

Fourier domain, the transfer function Ĥ (w) = ĤA(w)e i ĤΦ(w) constitutes a linear model for the

modulation of the output firing rate (Fig. 2.1).

Figure 2.1: Experimental protocol and spiking neuron model GLIF-ξ. To reveal SFA on multiple

timescales, we repeatedly stimulated synaptically isolated L5 pyramidal neurons (PYR neuron) with

fluctuating currents (Input current) generated by adding filtered Gaussian noise to sinusoidal waves

with different angular frequencies w = 2π/T (Mean modulation). The horizontal bars (bottom left

and right) indicate the period T of modulation. The single neuron response (Spiking response, black)

was recorded intracellularly and the firing rate r (t) was estimated by counting the number of spikes

in every time bin (Firing rate modulation, gray). The periodic oscillations of the firing rate rmean(t)

(Firing rate modulation, black) was related to the mean input (Firing rate modulation, light gray) with a

linear rate model defined in the Fourier domain by the the transfer function Ĥ(w). We then used the

intracellular recordings to fit the Generalized Leaky Integrate & Fire model GLIF-ξ (top). In this model,

the input current is first low-pass filtered by the membrane filter Km(t) and then transformed into a

firing intensity by an exponential nonlinearity. Spikes are emitted stochastically (Spiking response, red)

and trigger an adaptation process described by the effective adaptation kernel ξ(s).

Since SFA is at least partly due to spike-triggered effects, the simple firing rate picture of Equa-

tion 2.1 must be complemented by a spike-based description. We therefore used intracellular

recordings to fit a generalized leaky integrate-and-fire model (GLIF-ξ) with escape-rate noise

(Gerstner and Kistler, 2002) for stochastic spike emission (Fig. 2.1). To capture spike-triggered
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adaptation, the model features an effective dynamic threshold, described by the function ξ(s).

This function (also called effective adaptation filter or kernel) summarizes the stereotypical

sequence of biophysical events triggered by the emission of an action potential and accounts

for both adaptation currents and physiological changes of the firing threshold. Since the

effects induced by consecutive spikes accumulate, the effective dynamic threshold produces

SFA. Importantly, the functional shape of ξ(s), like all the other parameters of the model, were

extracted from the data (see Materials and Methods).

Figure 2.2: Adaptation filter of the GLIF-ξmodel extracted from in vitro recordings. a) Adaptation

filters of a two-process GLIF model that accounts for SFA with both a spike-triggered current η(s) and a

spike-triggered movement of the firing threshold γ(s). Left: Mean spike-triggered current η(s) (red)

obtained by averaging the results of different cells (n = 14). The dashed black line shows the fit of a

power-law function ηPL(s) =αηs−βη with parameters αη = 0.44 nA, βη = 0.76 and s is in milliseconds.

Right: Mean moving threshold γ(s) (red) obtained by averaging the results of different cells (n = 14). The

dashed black line shows the fit of a power-law function γPL(s) =αγs−βγ with parameters αγ = 24.4 mV,

βγ = 0.87 and s in milliseconds. The dark gray line is a control showing an independent estimation of

the average moving threshold γ(t ) obtained with an alternative fitting procedure (see Methods). b) The

spike-triggered current η(s) and the moving threshold γ(s) were combined (block diagram) to obtain

the effective adaptation filter ξ(s) of the GLIF-ξ model. The mean adaptation filter ξL(s) (red, GLIF-ξL)

obtained by averaging the effective spike-triggered adaptation measured in individual cells (n = 14,

see Fig. 2.3) is shown in red. The optimal fit of a truncated power-law ξPL(s) (dashed black, GLIF-ξPL)

yields an exponent βξ = 0.93 (c.f. Eq. 2.2). In all panels, the gray area indicates one standard deviation

for the distribution of filters across different cells (asymmetric errors are due to log-scales).

As previously reported by Mensi et al. (2011), neocortical pyramidal neurons adapt their firing

rates by means of two distinct biophysical mechanisms that respectively increase the firing

threshold and lower the membrane potential after each spike. To get an accurate estimation

of the effective adaptation filer ξ(s), we first fitted a two-process GLIF model that explicitly

features both a dynamic threshold and an adaptation current, described by the filters γ(s)
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Term Description Mean S.d. Units

R Cell resistance 93.2 39.2 MΩ

τm Membrane timescale 15.3 7.1 ms
EL Reversal potential -69.4 6.2 mV
V ∗

T Firing threshold baseline -51.9 5.4 mV
∆V Firing threshold sharpness 0.75 0.15 mV
αξ Magnitude of the effective adaptation filter ξPL

† 19.42 5.72 mV
βξ Scaling exponent of the effective adaptation filter ξPL

† 0.90 0.17 -
Tξ Cutoff of the effective adaptation filter ξPL

† 8.05 4.12 ms
Tref Absolute refractory period 2.0 - ms
Vr Reset Potential -38.8 9.0 mV

Table 2.1: GLIF-ξPL model parameters extracted from of (n=14) L5 pyramidal neurons.
† The parameters obtained by fitting the average kernel shown in Fig. 2.2b are: αξ=19.3 mV, βξ=0.93 and Tξ=8.3.

and η(s), respectively (see Mensi et al. (2011) and Materials and Methods). Since in the model

the emission of action potentials only depends on the difference between the membrane

potential and the firing threshold, spike-triggered currents η(s) and movements of the firing

threshold γ(s) were then combined to obtain the effective adaptation filter ξ(s) of the more

parsimonious model GLIF-ξ (see Materials and Methods and Fig. 2.2).

We found that 22 seconds after the emission of an action potential a small but significant

deflection remained in both the spike-triggered current η(t) and the moving threshold γ(t).

Moreover, when displayed on log-log scales, the decay of both adaptation kernels was approxi-

mately linear over four orders of magnitude, meaning that both the adaptation current and the

moving threshold are characterized by scale-free spike-triggered dynamics (Fig. 2.2a). Fitting

η(t) and γ(t) with a power-law function fPL(t) = αft
−βf , revealed that both spike-triggered

processes have similar scaling exponents (βη = 0.76, βγ = 0.87). Consequently, the effective

adaptation filter ξ(t ) is well described by a truncated power-law

ξPL(t ) =
αξ ·

(
t

Tξ

)−βξ
if t > Tξ

αξ if 0 < t ≤ Tξ

(2.2)

with parameters αξ = 19.2 mV, βξ = 0.93 and Tξ = 8.3 ms for the average kernel (Fig. 2.2b) and

slightly different values for each individual cell (Fig. 2.3), indicating that scale-free SFA is an

intrinsic property of individual neurons and not only of the average over several cells.

In the following, we will refer to a model with a single spike-triggered adaptation filter as

GLIF-ξL, where GLIF stands for Generalized Leaky Integrate-and-Fire and ξL indicates that SFA

is implemented by a 22-second Long filter obtained by combining the moving threshold and

the spike-triggered current extracted from the experimental data. With the same logic, we

denote GLIF-ξPL a model in which the effective filter ξ(s) is described by the truncated power

law ξPL defined by Equation 2.2. All the GLIF-ξPL model parameters are listed in Table 2.1.
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Figure 2.3: Effective adaptation filters of individual L5 pyramidal neurons. The 14 effective filters

ξ(t) measured in individual cells were fitted with the truncated power-law function ξPL(t) (Eq. 2.2).

a) Distribution of magnitudes αξ measured in different cells. b) Distribution of scaling exponents βξ
measured in different cells. c) Distribution of cutoff values Tξ measured in different cells. d) Effective

filers ξ(t ) extracted from different cells (red) with optimal truncated power-law fit (dashed black). Each

subpanel corresponds to a different cell.

2.2.2 Power-law SFA explains neural activity on short timescales

Valid single neuron models should predict the occurrence of individual spikes with millisecond

precision (Jolivet et al., 2008b). In response to a single injection of a fluctuating current (Fig.

2.4a) the neuron emitted spikes that the GLIF-ξL model was able to predict with a high degree

of accuracy (Fig. 2.4b, red). When the same current was injected repetitively, the spiking

responses revealed the stochastic nature of single neurons: certain action potentials were

emitted reliably with a high temporal precision, while others did not occur at each repetition

or were characterized by larger temporal jitters. The GLIF-ξL model also captured this aspect

(Fig. 2.4c). To validate our model, we quantified its predictive power using a similarity measure

denoted M∗
d (see Materials and Methods and Naud et al. (2011)). On average, GLIF-ξL was able

to predict more than 80% of the spikes (M∗
d = 0.807, s.d. = 0.04) with a precision of ±4 ms. Very
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similar performances, statistically not different (n=12 cells, paired t-test, t11 = 0.30, p=0.77),

were achieved by GLIF-ξPL (M∗
d = 0.804, s.d. = 0.05), indicating that spike-triggered processes

are well described by a truncated power-law.

As expected, the subthreshold response observed in vitro was systematically overestimated

by GLIF-ξL (Fig. 2.4b, red). This is explained by the fact that GLIF-ξL artificially translates

spike-triggered currents into effective threshold movements. In a two-process GLIF model,

where adaptation currents and threshold movements are described as two distinct features

(i.e., when η(t ) and γ(t ) are not combined in a single effective kernel), model prediction of the

membrane voltage and experimental data were indeed in good agreement (Fig. 2.4b, gray),

confirming the validity of our fitting procedure. In terms of mere spike-timing prediction, the

two-process GLIF model and the more parsimonious GLIF-ξ model are equivalent (Fig. 2.4c).

For this reason, we work in the following with single-process model GLIF-ξ.

Overall, the spike time prediction paradigm demonstrates the ability of both GLIF-ξL and

GLIF-ξPL to capture the spiking activity of single neurons on the timescale of milliseconds.

Figure 2.4: The GLIF-ξ model predicts the occurrence of single spikes with millisecond precision.

a) Typical 2.5-second segment of injected current. The same fluctuating current is presented several

times (frozen-noise). The dashed black line represents 0 nA. b) The spiking response, but not the

subthreshold membrane potential predicted by the GLIF-ξL model (red) is in close agreement with

the experimental data (black). In the two-process GLIF model (gray), where spike-triggered currents

and threshold movements are modeled by two distinct processes (i.e., γ(s) and η(s)), the dynamics

of the subthreshold membrane potential predicted by the model is in excellent agreement with the

experimental data. Inset: comparison of subthreshold membrane potential (scale bars: 40 ms, 5 mV).

c) The raster plots show the spiking response of both the neuron (black) and the GLIF-ξL model (red)

to repetitive presentation of the same current.
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2.2.3 Power-law SFA explains neural activity on long timescales

We wondered whether the 22-second long adaptation filter ξ(s) could also predict the firing rate

modulation on the much slower timescale of seconds. To this end, we used the GLIF-ξL model

fitted on responses to different frequencies of modulation (0.5 ≤ T ≤ 16 s) to predict the firing

rates recorded in the second part of the experiment, where one of the two slowest modulations

(T = 8 or 16 s) was chosen and repetitively presented to the cell. Comparison of the raster plots

obtained by injecting the same current in both the neuron and the GLIF-ξL model shows that

the spiking activity of the real neuron closely resembles the one predicted by the model (Fig.

2.5a-c). Furthermore, the match between the running-mean PSTHs constructed for the model

and the experimental data revealed that both responses share a similar phase advance (Fig.

2.5d), indicating that our GLIF-ξL model is sufficient to capture the characteristic signature of

SFA under slow sinusoidal stimulation (Lundstrom et al., 2008).

To study the role of the 22-second adaptation filter of GLIF-ξL, we then fitted the same single-

process model under the assumption that the adaptation filter ξ(t) has a duration of only

1 second (GLIF-ξS, where S stands for short adaptation filter). Compared to GLIF-ξL, the

firing rate predicted by GLIF-ξS (Fig. 2.5e, orange) was in phase with the input (Fig. 2.5e, dark

gray) and not with the spike output of the cells, indicating that GLIF-ξS was unable to capture

the slow components of SFA (i.e., the model with a short adaptation filter predicted a wrong

phase advance). To provide even stronger evidence, we systematically quantified the ability to

predict both the mean firing rate r0 (Fig. 2.5f) and the phase lead ĤΦ (Fig. 2.5g). Whereas the

GLIF-ξL model was capable of very good predictions, which are in statistical agreement with

the experimental data (errors∆r0 =−0.01 Hz, s.d. = 0.67; n=12 cells, Student t-test, t11 =−0.04,

p = 0.97 and ∆ĤΦ = −0.17 deg, s.d. = 5.7; n=12 cells, Student t-test, t11 = −0.10, p = 0.92),

GLIF-ξS had the tendency to both overestimate the average firing rate and underestimate

the phase advance (errors ∆r0 = 0.47 Hz, s.d. = 0.72; n=12 cells, Student t-test, t11 = 2.16,

p = 0.05 and ∆ĤΦ =−17.9 deg, s.d. = 6.5 deg; n=12 cells, Student t-test, t11 =−9.16, p < 10−6),

demonstrating that an adaptation filter of 1 second is not sufficient.

Finally, we measured the transfer function Ĥ(w) for both real neurons and spiking models by

fitting Equation 2.1 to the firing rates observed in response to six frequencies of modulation

(Fig. 2.5h-j). For both real neurons and GLIF-ξL, the amplitude response ĤA(w) was stronger

at higher frequencies compared to lower ones revealing high-pass filtering, a characteristic

feature of SFA (Fig. 2.5h). Consistent with observations in L2/3 pyramidal neurons (Lundstrom

et al., 2008), plotting on log-log scales the amplitude response ĤA as a function of the input

frequency f = T −1, revealed that the gain of L5 pyramidal neurons was approximatively power-

law (Fig. 2.5i). Moreover, the phase response ĤΦ(w) was always positive meaning that, for

all the frequencies tested in this study, the output firing rate led the input modulation (Fig.

2.5j). Overall, GLIF-ξL was able to capture the features of the transfer function observed in L5

pyramidal neurons. Similar results were obtained with GLIF-ξPL (Fig. 2.6), confirming that the

spike-triggered processes observed in vitro were correctly modeled by a truncated power-law

lasting 22 seconds. The experimental results reported in Figure 2.5h-j are very similar to those
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obtained in L2/3 pyramidal neurons (Lundstrom et al., 2008) and provide an independent

evidence for multiple timescales of adaptation.

Figure 2.5: The GLIF-ξ model accurately predicts the firing rate response on multiple timescales.

a) Input current (gray) with slow mean modulation (dark gray). b) Membrane potential recorded in a

single trial. c) The firing activity (black) obtained by repetitive presentation of the same input current is

compared with predictions of GLIF-ξL (red) and GLIF-ξS (orange). d) Data from c were used to build

two PSTHs (black: data, red: GLIF-ξL). The two sinusoidal functions represent the input modulation

47



Chapter 2. Temporal whitening by power-law adaptation in neocortical neurons

(dark gray) and the best fit of the experimental data (light gray). e) Same as in panel d but with the

prediction of GLIF-ξS (orange). f ) Performance in predicting the average firing rate r0 of new stimuli.

Left: Model predictions are plotted against experimental data. Each dot represents a different cell.

Right: Each couple of open circles shows the prediction errors on the same cell. GLIF-ξL (red) is slightly

more accurate than GLIF-ξS (orange) (n = 12, paired t-test, t11 =−4.09, p = 0.002). g) Performance

in predicting the phase response ĤΦ to inputs at T = 8 or 16 s. GLIF-ξL (red) outperforms GLIF-ξS

(orange) (n = 12 cells, paired t-test, t11 = 6.31, p = 6.0 · 10−5). Conventions as in panel f . h) Gain

ĤA(T ) as a function of the period T = 2π/w . i) Log-log plot of the gain ĤA( f ) as a function of the input

frequency f = T −1. Experimental data were fitted by a power-law with scaling exponent βH = 0.12

(dashed gray). j) Phase response ĤΦ(T ) as a function of the period T = 2π/w . In panels h-j, data from

individual cells (n = 14, gray lines) are averaged (black) and compared with the predictions of GLIF-ξL

(red) and GLIF-ξS (orange). In all panels, error bars indicate one standard deviation and horizontal

dashed lines indicate zero.

Overall, these results show that accounting for long-lasting spike-triggered effects with an

appropriate adaptation filter is crucial to capture the response of L5 pyramidal neurons on

multiple timescales.

2.2.4 Power-law SFA is optimally tuned for temporal whitening

Our model describes how the net current resulting from dendritic integration is encoded into

a spike train at the soma of neocortical pyramidal neurons. To investigate the implications

of power-law adaptation, we considered a situation in which a population of N uncoupled

GLIF-ξPL neurons had to encode a common input I (t ) = I0 +∆I (t ) in the instantaneous firing

rate A(t ), also called population activity. Note that, since the neurons in our population were

all identical and received the same input, the population activity A(t ) is identical to the PSTH

measured by repetitively injecting the same current into one single cell. For relatively small

fluctuations around a mean activity A0, we can assume that the population operates in a

linear regime and responds to an external input fluctuation ∆I (t ) according to the first-order

approximation

A(t ) = A0 +
∫ t

0
∆I (t − s)H(s)d s +n(t ), (2.3)

where the impulse response H (s) is the inverse Fourier transform of Ĥ (w), the noise n(t ) is due

to stochastic firing in a finite population and both terms depend on the intrinsic properties of

the individual neurons and in particular on the precise shape of the adaptation filter ξ(t ).

For large populations, the noise term in Equation 2.3 becomes negligible and optimal coding

is achieved by the removal of temporal correlations potentially present in the input (Atick,

1992; Rieke et al., 1997). This encoding strategy is known as temporal whitening and requires

the population activity to have a flat power spectrum A( f ) = Const.
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Figure 2.6: GLIF-ξL and GLIF-ξPL have similar predictive power. a) The amplitude response ĤA

predicted by GLIF-ξL (red) is compared with that of GLIF-ξPL (light blue). b) The phase response ĤΦ

predicted by GLIF-ξL is compared with that of GLIF-ξPL. In panels a and b, experimental data (black

and gray) and GLIF-ξL predictions (red) are as in Fig. 2.5h and 2.5j, respectively. c) Control showing

that the average firing rate r0 does not depend on the period of modulation T (c.f. Eq. 2.1). Colors are

as in panel a and b. d) The performance of GLIF-ξL (red) and GLIF-ξPL (light blue) in predicting the

occurrence of individual spikes with a precision of ±4 ms was quantified using the similarity measure

M∗
d . Each couple of open circles shows the performance of the two models on one cell. Performance

of GLIF-ξPL (M∗
d = 0.804, s.d. = 0.05) were not significantly different (n = 12, paired t-test, t11 = 0.30,

p = 0.77) from the ones obtained with GLIF-ξL (M∗
d = 0.807, s.d. = 0.04). e) Fig. 2.5f is completed with

the performance of GLIF-ξPL (average error ∆r0 =−0.15 Hz, s.d. = 0.57). Predictions of GLIF-ξL and

GLIF-ξPL were not significantly different (n = 12 cells, paired t-test, t11 = 1.80, p = 0.10). e) Fig. 2.5g is

completed with the performance of GLIF-ξPL (average error ∆ĤΦ = -4.4 deg, s.d.=3.57). Predictions

of GLIF-ξL and GLIF-ξPL were significantly different (n = 12 cells, paired t-test, t11 = 2.73, p = 0.02),

however the difference was small. In all panels, error bars indicate one standard deviation.

SFA is known to implement high-pass filtering of the input current (Benda and Herz, 2003;

Köndgen et al., 2008). In the particular case of power-law adaptation, the population response

is characterized by a power-law gain (see Fig. 2.5h,i and Lundstrom et al. (2008)) suggesting

that, in neocortical pyramidal neurons, spike-triggered processes might be optimally tuned to

efficiently encode scale-free signals (i.e., signals that are temporally correlated across multiple

timescales). However, the issue of whether the functional role of power-law adaptation is to

implement temporal whitening can only be solved if the statistical properties of the input

received in vivo by neocortical pyramidal neurons are known.

To this end, we analyzed the synaptically driven membrane potential dynamics recorded
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from somatosensory pyramidal neurons during active whisker sensation (see Materials and

Methods). A spectral analysis performed on the data of Crochet et al. (2011) revealed that, at

low frequencies, the power spectrum of the subthreshold membrane potential fluctuations

was characterized by a power-law decay (Fig. 2.7a, red), indicating that natural stimuli received

by somatosensory pyramidal neurons are indeed scale-free.

To provide further evidence, we simulated the activity of a population of GLIF-ξPL neurons

in response to an in vivo like input characterized by a scale-free spectrum (Fig. 2.7a, black).

The statistics of the subthreshold responses obtained in individual GLIF-ξPL neurons were

consistent with the ones observed in vivo (Fig. 2.7b, gray). Moreover, we found that the power

spectrum of the population activity A( f ) (Fig. 2.7b, blue) was much closer to a horizontal line

than that of the input, indicating that a population of GLIF-ξPL neurons efficiently encodes in

vivo like signals by removing temporal correlations present in the input. Similar results were

obtained with a population of GLIF-ξL neurons, where the adaptation filter ξ(t) was not an

idealized power-law, but the average kernel extracted from intracellular recordings (Fig. 2.7b,

gray).

Figure 2.7: Power-law adaptation is near-optimally tuned to perform temporal whitening. a)

Power spectral density of the intracellular membrane potential fluctuations recorded in vivo from

L2/3 pyramidal neurons (Voltage PSD, red). The power spectrum was computed using 20-second long

recordings (n = 57) obtained from 7 different cells (data from Crochet et al. (2011)). Fitting a power

law (not shown) on the frequency band 0.05 < f < 2 Hz yields a scaling exponent βI = 0.67. The power

spectrum of the scale-free input used to stimulate a population of GLIF-ξPL neurons (N = 100) is shown

in black (Input Current PSD). The power spectrum of the subthreshold response of individual GLIF-ξPL

neurons (Voltage PSD, gray) is in good agreement with the in vivo recordings. b) The population activity

of a group of GLIF-ξPL neurons in response to an in vivo like input (black, copied from panel a) has a

nearly flat spectrum A( f ) (blue). Similar results were obtained with GLIF-ξL neurons (gray). To allow a

direct comparison between input and output powers, all the spectra shown in panel b were normalized

to have the same total power.

Overall, our results suggest that in neocortical pyramidal neurons, power-law spike-triggered

adaptation mirrors and approximately cancels the temporal correlations of signals generated

in a biologically relevant situation. This result provides evidence for efficient coding at the

level of single neurons embedded in the highly recurrent network of the cortex.
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2.3 Discussion

Neocortical pyramidal neurons are known to adapt their firing rate on multiple timescales

(La Camera et al., 2006; Lundstrom et al., 2008). Here we found that SFA is due to two separable

spike-triggered mechanisms: each time an action potential is fired, both an adaptation current

and a movement of the firing threshold are induced. Our results show that these spike-

triggered effects are surprisingly long (more than 20 s) and decay with a power-law (Fig. 2.2),

highlighting the fact that SFA does not have a specific timescale. A GLIF model with an effective

power-law spike-triggered process simultaneously captured both the fast dynamics critical

for the prediction of individual spikes (Fig. 2.4) and the slow processes that modulate the

firing rate (Fig. 2.5 and Fig. 2.6). Most importantly, we found that, in behaving mice, the

currents resulting from dendritic integration and received as input at the soma of pyramidal

neurons are characterized by long-range temporal correlations that are partially removed by

power-law spike-triggered adaptation (Fig. 2.7). This final observation indicates that, in cortex,

power-law SFA is near-optimally tuned for efficient coding.

2.3.1 Extent of spike-triggered effects

According to our results, 20 seconds after its emission, an individual spike can still affect

the firing activity of a neuron. Possibly, spike-triggered effects have an even longer duration.

However after 22 seconds the magnitudes of both the moving threshold and the spike-triggered

current were too small to be measured by our method (for t > 20 s, η(t ) < 0.1 pA and γ(t ) < 0.01

mV, see Fig. 2.2a). Since the effects of consecutive spikes accumulate, these small contributions

shaped the single neuron response in a significant way (Fig. 2.5).

Whereas power-law adaptation was necessary to capture the firing rate fluctuations, a model

with spike-triggered processes that only last for 1 second (GLIF-ξS) achieved very high per-

formances (M∗
d = 0.80, s.d. = 0.03) in predicting the occurrence of individual spikes. This fact

probably explains why power-law adaptation has not been observed in previous studies in

which model validation was only based on spike timing prediction.

2.3.2 Biophysical implementation of power-law adaptation

Our fitting procedure enabled us to discriminate between adaptation processes implemented

by spike-triggered currents and physiological changes of the firing threshold. However, the

biophysical details concerning the implementation of power-law dynamics are not part of our

model. In principle, power-law relaxations can be approximated by a sum of exponentials

covering a wide range of timescales (La Camera et al., 2006; Drew and Abbott, 2006). It is

therefore likely that the spike-triggered current η(s) we found results from the combined

action of multiple ion-channels operating on different timescales such as Ca2+-dependent,

Na+-dependent and high-voltage activated K+-channels. Note, however, that a match of the

relative strength of different currents implies a fine-tuned regulation of gene expression levels.
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In line with this hypothesis, multiple timescales of SFA have been previously modeled by

biophysical models with several channels mediating adaptation currents (La Camera et al.,

2006; Wang et al., 2003; Lundstrom et al., 2008). Alternatively, scale-free dynamics could also

be an intrinsic property of single channels. In particular, the power-law decay we found in the

moving threshold γ(s) might reflect the scale-free dynamics observed during Na+-channel

deinactivation (Toib et al., 1998). In this alternative view, scale-free dynamics is likely to

emerge from the presence of multiple inactivated states of ion-channels (Lowen et al., 1999;

Gilboa et al., 2005).

2.3.3 How general is power-law adaptation?

All the in vitro results presented in this paper are from mouse layer 5. We also investigated SFA

in L2/3 and obtained very similar results. In particular, we found that L2/3 pyramidal neurons

adapt by means of power-law filters that closely resemble the ones observed in L5 and cause

positive phase lead of the firing rate response to slow sinusoidal currents. These preliminary

results suggest that L2/3 and L5 somatosensory pyramidal neurons share similar adaptation

mechanisms. We also fitted GLIF models to the data of Lundstrom et al. (2008) and found

that both L2/3 and L5 pyramidal neurons of the rat somatosensory cortex adapt by means

of spike-triggered power-law processes indicating that this mechanism is conserved across

species and could be a common feature of cortical pyramidal neurons.

2.3.4 Functional implications

Both the moving threshold and the spike-triggered current are characterized by power-law

decays with very similar scaling exponents. This suggests that the particular shape of the

adaptation filters plays an important role. Neural signaling consumes a large amount of

metabolic energy (Attwell and Laughlin, 2001; Laughlin, 2001). The brain should therefore

represent information using codes in which redundant information is discarded. According

to efficient coding theory, optimality is achieved by adapting to the stimulus statistics and,

at high signal-to-noise ratio (SNR), by completely removing correlations that are potentially

present in the signals to be encoded (Barlow, 1961). Efficient coding theory has been used to

explain neural processing at early stages of the visual system. In the retina, center-surround

receptive fields coupled with nonlinear processing strongly attenuate spatial correlations of

natural images (Srinivasan et al., 1982; Pitkow and Meister, 2012). Similarly, in primary visual

cortex (V1), spatial decorrelation of features has been found (Simoncelli and Olshausen, 2001).

In the temporal domain, neural firing was found to be decorrelated in the lateral geniculate

nucleus of the cat (Dan et al., 1996) and pyramidal neurons of V1 adapt on multiple timescales,

providing further temporal decorrelation (Wang et al., 2003). However, it remained unclear

whether SFA serves for temporal redundancy reduction in the cortex.

To solve this issue, we estimated the statistics of input currents received in vivo at the soma of

L2/3 somatosensory pyramidal neurons during active whisker sensation (data from Crochet
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et al. (2011)). This current, which reflects spatio-temporal statistics of spike arrivals at the

synapses as well as subsequent filtering in the dendritic tree, can be seen as the driving current

for spike generation. We found that input currents of pyramidal neurons did not have a

preferred timescale but were characterized by scale-free dynamics. Moreover, our numerical

simulations indicated that power-law spike-triggered processes are near-optimally tuned to

completely remove the temporal correlations revealed by the power-law decay of the input

spectrum (Fig. 2.7). Overall, these results provide evidence for efficient coding in single

neocortical neurons stimulated with behaviorally relevant signals.

The GLIF-ξ model implements a form of predictive coding. Indeed, the sum of adaptation

processes ξ(s) triggered by past spikes can be interpreted as a linear predictor of the future

input. Consistent with predictive coding, further spiking only occurs when the real input

exceeds the prediction. In line with our results, it has been shown that predictive coding of

scale-free inputs by means of power-law spike-triggered kernels reduces the number of action

potentials required to achieve a certain signal-to-noise ratio (Bohte and Rombouts, 2010).

2.3.5 Temporal Whitening vs. Noise-Shaping

For deterministic signals encoded in the absence of noise, efficient coding theory states

that redundancy reduction is the optimal solution. However, in presence of noise, complete

decorrelation can be detrimental. Redundancy can indeed improve the robustness of a code

(Rieke et al., 1997). To assess optimal coding in small populations of neurons, the noise term

n(t ) associated with stochastic firing (c.f. Eq. 2.3) has therefore to be considered.

Previous studies have shown that non-renewal firing activity with negatively correlated inter-

spike intervals can achieve higher information rates by noise-shaping (Mar et al., 1999; Shin,

2001; Chacron et al., 2004). In this coding strategy, the SNR is increased in the frequency band

of the input signal by transferring the effective noise power to other frequencies. As already

hypothesized by Avila-Akerberg and Chacron (2011), we found that at low-frequencies, spike-

triggered adaptation resulted in a reduction of noise which was completely counterbalanced

by a similar modification of the gain that controls the amplitude of the signal, so that the SNR

remained unchanged. Consequently, modifying the adaptation filter ξ(s) did not affect the

power spectrum of the effective noise (Fig. 2.8), indicating that noise-shaping is probably not

the functional role of power-law adaptation. The question of how this result generalizes to

different stimulation paradigms is out of the scope of this study.

In computational studies of memory and learning in neural networks, SFA is often neglected

and, when considered, it is usually assumed to operate on short timescales. From our per-

spective, the power-law of spike-triggered adaptation could be helpful in bridging the gap

between the millisecond timescale of spike timing and behavioral timescales. Moreover, our

results suggest that power-law adaptation causes temporal decorrelation of output spikes, a

procedure that, at high signal-to-noise ratio, improves information transfer.

53



Chapter 2. Temporal whitening by power-law adaptation in neocortical neurons

Figure 2.8: The functional shape of the effective adaptation filter does not shape the power spec-

trum of the effective noise. The squared amplitude response |Ĥ( f )|2 and the noise spectrum N ( f ) of

a small population of M = 10 uncoupled GLIF-ξPL neurons were numerically calculated for 4 different

scaling exponents βξ = {0.8,1.0,1.2,1.4} (see Eq. 2.2). The results were then used to compute the

power spectrum of the effective noise defined as Neff( f ) = N ( f )/|Ĥ( f )|2. To do so, the population

activities Ai (t ) in response to repetitive injections of the same white-noise stimulus were simulated.

Each neuron in the population received the same current. Furthermore, in all the simulations, the

input current was tuned to evoke small fluctuations around a mean activity of A0 = 5 Hz. Firing rates

were computed by counting spikes in bins of 25 ms. a) The noise spectra N ( f ) obtained for 4 different

scaling exponents βξ are shown with 4 different colors. In the temporal domain, the noise is defined as

ni (t) = Ai (t)−〈Ai (t)〉i , where Ai (t) denotes the population response to a single stimulation and 〈·〉i

denotes an average across repetitions i of the same injection. b) Squared amplitude response |Ĥ( f )|2
computed by dividing the power spectrum of the average population response 〈Ai (t )〉i by the constant

defining the power spectrum of the white-noise input. c) The power spectrum of the effective noise

Neff( f ) is not affected by the scaling exponent βξ of the adaptation filter ξPL(t ). In the frequency band

0.05 < f ≤ 2 Hz (gray area) the effective noise spectrum is approximately flat, regardless of the value of

the scaling exponent βξ. Indeed, changes in the noise spectra N ( f ) are counterbalanced by similar

changes in the amplitude response. Colors are the same in all panels and correspond to different

scaling exponents βξ (see legend in panel c).

2.4 Materials and Methods

2.4.1 In-vitro electrophysiological recordings

All animal experiments were performed using published procedures (Lefort et al., 2009; Aver-

mann et al., 2012) in accordance with the rules of the Swiss Federal Veterinary Office. Briefly,

somatosensory brain slices were obtained from P14-18 Wild Type mice (C57BL6/J) and whole-

cell patch-clamp recordings were performed at 35o C from L5 pyramidal neurons. The pipette

solution was comprised of (in mM): 135 K-gluconate, 4 KCl, 4 Mg-ATP, 10 Na2-phosphocreatine,

0.3 Na3-GTP and 10 HEPES (pH 7.3, 290 mOsm). During the experiments, we blocked all

excitatory synaptic transmission by adding CNQX (20 µM) and D-AP5 (50 µM) to the bath

solution. All electrophysiological data were low-pass Bessel filtered at 10 kHz and digitized

at 20 kHz. Measurements were not corrected for the liquid junction potential. Recordings

characterized by instabilities in the action potential shape and/or large drifts in the baseline
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firing rate r0 were excluded from the dataset upon visual inspection.

2.4.2 Current Injections

To characterize single neurons with the standard tools of linear system analysis, we performed

64-s-long experiments in which noisy currents modulated by sinusoidal means were delivered

in current-clamp mode. The injected current, denoted Iext, was generated according to the

following equation

Iext(t ) = I0 +∆Imean · sin

(
2π

T
t

)
+∆Inoise ·N (t ) (2.4)

were I0 is a constant offset, ∆Imean controls the amplitude of the sinusoidal mean and ∆Inoise

defines the standard deviation of the noise. The noise N (t ) was generated with an Ornstein-

Uhlenbeck process with zero mean, unitary variance and a temporal correlation of 3 ms.

Each experiment consisted of many injections of currents generated according to Equation

2.4. In the first half of the experiment (training set), we performed six injections using different

periods of modulation T ∈ {0.5,1,2,4,8,16} in seconds. Stimuli were delivered in random order

and, for each of the six injections, a new realization of the noise N (t ) was used. In the second

part of the experiment (test set), one of the two slowest modulations (T = 8 or 16 s) was chosen

and more injections were performed. To assess the reliability of single neurons, the same

realization of noise N (t) was used (frozen-noise). All the injections were performed with

interstimulus intervals of 1 minute.

Before and after each injection, we stimulated the neuron with two additional inputs. The

first was a 2.5-s-long current composed of a hyperpolarizing step followed, after 500 ms,

by a suprathreshold step. We used the response to this stimulus to identify the neuronal

type (L5 burst-generating cells were not included in the dataset). The second was a 4-s long

subthreshold noisy current generated with an Ornstein-Uhlenbeck process with zero mean

and temporal correlation of 3 ms. We used this second injection to characterize the electrode

response and perform Active Electrode Compensation (see Materials and Methods).

At the beginning of each experiment, we tuned the input parameters I0, ∆Imean and ∆Inoise to

obtain a firing rate rmean oscillating periodically between 2 and 6 Hz. Typical values obtained

after calibration were comprised in the range 100-450 pA for I0, 15-30 pA for ∆Imean and

50-150 pA for ∆Inoise.

2.4.3 Linear analysis

For each neuron, we estimated the transfer function Ĥ (w) (Fig. 2.5h-j) using standard methods

already used in previous studies (Lundstrom et al., 2008; Köndgen et al., 2008). Briefly, the

experimental spike train {t̂j} was built by selecting the times at which the membrane potential

V (t ) crossed 0 mV from below. We then obtained the firing rate r (t ) by building a histogram
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of the spike times. The bin size was chosen such that each period of modulation T was

divided in 30 bins. For each input frequency w = 2π/T , we finally obtained the transfer

function by minimizing the sum of squared errors (SSE) between the sinusoidal function

rlinear(t ) =C0 +C1 · sin
(
w t +φ)

and the experimental firing rate r (t ), with {C0,C1,φ} being the

only free-parameters. The transfer functions of GLIF-ξ models (Fig. 2.5h-j) were obtained with

the same method.

2.4.4 Generalized Leaky Integrate-and-Fire model (GLIF-ξ)

The spiking neuron models discussed in this study are generalized leaky integrate-and-fire

models equipped with a spike-triggered mechanism for SFA and with escape rate noise for

stochastic spike emission (Fig. 2.1). Spikes are produced according to a point process with

conditional firing intensity λ(t) which exponentially depends on the momentary distance

between the membrane potential V (t) and the effective firing threshold VT(t) (Jolivet et al.,

2006a):

λ (t ) =λ0 exp

(
V (t )−VT(t )

∆V

)
, (2.5)

where λ0 has units of s−1 so that λ(t ) is in Hz and ∆V defines the sharpness of the threshold.

Consequently, the probability of a spike to occur at a time t̂ ∈ [t ; t +∆t ] is given by

P (t̂ ∈ [t ; t +∆t ]) = 1−exp

(
−

∫ t+∆t

t
λ (s)d s

)
≈λ(t )∆t . (2.6)

In the limit of ∆V → 0, the model becomes deterministic and action potentials are emitted

at the moment when the membrane potential crosses the firing threshold. For finite ∆V and

a membrane potential at threshold (i.e., when V =VT), λ−1
0 defines the mean latency until a

spike is emitted.

The subthreshold dynamics is modeled as a standard leaky integrator defined by the following

ordinary differential equation for the membrane potential V

CV̇ =−gL (V −EL)+ Iext, (2.7)

where the three parameters C , gL and EL determine the passive properties of the membrane,

the dot denotes the temporal derivative and Iext is the injected current.

The dynamics of the effective firing threshold VT(t ) in Equation 2.5 is given by

VT(t ) =V ∗
T + ∑

t̂j<t

ξ(t − t̂j −Tref) (2.8)

where V ∗
T is a constant, {t̂1, t̂2, t̂3, . . .} are the times at which action potentials have been fired

and ξ(s) is an effective adaptation filter that accounts for all the biophysical events triggered
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by the emission of an action potential. According to Equation 2.8, each time a spike is emitted,

a threshold movement with stereotypical shape ξ(s) is triggered, after a delay of absolute re-

fractoriness Tref. Threshold movements induced by different spikes accumulate and therefore

produce SFA, if ξ> 0. For s < 0, we fixed ξ(s) = 0 so that only spikes in the past can affect the

momentary value of the firing threshold. Importantly, the adaptation filter ξ(s) also accounts

for adaptation processes mediated by spike-triggered currents. Consequently, VT(t ) does not

describe the physiological threshold (i.e., the membrane potential at which action potentials

are initiated in vitro) but has to be interpreted as a phenomenological model of spike-triggered

adaptation. Finally, the functional shape of ξ(s) was not defined a priori but was obtained by

combining the effects of both spike-triggered currents and spike-triggered movement of the

physiological threshold which, in turn, were extracted from the experimental data.

In principle, an absolute refractory period can be included in the adaptation kernel ξ(s).

However, here we prefer to work with an explicit reset after a dead time. Each time a spike is

emitted the membrane potential is reset to Vr and the numerical integration is restarted after a

short period of absolute refractoriness Tref. The GLIF-ξ model only differs from a Generalized

Linear Model (Truccolo et al., 2005; Pillow et al., 2008) due to this explicit reset.

The three GLIF-ξ models discussed in the paper differ in the duration and shape of the

adaptation filter ξ(s). In GLIF-ξL and GLIF-ξS, the functional shape of ξ(s) is the one directly

extracted from intracellular recordings. In these two models the duration of the adaptation

filter is of 22 s and 1 s, respectively. In GLIF-ξPL, the adaptation filer ξ(s) is modeled as a

truncated power law and lasts for 22 s.

2.4.5 Data preprocessing: Active Electrode Compensation

In-vitro recordings were preprocessed to remove the bias due to the voltage drop across the

recording electrode. For that, we performed Active Electrode Compensation (AEC) (Brette

et al., 2008) following the procedure described in Badel et al. (2008). The electrode response

was estimated before, during and after each 64-s long injection. Consequently, we were able to

remove experimental drifts due to slow changes in the electrode properties.

Due to the voltage drop across the electrode resistance (Ve), the potential recorded by a

stimulating electrode (Vrec) is a biased version of the real membrane potential (V ):

V (t ) =Vrec(t )−Ve(t ). (2.9)

In AEC, the electrode is assumed to be an arbitrary linear system operating on the timescale of

a few milliseconds so that Ve(t ) can be modeled as a filtered version of the injected current. If

the input current Iext has both a DC component I0 and a time varying component δI (t ), then

the electrode potential is described by the following equation

Ve(t ) = I0Re(t )+
∫ t

0
Ke(s, t )δI (t − s)d s, (2.10)

57



Chapter 2. Temporal whitening by power-law adaptation in neocortical neurons

where Ke(s, t ) is the electrode kernel at time t and Re(t ) = ∫ ∞
0 Ke(s, t )d s is the electrode resis-

tance (i.e. the access resistance). The argument t enables us to incorporate a potential slow

drift of electrode parameters. The timescales on which electrodes operate are much faster

than the timescales on which the electrode properties change. Consequently, the two terms

on the right hand side of Equation 2.10 are responsible for slow-frequency and high-frequency

artifacts, respectively. As it has already been shown, AEC removes high-frequency artifacts (Fig.

2.9). Here, we show that this technique also enables to compensate slow-frequency artifacts

due to changes in the access resistance (Fig. 2.10).

Figure 2.9: Active Electrode Compensation removes artifacts on short timescales. a) Typical opti-

mal filter K (i)(s) (red) obtained by averaging across bootstrap repetitions. The gray area represents one

standard deviation. The tail of K (i)(s) is well fitted by an exponential function (dashed black line). The

inset shows a zoom on the y-axis. b: For each bootstrap-repetition, the exponential fit from a (i.e. the

putative membrane filter K (i)
m ) is subtracted from the optimal filter to obtain an estimate of the elec-

trode filter. The electrode filters obtained in the 15 bootstrap-repetitions are then averaged to obtain

the electrode filter K (i)
e (s) (red) used for AEC. The gray area represents one standard deviation. Each

electrode filter K (i)
e (s) is characterized by its timescale (estimated by fitting an exponential function)

and by the access resistance R(i)
e = ∫ ∞

0 K (i)
e (s)d s. The two distributions plotted in the inset show the

electrode properties measured in all the recordings included in this paper. c) The access resistance

is plotted as a function of the electrode timescale. This plot indicates that high access resistances are

often associated with longer electrode timescales. d) For each injection i , the membrane potential V

(red) is estimated by subtracting from the recorded signal Vrec (black) the potential drop across the

electrode. Since the injected current has a baseline I0 > 0, the membrane potential is, on average, lower

than the recorded potential. This difference is given by I0R(i)
e . Inset: zoom illustrating the fact that

AEC acts as a low-pass filter to remove artifacts on the short timescales. The signals shown in the inset

have been shifted to have the same mean. Scale bars: 5 mV and 30 ms. e) Average shapes of the action

potentials obtained from Vrec (black) and V (red). The two traces have been shifted to have the same

mean.
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In practice, it is impossible to accurately estimate the electrode filter Ke at each moment in

time. However, since changes in the electrode properties usually occur slowly, it was suffi-

cient to estimate Ke within separable experimental blocks. In our protocol, each experiment

consists of many 64-second long injections (i.e., experimental blocks). The assumption that

the electrode properties are stable throughout each injection was verified by a systematic

estimation of the electrode filter before, during and after each injection (Fig. 2.11).

For each experimental block i , the electrode kernel K (i)
e was estimated following the procedure

already used in Badel et al. (2008). Briefly, far from spikes (i.e., in the subthreshold regime)

we assume the neuron to act as a linear system described by the membrane filter K (i)
m . Con-

sequently, the recorded potential can be modeled as a filtered version of the input current

Vrec(t ) =V0 +
∫ t

0
K (i)(s)Iext(t − s)d s, (2.11)

where V0 is the resting potential and K (i) = K (i)
e +K (i)

m accounts for both the electrode and

the passive membrane. The filter K (i) was extracted from segments of subthreshold data by

calculating the Wiener-Hopf optimal filter that provides the best estimate of the derivative of

the recorded potential:

V̇rec(t ) =
∫ ∞

0
K (i)(s)İext(t − s)d s. (2.12)

The electrode kernel K (i)
e was then obtained by subtracting from the optimal filter an exponen-

tial function fitted on the tail of K (i). As in Brette et al. (2008) and Badel et al. (2008), this tail is

interpreted as the membrane filter K (i)
m . To improve the accuracy, this procedure was repeated

15 times by resampling experimental data from the available subthreshold segments. The

final estimate of K (i)
e (t ) was obtained by averaging across bootstrap-repetitions. The maximal

length of the two kernels K (i)(t ) and K (i)
e (t ) was set to 100 ms and 7 ms, respectively.

Figure 2.9a,b shows a typical Winener-Hopf filter K (i)(s) and a typical electrode filter K (i)
e (s),

respectively. Each electrode filter was characterized by its timescale (estimated by fitting K (i)
e (s)

with an exponential function) and by its access resistance R(i)
e = ∫ ∞

0 K (i)
e (s)d s. The distribution

of electrode properties measured in all the recordings included in this study is shown in Figure

2.9b (inset) and Figure 2.9c. As shown by a comparison between the recorded potential Vrec(t )

and the membrane potential obtained after Active Electrode Compensation V (t ) (Fig. 2.9d,e),

AEC acts as a low-pass filter by removing artifacts on short timescales.

Since the electrode properties were estimated during each individual experimental block i , we

were also able to compensate artifacts that are due to changes in the access resistance. Figure

2.10a,b illustrates a typical example in which AEC successfully removed a drift of the recorded

potential induced by slows changes in the electrode filter. Note however that, in most cases,

the electrode properties were stable throughout the entire experiment (a typical example of a

stable recording is shown in Fig. 2.10c,d and summary data are presented in Fig. 2.10e,f).
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Figure 2.10: Active Electrode Compensation removes artifacts on long timescales. Active Electrode

Compensation (AEC) removes artifacts caused by slow changes in the access resistance. According to

our protocol, each experiment is divided in several 64-s-long injections. AEC was performed using

electrode filters K (i)
e estimated independently at each repetition (labeled i ). a) Electrode filters K (i)

e

estimated in 12 consecutive stimulations (gray level increases from K (1)
e to K (12)

e ). In this specific

experiment, the properties of the electrode filter clearly change over time. b) Top: the access resistance

R(i)
e (computed by integrating the electrode filters in panel a increases with time. This produces a drift

in the recorded potential that we were able correct with AEC. Bottom: black and red dots show the

average subthreshold potential computed using the recorded signal Vrec and the membrane potential V

estimated with AEC, respectively. c, d) Same plots as in a and b showing the data of a typical experiment

in which the electrode properties are stable. e) For each experiment included in this study, the access

resistance is plotted as a function of the average subthreshold recorded potential. Groups of dots

having the same color represent injections into the same neuron. Different colors represent different

neurons. Most of the recordings are stable (in these cases the data points form a small cloud). Slow

drifts in the recorded potential are always associated with changes in the access resistance. f ) The

access resistance is plotted as a function of the average membrane potential estimated with AEC. These

results demonstrate the ability of AEC to compensate drifts due to changes in the access resistance.

Arrows (1) and (2) indicate the two experiments shown in panels a-b and c-d, respectively.
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Finally, the stability within individual injections was verified by estimating the electrode filter

K (i)
e before and after each experiment block i . The results shown in Figure 2.11 confirm our

assumption that the electrode properties were stable within individual injections.

Figure 2.11: Electrode properties are stable during single injections. According to our protocol,

each experiment consists of many injections of 64 seconds, labeled i . To remove artifacts due to

changes in the electrode properties, a new electrode filter K (i)
e is estimated at each injection i . The

assumption was made that the electrode filter does not change during single injections. To validate

this hypothesis, the electrode filter was estimated before and after each injection using the response to

4-s-long subthreshold noise. a) Each dot shows the access resistance measured before and after each

injection. b) Distribution of the changes ∆R(i)
e in the access resistance observed in the experiments.

∆R(i)
e is defined as the difference between the access resistance measured after and before the injection

i . On average, the change in the access resistance was of ∆Re = 0.62 MΩ (s.d . = 1.54). c) Histogram

of membrane potential drifts expected to occur during single injections. The expected drift ∆V (i) is

computed by multiplying ∆R(i)
e with the baseline current I0. On average, the expected drift was of

∆V = 0.09 mV (s.d . = 0.34) confirming the hypothesis that electrode properties are sufficiently stable

during individual injections.

2.4.6 Fitting the GLIF-ξ model on in vitro recordings

To fit GLIF-ξ models, the method introduced in Mensi et al. (2011) was extended to get a more

accurate estimate of ξ(s). This was done with an additional hidden variable Idrift(t) able to

absorb small drifts that are likely to occur in long recordings.

To get an accurate estimation of the effective adaptation filter ξ(s), in vitro recordings were first

fitted with a two-process GLIF model that explicitly features both a spike-triggered current η(s)

and a spike-triggered movement of the firing threshold γ(s) (Fig. 2.2). We then obtained the

effective adaptation filer ξ(s) by combining η(s) and γ(s) according to the following formula

ξ(t ) =
∫ ∞

0
Km(t − s)η(s)d s +γ(t ), (2.13)

where Km(s) =Θ(s) R
τm

e−
s
τm is the membrane filter,Θ(s) is the Heaviside step function, R = g−1

L

and τm = RC . Importantly, the functional shapes of η(s) and γ(s) were not assumed a priori
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but were directly extracted from the experimental data by the following two-step procedure.

In the first step, we extracted the functional shape of η(s), together with all the parameters that

determine the subthreshold dynamics, by fitting V̇ (t ) on the experimental voltage derivative

V̇ (data)(t ) = [V (data)(t +∆T )−V (data)(t )]/∆T , where ∆T = 0.05 ms was given by the experimen-

tal sampling frequency. Since adaptation currents directly affect the membrane potential

dynamics, we fitted V̇ (data) with the following model

CV̇ =−gL (V −EL)+ Iext −
∑
t̂j<t

η(t − t̂j −Tref)+ Idrift(t ), (2.14)

where Equation 2.7 was extended with a spike-triggered current η(s) and the additional term

Idrift(t ) is an unknown current that averages out at zero over time and captures experimental

drifts within individual injections. To avoid any a priori assumption on the functional shape

of the spike-triggered current, we defined η(s) as linear combination of basis functions

η(s) =
K∑

k=1
αk fk(s), (2.15)

where the coefficients αk control the shape of η(s) and fk(s) = rect
(

s−Tk
∆k

)
are rectangular func-

tions of width ∆k and centered at Tk. For GLIF-ξL, we used K =45 log-spaced non-overlapping

bins with ∆k ranging from 0.5 ms to 4 s. For GLIF-ξS, we set K =30 and ∆k ∈ [0.5,200] ms.

Similarly, we defined Idrift(t ) as a piecewise constant function

Idrift(t ) =
L∑

l=1
βl · rect

(
t −∆(l −0.5)

∆

)
. (2.16)

For both GLIF-ξL and GLIF-ξS, we constrained Idrift(t) to vary slowly in time by choosing a

small number of L = 5 of regularly spaced bins of size ∆= 12.8 s.

As in Paninski (2004) and Mensi et al. (2011), given the injected current Iext, the estimate of

the membrane potential obtained after electrode compensation V (data) as well as the spike

times {t̂j}, optimal parameters (minimizing the SSE between V̇ (data) and V̇ of Eq. 2.14) were

obtained by solving a multilinear regression problem in discrete time. Since GLIF models do

not account for the action potential waveform, all the data points {t |t ∈ [t̂j −5ms; t̂j +Tref]}

were excluded from the fit. Finally, we fixed the absolute refractory period at Tref = 2 ms

and obtained the voltage reset by averaging the potential recorded Tref milliseconds after

the spikes Vr = 〈V (data)(t̂j +Tref)〉j. Performing parameters extraction in presence of the term

Idrift(t) qualitatively affected the results and slightly improved the predictive power of the

model (Fig. 2.12). Note, however, that the term Idrift(t ) was not part of the model but was just

used in the fitting procedure to absorb slow changes in the subthreshold potential that could

not be explained by spike-triggered processes.
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Figure 2.12: Influence of extending the fitting procedure with the hidden variable Idrift. Extending

the fitting procedure with an additional hidden variable Idrift improves the accuracy of parameter

extraction. To assess the influence of the additional variable Idrift, we quantified the predictive power of

a GLIF-ξ model fitted under the assumption that EL does not change over time (i.e., the fit is performed

without Idrift). In the following we will refer to this model as GLIF-ξC (where “C” stands for control). a)

Spike-triggered current η(t) of the model GLIF-ξC (blue). To allow for a comparison, the adaptation

filters of GLIF-ξS and GLIF-ξL are plotted in orange and red, respectively. The inset of panel a shows

that performing the fit with the auxiliary variable Idrift qualitatively changes the functional shape of

the resulting spike-triggered current η(t ). b) The moving threshold γ(t ) is not affected. Colors as in a.

c) Effective adaptation filter ξ(t ) obtained by combining the spike-triggered current and the moving

threshold. Colors are as in a. d-e) Figures 2.5h and j are completed with the predictions of the GLIF-ξC

model (blue). f ) Control showing that the average firing rate r0 does not depend on the period of

modulation T (c.f. Eq. 2.1). Colors are as in panel d and e. g) The performance of different models

in predicting the occurrence of individual spikes with a precision of ±4 ms was quantified using the

similarity measure M∗
d . Performance of GLIF-ξL were not significantly different from GLIF-ξC (n = 12

cells, paired t-test, t11 = 0.58, p = 0.59) and GLIF-ξS (n = 12 cells, paired t-test, t11 =−0.82, p = 0.43).

h) Figure 2.5f is completed with the performance of GLIF-ξC (n = 12 cells, paired t-test, t11 =−1.10,

p = 0.29). i) Figure 2.5g is completed with the performance of GLIF-ξC (n = 12 cells, paired t-test,

t11 =−4.17, p = 0.002). In all panels, error bars indicate one standard deviation.

Given the subthreshold dynamics, the second step consisted of estimating the parameters of

the firing threshold. Since adaptation due to spike-triggered currents was already captured by
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the filter η(s), the effective threshold of Equation 2.8 was replaced by

V (bio)
T (t ) =V ∗

T + ∑
t̂j<t

γ(t − t̂j −Tref), (2.17)

where V (bio)
T (t ) describes the physiological threshold at which action potentials were initiated

in vitro. In contrast to ξ(s), γ(s) is not a phenomenological model but describes physiological

changes of the firing threshold triggered by the emission of previous spikes. Similar to η(s), we

defined the moving threshold γ(s) as a linear combination of rectangular basis function

γ(s) =
K∑

k=1
δk fk(s), (2.18)

with fk(s) as in Equation 2.15. Finally, the functional shape of γ(s), along with the parameters

V ∗
T and ∆V , were extracted from experimental data by maximizing the log-likelihood of the

observed spike-train (Brillinger, 1988):

logL(θ) = log p({t̂j}|V ;θ) =∑
t̂j

logλθ(t̂j)−
∫
Ω
λθ(s)d s, (2.19)

where θ = {δ1, . . . ,δK ,V ∗
T ,∆V } are the threshold parameters,Ω= {t |t ∉ [t̂j, t̂j +Tref]} is a set that

excludes periods of absolute refractoriness and the conditional firing intensity λθ(s) is given

by

λθ(t ) =λ0 exp

(
V (t )−V ∗

T −∑
t̂j<t γ(t − t̂j −Tref)

∆V

)
, (2.20)

where V (t ) was obtained by integrating Equation 2.14 and, without loss of generality, we set

λ0 =∆T −1. With the exponential function in Equation 2.20, the log-likelihood to maximize is

a concave function of θ (Paninski, 2004). Consequently, we could perform the fit in discrete

time using standard gradient ascent methods (Truccolo et al., 2005; Pillow et al., 2008; Mensi

et al., 2011).

With this fitting procedure, an inaccurate estimation of the spike-triggered current η(s) would

affect the measure of the moving threshold γ(s). To make sure that the estimation of γ(s) we

obtained (Fig. 2.2a, red line) can indeed be attributed to a movement of the physiological

threshold, we also extracted the threshold parameters using the experimental membrane

potential V (data), rather than V (Fig. 2.2a, gray line).

Power-law fit of the effective adaptation filter ξ(s)

For GLIF-ξPL, the effective adaptation filter ξL(s) extracted from the intracellular recordings

was fitted with a truncated power law ξPL(s) (Eq. 2.2). The fit was performed in two steps.

In the first step, we estimated the magnitude αξ and the scaling exponent βξ using a least-
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square linear regression performed in log-log space. For that, data points were logarithmically

resampled and excluded from the fit if ξL(s) < 5 ·10−3 mV or s < 5 ms. In the second step,

we obtained the cutoff Tξ by calculating the intercept between the power-law fitted in the

first step and the average value of the extracted kernel ξL(s) computed on the first 5 ms. A

similar procedure (i.e., least-square linear regression in log-log space with logarithmically

resampled points) was used for the power-law fit of the spike-triggered current η(s) and the

spike-triggered movement of the firing threshold γ(s) shown in Figure 2.2a.

2.4.7 Performance evaluation

Cross-validation

All the performances reported in this study were evaluated on datasets that have not been

used for parameter extraction. For the predictions reported in Figure 2.4 and Figure 2.5a-g, the

model fitted on the first half of the experiment (training set) was used to predict the responses

observed in the second half (test set). Since in certain experiments the average firing rates r0

observed in the test set were slightly different than the ones of the training set, the parameter

V ∗
T was readjusted using the firsts 16 s of all the test set injections and models were validated

on the responses recorded in the remaining 48 s. According to this procedure, models that do

not capture SFA on slow timescales were expected to overestimate the average firing rate r0.

For the predictions reported in Figure 2.5h-j, a leave-one-out strategy was used. In this case,

models fitted on the responses to five different periods of modulation were used to predict the

sixth one.

Spike-train metrics

To evaluate spike time prediction, we used the similarity measure M∗
d introduced in Naud

et al. (2011). M∗
d quantifies the similarity between two groups of spike trains generated by two

stochastic processes and corrects the bias caused by the small number of available repetitions.

M∗
d takes values between 0 and 1, where M∗

d = 0 indicates that the model is unable to predict

any of the observed spikes and M∗
d = 1 means that the two groups of spike trains have the same

instantaneous firing rate and are statistically indistinguishable. M∗
d can also be interpreted

as the number of spikes correctly predicted (here with a precision of ±4 ms) divided by an

estimate of the number of reliable spikes.

2.4.8 Estimating the statistical properties of the input current received in vivo by
neocortical pyramidal neurons

To test the hypothesis that power-law adaptation contributes to efficient coding by whitening

the single neuron output, we measured the power spectrum of the currents ∆I ( f ) received

as input at the soma of a neocortical pyramidal neuron in vivo. According to Equation 2.14,

in absence of spikes, the membrane potential ∆V (t) is a low-pass filtered version of the

input current, where the cutoff frequency fc = τ−1
m is defined by the membrane timescale.
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Consequently, at all frequencies f ¿ fc, we have that ∆I ( f ) =∆V ( f )/R2, with ∆V ( f ) being

the power spectrum of the subthreshold membrane potential fluctuations and R the input

resistance.

We estimated ∆V ( f ) using 20-second-long whole-cell recordings (n = 57) of the synaptically

driven membrane potential dynamics obtained from 7 different L2/3 pyramidal neurons of

behaving mice (data from Crochet et al. (2011)). All the in vivo recordings were performed in

primary somatosensory barrel cortex during active whisker sensation. Further details on the

experimental protocol can be found in the original paper (Crochet et al., 2011). Spike-triggered

currents last for more than 20 seconds and can in principle affect ∆V ( f ) even at very low

frequencies. For this reason, only trials with low firing rates r0 < 0.5 Hz were used. However,

including recordings with r0 > 0.5 Hz did not affect the results.

2.4.9 Simulating the population response to in vivo like inputs

To obtain the results reported in Figure 2.7, we simulated a population of N = 100 unconnected

GLIF-ξPL neurons in response to 4000-s-long currents I (t ) characterized by a power spectrum

∆I ( f ) ∝ f −βI , with βI = 0.67. Model parameters are given in Table 2.1 and input currents

were generated as in Wang et al. (2003) by numerically solving the following inverse Fourier

transform

I (t ) = I0 +Z ·
∫ +∞

−∞

p
∆I ( f )N ( f )e i (2π f t+φ( f ))d f , (2.21)

where N ( f ) is a Gaussian white-noise process, the phases φ( f ) were independently sampled

from a uniform distribution and the scaling factor Z was adjusted to fit the power spectrum of

the subthreshold membrane potential fluctuations observed in vivo (see Fig. 2.7a). To avoid

unrealistic large power at slow frequencies, we introduced a cutoff ∆I ( f ) = 0, for f < 0.025 Hz.

The highest frequency in the signal was determined by the time step ∆T = 0.5 ms used for

numerical simulations. The mean input I0 was adjusted to obtain a plausible average activity

of A0 = 4 Hz, which was consistent with the firing rates obtained in vitro.

The population activity A(t ) was constructed by counting the number of spikes falling in bins

of 50 ms and its power spectrum A( f ) was finally computed using time series of 40 s.

2.4.10 Statistics

The number of cells used for the analysis (n =12 or n =14) was limited due to experimental

constraints. Data analysis only started after complete data collection and no data were

excluded. Two-sided t-test was used as standard. Normality was verified using the Anderson-

Darling test. Multiple comparison correction was not appropriate and therefore not used.
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Abstract

Single-neuron models are useful not only for realistic large-scale simulations of neural systems,

but also for rapid characterization of electrophysiological recordings. To account for the large

variety of behaviors observed in different neuronal types, single-neuron models should be

flexible and allow efficient parameter extraction from experimental data. Here we provide

a brief overview of commonly used spiking neuron models and, by taking the Generalized

Integrate-and-Fire model as a particular example, we review how simplified models capable

of predicting both the spiking activity and the subthreshold dynamics of different cell types

can be accurately fitted with a limited amount of data. A procedure is proposed that, com-

bined with a recently developed technology for automatic patch-clamp recordings, allows for

automated high-throughput characterization of single neurons.

3.1 Introduction

In vitro patch-clamping is the gold standard used to investigate the intrinsic electrophysi-

ological properties of single neurons, but remains labour intensive and requires a trained

experimentalist with high technical skills. In the last years, several platforms have been de-

veloped that automatize electrophysiological recordings for ion-channel screening and drug

discovery (Dunlop et al., 2008). Most of the existing platforms are, however, designed to

record from mammalian cell lines or oocytes in which ion-channels of interest are artificially

expressed (Xu et al., 2003; Finkel et al., 2006). In the near future, this technology is likely to be

transferred to more complex setups, such as in vitro brain slices. High-throughput electro-

physiology can be pushed forward with in vivo whole-cell patch-clamp recordings that are, at
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least partially, automatized (Kodandaramaiah et al., 2012). With this technique, three to seven

minutes are sufficient for a robot to automatically identify a cell and form a gigaohm seal of

the same quality as achieved by a trained electrophysiologist. This technological advance

represents an important step towards high-throughput electrophysiology in vivo or on in vitro

brain slices.

To make sense of the large amount of data that automated patch-clamp will make available,

adequate computational tools have to be developed. Due to their high-dimensionality, raw

data from intracellular recordings are difficult to interpret and cannot be directly compared

against each others. For example, during ongoing activity, it is not clear how different electro-

physiological types can be identified from a set of voltage traces acquired from a large number

of neurons. To solve this problem, traditional protocols rely on current-clamp injections of

stimuli (e.g., square current pulses, ramps of current) that are specifically designed to extract a

small number of parameters (e.g. membrane time constant, firing threshold). While this is a

valid approach, the input currents adopted in these experiments are artificial and strongly

differ from the signals that single neurons process in vivo. Moreover, the choice of the parame-

ters used for single-neuron characterization is arbitrary and different parameters are generally

estimated from different experiments.

An alternative method to extract and summarize the most relevant information contained in

an intracellular recording consists of fitting a spiking neuron model with a limited number of

parameters to the data. Ideally, a single-neuron model should be sufficiently complex and

flexible to capture, by a single change of parameters, the spiking activity of different neurons,

but also simple-enough to allow robust parameter estimation (Herz et al., 2006; Gerstner

and Naud, 2009). Detailed biophysical models with stochastic ion channel dynamics can in

principle account for every aspect of single-neuron activity; however, due to their complexity,

they require high computational power (Koch, 1999; Herz et al., 2006; Markram, 2006; Lang

et al., 2011). While systematic fitting of detailed biophysical models is possible (Prinz et al.,

2003; Gold et al., 2006; Huys et al., 2006; Druckmann et al., 2007; Hay et al., 2011; Vavoulis et al.,

2012), most of the existing methods assume the knowledge of all the parameters that determine

the dynamics of the ion channels included in the model. Overall, a reliable and efficient fitting

procedure for detailed biophysical models is not known (Gerstner and Naud, 2009). In a second

class of spiking neuron models, which we call simplified threshold models, the biophysical

mechanisms relevant for neural computation are not explicitly modeled, but are accounted

for by phenomenological (i.e., effective) descriptions (Gerstner et al., 2014; Izhikevich, 2007).

Despite their simplicity, threshold models are surprisingly good at predicting the single-neuron

activity (Softky and Koch, 1993; Troyer and Miller, 1997; Keat et al., 2001; Pillow et al., 2005;

Paninski et al., 2005; Jolivet et al., 2008b; Kobayashi et al., 2009; Gerstner and Naud, 2009; Dong

et al., 2013), at least for the case of single-electrode somatic stimulation (but see Häusser et al.

(2000); Larkum et al. (2009)). Nowadays, simplified spiking neuron models are mainly used

in large-scale simulations to study the emergent properties of neural circuits (Izhikevich and

Edelman, 2008; Gewaltig and Diesmann, 2007). By taking a different perspective, we will argue

that the same models can also serve an equally important purpose, namely to characterize the
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electrical properties of single neurons. In this view, simplified threshold models are interpreted

as computational tools to compress the information contained in a voltage recording into a

set of unique and meaningful parameters. Summarizing the information of complex voltage

recordings can in turn enable systematic comparisons and clustering of cell types.

By taking the Generalized Integrate-and-Fire model (GIF, see Mensi et al. (2011); Pozzorini

et al. (2013)) as a particular example, we discuss how the electrical properties of single neurons

can be efficiently characterized by fitting a simplified threshold model to voltage recordings.

After demonstrating that a limited amount of data, and little computing time, are sufficient

to achieve this goal, we introduce an experimental protocol that, combined with automated

patch-clamp technology, could make automated high-throughput single-neuron characteriza-

tion possible. The validity of our approach is finally demonstrated with two applications: i) In

silico recordings obtained by simulating the activity of a multi-compartmental conductance-

based model; and ii) In vitro recordings from layer 5 (L5) pyramidal neurons obtained using

manual patch clamping.

3.1.1 Simplified threshold models

Over the last century, several mathematical models have been developed that describe the

electrical behavior of single neurons. So far, efforts of quantitative modeling mainly focused

on single-electrode experiments, in which the membrane potential is recorded at a specific

location (generally the soma) in response to currents delivered at exactly the same place. The

reason for that does not simply reside in the experimental difficulties associated with double

patch-clamp recordings (Häusser et al., 2000; Larkum et al., 2009), but also arises from the

extreme complexity inherent to dendritic processing.

Single-neuron models can be divided in two main categories: detailed biophysical models

and simplified threshold models. The models belonging to the first category are based on the

Hodgkin-Huxley formalism (Hodgkin and Huxley, 1952) and explicitly describe the dynamics

of different ion-channels. These models are well suited to study how specific channels interact

to shape the global electrical properties of nerve cells. However, due to their complexity,

detailed biophysical models are analytically intractable, difficult to use in large-scale simula-

tions and rarely provide an intuitive understanding of the computational principles of single

neurons. For these reasons, simplified spiking models are often preferred to investigate the

dynamics of neural networks and their emergent properties.

The complexity of a neuron model can be significantly reduced by modeling the intricate dy-

namics responsible for spike generation with a simple threshold process. Simplified threshold

models (integrate-and-fire models) describe action potentials as all-or-none unitary events

and implicitly assume that all of the information is carried by the precise timing, or the rate,

at which action potentials are fired. While the original idea of modeling spike emission by

a threshold process dates back to the beginning of the last century (Lapicque, 1907; Hill,

1936), detailed studies involving integrate-and-fire models only started around the 1960s,
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when theoreticians began to investigate their mathematical and stochastic properties (Stein,

1965; Knight, 1972). Later, simplified threshold models were shown to provide a surprisingly

good description of cortical neurons (Softky and Koch, 1993; Troyer and Miller, 1997) and

became extremely popular amongst computational neuroscientists studying the dynamical

properties of neural networks. Integrate-and-fire models are generally composed of: i) a set

of differential equations describing the dynamics of the subthreshold membrane potential;

ii) a set of equations describing the dynamics of the voltage threshold for spike initiation;

and iii) a mathematically formalized condition for the emission of action potentials (Box 1).

Amongst simplified threshold models, the Leaky Integrate-and-Fire (LIF) model is one of

the most widely used in the field of computational neuroscience. Despite its popularity, the

LIF model is oversimplified and does not reach a high performance in predicting individual

spikes with millisecond precision (Jolivet et al., 2008b; Kobayashi et al., 2009). During the

last decades, several extensions have been introduced to account for different single-neuron

features such as subthreshold resonance (Izhikevich, 2001; Richardson et al., 2003), spike-

frequency adaptation (La Camera et al., 2004; Jolivet et al., 2006b), smooth spike initiation

(Fourcaud-Trocmé et al., 2003; Latham et al., 2000; Badel et al., 2008), firing threshold depen-

dence on the membrane potential (Mihalaş and Niebur, 2009; Platkiewicz and Brette, 2010;

Higgs and Spain, 2011; Fontaine et al., 2014b) and stochastic spike emission (Gerstner and van

Hemmen, 1992; Paninski et al., 2005; Jolivet et al., 2006b). In particular, the INCF Quantitative

Single Neuron Modeling Competition that took place in 2007 and 2008 (Jolivet et al., 2008b,a)

demonstrated that including a spike-triggered current (or a spike-triggered movement of the

firing threshold) for spike-frequency adaptation dramatically improves the predictive power

of simplified threshold models compared to the LIF model (Gerstner and Naud, 2009).

Ideally, a single-neuron model should: i) be analytically tractable; ii) be sufficiently flexible

to capture the behavior of different neuronal types by suitable parameter changes; iii) have

a low computational cost; iv) predict spikes with millisecond precision; v) predict the sub-

threshold dynamics of the membrane potential; vi) come with a fitting procedure that enables

efficient parameters extraction from intracellular recordings; and vii) allow for a biophysical

interpretation of its parameters and components. Amongst others (e.g. Brette and Gerstner

(2005); Izhikevich et al. (2003); Gerstner et al. (2014)), the Generalized Integrated-and-Fire

model (GIF) we recently introduced (Mensi et al., 2011; Pozzorini et al., 2013) fulfills all of these

requirements. The GIF model is a LIF model augmented with a spike-triggered current η(t)

and a moving threshold γ(t ) for spike-frequency adaptation, as well as with the exponential

escape-rate mechanism for stochastic spike emission (Box 1). Although being more complex

than a LIF model, the GIF model remains amenable to analytical treatments that illustrate

how specific single-neuron features affect the global network dynamics (Naud and Gerstner,

2012; Deger et al., 2013). Most importantly, as discussed below, the GIF model is particularly

well suited to perform single-neuron characterization because all of its parameters can be

efficiently extracted from a limited amount of data.
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BOX 1: Generalized Integrate-and-Fire (GIF) model

Subthreshold dynamics of the membrane potential

In the GIF model, the subthreshold membrane potential V (t ) evolves according to the differential equation:

CV̇ (t ) =−gL(V (t )−EL)− ∑
t̂ j <t

η(t − t̂ j )+ I (t ), (3.1)

where the parameters C , gL and EL define the passive properties of the neuron, I (t ) is the input current and {t̂ j } are the
spike times. According to Equation 3.1, each time an action potential is fired, an intrinsic current with stereotypical shape
η(t ) is triggered. Currents triggered by different spikes accumulate and produce spike-frequency adaptation if η(t ) > 0,
or facilitation if η(t ) < 0. The functional shape of η(t ) varies among neuron types (Mensi et al., 2011). Therefore the time
course of η(t ) is not assumed a priori but is extracted from intracellular recordings. Each time a spike is emitted, the
numerical integration is stopped during a short absolute refractory period Tref and the membrane potential is reset to
Vreset =V (t̂ j +Tref).

Dynamics of the firing threshold

The dynamics of the firing threshold VT (t ) is given by:

VT (t ) =V ∗
T + ∑

t̂ j <t

γ(t − t̂ j ), (3.2)

where V ∗
T is a constant and γ(t ) describes the stereotypical time course of the firing threshold after the emission of an

action potential. Since the contribution of different spikes accumulates, the moving threshold defined in Equation 3.2
constitutes an additional source of adaptation (or facilitation). Similar to η(t ), the functional shape of γ(t ) is not assumed
a priori but is extracted from intracellular recordings.

Stochastic spike emission (escape-rate mechanism)

Spikes are produced stochastically according to a point process with conditional firing intensity λ(t |V ,VT ), which expo-
nentially depends on the momentary difference between the membrane potential V (t ) and the firing threshold VT(t )
(Gerstner and van Hemmen, 1992; Paninski et al., 2005; Jolivet et al., 2006b):

λ(t ) =λ(t |V ,VT ) =λ0 ·exp

(
V (t )−VT (t )

∆V

)
, (3.3)

where λ0 has units of s−1, so that λ(t ) is in Hz and ∆V defines the level of stochasticity. According to Equation 3.3, if
∆V > 0, the probability of a spike to occur at a time t̂ ∈ [t ; t +∆t ] is given by:

P (t̂ ∈ [t ; t +∆t ]) = 1−exp

(
−

∫ t+∆t

t
λ (s)d s

)
≈λ(t )∆t . (3.4)

Predicting the single-neuron activity with a GIF model. a) Block representation of the GIF model. The membrane
acts as a low-pass filter κ(t ) = C−1 · exp

(−gLt/C
)

on the input current I (t ) to produce the modeled potential V (t ). An
exponential nonlinearity transforms this voltage into an instantaneous firing intensity λ(t ), according to which spikes
are generated. Each time a spike is emitted, both a current η(t ) and a movement of the firing threshold γ(t ) are triggered.
b) The response of a L5 pyramidal neuron to a fluctuating input current (top) has been recorded intracellularly (middle,
black). The same protocol was repeated nine times to assess the reliability of the response (black raster). The GIF model
accurately predicts both the subthreshold (middle, red) and the spiking response (red raster) of the neuron.
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3.1.2 Extracting model parameters from experimental recordings

The input-output transformation of a simplified threshold model strongly depends on its

parameters θ (Izhikevich, 2004; Naud et al., 2008). To account for the variety of behaviors

observed across neuronal types (Markram et al., 2004; Shinomoto et al., 2009), as well as

across neurons of the same cellular type, efficient fitting techniques are required that allow

parameter extraction from experimental data on a cell-by-cell basis. A fitting procedure for

neuron models is formally defined as an algorithm that, given a set of electrophysiological

recordings and an error function E (θ,D) quantifying the mismatch between model prediction

and experimental data D , automatically finds the optimal solution θopt that minimizes E (θ,D):

θopt = arg min
θ

{E(θ,D)} . (3.5)

Since the seminal work of Brillinger and colleagues (Brillinger et al., 1976; Brillinger and

Segundo, 1979), different fitting methods have been introduced (see Jolivet et al. (2008b,a);

Van Geit et al. (2008); Rossant et al. (2011a) and references therein). These methods differ

in the choice of both the error function E(θ,D) and the search algorithm used to solve the

optimization problem given by Equation 3.5 (Van Geit et al., 2008). The choice of E(θ,D) is of

particular importance not only because it implicitly determines the optimal solution, but also

because it imposes constraints on the search algorithms that can be successfully applied.

A possible solution is to define E (θ,D) as the mean-square difference between the model and

the experimental firing rates observed in response to a set of stationary currents (Rauch et al.,

2003; La Camera et al., 2004; Arsiero et al., 2007; Hertäg et al., 2012). However, since neurons

communicate by means of action potentials, it seems more natural to define the error function

E (θ,D) as a measure of the dissimilarity between the model and the experimental spike-train.

In the case of a deterministic model, because of the threshold process used for spike generation,

any error function E(θ,D) based on a spike-train similarity measure is discontinuous in θ

(Brette, 2004). Consequently, the parameters of deterministic models cannot be efficiently

extracted using gradient-based methods and black-box techniques have to be employed

that involve the simulation of the neuron model at each iteration (e.g. evolutionary search

algorithms) (Rossant et al., 2010). Overall, since the error function E(θ,D) is often a non-

convex function of θ (i.e., E (θ,D) contains local minima) and the parameter space is typically

large, finding the optimal solution is a difficult problem (Van Geit et al., 2008; Rossant et al.,

2011a).

While fitting techniques that entirely rely on the minimization of a spike-train dissimilarity

measure are in principle applicable to any neuron model (Rossant et al., 2011a), they are

often not efficient and require high computing power. The efficiency of these methods can be

significantly improved by pre-estimating part of the model parameters using the information

available in the subthreshold membrane potential fluctuations Vdata(t) (Jolivet et al., 2004,

2006b; Clopath et al., 2007). Except for some rare cases (e.g., Badel et al. (2008)), fitting
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procedures that exploit the knowledge of Vdata(t ) are performed in two steps.

BOX 2: GIF model parameter extraction
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Given the intracellular voltage response Vdata(t ) evoked in vitro by a fluctuating input current I (t ), all of the GIF model
parameters can be extracted from experimental data using a three-step procedure (Mensi et al., 2011; Pozzorini et al.,
2013) (the mathematical details of the procedure are provided in the Materials and Methods section).

Step 1: Extracting the parameters related to absolute refractoriness and voltage reset

First, the experimental spike train Sdata = {t̂ j } is defined as the collection of instants t̂ j at which Vdata(t ) crossed a certain
threshold from below. The average spike shape VSTA(t ) is then obtained by computing the spike-triggered average (STA)
of Vdata(t ). The absolute refractory period Tref is fixed to twice the spike width at half maximum and the reset potential
is computed as Vreset =VSTA(Tref).

Step 2: Extracting the parameters related to the subthreshold voltage dynamics

The first-order temporal derivative of the experimental voltage V̇data(t ) is estimated from the data and the parameters de-
termining the membrane potential dynamics are extracted by fitting the model voltage derivative V̇ (t ) on V̇data(t ). This
is done by exploiting the knowledge of the experimental voltage Vdata(t ) and the external input I (t ). To avoid a priori as-
sumptions on the functional shape of the spike-triggered current, η(t ) is expanded in a linear combination of rectangular
basis functions. Consequently, optimal subthreshold parameters θsub = {C , gL,EL,η(t )} minimizing the sum of squared
errors between V̇ (t ) and V̇data(t ) can be efficiently obtained by solving a multilinear regression problem (Paninski et al.,
2005). Since simplified threshold models do not describe the membrane potential dynamics during action potentials, all
the data close to spikes are discarded.

Step 3: Extracting the parameters related to the firing threshold dynamics

The parameters estimated so far are first used to compute the subthreshold membrane potential of the model V̂model(t ).
Given V̂model(t ), the parameters θth = {V ∗

T ,∆V ,γ(t )} defining the firing threshold dynamics are then extracted by maxi-
mizing the probability (i.e., the log-likelihood) of the experimental spike train Sdata(t ) being produced by the GIF model.
Similar to η(t ), the spike-triggered threshold movement is extracted nonparametrically by expanding γ(t ) in a linear com-
bination of rectangular basis functions. In the GIF model, the nonlinear function of the escape-rate mechanism (Eq. 3.3)
is convex and log-concave. Moreover, its argument is linear in the model parameters θth. Given these properties, the
log-likelihood to maximize is guaranteed to be a concave function of the model parameters (Paninski, 2004) and the
optimization problem can be solved using standard gradient ascent techniques.
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In the first step, all of the parameters θsub governing to the subthreshold voltage dynamics are

estimated by minimizing the error on the membrane potential fluctuations. In the second step,

a black-box optimization is performed to find the threshold parameters θth that maximize

a spike-train similarity measure. The main advantage of this strategy resides in the fact

that the number of parameters that have to be estimated through black-box optimization

is significantly reduced. Interestingly, the winner of the INCF Quantitative Single Neuron

Modeling Competition used this approach (Kobayashi et al., 2009).

To efficiently exploit the information contained in the subthreshold fluctuations of the mem-

brane potential, a good strategy is to minimize the sum of squared errors between the model

and the experimental voltage derivative V̇data ≈ (Vdata(t +∆T )−Vdata(t ))/∆T (Paninski et al.,

2005). This method is particularly convenient because many subthreshold parameters can

be efficiently estimated with a simple linear regression (Paninski et al., 2005). Moreover, im-

portant processes like linearized subthreshold currents, spike-dependent adaptation and

subthreshold nonlinearities can be extracted nonparametrically, thereby limiting the number

of a priori assumptions (e.g. the number of time scales over which spike-frequency adaptation

has to be modeled (Pozzorini et al., 2013)).

Several problems arising during parameters extraction for deterministic models can be

avoided with probabilistic spiking models (Paninski et al., 2007; Gerstner et al., 2014). Stochas-

tic models provide a big advantage because an objective function for the optimization problem

is naturally provided by the likelihood function of the data p(D|θ). In this framework, the

optimal set of parameters is given by the maximum likelihood estimate θMLE, which is formally

defined as the set of parameters θ under which the probability of observing the experimental

data D is maximized:

θMLE = arg max
θ

{
p(D|θ)

}
. (3.6)

In contrast to deterministic threshold models, the objective function p(D|θ) is smooth in θ

and the optimization problem defined in Equation 3.6 can be solved using standard gradient-

ascent methods that do not involve multiple simulations of the neuron model response.

Different maximum likelihood methods have been developed in which the spike generation

mechanism is made stochastic using either diffusive noise (Paninski et al., 2004; Pillow et al.,

2005; Dong et al., 2011) or the escape-rate mechanism (Paninski, 2004; Truccolo et al., 2005;

Pillow et al., 2008). Amongst these models, the Generalized Linear Model (GLM, Truccolo et al.

(2005); Pillow et al. (2008)) is particularly convenient because its likelihood function is concave

in θ (Paninski, 2004). This property is extremely valuable for parameter extraction because

it guarantees that there are no non-global (”local”) maxima. Indeed, in the absence of local

maxima, standard gradient-ascent techniques are always guaranteed to find the optimal set of

parameters.

Despite these advantages, GLMs are typically considered as statistical models for spike trains

and their parameters are only loosely related to biophysical properties of the neuron. The
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reason for this is that GLM parameter extraction entirely relies on spiking data. If on one hand

this fact constitutes a big advantage in case of (multielectrode) extracellular recordings, the

standard GLM framework is less appropriate for whole-cell current-clamp data. GLMs do not

explicitly model the membrane potential dynamics, do not exploit all the information available

in intracellular recordings and, consequently, cannot explain the subthreshold activity of single

neurons. To overcome these problems, a fitting method for GIF models (Mensi et al., 2011;

Pozzorini et al., 2013) has been recently introduced in which the subthreshold parameters θsub

are first extracted by performing a linear regression on V̇data and the parameters θth governing

the firing threshold dynamics are successively extracted using a maximum likelihood approach

(Box 2). With this technique, a biologically plausible model that simultaneously captures the

spike response and the subthreshold voltage dynamics of different neuron types can be

efficiently fitted to experimental data (Mensi et al., 2011; Pozzorini et al., 2013).

3.1.3 Model validation

In order to build an automated pipeline for single-neuron characterization, a fitting algorithm

has to be complemented with a validation protocol designed to automatically detect and

discard trials in which the fitting procedure fails. Good spiking neuron models should be

able to accurately predict the occurrence of individual action potentials with millisecond

precision (Gerstner and Naud, 2009). To take the stochastic nature of single neurons into

account (Mainen and Sejnowski, 1995; Jolivet et al., 2006b), the validation protocol should

assess the model performance in predicting spike emission probability. To that end, a set

of recordings is required in which single neurons are repetitively stimulated with the same

time-dependent test current Itest(t ). The resulting set of experimental spike trains has then to

be compared against a set of spike trains predicted by repetitive simulations of the model.

To assess the model’s predictive power, the similarity between the two sets of spike trains

has to be quantified. For this purpose, different metrics have been introduced (Kistler et al.,

1997; Victor and Purpura, 1997; Rossum, 2001; Paiva et al., 2009). Amongst them, the similarity

measure M∗
d (Naud et al., 2011) (Box 3) is particularly well suited because it resolves the

small sample bias known to affect most of the similarity measures when the number of

available spike trains is small. Also, in contrast to previous measures based on naive pairwise

comparisons (e.g., the Γ–coincidence factor used in Jolivet et al. (2008a)), M∗
d does not suffer

from the so-called deterministic bias known to favor noise-free models (Naud et al., 2011).

M∗
d takes values between 0 and 1 (where M∗

d = 0 indicates that the model is unable to predict

any of the experimental spikes and M∗
d = 1 indicates a perfect match for a particular level of

temporal granularity) and quantifies the similarity between the experimental and predicted

spike-emission probability. This measure can be interpreted within an abstract vector space

as the normalized distance between the experimental and the predicted spike trains (see Box

3). During a comparison of two peristimulus time histograms (PSTHs), M∗
d is sensitive to

differences in shape and amplitude of the PSTH whereas correlation-based measures (i.e.,

angle measures) disregard the amplitude.
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3.2 Results

3.2.1 A protocol for automated high-throughput single-neuron characterization

By simulating the process of GIF model parameter extraction (Box 2) and validation (Box 3) on

artificial datasets of different sizes, we concluded that only a limited amount of experimental

data, as well as little computing time, are required to characterize a simplified threshold model

(see Section 3.4.2). Based on this result, we designed a high-throughput protocol for the

automated fitting and validation of GIF models on in vitro intracellular recordings (Fig. 3.1).

Time (s)
50 100 150 200 250 3000

In vitro
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Input
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usage

Parameter
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Spike timing
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Figure 3.1: Schematic representation of the protocol for high-throughput single-neuron charac-

terization. To characterize the properties of the electrode required for data preprocessing by Active

Electrode Compensation (AEC, see Box 4), the experimental protocol starts with the injection of a

short subthreshold current. While the filtering properties of the electrode are estimated (AEC box, left

part), the training dataset is collected. After training set collection, the raw data are preprocessed with

AEC to compensate for the bias known to occur when the same electrode is used to both record and

stimulate the neuron (AEC box, right part). Then, in parallel with GIF model parameter extraction

and successive spike timing prediction, the test dataset is collected by injecting 9 repetitions of the

same time-dependent current. Finally, after complete acquisition of the test set, the similarity measure

M∗
d between the observed and the predicted spike trains is computed. Overall, GIF model parameter

extraction and validation requires around 5 minutes of recording and CPU time.

The protocol is conceptually divided in two parts. In the first part, a training set is acquired

by recording the single-neuron response to a 100-second fluctuating current I (t ). These data

are used to perform GIF model parameter extraction. The input current I (t ) is generated by

an Ornstein-Uhlenbeck process (i.e., a colored noise process) sampled at ∆T −1= 20 kHz by

numerically solving the stochastic differential equation τİ =−I + I0 +
p

2τσ(t )ξ(t ) in discrete

time

I (t +∆T ) = I (t )+ I0 − I (t )

τ
·∆T +

√
2σ2∆T

τ
·N (0,1), (3.7)
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where ξ(t) is a Gaussian white-noise process generated by independently drawing from a

Normal distribution N (0,1), τ = 3 ms is the characteristic timescale on which the input

fluctuates, I0 defines the mean input and σ(t) is the time-dependent standard deviation of

I (t ).

Stationary filtered Gaussian processes have been extensively used to model the input current

received in vivo at the soma of neocortical neurons (Destexhe and Paré, 1999). In our protocol,

the assumption of stationarity is relaxed by modulating the variance of the input with a

periodic oscillation (Lundstrom et al., 2008) given by:

σ(t ) =σ0(1+∆σsin(2π f t )), (3.8)

where σ0 and∆σ are constants and f = 0.2 Hz is the modulation frequency. Such an input cur-

rent with non-stationary statistics drives the neurons through different regimes and generates

broad ISI distributions that better constrain the fit of parameters characterizing adaptation

processes. At the beginning of the experiment (i.e. before the first part of the protocol starts),

the input parameters I0, σ0 and ∆σ are automatically adjusted to obtain an average firing rate

of around 10 Hz. In the second part of the protocol (test set), 9 repetitive injections of a new

10-second current Itest(t) are performed with an interstimulus interval of 10 seconds, so as

to allow the cell to recover. These data are used to quantify the predictive power of the GIF

model with the spike-train similarity measure M∗
d (Box 3). The test current Itest(t ) is generated

according to Equations 3.7-3.8 with the same parameters as in the training set.

Current-clamp experiments in which the same electrode is used both for stimulating and

recording from single neurons are biased due to the voltage drop across the electrode (Brette

et al., 2008). To remove this bias, intracellular recordings can be preprocessed using a tech-

nique called Active Electrode Compensation (AEC, see Box 4 and Materials and Methods). In

order to perform AEC, the filtering properties of the electrode have to be estimated. For that,

an additional 10-second subthreshold current Isub(t ) is injected before the acquisition of the

training set (Fig. 3.1). Isub(t ) is generated according to Equation 3.7 with parameters I0=0 pA,

τ=3 ms and σ(t) =σ pA, where σ is a constant calibrated to evoke subthreshold membrane

potential fluctuations with a standard deviation of around 2-3 mV.

Since all of the computations required for parameter extraction and model validation can be

performed on the fly, the whole protocol can be performed in 5 minutes and is suitable for

high-throughput in vitro characterization of single neurons (Fig. 3.1).
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Chapter 3. Single-neuron characterization by means of spiking models

BOX 3: Quantifying the predictive power of a spiking neuron model

a b c
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Model prediction
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Time

Measuring the similarity between two sets of spike-trains. a) Two sets of spike trains have to be compared. b) Each
individual spike train (dashed arrows) can be represented in a vector space. The PSTH vectors νd (solid arrow, black) and
νm (solid arrow, red) lie in the center of the individual spike trains belonging to the two sets. The two ellipses represent
the variability of the model spike trains and the experimental spike trains. To define norms and distances between vec-
tors (i.e., between spike trains), the vector space is equipped with an inner product 〈Si ,S j 〉 (c.f., Eq. 3.10). Within the
vector space, different metrics can be interpreted either as angle measures (orange) or distance measures (blue). In this
abstract view, the similarity measure M∗

d is related to the distance between νm and νd (Naud et al., 2011). c) Schematic
representation of the scalar product 〈Si ,S j 〉 defined as the Kistler coincidence window KKistler(s, s′). The spike trains
Si (t ) and S j (t ) are filtered with a rectangular function of size 2∆ ms and a δ-Dirac function, respectively. The resulting
functions are then multiplied together and integrated over time. The Kistler coincidence window counts the spikes S j (t )
falling within ±∆ms of a spike in Si (t ) (green arrows). Non-coincident spikes (red arrows) are not counted.

The similarity measure M∗
d

Given a small set of experimental spike trains S(d)
i = ∑

f δ(t − t̂ f ) recorded in response to Nd repetitive injections of the

same input current Itest(t ) and a large set of spike trains S(m)
j =∑

f δ(t − t̂ f ) predicted by Nm ≥ 500 repeated simulations

of a stochastic model, the predictive power of the model can be quantified by the similarity measure M∗
d defined as:

M∗
d = 2 ·〈νd,νm

〉
2

Nd(Nd−1)
∑Nd

i=1
∑Nd

i ′=i+1

〈
S(d)

i ,S(d)
i ′

〉
+〈νm,νm〉

, (3.9)

where νd = 1
Nd

∑Nd
i=1 S(d)

i is the experimental PSTH, νm = 1
Nm

∑Nm
j=1 S(m)

j is the model PSTH and 〈νm,νm〉 represents its
squared norm (Naud et al., 2011). Due to high-throughput requirements and experimental constraints, only a small num-
ber of experimental spike trains are available. For this reason, the squared norm of the experimental PSTH (i.e., 〈νd,νd〉)
must be carefully estimated using the unbiased estimator provided by the first term in the denominator of Equation 3.9.
The similarity measure M∗

d can be interpreted within a vector space as a normalized measure of the distance between
the model and the experimental PSTH. In this abstract view, the operator 〈·, ·〉 plays the role of an inner product given by:

〈Si ,S j 〉 =
∫ T

0

∫ ∞
−∞

∫ ∞
−∞

K (s, s′)Si (t − s)S j (t − s′)d sd s′d t , (3.10)

where K (s, s′) is a function defining the degree of coincidence between two spikes which occurred at times s and s′.

Kistler coincidence kernel
While different kernels K (s, s′) may be used (see Naud et al. (2011)), a sensible choice is the Kistler coincidence kernel.
The Kistler coincidence kernel is mathematically defined as KKistler(s, s′) = δ(s′) ·Θ(s+∆) ·Θ(−s+∆), where ∆ defines the
temporal precision on which spike timing prediction is assessed. With this particular choice, the inner product 〈Si ,S j 〉
equals the number of spikes in Si that are within ±∆ms of one of the spikes in S j and, consequently, M∗

d simplifies to:

M∗
d = 2ndm

n∗
dd +nmm

, (3.11)

with ndm being the average number of coincident spikes between data (d) and model (m), nmm being the average num-
ber of coincident spikes computed across Nm = 500 repetitions generated by the model and n∗

dd being the bias-corrected
average number of coincident spikes between different experimental spike trains (that is, the number of coincident
spikes between experimental spike trains S(d)

i and S(d)
j averaged across (i , j ) ∈ [1, Nd]× [1, Nd] with i 6= j , see Eq. 3.10).
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3.2. Results

3.2.2 Applying the protocol on in silico recordings

The most sophisticated single-neuron models available today are known as multi-compartment

conductance-based models. In contrast to simplified threshold models, these models account

for the intricate morphology of both dendritic and axonal arborizations and explicitly describe

the dynamics of a large variety of ion channels mediating active currents. Both aspects are

likely to play a role in single-neuron information processing (Koch and Segev, 2000; London

and Häusser, 2005). A multi-compartment conductance-based model (Hay model, HM) has

recently been proposed that captures several features of L5b thick-tufted pyramidal neurons

(Hay et al., 2011). In particular, this model includes active dendrites and describes the interac-

tions between Na+ spiking at the soma, back-propagating action potentials and Ca2+-spikes

generated at the distal apical dendrites.

To validate our procedure for high-throughput single-neuron characterization, the protocol

described in Figure 3.1 was tested in silico by simulating the HM response to a set of current

injections (see Materials and Methods). Since we are mainly interested in automatic somatic

patching, all in silico experiments were performed by delivering the current at the somatic

compartment (Fig. 3.2a). HM recordings were then used to perform GIF model parameter

extraction (Fig. 3.2b-d). The passive properties of the membrane were characterized by a

relatively short timescale (τm = 6.7 ms, s.d. 0.1 ms, Fig. 3.2b). GIF model parameter extraction

also revealed the presence of a long-lasting adaptation current (Fig. 3.2c) and a spike-triggered

movement of the firing threshold (Fig. 3.2d). Consistent with the tendency of L5b pyramidal

neurons to produce bursts of action potentials (see Hay et al. (2011) and Fig. 3.2g), the

activation of the spike-triggered current was not instantaneous.
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Figure 3.2: Testing the protocol for high-throughput single-neuron characterization on in silico

recordings. a) Reconstructed morphology of the deterministic Hay model (Hay et al., 2011). The

recording site is indicated by the red pipette. To reproduce trial-to-trial spike-timing variability, the

HM was made stochastic by corrupting all of the input currents I (t) with a source of additive noise

modeled as a zero-mean Gaussian white-noise. b-d) GIF model parameters extracted from in silico

recordings obtained by simulating the HM response to a somatic current injection. The filters obtained

by averaging the parameters extracted from 5 independent training sets of Ttr = 100 s each are shown in

red. Gray areas indicate one standard deviation. b) Membrane filter κ(t ). Inset: comparison between

the membrane timescale τm extracted using the GIF model and the GLM (cf, exponential fit of κGLM(t )

in panel e). Each couple of open circles indicates the timescale extracted from a specific training set.

Bar plots represent the mean and one standard deviation across training sets (τm = 6.7 ms, s.d. 0.1 ms,

GIF; τm = 8.9 ms, s.d. 1.3 ms, GLM). c) Spike-triggered current η(t ). Inset: zoom on the first 400 ms. d)

Spike-triggered movement of the firing threshold γ(t ). e-f ) GLM parameters extracted from the same

in silico recordings used to fit the GIF model. Average filters are shown in blue. Gray areas indicate
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3.2. Results

one standard deviation across training sets. e) Linear filter κGLM(t ) (blue) and exponential fit (dashed

black). For comparison, a rescaled version of the membrane filter κ(t) is shown in red. Inset: same

data displayed on semi-log scale. f ) Spike-history filter hGLM(t ). For comparison, a rescaled version of

the GIF model effective filter h(t ) is shown in red. Inset: same data displayed on double-logarithmic

scales. g) Interspike interval (ISI) distributions computed using the test set data (black) the GIF model

prediction (red) and the GLM prediction (blue). h) Fraction of the input current Itest(t ) (top, gray) used

for model validation; typical HM response evoked by a single current injection (middle, black); HM

spiking activity in response to nine repetitive injections of the same input (bottom, black raster); PSTH

constructed by averaging the nine spike trains with a rectangular window of 500 ms (bottom, black

line). GIF model and GLM predictions are shown in red and blue, respectively. Dashed black lines

represent 0 nA (top) and 0 Hz (bottom). i-k) Performance comparison between GIF model and GLM in

predicting the HM activity. Parameter extraction and model validation were repeated five times using

different datasets. Each couple of open circles indicates the performance obtained by both models

on a specific dataset. Bar plots indicate the mean and one standard deviation across repetitions. i)

Spike-timing prediction as quantified by M∗
d with precision ∆= 4 ms (Kistler coincidence window). j)

Fraction of variance explained εV on subthreshold membrane potential fluctuations. The GLM does

not explicitly model the subthreshold membrane potential dynamics and is therefore not applicable

(N/A). k) GIF model spike-timing prediction as a function of the training set size used for parameter

extraction. Increasing the duration of the training set from 100 s to 120 s does not improve the GIF

model predictive power (M∗
d = 0.80, s.d. 0.01, Ttr = 100 s; M∗

d = 0.80, s.d. 0.01, Ttr = 120 s; n=10, paired

Student t-test, t4 = 0.05, p = 0.97; n.s. > 0.05).

Following our high-throughput protocol, we then assessed the predictive power of the GIF

model by simulating the HM response to nine repetitive injections of a new 10-second current

(Fig. 3.2h). In agreement with previous results obtained from in vitro recordings (Mensi et al.,

2011; Pozzorini et al., 2013), the GIF model was able to predict around 80% of the spikes

emitted by the HM (M∗
d = 0.80, s.d. 0.01, Kistler coincidence window with ∆= 4 ms; Fig. 3.2i)

and captured the HM subthreshold voltage fluctuations with an average root mean squared

error (RMSE) of 3.4 mV, s.d. 0.03 mV (variance explained εV = 74.3%, s.d. 1.1%; Fig. 3.2j).

Repeating the entire protocol by varying the duration of the training set Ttr confirmed that

a 100-second current is sufficient to ensure convergence of the fitting procedure (Fig. 3.2k).

Overall, these results demonstrate that, despite their simplicity, modern threshold models are

capable of predicting most of the spikes emitted by a detailed biophysical model in response

to complex somatic current injections.

3.2.3 Applying the protocol on in vitro patch-clamp recordings

To confirm the results reported in the previous section, the protocol for high-throughput

single-neuron characterization was further tested using whole-cell current-clamp in vitro

recordings from L5 pyramidal neurons in mouse somatosensory cortex (see Materials and

Methods). At the beginning of each experiment, the input current was calibrated to obtain an

average firing rate of 10 Hz with amplitude fluctuations between 7 and 13 Hz.
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Chapter 3. Single-neuron characterization by means of spiking models

BOX 4: Data preprocessing - Active Electrode Compensation

When the same patch-clamp electrode is used to simultaneously stimulate and record from a single neuron, the acquired
signal Vrec(t ) is a biased version of the real membrane potential Vdata(t ) (Brette et al., 2008; Badel et al., 2008):

Vrec(t ) =Vdata(t )+Ve(t ). (3.12)

The bias is due to the voltage drop Ve(t ) across the patch-clamp electrode and can be removed using a technique called
Active Electrode Compensation (AEC, see Materials and Methods and Brette et al. (2008); Badel et al. (2008)).

Active Electrode Compensation (AEC)
In AEC, the electrode is modeled as an arbitrarily complex linear filter κe(t ), which has to be estimated from a subthresh-
old current-clamp injection performed at the beginning of the experiment. For all subsequent injections, the voltage
drop across the electrode Ve(t ) is obtained by convolving the input current I (t ) with the electrode filter κe(t ). The mem-
brane potential is finally computed by subtracting Ve(t ) from the recorded signal:

Vdata(t ) =Vrec(t )−
∫ ∞

0
κe(s)I (t − s)d s. (3.13)

Estimating the electrode filter κe(t )
To estimate κe(t ), a short experiment is performed in which the single neuron is stimulated with a subthreshold fluctu-
ating current. The optimal linear filter κopt(t ) between the injected current and the recorded potential is first computed.
In AEC, the electrode is assumed to operate on sub-millisecond timescales and the slow decay in κopt(t ) is attributed to
the cell. The electrode filter κe(t ) is therefore estimated as (Badel et al., 2008):

κe(t ) = κopt(t )− f (t ), (3.14)

where f (t ) is an exponential function fitted on the tail of κopt(t ). Alternatively, the electrode filter κe(t ) can be extracted
from κopt(t ) by considering that also the net current flowing through the cell membrane is affected by the electrode
properties (see Brette et al. (2008)).
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3.3. Discussion

All of the in vitro recordings were preprocessed using AEC (Brette et al., 2008; Badel et al.,

2008) (Box 4). Consistent with previous results (Badel et al., 2008; Pozzorini et al., 2013), the

electrode response was characterized by a very rapid timescale τe =0.54 ms, s.d. 0.11 ms (see

Box 4, panel f ).

After AEC, the in vitro recordings acquired from 10 different L5 pyramidal neurons (Fig. 3.3a)

were used to perform GIF model parameter extraction (Fig. 3.3b-e). All of the extracted param-

eters were consistent with the ones obtained in an independent study by fitting the GIF model

to in vitro recordings from L5 pyramidal neurons responding to a mean-modulated input

(Pozzorini et al., 2013) (Fig. 3.3e). In particular, we found that spike-frequency adaptation

was mediated by both a long-lasting spike-triggered current (Fig. 3.3c) and a movement of

the firing threshold (Fig. 3.3d). Testing the predictive power of the GIF model on a new set of

recordings in which a test current Itest(t) was repetitively injected (Fig. 3.3i) confirmed the

model’s ability in predicting around 80% of the spikes (M∗
d = 0.79, s.d. 0.04, Kistler coincidence

window with ∆= 4 ms; Fig. 3.3j). Also, the GIF model was able to predict the subthreshold

membrane potential fluctuations with a RMSE of 3.6 mV, s.d. 0.5 mV (variance explained εV =
80.1 %, s.d. 4.1 %; Fig. 3.3k). Intriguingly, the GIF model achieved almost identical perfor-

mances in predicting in silico and in vitro recordings, indicating that detailed biophysical

models could be used in the future to guide the improvement of simplified threshold models.

Comparing the predictive power of different GIF models with parameters extracted from

five training sets of different durations further confirmed that 100 seconds of intracellular

recordings are sufficient to accurately constrain the GIF model parameters (Fig. 3.3i). Overall,

we concluded that our high-throughput protocol based on GIF model parameter extraction

and validation is suitable for high-throughput single-neuron characterization.

3.3 Discussion

3.3.1 GIF model limitations and comparison with other spiking models

In contrast to popular nonlinear integrate-and-fire models like the adaptive exponential

integrate-and-fire (ADEX, Brette and Gerstner (2005)) or the adaptive quadratic integrate-and-

fire (AQIF, Izhikevich et al. (2003)), the GIF model describes the subthreshold dynamics of

the membrane potential with a linear differential equation (see Eq. 3.1). Consequently the

GIF model does not account for smooth spike-initiation. Theoretical investigations initially

concluded that spike initiation was a smooth process (Jack et al., 1975) and emphasized the

relevance of nonlinear integrate-and-fire models. However, more recent studies found that, in

cortical neurons, the spike onset is almost as in LIF or GIF models (Naundorf et al., 2006; Badel

et al., 2008; Rossant et al., 2011a). Further evidence for sharp spike-initiation was provided

by other studies showing that cortical neurons can encode fluctuating inputs up to 300 Hz

(Tchumatchenko et al., 2011; Ilin et al., 2013). Overall, these results suggest that neglecting

smooth spike-initiation does not constitute a major limitation of the model.
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Figure 3.3: Testing the protocol for high-throughput single-neuron characterization on in vitro

patch-clamp recordings. a) Staining of a biocytin-filled L5 pyramidal neuron included in this study.

b-e) GIF model parameters extracted from ten L5 pyramidal neurons. Average filters are shown in red.

Gray areas indicate one standard deviation across neurons. b) Membrane filter κ(t ). Inset: comparison

between the characteristic timescale τm=20.9 ± 6.5 ms of κ(t) and the slow timescale τslow=22.5 ±
3.0 ms of κGLM(t) (see panel f ). Each couple of open circles indicates the parameters measured in

a single neuron. Bar plots indicate the mean and one standard deviation across neurons. c) Spike-

triggered current η(t) displayed on double-logarithmic scales. d) Spike-triggered movement of the

firing threshold γ(t ) displayed on double-logarithmic scales. e) Distributions of GIF model parameters

extracted from ten L5 pyramidal neurons. From left to right: reversal potential, EL; membrane timescale,

τm =C /gL; cell resistance, R = g−1
L ; firing threshold baseline, V ∗

T ; firing threshold sharpness, ∆V . For

comparison, gray arrows indicate the average parameters obtained in a previous study (Pozzorini et al.,

2013). f-g) GLM parameters extracted from ten L5 pyramidal neurons. Average filters are shown in

blue. Gray areas indicate one standard deviation across neurons. f ) GLM linear filter κGLM(t) (blue).

For comparison, a rescaled version of the GIF filter κ(t) is shown in red. Inset: same data shown on

a semi-logarithmic scales. To quantify the slow timescale τslow (panel b, inset) and the fast timescale
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3.3. Discussion

τfast = 1.9 ± 0.5 ms of κGLM(t ), we performed a double exponential fit (not shown for clarity) of κGLM(t ).

g) GLM spike-history filter hGLM(t) (blue). For comparison, a rescaled version of the effective GIF

adaptation filter h(t) (Eq. 3.16) is shown in red. h) Distribution of the GLM parameter λ0 extracted

from ten L5 pyramidal neurons. i) Input current Itest(t ) (top, gray) used for model validation, typical

L5 pyramidal neuron response evoked by a single current injection (middle, black); spiking activity

observed in response to nine repetitive injections of the same input (bottom, black raster) and PSTH

constructed by averaging the nine spike trains within rectangular windows of 500 ms (bottom, black

line). GIF model and GLM predictions are shown in red and blue, respectively. j-l) Summary data for

the performance of the GIF model and the GLM in predicting the responses of 10 L5 pyramidal neurons.

Each couple of open circles indicates the performance on an individual cell. Bar plots indicate the

mean and one standard deviation across neurons. j) Spike-timing prediction as quantified by M∗
d with

precision ∆= 4 ms (Kistler coincidence window). k) Fraction of variance explained εV on subthreshold

membrane potential fluctuations. The GLM does not explicitly model the subthreshold membrane

potential dynamics and is therefore not applicable (N/A). l) GIF model spike-timing prediction as a

function of the training set size used for parameter extraction. Increasing the duration of the training

set from 100 s to 120 s does not improve the GIF model predictive power (M∗
d = 0.79, s.d. 0.04, Ttr = 100

s; M∗
d = 0.79, s.d. 0.04, Ttr = 120 s; n=10, paired Student t-test, t9 = 0.25, p = 0.8; n.s. > 0.05).

The GIF model describes the passive properties of the membrane with an exponential filter

κ(t ) characterized by a single timescale τm. According to cable theory (Rall, 1977), the large

number of dendritic branches explicitly modeled in the HM (Fig. 3.2a) and present in L5

pyramidal neurons (Fig. 3.3a) is expected to manifest itself in a membrane filter decaying over

multiple timescales. To verify the accuracy of the GIF model single-exponential assumption,

we used both in silico and in vitro recordings to fit a Generalized Linear Model (GLM, Truccolo

et al. (2005); Pillow et al. (2008)). In the GLM, spikes are emitted stochastically according to a

conditional firing intensity λGLM(t ) given by

λGLM(t ) =λ0 ·exp

∫ t

0
κGLM(s)I (t − s)d s + ∑

t̂ j<t

hGLM(t − t̂ j )

 , (3.15)

where λ0 is a constant, κGLM(s) is a linear filter acting on the input current I (t ) and hGLM(t ) is

a spike-triggered process describing how the spiking probability is affected by previous action

potentials emitted at times {t̂ j }. Importantly, the functional shapes of κGLM(t) and hGLM(t)

are not assumed a priori, but are extracted from experimental data using a nonparametric

maximum-likelihood method (see Truccolo et al. (2005); Pillow et al. (2008) and Materials and

Methods). In the case of in silico recordings, we found that the GLM filter κGLM(t) and the

membrane filter κ(t ) of the GIF model were in good agreement (Fig. 3.2e), suggesting that the

complex dendritic morphology of the HM weakly affects temporal integration at the somatic

compartment, when the current is injected at the soma. Further quantitative evidence was

provided by fitting κGLM(t) with a single exponential function and comparing the resulting

timescale against τm (Fig. 3.2b, inset). Overall, the linear filters κGLM(t) and κ(t) extracted

from in vitro recordings were also in good agreement (Fig. 3.3b,f). However, the large values

observed in the first two bins of κGLM(t ) indicated the presence of a rapid component that the
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GIF model was unable to capture (Fig. 3.3f, inset).

In both in silico (Fig. 3.2f) and in vitro (Fig. 3.3g) recordings, we found that the GLM spike-

history filter hGLM(t ) was in good agreement with the effective adaptation filter h(t ) of the GIF

model computed by merging the spike-triggered current η(t) and the threshold movement

γ(t ) (Mensi et al., 2011; Pozzorini et al., 2013):

h(t ) =
∫ ∞

0
κ(s)η(t − s)d s +γ(t ). (3.16)

This result indicates that hGLM(t ) combines, but cannot disentangle, the effects of the adap-

tation current η(t ) and the movement of the firing threshold γ(t ). At first glance, having two

spike-dependent processes might seem redundant. However, while the firing threshold only

affects spike probability, adaptation currents also alter the dynamics of the subthreshold

membrane potential. This explains why the correct distinction between these two forms of

adaptation is key to correctly predict the subthreshold response of single neurons.

To compare the GIF model performance against a reference model, we finally used the GLM

to predict the test dataset (Fig. 3.2h and 3i). In terms of spike-timing prediction, we found that

the GLM performance (M∗
d = 0.79, s.d. 0.01, in silico recordings; M∗

d = 0.81, s.d. 0.04, in vitro

recordings) was similar to the one achieved by the GIF model (Fig. 3.2i and 3j). This result

indicates that, in the case of L5 pyramidal neurons, the small difference observed between

the linear filters κ(t ) and κGLM(t ) has little consequences. However, this might be different for

neurons in other brain regions or in the case of more sophisticated stimulation paradigms.

3.3.2 Limitations of point-neuron models

In the GIF model, the morphological complexity of single-neurons is reduced to a single ho-

mogeneous compartment (i.e. to a point) and dendritic computations are implicitly assumed

to be linear. This point-neuron assumption probably constitutes the major limitation of the

model. Conceptually, the GIF is a model of the soma and its proximal axonal segments. For

small, electronically compact neurons, GIF models probably summarize the essential dynam-

ics of the neuron as a whole. Regenerative processes in dendrites present a potential limitation

of this approach (Häusser et al., 2000; Larkum et al., 2009). Dendritic dynamics can in principle

affect the properties of somatic current injections (Doiron et al., 2001, 2007) and therefore

contribute to the effective characterization. Importantly, dendritic spikes will influence input

to the dendritic and somatic compartments differentially. An extension of the GIF framework

was recently shown to predict the spike timings of independent current injection in both the

soma and the apical dendrite, in a L5 pyramidal neuron where Ca2+-spikes are known to occur

(Naud et al., 2014). To cast NMDA-based dendritic spikes into an extension of the GIF will

require further work, but the successful modeling of Ca2+-spikes and the success of statistical

methods for embedded nonlinearities (McFarland et al., 2013) constitute encouraging results.

Setting aspects of morphology and threshold aside, biophysically detailed models may still

have dynamical features unaccessible to the GIF model. Systematic reduction of detailed
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models have indeed indicated that higher-order kernels are required to capture their complete

dynamics (Marmarelis et al., 2013; Eikenberry and Marmarelis, 2013).

3.3.3 Conclusion

The intrinsic dynamics of individual neurons strongly differ between cell types and brain

areas (Markram et al., 2004). This heterogeneity is increasingly considered as a critical feature

of the brain and not as a consequence of biological imprecision (Padmanabhan and Urban,

2010; Tripathy et al., 2013). Taking into account single-neuron variability may be crucial

to understand how neural systems support computation. In the near future, automated

electrophysiology will likely make available increasingly large amounts of data. Due to their

inherent complexity (and their high dimensionality), raw data from patch-clamp recordings

are difficult to interpret and cannot be directly clustered to identify electrophysiological types.

Simplified spiking models are currently employed by computational neuroscientists mainly to

investigate the emergent properties of neural networks. Here, we argued that these models

also comprise a powerful tool to cast the information provided by voltage recordings into small

sets of model parameters that can be easily interpreted and compared (Mensi et al., 2011).

After reviewing the computational methods for the fit and the validation of simplified spik-

ing models to voltage recordings (Box 1-4), we designed a pipeline in which these tools are

combined to perform automated single-neuron characterization (Fig. 3.1). On the experi-

mental side, the proposed protocol relies on in vitro somatic injections of rapidly fluctuating

currents that mimic the natural inputs received in vivo at the soma of cortical neurons. On

the computational side, the methods are based on GIF model parameter extraction. In GIF

models, the morphological complexity of single-neurons is reduced to a single homogeneous

compartment that describes the voltage dynamics at the injection site (generally the soma).

Moreover, the dynamics of different ion channels is not explicitly modeled, but is accounted

for by phenomenological descriptions. The main advantage of this simplification is that model

parameters can be efficiently extracted from experimental data using a convex optimization

procedure, which is guaranteed to find the optimal (and unique) solution.

We demonstrated the validity of our approach using both in silico data (Fig. 3.2) and in vitro

recordings obtained from mouse L5 pyramidal neurons (Fig. 3.3). In both cases, GIF models

with around 50 parameters accurately accounted for 100-second recordings performed at 20

kHz (i.e., 2·106 data points). In particular, the GIF model was able to explain around 80% of the

variance of the membrane potential fluctuations and correctly predicted around 80% of the

spikes with a precision of ± 4 ms. While the precise values of these empirical numbers might

vary across cell types, as well as across different biological preparations (e.g. in vivo recordings

or dendritic stimulations), these results demonstrate that simplified spiking models can be

successfully used to cast most of the information of a patch-clamp recording into a simple

format. Combined with morphological and transcriptional data (Markram et al., 2004), these

parameters could finally allow for enhanced characterization of neuronal types. In conclusion,
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simplified spiking models can be extremely useful to make sense of large amounts of otherwise

difficult to quantify data.

3.4 Materials and Methods

3.4.1 GIF model parameter extraction

Given the intracellular membrane potential Vdata(t ) measured at a sampling frequency ∆T −1

in response to a known input current I (t), as well as the spike times {t̂ j } defined as instants

at which Vdata(t) crosses 0 mV from below, all of the GIF model parameters are extracted

following a three-step procedure (Mensi et al., 2011; Pozzorini et al., 2013) (see Box 2).

Step 1: The absolute refractory period Tref is fixed to an arbitrary value and the voltage

reset is estimated by the average membrane potential recorded Tref milliseconds after a spike

Vreset = 〈Vdata(t̂ j +Tref)〉 j . In the GIF model, a period of absolute refractoriness can alternatively

be implemented by setting the first milliseconds of the spike-triggered threshold movement

γ(t) to very large values. For this reason, as long as Tref remains smaller than the shortest

interspike interval (ISI) observed in the data, its precise value is not critical. A sensible choice

is to set Tref about twice the spike width at half maximum. For pyramidal neurons, we fixed

Tref = 4 ms.

Step 2: The parameters determining the subthreshold dynamics of the membrane potential

are extracted. To allow convex optimization, the spike-triggered current η(t ) is expanded as a

linear combination of basis functions (Paninski et al., 2005):

η(t ) =
K∑

k=1
ηk f (k)(t ), (3.17)

where {ηk } is a set of parameters controlling the time course of η(t ). The subthreshold param-

eters θT
sub =C−1 · [gL,ELgL,η1, ...,ηK ,1] are then extracted by minimizing the sum of squared

errors between the observed voltage derivative V̇data and that of the model (i.e., Eq. 3.1). Since

all of the subthreshold parameters θsub act linearly on the observables, this optimization

problem can be efficiently solved by computing the following multilinear regression (Paninski

et al., 2005; Huys et al., 2006):

θ̂sub = (X T X )−1X T V̇data, (3.18)

where X is a matrix whose rows are given by the vectors

xT
t =

[
−Vdata(t ),1,−∑

j
f (1)(t −Tref − t̂ j ), ... ,−∑

j
f (K )(t −Tref − t̂ j ), I (t )

]
, (3.19)

and V̇data is a column-vector containing the voltage first-order derivative estimated by finite

differences V̇data(t ) = (Vdata(t +∆T )−Vdata(t ))/∆T . Since the GIF model does not capture the
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subthreshold dynamics during spike initiation, all the data points close to action potentials

{t |t ∈ [t̂ j −5 ms; t̂ j +Tref]} are excluded from the regression.

Step 3: The parameters defining the dynamics of the firing threshold are extracted. To deter-

mine the functional shape of the spike-triggered movement of the firing threshold, we first

expand γ(t ) as a sum of basis functions:

γ(t ) =
P∑

p=1
γp f (p)(t ). (3.20)

Given the parameters obtained in the first two steps and the spike times observed in the exper-

iment, the subthreshold membrane potential V̂model(t ) is computed by numerical integration

of Equation 3.1. Without loss of flexibility, the parameter λ0 is fixed to 1 Hz and all threshold

parameters θT
th =∆V −1 · [1,V ∗

T ,γ1, ...,γP ] are finally extracted by maximizing the log-likelihood

of the experimental spike train (Brillinger, 1988; Truccolo et al., 2005; Pillow et al., 2008):

θ̂th = argmax
θth

 ∑
t∈{t̂ j }

yT
t θth −∆T · ∑

t∈Ω
exp

(
yT

t θth
) , (3.21)

whereΩ= {t |t ∉ [t̂ j , t̂ j +Tref]} is a set that excludes all the data points falling in the absolute

refractory periods and the vectors yT
t are defined as

yT
t =

[
V̂model(t ),−1,−∑

j
f (1)(t −Tref − t̂ j ), ... ,−∑

j
f (P )(t −Tref − t̂ j )

]
. (3.22)

With the exponential function in Equation 3.3, the log-likelihood to maximize is guaranteed to

by a convex function of θth (Paninski, 2004) and both its gradient and Hessian can be formu-

lated analytically. Consequently, the optimization problem of Equation 3.21 can be efficiently

solved using the Newton-Raphson method. Alternatively, Step 3 can be performed using the

recorded potential Vdata(t ) instead of V̂model(t ) in Equation 3.22. Since small inaccuracies in

Step 2 can be compensated in Step 3, performing the fit using V̂model(t) generally improves

spike-timing prediction.

3.4.2 Determining the amount of data required to perform GIF model parameter
extraction and validation

To estimate the amount of data required to perform GIF model parameter extraction and

validation, we tested our fitting procedure (Box 2) on an artificial training set generated by

simulating the response of a GIF model to a fluctuating current I (t ). The choice of reference

parameters (Fig. 3.4a-d, black) was based on previous results (Pozzorini et al., 2013). In

particular, both the spike-triggered current η(t ) and the threshold movement γ(t ) were defined

as a linear combination of K = 26 log-spaced rectangular basis functions approximating a

power-law decay over 5 seconds (Pozzorini et al., 2013; Lundstrom et al., 2008). Overall, the
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reference model had 59 parameters: 31 were related to the subthreshold dynamics and 28 to

the firing threshold. The input current I (t ) used to build the artificial dataset was generated at

∆T −1 = 20 kHz according to Eqs. 3.7-3.8 with parameters I0, σ0 and ∆σ adjusted to obtain an

average firing rate of around 10 Hz oscillating over 5 seconds between 7 and 13 Hz.

The fitting procedure illustrated in Box 2 was then applied to recover the reference parameters

of the GIF model used to generate the artificial dataset (Fig. 3.4a-d, black). To estimate the

amount of data required to guarantee a high degree of accuracy, this operation was repeated

several times by varying the size of the training set Ttr (that is, the duration of the input current

I (t ) used to generate the artificial training set). Fig. 3.4a-d shows a comparison between the

reference parameters and the results obtained by fitting a training set of Ttr = 10 seconds (gray)

and Ttr = 100 seconds (red). Overall, we found that 100 seconds were sufficient to accurately

recover the reference parameters. To quantify the accuracy of the fit, we defined the mean

error εparam on model parameters as

εparam =
〈
∆θi

|θi |
〉

i
, (3.23)

where 〈·〉i denotes the average across parameters i and ∆θi = |θi − θ̂i | is the L1-error between

the estimated parameter θ̂i and the reference parameter θi . Computing εparam as a function

of Ttr revealed that 100 seconds were sufficient to limit the error to εparam < 2.0% (Fig. 3.4e,

top). The great accuracy with which the fitted model was able to predict the spiking activity of

the reference model (M∗
d = 0.998) confirmed the goodness of this fit (Fig. 3.4e, middle). To

achieve high-throughput and perform parameter extraction on the fly, it is crucial to minimize

the computing time (CPU time) required for the fit. Measuring the CPU time as a function of

the training set duration Ttr (Fig. 3.4e, bottom) revealed that accurate parameter extraction

from a training set of Ttr = 100 seconds requires around 60 seconds of computing. CPU times

were obtained using an IntelCore i7 CPU920 at 2.67GHz with 24 GB RAM.

A second time-consuming procedure that has to be analyzed is the validation protocol. To

quantify the predictive power of the fitted model, the reference model was stimulated with

repetitive injections of a test current Itest(t) generated according to Equations 3.7-3.8. To

estimate the number of repetitions ntest and the duration Ttest of the test current required

to obtain a reliable estimate of the model predictive power, the similarity measure M∗
d was

computed multiple times using different values of ntest and Ttest (Fig. 3.4f). On average, the

value of M∗
d was independent of both the input current duration and the number of repetitions,

confirming that the spike-train metric M∗
d successfully eliminates the small sample bias (Fig.

3.4f, dashed black; see also Naud et al. (2011)). We measured the variability of M∗
d across

validation procedures performed with different realizations of Itest(t) and found that the

reliability of M∗
d increased with both the number of repetitions ntest and the duration of the

test current Ttest (Fig. 3.4f, gray lines). Spike-triggered processes can last for several seconds

(Pozzorini et al., 2013; Lundstrom et al., 2008). This sets a constraint on the minimal duration

of both the test current Itest(t) and the interstimulus interval. By taking into account these
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constraints, we concluded that, while respecting high-throughput constraints, a validation

protocol based on 9 injections of a 10-second current guarantees a reliable estimation of the

model’s predictive power.
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Figure 3.4: Estimating the amount of data required to perform accurate GIF model parameter

extraction and validation. a-d) GIF model parameters used to generate the artificial data (black) and

recovered using a training set of Ttr = 10 s (gray) and Ttr = 100 s (red). Error bars and shaded areas

represent one standard deviation obtained using 5 different datasets. In case of perfect agreement,

black lines, gray lines and shaded areas are not visible. a) Membrane filter κ(t). Inset: membrane

timescale τm = C /gL. b) Spike-triggered current η(t). c) Spike-triggered movement of the firing

threshold γ(t ). d) Reversal potential (EL, top left); cell resistance (R = g−1
L , top right); threshold baseline

(V ∗
T , bottom left) and threshold sharpness (∆V , bottom right). e) Estimation error εparam on model

parameters (upper panel), performance on spike-timing prediction M∗
d (middle panel) and computing

time required for parameter extraction (lower panel) as a function of the training set size Ttr. Gray

areas indicate one standard deviation across different artificial datasets generated using the same

reference parameters. Gray and red arrows indicate the performance obtained with a training set of

10 s and 100 s, respectively. f ) Reliability of the validation procedure as a function of the number of

repetitions ntest and the duration Ttest of the test current. For different values of ntest and Ttest, M∗
d

was computed 1000 times using different test currents. Consistent with the result that M∗
d corrects the

small-sample bias, the mean value M∗
d = 0.998 (dashed line) obtained across repetitions of different

test currents did not depend on ntest and Ttest. Continuous lines represent the 0.25-quantiles of the M∗
d

distribution obtained with ntest = {3,6,9,12,15} (from dark to light gray) and indicate that the reliability

of the measure increases with ntest and Ttest.
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3.4.3 Active electrode compensation

All of the in vitro recordings included in this study were preprocessed using AEC (Badel

et al., 2008; Brette et al., 2008). AEC was implemented according to the following four-step

procedure.

Step 1: We recorded the intracellular response Vsub(t ) evoked by the injection of a 10-second

subthreshold current Isub(t ). The input was generated according to Equation 3.7 with parame-

ters I0=0 pA, σ(t )=75 pA and τ=3 ms and evoked small-amplitude subthreshold fluctuations

around the resting potential V̄ . With this parameter choice, the standard deviation of Vsub(t )

was around 2-3 mV.

Step 2: The optimal linear filter κopt(t) between the subthreshold input Isub(t) and the

recorded signal Vsub(t) was computed. To reduce the computing time, κopt(t) was defined

over a finite interval [0,200 ms] as

κopt(t ) =
M∑

m=1
bm f (m)(t ), (3.24)

with { f (m)(t )} being a set of M=202 rectangular basis functions of linearly increasing width. The

parameters b = [b1, . . . ,bM ] determining the shape of κopt(t ) were then estimated by solving

the following multilinear regression:

b = (Z T Z )−1Z T V , (3.25)

where, using the discrete-time notation xt = x(t∆T ) and by removing the subscripts sub for

clarity, V is a vector whose t-th element is given by the mean-normalized membrane potential

Vt =V (t∆T )− V̄ and Z is a matrix made of vectors zT
t defined as

zT
t =

[ t∑
s=0

f (1)
s It−s∆T, . . . ,

t∑
s=0

f (M)
s It−s∆T

]
, (3.26)

with It = I (t∆T ). A typical filter κopt(t ) obtained from a L5 pyramidal neuron is shown in Box

4 (panel f).

Step 3: An exponential function f (t ; a1, a2) = a1 exp(−t/a2) was fitted to the tail of κopt(t ) by

minimizing the error E (a1, a2) = ∫ ∞
Tmin

(κopt(s)− f (s; a1, a2))2d s (see dashed line in Box 4, panel

e). In AEC, the electrode is assumed to operate on fast timescales (< 1 ms) and the slow decay

in κopt(t ) is attributed to the cell. For this reason the fit was performed with Tmin = 5 ms, and

the electrode filter was estimated as

κe(t ) = κopt(t )− f (t ; â1, â2), (3.27)

with â1 and â2 being the optimal parameters minimizing E (a1, a2). To improve accuracy, Steps

2 and 3 were repeated 15 times by resampling from the available data and the final electrode
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filter used for AEC was obtained by averaging the results across repetitions. A typical filter

κe(t ) obtained from a L5 pyramidal neuron is shown in Box 4 (panel f).

Step 4: For all subsequent current-clamp injections, the membrane potential Vdata(t) was

estimated as:

Vdata(t ) =Vrec(t )−
∫ ∞

0
κe(s)Iext(t − s)d s, (3.28)

where Iext(t) is the injected current, Vrec(t) is the recorded signal and the convolution inte-

gral on the right-hand side of Equation 3.28 approximates the voltage drop Ve(t) across the

electrode.

The subthreshold injection used to estimate the properties of the electrode is performed

shortly before the acquisition of the training dataset (see Fig. 3.1). Overall, Steps 1-3 require

around 62 seconds and can therefore be executed during the acquisition of the training set

(Fig. 3.1). Step 4 requires less than 1 second and can be performed after training set collection

without compromising high-throughput (Fig. 3.1). Since our validation protocol only relies on

spike-timing prediction, AEC only needs to be applied to the training dataset.

3.4.4 Multi-compartemental model simulations

In silico recordings shown in Figure 3.2 were performed by simulating a multi compartmental

model of a L5b pyramidal neuron (Hay model, Hay et al. (2011)). The model was obtained

from Model DB (accession number 139653) and all simulations were performed in Neuron

(Carnevale and Hines, 2006). Similar to the in vitro experiments, input currents I (t) were

generated according to Equations 3.7-3.8 (with sampling frequency ∆T −1 = 20 kHz) and were

delivered at the somatic compartment. To obtain an average firing rate fluctuating between 7

and 13 Hz, the input parameters were set to I0 = 520 pA,σ0 = 320 pA and∆σ = 0.5. To reproduce

spike timing variability between responses to repetitive injections of the same current I (t ), a

source of noise was included in the model by adding a zero-mean white-noise signal ξw.n.(t )

to I (t). In order to capture the cross-correlation function between spike trains recorded in

vitro in response to repetitive injections of the same test set current, the magnitude of the

noise was set to
√

〈ξw.n.(t )2〉 = 160 pA. The same amount of noise was also used to generate

the test dataset. GIF model and GLM parameter extraction were performed by treating the

noise current ξw.n.(t ) as being unknown.

3.4.5 Electrophysiological recordings

All procedures in this study were conducted in conformity with the Swiss Welfare Act and

the Swiss National Institutional Guidelines on Animal Experimentation for the ethical use

of animals. The Swiss Cantonal Veterinary Office approved the project following an ethical

review by the State Committee for Animal Experimentation.
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In vitro electrophysiological recordings reported in Figure 3.3 were performed on 300 µm thick

parasagittal acute slices from the right hemispheres of male P13-15 C57Bl/6J mouse brains,

which were quickly dissected and sliced (HR2 vibratome, Sigmann Elektronik, Germany) in

ice-cold artificial cerebrospinal fluid (ACSF) (in mM: NaCl 124, KCl 2.5, MgCl2 10, NaH2PO4

1.25, CaCl2 0.5, D-(+)-Glucose 25, NaHC03 25; pH 7.3 ± 0.1, aerated with 95% O2, 5% CO2),

followed by a 15 minute incubation at 34 ◦C in standard ACSF (in mM: NaCl 124, KCl 2.5, MgCl2

1, NaH2PO4 1.25, CaCl2 2, D-(+)-Glucose 25, NaHC03 25; pH 7.4, aerated with 95% O2, 5% CO2),

equally used as bath solution. Cells were visualized using infrared differential interference

contrast video microscopy (VX55 camera, Till Photonics, Germany and BX51WI microscope,

Olympus, Japan). Somatic whole-cell current clamp recordings of layer 5 pyramidal cells in

the primary somatosensory cortex were performed at 32 ± 1 ◦C with an Axon Multiclamp 700B

Amplifier (Molecular Devices, USA) using 6.5-7.5 MΩ borosilicate pipettes, containing (in

mM): K+-gluconate 110, KCl 10, ATP-Mg2+ 4, Na+2 -phosphocreatine 10, GTP-Na+ 0.3, HEPES

10, biocytin 5 mg/ml; pH 7.3, 300 mOsm. To ensure intact axonal and dendritic arborisation,

recordings were conducted in slices cut parallel to the apical dendrites.

Data were acquired at ∆T −1 = 20 kHz using an ITC-18 digitising board (InstruTECH, USA)

controlled by a custom-written software module operating within IGOR Pro (Wavemetrics,

USA). Voltage signals were low-pass filtered (Bessel, 10 kHz) and not corrected for the liquid

junction potential. Only cells with an access resistance < 25 MΩ (20.2 ± 3.2 MΩ, n = 10), which

was compensated throughout the recording, and a drift in the resting membrane potential

< 2.5 mV (1.2 ± 0.8 mV, n = 10) between the start and the end of the recording were retained

for further analysis. All the in vitro recordings included in this study were preprocessed using

AEC (Brette et al. (2008); Badel et al. (2008), see Box 4).

3.4.6 Generalized Linear Model

All GIF model performance included in this study were compared against the ones of a

standard Generalized Linear Model (GLM) (Truccolo et al., 2005; Pillow et al., 2008). In the

GLM, spikes are emitted stochastically according to the following conditional intensity

λGLM(t |I , {t̂ j }) =λ0 ·exp

∫ t

0
κGLM(s)I (t − s)d s −∑

t̂ j

hGLM(t − t̂ j )

 . (3.29)

In contrast to the membrane filter of the GIF model, the linear filter κGLM(t ) is not assumed to

be exponential, but is extracted from experimental data through linear expansion in rectangu-

lar basis functions. Moreover, the GLM accounts for spike-history effects with a unique filter

hGLM(t ).

To obtain a fair comparison, hGLM(t) was expanded using the same basis functions as used

for γ(t ) in the GIF model and the number of basis functions used for κGLM(t ) was such that,

in total, the two models had the same number of parameters. Given the input current I (t)

and the observed spike train Sdata(t), GLM parameters θGLM = {λ0,κGLM(t),hGLM(t)} were
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extracted with standard methods (Truccolo et al., 2005; Pillow et al., 2008) by maximizing the

model log-likelihood L(θGLM) = log p(Sdata|I ,θGLM).
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4.1 Introduction

Over which timescale do cortical neurons integrate their synaptic inputs? The answer to this

question is of fundamental importance because it determines which coding strategies can be

supported by the brain (Ratté et al., 2013). If the timescale of integration is longer compared to

the mean interspike interval of afferent spikes trains, then multiple action potentials received

from the same presynaptic neuron can lead to a single output spike and neurons operate as

temporal integrators supporting a rate code in which the temporal pattern of spikes conveys

little information (Shadlen and Newsome, 1994). Alternatively, if the effective timescale of

integration is shorter than the average interspike interval, output spikes are primarily driven by

the coincident arrival of presynaptic spikes sent by different cells and single neurons operate

as coincidence detectors supporting a temporal code in which most of the information is

carried by the precise timing of action potentials (Abeles, 1982; König et al., 1996). Despite

decades of research, whether in vivo cortical neurons operate as temporal integrators or

coincidence detectors remains a controversial topic (Softky and Koch, 1993; Rossant et al.,

2011b; Bruno, 2011; Stanley, 2013; Ratté et al., 2013).

Theoretical studies of integrate-and-fire models responding to in vivo-like fluctuating currents

concluded that a smooth transition between coincidence detection and temporal integration

occurs when the average strength µI of the input current reaches rheobase (Gerstner and

Kistler, 2002). In agreement with this theoretical result, the average firing rate of cortical

neurons have initially been shown to lose sensitivity to rapid input fluctuations at increasing

driving currents (Rauch et al., 2003; Giugliano et al., 2004; La Camera et al., 2006). This view

has recently been challenged by in vitro recordings demonstrating that the output firing rate

of pyramidal neurons from prefrontal cortex (PFC) (Arsiero et al., 2007), somatosensory cortex
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(SSC) (Higgs et al., 2006) and hippocampus (Fernandez et al., 2011) always increases with the

amplitude of rapid input fluctuations σI. These results indicate that, in response to strong

depolarizing offsets, pyramidal neurons adapt their intrinsic dynamics in such a way as to

operate as coincidence detectors over a broad range of input statistics. A similar behavior

can be qualitatively reproduced by Hodgkin-Huxley models with decreased Na+ conductance

(Lundstrom et al., 2008) or augmented with slow Na+–channel inactivation (Arsiero et al.,

2007; Fleidervish et al., 1996). While these studies indicate that the firing threshold dynamics

plays a crucial role, the mechanisms by which single neurons maintain sensitivity to rapid

input fluctuations remain unclear.

The membrane potential at which spikes are initiated is highly variable both in vitro and in vivo

(Azouz and Gray, 2000, 2003). Threshold variability is not random but probably results from a

complicated dynamics which likely plays a functional role (Brette, 2011; Carandini and Ferster,

2000; Wilent and Contreras, 2005; Cardin et al., 2010). Many studies have demonstrated

that the voltage threshold for spike initiation depends not only on the average value of the

membrane potential (Azouz and Gray, 2003), but also on previous interspike intervals (Henze

and Buzsaki, 2001; Chacron et al., 2007; Jolivet et al., 2006a; Badel et al., 2008; Mensi et al., 2011)

and on the depolarization rate before a spike (that is, the speed at which the firing threshold is

approached) (Azouz and Gray, 2000; Henze and Buzsaki, 2001; Azouz and Gray, 2003; Wilent

and Contreras, 2005). When single neurons are stimulated with current ramps of different

slopes, rapid rates of depolarization are often associated with lower thresholds (Ferragamo

and Oertel, 2002; Higgs and Spain, 2011). While in rat pyramidal neurons this phenomenon

results from the activation of low-threshold Kv1 channels (Higgs and Spain, 2011), theoretical

studies suggest that a fast coupling between voltage threshold and subthreshold membrane

potential could also result from fast Na+–channel inactivation (Hodgkin and Huxley, 1952;

Platkiewicz and Brette, 2011; Wester and Contreras, 2013).

In the present study, we recorded the in vitro response of layer 5 pyramidal (Pyr) neurons to

fluctuating currents generated by systematically varying µI and σI. In agreement with previ-

ous results, we found that the average firing rate response remained sensitive to rapid input

fluctuations over a broad range of depolarizing offsets µI. By independently fitting different

Generalized Linear Models (GLM) to the spiking activity evoked by currents of increasing µI,

we found that Pyr neurons progressively shortened their effective timescale of integration.

Moreover, the GLM spike-history filter also changed with µI. To identify and understand the

mechanisms underlying these complex forms of adaptation, we designed a new spiking model

in which the firing threshold is nonlinearly coupled with the subthreshold membrane poten-

tial and also linearly dependent on the spike history. Results obtained by extracting model

parameters from intracellular recordings demonstrate that a nonlinear interaction between

spike-dependent and voltage-dependent threshold movements dynamically regulates the

timescale of somatic integration in such a way as to enhance coincidence detection over a

wide range of input statistics.
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4.2 Results

In vivo, neocortical neurons constantly receive barrages of excitatory and inhibitory inputs.

To understand how synaptic inputs are transformed into output spike trains, single neurons

can be tested in vitro with somatic injections of rapidly fluctuating currents (Destexhe et al.,

2001; Rauch et al., 2003; Richardson, 2004). In vivo-like fluctuating currents I (t) mimic the

net input received at the soma of a postsynaptic neuron and are generally described by

Ornstein-Uhlenbeck processes (i.e., filtered Gaussian processes) characterized by a mean

µI, corresponding to the average intensity of I (t), and a standard deviation σI, defining the

magnitude of the input fluctuations (Rauch et al., 2003; Arsiero et al., 2007). Since in vivo both

the strength and the synchrony of afferent spike-trains can vary over time, single neurons are

likely to receive inputs with varying statistics (Tan et al., 2014).

4.2.1 Enhanced sensitivity to rapid input fluctuations

To study single-neuron computation over a broad range of input statistics, we intracellularly

recorded the response of L5 Pyr neurons evoked in vitro by a set of 5-second currents generated

by independently varying the parameters µI and σI (Fig. 4.1a-c). In vivo-like fluctuating

currents were generated according to Equation 4.9 and injected at the soma of L5 Pyr neurons

of mouse SSC (see Materials and Methods). In agreement with previous results from Pyr

neurons of rat PFC (Arsiero et al., 2007; Thurley et al., 2008) and hippocampus (Fernandez

et al., 2011), we found that augmenting the magnitude of input fluctuations σI significantly

increased the output firing rate over the entire range of depolarizing steps µI that were tested

(Fig. 4.1d,e). This result is surprising because, according to standard theories, rapid input

fluctuations are expected to affect the output firing rate only in the subthreshold regime,

that is when the mean input µI by itself is not sufficiently strong to evoke action potentials

(Ricciardi, 1977). In this regime, spikes are always driven by rapid input fluctuations and

single neurons operate as temporal detectors of coincidence inputs. The results shown in

Figure 4.1 indicate that L5 Pyr neurons never lose sensitivity to input fluctuations and adapt

their intrinsic dynamics in order to act as coincidence detectors even in response to strong

depolarizing offsets µI.

To characterize the mechanisms underlying enhanced sensitivity to input fluctuations, we

independently fitted a Generalized Linear Model (GLM, see Truccolo et al. (2005); Pillow et al.

(2008)) to different datasets obtained by splitting our intracellular recordings according to µI

(see Materials and Methods). In the GLM, spikes are generated stochastically according to

a point process whose firing intensity depends on the input current as well as on previous

action potentials (Fig. 4.2a). Briefly, the input current is first passed through a linear filter

κGLM(t) and then transformed into a firing intensity by an exponential nonlinearity. Each

time an action potential is fired, an adaptation process hGLM(t) is triggered that accounts

for spike-history dependence. When a GLM is used to characterize the response of a single

neuron in vivo, the linear filter κGLM(t ) is generally interpreted as a receptive field. In the case
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Figure 4.1: Pyr neurons maintain sensitivity to rapid input fluctuations over a wide range of depo-

larizing offsets. a) Staining of a biocytin-filled L5 Pyr neuron. b) Neurons were tested with a set of

5-second fluctuating currents generated by systematically varying the magnitude of the DC component,

µI (dashed black), and the magnitude of input fluctuations, σI . c) Typical response of a L5 Pyr neuron

to a somatic injection of the current shown in panel b (µI=0.27 nA, σI=50 pA). d) Steady-state firing

rate f of a typical Pyr neuron as a function of the mean input µI (i.e., f −µI curve). Different lines

indicate different levels of input fluctuations σI. For each combination of input parameters (µI, σI),

three different 5-s recordings were performed. Firing rates were estimated by discarding the transient

response observed during the first second. Error bars indicate one standard deviation across repetitions

and are often not visible reflecting high reliability. e) Summary data obtained in different Pyr neurons

(n=6) by computing the percentage change in steady-state firing rate obtained by increasing the input

standard deviation σI . Changes were computed with respect to σI =0 pA by only considering the

strongest input µ(8)
I . Each set of open circles represents data from a particular cell. Bar plots represent

mean and standard deviation across cells. Increasing σI from 50 to 100 pA (n =6, paired Student t-test,

t=4.4, p=6.7·10−3) and from 100 to 150 pA (n =6, paired Student t-test, t=4.5, p=6.5·10−3) significantly

increased the firing rate.

of in vitro current-clamp injections, κGLM(t ) defines the feature of the somatic input current

to which the neuron is most sensitive. In particular, the timescale τGLM over which the filter

κGLM(t ) decays defines the temporal interval over which two incoming spikes are considered

to be coincident.

By comparing the GLM filters extracted under different stimulus conditions, we found that

both κGLM(t ) and hGLM(t ) changed with µI (Fig. 4.2b,c). In agreement with the ability of Pyr

neurons to maintain sensitivity to rapid input fluctuations over a broad range of depolarizing

offsets, increasing µI resulted in a progressive shortening of the linear filter κGLM(t ) (Fig. 4.2b).
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Figure 4.2: A comparison between GLM filters extracted from the spiking response to different

input statistics reveals complex forms of adaptation. a) Schematic representation of the GLM. The

input current I (t) is first low-pass filtered through κGLM(t) and then transformed by an exponential

nonlinearity into a firing intensity λGLM(t ). Spikes are fired stochastically according to λGLM(t ). Each

time an action potential is fired, a feedback process hGLM(t ) is triggered that accounts for spike-history

dependence. b-c) Average GLM filters κGLM(t ) and hGLM(t ) extracted from 6 Pyr neurons by splitting

the experimental data in eight groups according to µI = {µ(1)
I ,µ(2)

I , . . . ,µ(8)
I }. For clarity, only three filters

are shown: low input (µ(2)
I = 64±7 pA, blue), medium input (µ(4)

I = 190±30 pA, gray), strong input

(µ(7)
I = 390±50 pA, red). Shaded areas indicate one standard deviation across neurons. b) Average linear

filters κGLM(t ). Inset: timescale τGLM of somatic integration quantified by fitting the filters κGLM(t ) with

an exponential function. c) Average spike-history filters hGLM(t ). d) The average membrane timescale

τm (solid black) and the effective timescale τGLM of somatic integration (dashed black) are plotted as

function of the input strength µI. The shaded areas represent one standard deviation across neurons.

Colored lines represent the timescales τGLM extracted from the three filters shown in panel b.

We quantified this result by fitting the GLM linear filters with a single-exponential function

and found that, with increasing µI, the timescale τGLM over which Pyr neurons integrate their

somatic inputs was drastically reduced (Fig. 4.2d and inset of Fig. 4.2b).

Single neurons can in principle shorten the timescale of somatic integration by increasing their

total membrane conductance (Destexhe et al., 2003; Badel et al., 2008). To test this hypothesis,
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we measured the membrane timescale τm as a function of µI by fitting the intracellular

response to different depolarizing offsets with a Generalized Integrate-and-Fire (GIF) model

that we previously introduced (see Materials and Methods and also Mensi et al. (2011) and

Pozzorini et al. (2013)). Surprisingly, we found that changes in the passive properties of the

membrane only accounted for part of the reduction observed in τGLM (Fig. 4.2d). This result

indicates that increasing µI not only induced a net increase of the membrane conductance,

but also recruited a different cellular mechanism that further enhanced sensitivity to rapid

input fluctuations without affecting τm.

4.2.2 The voltage threshold for spike initiation depends on the input statistics

Previous studies found that the particular input-output function we experimentally observed

in Pyr neurons (see Fig. 4.1d) can be qualitatively reproduced by Hodgking-Huxley models

in which the ratio between sodium and potassium maximal conductances is low (Arsiero

et al., 2007; Lundstrom et al., 2008). These results indicate that enhanced sensitivity to input

fluctuations might be mediated by a mechanism that reduces the number of Na+-channels

available for spike initiation or, more generally, by a process that regulates the voltage threshold

for spike initiation. An active role of the firing threshold in enhancing sensitivity to input

fluctuations would additionally explain the discrepancy between the membrane timescale τm

and the effective timescale of somatic integration τGLM.

Using standard methods, we extracted from intracellular recordings the voltages at which

individual action potentials were initiated (see Materials and Methods). Consistent with earlier

results showing that the firing threshold adaptively rises after the emission of previous action

potentials (Henze and Buzsaki, 2001; Badel et al., 2008; Mensi et al., 2011), the voltage thresh-

old for spike initiation always increased with the mean input µI (Fig. 4.3a,e-f). However, at

odds with the hypothesis of a threshold dynamics entirely governed by positive spike-triggered

changes, we also found that larger input fluctuations, while evoking higher firing rates, signifi-

cantly reduced the firing threshold (Fig. 4.3a-b, g-h). Since, in our protocol, increased input

fluctuations σI translates into faster currents (c.f. Eq. 4.9), we reasoned that this negative

correlation could reflect a dependence of the firing threshold on the rate of rise of the mem-

brane potential preceding a spike (i.e., the speed dV /d t at which the membrane potential

reaches the firing threshold) (Azouz and Gray, 2000, 2003). Confirming this hypothesis, we

found that the firing threshold was negatively correlated with the membrane depolarization

rate (Fig. 4.3c, see Materials and Methods). A theoretical study has recently demonstrated

that the latter dependence could in principle arise from a nonlinear coupling between firing

threshold and subthreshold membrane potential (Platkiewicz and Brette, 2010). In agreement

with this theoretical result, we also found a nonlinear relationship between firing threshold

and average subthreshold membrane potential (Fig. 4.3d, see Materials and Methods).
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Figure 4.3: Standard analysis of intracellular recordings suggests an intricate dependence of the

firing threshold on the input statistics. a) Average voltage threshold for spike initiation in a typical

Pyr neuron as a function of µI. Different gray levels indicate different values of σI (see legend in

panel d). Dashed lines show four linear regressions performed on experimental data with different σI.

The regression slopes sLR observed in 6 different neurons were significantly larger than zero (n =24,

sLR = 22.4±2.7 mv/nA, Student t-test, t=39.9, p < 10−6). b) Summary data from six L5 Pyr neurons

showing the relative change in voltage threshold induced by an increase in σI. For each cell, changes

were computed with respect to σI = 0 pA by averaging the results obtained for all depolarizing offsets µI.

Each set of open circles represents data from a particular cell. Bar plots represent mean and standard

deviation across cells. Increasing σI from 50 to 100 pA (n =6, paired Student t-test, t=7.5, p=6.8·10−4)

and from 100 to 150 pA (n =6, paired Student t-test, t=6.4, p=1.3·10−3) significantly reduced the voltage

threshold for spike initiation. c) Average voltage threshold as a function of the membrane potential

depolarization rate preceding a spike. Only trials in which the average firing rate was ≤ 10 Hz are shown.

The dashed line indicates a linear regression. The regression slopes sLR observed in 6 different cells

were significantly smaller than zero (n =6, sLR = −6.2±2.0 ms, Student t-test, t=-7.1, p = 8.6 ·10−4).

d) Average voltage threshold as a function of the mean subthreshold membrane potential. Different

gray levels indicate different σI. The dashed line shows the identity diagonal delimitating the area

(gray) in which the membrane potential is larger than the firing threshold. e-f ) Subset of raw data

showing that the firing threshold is positively correlated with µI. e) For each action potential shown

in panel f, the voltage derivative V̇data(t ) is plotted as a function of Vdata(t ). The voltage threshold for

spike initiation was defined as the voltage where V̇data crossed 10 mV/ms from below (dashed black).

Different colors indicate different values of µI (color code as in panel f ). f ) Intracellular recordings

obtained with three different values of µI (and σI = 100 pA). Colored dots indicate the membrane

potential at spike initiation. For clarity the y-axis was truncated at -20 mV. g-h) Subset of raw data

showing that the firing threshold is negatively correlated with σI. The same analysis shown in panels
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e-f was performed on intracellular recordings obtained in response to three values of σI (µI = 0.2 nA).

Different colors indicate different values of σI (color code as in panel h). In panels a, c and d, each data

point j was computed by averaging the results obtained by analyzing the responses to three different

5-second currents with the same statistics (µ( j )
I , σ( j )

I ). As in Figure 4.1, action potentials recorded in the

first second of each repetition were not considered. Error bars indicate one standard deviation across

repetitions. Data are from the same cell shown in Figure 4.1.

Overall, the results reported in Figure 4.3 demonstrate that the voltage threshold for spike

initiation is highly variable. This variability unlikely results from channel noise and can in part

be explained by different covariates. We concluded that the firing threshold evolves according

to a nontrivial dynamics, whose understanding requires mathematical modeling and could

explain the origin of enhanced sensitivity to rapid input fluctuations.

4.2.3 Modeling the firing threshold dynamics

In the standard Hodgkin-Huxlely model (HH, see Hodgkin and Huxley (1952)), the sodium

current INa responsible for spike initiation is gated by two independent variables, m and

h, that describe Na+-channel activation and inactivation, respectively (Fig. 4.4a). Sodium

activation occurs on very short timescales and can therefore be considered as instantaneous

(Fourcaud-Trocmé et al., 2003; Badel et al., 2008; Platkiewicz and Brette, 2010). It follows that,

at spike onset, INa is accurately approximated by an exponential function of the membrane

potential (Platkiewicz and Brette, 2011):

INa ∝ h exp

(
V −V ∗

T

ka

)
= exp

(
V − (V ∗

T −ka logh)

ka

)
, (4.1)

where V ∗
T is a constant, ka is a biophysical parameter describing the sharpness of sodium

channel activation m∞(V ) and θ =V ∗
T −ka logh defines a smooth threshold for spike initiation.

Since in the HH model Na+-channel inactivation follows a first-order kinetics τhḣ = −h +
h∞(V ), an accurate model of the firing threshold θ(t) is given by the following differential

equation (Platkiewicz and Brette, 2011):

τθθ̇ =−θ+θ∞(V ), (4.2)

where τθ = τh. By modeling the steady-state inactivation curve h∞(V ) with an inverse sig-

moidal function h∞(V ) =
(
1+exp

(
V −Vi

ki

))−1
, Platkiewicz and Brette (2011) further predicted

that the coupling between firing threshold and membrane potential resulting from fast Na+-

channel inactivation should be correctly described by a smooth linear rectifier function θNa∞ (V )

defined as (Fig. 4.4b):

θNa
∞ (V ) =V ∗

T −ka logh∞(V ) =V ∗
T +ka log

(
1+exp

(
V −Vi

ki

))
. (4.3)
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Depending on the half-inactivation voltage Vi and on the asymptotic slope θNa
slope = ka/ki,

Equations 4.2 and 4.3 can provide a theoretical explanation for the negative correlation be-

tween the firing threshold and the depolarization rate of the membrane potential preceding a

spike (Platkiewicz and Brette, 2011; Higgs and Spain, 2011). Indeed, if θNa
slope > 0 and Vi <V ∗

T ,

all membrane depolarizations occurring on a slower rate than the characteristic timescale

τθ on which Na+-channels inactivate will reduce the number of Na+-channels available for

spike initiation. Consequently, compared to fast inputs, slow currents will evoke action po-

tentials that are initiated at larger voltages (Fig. 4.4b,c and g). On the other hand, if h∞(V )

is shifted towards more depolarized potentials such that Vi −V ∗
T À ki and ka > 0 (Fig. 4.4d),

Na+-channels do not inactivate at subthreshold potentials and spikes initiate at the same

voltage threshold V ∗
T , independently of the depolarization rate (Fig. 4.4e-g). In summary,

to effectively modulate the voltage threshold for spike initiation, the inactivation profile of

Na+-channel has to be such that, in the V −θ plane, the voltage-dependent part of θNa∞ (V ) is

not masked on the right-hand side of the diagonal V = θ (compare Fig. 4.4b and Fig. 4.4e and

see also Platkiewicz and Brette (2011)).

With the final goal of understanding whether the adaptation mechanisms underlying en-

hanced sensitivity to rapid input fluctuations are mediated by the firing threshold dynamics,

we fitted our intracellular recordings using a new spiking model obtained by extending the

GIF model (Mensi et al., 2011; Pozzorini et al., 2013) with a nonlinear coupling between firing

threshold and membrane potential (Platkiewicz and Brette, 2011). We refer to this model as

iGIF, where i stands for inactivating (Fig. 4.5a, see Materials and Methods). In the iGIF model,

spikes are produced stochastically according to a firing intensity which exponentially depends

on the instantaneous difference between the membrane potential V and firing threshold VT

(Gerstner and van Hemmen, 1992; Jolivet et al., 2006a). As in the GIF model, the dynamics of

the membrane potential is modeled as a leaky integrator augmented with a spike-triggered

adaptation current IA. To capture the reduction in the membrane timescale observed in Figure

4.2, the adaptation current IA was defined by the following conductance-based model (Dayan

and Abbott, 2001):

IA(t ) = ∑
t̂ j<t

η(t − t̂ j ) · (V −ER), (4.4)

where ER is a reversal potential and η(t − t̂ j ) describes the time course of the conductance

change triggered by the emission of an action potential at time t̂ j . In the iGIF model, the firing

threshold VT is given by:

VT(t ) = θ(t )+ ∑
t̂ j<t

γ(t − t̂ j ), (4.5)

where the dynamics of θ(t) is as in Equation 4.2 and implements a nonlinear coupling be-

tween VT and V . In Pyr neurons, the firing threshold has been previously shown to adaptively

increase after the emission of previous spikes. To capture this phenomenon, the iGIF model

features a spike-triggered movement of the firing threshold γ(t ). Similar to η(t ), this function
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Figure 4.4: Simplified integrate-and-fire model illustrating firing threshold modulation by fast

Na+-channel inactivation. a) Steady-state activation (black) and inactivation (red) functions describ-

ing the dynamics of Na+-channels responsible for spike initiation in the HH model. b) Phase plane

analysis illustrating the dynamics of the inactivating leaky integrate-and-fire model (iLIF, Platkiewicz

and Brette (2011)) consisting of a standard LIF model augmented with a dynamic threshold θ defined

as in Equations 4.2 and 4.3. In the iLIF model, a spike is deterministically emitted each time the

membrane potential V crosses the firing threshold θ (dashed black line). After each spike, both V and

θ are reset to low values (open circle). The steady-state firing threshold θNa∞ (V ) (red) of the iLIF model

was obtained by transforming h∞(V ) in panel a according to Equation 4.3. The iLIF model responses

to different ramps of current (see panel g) are represented in the phase plane (gray lines). Different gray

levels correspond to ramps of current with different slopes (color code as in panels c and g). As soon as

a trajectory entered the right hand side of the phase-plane, the membrane potential was artificially

set to a large value to represent the emission of an action potential. c) In the iLIF model shown in

panel b, current ramps of different slopes (see panel g) elicit spikes at different voltage thresholds

(dashed black). Gray dots correspond to the trajectories shown in panel b. d-e) Same analysis as in

panels a-c, but for the case in which Na+-channel inactivation is shifted towards more depolarized

potentials. Since the voltage-dependent part of θNa∞ (V ) (blue) lies on the right-hand side of the diagonal

V = θ, responses to current ramps with different slopes are on top of each other and spikes originate

at around the same voltage threshold V ∗
T . g) iLIF model response to different ramps of current. Top:

input current. Middle: iLIF model response for the case in which Na+-channel inactivation starts

before Na+-channel activation (see panels a-c). Black: membrane potential V (t ); red: firing threshold

θ(t ). The same trajectories {V (t ),θ(t )} are represented in panel b. Since Na+-channels inactivation is

not instantaneous, but occurs on a characteristic timescale τθ, fast inputs (left) elicit spikes that, in

comparison to slow inputs (right), initiate at lower membrane potentials (see panel b). Bottom: iLIF

model response for the case in which Na+-channel inactivation starts after Na+-channel activation

(see panels d-f ).
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describes changes in VT induced by previous action potentials and constitutes an additional

mechanism for spike-frequency adaptation. A spike-dependent movement of the firing thresh-

old could in principle be accounted for by increasing θ(t) after each spike (Fontaine et al.,

2014a). However, such a model would implicitly assume that spike-dependent and voltage-

dependent threshold changes occur on the same timescale τθ. To avoid this assumption, the

variable θ(t) is reset to V ∗
T after each spike and all threshold changes induced by previous

spikes are included into γ(t ).

Importantly, the functional shape of η(t ), γ(t ) and θ∞(V ), along with all the other iGIF model

parameters, were extracted from intracellular recordings using a new nonparametric fitting

procedure (see Materials and Methods). In what follows, we refer to the iGIF model with

parameters extracted using the nonparametric method as iGIF-NP, where NP stands for

nonparametric.

4.2.4 iGIF model parameter extracted from intracellular recordings reveals a non-
linear coupling between membrane potential and firing threshold

In agreement with the results obtained by measuring the membrane timescale τm as a func-

tion of the mean input µI, the passive properties of the membrane were characterized by

a timescale τ0 = 35.3 ± 8.6 ms (Fig. 4.5b). Moreover, spike-triggered conductance changes

were always positive (Fig. 4.5c) and associated with a low reversal potential ER =−57.0±3.9

mV. When displayed on log-log scales, the decay of the spike-triggered threshold movement

γ(t) was approximatively linear over several orders of magnitude (Fig. 4.5d). This result is

in agreement with previous findings that, in Pyr neurons, spike-frequency adaptation does

not have a preferred timescale, but is characterized a by power-law decay (Lundstrom et al.,

2008; Pozzorini et al., 2013). While avoiding a priori assumptions about the existence of a

coupling between firing threshold and membrane potential, as well as about the underlying

biophysical mechanisms, our nonparametric method allowed us also to extract θ∞(V ) directly

from intracellular recordings (see Materials and Methods). We found that, in Pyr neurons,

firing threshold and subthreshold membrane potential were indeed nonlinearly coupled (Fig.

4.5e, black). Moreover, the functional shape of θ∞(V ) was in striking agreement with the

theoretical prediction based on fast Na+-channel inactivation (Platkiewicz and Brette, 2011).

Since the value of the coupling timescale τθ = 8.6± 3.0 ms (Fig. 4.5f) was also consistent

with previous measurements of fast Na+-channel inactivation (see, e.g., McCormick and

Huguenard (1992)), we used the intracellular recordings to fit a new iGIF model, called iGIF-

Na, in which θ∞(V ) was assumed a priori to be the smooth rectifier function θNa∞ (V ) defined

in Equation 4.3. For that, a different maximum likelihood procedure was used allowing for the

extraction of the biophysical parameters ka, ki and Vi, along with all the other iGIF-Na model

parameters (see Materials and Methods). Both the spike-triggered movement of the firing

threshold γ(t ) (Fig. 4.5d, red) and the nonlinear coupling θNa∞ (V ) (Fig. 4.5e, red) extracted by

fitting the iGIF-Na model confirmed the results obtained with the nonparametric method (Fig.
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4.5d,e, black). Moreover, the asymptotic slope θNa
slope = ka/ki of the threshold coupling was

very close to one (Fig. 4.5g, bottom).

Figure 4.5: Inactivating Generalized Integrate-and-Fire model (iGIF) with parameters extracted

from intracellular recordings in Pyr neurons. a) Schematic representation of the iGIF model. The

input current is first low-pass filtered by the Passive membrane filter κ0(t ) =Θ(t )C−1e
− t
τ0 . The resulting

signal models the subthreshold membrane potential V (t ) and, after subtraction of the firing threshold

VT(t ), is transformed into a firing intensity λ(t ) by the exponential Escape-rate nonlinearity. Spikes are

emitted stochastically and elicit both a Spike-triggered conductance η(t ) and a Spike-triggered threshold

movement γ(t). In the iGIF model, but not in the GIF model, the firing threshold VT(t) is coupled to

the subthreshold membrane potential (dashed circuit). For that, the membrane potential V (t ) is first

passed through the nonlinear Threshold coupling function θ∞(V ) and then low-pass filtered by the

Threshold filter κθ(t) = Θ(t)τ−1
θ

e
− t
τθ . b-e) Average parameters extracted from 6 Pyr neurons. Black:

iGIF-NP, red: iGIF-Na. Gray areas indicate one standard deviation across cells. b) Passive membrane

filter κ0(t ). Inset: passive membrane timescale τ0. Open circles: results from individual cells. Bar plot:
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mean and standard deviation. c) Spike-triggered conductance η(t ). Inset: same data on log-log scales.

d) Spike-triggered threshold movement γ(t ). e) Nonlinear threshold coupling θ∞(V ). In the absence of

spikes, the voltage-dependent part of θ∞(V ) lies on the right hand side of the spiking boundary V = θ

(dashed black). Spike-triggered movements of the firing threshold shift the spiking boundary to the

right (dashed gray, θ). Inset: percentage increase in model log-likelihood (LL) computed with respect

to the GIF model and on the same data used for the fit. Open circles: model performance on the same

cell. Bar plots: mean and standard deviation across neurons. f ) Top: LL percentage increase of the

iGIF-NP model as a function of τθ. Red circle: optimal timescale τθ. Data are shown from a typical

neuron. Bottom: optimal timescales τθ extracted from 6 Pyr neurons. g) Top: LL percentage increase of

the iGIF-Na model as a function of ki and Vi . The LL increases from dark to light red. Bottom: optimal

parameters extracted from 6 different Pyr neurons. The mean and the standard deviational ellipse

across cells are shown in red.

Despite having less parameters, the log-likelihood of the iGIF-Na model was not significantly

different from that of the iGIF-NP model (Fig. 4.5e, inset). This result provides additional

evidence for the hypothesis that the biophysical mechanism underlying the nonlinear coupling

between firing threshold and membrane potential is fast Na+-channel inactivation. In the

followings, we just work with the iGIF-Na model, which, for simplicity, will be referred to as

iGIF model.

4.2.5 The iGIF model captures enhanced sensitivity to rapid input fluctuations
and predicts spikes with millisecond precision

To verify whether the iGIF model was able to capture enhanced sensitivity to rapid input

fluctuations, we repeated our experimental paradigm in silico by testing the iGIF model with

a set of 5-second currents generated by systematically varying the input parameters µI and

σI (Fig. 4.6a-c). We compared the steady-state firing rate response of the model against

experimental data and found that, despite its relative simplicity, the iGIF model accurately

captured the behavior of Pyr neurons over a broad range of input parameters (Fig. 4.6a). In

particular, the iGIF model exhibited enhanced sensitivity to input fluctuations throughout

the entire set of depolarizing currents µI that were tested and reproduced the average firing

rate response with an accuracy of εrate = 1.0±0.2 Hz. Notably, the iGIF model also captured

the complex dependence of the firing threshold on input statistics. In particular, the voltage

threshold at which spikes where initiated was positively correlated with µI (Fig. 4.6b) and

negatively correlated with σI (Fig. 4.6b,c).

To further appreciate the importance of modeling the nonlinear coupling between membrane

potential and firing threshold, we also fitted the experimental data with our previous General-

ized Integrate-and-Fire model (GIF, Mensi et al. (2011)). The GIF model differs from the iGIF

model simply because its firing threshold dynamics only depends on the spike-history and not

on the membrane potential (see Materials and Methods). As expected, the GIF model could

not capture the firing rate dependence on σI and was less accurate in reproducing the firing

rates observed at steady-state (εrate = 1.7±0.3 Hz see Fig. 4.6d). Finally, the strong mismatch
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between the firing threshold measured in the experiments and produced by the GIF model

(Fig. 4.6e-f), demonstrates that a spiking model in which the firing threshold dynamics simply

depends on previous action potentials is not sufficient to capture the spiking activity of Pyr

neurons over a wide range of input statistics.

Figure 4.6: The iGIF model captures enhanced sensitivity to input fluctuations and predicts spikes

with millisecond precision. a-c) The iGIF model response (red) is compared against data (gray). a)

Comparison between steady-state f −µI curves observed in a typical Pyr neuron and produced by

the iGIF model. Different colors and gray levels indicate the magnitude of input fluctuations σI (see

legends in panel a and b). b) The average firing threshold observed in a typical cell and produced

by the iGIF model. Model thresholds were mean-normalized. c) Summary data of results obtained

in six Pyr neurons. Top: percentage change in steady-state firing rate obtained in response to the

strongest depolarizing offset µ(8)
I by increasing the input standard deviation σI (data are presented as

in Fig. 4.1e). Bottom: average change in voltage threshold obtained by increasing the input standard
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deviation σI (data are presented as in Fig. 4.3b). d-f ) As a control, the GIF model response (yellow) is

compared against data (gray). Results are presented as in panels a-c. g-j) The predictive power of the

iGIF (red) and the GIF model (yellow) was assessed on a new dataset (test dataset, black), which was not

used for parameter extraction. g) Segment of the 20-second current used to build the test dataset. h)

Spiking response of a Pyr neuron (black) to 9 repetitive injections of the current shown in panel g. The

predictions of the iGIF and GIF model are shown in red and yellow, respectively. i) PSTHs computed by

filtering the spike trains shown in panel h with a 500 ms rectangular window. The dashed line indicates

0 Hz. j) Typical intracellular response (black), as well as typical iGIF (red) and GIF (yellow) model

prediction, to a single presentation of a 1-s segment of the current shown in panel g. k-l) Summary data

showing the performance of the iGIF (red) and the GIF (yellow) model in predicting the test dataset.

Filled bars and empty bars show the performance of models trained on the f-I dataset and the training

dataset, respectively. Error bars represent one standard deviation across six neurons. k) Spike-timing

prediction as quantified by the similarity measure M∗
d . The iGIF model significantly outperforms the

GIF model with parameters extracted from the f-I dataset (M∗
d =0.75, s.d. 0.03, iGIF; M∗

d =0.49, s.d. 0.08,

GIF; n = 6, paired Student t-test, t5 = −8.44, p = 3.8 ·10−4) and from the training dataset (M∗
d =0.83,

s.d. 0.02, iGIF; M∗
d =0.76, s.d. 0.05, GIF; n = 6, paired Student t-test, t5 = −3.25, p = 0.022). l) The

prediction error εPSTH on the PSTH (see panel i) was quantified by computing the root mean square

error between data and model prediction. The iGIF model significantly outperforms the GIF model

with parameters extracted from the f-I dataset (εPSTH=1.93, s.d. 0.71 Hz, iGIF; εPSTH=3.22, s.d. 0.91 Hz,

GIF; n = 6, paired Student t-test, t5 = 6.33, p = 1.5 ·10−3) but not when the parameters are extracted

from the training dataset (εPSTH=1.41, s.d. 0.28 Hz, iGIF; εPSTH=1.52, s.d. 0.30 Hz, GIF; n = 6, paired

Student t-test, t5 = 0.95, p = 0.38). m) Comparison between GIF the iGIF model stochasticity. The iGIF

model is significantly less stochastic than the GIF model (∆V = 0.59, s.d. 0.12 mV, iGIF; ∆V = 2.74, s.d.

0.50 mV, GIF; n = 6, paired Student t-test, t5 = 9.68, p=2.0 ·10−4, f-I dataset; ∆V = 0.60, s.d. 0.05 mV,

iGIF; ∆V = 1.28, s.d. 0.29 mV, GIF; n = 6, paired Student t-test, t5 = 5.71, p=2.3 ·10−3, training dataset).

Good single-neuron models predict the occurrence of individual spikes with millisecond

precision (Gerstner and Naud, 2009). The iGIF model does not simply capture the average

firing rate observed in Pyr neurons, but also reproduces the fine temporal structure of the

spiking response. To take into account the fact that single neurons are stochastic (Mainen

and Sejnowski, 1995) and to avoid problems related to overfitting, we assessed spike-timing

prediction on a new experimental dataset (test dataset). This dataset was collected by recording

the response to nine repetitive injections of a new fluctuating current Itest(t ) that was not used

for parameter extraction. In order to test the model’s ability of capturing the single-neuron

response to different levels of input fluctuations, the standard deviation of the current Itest(t )

was modulated by a slow sinusoidal function (Fig. 4.6g, see Materials and Methods). On

average, the iGIF model with parameters extracted from the dataset used to compute the f −µI

curves (f-I dataset, see Fig. 4.1) was able to predict 75.1±3.2% of the spikes with a precision of

±4 ms (Fig. 4.6h,k). The iGIF model performed well also in predicting the slow fluctuations

of the firing rate induced by the sinusoidal input modulation (Fig. 4.6i,l) as well as the rapid

dynamics of the subthreshold membrane potential (Fig. 4.6j). As expected, the performance

achieved by the GIF model were significantly lower. In particular, the GIF model predicted

only 48.8±9.2% of the spikes (Fig. 4.6h,k) and poorly captured the slow firing-rate fluctuations

induced by the modulation of the input fluctuations (Fig. 4.6i,l).
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In previous studies (Mensi et al., 2011; Pozzorini et al., 2013), we found that the GIF model

was able to predict around 80% of the spikes observed in Pyr neurons responding to non-

stationary inputs. At first glance, the low performance achieved here might therefore seem

surprising. This result can however be understood by comparing the degree of stochasticity of

the GIF model and the iGIF model (Fig. 4.6m). In both models, the parameter ∆V regulates

the level of stochasticity of the spiking process (cf, Eq. 4.12). In particular, both models are

deterministic if ∆V = 0 and tend to an homogeneous Poisson process if ∆V →∞. In the ideal

case of a perfect model, ∆V is optimally tuned to capture trial-to-trial variability. In reality,

a lack of flexibility in the model can bias the estimation of ∆V towards large values. Indeed,

in an oversimplified model, all of the single-neuron features that can not be explained are

interpreted as a manifestation of randomness. While the level of stochasticity observed in

the iGIF model was weak (∆V = 0.59 mV, s.d. 0.13 mV), the values obtained by fitting the GIF

model to the f-I dataset were always very high (∆V = 2.74 mV, s.d. 0.54 mV), explaining the low

performance achieved in predicting individual spikes.

To make sure that the success of the iGIF model does not simply result from the aberrant level

of stochasticity in the GIF model, we reassessed spike-timing prediction in both models by

extracting model parameters from a third dataset (training dataset, see Materials and Methods)

obtained by injecting a 120-s current having the same statistics as the test dataset (Fig. 4.7k-m,

empty bars). As expected, the level of stochasticity in the GIF model dramatically decreased

(Fig. 4.7m), recovering the GIF model’s performance to expected levels (M∗
d = 76.2%, s.d. 5.1%).

Notably, the iGIF model with parameters extracted from the training dataset significantly

outperformed the GIF model by predicting 82.8% of spikes (M∗
d = 82.8%, s.d. 2.0%; Fig. 4.6k).

Overall, these results demonstrate that the iGIF model is an excellent spiking neuron model

capable of predicting individual spikes with millisecond precision and capturing the activity

of Pyr neurons over a wide range of input statistics.

But the question remains: how do Pyr neurons adapt their coding strategy to maintain sen-

sitivity to rapid input fluctuations, regardless of µI? To answer this question, the next two

sections present a detailed analysis of the iGIF model dynamics.

4.2.6 Enhanced sensitivity to input fluctuations results from a nonlinear inter-
action between spike-dependent and voltage-dependent threshold adapta-
tion

The results obtained by fitting the iGIF model on intracellular recordings indicate that, in L5

Pyr neurons, the firing threshold depends on the emission of previous spikes as well as on the

subthreshold voltage dynamics. While the timescale τθ of the voltage coupling is relatively

short and is consistent with the hypothesis of fast Na+-channel inactivation, threshold changes

induced by the emission of previous spikes are characterized by a much slower decay that

possibly reflects slow Na+-channel inactivation (Fleidervish et al., 1996). Due to this separation

of timescales, it is convenient to consider positive spike-triggered movements of the firing
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threshold in the V −θ phase-plane as spike-triggered horizontal shifts of the spike initiation

boundary (see arrows in Fig. 4.5e and Eq. 4.5). Since the coupling between membrane

potential and firing threshold is nonlinear, this picture suggests that spike-dependent and

voltge-dependent threshold adaptation might interact in a nontrivial way.

To understand this interaction, as well as its implications for single-neuron coding, we ana-

lyzed the dynamics of the iGIF model in response to three fluctuating currents with different

offsets µI and a fixed standard deviation σI = 100 pA (Fig. 4.7). In response to a weak input

µI = 90 pA, the membrane potential fluctuated near the resting potential and action potentials

were occasionally driven by large input fluctuations (Fig. 4.7a). In this particular regime,

the evoked firing rate f ≈ 2 Hz was very low and threshold movements induced by different

action potentials did not build up significantly. Indeed, spike-dependent threshold adaptation

φ(t ) =∑
t̂j
γ(t − t̂j) mainly acted as a refractory process by reducing the firing probability after

the emission of a previous spike. Given the modest average contribution φ̄= T -1
∫ T

0 φ(t )d t of

spike-dependent threshold adaptation (Fig. 4.7a, dashed gray), action potentials evoked in

response to weak inputs were initiated with a low firing threshold (Fig. 4.7b). Membrane po-

tential fluctuations were consequently confined to relatively low voltages, where the strength

of the coupling between firing threshold and subthreshold membrane potential is weak. That

is, where the coupling gain Gθ(V ) = d
dV θ

Na∞ (V ) is close to zero (Fig. 4.7b). As a result, in this

regime, the dynamics of θ(t) primarily implemented an additional source of refractoriness

by transiently increasing the firing threshold as a direct consequence of high-voltage after-

spike reset (see Fig. 4.5e). We concluded that, in Pyr neurons responding to weak inputs, the

coupling between membrane potential and firing threshold is only weakly recruited.

This result can alternatively be understood by analyzing the dynamics of the iGIF model in the

V −θ plane, where spike-dependent changes of the firing threshold constantly move the spike-

initiation boundary V = θ+φ(t ) (i.e., the region of the phase plane where V =VT). Due to φ(t ),

this boundary is highly dynamic. Insights on the adaptive behavior of the iGIF model can

however be gained by simply considering its average position V =VT + φ̄. As shown in Figure

4.7a, for weak inputs evoking low firing rates, the average contribution of spike-dependent

threshold adaptation is close to zero, meaning that, on average, the phase-plane region from

where spikes originate is approximately delimited by the identity diagonal V = θ (Fig. 4.7c,

blue). In all Pyr neurons included in this study we systematically found that Vi >V ∗
T (Fig. 4.5g).

Consequently, at low firing rates, the voltage-dependent part of the coupling function θNa∞ (V )

was masked on the right-hand side of the diagonal V = θ+ φ̄, explaining why, in this regime,

the coupling between firing threshold and membrane potential was only weakly recruited (Fig.

4.7c, see also Fig. 4.4).

Increasing the input strength to µI = 230 pA (Fig. 4.7d-f) resulted in a mean firing rate of

around 10 Hz and shifted the membrane potential distribution towards more depolarized

potentials, where the threshold coupling strength Gθ becomes significant (Fig. 4.7e). As a

result of increased spike-dependent threshold adaptation, the diagonal V = θ+ φ̄ was shifted

towards more depolarized potentials, partially unmasking the voltage-dependent part of
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Figure 4.7: Nonlinear interaction between spike-dependent and voltage-dependent threshold

adaptation. Dynamics of the iGIF model (with parameters extracted from a typical Pyr neuron)

responding to three fluctuating currents with σI = 100 pA, τI = 3 ms and µI = 90 pA (panels a-c), µI =

230 pA (panels d-f ) and µI = 450 pA (panels g-i). a) Input current I (t ) (gray), membrane potential V (t )

(black), voltage-dependent threshold adaptation θ(t) (red), spike-dependent threshold adaptation

φ(t ) =∑
t̂ γ(t − t̂ ) (blue) and average spike-dependent threshold adaptation φ̄= T −1 ·∫ T

0 φ(s)d s (dashed

gray, bottom) are shown as a function of time. The four dotted lines indicates (from top to bottom): I =

0 nA, V = E0, θ = V ∗
T and φ = 0 mV. b) Distribution of subthreshold membrane potential fluctuations

P (V ) (gray) and of voltages at which spikes were initiated P (V |spike) (black). The gain of the threshold

coupling Gθ(V ) = d
dV θ

Na∞ (V ) is shown in red. c) Phase plane θ−V . In response to a weak input µI, the

threshold coupling θNa∞ (V ) (red) is masked on the right-hand side of the average spiking boundary

V = θ+ φ̄ (blue line). For comparison, the diagonal V = θ is also shown (dashed black). The gray

distribution (copied from panel c) shows P(V). Inset: The theoretical filter κeff(t ) of somatic integration

(black, Eq. 4.8) is compared against the passive membrane filter κ0(t ) (dotted black) and the GLM filter

κGLM(t ) (gray) extracted as a control by fitting the spiking response of the iGIF model. d-f ) iGIF model

dynamics in response to a fluctuating input current with mean µI = 230 pA (results are presented as in

panels a-c). In this regime, the nonlinear coupling θ(t ) is partially recruited. g-i) iGIF model dynamics

in response to a fluctuating input current with mean µI = 450 pA (results are presented as in panels a-c).

In this regime, the nonlinear coupling θ(t ) is strongly recruited.
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the nonlinear coupling θNa∞ (V ) (Fig. 4.7f). Consequently, in this regime, the coupling θ(t)

between firing threshold and membrane potential started to play a role that goes beyond

the refractoriness induced by the after-spike reset (Fig. 4.7d, red). Further increasing the

input strength to µI = 450 pA (Fig. 4.7g-i) made the iGIF model fire at around 18 Hz, where L5

Pyr neurons start loosing sensitivity to the mean drive µI and manifest enhanced sensitivity

to input fluctuations (see Fig. 4.1). Notably, in this regime, threshold movements triggered

by different spikes accumulated in such a way as to further unmask the coupling function

θNa∞ (V ) (Fig. 4.7i). The strong input µI pushed the membrane potential fluctuations to very

depolarized values, where the threshold coupling reaches its maximal strength Gθ ≈ θNa
slope (Fig.

4.7h). Consequently, following the after-spike reset θ→V ∗
T , the coupling variable θ(t ) rapidly

increased to large values where, in contrast to the transient behavior observed in response to

weak inputs, it fluctuated until the next spike was emitted (compare the red traces in Fig. 4.8g

and Fig. 4.8a,d).

Overall, the results reported in Figure 4.7 provide evidence for the existence of a non-trivial

interplay between spike-dependent and voltage-dependent threshold movements. In partic-

ular, we found that the increased contribution of spike-dependent mechanisms induced by

large firing rates, progressively unmasked (i.e., activated) the coupling between membrane

potential and firing threshold (Fig. 4.7c,f,i), thereby enhancing single-neuron sensitivity to

rapid signals. The functional implications of this interaction are further investigated in the

next sections.

4.2.7 The iGIF model captures and explains the complex forms of adaptation re-
vealed by the GLM-based analysis

In order to understand the mechanisms underlying the complex forms of adaptation observed

in Figure 4.2 by fitting a GLM to the spiking activity of L5 Pyr neurons, we performed a system-

atic reduction of the iGIF model (see Materials and Methods). More precisely, we derived an

analytical formula describing the GLM filters κGLM(t ) and hGLM(t ) that best approximate the

iGIF model response to fluctuating currents around different offsets µI. Since GLM parameter

extraction only relies on spiking data, the linear filter κGLM(t ) is expected to combine the effect

of the passive properties of the membrane, of the conductance change triggered by previous

spikes and of the coupling between firing threshold and membrane potential. For the same

reason, the GLM spike-history filter hGLM(t ) is expected to model the combined action of all

the biophysical processes that mediate spike-dependent adaptation.

In the case of a standard GIF model (Mensi et al., 2011; Pozzorini et al., 2013), where the

coupling between membrane potential and firing threshold is absent, the linear filter κGLM(t )

of a GLM that best captures the iGIF model response corresponds to the membrane filter

κm(t ) obtained by combining the passive properties of the membrane and the conductance
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changes triggered by previous spikes (Richardson, 2004):

κm(t ) =Θ(t )
1

C
exp

(
− t

τm

)
, (4.6)

whereΘ(t ) is the Heaviside step function, C is the membrane capacitance and τm =C /(g0+ḡη)

is the membrane timescale computed by taking into account both the average contribution

of the spike-triggered conductance ḡη = T -1
∫ T

0
∑

t̂ j
η(t − t̂ j )d t and the passive leak g0 (see

Materials and Methods).

In the presence of a nonlinear coupling θ∞(V ) between membrane potential and firing thresh-

old, the mapping between iGIF model and GLM is more difficult and additionally involves

the linearization of Equation 4.2 (see Materials and Methods). We simplified the threshold

dynamics of the iGIF model by taking the first-order approximation θNa∞ (V ) ≈ C̄θ+Ḡθ ·V , with

C̄θ being a constant and Ḡθ being the average coupling strength computed with respect to the

membrane potential distribution P (V ):

Ḡθ =
∫ ∞

−∞
Gθ(V )P (V )dV. (4.7)

Consequently, since in the iGIF model the spiking probability only depends on the difference

between membrane potential and firing threshold (see Fig. 4.5a and Eq. 4.12), the GLM linear

filter κGLM(t ) that best approximates the response of an iGIF model is given by the effective

linear filter κeff(t ) defined as (Platkiewicz and Brette, 2011):

κeff(t ) = κm(t )−Ḡθ ·
∫ ∞

−∞
κθ(s)κm(t − s)d s, (4.8)

where κθ(t) = Θ(t) 1
τθ

exp
(
− t
τθ

)
is the threshold-coupling filter and Ḡθ depends on the in-

put statistics via the membrane potential distribution P (V ) (see Eq. 4.7 and Materials and

Methods).

Using the parameters of the iGIF model extracted from intracellular recordings, we computed

the theoretical filtersκm(t ) andκeff(t ) for a set of fluctuating currents characterized by different

average intensities µI (Fig. 4.8). In agreement with our experimental findings, increasing the

DC component of the input progressively augmented the membrane conductance gL = g0+ ḡη,

thereby shortening the membrane filter κm(t) (Fig. 4.8a). We concluded that part of the

reduction observed in the timescale of somatic integration resulted from a spike-dependent

increase of the membrane conductance (Fig. 4.8a, inset). In response to a low input µI,

the membrane potential fluctuations of the iGIF model were confined in a region where

the gain Gθ(V ) of the threshold coupling is vanishing, such that Ḡθ ≈ 0 and, according to

Equation 4.8, κeff(t ) ≈ κm(t ). This result indicates that in response to weak inputs, the coupling

between membrane potential and firing threshold is not recruited and somatic integration is

entirely controlled by the membrane filter κm(t ). Explaining the adaptive changes observed

in the linear filters κGLM(t) extracted from the data, the iGIF-Na model correctly predicts
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that, in response to increasing depolarizing offsets µI, the coupling strength Ḡθ progressively

augments, thereby shunting the membrane filter and further shortening the temporal window

of somatic integration κeff(t) (Fig. 4.8b). These results, whose accuracy was confirmed by

fitting GLMs to artificial data generated with the iGIF model (Fig. 4.7c,f,i, insets), suggest

that both a spike-dependent conductance and an intricate dynamics of the firing threshold

actively control somatic integration in order to allow for coincidence detection, regardless of

the statistical properties of the input. Notably, the predictions of our theory were not only

qualitative. By measuring the timescales of the theoretical filters κm(t) and κeff(t), we were

indeed able to accurately predict the reduction observed in both the membrane timescale τm

and the timescale τGLM of somatic integration (Fig. 4.8c).

Results obtained by fitting GLMs to artificial data generated by stimulating the iGIF model

with fluctuating currents of different means µI demonstrate that the iGIF model also captured

the adaptive changes that we experimentally observed in the spike-history filter hGLM (Fig.

4.8d). Finally, analytical results obtained following a derivation similar to the one used for Eq.

4.8 (see Materials and Methods) indicate that changes in hGLM(t ) are induced by a shunting

effect of the nonlinear threshold coupling on the adaptation current IA (Fig. 4.8d).

4.2.8 L5 Pyr neurons feature two distinct forms of adaptation

In order to study the temporal dynamics of single-neuron adaptation, we finally performed

a switching experiment in which the iGIF model was stimulated with a fluctuating current,

whose mean µI periodically switched between a low and a high value, with cycle period

Tcycle = 10 s (Fig. 4.8e). In response to a sudden increase in µI, the output firing rate transiently

raised and then decayed over multiple timescales, confirming that in the iGIF model the

combined action of the spike-triggered conductance and the spike-triggered movement of

the firing threshold mediate spike-frequency adaptation. Similarly, in response to a sudden

decrease of µI, the output firing rate initially dropped and then recovered.

By computing κeff(t) at different moments in time relative to the cycle, we also found that,

in contrast to spike-frequency adaptation, adaptive changes in the timescale τeff of somatic

integration were almost instantaneous (Fig. 4.8e, red and Fig. 4.8f). This result can be

understood by noting that, in Eqs. 4.7-4.8, the strength Ḡθ of the shunting effect induced

by the threshold dynamics on the membrane filter is controlled by the voltage distribution,

which, in response to a sudden switch in the input statistics, changes rapidly. The results

presented in Figure 4.8e,f are reminiscent of the adaptive behavior previously observed both

in retinal ganglion cells (Baccus and Meister, 2002) and motion sensitive neurons (Fairhall

et al., 2001b) responding in vivo to external stimuli and demonstrate how intrinsic cellular

mechanisms can support complex forms of adaptation that in the past have been attributed

to network effects.
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Figure 4.8: The iGIF model captures and explains complex forms of adaptation. a) Average mem-

brane filters κm(t) (Eq. 4.6) computed with iGIF model parameters extracted from 6 Pyr neurons by

increasing µI from 0.05 nA (blue) to 0.5 nA (red, see colorbars in panel d). The passive membrane filter

κ0(t) (dashed black) is shown for comparison. Inset: average effective conductance gL = g0 + ḡη as

a function of µI. In the absence of spikes, the effective conductance equals g0 (dashed black). The

gray area indicates one standard deviation across neurons. b) Same results as in panel a, but for the

average effective filter κeff(t ) (Eq. 4.8). Inset: average coupling strength Ḡθ as a function of the mean

input µI. Conventions are as in panel a. c) The timescales τm (red) and τeff (blue) predicted by the iGIF

model with parameters extracted from six neurons match the experimental data (black). Colored lines

and gray areas indicate the mean and one standard deviation across neurons. Experimental data are

copied from Figure 4.2d. The predicted timescales τeff (red) were obtained by fitting single-exponential

functions to κeff(t). d) The iGIF model explains the adaptive changes in hGLM(t) (see Fig. 4.2c). Left:

average spike-history filter hGLM(t ) obtained by fitting a GLM to artificial data generated by simulating

the iGIF model response to fluctuating currents of increasing µI (see colorbar). Right: Average the-

120



4.3. Discussion

oretical filters heff(t) computed according to Eq. 4.30 using iGIF model parameters extracted from

6 Pyr neurons. Errors are due to the fact that our theory neglects the correlations between voltage

and conductance (see Materials and Methods). e-f ) Switching experiment performed in a iGIF model

with parameters extracted from a typical cell to study the temporal evolution of single-neuron adap-

tation induced by a sudden change in µI. e) Top: fluctuating current (gray) generated by periodically

switching µI (dark gray) between 0.1 nA and 0.27 nA , with cycle period Tcycle = 10 s (only one cycle is

shown). Middle: effective timescale of integration τeff as a function of time. Bottom: output firing rate.

While spike-frequency adaptation occurs on both fast and slow timescales, changes in τeff triggered

by a switch in µI are almost instantaneous. Horizontal black lines indicate: 0 nA, 0 ms and 0 Hz. f )

Comparison between effective linear filters κeff(t ) estimated at different moments in time during the

switching experiment (see arrows in panel e). The filters estimated at steady-state (late low, late high)

closely resemble the ones estimated right after the stimulus switch (early low, early high), indicating

that adaptive changes in κeff(t ) are almost instantaneous. The passive membrane filter κ0(t ) (dashed

black) is shown for comparison. In all panels, input currents were generated according to Eq. 4.9 with

σI = 100 pA and τI = 3 ms.

Overall, our results indicate that L5 Pyr neurons respond to a sudden change in the input

statistics by adapting both their output firing rate and the temporal window over which

incoming spikes are considered to be coincident. The high speed at which the timescale of

somatic integration adapts indicates that, regardless of the input statistics, L5 Pyr neurons can

operate as coincidence detectors, thereby supporting a temporal code in which the precise

timing of action potentials conveys relevant information.

4.3 Discussion

Despite years of research, it remains unclear whether cortical neurons operate as temporal

integrators or coincidence detectors. The answer to this question is of crucial importance

because of its profound implications for neural coding (Ratté et al., 2013; König et al., 1996).

By invoking constraints imposed by the passive membrane time constant, previous studies

questioned the possibility of a temporal code in which the fine structure of spike trains conveys

relevant information (Shadlen and Newsome, 1994). Combining in vitro electrophysiological

recordings with modeling, we found that, in L5 Pyr neurons of the mouse SSC, the effective

timescale over which afferent spikes are somatically integrated is not entirely controlled by the

passive properties of the membrane, but adapts to the input statistics as a result of the firing

threshold dynamics. In particular, we found that by increasing the DC component of a fluctu-

ating input current, the firing threshold becomes progressively coupled to the subthreshold

membrane potential dynamics in such a way as to shorten the temporal window determining

whether two afferent spikes are coincident. Suggesting that the cellular mechanisms discussed

here are also at work in biologically relevant situations, previous in vivo studies reported

that the dynamics of the firing threshold enhances coincidence detection in cat visual cortex

(Azouz and Gray, 2000, 2003) and sharpens feature selectivity in rat barrel cortex (Wilent and

Contreras, 2005).

121



Chapter 4. Enhanced temporal coding by nonlinear threshold dynamics

By extending our previous GIF model (Mensi et al., 2011; Pozzorini et al., 2013) with a nonlinear

coupling between membrane potential and firing threshold (Platkiewicz and Brette, 2011),

we were able to explain why the output firing rate of L5 Pyr neurons remains sensitive to

rapid input fluctuations over a broad range of depolarizing offsets µI. During the last years,

enhanced sensitivity to rapid input fluctuations has also been observed in Pyr neurons of the

rat PFC (Arsiero et al., 2007) and hippocampus (Fernandez et al., 2011), indicating that our

results might equally apply to neurons of other species and cortical areas.

The iGIF model does not simply capture the average firing rate observed in Pyr neurons, but

also predicts the occurrence of individual spikes with millisecond precision. Moreover, in

agreement with our experimental measurements, the firing threshold of our iGIF model was

positively correlated with the DC component of the input and was reduced by rapid input

fluctuations. Finally, confirming the validity of our main findings, a semi-analytical reduction

of the iGIF model allowed us to accurately predict and explain experimental differences

between the membrane timescale and the effective timescale of somatic integration.

4.3.1 Biophysical implementation of nonlinear threshold dynamics

The iGIF model provides a phenomenological description of single neuron dynamics. Conse-

quently, our results did not allow us to identify with certainty the biophysical mechanisms

underlying nonlinear threshold dynamics. Previous results indicate that, in rat Pyr neurons,

a voltage dependence of the firing threshold is mediated by Kv1 channels (Higgs and Spain,

2011). However, these channels seems not to be expressed by L5 Pyr neurons of the mouse

SSC (Goldberg et al., 2008; Miller et al., 2008).

In a recent theoretical study based on the standard HH model, Platkiewicz and Brette (2011)

proposed that a nonlinear coupling between subthreshold membrane potential and firing

threshold could result from fast Na+-channel inactivation. In agreement with this hypothesis,

we found that the threshold-coupling θ∞(V ) was correctly described by a smooth rectifier

function. This result is noteworthy because here, in contrast to previous studies (Higgs and

Spain, 2011; Fontaine et al., 2014b,a), the functional shape of θ∞(V ) was not assumed a priori,

but was extracted from intracellular recordings using a nonparametric approach. Also, the

values estimated for the coupling timescale τθ were consistent with the hypothesis of fast Na+-

channel inactivation. Providing further indirect evidence, the threshold sharpness ka = 2.2±1.1

mV extracted by fitting the data under the assumption of Na+-channel inactivation was very

close to previous measurements that were independently obtained by fitting an exponential

integrate-and-fire model to intracellular recordings (Badel et al., 2008).

In our iGIF model, the firing threshold dynamics also depends on the spike-history. In agree-

ment with previous results (Pozzorini et al., 2013), we indeed found that each action potential

triggers a change in the firing threshold that lasts for several seconds and decays according

to a power-law over several orders of magnitude. Overall, our phenomenological model is

consistent with a biophysical model of Na+-channels in which inactivation is independently
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controlled by fast and slow gating variables (Fleidervish et al. (1996), see also the discussion in

Platkiewicz and Brette (2011)). While fast inactivation enhances sensitivity to rapid inputs by

absorbing slow membrane potential fluctuations, slow inactivation acts as an homeostatic

mechanisms by increasing the average firing threshold in response to strong inputs. Con-

firming the intuition of Platkiewicz and Brette (2011), our results demonstrate that slow and

fast Na+-channel inactivation interact in a nontrivial way to dynamically adapt the effective

timescale of somatic integration to the input statistics. Indeed, by increasing the average

threshold, slow inactivation allows for fast inactivation to occur at subthreshold potentials. A

similar interaction has been previously shown to occur in a Morris-Lecar model (Morris and

Lecar, 1981) stimulated with a conductance based input (Prescott et al., 2006). In contrast to

what we found, Prescott et al. (2006) proposed that reductions in the effective timescale of so-

matic integration are mediated by the activation of M-currents at subthreshold voltages, which

become possible in situations where the voltage threshold for spike initiation is increased due

to shunting effects induced by presynaptic spikes.

4.3.2 Are simplified spiking models getting complicated?

During the last decades, a number of simplified spiking models, including our previous GIF

model (Mensi et al., 2011; Pozzorini et al., 2013), have been shown to accurately predict the

spiking response evoked in vitro by stationary (or quasi-stationary) currents (Gerstner and

Naud, 2009). Cortical neurons feature a strong nonlinear behavior. Consequently, when tested

on experimental data acquired in response to currents with varying statistics, the performance

of simplified threshold models typically drops. Overall, designing and fitting a spiking model

capable of predicting the electrical activity of cortical neurons operating in different regimes

remains a big challenge. Indeed, increasing the complexity of a spiking neuron model rapidly

makes parameter estimation a difficult problem.

Here, we introduced a new spiking model called inactivating Generalized Integrate-and-

Fire (iGIF) and obtained by extending the standard leaky integrate-and-fire model with: the

escape-rate model for stochastic spike generation, a spike-triggered conductance and spike-

triggered movement of the firing threshold for spike-frequency adaptation and a nonlinear

coupling between membrane potential and firing threshold for enhanced sensitivity to input

fluctuations. Despite its relative simplicity, the model successfully captures the spiking activity

of L5 Pyr neurons over a broad range of input statistics and outperforms our previous GIF

model in predicting the occurrence of individual spikes with millisecond precision. Despite

its relative complexity, model parameters can be robustly extracted with a new two-step

procedure, which extends our previous method (Mensi et al., 2011; Pozzorini et al., 2013). In

the first step, the parameters governing the subthreshold dynamics of the membrane potential

are extracted by minimizing the sum of squared errors on the rate of change (i.e., the first

order derivative) of the voltage fluctuations. Except for the parameter ER, which defines the

reversal potential associated with the spike-triggered conductance, all the parameters can be

extracted with a simple multilinear regression. In the second step, the parameters governing
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the dynamics of the firing threshold are obtained with a maximum likelihood approach similar

to the one used to fit GLMs to spiking data (Truccolo et al., 2005; Pillow et al., 2008). Given

the parameter τθ controlling the threshold-coupling timescale, the likelihood of the model

is convex in its parameters, which can therefore be extracted using standard gradient ascent

methods.

The iGIF model remains amenable to analytical treatment and can be reduced to a simpler

model, thereby providing insights on the functional role of its multiple adaptation mechanisms.

Finally, in contrast to complex models obtained by extending the standard Hodgkin-Huxley

model (Hodgkin and Huxley, 1952) with additional conductances, the iGIF model accounts

for different aspect of the neural dynamics by the means of phenomenological mechanisms

that, while being related to known biophysical processes, can be understood from a functional

perspective.

4.3.3 Connection to sensory adaptation

In response to a sudden change in the input statistics, both retinal ganglion cells and motion-

sensitive neurons in the fly feature two forms of adaptation (Fairhall et al., 2001b; Baccus

and Meister, 2002). Right after a stimulus change, these neurons rapidly modify the shape

of their receptive field, thereby adapting the stimulus feature to which they are responsive.

While this mechanism is very fast, the same neurons also feature a slower form of adaptation

that manifests itself in a decay of the output firing rate over multiple timescales. This second

mechanism, known as spike-frequency adaptation, does not induce further changes in the

receptive field, but simply reduces the overall excitability of the neuron. Since both the

timescale and the net effect of these two adaptation processes are different, it has been

hypothesized that changes in feature selectivity and output firing rate are controlled by two

independent mechanisms. While in retinal ganglion cells these forms of sensory adaptation

have been shown to emerge from network effects, the origin of sensory adaptation in motion

sensitive neurons of the fly remains unclear. Our results indicate that both forms of adaptation

can be supported by intrinsic cellular mechanisms.

4.3.4 Conclusion

Intracellular patch-clamp recordings are widely used both in vitro and in vivo to study how

neurons process information. As a result of an intricate dynamics of the firing threshold,

we found that the subthreshold and the spiking response of single neurons are related in a

nontrivial manner. Consequently, drawing conclusions about the neural code directly from

subthreshold voltage recordings requires care.

In particular, our results demonstrate and explain why measurements of the membrane

timescale provide a biased estimate of the timescale over which synaptic inputs are temporally

integrated. Indeed, a nonlinear coupling between membrane potential and firing threshold
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adaptively shortens the effective timescale of somatic integration (without affecting the mem-

brane timescale) in such a way as to enhance coincidence detection over a broad range of

input statistics.

4.4 Materials and Methods

4.4.1 Electrophysiological recordings

All procedures in this study were conducted in conformity with the Swiss Welfare Act and

the Swiss National Institutional Guidelines on Animal Experimentation for the ethical use

of animals. The Swiss Cantonal Veterinary Office approved the project following an ethical

review by the State Committee for Animal Experimentation.

Somatic whole-cell in vitro current clamp recordings were performed on 300µm thick parasagit-

tal acute slices from the right hemispheres of male P13-P15 C57Bl/6J wild-type mice. Brains

were quickly dissected and sliced (HR2 vibratome, Sigmann Elektronik, Germany) in ice-cold

artificial cerebrospinal fluid (ACSF) (in mM: NaCl 124.0, KCl 2.50, MgCl2 10.0, NaH2PO4 1.25,

CaCl2 0.50, D-(+)-Glucose 25.00, NaHC03 25.00; pH 7.3 ± 0.1, aerated with 95% O2 / 5% CO2),

followed by a 15 minute incubation at 34 oC in standard ACSF (in mM: NaCl 124.0, KCl 2.50,

MgCl2 1.00, NaH2PO4 1.25, CaCl2 2.00, D-(+)-Glucose 25.00, NaHC03 25.00; pH 7.40, aerated

with 95% O2 / 5% CO2). To ensure intact axonal and dendritic arborisation, electrophysio-

logical recordings were conducted in slices cut parallel to the apical dendrites. Recordings

in Layer 5 of the primary somatosensory cortex were performed at 32 ± 1 oC in standard

ACSF with an Axon Multiclamp 700B Amplifier (Molecular Devices, USA) using 5 - 7 MΩ

borosilicate pipettes, containing (in mM): K+-gluconate 110.00, KCl 10.00, ATP-Mg2+ 4.00,

Na2+-phosphocreatine 10.00, GTP-Na+ 0.30, HEPES 10.00, biocytin 5.00 mg/ml; pH 7.30, 300

mOsm. Cells were visualized using infrared differential interference contrast video microscopy

(VX55 camera, Till Photonics, Germany and BX51WI microscope, Olympus, Japan).

Data were acquired with sampling frequency ∆T −1 = 10 kHz using an ITC-18 digitizing board

(InstruTECH, USA) controlled by a custom-written software module operating within IGOR Pro

(Wavemetrics, USA). Voltage signals were low-pass filtered (Bessel, 10 kHz) and not corrected

for the liquid junction potential. Only cells with an access resistance ≤ 20 MΩ (17.7 ± 2.3 MΩ,

n = 6) were retained for further analysis.

4.4.2 Current injections

In all the experiments included in this study, neurons were stimulated with in vivo-like fluctu-

ating currents I (t ) generated according to an Ornstein-Uhlenbeck process:

τI İ (t ) =−I (t )+µI +
√

2τIσI ·ψ(t ), (4.9)
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where ψ(t ) is a Gaussian white-noise process with zero mean and unitary variance, τI is the

correlation timescale, µI is the mean current and σI defines the magnitude of the fluctuations

(that is, the standard deviation of the current). The temporal correlation of the input was fixed

to τI = 3 ms and input currents I (t ) were generated at a sampling rate ∆T −1 = 10 kHz.

To measure the impact of input fluctuations on the single-neuron input-output transfer

function (i.e., the f -µI curve), we somatically injected a set of 5-second currents with different

means µI and standard deviations σI (see Eq. 4.9). To let the cell recover, injections were

performed with interstimuli intervals of 25 seconds. Similar protocols have already been

applied in previous studies (Rauch et al., 2003; Higgs et al., 2006; Arsiero et al., 2007). Here, to

exhaustively explore the parameter space (µI,σI) and to accurately estimate the experimental

f -µI curves, we considered four different standard deviations σI ∈ {0,50,100,150} pA and

eight different means µI ∈ [0,µmax] nA, with µmax begin cell-dependent. Each neuron was

stimulated with 32 different inputs that were presented randomly. The entire protocol was

repeated 3 times. When stimulated with strong inputs, pyramidal neurons undergo spike

failure and can not sustain repetitive firing for long periods of time (see, e.g., Fleidervish et al.

(1996)). At the beginning of each experiment, the maximum current µmax was defined in such

a way as to reach saturation of the steady state firing rate while preventing spike failures. For

that, neurons were tested with 6-s-long noiseless currents (i.e., σI = 0) of increasing magnitude

µI. Cells that could not sustain continuous firing for input currents µI < 0.4 nA were discarded.

The maximal mean input µmax was comprised between 0.4 and 0.55 nA.

To evaluate model performance in predicting the occurrence of individual spikes, a different

set of experiments was performed. Currents were generated according to Equation 4.9, but

in this case, the stochastic process used to generate the input was made non-stationary by

modulating the standard deviation σI with a sinusoidal function

σI (t ) =σ0

(
1+ 1

2
· sin

(
2π

T
· t

))
, (4.10)

where T = 5 s is the modulation period. For each cell, input parameters were calibrated to

obtain an average firing rate of 10 Hz oscillating between 7 and 13 Hz, approximatively. After

calibration, input parameters were in the following ranges: µI ∈ [120,190] pA, σ0 ∈ [120,190]

pA. Since the spiking responses of both neurons and GIF models are stochastic, spike-timing

prediction was quantified on a test set obtained by 9 repetitive injections of the same (i.e.

frozen-noise) 20-s current generated according to Equations 4.9-4.10. For parameter extraction,

a training set was used in which single neurons were stimulated with a single 120-s current

having the same statistics as the test set, but in which a different realization of the white-noise

process ψ(t) was used. All the injections were performed with inter-stimuli intervals of 25

seconds.
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4.4.3 Data preprocessing

When acquired with the same electrode used to inject the external input I (t ), current-clamp

recordings Vrec(t ) are biased versions of the membrane potential Vdata(t ) (Badel et al., 2008).

This bias can in principle be removed using series resistance or bridge balance compensation.

However, perfect calibration of these methods is technically difficult to achieve. Moreover,

during long experiments, the electrode properties, and in particular the series resistance Re,

are subject to change (Pozzorini et al., 2013). Quantitative comparison between membrane

potentials evoked by input currents having different offsets µI requires accurate electrode

compensation. Indeed, a non-neutralized series resistance R̃e would lead, on average, to a

mean input-dependent bias Vbias(µI) = R̃eµI (Pozzorini et al., 2013). To avoid this and others

problems, for all the in vitro recordings included in this study, online series resistance compen-

sation was complemented by offline Active Electrode Compensation (AEC) (Brette et al., 2008;

Badel et al., 2008). For that, the same procedure applied in Pozzorini et al. (2013) was used. In

case of long experiments, estimating the electrode properties at different moments in time

can improve the quality of the data by removing drifts due to slow changes in the electrode

properties (Pozzorini et al., 2013). For this reason, electrode filters used for AEC were extracted

from 10-s subthreshold injections performed before the training set, before the test set and

every sixteen injections in the protocol used to measure the f -µI curves. Subthreshold input

currents were generated according to Equation 1 with µI = 0 nA, σI = 75 pA and τI = 3 ms.

4.4.4 Extracting voltage threshold for spike initiation from in vitro recordings

Bifurcation analysis of neuron models capturing smooth spike initiation demonstrates that

the concept of voltage threshold (that is, the largest membrane potential that a neuron can

reach without emitting a spike) does not have a univocal definition. However, different

possible definitions produce very similar results that mainly differ by a shift (Platkiewicz

and Brette, 2010). For this reason, our analysis is based on relative variations between the

voltage threshold in different conditions, rather than on absolute values. In practice, given

an intracellular recording, different methods exist to estimate the voltage threshold (Sekerli

et al., 2004). Here, for each spike in the dataset, the voltage threshold was estimated by

measuring the membrane potential at which the depolarization rate dV /d t became larger

than 10 mV/ms. As shown in Fig. 4.3e,g, voltage threshold detection is only weakly affected by

the precise choice of this parameter.

In Figure 4.3c, for each input condition, the depolarization rate preceding the emission of

an action potential was extracted from the average spike shape (i.e., from the spike-triggered

average of the membrane potential) by performing a linear regression on the time interval

[t̂ −3.5 ms, t̂ −0.5 ms], with t̂ denoting the time at which action potentials were initiated. In

Figure 4.3d, the average subthreshold membrane potential was computed by discarding all

the data points {t |t ∈ [t̂ j −2 ms, t̂ j +10 ms]} that were too close to action potentials {t̂ j }.
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4.4.5 Generalized Linear Model (GLM)

In the GLM (Truccolo et al., 2005; Pillow et al., 2008), spikes are generated stochastically with

firing intensity λGLM(t ) defined as:

λGLM(t ) =λ0 ·exp

E0 +
∫ ∞

0
κGLM(s)I (t − s)d s + ∑

t̂ j<t

hGLM(t − t̂ j )

 , (4.11)

where λ0 = 1 Hz, E0 is a constant, κGLM(t) is an arbitrarily-shaped filter through which the

input is integrated and hGLM(t ) accounts for all spike-triggered processes that make the single-

neuron activity history-dependent. GLM parameter extraction is performed using the standard

maximum likelihood method described in Truccolo et al. (2005) and Pillow et al. (2008). For

that, both κGLM(t) and hGLM(t) were expanded in linear combinations of rectangular basis

functions.

4.4.6 Inactivating Generalized Integrate-and-Fire model (iGIF)

The GIF model introduced in Mensi et al. (2011) and Pozzorini et al. (2013) was augmented

with a nonlinear coupling between the subthreshold membrane potential V (t ) and the firing

threshold VT(t ). Such a coupling has recently been shown to occur in Hodgkin-Huxley models

in which Na+-channels start to inactivate at subthreshold voltages (Platkiewicz and Brette,

2011). For this reason, we call our model iGIF, where i stands for inactivating. A list of model

variables and parameters is provided in Table 4.1.

In the model, spikes are produced stochastically according to the conditional firing intensity

λ(t ) defined by the exponential escape-rate model (Gerstner and van Hemmen, 1992; Jolivet

et al., 2006a):

λ(t ) =λ0 exp

(
V (t )−VT (t )

∆V

)
, (4.12)

where λ0 = 1 Hz and ∆V defines the level of stochasticity. In the limit ∆V → 0, the model

becomes deterministic and action potentials are fired when the firing threshold is reached.

The dynamics of the subthreshold membrane potential is modeled as a leaky integrator

augmented with a spike-triggered conductance η(t) that describes the time course of the

conductance change after a spike. Mathematically, the membrane potential evolves according

to the following differential equation:

CV̇ =−g0(V −E0)+ I − ∑
t̂ j<t

η(t − t̂ j ) · (V −ER), (4.13)

where C , g0 and E0 describe the passive properties of the membrane, τ0 =C /g0 is the passive

membrane timescale, {t̂1, t̂2, t̂3, . . .} are the spike times, ER is a reversal potential and I is the

external input. Conductance changes triggered by different spikes accumulate and produce
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spike-frequency adaptation (or facilitation). The functional shape of η(t) is not assumed a

priori, but is extracted from experimental data (see below). After each spike, the membrane po-

tential is reset to Vreset and the numerical integration only restarts after an absolute refractory

period Tref.

The dynamic threshold VT is modeled as follows

VT(t ) = θ(t )+ ∑
t̂ j<t

γ(t − t̂ j ), (4.14)

where γ(t) is a function of time describing the movement of the firing threshold after the

emission of an action potential. Since the latter term can only account for spike-dependent

effects, the model is augmented with an additional state variable θ(t ) implementing a coupling

between the dynamics of the firing threshold and that of the subthreshold membrane potential.

Based on theoretical results obtained by a systematic reduction of the Hodgkin-Huxley model,

it has recently been proposed that this coupling might be nonlinear and could take different

forms depending on the underlying biophysical mechanism (Platkiewicz and Brette, 2010). In

the iGIF model, the dynamics of the variable θ is defined by a general differential equation

given by

τθθ̇ =−θ+θ∞(V ), (4.15)

where τθ is the characteristic timescale on which the threshold reacts to changes in the mem-

brane potential and θ∞(V ) is the voltage-dependent steady-state towards which θ converges.

Depending on the particular shape of θ∞(V ), Equation 4.15 can in principle capture a depen-

dency of the firing threshold on the depolarization rate preceding a spike (Platkiewicz and

Brette, 2011) (Fig. 4.4). To avoid a priori assumptions on the biophysical processes underlying

the coupling, θ∞(V ) is defined as an arbitrary function of the membrane potential and is

extracted from experimental data using a new non-parametric maximum likelihood approach

(see below). Finally, it is worth noting that a spike-triggered movement of the firing threshold

could in principle be implemented by incrementing the value of θ after the emission of a spike.

However, the timescale on which spike-triggered effects occur might be different from τθ. For

this reason, spike-dependent movements of the firing threshold are modeled by γ(t ) and the

state variable θ is reset to V ∗
T after each spike.

The iGIF-Na model is defined exactly as the iGIF model except for the fact that the dynamics of

θ(t ) is as in Equations 4.2-4.3. The GIF model (Mensi et al., 2011) is a particular instance of the

iGIF model obtained by removing the coupling between subthreshold membrane potential

and firing threshold (i.e., by replacing θ(t ) in Eq. 4.14 with a constant V ∗
T ).

4.4.7 iGIF model parameter extraction

Given the input current I (t), the intracellular membrane potential Vdata(t), its first-order

derivative V̇data(t) = [Vdata(t +∆T )−Vdata(t)]/∆T and the experimental spike train {t̂ j }, iGIF
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model parameters are obtained with a new two-steps procedure developed by extending the

methods introduced in Mensi et al. (2011) and Pozzorini et al. (2013).

In the first step, all the parameters describing the subthreshold dynamics are extracted by min-

imizing the sum of squared errors between the voltage derivative observed in the experiment

and the one predicted by the model (see Eq. 4.13). To allow for convex optimization and avoid

a priori assumptions on the timescales of adaptation, the spike-triggered conductance was

expanded in a linear combination of basis functions η(t ) =∑K
i=1ηi bηi (t ), where {bηi (t )} is a set

of K = 40 log-spaced non-overlapping rectangular functions and the parameters {ηi } define

the shape of η(t). As in Paninski et al. (2005); Mensi et al. (2011); Pozzorini et al. (2013), the

least-square estimate of the subthreshold parameters βT
sub(ER) =C−1 · [g0,E0g0,η1, ...,ηK ,1] is

obtained by solving a multilinear regression problem:

β̂sub(ER) = (X T X )−1X T V̇data, (4.16)

where X is a matrix made of vectors

X T
t (ER) =

[
−Vdata(t ),1,

∑
j

bη1 (t − t̂ j )(V −ER), ...,
∑

j
b(η)

K (t − t̂ j )(V −ER), I (t )

]
, (4.17)

and V̇data is a vector containing the membrane potential first-order derivative. Since the

model does not capture the voltage trajectory during a spike, all the data points close to action

potentials {t |t ∈ [t̂ j −5 ms; t̂ j +Tref]} were excluded from the fit. As in Mensi et al. (2011), the

optimal reversal potential ÊR (defined as the ER minimizing the residuals of the regression in

Eq. 4.16) is extracted by an exhaustive search on the interval [-100,-40] mV. Finally, the absolute

refractory period was set to Tref = 4 ms and the voltage reset was estimated by computing

the average membrane potential after a spike (i.e. Vreset = 〈V (t̂ j +Tref)〉 j ). Since a period

of absolute refractoriness can also be implemented by setting the first milliseconds of the

spike-triggered threshold movement γ(t) to high values, the particular choice of Tref is not

crucial.

In the second step, an estimate of the subthreshold membrane potential V̂ (t) is obtained

by numerically solving Equation 4.13 and the voltage threshold parameters are extracted by

extending the non-parametric maximum-likelihood approach of Mensi et al. (2011); Pozzorini

et al. (2013). Again, to avoid a priori assumptions on the timescales of spike-dependent adap-

tation and on the shape of the coupling between firing threshold and subthreshold membrane

potential, the two functions γ(t) and θ∞(V ) were expanded in linear combinations of non-

overlapping rectangular basis functions γ(t ) =∑K
i=1γi b(γ)

i (t ) and θ∞(V ) =V ∗
T +∑M

i=1θi b(θ)
i (V ).

For the spike-triggered movement of the firing threshold γ(t ), the same log-spaced rectangular

functions already used for η(t ) were chosen. For θ∞(V ), M = 11 regularly spaced rectangular

functions {b(θ)
i (V )} were chosen that covered the interval of voltages [min

j
{V̂ (t̂ j )},max

j
{V̂ (t̂ j )}]

at which action potentials were initiated. Consequently, after integration of Equation 4.15, the
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time-dependent voltage threshold is given by

VT(t ) =V ∗
T +

K∑
i=1

γi ·
∑

t̂ j<t

b(γ)
i (t − t̂ j −Tref)+

M∑
i=1

θi fi (t ;τθ), (4.18)

with fi (t ;τθ) = ∫ t
t̂last

τ−1
θ

e
− s

τθ ·b(θ)
i (V (t − s))d s and t̂last denoting the time of the last spike before

t . With the exponential function in Equation 4.12, and assuming that the timescale τθ is

known, the model log-likelihood is a convex function of the threshold parameters βT
th =

∆V −1 · [1,V ∗
T ,γ1, . . . ,γK ,θ1, . . . ,θM ] and can be written as follows (Paninski, 2004):

L(βth;τθ) = log p
(
{t̂ j }|V̂ (t );βth,τθ

)= ∑
t∈{t̂ j }

Yt(τθ) ·βth −∆T · ∑
t∈Ω

exp
(
Yt(τθ) ·βth

)
, (4.19)

with Ω = {t |t ∉ [t̂ j , t̂ j +Tref]} being a set that excludes all the points falling in the period of

absolute refractoriness and Yt(τθ) being a vector of observables that implicitly depends on the

parameter τθ:

Yt(τθ) =
[

V̂ (t ),−1,−∑
j

b(γ)
1 (t − t̂ j ), . . . ,−∑

j
b(γ)

K (t − t̂ j ),− f1(t ;τθ), . . . ,− fM(t ;τθ)

]
. (4.20)

Given τθ, the maximum likelihood estimate of the other threshold parameters βth can be

obtained as in Mensi et al. (2011); Pozzorini et al. (2013):

β̂th(τθ) = argmax
βth

{
L(βth;τθ)

}
(4.21)

by maximizing Equation 4.19 with standard gradient-ascent methods. The optimal timescale

of the coupling between threshold and membrane voltage τ̂θ = argmax
τθ

{L(β̂th(τθ);τθ)} is then

obtained by systematically searching in the range τθ ∈ [0.5 ms,15 ms] the value for which the

log-likelihood is maximized. Finally, it is worth noting that even if we do not dispose of a proof

of joint convexity, the landscape of the log-likelihood function L(β̂th(τθ);τθ) was smooth in τθ

and always contained a unique maximum in the explored range (see Fig. 4.5f).

Fitting procedure for the iGIF-Na model

The iGIF-Na model parameters were extracted from experimental data using a maximum

likelihood approach closely resembling to the nonparametric method described in the pre-

vious section. Briefly, the log-likelihood L(βNa
th ;τθ,ki,Vi) of the iGIF-Na model is convex in

βNa
th =∆V −1 · [1,V ∗

T ,γ1, . . . ,γK ,ka]. Consequently, given the nonlinear parameters ki, Vi and τθ,

all the other threshold parameters can be easily extracted by solving a convex optimization

problem:

β̂Na
th (τθ,ki,Vi) = argmax

βNa
th

{
L(βNa

th ;τθ,ki,Vi)
}

. (4.22)
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On the other hand, extracting the optimal parameters k̂i, V̂i and τ̂θ requires the solution of the

following nonlinear optimization problem:

(k̂i,V̂i, τ̂θ) = argmax
(τθ ,ki,Vi)

{
L(β̂Na

th (τθ,ki,Vi);τθ,ki,Vi)
}

. (4.23)

Performing an exhaustive search on a three-dimensional space is possible. Model parameters

were however extracted by first fixing the coupling timescale τθ to the optimal value previously

obtained by fitting the iGIF-NP model and then performing an exhaustive search for ki and Vi

(see Fig. 4.5g).

4.4.8 Extracting the effective membrane timescale from intracellular recordings

In order to extract the effective membrane timescale τm from experimental data (see Fig. 4.2d),

intracellular recordings were split in different datasets according to µI and independently

fitted with a leaky integrate-and-fire model equipped with a spike-triggered current (i.e., a

model obtained by dropping the term (V −ER) from Eq. 4.13) by performing a linear regression

similar to Equation 4.16. By fitting this model to data, the average conductance increase

mediated by spike-dependent processes is automatically absorbed by the leak conductance

g0. Consequently, the membrane timescale is directly given by τm =C /g0.

4.4.9 iGIF model linearization

The subthreshold dynamics of the iGIF model features a spike-triggered conductance. Fol-

lowing Richardson (2004), Equation 4.13 can however be approximated by a leaky integrator

equipped with a spike-triggered current ηC(t ):

CV̇ =−gL(V −EL)+ I (t )−
∑

t̂ j

ηC(t − t̂j)− ĪA

 (4.24)

where the total conductance gL = g0 + ḡη accounts for the average contribution ḡη = T −1 ·∫ T
0

∑
t̂j
η(t − t̂j)d t of spike-triggered adaptation, EL = (g0E0 + ḡηER)/gL is the effective resting

potential, ĪA = ḡη(V̄ −ER) is a constant accounting for the average current mediated by the

spike-triggered conductance and the spike-triggered current is given by ηC(t ) = (V̄ −ER)η(t ),

with V̄ being the average membrane potential.

The subthreshold dynamics of the membrane potential defined in Equation 4.24 can be

rewritten in its integral form as (Gerstner and Kistler, 2002):

V (t ) = EL + ĪA

gL
+

∫ ∞

−∞
κm(s)I (t − s)d s − ∑

t̂ j<t

ηV(t − t̂ j ), (4.25)

where κm(t ) is the effective membrane filter defined in Equation 4.6 and the spike-triggered
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filter ηV(t ) given by

ηV(t ) =
∫ ∞

−∞
κm(s)

[
ηC(t − s)+C (V̄spikes −Vreset)δ(t − s)

]
d s (4.26)

describes the influence on the membrane potential of both the spike-triggered current ηC(t )

and the spike-after reset V →Vreset, with V̄spikes = 〈V (t̂j)〉j being the average value of V at spike

times {t̂j}. Since this approximation neglects the correlations between membrane potential

fluctuations and conductance fluctuations, we expect ηV(t ) to underestimate the real voltage

change induced by the spike-triggered conductance during the first τm milliseconds after a

spike.

In order to linearize the firing threshold dynamics, Equation 4.15 is simplified by taking

the first-order approximation θ∞(V ) ≈ C̄θ + ḠθV , with Ḡθ being the average gain of the

coupling between membrane potential and firing threshold defined in Equation 4.7 and

C̄θ =
∫ ∞
−∞θNa∞ (V )P (V )dV −ḠθV̄ being a constant. By integrating Equation 4.15 over time, the

linearized threshold dynamics of the iGIF model reads:

VT (t ) = C̄θ+Ḡθ ·
∫ ∞

−∞
κθ(s)V (t − s)d s + ∑

t̂ j<t

γtot(t − t̂ j ), (4.27)

where κθ(t ) = 1
τθ

exp
(
− t
τθ

)
is the linearized threshold-coupling filter and the spike-triggered

filter γtot(t ) given by

γtot(t ) = γ(t )− (θ̄spike −V ∗
T )τθκθ(t ) (4.28)

combines the effects of both the spike-triggered thresholdγ(t ) and the after-spike reset θ→V ∗
T ,

with θ̄spike = 〈θ(t̂j)〉j being the average value of θ at spike times {t̂j}.

In the iGIF model, the spiking probability depends on the difference between membrane

potential and firing threshold (Eq. 4.12). Thus, the different terms appearing in Equations

4.27-4.25 can be combined to obtain a compact expression for the linearized iGIF model

intensity λlin(t ):

λlin(t ) =λ0 ·exp

(
E0 +

∫ ∞
−∞κeff(s)I (t − s)d s +∑

t̂ j<t heff(t − t̂ j )

∆V

)
, (4.29)

where E0 is a constant, κeff(t) is the effective filter defined in Equation 4.8 and heff(t) is an

effective spike-history filter that phenomenologically accounts for all the spike-triggered

mechanisms in the iGIF model:

heff(t ) = γtot(t )+
∫ ∞

−∞
[
δ(s)−Ḡθκθ(s)

]
ηV(t − s)d s. (4.30)

Equation 4.30 indicates that the coupling between membrane potential and firing thresh-

old shunts the spike-triggered adaptation mediated by ηV(t ). Since the shunting strength is
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controlled by the average coupling gain Ḡθ, this theoretical result explains our experimental

finding that increasing µI results in a shrinkage of the GLM spike-history filter hGLM(t ) (com-

pare Fig. 4.2c and Fig. 4.8c). A list of parameters and variables appearing in this derivation is

provided in Table 4.2.

4.4.10 Performance evaluation

To avoid problems related to overfitting and allow for a comparison between models that differ

in the total number of parameters, the performances reported in this study were, unless speci-

fied otherwise, evaluated on separate data sets that were not used for parameter extraction.

A quantitative measure of the quality of both the GIF and the iGIF model is provided by the

log-likelihood:

LLmodel =
∑

t∈{t̂ }

logλmodel(t )−
∫ T

0
λmodel(t )d t (4.31)

where λmodel(t ) is the conditional firing intensity of the model after parameter optimization,

{t̂ } is the experimental spike train and T is the total duration of the experiment on which

the model performance were evaluated. All of the log-likelihoods reported in this study

were normalized with respect to a Poisson process with constant intensity defined by the

experimental firing rate r̄ = Nspikes/T , as well as with respect to the total number of spikes

Nspikes (Pillow et al., 2008):

LL = 1

log(2) ·Nspikes

(
LLmodel −Nspikes(log r̄ −1)

)
, (4.32)

such that units are in bit per spike.

Spike-timing prediction was quantified using the spike-train similarity measure M∗
d (Naud

et al., 2011). As in our previous studies (Mensi et al., 2011; Pozzorini et al., 2013), M∗
d was

computed using the Kistler coincidence window with a temporal granularity of ∆=±4 ms.
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Term Description Definition

Subthreshold membrane potential dynamics

V (t ) Membrane potential see Eq. 4.13

κ0(t ) Passive membrane filter κ0(t ) =Θ(t )C−1 exp(−t/τ0)

τ0 Passive membrane timescale τ0 =C /g0

C Cell capacitance

g0 Passive leak conductance

E0 Passive reversal potential

IA(t ) Adaptation current IA(t ) =∑
t̂ j<t η(t − t̂ j )(V (t )−ER)

η(t ) Spike-triggered conductance

ER Reversal potential of adaptation current

∆V Threshold sharpness

Tref Absolute refractory period

Vreset Voltage reset

Firing threshold dynamics

VT(t ) Firing threshold VT(t ) = θ(t )+φ(t )

φ(t ) Spike-dependent threshold adaptation φ(t ) =∑
t̂ j<t γ(t − t̂ j )

φ̄ Mean threshold contribution by φ(t ) φ̄= 〈
φ(t )

〉
t

γ(t ) Spike-triggered threshold movement

θ(t ) Voltage-dependent threshold adaptation τθθ̇ =−θ+θNa∞ (V )

κθ(t ) Threshold coupling filter κθ(t ) =Θ(t )τ−1
θ

exp(−t/τθ)

τθ Threshold coupling timescale

Firing threshold coupling

θNa∞ (V ) Steady-state threshold coupling θNa∞ (V ) =V ∗
T +ka log

(
1+exp

(
V −Vi

ki

))
V ∗

T Threshold baseline

Vi Na+-channel half-inactivation

ka Slope of Na+-channel activation

ki Slope of Na+-channel inactivation

Gθ(V ) Local gain of threshold coupling Gθ(V ) = d
dV θ

Na∞ (V )

θNa
slope Asymptotic gain of threshold coupling θNa

slope = lim
V →∞

Gθ(V ) = ka/ki

Table 4.1: Parameters and variables of the iGIF-Na model.
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Term Description Definition

Effective somatic integration

κeff(t ) Effective filter of somatic integration κeff(t ) = κm(t )−Ḡθ

∫
κθ(s)κm(t − s)d s

τeff(t ) Timescale of κeff(t ) extracted from κeff(t )

Ḡθ Average threshold-voltage gain Ḡθ = 〈Gθ(V )〉P (V )

Membrane filter

κm(t ) Membrane filter κm(t ) =Θ(t )C−1 exp(−t/τm)

τm Membrane timescale τm =C /gL

gL Average total conductance gL = g0 + ḡη

ḡη Mean conductance increase by η(t ) ḡη =
〈∑

t̂ j<t η(t − t̂ j )
〉

t

EL Reversal potential EL = (g0E0 + ḡηER)/gL

ĪA Mean adaptation current ĪA = ḡη(V̄ −ER)

Spike-history dependence

heff(t ) Effective spike-history filter see Eq. 4.30

ηC(t ) Spike-triggered current ηC(t ) = (V̄ −ER)η(t )

ηV(t ) Effect of ηC(t ) and reset V →Vreset see Materials and Methods

γtot(t ) Effect of γ(t ) and reset θ→V ∗
T see Materials and Methods

Generalized linear model

κGLM(t ) GLM linear filter

τGLM(t ) Timescale of κGLM(t ) extracted from κGLM(t )

hGLM(t ) GLM spike-history filter

Table 4.2: Parameters and variables of the reduced iGIF-Na model and the GLM.
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