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The dataset is available at https://github.com/tritritri/uncertainty 

𝑌𝑡 = 𝜇 𝑥𝑡 + 𝜎(𝑥𝑡)𝜖𝑡 

𝑦𝑡 = the demand at time 𝑡 
𝑥𝑡 = vector of covariates 
𝜖𝑡 = the error at time 𝑡  

𝔼[𝑌𝑡] = 𝜇 𝑥𝑡  

Var(𝑌𝑡) = 𝜎2(𝑥𝑡) 

In practice, 𝜇 ∙  and 𝜎2 ∙  are unknown! 

Estimate 𝜇 ∙  and 𝜎2 ∙  from empirical data 

conditional mean conditional variance 

Estimating the conditional mean 𝝁 ∙  

Estimating the conditional  
variance 𝝈𝟐 ∙  

1 

 Use Generalized Additive Model (GAM): 

𝐹(𝜇(𝑥𝑡)) =  𝑓𝑖(𝑥𝑡)
𝐼

𝑖=1
 

link function, e.g.,  
identity or logarithm transfer function 

 Fit a GAM to 𝑦𝑡 to get an estimate 𝜇 ∙  of 𝜇 ∙  

𝑓𝑖 𝑥𝑡 = 𝟏 𝑥𝑡∈𝐴𝑖
 𝛽𝑖

𝑇 𝑏𝑖 𝑥𝑡  

 Forecasting the conditional mean 𝑦 𝑡 = 𝜇 𝑥𝑡  

basis functions 
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(zero mean, unit variance) 

𝑓1,2(HourOfDay) 

𝑓2(TimeOfYear) 

𝑓4(TempC, HourOfDay) 

 We use another GAM: 

𝐺(𝜎2(𝑥𝑡)) =  𝑔𝑖(𝑥𝑡)
𝐽

𝑗=1
 

 Let 𝑧𝑡 = 𝜎(𝑥𝑡)𝜖𝑡 
𝑧 𝑡 = 𝑦 𝑡 − 𝑦𝑡 

 Fit a GAM to 𝑧 𝑡
2 to get an estimate 𝜎 2 ∙  of 𝜎2 ∙  

Normal 
Q-Q Plot 

𝑧 𝑡 

𝑞 ∙ = the quantile function of the standard normal dist. 

 two-sided 

𝜙𝑡
1(𝑝) = 𝜇 𝑥𝑡 + 𝑞(𝑝) ∙ 𝜎 (𝑥𝑡) 

𝜙𝑡
2(𝑝) = 𝜇 𝑥𝑡 ± 𝑞

1 − 𝑝

2
∙ 𝜎 (𝑥𝑡) 

 one-sided 

Computing prediction intervals 3 

Online learning 4 

Adaptive learning for  
smoothing functions 
(Ba et al., NIPS, 2012) 

𝛼𝑐 + 1 − 𝛼 𝑐 = 𝑝 

𝑐 =
𝑝 − 𝛼𝑐

1 − 𝛼
 

𝜙𝑡
1(𝑝) = 𝜇 𝑥𝑡 + 𝑞(𝑐 ) ∙ 𝜎 (𝑥𝑡) 

𝜙𝑡
2(𝑝) = 𝜇 𝑥𝑡 ± 𝑞

1 − 𝑐 

2
∙ 𝜎 (𝑥𝑡) 

 

Adaptive construction of  
prediction intervals 

 

using adaptive  
construction 

𝑐 =current empirical coverage 

No bootstrapping, no ensemble 

Our general model for electricity demand:  

𝜖 𝑡 = 𝑧 𝑡/𝜎 𝑥𝑡  

actual  
forecast 
prediction intervals 

Time  
(years) 


