
 

 

    

Glossary of the main terms 
 

 

This glossary accompanies the article “Sub-Nyquist artifacts and sampling moiré effects” by 

Isaac Amidror, 2014. It explains the main terms being used in the article, and demonstrates them 

visually using the interactive applications f_sweep_dense and f_sweep_env. Throughout this 

glossary g(x) represents a continuous periodic signal having frequency f, g(xk) represents the 

sampled signal, and fs is the sampling frequency. The suggested interactive demonstrations are 

presented in blue type. 

 

 

aliasing (or folding over) – 

When an original continuous signal (periodic or not) is sampled at a frequency fs 

which does not satisfy the Nyquist condition of the sampling theorem, i.e. when 

fs is not at least twice the highest frequency contained in the original continuous 

signal, the signal’s frequencies above 0.5fs (and below -0.5fs) fold-over into the 

frequency range -0.5fs…0.5fs. In other words, the resulting sampled signal 

contains new false frequencies within this range, which do not exist in the 

original signal. This phenomenon is known as aliasing. 

As a simple interactive demonstration, let us visualize dynamically what happens 

when sampling the continuous signal g(x) = cos(2fx), as the signal’s frequency f 

exceeds the Nyquist frequency 0.5fs (so that fs < 2f). For this end, enter the 

application f_sweep_env and select there “signal” = cos and “env” = no. 

Then, manually set the frequency f to the value 3, which is still below the 

Nyquist frequency 0.5fs = 4 (remember that in all our figures and applications we 

always use fs = 8). Now, let the frequency f slowly increase, and watch what 

happens in the spectral domain. (To slow down the movement of the “f ” slider, 

hold down the Alt or Option key while dragging the slider with the mouse; see 

the user’s guide of the applications). As long as the frequency f is located below 

the Nyquist frequency 0.5fs = 4, the DFT of the sampled signal follows the 

impulses of the original CFT (possibly with some leakage, which only occurs 

when f is located between two successive discrete frequencies of the DFT; see, 

for example, Chapter 6 in [10]). But when the frequency f goes beyond the 

Nyquist frequency 0.5fs = 4, the corresponding frequencies in the DFT are folded 

over, and they re-enter into the range -0.5fs...0.5fs of the DFT spectrum in the 

opposite direction. These false lower frequencies in the DFT (which do not exist 

in the original continuous signal g(x) and in its CFT) are the spectral-domain 

manifestation of aliasing. In the signal domain, aliasing manifests itself by 

“mimicking” the correct cosine signal with a false, lower-frequency cosine signal 

that passes through the same sampling points. For more details on aliasing and 

how it affects the signal and spectral domains see, for example, Chapter 5 in 

[10]. 



 2    

 

     

sampling moiré effect – 

An artifact which may occur due to aliasing when sampling a periodic signal 

g(x). It consists of a new false low-frequency fM which appears in the sampled 

signal g(xk) and in its spectrum, although it does not exist in the original signal 

g(x). When the new frequency fM is very low (very close to the spectrum origin) 

the moiré effect is highly visible, but as fM increases the moiré gradually 

becomes less conspicuous, until it finally completely disappears. Note that in 

order for the moiré effect to be clearly visible, fM must be much smaller than the 

signal frequency f and the sampling frequency fs. 

A sampling moiré effect occurs in the sampled signal whenever f approaches an 

integer multiple of fs, i.e whenever mfs – f ≈ 0, m = 1,2,… In each of these cases 

a new low frequency fM = mfs – f is generated in the spectrum of the sampled 

signal, close to the spectrum origin. However, if g(x) is a periodic function 

having in its spectrum two harmonics of its frequency f, a sampling moiré effect 

may also occur whenever mfs – 2f ≈ 0, m = 1,2,… since in these cases too a new 

false low frequency, fM = mfs – 2f, is generated close to the spectrum origin. The 

extension to functions g(x) having higher harmonics of f is straightforward. 

In general, the sampling moiré effect which occurs when mfs – nf ≈ 0 is called a 

(m,-n)-moiré. It corresponds to the new low frequency fM = mfs – nf, which is 

generated in the sampled signal due to the interaction between the m-th harmonic 

of the sampling frequency fs and the n-th harmonic of f (provided that g(x) has a 

non-zero n-th harmonic). 

As a simple interactive demonstration, let us visualize a few sampling moiré 

effects that may occur when sampling the continuous signal g(x) = cos(2fx). For 

this end, enter the application f_sweep_env and select there “signal” = 

cos, “m/n” = 1/1 and “” = 1/8. This shortcut brings you directly to the sampled 

cosine at the frequency f = (1/1)fs + 1/8, where f is close to fs = 8 (see the figure 

on next page). The sampled signal we see here presents a highly visible moiré 

effect with period 8 and frequency 1/8 (compare the original signal shown in 

green lines with its sampled version shown by the discrete dots). Note that the 

spectral domain, too, contains here a new very low frequency of 1/8, which does 

not exist in the CFT of the original signal g(x). 

It is highly instructive to slowly vary the frequency f to both directions, using the 

“f ” slider, in order to observe how this affects our moiré effect. 

A very similar moiré effect occurs also when the frequency f approaches the 

value 2fs = 16 (try this and see!), or any other integer multiple of fs. 
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sub-Nyquist artifact – 

A beating artifact which may occur when sampling a periodic signal g(x) of 

frequency f whenever the frequencies f and fs satisfy f ≈ (m/n)fs with integer m,n 

(n > 1). An artifact which occurs for a given ratio m/n is called a (m/n)-order 

sub-Nyquist artifact. Sub-Nyquist artifacts have several intriguing properties: 

(a) They may appear where the Nyquist condition is fully satisfied, so that no 

aliasing or sampling moiré artifacts should be present. 

(b) Unlike in aliasing or moiré phenomena, the periods (or frequencies) of these 

beating artifacts are not represented in the Fourier spectrum, although they 

are clearly visible in the sampled signal. 
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(c) Furthermore, in the signal domain, the beating effect in question does not 

really correspond to a low-frequency signal, but rather to a highly oscillating 

signal that is only modulated by low-frequency envelopes. 

Sub-Nyquist artifacts with m/n < 1/2 are most interesting, since they occur below 

the Nyquist frequency. But other cases may also occur when m/n > 1/2, where 

aliasing does exist. 

As an illustration, let us dynamically visualize a few sub-Nyquist artifacts that 

may occur when sampling the continuous signal g(x) = cos(2fx). For this end, 

enter the application f_sweep_dense and select there “signal” = cos, 

“m/n” = 1/2 and “” = -1/32. This shortcut brings you directly to the sampled 

cosine at the frequency f = (1/2)fs – 1/32, where f is slightly below (1/2)fs = 4 

(see the figure on next page). This sampled signal illustrates the highly visible 

(1/2)-order sub-Nyquist artifact. Note that this artifact is not a sampling moiré 

effect, but indeed a sub-Nyquist artifact: (a) it occurs where the Nyquist 

condition is fully satisfied and no aliasing or moiré effects may exist; (b) its low 

frequency is not represented in the spectral domain (note that the DFT only 

contains the relatively high frequency f of the original cosine, slightly below the 

highest possible frequency of the DFT, 0.5fs = 4); and (c) it consists of a highly 

oscillating signal, and not of a true low-frequency signal as in the previous 

figure. See the figure on next page, and compare it with the true moiré effect 

which occurs when you select “m/n” = 1/1 rather than “m/n” = 1/2 (compare the 

two cases with respect to the three properties (a)-(c)). 

Here, too, it is highly instructive to slowly vary the frequency f to both 

directions, using the “f ” slider, in order to observe how this dynamically affects 

our sub-Nyquist artifact. 

Finally, it is interesting to note that in functions g(x) which possess a non-zero           

n-th harmonic nf of their frequency f, the (m/n)-order sub-Nyquist artifact turns 

into a sampling moiré effect: In such cases the low frequency fM = mfs – nf does 

exist in the sampled signal g(xk) and in its spectrum; and yet, the highly 

oscillating nature of the sub-Nyquist artifact is still preserved. These “hybrid” 

cases are explained in Remark 9 of the main article. To see such a hybrid case, 

select once again “m/n” = 1/2 and “” = -1/32, which brings you back to the 

(1/2)-order sub-Nyquist artifact, and then select “signal” = sqw. Note that 

unlike the cosine signal, the square wave possesses all the harmonics nf of its 

frequency f, including 2f. And indeed, looking at the spectral domain, we see that 

this time the DFT of the sampled signal does contain low frequencies near the 

origin. But as expected, this does not occur in the cosinusoidal case, when you 

select “signal” = cos. 
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To see another example of a sub-Nyquist artifact, select “signal” = cos, 

“m/n” = 1/3 and “” = 1/32. This shortcut brings you directly to the sampled 

cosine at the frequency f = (1/3)fs + 1/32, where f is very close to (1/3)fs = 

2.666... (see the figure on next page). This sampled signal illustrates the highly 

visible (1/3)-order sub-Nyquist artifact. Note that this artifact is not a sampling 

moiré effect, but indeed a sub-Nyquist artifact: just as the previously discussed 

(1/2)-order sub-Nyquist artifact, the (1/3)-order sub-Nyquist artifact, too, fully 

satisfies the properties (a)-(c) mentioned above. 

Once again, it is highly instructive to slowly vary the frequency f to both 

directions, using the “f ” slider, in order to observe how this affects our sub-

Nyquist artifact. 
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If you also want to see the original continuous signal and its CFT, in order to 

better understand what exactly happens when the original signal is being 

sampled, you may use the application f_sweep_env instead (see the figure 

below). This application also allows you to select “env” = yes in order to 

display the envelopes of the preselected sub-Nyquist artifact, and observe them 

as they dynamically evolve while you slowly vary the frequency f. 

Note, however, that the sub-Nyquist artifacts look much more prominent when 

using the application f_sweep_dense. As explained in Remark 2 of the main 

article, the reason is twofold: On the one hand, the presence of the original 

continuous signal in the signal domain of the application f_sweep_env 

obscures the shape of the sampled signal. And on the other hand, the use in 

f_sweep_dense of a much denser display, in which the sampled points are 

connected  by  line  segments  (like  on  the  display of an  oscilloscope),  further 
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enhances the visibility of the artifact. For example, when selecting “m/n” = 1/5 

or “m/n” = 2/5 in f_sweep_dense the resulting sub-Nyquist artifacts are 

clearly visible, while in f_sweep_env they are hardly recognizable without 

explicitly drawing their respective envelopes, by selecting “env” = yes. 

 

singular state (or singular point) – 

A singular state of a given sampling moiré effect (or sub-Nyquist artifact) is a 

situation in which the periodicity of the effect in question becomes infinitely 

large and momentarily disappears. This happens in a sampling moiré effect when 

fM exactly equals 0, and in a (m/n)-order sub-Nyquist artifact when f exactly 

equals (m/n)fs (or in other words, when  = (m/n)fs – f exactly equals 0). Each 

moiré effect or sub-Nyquist artifact has a unique distinct singular point. 
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singular frequency (or critical frequency) – 

The signal frequency f at which a given moiré effect (or sub-Nyquist artifact) 

reaches its singular state. In both moiré effects and sub-Nyquist artifacts, as f 

approaches the singular frequency of the artifact in question, the artifact becomes 

larger and more conspicuous, until at the singular point itself the artifact 

becomes infinitely large and momentarily disappears. As f gradually pursues its 

way beyond the singular frequency, the artifact “comes back from infinity” and 

becomes again visible with a very large period. Then it starts getting smaller and 

smaller, until it finally fades out and disappears. 

In order to visualize dynamically the behaviour of an artifact around its singular 

point, let us consider a few moiré or sub-Nyquist artifacts that may occur when 

sampling the continuous signal g(x) = cos(2fx). For this end, enter the 

application f_sweep_dense and select there “signal” = cos, “m/n” = 1/1, 

and “” = 1/32. This shortcut brings you directly to the vicinity of the first-order 

moiré effect which occurs around f = fs. Try to slowly vary the frequency f to 

both directions, and see how this affects the moiré effect (both in the signal and 

in the spectral domains). Then, select “m/n” = 1/3 and “” = 1/32. This shortcut 

brings you directly to the vicinity of the (1/3)-order sub-Nyquist artifact, which 

occurs around f = (1/3)fs. Once again, try to slowly vary the frequency f to both 

directions, and see how this affects the sub-Nyquist artifact (in the signal domain 

as well as in the spectral domain). You can also try other pre-selected sub-

Nyquist artifacts, such as the cases of (1/4), (1/5), or (2/5). If you wish to try any 

other (m/n)-order case, simply move f to the vicinity of (m/n)fs, and observe there 

what happens in the signal and spectral domains while you slowly vary f. 

 

sweeping (along the frequency axis) – 

The action of letting the frequency f gradually vary along the frequency axis. 

Such a stroll along the frequency axis is very instructive, and it can be easily 

done using any of the two provided interactive applications. Simply position the 

“f ” slider at your desired starting point, and slowly drag it up or down along the 

frequency axis. For example, you may start your stroll at a very low frequency, 

such as f = 0.25, where the sampled signal almost perfectly follows the original 

continuous cosine, and watch what happens on your way as you slowly increase 

f. It is instructive to see how the various sub-Nyquist artifacts slowly appear and 

disappear, even when f is being varied well below the Nyquist frequency 0.5fs = 

4. Note, for example, what happens when f approaches values such as (1/4)fs = 2, 

(1/3)fs = 2.666... etc. In contrast, whenever f approaches an integer multiple of fs, 

a true sampling moiré effect occurs in the sampled cosine. But in both cases, the 

dynamic behaviour of the artifact in question as f approaches the singular point 

and then passes beyond it is remarkably similar, as demonstrated above. 


