
Boosting OMD for Almost Free Authentication of Associated Data

Reza Reyhanitabar, Serge Vaudenay, and Damian Vizár

EPFL, Switzerland

Abstract. We propose pure OMD (p-OMD) as a new variant of the Offset Merkle-Damgård (OMD) au-
thenticated encryption scheme. Our new scheme inherits all desirable security features of OMD while having
a more compact structure and providing higher efficiency. The original OMD scheme, as submitted to the
CAESAR competition, couples a single pass of a variant of the Merkle-Damgård (MD) iteration with the
counter-based XOR MAC algorithm to provide privacy and authenticity. Our improved p-OMD scheme dis-
penses with the XOR MAC algorithm and is purely based on the MD iteration; hence, the name “pure”
OMD. To process a message of ℓ blocks and associated data of 𝑎 blocks, OMD needs ℓ + 𝑎 + 2 calls to the
compression function while p-OMD only requires max {ℓ, 𝑎} + 2 calls. Therefore, for a typical case where
ℓ ≥ 𝑎, p-OMD makes just ℓ+2 calls to the compression function; that is, associated data is processed almost
freely compared to OMD. We prove the security of p-OMD under the same standard assumption (pseudo-
randomness of the compression function) as made in OMD; moreover, the security bound for p-OMD is the
same as that of OMD, showing that the modifications made to boost the performance are without any loss
of security.

Keywords: Authenticated encryption, OMD, associated data, performance, CAESAR competition.

1 Introduction

An authenticated encryption (AE) scheme provides two complementary data security goals: confiden-
tiality (privacy) and integrity (authenticity). Traditionally, these goals were achieved by combining
two cryptographic primitives, a privacy-only encryption scheme and a message authentication code
(MAC)—a paradigm known as generic composition (GC) [8, 9, 21]. The notion of AE, as a desirable
symmetric-key primitive in its own right, was introduced in 2000 [8,10,19]. Since then, security notions
for AE schemes have been defined and refined [15,23,25–27], together with many dedicated AE designs
seeking some advantages over the GC-based schemes.

AE schemes have been studied for over a decade, yet the topic remains a highly active and interesting
area of research as evidenced by the currently running CAESAR competition [11]. OMD [13,14] is one
of 57 first-round CAESAR submissions, among which, at the time of writing this paper, 8 submissions
are withdrawn due to major security flaws.

Among the features that OMD possesses, the following two are notably interesting and distinctive:
OMD is the only CAESAR submission that is designed (as a mode of operation) based on a compression
function [3], and it provides (provably) high security levels (about twice that of the AES-based submis-
sions) when implemented with an off-the-shelf compression function such as those of the standard SHA
family [2].

Instantiations of OMD using the compression functions of SHA-256 and SHA-512, called OMD-
sha256 and OMD-sha512 respectively, can freely benefit from the widely-deployed optimized implemen-
tations of these primitives, e.g. [16,17]; in particular, OMD-sha256 can take advantage of the new Intel
SHA Extensions [18].

Motivated by the aforementioned appealing features of OMD, we further investigate the possibility
of making algorithmic improvements to the original OMD scheme towards boosting its efficiency, while
preserving or even improving its security properties. We show that there is a natural way (inspired
from the work of [28]) to modify OMD to make it more compact and efficient with respect to process-
ing associated data (AD). Our new variant of OMD—called pure OMD (p-OMD)—has the following
features:

– It inherits all desirable security features of OMD. We prove the security of p-OMD under
the same standard assumption (namely, pseudo-randomness of the compression function) as made
in OMD. Furthermore, the proven security bounds for p-OMD are the same as those of OMD. This
shows that the modifications we made to OMD, to obtain the performance-boosted variant p-OMD,
are without sacrificing any security.

– It has a more compact structure and processing AD is almost free. The original OMD
scheme couples a single pass of the MD iteration—in which the chaining values are xored with
specially crafted offsets—with the counter-based XOR MAC algorithm [7] to process a message and
its associated data. The p-OMD scheme dispenses with the XOR MAC algorithm and is solely based
on the (masked) MD iteration. This is achieved by absorbing the associated data blocks during the
core MD path rather than processing them separately by an additional XOR MAC algorithm. To
encrypt a message of ℓ blocks having associated data of 𝑎 blocks, OMD needs ℓ + 𝑎 + 2 calls to
the compression function while p-OMD only requires max {ℓ, 𝑎}+ 2 calls. That is, for a typical case
where ℓ ≥ 𝑎, p-OMD makes just ℓ + 2 calls independently of the length of AD.

We note that neither OMD nor p-OMD satisfy the nonce-reuse misuse-resistance notions defined
in [15, 27]. Misuse-resistant variants of OMD are recently proposed in [22], but in these variants the
encryption process is not online and they are less efficient than OMD.

A correction. In the preproceedings version of this paper at FSE 2015, we mistakenly claimed that
(in addition to the efficiency advantage of pOMD compared to OMD which is the main contribution of
this work) one also gets a partial level of robustness to nonce misuse with respect to the authenticity
property. Tomer Ashur and Bart Mennink pointed out [4] that this claim was incorrect; that is, pOMD
similar to OMD requires nonce respecting for providing security.

Organization of the paper. Notations and prelimiary concepts are presented in Section 2. Defini-
tions of security notions for AE schemes are reviewed in Section 3. Section 4 provides the specification
of the p-OMD mode of operation. In Section 5, we provide the security analysis of p-OMD. Section 6
provides an experimental performance comparison between p-OMD and OMD.

2 Preliminaries

Notations. Let 𝑥
$← 𝑆 denote choosing an element 𝑥 from a finite set 𝑆 uniformly at random. 𝑋 ← 𝑌

is used for denoting the assignment statement where the value of 𝑌 is assigned to 𝑋. All strings are
binary strings. The empty string is denoted by 𝜀. The set of all strings of length 𝑛 bits (for some
positive integer 𝑛) is denoted as {0, 1}𝑛, the set of all strings whose lengths are upper-bounded by 𝐿
is denoted by {0, 1}≤𝐿 and the set of all strings of finite length is denoted by {0, 1}*. The notations
𝑋||𝑌 and 𝑋𝑌 both stand for the string obtained by concatenating a string 𝑌 to a string 𝑋. For an
𝑚-bit string 𝑋 = 𝑋[𝑚 − 1] · · ·𝑋[0] we denote the first (leftmost) bit by firstbit(𝑋) = 𝑋[𝑚 − 1] and
the last (rightmost) bit by lastbit(𝑋) = 𝑋[0]. Let 𝑋[𝑖 · · · 𝑗] = 𝑋[𝑖] · · ·𝑋[𝑗] denote a substring of X, for
𝑚− 1 ≥ 𝑖 ≥ 𝑗 ≥ 0; by convention we let 𝑋[𝑖 · · · 𝑗] = 𝜀 if 𝑖 < 0 and 𝑋[𝑖 · · · 𝑗] = 𝑋[𝑖 · · · 0] if 𝑗 < 0.

For a non-negative integer 𝑖 let ⟨𝑖⟩𝑚 denote the binary representation of 𝑖 by an 𝑚-bit string. For
a bit string 𝑋 = 𝑋[𝑚 − 1] · · ·𝑋[0], let str2num(𝑋) =

∑︀𝑚−1
𝑖=0 𝑋[𝑖]2𝑖 denote the non-negative integer

represented by 𝑋. Let ntz(𝑖) denote the number of trailing zeros (i.e. the number of rightmost bits that
are zero) in the binary representation of a positive integer 𝑖. Let 1𝑛0𝑚 denote concatenation of 𝑛 ones
by 𝑚 zeros.

We let firstbits𝑖(𝑋) = 𝑋[𝑚− 1 · · ·𝑚− 𝑖] denote the 𝑖 leftmost bits and lastbits𝑖(𝑋) = 𝑋[𝑖− 1 · · · 0]
denote the 𝑖 rightmost bits of 𝑋. For two strings 𝑋 = 𝑋[𝑚 − 1] · · ·𝑋[0] and 𝑌 = 𝑌 [𝑛 − 1] · · ·𝑌 [0] of
possibly different lengths, let the notation 𝑋⊕𝑌 denote the bitwise xor of firstbits𝑖(𝑋) and firstbits𝑖(𝑌)
where 𝑖 = min {𝑚, 𝑛}. Clearly, if 𝑋 and 𝑌 have the same length then 𝑋 ⊕ 𝑌 matches the usual bitwise
xor. For any string 𝑋, define 𝑋 ⊕ 𝜀 = 𝜀⊕𝑋 = 𝜀.

2

The special symbol ⊥ signifies both that the value of a variable or a function at some input is
undefined, and an error. Let |𝑍| denote the number of elements of 𝑍 if 𝑍 is a set, and the length of 𝑍

in bits if 𝑍 is a string. We let |𝜀| = 0. For 𝑋 ∈ {0, 1}* let 𝑋1||𝑋2 · · · ||𝑋𝑚
𝑏← 𝑋 denote partitioning 𝑋

into blocks 𝑋𝑖 such that |𝑋𝑖| = 𝑏 for 1 ≤ 𝑖 ≤ 𝑚− 1 and |𝑋𝑚| ≤ 𝑏; let 𝑚 = |𝑋|𝑏 denote length of 𝑋 in
𝑏-bit blocks.

For a string 𝑋 = 𝑋[𝑚− 1] · · ·𝑋[0], let 𝑋 ≪ 𝑛 denote the left-shift operation, where the 𝑛 leftmost
bits are discarded and the 𝑛 vacated right bits are set to 0. We let 𝑋 ≫ 𝑛 denote the (unsigned)
right-shift operation where the 𝑛 rightmost bits are discarded and the 𝑛 vacated left bits are set to 0.
We let 𝑋 ≫𝑠 𝑛 denote the signed right-shift operation where the 𝑛 rightmost bits are discarded and
the 𝑛 vacated left bits are filled with the original leftmost bit (which is considered as the sign bit); for
example, 1001100≫𝑠 3 = 1111001. If the leftmost bit of 𝑋 is 0 then we have 𝑋 ≫𝑠 𝑛 = 𝑋 ≫ 𝑛.

The Finite Field with 2𝑛 Elements. Let (𝐺𝐹 (2𝑛),⊕, .) denote the Galois Field with 2𝑛 elements.
An element 𝛼 in 𝐺𝐹 (2𝑛) is represented as a formal polynomial 𝛼(𝑋) = 𝛼𝑛−1𝑋𝑛−1 + · · · + 𝛼1𝑋 + 𝛼0
with binary coefficients. We can assign an element 𝛼𝑖 ∈ 𝐺𝐹 (2𝑛) to an integer 𝑖 ∈ {0, . . . , 2𝑛 − 1} in
a natural way, similar applies for 𝛼𝑠 and a string 𝑠 ∈ {0, 1}𝑛. We sometimes refer to the elements
of 𝐺𝐹 (2𝑛) directly by strings or integers, if the context does not allow ambiguity. The addition “⊕”
and multiplication “.” of two field elements in 𝐺𝐹 (2𝑛) are defined as usual [14]. For 𝐺𝐹 (2256) we use
𝑃256(𝑋) = 𝑋256 + 𝑋10 + 𝑋5 + 𝑋2 + 1, and for 𝐺𝐹 (2512) we use 𝑃512(𝑋) = 𝑋512 + 𝑋8 + 𝑋5 + 𝑋2 + 1
as the irreducible polynomials used in the field multiplications. It is easy to multiply an arbitrary field
element 𝛼 by the element 2 (i.e. 𝑋). For example, in 𝐺𝐹 (2256) using 𝑃256(𝑋) the doubling operation
can be described as follows:

2.𝛼 =
{︃

𝛼≪ 1 if firstbit(𝛼) = 0
(𝛼≪ 1)⊕ 024510000100101 if firstbit(𝛼) = 1 (1)

= (𝛼≪ 1)⊕ ((𝛼≫𝑠 255) ∧ 024510000100101) (2)

We note that the results computed in (1) and (2) are the same but an implementation using (2) will
not be susceptible to the timing attacks unlike one which uses (1).

Advantage Function. The insecurity of a scheme 𝛱 in regard to a security property xxx is measured
using the resource parametrized function Advxxx

𝛱 (r) = 𝑚𝑎𝑥𝐴 {Advxxx
𝛱 (𝐴)}, where the maximum is

taken over all adversaries 𝐴 which use resources bounded by r.
Let 𝐴 be an adversary that returns a binary value; by 𝐴𝑓(.)(𝑋) ⇒ 1 we refer to the event that 𝐴

on input 𝑋 and access to an oracle function 𝑓(.) returns 1.

Pseudorandom Functions (PRFs) and Tweakable PRFs. Let Func(𝑚, 𝑛) = {𝑓 : {0, 1}𝑚 →
{0, 1}𝑛} be the set of all functions from 𝑚-bit strings to 𝑛-bit strings. A random function (RF) 𝑅 with
𝑚-bit input and 𝑛-bit output is a function selected uniformly at random from Func(𝑚, 𝑛). We denote
this by 𝑅

$← Func(𝑚, 𝑛).
Let Func𝒯 (𝑚, 𝑛) be the set of all functions

{︁ ̃︀𝑓 : 𝒯 × {0, 1}𝑚 → {0, 1}𝑛
}︁

, where 𝒯 is a set of tweaks. A
tweakable RF with the tweak space 𝒯 , 𝑚-bit input and 𝑛-bit output is a map ̃︀𝑅 : 𝒯 ×{0, 1}𝑚 → {0, 1}𝑛

selected uniformly at random from Func𝒯 (𝑚, 𝑛); i.e. ̃︀𝑅 $← Func𝒯 (𝑚, 𝑛). Clearly, if 𝒯 = {0, 1}𝑡 then
|Func𝒯 (𝑚, 𝑛)| = |Func(𝑚 + 𝑡, 𝑛)|, and hence, ̃︀𝑅 can be instantiated using a random function 𝑅 with
(𝑚 + 𝑡)-bit input and 𝑛-bit output. We use ̃︀𝑅⟨𝑇 ⟩(.) and ̃︀𝑅(𝑇, .) interchangeably, for every 𝑇 ∈ 𝒯 . Notice
that each tweak 𝑇 names a random function ̃︀𝑅⟨𝑇 ⟩ : {0, 1}𝑚 → {0, 1}𝑛 and distinct tweaks name distinct
(independent) random functions.

Let 𝐹 : 𝒦 × {0, 1}𝑚 → {0, 1}𝑛 be a keyed function and let ̃︀𝐹 : 𝒦 × 𝒯 × {0, 1}𝑚 → {0, 1}𝑛 be a
keyed and tweakable function, where the key space 𝒦 is some nonempty set. Let 𝐹𝐾(.) = 𝐹 (𝐾, .) and̃︀𝐹 ⟨𝑇 ⟩𝐾 (.) = ̃︀𝐹 (𝐾, 𝑇, .). Let 𝐴 be an adversary. Then:

3

Advprf
𝐹 (𝐴) = Pr

[︂
𝐾

$← 𝒦 : 𝐴𝐹𝐾(.) ⇒ 1
]︂
− Pr

[︂
𝑅

$← Func(𝑚, 𝑛) : 𝐴𝑅(.) ⇒ 1
]︂

Adṽ︁prf̃︀𝐹 (𝐴) = Pr
[︂
𝐾

$← 𝒦 : 𝐴
̃︀𝐹 ⟨.⟩

𝐾 (.) ⇒ 1
]︂
− Pr

[︂ ̃︀𝑅 $← Func𝒯 (𝑚, 𝑛) : 𝐴
̃︀𝑅⟨.⟩(.) ⇒ 1

]︂

The resource parametrized advantage functions are defined accordingly, considering that the ad-
versarial resources of interest here are the time complexity (𝑡) of the adversary and the total number
of queries (𝑞) asked by the adversary (note that we just consider fixed-input-length functions, so the
lengths of queries are fixed and known). We say that 𝐹 is (𝑡, 𝑞; 𝜖)-PRF if Advprf

𝐹 (𝑡, 𝑞) ≤ 𝜖. We say that̃︀𝐹 is (𝑡, 𝑞; 𝜖)-tweakable PRF if Adṽ︁prf̃︀𝐹 (𝑡, 𝑞) ≤ 𝜖.

3 Security Notions for AEAD

Syntax of an AEAD Scheme. A nonce-based authenticated encryption with associated data, AEAD
for short, is a symmetric key scheme 𝛱 = (𝒦, ℰ ,𝒟). The key space 𝒦 is some non-empty finite set.
The encryption algorithm ℰ : 𝒦 ×𝒩 × 𝒜 ×ℳ → 𝒞 ∪ {⊥} takes four arguments, a secret key 𝐾 ∈ 𝒦,
a nonce 𝑁 ∈ 𝒩 , an associated data (a.k.a. header data) 𝐴 ∈ 𝒜 and a message 𝑀 ∈ ℳ, and returns
either a ciphertext C ∈ 𝒞 or a special symbol ⊥ indicating an error. The decryption algorithm 𝒟 :
𝒦 ×𝒩 ×𝒜× 𝒞 →ℳ∪ {⊥} takes four arguments (𝐾, 𝑁, 𝐴,C) and either outputs a message 𝑀 ∈ ℳ
or an error indicator ⊥.

For correctness of the scheme, it is required that 𝒟(𝐾, 𝑁, 𝐴,C) = 𝑀 for any C such that C =
ℰ(𝐾, 𝑁, 𝐴, 𝑀). It is also assumed that if algorithms ℰ and 𝒟 receive parameter not belonging to their
specified domain of arguments they will output ⊥. We write ℰ𝐾(𝑁, 𝐴, 𝑀) = ℰ(𝐾, 𝑁, 𝐴, 𝑀) and similarly
𝒟𝐾(𝑁, 𝐴,C) = 𝒟(𝐾, 𝑁, 𝐴,C).

We assume that the message and associated data can be any binary string of arbitrary but finite
length; i.e. ℳ = {0, 1}* and 𝒜 = {0, 1}*, but the key and nonce are some fixed-length binary strings,
i.e. 𝒩 = {0, 1}|𝑁 | and 𝒦 = {0, 1}𝑘, where the positive integers |𝑁 | and 𝑘 are respectively the nonce
length and the key length of the scheme in bits. We assume that |ℰ𝐾(𝑁, 𝐴, 𝑀)| = |𝑀 | + 𝜏 for some
positive fixed constant 𝜏 ; that is, we will have C = 𝐶||Tag where |𝐶| = |𝑀 | and |Tag| = 𝜏 . We call 𝐶
the core ciphertext and Tag the tag.

Nonce Respecting Adversaries. Let 𝐴 be an adversary. We say that 𝐴 is nonce-respecting if it
never repeats a nonce in its encryption queries. That is, if 𝐴 queries the encryption oracle ℰ𝐾(·, ·, ·) on
(𝑁1, 𝐴1, 𝑀1) · · · (𝑁𝑞, 𝐴𝑞, 𝑀𝑞) then 𝑁1, · · · , 𝑁𝑞 must be distinct.

Privacy Notion. We adopt the privacy notion called indistinguishability of ciphertext from random
bits under CPA (IND$-CPA), which is defined in [26] as a stronger variant of the classical IND-CPA
notion [5, 8].

Let 𝛱 = (𝒦, ℰ ,𝒟) be a nonce-based AEAD scheme. Let 𝐴 be a nonce-respecting adversary. 𝐴
is provided with an oracle which can be either a real encryption oracle ℰ𝐾(·, ·, ·) such that on input
(𝑁, 𝐴, 𝑀) returns C = ℰ𝐾(𝑁, 𝐴, 𝑀), or a fake encryption oracle $(·, ·, ·) which on any input (𝑁, 𝐴, 𝑀)
returns |C| fresh random bits. The advantage of 𝐴 in mounting a chosen plaintext attack (CPA) against
the privacy property of 𝛱 is measured as follows:

Advpriv
𝛱 (𝐴) = Pr[𝐾 $←− 𝒦 : 𝐴ℰ𝐾(·,·,·) ⇒ 1]− Pr[𝐴$(·,·,·) ⇒ 1].

Authenticity Notion. We adopt the established notion of authenticity, called integrity of ciphertext
(INT-CTXT) under CCA attacks. The notion was originally defined in [8] for AE schemes and later
revisited to include (authentication of AD in) AEAD schemes in [23].

4

Let 𝛱 = (𝒦, ℰ ,𝒟) be a nonce-based AEAD scheme. Let 𝐴 be a nonce-respecting adversary. We
stress that nonce-respecting is only regarded for the encryption queries; that is, 𝐴 can repeat nonces
during its decryption queries and it can also ask an encryption query with a nonce that was already
used in a decryption query. Let 𝒜 be provided with the encryption oracle ℰ𝐾(·, ·, ·) and the decryption
oracle 𝒟𝐾(·, ·, ·); that is, we consider adversaries that can mount chosen ciphertext attacks (CCA). We
say that 𝐴 forges if it makes a decryption query (𝑁, 𝐴,C) such that 𝒟𝐾(𝑁, 𝐴,C) ̸= ⊥ and no previous
encryption query ℰ𝐾(𝑁, 𝐴, 𝑀) returned C.

Advauth
𝛱 (𝐴) = Pr[𝐾 $←− 𝒦 : 𝐴ℰ𝐾(·,·,·), 𝒟𝐾(·,·,·) forges].

Resource parameters. Let an adversary 𝐴 make encryption queries (𝑁1, 𝐴1, 𝑀1) · · · (𝑁 𝑞𝑒 , 𝐴𝑞𝑒 , 𝑀 𝑞𝑒)
and decryption queries (𝑁 ′1, 𝐴′1,C′1) · · · (𝑁 ′𝑞𝑣 , 𝐴′𝑞𝑣 ,C′𝑞𝑣). We define the resource parameters of 𝐴 as
(𝑡, 𝑞𝑒, 𝑞𝑣, 𝜎𝐴, 𝜎𝑀 , 𝜎𝐴′ , 𝜎C′ , 𝐿𝑚𝑎𝑥), where 𝑡 is the time complexity, 𝑞𝑒 and 𝑞𝑣 are respectively the total
number of encryption queries and decryption queries, 𝐿𝑚𝑎𝑥 is the maximum length of each query in
bits, 𝜎𝐴 =

∑︀𝑞𝑒
𝑖=1 |𝐴𝑖|, 𝜎𝑀 =

∑︀𝑞𝑒
𝑖=1 |𝑀 𝑖|, 𝜎𝐴′ =

∑︀𝑞𝑣
𝑖=1 |𝐴′

𝑖| and 𝜎C′ =
∑︀𝑞𝑣

𝑖=1(|C′𝑖| − 𝜏).
The absence of a resource parameter will mean that the parameter is irrelevant in the context and

hence omitted.

4 The p-OMD Mode of Operation

p-OMD is a mode of operation that converts a keyed compression function to an AEAD scheme. To in-
stantiate p-OMD, one must first choose and fix a keyed compression function 𝐹 : 𝒦×({0, 1}𝑛 × {0, 1}𝑚)→
{0, 1}𝑛 and a tag length 𝜏 ≤ 𝑛; with the key space 𝒦 = {0, 1}𝑘 and 𝑚 ≤ 𝑛. Let p-OMD[𝐹, 𝜏] denote
the p-OMD instantiated by fixing 𝐹 and 𝜏 .

If the compression function at hand does not have a dedicated key input per se, as it is the case
for standard hash functions, then a keyed compression function with 𝑛 + 𝑚 input bits can be obtained
from the keyless compression function with 𝑛 + 𝑏 input bits by allocating 𝑘 input bits for the key, such
that 𝑏 = 𝑚 + 𝑘. For example, if we use the compression function of SHA-256, we have 𝑛 = 256, 𝑏 = 512
and setting 𝑘 = 256 will give us a keyed compression function with 𝑚 = 𝑛 = 256.

Description of the Mode. The main design rationale behind p-OMD is the integration of AD
processing into the same MD path that processes the message. Figure 1 shows a schematic representation
of the encryption algorithm of p-OMD[𝐹, 𝜏]. The decryption algorithm can be straightforwardly derived
from the encryption algorithm with the additional verification of the authentication tag at the end of the
decryption process. While the overall structure of such design is rather simple, the combined processing
of the message and associated data blocks in p-OMD creates several additional possible cases, to be
treated and analyzed carefully, compared to the analysis of OMD. Figure 2 provides an algorithmic
description.

In the following we briefly explain the components that may need further clarification.

(1) Computing 𝛥𝑁,𝑖,𝑗 . As shown in Figure 1, before each call to the underlying compression function
𝐹 , we xor a (key-dependent) masking value 𝛥𝑁,𝑖,𝑗 to the chaining variable, where 𝑁 is the nonce,
the 𝑖 component of the index is incremented at each call to the compression function and the 𝑗
component is changed when needed (according to a pattern that will be detailed shortly). This
method is known as the 𝑋𝐸 method [24] and is used for converting 𝐹 to a tweakable function.
There are different plausible ways to compute such masking values (under efficiency and security
constraints) [12, 20, 24]. We adopt the Gray code based method following [20]. In the following, all
multiplications (denoted by “·”) are in 𝐺𝐹 (2𝑛).
(a) Precomputation. Let 𝐿*(0) = 0𝑛, 𝐿*(1) = 𝐹𝐾(0𝑛, 0𝑚) and 𝐿*(𝑖) = 𝑖 ·𝐿*(1) for 2 ≤ 𝑖 ≤ 15. Let

𝐿(0) = 16 · 𝐿*(1) and 𝐿(𝑗) = 2 · 𝐿(𝑗 − 1) for 𝑗 ≥ 1. For a fast implementation the values 𝐿*(𝑖)

5

FK FK
b b b FK FK0

n

〈τ〉m M1 Mℓ−2 M̄ℓ

C1 C2 Cℓ−1

∆N,1,0 ∆N,2,0 ∆N,ℓ−1,0 ∆N,ℓ+1,jf

M1 Mℓ−1M2

τ bits

Tag

A′

2A′

1
A′

ℓ−1

FK

Mℓ−1

Cℓ

∆N,ℓ,0

Mℓ

FK FK
b b b FK FK0

n

〈τ〉m M1 Ma′−1 M̄ℓ

A′

2A′

1
Ā′

a′

FK

Ma′

A′

ℓ
Ā′

ℓ+1

C2 Ca′

∆N,1,0 ∆N,2,0 ∆N,a′,0 ∆N,ℓ+1,jf

M1 Ma′M2

Ca′+1

∆N,a′+1,1

Ma′+1

FK FK
b b b FK FK0

n

〈τ〉m M1 M̄ℓ

C1 C2

∆N,1,0 ∆N,2,0 ∆N,ℓ+1,0 ∆N,ℓ+a∗+1,jf

M1 M2

A′

2A′

1
A′

ℓ+1

FK

∆N,ℓ+2,2

A∗

1

n + m

n m

Ā∗

a∗

n + m

n m

n bits

Tag′

n bits

Tag′

n bits

Tag′

C1

FK FK
b b b FK0

n

〈τ〉m

∆N,1,2 ∆N,2,2 ∆N,a∗+1,jf

A′

FK

∆N,a∗,2

A∗

a∗
−1

n + m

n m

Ā∗

a∗

n + m

n m

n bits

Tag′

A∗

1

n + m

n m

FK0
n

〈τ〉m

∆N,1,3

n bits

Tag′

Tag′

n bits

trunc

Case A:ℓ > 0 and |A|n = ℓ+ 1. Let M̄ℓ = Mℓ||10
m−|Mℓ |−1 if |Mℓ| < m and M̄ℓ = Mℓ otherwise.

Case B:ℓ > 0 and |A|n < ℓ+ 1. Let M̄ℓ = Mℓ||10
m−|Mℓ |−1 if |Mℓ| < m and M̄ℓ = Mℓ otherwise.

Let Ā′
a′ = A

′
a′ ||10

n−|A′

a′
|−1

if |A′
a′ | < n and Ā

′
a′ = A

′
a′ otherwise.

Let Ā′
a′ = A

′
a′ ||10

n−|A′

a′
|−1

if |A′
a′ | < n and Ā

′
a′ = A

′
a′ otherwise.

Case C:ℓ > 0 and |A|n > ℓ+ 1. Let M̄ℓ = Mℓ||10
m−|Mℓ |−1 if |Mℓ| < m and M̄ℓ = Mℓ otherwise.

Let Ā∗
a∗ = A

∗
a∗ ||10n+m−|A∗

a∗
|−1 if |A∗

a∗ | < n+m and Ā
∗
a∗ = A

∗
a∗ otherwise.

Case F

Case D: M = ε and |A| > n. Let Ā∗
a∗ = A

∗
a∗ ||10n+m−|A∗

a∗
|−1 if |A∗

a∗ | < n+m and Ā
∗
a∗ = A

∗
a∗ otherwise.

Obtaining the

final tag.

FK0
n

〈τ〉m

∆N,1,jf

Ā′

Case E: M = ε and 0 < |A| ≤ n. Let Ā′ = A
′||10n−|A′ |−1

if |A′| < n and Ā′ = A
′ otherwise.

n bits

Tag′

b b b

b b b

M = A = ε

Fig. 1. The encryption process of p-OMD[𝐹, 𝜏]. For the details on how the parameters and masking offsets are computed
consult the description in Section 4.

6

and 𝐿(𝑗) can be precomputed and stored in a table for 1 ≤ 𝑖 ≤ 15 and 0 ≤ 𝑗 ≤ ⌈log2(ℓ𝑚𝑎𝑥)⌉,
where ℓ𝑚𝑎𝑥 is the the bound on the maximum number of blocks in 𝑀 or 𝐴. Alternatively, (if
there is a memory restriction) they can be computed on-the-fly. Note that all 𝐿*(𝑖) are linear.

(b) Computation of the masking sequence. The masking values 𝛥𝑁,𝑖,𝑗 are computed sequen-
tially as follows. Let 𝛥𝑁,0,0 = 𝐹𝐾(𝑁 ||10𝑛−1−|𝑁 |, 0𝑚). For 𝑖 ≥ 1 and 𝑗, 𝑗′ ∈ {0, 1, . . . , 15}:
𝛥𝑁,𝑖,𝑗 = 𝛥𝑁,𝑖−1,𝑗′⊕𝐿(ntz(𝑖))⊕𝐿* (str2num (⟨𝑗⟩4 ⊕ ⟨𝑗′⟩4)). For details on how we get this compact
relation adopting the Gray code based sequence partition method, we refer to Appendix A.

1: Algorithm Precompute(𝐾)
2: 𝐿*(0) = 0𝑛

3: 𝐿*(1)← 𝐹𝐾(0𝑛, 0𝑚)
4: for 𝑖← 2 to 15 do
5: 𝐿*(𝑖) = 𝑖 · 𝐿*(1)
6: 𝐿(0)← 16 · 𝐿*(1)
7: for 𝑖← 1 to ⌈log2(ℓ𝑚𝑎𝑥)⌉ do
8: 𝐿(𝑖) = 2 · 𝐿(𝑖− 1)
9: return

1: Algorithm ℰ𝐾(𝑁, 𝐴, 𝑀)
2: if |𝑁 | > 𝑛− 1 then
3: return ⊥
4: PARTITION(𝐴, 𝑀)
5: PAD(𝐴′, 𝐴*, 𝑀)
6: 𝛥← 𝐹𝐾(𝑁 ||10𝑛−1−|𝑁|, 0𝑚)
7: 𝛥← 𝛥⊕ 𝐿(0)
8: 𝐻 ← 0𝑛; 𝑗 ← 0
9: if 𝑎′ = 0 and ℓ = 0 then

10: SWITCH(𝛥, 𝑗, 3)
11: else if 𝑎′ = 0 then
12: SWITCH(𝛥, 𝑗, 1)
13: else
14: 𝐻 ← 𝐻 ⊕𝐴′

1
15: if 𝑎′ = 1 and 𝑎* > 0 then
16: SWITCH(𝛥, 𝑗, 2)
17: else if 𝑎′ = 1 and ℓ = 0 then
18: SWITCH(𝛥, 𝑗, 12 + 𝑗𝐴 + 𝑗𝑀)
19: 𝐻 ← 𝐹𝐾(𝐻 ⊕𝛥, ⟨𝜏⟩𝑚)
20: 𝑖← 2

21: if 𝑎′ > 1 then ◁ stage 1
22: PROC1(𝑀, 𝐴′, 𝐻, 𝛥, 𝑖)
23: if 𝑖 = ℓ + 1 then
24: 𝐶𝑖−1 ← 𝐻 ⊕𝑀𝑖−1
25: 𝐻 ← 𝐻 ⊕𝐴′

𝑖
26: 𝛥← 𝛥⊕ 𝐿(ntz(𝑖))
27: if 𝑎* = 0 then
28: SWITCH(𝛥, 𝑗, 4 + 𝑗𝐴 + 𝑗𝑀)
29: 𝐻 ← 𝐹𝐾(𝐻 ⊕𝛥, �̄�𝑖−1)
30: 𝑖← 𝑖 + 1
31: if ℓ ≥ 𝑎′ then ◁ stage 2
32: SWITCH(𝛥, 𝑗, 1)
33: PROC2(𝑀, 𝐻, 𝛥, 𝑖)
34: 𝐶𝑖−1 ← 𝐻 ⊕𝑀𝑖−1
35: 𝛥← 𝛥⊕ 𝐿(ntz(𝑖))
36: SWITCH(𝛥, 𝑗, 8 + 𝑗𝐴 + 𝑗𝑀)
37: 𝐻 ← 𝐹𝐾(𝐻 ⊕𝛥, �̄�𝑖−1)
38: 𝑖← 𝑖 + 1
39: else if 𝑎* > 0 then ◁ stage 3
40: SWITCH(𝛥, 𝑗, 2)
41: PROC3(𝐴*, 𝐻, 𝛥, 𝑖)
42: Left← 𝐴*

𝑎* [𝑛 + 𝑚− 1 · · ·𝑚]
43: Right← 𝐴*

𝑎* [𝑚− 1 · · · 0]
44: 𝐻 ← 𝐻 ⊕ Left
45: 𝛥← 𝛥⊕ 𝐿(ntz(𝑖))
46: SWITCH(𝛥, 𝑗, 12 + 𝑗𝐴 + 𝑗𝑀)
47: 𝐻 ← 𝐹𝐾(𝐻 ⊕𝛥, Right)
48: Tag← 𝐻[𝑛− 1 · · ·𝑛− 𝜏]
49: C← 𝐶1||𝐶2|| · · · ||𝐶ℓ||Tag
50: return C

Fig. 2. Description of the encryption algorithm of p-OMD[𝐹, 𝜏]. stage 1 processes blocks of message and AD simultane-
ously (Cases A,B and C in Figure 1). stage 2 processes only message blocks (Case B in Figure 1 and the case when
we only have a message and no AD that is not in the Figure). stage 3 processes only double blocks of AD (Cases C and
D in Figure 1). Note that the Cases E and F are handled outside of the three stages. Subroutines PARTITION, PAD,
SWITCH and PROC1-3 are described in Figure 3.

(2) Encryption Algorithm: To encrypt a message 𝑀 ∈ {0, 1}* with associated data 𝐴 ∈ {0, 1}* using
nonce 𝑁 ∈ {0, 1}|𝑁 | and key 𝐾 ∈ {0, 1}𝑘, obtaining a ciphertext C = 𝐶||Tag ∈ {0, 1}|𝑀 |+𝜏 , do the
following.
(a) Partitioning the message and associated data. The partitioning is done by the PAR-

TITION subroutine in Figure 3. Let 𝑀1||𝑀2 · · ·𝑀ℓ−1||𝑀ℓ
𝑚← 𝑀 . Let 𝐴′||𝐴* ← 𝐴 where

𝐴′ ← 𝐴[|𝐴| − 1 · · · |𝐴| − (ℓ + 1)𝑛] and 𝐴* ← 𝐴[|𝐴| − |𝐴′| − 1 · · · 0] (refer to the notations in
Section 2). Let 𝐴′1||𝐴′2 · · ·𝐴′𝑎′−1||𝐴′𝑎′

𝑛←− 𝐴′ and 𝐴*1||𝐴*2 · · ·𝐴*𝑎*−1||𝐴*𝑎*
𝑛+𝑚←−−− 𝐴*. The string 𝐴′

consists of 𝑎′ ≤ ℓ + 1 𝑛-bit blocks and these blocks will be simply absorbed into the chaining
variable during the message encryption. In a typical use case where the associated data is (a
header) shorter than the message, we will have 𝐴′ = 𝐴 i.e. 𝐴* = 𝜀 (Case A and Case B in
Figure 1). The string 𝐴* will be non-empty only if |𝐴| > (ℓ + 1)𝑛, in which case, while 𝐴* is

7

being processed, there are no more message blocks to encrypt. To maximize the efficiency, we
partition the string 𝐴* into 𝑛 + 𝑚-bit blocks so that we can make use of both of the inputs to
𝐹 (see Case C and Case D in Figure 1).

(b) Processing the message and associated data. The message and associated data blocks
are processed by the modified MD iteration of the keyed compression functions 𝐹 as shown in
Figure 1. For every call to 𝐹 , the 𝑛-bit input (chaining variable) is masked by the value 𝛥𝑁,𝑖,𝑗 ;
where, the 𝑁 component in the index denotes the nonce; 𝑖 starts with the value 𝑖 = 1 at the first
call to 𝐹 and is incremented (by one) for every call; the 𝑗 component is used to separate logical
parts in the encryption process as well as different types of input arguments. Appropriate use of
the 𝑗 component is essential for security and facilitates the analysis, as will be described in the
following.

1: Subroutine PARTITION(𝐴, 𝑀)
2: 𝑏← 𝑛 + 𝑚
3: 𝑀1||𝑀2 · · ·𝑀ℓ−1||𝑀ℓ

𝑚←𝑀 ◁ (ℓ = |𝑀 |𝑚)
4: 𝐴′ ← 𝐴[|𝐴| − 1 · · · |𝐴| − (ℓ + 1)𝑛]
5: 𝐴* ← 𝐴[|𝐴| − |𝐴′| − 1 · · · 0]
6: 𝐴′

1||𝐴
′
2 · · ·𝐴

′
𝑎′−1||𝐴

′
𝑎′

𝑛←− 𝐴′ ◁ (𝑎′ = |𝐴′|𝑛)

7: 𝐴*
1||𝐴

*
2 · · ·𝐴

*
𝑎*−1||𝐴

*
𝑎*

𝑏←− 𝐴* ◁ (𝑎* = |𝐴*|𝑛+𝑚)

1: Subroutine PAD(𝐴′, 𝐴*, 𝑀)
2: if |𝑀 | mod 𝑚 ̸= 0 then
3: �̄�ℓ ←𝑀ℓ||10𝑚−|𝑀ℓ|−1

4: 𝑗𝑀 ← 1
5: else
6: �̄�ℓ ←𝑀ℓ

7: 𝑗𝑀 ← 0
8: if |𝐴′| mod 𝑛 ̸= 0 then
9: 𝐴′

𝑎′ ← 𝐴′
𝑎′ ||10𝑛−|𝐴′

𝑎′ |−1

10: 𝑗𝐴 ← 2
11: else if |𝐴*| mod 𝑛 + 𝑚 ̸= 0 then
12: 𝐴*

𝑎* ← 𝐴*
𝑎* ||10𝑛+𝑚−|𝐴*

𝑎* |−1

13: 𝑗𝐴 ← 2
14: else
15: 𝑗𝐴 ← 0

1: Subroutine SWITCH(𝛥, 𝑗, 𝑗new)
2: 𝛥← 𝛥⊕ 𝐿*(str2num(⟨𝑗⟩4 ⊕ ⟨𝑗new⟩4))
3: 𝑗 ← 𝑗new

1: Subroutine PROC1(𝑀, 𝐴′, 𝐻, 𝛥, 𝑖)
2: 𝑟stop ← min{ℓ, 𝑎′}
3: for 𝑟 ← 𝑖 to 𝑟stop do
4: 𝐶𝑟−1 ← 𝐻 ⊕𝑀𝑟−1
5: 𝐻 ← 𝐻 ⊕𝐴′

𝑟

6: 𝛥← 𝛥⊕ 𝐿(ntz(𝑟))
7: 𝐻 ← 𝐹𝐾(𝐻 ⊕𝛥, 𝑀𝑟−1)
8: 𝑖← 𝑟stop + 1

1: Subroutine PROC2(𝑀, 𝐻, 𝛥, 𝑖)
2: for 𝑟 ← 𝑖 to ℓ do
3: 𝐶𝑟−1 ← 𝐻 ⊕𝑀𝑟−1
4: 𝛥← 𝛥⊕ 𝐿(ntz(𝑟))
5: 𝐻 ← 𝐹𝐾(𝐻 ⊕𝛥, 𝑀𝑟−1)
6: 𝑖← ℓ + 1

1: Subroutine PROC3(𝐴*, 𝐻, 𝛥, 𝑖)
2: for 𝑟 ← 1 to 𝑎* do
3: Left← 𝐴*

𝑟 [𝑛 + 𝑚− 1 · · ·𝑚]
4: Right← 𝐴*

𝑟 [𝑚− 1 · · · 0]
5: 𝐻 ← 𝐻 ⊕ Left
6: 𝛥← 𝛥⊕ 𝐿(ntz(𝑖 + 𝑟 − 1))
7: 𝐻 ← 𝐹𝐾(𝐻 ⊕𝛥, Right)
8: 𝑖← 𝑖 + 𝑎* − 1

Fig. 3. The subroutines used in the encryption algorithm of p-OMD[𝐹, 𝜏] (Figure 2)
.

(3) Selection of the 𝑗 component in the index of the masks 𝛥𝑁,𝑖,𝑗 . We use different values
of 𝑗 to separate the calls to the masked 𝐹 in different contexts. Let’s classify the calls to the
masked 𝐹 to two types: (1) the final call to 𝐹 which returns the tag, and (2) the internal calls.
We note that in the special case that 𝑀 = 𝜀 and |𝐴| ≤ 𝑛 there will be only one call to 𝐹 which
returns the tag; hence, it is considered as the final call.
Internal Calls. We use 𝑗 ∈ {0, 1, 2} for the internal calls made to the masked 𝐹 as follows.

For 𝑖 = 1, i.e. the first call to 𝐹 , the value of 𝑗 is determined as follows:
* if ℓ > 0 and 𝑎′ > 0 then let 𝑗 = 0,
* if ℓ > 0 and 𝑎′ = 0 then let 𝑗 = 1,
* if ℓ = 0 and 𝑎* > 0 then let 𝑗 = 2.

For 1 < 𝑖 < ℓ + 1 + 𝑎*, depending on the presence of message blocks and AD blocks to be
processed at the 𝑖th call to the masked 𝐹 , we have:

8

* if both an 𝑛-bit AD block and an 𝑚-bit message block are present then 𝑗 = 0,
* if only an 𝑚-bit message block is present (no AD block is processed) then 𝑗 = 1,
* if only an (𝑛 + 𝑚)-bit AD block is present (no message block is processed) then 𝑗 = 2.

Final Call. The final call to 𝐹 which produces the authentication tag uses 𝑗𝑓 ∈ {3, 4, 5, . . . , 14, 15}.
If the tag is produced by a call to 𝐹 with 𝑖 ̸= 1, we have three main cases depending on the
inputs to the final masked 𝐹 .
* If both an AD block and a message block are present in the final call (see Case A in

Figure 1) then 𝑗𝑓 ∈ {4, 5, 6, 7}; where, we let 𝑗𝑓 = 4 if |𝑀ℓ| = 𝑚 and |𝐴′𝑎′ | = 𝑛; let 𝑗𝑓 = 5
if |𝑀ℓ| < 𝑚 and |𝐴′𝑎′ | = 𝑛; let 𝑗𝑓 = 6 if |𝑀ℓ| = 𝑚 and |𝐴′𝑎′ | < 𝑛, and otherwise (|𝑀ℓ| < 𝑚
and |𝐴′𝑎′ | < 𝑛) let 𝑗𝑓 = 7.
* If only a message block is present but no AD block is processed in the final call (see Case

B in Figure 1) then 𝑗𝑓 ∈ {8, 9, 10, 11}; where, we let 𝑗𝑓 = 8 if |𝑀ℓ| = 𝑚 and |𝐴′𝑎′ | = 𝑛; let
𝑗𝑓 = 9 if |𝑀ℓ| < 𝑚 and |𝐴′𝑎′ | = 𝑛; let 𝑗𝑓 = 10 if |𝑀ℓ| = 𝑚 and |𝐴′𝑎′ | < 𝑛, and otherwise
(|𝑀ℓ| < 𝑚 and |𝐴′𝑎′ | < 𝑛) let 𝑗𝑓 = 11 . For the special case where there is no associate
data at all, i.e. 𝐴 = 𝜀, we let 𝑗𝑓 = 8 if |𝑀ℓ| = 𝑚 and let 𝑗𝑓 = 9 if |𝑀ℓ| < 𝑚.
* If only an AD block is present but no message block is processed in the final call (see Case

C and Case D in Figure 1) then 𝑗𝑓 ∈ {12, 13, 14, 15}; where, we let 𝑗𝑓 = 12 if |𝑀ℓ| = 𝑚
and |𝐴*𝑎* | = 𝑛 + 𝑚; let 𝑗𝑓 = 13 if |𝑀ℓ| < 𝑚 and |𝐴*𝑎* | = 𝑛 + 𝑚; let 𝑗𝑓 = 14 if |𝑀ℓ| = 𝑚
and |𝐴*𝑎* | < 𝑛 + 𝑚, and otherwise (|𝑀ℓ| < 𝑚 and |𝐴*𝑎* | < 𝑛 + 𝑚) let 𝑗𝑓 = 15. For the
special case where there is no message at all, i.e. 𝑀 = 𝜀, let 𝑗𝑓 = 12 if |𝐴*𝑎* | = 𝑛 + 𝑚 and
let 𝑗𝑓 = 14 if |𝐴*𝑎* | < 𝑛 + 𝑚.

For 𝑖 = 1 (meaning that the final call is the same as the first call, which happens if 𝑀 = 𝜀
AND |𝐴| ≤ 𝑛) we need to apply a special treatment:
* if both 𝑀 = 𝐴 = 𝜀 then 𝑗𝑓 = 3 (Case F in Figure 1),
* if 𝑀 = 𝜀 and 0 < |𝐴| ≤ 𝑛 then we let 𝑗𝑓 = 12 if |𝐴| = 𝑛, otherwise, let 𝑗𝑓 = 14 (Case E

box in Figure 1).
Note that there is no variable 𝑗𝑓 in Figure 2 as 𝑗𝑓 corresponds to a special use of variable 𝑗 in
the last call to 𝐹 . Specifically, 𝑗𝑓 corresponds to the calls to the SWITCH subroutine that use
the value of new 𝑗 of the form const + 𝑗𝐴 + 𝑗𝑀 or the value 3.

(4) Decryption Algorithm: The decryption algorithm accepts a ciphertext C ∈ {0, 1}* together with
associated data 𝐴 ∈ {0, 1}* and nonce 𝑁 ∈ {0, 1}|𝑁 |, and using key 𝐾 ∈ {0, 1}𝑘 obtains a plaintext
𝑀 ∈ {0, 1}* or returns an invalid indication ⊥. If |C| < 𝜏 then return ⊥. Otherwise let 𝐶 be the
first |C|− 𝜏 bits of C and Tag be the remaining 𝜏 bits. Now, considering that the encryption process
of p-OMD is actually an additive stream cipher with an integrated authentication mechanism, the
decryption process proceeds the same as the encryption process up until the verification of the tag,
which happens at the end of the decryption process where the newly computed tag Tag′ is compared
with the provided tag Tag. If Tag′ = Tag then output 𝑀 , otherwise output ⊥.

5 Security Analysis

The security analysis for p-OMD is modular and easy to follow. The high-level structure of the analysis
is similar to that of OMD, as expected from the similarities of the algorithms, though the details differ
and are more involved. The proof is divided into three main steps as follows:

Step 1: Idealization of the p-OMD scheme using a tweakable random function. We first analyse the
security of a generalized variant of p-OMD[𝐹, 𝜏] where the “masked 𝐹” (aimed to instantiate a
tweakable function) is replaced by an ideal primitive; namely, a tweakable random function ̃︀𝑅. This
generalized scheme is called p-OMD[̃︀𝑅, 𝜏] and illustrated in Figure 4. This is the major proof step
which differs from and is more involved than that of OMD.

9

Step 2: Realization of the tweakable random function by a tweakble PRF. This is a well-known classical
method where the (ideal) random function is replaced by a PRF. This proof step is therefore the
same as that of OMD.

Step 3: Instantiation of the tweakable PRF via a PRF. To make a tweakable PRF out of a PRF, we
use the XE method of [24] with the masking sequence generated based on an appropriate adjustment
of a canonical Gray code sequence [20, 26]. This step is similar to that of OMD; only the details of
the mask generation function differ.

The security bound for p-OMD is given by Theorem 1. It is interesting to note that the security
bound is the same as that of OMD, showing that the natural modifications we made to OMD to obtain
p-OMD are without any loss of security.

Theorem 1. Fix 𝑛 ≥ 1, 0 ≤ 𝜏 ≤ 𝑛. Let 𝐹 : 𝒦× ({0, 1}𝑛 × {0, 1}𝑚)→ {0, 1}𝑛 be a PRF, where the key
space 𝒦 = {0, 1}𝑘 for 𝑘 ≥ 1 and 1 ≤ 𝑚 ≤ 𝑛. We have

Advpriv
p−OMD[𝐹,𝜏](𝑡, 𝑞𝑒, 𝜎𝑒, ℓ𝑚𝑎𝑥) ≤Advprf

𝐹 (𝑡′, 2𝜎𝑒) + 3𝜎2
𝑒

2𝑛

Advauth
p−OMD[𝐹,𝜏](𝑡, 𝑞𝑒, 𝑞𝑣, 𝜎, ℓ𝑚𝑎𝑥) ≤Advprf

𝐹 (𝑡′, 2𝜎) + 3𝜎2

2𝑛
+ 𝑞𝑣ℓ𝑚𝑎𝑥

2𝑛
+ 𝑞𝑣

2𝜏

where 𝑞𝑒 and 𝑞𝑣 are, respectively, the number of encryption and decryption queries, ℓ𝑚𝑎𝑥 denotes the
maximum number of the internal calls to 𝐹 in an encryption or decryption query, 𝑡′ = 𝑡 + 𝑐𝑛𝜎 for some
constant 𝑐, and 𝜎𝑒 and 𝜎 are the total number of calls to the underlying compression function 𝐹 in
all queries asked by the CPA and CCA adversaries against the privacy and authenticity of the scheme,
respectively.

The proof is obtained by combining Lemma 1 in Section 5.1 with Lemma 2 in Section 5.2 and
Lemma 3 in Section 5.3.

5.1 Idealization of p-OMD

The scheme p-OMD[̃︀𝑅, 𝜏] is a generalization (idealization) of p-OMD[𝐹, 𝜏] that uses a tweakable random
function ̃︀𝑅 : 𝒯 × ({0, 1}𝑛 × {0, 1}𝑚) → {0, 1}𝑛 instead of the masked 𝐹 (used for instantiating such
an ideal primitive). The p-OMD[̃︀𝑅, 𝜏] is depicted in Figure 4. The tweak space 𝒯 consists of sixteen
mutually exclusive sets of tweaks 𝒯 =

⋃︀15
𝑖=0𝒩 × N× {𝑖}, where 𝒩 = {0, 1}|𝑁 | is the set of nonces and

N is the set of positive integers.

Lemma 1. Let p-OMD[̃︀𝑅, 𝜏] be the scheme shown in Figure 4. Then

Advpriv
p-OMD[̃︀𝑅,𝜏]

(𝑞𝑒, 𝜎𝑒, ℓ𝑚𝑎𝑥) = 0

Advauth
p-OMD[̃︀𝑅,𝜏](𝑞𝑒, 𝑞𝑣, 𝜎, ℓ𝑚𝑎𝑥) ≤ 𝑞𝑣ℓ𝑚𝑎𝑥

2𝑛
+ 𝑞𝑣

2𝜏

where 𝑞𝑒 and 𝑞𝑣 are, respectively, the number of encryption and decryption queries, ℓ𝑚𝑎𝑥 denotes the
maximum number of the internal calls to the underlying tweakable random function ̃︀𝑅 in an encryption
or decryption query, and 𝜎𝑒 and 𝜎 are the total number of calls to ̃︀𝑅 in all queries asked by the CPA
and CCA adversaries against the privacy and authenticity of the scheme, respectively.

Proof. The proof of the privacy bound is straightforward. Let 𝐴 be a CPA adversary that asks (en-
cryption) queries (𝑁1, 𝐴1, 𝑀1) · · · (𝑁 𝑞𝑒 , 𝐴𝑞𝑒 , 𝑀 𝑞𝑒) where all 𝑁 𝑟 values (for 1 ≤ 𝑟 ≤ 𝑞𝑒) are distinct due
to the nonce-respecting assumption on the adversary 𝐴. Referring to Figure 4, this means that we are

10

b b b0
n

〈τ〉m M1 Mℓ−2 M̄ℓ

C1 C2 Cℓ−1

R
〈N,1,0〉

R
〈N,2,0〉

R
〈N,ℓ−1,0〉

R
〈N,ℓ+1,jf 〉

M1 Mℓ−1M2

τ bits

Tag

A′

2A′

1
A′

ℓ−1

Mℓ−1

Cℓ

R
〈N,ℓ,0〉

Mℓ

b b b0
n

〈τ〉m M1 Ma′−1 M̄ℓ

A′

2A′

1
Ā′

a′

Ma′

A′

ℓ
Ā′

ℓ+1

C2 Ca′

M1 Ma′M2

Ca′+1

Ma′+1

b b b0
n

〈τ〉m M1 M̄ℓ

C1 C2

M1 M2

A′

2A′

1
A′

ℓ+1

A∗

1

n + m

n m

Ā∗

a∗

n + m

n m

n bits

Tag′

n bits

Tag′

n bits

Tag′

C1

b b b0
n

〈τ〉m

A′

1

A∗

a∗−1

n + m

n m

Ā∗

a∗

n + m

n m

n bits

Tag′

A∗

1

n + m

n m

0
n

〈τ〉m

n bits

Tag′

Tag′

n bits

trunc

Case A: ℓ > 0 and |A|n = ℓ+ 1. Let M̄ℓ = Mℓ||10
m−|Mℓ|−1 if |Mℓ| < m and M̄ℓ = Mℓ otherwise.

Case B: ℓ > 0 and |A|n < ℓ+ 1. Let M̄ℓ = Mℓ||10
m−|Mℓ |−1 if |Mℓ| < m and M̄ℓ = Mℓ otherwise.

Let Ā′
a′ = A

′
a′ ||10

n−|A′
a′ |−1

if |A′
a′ | < n and Ā′

a′ = A
′
a′ otherwise.

Let Ā′
a′ = A

′
a′ ||10

n−|A′
a′ |−1

if |A′
a′ | < n and Ā

′
a′ = A

′
a′ otherwise.

Case C: ℓ > 0 and |A|n > ℓ+ 1. Let M̄ℓ = Mℓ||10
m−|Mℓ |−1 if |Mℓ| < m and M̄ℓ = Mℓ otherwise.

Let Ā∗
a∗ = A

∗
a∗ ||10n+m−|A∗

a∗ |−1 if |A∗
a∗ | < n+m and Ā

∗
a∗ = A

∗
a∗ otherwise.

Case F

Case D: M = ε and |A| > n. Let 1Ā∗
a∗ = A

∗
a∗ ||10n+m−|A∗

a∗ |−1 if |A∗
a∗ | < n+m and Ā

∗
a∗ = A

∗
a∗ otherwise.

Obtaining the

final tag.

0
n

〈τ〉m

Ā′

1

Case E: M = ε and 0 < |A| ≤ n. Let Ā′
1 = A

′
1||10

n−|A′
1
|−1

if |A′
1| < n and Ā

′
1 = A

′
1 otherwise.

n bits

Tag′

R
〈N,1,0〉

R
〈N,2,0〉

R
〈N,a′,0〉

R
〈N,a′+1,1〉

R
〈N,ℓ+1,jf 〉

R
〈N,1,0〉

R
〈N,2,0〉

R
〈N,ℓ+1,0〉

R
〈N,ℓ+2,2〉

R
〈N,ℓ+a∗+1,jf 〉

R
〈N,1,2〉

R
〈N,2,2〉

R
〈N,a∗,2〉

R
〈N,a∗+1,jf 〉

R
〈N,1,jf 〉

R
〈N,1,3〉

b b b

b b b

M = A = ε

Fig. 4. The p-OMD[̃︀𝑅, 𝜏] scheme using a tweakable random function ̃︀𝑅 $← Func𝒯 (𝑛 + 𝑚, 𝑛).

11

applying independent random functions ̃︀𝑅𝑁𝑥,𝑖,𝑗 each to a single input value, hence the images that the
adversary sees (i.e. C𝑟 for 1 ≤ 𝑟 ≤ 𝑞𝑒) are fresh uniformly random values.

The proof of the authenticity bound is a rather involved case analysis. A visualisation of the hierarchy
of the cases as a tree is presented in Figure 5 to improve clarity of the proof. We first analyse the case
where the adversary makes a single verification query and then we will use the generic result of Bellare
et al. [6] (i.e. use hybrids to get rid of decryption queries one by one) to get a bound against adversaries
that make multiple verification queries.

Let 𝐴 be a single-verification-query adversary that is making 𝑞𝑒 encryption queries (𝑁1, 𝐴1, 𝑀1) · · ·
(𝑁 𝑞𝑒 , 𝐴𝑞𝑒 , 𝑀 𝑞𝑒). Let 𝑀 𝑖 = 𝑀 𝑖

1 · · ·𝑀 𝑖
ℓ𝑖

be the message and 𝐴𝑖 = 𝐴′𝑖1 · · ·𝐴′
𝑖
𝑎′

𝑖
||𝐴*1𝑖 · · ·𝐴*𝑎*

𝑖

𝑖 be the associated
data in the 𝑖th encryption query. Let C𝑖 = 𝐶𝑖||Tag𝑖 be the ciphertext received for query (𝑁 𝑖, 𝐴𝑖, 𝑀 𝑖).
That is, we use superscripts to indicate query numbers and subscripts to denote the block indices in
each query. We further let 𝑥𝑖 = 1 + ℓ + 𝑎*𝑖. Note that 𝑥𝑖 is the number of calls to the compression
function made while processing the 𝑖th query and also the value of the second tweak component used
in the final call to the compression function which produces Tag𝑖.

Let (𝑁, 𝐴,C) be the forgery attempt by the adversary, where 𝑁 ∈ {0, 1}|𝑁 | is the nonce, 𝐴 =
𝐴′1 · · ·𝐴′𝑎′ ||𝐴*1 · · ·𝐴*𝑎* is the associated data, C = 𝐶||Tag is the ciphertext where 𝐶 = 𝐶1 · · ·𝐶ℓ and
Tag ∈ {0, 1}𝜏 is the tag. Let 𝑀 = 𝑀1 · · ·𝑀ℓ denote the corresponding decrypted message. We let
𝑥 = 1 + ℓ + 𝑎* be the number of calls to 𝐹 made while processing the forgery attempt (which is the
same as the value of the second tweak component in the final call to the compression function that is
supposed to produce the Tag). Note that no superscripts are used for the strings in the alleged forgery
by the adversary.

In the proof, we refer to the intermediate chaining variables that occur in the query processing,
namely let 𝐻 𝑖

𝑟 denote the output of the 𝑟th call to the compression function in the processing of the 𝑖th

encryption query, so we have 𝐻 𝑖
1 = ̃︀𝑅⟨𝑁,1,0⟩(𝐴′𝑖1, ⟨𝜏⟩𝑚) and Tag𝑖 = 𝐻 𝑖

𝑥𝑖
[𝑛− 1 · · ·𝑛− 𝜏]. Similarly, we let

𝐻𝑟 stand for 𝑟th intermediate chaining value in the processing of the forgery attempt.

Case1

Case2

Case4.1

Case4.2

Case4.3

All cases

Case3

E1

Ē1

E2

Ē2

E3

Ē3

N is fresh

jf 6= jif

x 6= xi

a′ = ℓ+ 1 = a′i = ℓi + 1; a∗ = a∗i = 0

a′ < ℓ+ 1 = ℓi + 1 > a′i; a
∗ = a∗i = 0

Remaining case

Fig. 5. The structure of the proof of the authenticity bound. A condition on an edge applies to the whole subtree.

We have the following disjoint cases.

Case 1: 𝑁 /∈
{︀
𝑁1, · · ·𝑁 𝑞𝑒

}︀
. We let E1 denote the event 𝑁 /∈

{︀
𝑁1, · · ·𝑁 𝑞𝑒

}︀
in the following. The

adversary has to find a correct Tag that is the first 𝜏 bits of a value produced by ̃︀𝑅⟨𝑁,𝑥,𝑗𝑓⟩(.).

12

Because the nonce-component 𝑁 of the tweak ⟨𝑁, 𝑥, 𝑗𝑓 ⟩ has not been used in any encryption query,
𝐴 has not seen any image under ̃︀𝑅⟨𝑁,𝑥,𝑗𝑓⟩(.) (for any values of 𝑥 and 𝑗𝑓). Thus the probability that
the adversary can succeed in finding correct value of Tag is 2−𝜏 .

In all the following cases we have Ē1, i.e. 𝑁 = 𝑁 𝑖 for a single 𝑖 ∈ {1, . . . , 𝑞𝑒} (noticing that no nonce is
reused during encryption queries). We can ignore all queries other than the 𝑖th query since the responses
to such queries are random and independent (because of using different nonces) to the adversary’s task
to make the forgery attempt 𝑁, 𝐴,C with 𝑁 = 𝑁 𝑖.

Case 2: Ē1 ∧ E2, where E2 is the event that 𝑗𝑓 ̸= 𝑗𝑖
𝑓 . Recall that a successfully forged Tag must be the

first 𝜏 bits of a value produced by ̃︀𝑅⟨𝑁,𝑥,𝑗𝑓⟩(.). The inequality 𝑗𝑓 ̸= 𝑗𝑖
𝑓 occurring in this case implies

that ̃︀𝑅⟨𝑁,𝑥,𝑗𝑓⟩(.) is a fresh RF and the adversary has not seen any image under it (no matter what
are the values of 𝑥 and 𝑥𝑖) and the adversary has to guess the correct Tag. The probability of a
successful forgery is therefore 2−𝜏 .

We need to introduce some auxiliary notation for the analysis of the following cases. Consider the 𝑖th

encryption query. Depending on the length of the message |𝑀 𝑖| and the length of AD |𝐴𝑖|, we can have
three situations. In the first situation, we have |𝑀 𝑖|𝑚 + 1 = |𝐴𝑖|𝑛 and |𝑀 𝑖| > 0 (Case A in Figure
4). This means that the compression function call used to produce Tag𝑖 has a block of message at its
𝑚-bit input and an AD block xored to the chaining variable at its 𝑛-bit input. We denote this event
as type-1𝑖 and we note that 𝑗𝑖

𝑓 ∈ {4, 5, 6, 7}. The second possible situation arises if |𝑀 𝑖|𝑚 + 1 > |𝐴𝑖|𝑛
with |𝑀 𝑖| > 0 (Case B in Figure 4). There is no block of the AD xored to the 𝑛-bit input of the final
compression function call. We denote this event as type-2𝑖 and we note that 𝑗𝑖

𝑓 ∈ {8, 9, 10, 11}. The last
possible situation is when either |𝑀 𝑖|𝑚 + 1 < |𝐴𝑖|𝑛 and |𝐴𝑖| > 𝑛 so there is a block of AD xored to the
𝑛-bit input as well as another block fed directly to the 𝑚-bit input in the final call to the compression
function (Cases C, D in Figure 4) or 0 < |𝐴𝑖| ≤ 𝑛 and 𝑀 𝑖 = 𝜀 (Case E in Figure 4). We denote this
by type-3𝑖 and we note that 𝑗𝑖

𝑓 ∈ {12, 13, 14, 15}.
We define type-1, type-2 and type-3 for the forgery attempt in a similar way (note that |𝐶| = |𝑀 |).

In the following, we need to address the event Ē1∧Ē2 i.e. 𝑁 = 𝑁 𝑖, 𝑗𝑓 = 𝑗𝑖
𝑓 . We remark that the condition

Ē2 is met for a valid forgery (i.e. (𝐴, 𝑀) ̸= (𝐴𝑖, 𝑀 𝑖)) if and only if both the 𝑖th encryption query and
the alleged forgery are

– non-empty, i.e. (𝐴, 𝑀) ̸= (𝜀, 𝜀) ∧ (𝐴𝑖, 𝑀 𝑖) ̸= (𝜀, 𝜀),
– padded in the same way, i.e. (𝑚

⃒⃒
|𝐶| ⇔ 𝑚

⃒⃒
|𝐶𝑖|)∨(𝑛

⃒⃒
|𝐴′| ⇔ 𝑛

⃒⃒
|𝐴′𝑖|)∨(𝑛+𝑚

⃒⃒
|𝐴*| ⇔ 𝑛+𝑚

⃒⃒
|𝐴*𝑖|)

(we pad the last block of 𝑀 iff we pad the last block of 𝑀 𝑖 and the same applies for associated
data),

– of the same “type”, i.e.
(︀
type-1 ∧ type-1𝑖

)︀
∨

(︀
type-2 ∧ type-2𝑖

)︀
∨

(︀
type-3 ∧ type-3𝑖

)︀
.

Case 3: Ē1 ∧ Ē2 ∧ E3 where E3 stands for the event that 𝑥 ̸= 𝑥𝑖. Recall that Tag𝑖 is produced as the 𝜏

most significant bits of an image under ̃︀𝑅⟨︀
𝑁,𝑥𝑖,𝑗

𝑖
𝑓

⟩︀
(.) for some 𝑗𝑖

𝑓 and Tag is produced similarly, as
the 𝜏 most significant bits of an image under ̃︀𝑅⟨𝑁,𝑥,𝑗𝑓⟩(.) for some 𝑗𝑓 . We have two sub-cases.
Case 3a: If 𝑥 > 𝑥𝑖 then 𝐴 has seen no image under ̃︀𝑅⟨𝑁,𝑥,𝑗𝑓⟩(.) regardless of the value of 𝑗𝑓 and

the probability of a successful forgery (equivalent to guessing 𝜏 random bits) is 2−𝜏 .
Case3b: If 𝑥 < 𝑥𝑖 then a single image under ̃︀𝑅⟨𝑁,𝑥,𝑗𝑖⟩ was used in processing of the 𝑖th encryption

query. However Tag is produced by a fresh RF ̃︀𝑅⟨𝑁,𝑥,𝑗𝑓⟩(.), because we always have 𝑗𝑖 ̸= 𝑗𝑓

(because of the rules of selecting the 𝑗 tweak component). The probability of a successful forgery
(equivalent to guessing 𝜏 random bits) is 2−𝜏 .

13

Case 4: It remains to address the cases, where we have Ē1∧Ē2∧Ē3, i.e. the case, when the 𝑖𝑡ℎ encryption
query and the alleged forgery (1) share the same nonce, (2) are padded in the same way, are both
non-empty, are of the same “type” so 𝑗𝑓 = 𝑗𝑖

𝑓 and (3) they are both processed with the same number
of calls to the compression function. We investigate each of the three possible “types” separately.

Case 4.1: Ē1∧ Ē2∧ Ē3∧
(︀
type-1 ∧ type-1𝑖

)︀
. This means that 𝑎′ = ℓ+1 = 𝑥 = 𝑥𝑖 = 𝑎′𝑖 = ℓ𝑖 +1, 𝑎* = 0

and 𝑎*𝑖 = 0. Both Tag𝑖 and Tag are produced by the same RF ̃︀𝑅⟨𝑁,𝑥,4⟩(.). W.l.o.g. assume that both
|𝐴′| and |𝐴′𝑖| are a multiple of 𝑛 and both |𝑀 | and |𝑀 𝑖| are a multiple of 𝑚. We can make this
assumption because in the other cases the incomplete blocks are injectively padded to full length
(and because of the condition Ē2). This means that if two strings are unequal before being padded
will also be unequal after the padding, e.g. 𝐴′𝑎′ ̸= 𝐴′𝑖𝑎′

𝑖
⇒ 𝐴′𝑎′ ̸= 𝐴′

𝑖
𝑎′

𝑖
(refer to Figure 4). After that

point the security analysis is almost identical with what follows.
The adversary can succeed in producing a valid forgery in two ways. Either the inputs into the last
RF in the processing of the 𝑖th encryption query and the inputs into the last RF in the processing
of the forgery attempt are distinct, i.e. (𝐻 𝑖

𝑥−1 ⊕ 𝐴′𝑖𝑎′ , 𝑀 𝑖
ℓ) ̸= (𝐻𝑥−1 ⊕ 𝐴′𝑎′ , 𝑀ℓ), or they are equal,

i.e. (𝐻 𝑖
𝑥−1⊕𝐴′𝑖𝑎′ , 𝑀 𝑖

ℓ) = (𝐻𝑥−1⊕𝐴′𝑎′ , 𝑀ℓ). In the former case, the adversary is left with the task of
guessing the output value of a RF on an input, that has not been evaluated before which is bounded
with the probability 𝑝𝑓𝑛 = 2−𝜏 .
In the latter case, the equality (𝐻 𝑖

𝑥−1 ⊕ 𝐴′𝑖𝑎′ , 𝑀 𝑖
ℓ) = (𝐻𝑥−1 ⊕ 𝐴′𝑎′ , 𝑀ℓ) permits the adversary to

set Tag = Tag𝑖. We must have (𝑁, 𝐴, 𝑀) ̸= (𝑁 𝑖, 𝐴𝑖, 𝑀 𝑖), so there is a position 𝑟 in which the two
queries differ, i.e. we must have an 1 ≤ 𝑟 < 𝑥, such that (𝐴′𝑟, 𝑀𝑟) ̸= (𝐴′𝑖𝑟, 𝑀 𝑖

𝑟) and after which the
queries are identical. So 𝐴 has not seen the image RF 𝐻𝑟 = ̃︀𝑅⟨𝑁,𝑟,𝑗𝑟⟩(𝐻𝑟−1 ⊕ 𝐴′𝑟, 𝑀𝑟) but he must
ensure that 𝐻𝑟 = 𝐻 𝑖

𝑟. This happens with a probability of 2−𝑛. We bound the total probability of
achieving the final collision by 𝑝𝑓𝑒 = (𝑥 − 1)2−𝑛 obtained by summing the probability of collision
𝐻𝑟 = 𝐻 𝑖

𝑟 for every possible value of 𝑟.
The bound of Case 4.1 is finally obtained as the sum 𝑝𝑓𝑛 + 𝑝𝑓𝑒 = (𝑥− 1)2−𝑛 + 2−𝜏

Case 4.2: Ē1∧ Ē2∧ Ē3∧
(︀
type-2 ∧ type-2𝑖

)︀
. This implies ℓ+1 > |𝐴|𝑛, ℓ𝑖 +1 > |𝐴𝑖|𝑛 and 𝑎* = 𝑎*𝑖 = 0,

so 𝑥 = 𝑥′ = ℓ + 1 = ℓ𝑖 + 1. W.l.o.g. assume that both |𝐴′| and |𝐴′𝑖| are a multiple of 𝑛 and both |𝑀 |
and |𝑀 𝑖| are a multiple of 𝑚 by similar argument as in Case 4.1. We have two subcases:
Case 4.2a: |𝐴|𝑛 = |𝐴𝑖|𝑛, i.e. 𝑎′ = 𝑎′𝑖. Analysis of this case is very similar to Case 4. Again we

observe, that the adversary’s chance to produce a forgery is bounded by 2−𝜏 if the inputs to the
final RF are distinct. The adversary can reuse Tag𝑖 if he manages to force the collision on the
inputs to the final RF. The probability that 𝐴 can succeed in forcing this collision is bounded
in the same way as in Case 4.1 by summing 2−𝑛 for 1 ≤ 𝑟 < 𝑥. For 𝑟 > 𝑎′ we have no more
blocks of 𝐴′ to consider, which in fact gives the adversary even less power. We conclude that the
probability of forgery in this case is bounded by 2−𝜏 + (𝑥− 1)2−𝑛.

Case 4.2b: |𝐴|𝑛 ̸= |𝐴𝑖|𝑛, i.e. 𝑎′ ̸= 𝑎′𝑖. The analysis of this case is very similar to the previous one.
The difference lies in the fact, that we need to consider, that if 𝑎′ > 𝑎′𝑖 then there is at least one
𝑟, such that 1 ≤ 𝑟 < 𝑥 and there is a block 𝐴′𝑟 but there is no block 𝐴′𝑖𝑟 (or the other way around
if 𝑎′ < 𝑎′𝑖).This implies that two independent RFs ̃︀𝑅⟨𝑁,𝑟,0⟩(.) and ̃︀𝑅⟨𝑁,𝑟,1⟩(.) are applied in the
𝑟th call (this is ensured by the rules of selecting the value of the last tweak component 𝑗 in the
internal calls). Keeping this in mind, the analysis of this case follows the same structure as the
previous case and we conclude that the probability of forgery is bounded by 2−𝜏 + (𝑥− 1)2−𝑛

Case 4.3: Ē1∧ Ē2∧ Ē3∧
(︀
type-3 ∧ type-3𝑖

)︀
so ℓ+1 < |𝐴|𝑛 and ℓ𝑖 +1 < |𝐴𝑖|𝑛, so 𝑥 = 𝑥′ = ℓ+1+𝑎* =

ℓ𝑖 + 1 + 𝑎*𝑖 with both 𝑎* and 𝑎*𝑖 non-zero. W.l.o.g. assume that both |𝐴*| and |𝐴*𝑖| are a multiple
of 𝑛 + 𝑚 and both |𝑀 | and |𝑀 𝑖| are a multiple of 𝑚 by similar argument as in Case 4.1. We have
three subcases.
Case 4.3a: 0 < |𝐴| ≤ 𝑛, 0 < |𝐴𝑖| ≤ 𝑛 and 𝑀 = 𝑀 𝑖 = 𝜀. W.l.o.g. assume |𝐴| = |𝐴𝑖| = 𝑛 (by the

argument that uses the injective property of used padding). Since the alleged forgery must be
different from all encryption queries, we have 𝐴 ̸= 𝐴𝑖 and the adversary must guess the output

14

of a RF on a new input. The probability of forgery is thus 2−𝜏 . In following two subcases we
have |𝐴| > 𝑛 and |𝐴𝑖| > 𝑛.

Case 4.3b: |𝑀 |𝑚 = |𝑀 𝑖|𝑚, i.e. ℓ = ℓ𝑖 and 𝑎* = 𝑎*𝑖. The analysis is almost identical as in case 4.2a,
with the difference that for 𝑟 > ℓ+1 we have no more blocks of 𝑀 to consider but we have 𝑛+𝑚
blocks of AD instead. The probability of inner collisions 𝐻𝑟 = 𝐻 𝑖

𝑟 for 𝑟 > ℓ + 1 is thus also 2−𝑛

and we conclude that the probability of forgery is bounded by 2−𝜏 + (𝑥− 1)2−𝑛.
Case 4.3c: |𝑀 |𝑚 ̸= |𝑀 𝑖|𝑚, i.e. ℓ ̸= ℓ𝑖 and 𝑎* ̸= 𝑎*𝑖. Similarly as in Case 4.2b we need to take into

account that the adversary can change the length of message and AD, so that there must be
𝑟 such that 1 ≤ 𝑟 < 𝑥 and such that there is 𝑀𝑟 but no 𝑀 𝑖

𝑟 (or the other way around). The
separation of the tweaks again ensures that the probability of internal collision is 2−𝑛 for such
𝑟. We conclude that the probability of forgery is bounded by 2−𝜏 + (𝑥− 1)2−𝑛

Finally, using the results of Bellare et al. [6] we get the bound against adversaries that make 𝑞𝑣

decryption (verification) queries with length limited by ℓ𝑚𝑎𝑥 as 𝑞𝑣

2𝜏 + 𝑞𝑣ℓ𝑚𝑎𝑥

2𝑛 .

5.2 Realization of Tweakable RFs with Tweakable PRFs

This is a classical step in which the ideal primitive—tweakable random function ̃︀𝑅—is replaced with a
standard primitive—tweakable PRF ̃︀𝐹 . The security loss induced by this step is stated in the following
lemma.

Lemma 2. Let ̃︀𝑅 : 𝒯 × ({0, 1}𝑛 × {0, 1}𝑚) → {0, 1}𝑛 be a tweakable RF and ̃︀𝐹 : 𝒦 × 𝒯 × ({0, 1}𝑛 ×
{0, 1}𝑚)→ {0, 1}𝑛 be a tweakable PRF. Then

Advpriv
p-OMD[̃︀𝐹 ,𝜏]

(𝑡, 𝑞𝑒, 𝜎𝑒, ℓ𝑚𝑎𝑥) ≤ Advpriv
p-OMD[̃︀𝑅,𝜏]

(𝑞𝑒, 𝜎𝑒, ℓ𝑚𝑎𝑥) + Adv ̃︀prf̃︀𝐹 (𝑡′, 𝜎𝑒)

Advauth
p-OMD[̃︀𝐹 ,𝜏]

(𝑡, 𝑞𝑒, 𝑞𝑣, 𝜎, ℓ𝑚𝑎𝑥) ≤ Advauth
p-OMD[̃︀𝑅,𝜏]

(𝑞𝑒, 𝑞𝑣, 𝜎, ℓ𝑚𝑎𝑥) + Adv ̃︀prf̃︀𝐹 (𝑡′′, 𝜎)

where 𝑞𝑒 and 𝑞𝑣 are, respectively, the number of encryption and decryption queries, 𝑞 = 𝑞𝑒 + 𝑞𝑣,
ℓ𝑚𝑎𝑥 denotes the maximum number of the internal calls to 𝐹 in an encryption or decryption query,
𝑡′ = 𝑡 + 𝑐𝑛𝜎𝑒 and 𝑡′′ = 𝑡 + 𝑐′𝑛𝜎 for some constants 𝑐, 𝑐′, and 𝜎𝑒 and 𝜎 are the total number of calls to
the underlying compression function 𝐹 in all queries asked by the CPA and CCA adversaries against
the privacy and authenticity of the scheme, respectively.

5.3 Instantiation of Tweakable PRFs with PRFs

The last step is to instantiate the tweakable PRFs by means of a (keyed) compression function which
is assumed to be PRF. Similar to OMD, we use the XE method of [24] as shown in Fig. 6.

The proof and bound for this step follows from that of OMD, which in turn is a straightforward
adaptation of the proof of the XE construction in [20]. Lemma 3 states the bound for this transformation.
Here, the only aspect which is different between OMD and p-OMD is the way that the masking sequence
𝛥𝑁,𝑖,𝑗 is computed. We need to show that the specific mask function 𝛥𝐾(𝑁, 𝑖, 𝑗) for p-OMD satisfies
the same set of security criteria as required from that of OMD. Note that here, we use the notation
𝛥𝐾(𝑁, 𝑖, 𝑗) to refer to the function that computes the masking sequence 𝛥𝑁,𝑖,𝑗 .

In p-OMD the tweaks are of the form 𝑇 = (𝑁, 𝑖, 𝑗) where 𝑁 ∈ 𝒩 ∪ {𝜀}, 1 ≤ 𝑖 ≤ 2𝑛−6 and
𝑗 ∈ {0, 1, · · · , 15}. We have to show that the mask function 𝛥𝐾(𝑇) = 𝛥𝐾(𝑁, 𝑖, 𝑗) (outputting an 𝑛-bit
mask) satisfies the following two properties for any fixed string 𝐻 ∈ {0, 1}𝑛:

1. Pr[𝛥𝐾(𝑁, 𝑖, 𝑗) = 𝐻] ≤ 2−𝑛 for any (𝑁, 𝑖, 𝑗)
2. Pr[𝛥𝐾(𝑁, 𝑖, 𝑗)⊕𝛥𝐾(𝑁 ′, 𝑖′, 𝑗′) = 𝐻] ≤ 2−𝑛 for (𝑁, 𝑖, 𝑗) ̸= (𝑁 ′, 𝑖′, 𝑗′)

15

FK

Y

F̃
〈T 〉
K

Y

X X

m m

n n nn n

∆K(T)

Fig. 6. Building a tweakable PRF ̃︀𝐹 ⟨𝑇 ⟩
𝐾 : {0, 1}𝑛 × {0, 1}𝑚 → {0, 1}𝑛 using a PRF 𝐹𝐾 : {0, 1}𝑛 × {0, 1}𝑚 → {0, 1}𝑛.

where the probabilities are taken over random selection of the key.
As shown in Appendix A, it can be easily verified that these two properties are satisfied by the

specific mask generation scheme of p-OMD, as described in Section 4.

Lemma 3. Let 𝐹 : 𝒦 × ({0, 1}𝑛 × {0, 1}𝑚) → {0, 1}𝑛 be a function family with key space 𝒦. Let̃︀𝐹 : 𝒦 × 𝒯 × ({0, 1}𝑛 × {0, 1}𝑚) → {0, 1}𝑛 be defined by ̃︀𝐹 ⟨𝑇 ⟩𝐾 (𝑋, 𝑌) = 𝐹𝐾((𝑋 ⊕𝛥𝐾(𝑇)), 𝑌) for every
𝑇 ∈ 𝒯 , 𝐾 ∈ 𝒦, 𝑋 ∈ {0, 1}𝑛 , 𝑌 ∈ {0, 1}𝑚 and 𝛥𝐾(𝑇) is the masking function of p-OMD as defined in
Section 4. If 𝐹 is PRF then ̃︀𝐹 is tweakable PRF; more precisely

Adṽ︁prf̃︀𝐹 (𝑡, 𝑞) ≤ Advprf
𝐹 (𝑡′, 2𝑞) + 3𝑞2

2𝑛

.

6 Performance Comparison with OMD

To verify the performance advantage of p-OMD over OMD, with respect to processing associated data,
we implemented the two algorithms in software and made some measurements to determine and compare
their performance.

The comparison is performed on the x86-64 architecture (Intel Core i7-3632QM, with all measure-
ments carried out on a single core). For OMD, we used the OMD-sha512 instantiation optimised for the
AVX1 instruction extension, which achieves the best result according to the CAESAR benchmarking
measurements [1]. We made the necessary modifications (as in description of p-OMD) to the same code
to obtain our implementation of p-OMD. Both OMD and p-OMD were instantiated with the same
parameters: key length=512, nonce length=256, tag length=256. Both implementations have been built
using the gcc compiler and setting the -Ofast optimization flag.

We measure the time complexity of the encryption process for varying lengths of message and
associated data. For the sake of this section, let 𝑚 denote the message length and 𝑎 the AD length
in bytes. We measure the encryption time for 𝑚 ∈ {64, 128, 192, . . . , 4096} and 𝑎 ∈ {64, 128, . . . 𝑚} for
every value of 𝑚. That is, we consider the typical case when AD is at most as long as the message.

For both OMD and p-OMD and for every pair of values 𝑚, 𝑎, we measure the time of one encryption
using the rdtsc instruction 200 times to compute the mean time. This is repeated 91 times and the
value we take as the result is the median of these 91 mean encryption times. We additionally apply the
same procedure to measure time complexity of the encryption of OMD with 𝑚 ∈ {64, 128, . . . , 4096}
and 𝑎 = 0. The results are shown in Figure 7.

The top left graph in Figure 7 shows that the relative complexity of encryption of both OMD and
p-OMD decreases as the length of AD increases; however, p-OMD performs better than OMD. The top
right graph demonstrates that if the length of AD is close to the message length then p-OMD has a

16

5

8

11

14

17

20

0 512 1024 1536 2048 2560 3072 3584 4096

P
e
r
f
o
r
m
a
n
c
e

(
c
y
c
l
e
s
/
b
y
t
e
)

a (bytes)

 p-OMD (m=4kB)

 OMD (m=4kB)

5

8

11

14

17

20

0 512 1024 1536 2048 2560 3072 3584 4096

P
e
r
f
o
r
m
a
n
c
e

(
c
y
c
l
e
s
/
b
y
t
e
)

m (bytes)

 p-OMD (a = m)

 OMD (a = m)

128
1024

2048
3072

4096

128

1024

2048

3072

4096

6

8

10

12

14

16

18

20

P
e
r
f
o
r
m
a
n
c
e

(
c
y
c
l
e
s
/
b
y
t
e
)

m (bytes)

a (bytes)

P
e
r
f
o
r
m
a
n
c
e

(
c
y
c
l
e
s
/
b
y
t
e
)

0

10000

20000

30000

40000

50000

60000

70000

0 512 1024 1536 2048 2560 3072 3584 4096

T
i
m
e

(
c
y
c
l
e
s
)

m (bytes)

p-OMD (a = m)

 OMD (a = m)

 OMD (a = 0)

Fig. 7. Performance comparisons between OMD and p-OMD. Top left: encryption complexity with fixed message length.
Top right: encryption complexity with equal message length and AD length. Bottom right: comparison of OMD without
AD to OMD and p-OMD with AD. Bottom left: encryption complexity of p-OMD for varying message and AD lengths.

17

clear advantage over OMD. The bottom right graph confirms that the p-OMD provides an almost free
authentication of associated data compared to OMD.

For both OMD and p-OMD, these measurements exclude the complexity of the precomputation
step in computing 𝛥𝑁,𝑖,𝑗 (see Section 4) which is done only once during the whole lifetime of a key. As
an upper bound, we measure the complexity of the precomputation step that is sufficient to encrypt
messages with length up to 263 blocks. For OMD the precomputation step takes 5818 cycles while in
p-OMD it requires 6863 cycles on average.

Acknowledgments. We would like to thank the anonymous reviewers of FSE 2015 for their construc-
tive comments. We thank Tomer Ashur and Bart Mennink for pointing out a mistaken claim about
authenticity under nonce misuse in the preproceedings of this paper. This work was partially supported
by Microsoft Research under MRL Contract No. 2014-006 (DP1061305).

References

1. Implementation notes: amd64, titan0, crypto aead. http://bench.cr.yp.to/web-impl/amd64-titan0-crypto_aead.
html

2. Secure Hash Standard (SHS) . NIST FIPS PUB 180-4 (Mar 2012)
3. Abed, F., Forler, C., Lucks, S.: Classification of the CAESAR Candidates. IACR Cryptology ePrint Archive 2014

(2014), http://eprint.iacr.org/2014/792
4. Ashur, T., Mennink, B.: Trivial Nonce-Misusing Attack on Pure OMD. Posted to CAESAR Mailing List (February

27, 2015)
5. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A Concrete Security Treatment of Symmetric Encryption. In: FOCS

’97. pp. 394–403. IEEE Computer Society (1997)
6. Bellare, M., Goldreich, O., Mityagin, A.: The Power of Verification Queries in Message Authentication and Authenti-

cated Encryption. IACR Cryptology ePrint Archive 2004, 309 (2004)
7. Bellare, M., Guérin, R., Rogaway, P.: XOR MACs: New Methods for Message Authentication Using Finite Pseudo-

random Functions. In: Coppersmith, D. (ed.) CRYPTO ’95. LNCS, vol. 963, pp. 15–28. Springer (1995)
8. Bellare, M., Namprempre, C.: Authenticated Encryption: Relations among Notions and Analysis of the Generic Com-

position Paradigm. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer (2000)
9. Bellare, M., Namprempre, C.: Authenticated Encryption: Relations among Notions and Analysis of the Generic Com-

position Paradigm. J. Cryptology 21(4), 469–491 (2008)
10. Bellare, M., Rogaway, P.: Encode-Then-Encipher Encryption: How to Exploit Nonces or Redundancy in Plaintexts for

Efficient Cryptography. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 317–330. Springer (2000)
11. Bernstein, D.J.: Cryptographic competitions: CAESAR. http://competitions.cr.yp.to
12. Chakraborty, D., Sarkar, P.: A General Construction of Tweakable Block Ciphers and Different Modes of Operations.

IEEE Transactions on Information Theory 54(5), 1991–2006 (2008)
13. Cogliani, S., Maimut, D., Naccache, D., do Canto, R.P., Reyhanitabar, R., Vaudenay, S., Vizár, D.: Offset Merkle-

Damgård (OMD) version 1.0: A CAESAR Proposal (Mar 2014), http://competitions.cr.yp.to/round1/omdv10.pdf
14. Cogliani, S., Maimut, D., Naccache, D., do Canto, R.P., Reyhanitabar, R., Vaudenay, S., Vizár, D.: OMD: A Compres-

sion Function Mode of Operation for Authenticated Encryption. In: Joux, A., Youssef, A. (eds.) SAC 2014. Lecture
Notes in Computer Science, vol. 8781. Springer (2014)

15. Fleischmann, E., Forler, C., Lucks, S.: McOE: A Family of Almost Foolproof On-Line Authenticated Encryption
Schemes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 196–215. Springer (2012)

16. Guilford, J., Cote, D., Gopal, V.: Fast SHA512 Implementations on Intelr Architecture Proces-
sors (Nov 2012), http://www.intel.com/content/www/us/en/intelligent-systems/intel-technology/
fast-sha512-implementations-ia-processors-paper.html

17. Guilford, J., Yap, K., Gopal, V.: Fast SHA-256 Implementations on Intelr Architecture Processors (May 2012), http://
www.intel.com/content/www/us/en/intelligent-systems/intel-technology/sha-256-implementations-paper.
html

18. Gulley, S., Gopal, V., Yap, K., Feghali, W., Guilford, J., Wolrich, G.: Intelr SHA Extensions: New Instructions
Supporting the Secure Hash Algorithm on Inter Architecture Processors (Jul 2013), https://software.intel.com/
sites/default/files/article/402097/intel-sha-extensions-white-paper.pdf

19. Katz, J., Yung, M.: Unforgeable Encryption and Chosen Ciphertext Secure Modes of Operation. In: Schneier, B. (ed.)
FSE 2000. LNCS, vol. 1978, pp. 284–299. Springer (2001)

20. Krovetz, T., Rogaway, P.: The Software Performance of Authenticated-Encryption Modes. In: Joux, A. (ed.) FSE 2011.
LNCS, vol. 6733, pp. 306–327. Springer (2011)

18

http://bench.cr.yp.to/web-impl/amd64-titan0-crypto_aead.html
http://bench.cr.yp.to/web-impl/amd64-titan0-crypto_aead.html
http://eprint.iacr.org/2014/792
http://competitions.cr.yp.to
http://competitions.cr.yp.to/round1/omdv10.pdf
http://www.intel.com/content/www/us/en/intelligent-systems/intel-technology/fast-sha512-implementations-ia-processors-paper.html
http://www.intel.com/content/www/us/en/intelligent-systems/intel-technology/fast-sha512-implementations-ia-processors-paper.html
http://www.intel.com/content/www/us/en/intelligent-systems/intel-technology/sha-256-implementations-paper.html
http://www.intel.com/content/www/us/en/intelligent-systems/intel-technology/sha-256-implementations-paper.html
http://www.intel.com/content/www/us/en/intelligent-systems/intel-technology/sha-256-implementations-paper.html
https://software.intel.com/sites/default/files/article/402097/intel-sha-extensions-white-paper.pdf
https://software.intel.com/sites/default/files/article/402097/intel-sha-extensions-white-paper.pdf

21. Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering Generic Composition. In: Nguyen, P.Q., Oswald, E.
(eds.) EUROCRYPT. Lecture Notes in Computer Science, vol. 8441, pp. 257–274. Springer (2014)

22. Reyhanitabar, R., Vaudenay, S., Vizár, D.: Misuse-Resistant Variants of the OMD Authenticated Encryption Mode.
In: Chow, S.S.M., Liu, J.K., Hui, L.C.K., Yiu, S. (eds.) ProvSec 2014. Lecture Notes in Computer Science, vol. 8782,
pp. 55–70. Springer (2014)

23. Rogaway, P.: Authenticated-Encryption with Associated-Data. In: ACM Conference on Computer and Communications
Security. pp. 98–107 (2002)

24. Rogaway, P.: Efficient Instantiations of Tweakable Blockciphers and Refinements to Modes OCB and PMAC. In:
ASIACRYPT. pp. 16–31 (2004)

25. Rogaway, P.: Nonce-Based Symmetric Encryption. In: Roy, B.K., Meier, W. (eds.) FSE. LNCS, vol. 3017, pp. 348–359.
Springer (2004)

26. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: A Block-Cipher Mode of Operation for Efficient Authenticated
Encryption. In: ACM Conference on Computer and Communications Security. pp. 196–205 (2001)

27. Rogaway, P., Shrimpton, T.: A Provable-Security Treatment of the Key-Wrap Problem. In: EUROCRYPT. pp. 373–390
(2006)

28. Yasuda, K.: Boosting Merkle-Damgård Hashing for Message Authentication. In: Kurosawa, K. (ed.) ASIACRYPT
2007. Lecture Notes in Computer Science, vol. 4833, pp. 216–231. Springer (2007)

A The rational behind the masking sequence 𝛥𝑁,𝑖,𝑗

In this section, we explain the design of the masking function 𝛥𝐾(𝑁, 𝑖, 𝑗) in p-OMD and show that it
fulfils the required security properties.

p-OMD uses the XE construction [24] to instantiate a tweakable PRF ̃︀𝐹 : 𝒦 × 𝒯 × ({0, 1}𝑛 ×
{0, 1}𝑚)→ {0, 1}𝑛 using a regular PRF 𝐹 : 𝒦× ({0, 1}𝑛×{0, 1}𝑚)→ {0, 1}𝑛 by defining ̃︀𝐹 ⟨𝑇 ⟩𝐾 (𝑋, 𝑌) =
𝐹𝐾((𝑋 ⊕𝛥𝐾(𝑇)), 𝑌) for every 𝑇 ∈ 𝒯 , 𝐾 ∈ 𝒦, 𝑋 ∈ {0, 1}𝑛 , 𝑌 ∈ {0, 1}𝑚 where 𝒯 = {0, 1}|𝑁 | × N × N
and 𝛥𝐾(𝑇) is the masking function of p-OMD.

The purpose of the masking function is to compute masking offsets 𝛥𝑁,𝑖,𝑗 that are tweak-dependent
and key-dependent in such a way that meets certain security and efficiency criteria.

Firstly, we note that the security proof of the XE construction still holds if 𝛥𝐾(𝑁, 𝑖, 𝑗) satisfies the
following two security conditions:

1. Pr[𝛥𝐾(𝑁, 𝑖, 𝑗) = 𝐻] ≤ 2−𝑛 for any (𝑁, 𝑖, 𝑗)
2. Pr[𝛥𝐾(𝑁, 𝑖, 𝑗)⊕𝛥𝐾(𝑁 ′, 𝑖′, 𝑗′) = 𝐻] ≤ 2−𝑛 for (𝑁, 𝑖, 𝑗) ̸= (𝑁 ′, 𝑖′, 𝑗′).

Secondly, we note that the masking offsets should be computable efficiently in the order they appear
in the masking sequence. We need to efficiently compute 𝛥𝑁,𝑖+1,𝑗 if we have previously computed 𝛥𝑁,𝑖,𝑗

for 0 ≤ 𝑖 (i.e. “increment” the 𝑖 component), and also we need to efficiently compute 𝛥𝑁,𝑖,𝑗′ if we have
previously computed 𝛥𝑁,𝑖,𝑗 for any 𝑗, 𝑗′ ∈ {0, . . . , 15} (i.e. “switch” the 𝑗 component). To achieve this,
we adapt the approach based on standard Gray Code sequence from [20].
Gray Code sequence. For a fixed positive 𝑟 > 0 the Gray Code sequence is a special ordering
𝑎 : {0, 1, · · · , 2𝑟 − 1} → {0, 1}𝑟 of the set or 𝑟 bit strings. It can be defined recursively as 𝑎(0) = 0𝑟

and 𝑎(𝑖) = 𝑎(𝑖 − 1) ⊕ 2ntz(𝑖) if 𝑖 ≥ 1, where ntz(𝑖) denotes the number of trailing zeros in the binary
representation of 𝑖. The basic facts are that 𝑎 is a bijection and 0 ≤ 𝑎(𝑖) ≤ 2𝑖 (if represented as integer)
for all 𝑖. We stress that we therefore have that (1) 𝑎(𝑖) ≤ 2𝑟+1 for all 𝑖, and (2) 𝑎(𝑖) ̸= 𝑎(𝑗) for all 𝑖 ̸= 𝑗.
Construction of the masking function. First recall that we only need to use 16 different values of
the 𝑗 component in p-OMD, i.e., all of its values are representable with 4 bits. Keeping this in mind we
first define the sequence of Galois field elements 𝛾(𝑖, 𝑗) ∈ 𝐺𝐹 (2𝑛) as 𝛾(𝑖, 𝑗) = 24 · 𝑎(𝑖)⊕ 𝑗 for 0 ≤ 𝑗 ≤ 15
(we represent 𝑗 by as an (𝑛 − 6) bit string) and 0 ≤ 𝑖 < 2𝑛−6 where the multiplication is done in the
Galois field. Referring to the properties of the Gray Code sequence, we can verify that for all 𝑖, we have
⟨𝑎(𝑖)⟩𝑛[𝑛 − 1 . . . 𝑛 − 5] = 05 and ⟨(24 · 𝑎(𝑖))⟩𝑛[3 . . . 0] = 04. This implies that for every allowed pair 𝑖, 𝑗
the value 𝛾(𝑖, 𝑗) will be a unique element of 𝐺𝐹 (2𝑛).

Finally, we define the masking function as

𝛥𝐾(𝑁, 𝑖, 𝑗) = 𝐹𝐾 (𝑁 ||10𝑛 − |𝑁 | − 1, 0𝑚)⊕ 𝛾(𝑖, 𝑗) · 𝐹𝐾 (0𝑛, 0𝑚)

19

where 𝐹 is the PRF used in p-OMD.
We can now easily verify that the two required security properties are met under the assumption that

𝐹 is a good PRF. 𝛥𝐾(𝑁, 𝑖, 𝑗) being a bitwise xor of two independent random 𝑛 bit strings, we trivially
have Pr[𝛥𝐾(𝑁, 𝑖, 𝑗) = 𝐻] ≤ 2−𝑛 for any (𝑁, 𝑖, 𝑗). To see if Pr[𝛥𝐾(𝑁, 𝑖, 𝑗) ⊕𝛥𝐾(𝑁 ′, 𝑖′, 𝑗′) = 𝐻] ≤ 2−𝑛

for (𝑁, 𝑖, 𝑗) ̸= (𝑁 ′, 𝑖′, 𝑗′), we consider two cases, either 𝑁 = 𝑁 ′ or not. In the latter case, 𝑁 ̸= 𝑁 ′ implies
that 𝛥𝐾(𝑁, 𝑖, 𝑗) ⊕𝛥𝐾(𝑁 ′, 𝑖′, 𝑗′) = 𝐻 is equivalent to the event that a bitwise xor of two independent
random 𝑛-bit strings is equal to some specific value and we conclude that the required property is
verified in this case. In the former case, 𝐹𝐾(𝑁 ||10𝑛 − |𝑁 | − 1, 0𝑚) = 𝐹𝐾(𝑁 ′||10𝑛 − |𝑁 ′| − 1, 0𝑚) so
𝛥𝐾(𝑁, 𝑖, 𝑗)⊕𝛥𝐾(𝑁 ′, 𝑖′, 𝑗′) = 𝐻 occurs iff (𝛾(𝑖, 𝑗)⊕ 𝛾(𝑖′, 𝑗′)) ·𝐹𝐾(0𝑛, 0𝑚) = 𝐻. Note that we must have
(𝑖, 𝑗) ̸= (𝑖′, 𝑗′) which together with properties listed above imply that the multiplier (𝛾(𝑖, 𝑗)⊕ 𝛾(𝑖′, 𝑗′) is
non-zero. Thus, we conclude that the second condition is met in this case as well.

Compact representation. Let 𝐿* = 𝐹𝐾(0𝑛, 0𝑚). Then we have

𝛥𝐾(𝑁, 𝑖, 𝑗) = 𝐹𝐾 (𝑁 ||10𝑛 − |𝑁 | − 1, 0𝑚)⊕ 𝛾(𝑖, 𝑗)𝐿*
= 𝐹𝐾 (𝑁 ||10𝑛 − |𝑁 | − 1, 0𝑚)⊕ 𝑎(𝑖) · 24 · 𝐿* ⊕ 𝑗 · 𝐿*.

We further define 𝐿*(𝑗) = 𝑗 · 𝐿* for 0 ≤ 𝑗 ≤ 15 and 𝐿(ℓ) = 24+ℓ · 𝐿* for 0 ≤ ℓ < 𝑛 − 6. Note that
𝐿*(1) = 𝐿*, 𝐿*(0) = 0𝑛 and 𝐿(0) = 24 ·𝐿*. Thus we can write 𝛥𝐾(𝑁, 𝑖, 𝑗) = 𝐹𝐾(𝑁 ||10𝑛−|𝑁 |−1, 0𝑚)⊕
𝑎(𝑖) · 𝐿(0) ⊕ 𝐿*(𝑗). We can derive two rules. First, keeping in mind the way we have defined the Gray
Code sequence we can see that

𝛥𝐾(𝑁, 𝑖, 𝑗) = 𝐹𝐾 (𝑁 ||10𝑛 − |𝑁 | − 1, 0𝑚)⊕ 𝑎(𝑖) · 𝐿(0)⊕ 𝐿*(𝑗)

= 𝐹𝐾 (𝑁 ||10𝑛 − |𝑁 | − 1, 0𝑚)⊕
(︀
𝑎(𝑖− 1)⊕ 2ntz(𝑖))︀ · 𝐿(0)⊕ 𝐿*(𝑗)

= 𝐹𝐾 (𝑁 ||10𝑛 − |𝑁 | − 1, 0𝑚)⊕ 𝑎(𝑖− 1) · 𝐿(0)⊕ 2ntz(𝑖) · 𝐿(0)⊕ 𝐿*(𝑗)

= 𝛥𝐾(𝑁, 𝑖− 1, 𝑗)⊕ 2ntz(𝑖) · 𝐿(0)
= 𝛥𝐾(𝑁, 𝑖− 1, 𝑗)⊕ 𝐿(ntz(𝑖)).

Secondly, for any 𝑗, 𝑗′ from the acceptable range we have

𝛥𝐾(𝑁, 𝑖, 𝑗′) = 𝐹𝐾 (𝑁 ||10𝑛 − |𝑁 | − 1, 0𝑚)⊕ 𝑎(𝑖) · 𝐿(0)⊕ 𝐿*(𝑗′)
= 𝐹𝐾 (𝑁 ||10𝑛 − |𝑁 | − 1, 0𝑚)⊕ 𝑎(𝑖) · 𝐿(0)⊕ 𝐿*(𝑗)⊕ 𝐿*(𝑗)⊕ 𝐿*(𝑗′)
= 𝛥𝐾(𝑁, 𝑖, 𝑗)⊕ 𝑗 · 𝐿* ⊕ 𝑗′ · 𝐿*

= 𝛥𝐾(𝑁, 𝑖, 𝑗)⊕
(︀
⟨𝑗⟩𝑛 ⊕ ⟨𝑗′⟩𝑛

)︀
· 𝐿*

= 𝛥𝐾(𝑁, 𝑖, 𝑗)⊕ 𝐿*
(︀
str2num

(︀
⟨𝑗⟩𝑛 ⊕ ⟨𝑗′⟩𝑛

)︀)︀
.

By combining these two rules we obtain the compact definition used in the specification of p-OMD in
Section 4.

20

	Boosting OMD for Almost Free Authentication of Associated Data

