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Résumé
Bien que le frottement affecte notre quotidien de multiples façons, ce phénomène constitue

toujours un des grands mystères de la physique. Le frottement est véritablement un phéno-

mène multi-échelle combinant une grande variété de processus actifs à différentes échelles

de longueur et de temps. Récemment, la recherche des origines du frottement a accordé

une attention importante aux propriétés micro et nanoscopiques de l’interface au détriment

des aspects structuraux du frottement agissant aux échelles méso et macroscopiques. Cette

thèse ambitionne de démontrer que ces aspects sont cependant essentiels dans la description

du comportement macroscopique des interfaces de frottement, et poursuit ainsi l’objectif

d’améliorer la connaissance actuelle de la propagation des fronts de glissement le long de ces

interfaces.

La mécanique des interfaces de frottement est étudiée à l’aide de simulations éléments finis

dynamiques en modélisant des systèmes reproduisant les conditions expérimentales. En

fonction de la nature du phénomène étudié, les simulations sont effectuées en deux ou

trois dimensions. De plus, des modèles théoriques basés sur la mécanique de la rupture

sont développés et appliqués pour confirmer les observations numériques. Ces modèles

permettent de mieux comprendre les mécanismes gouvernant la propagation des fronts de

glissement et révèlent l’influence des différents paramètres du système, du matériau, et de

l’interface.

Les résultats présentés dans cette thèse montrent que les modèles numériques appliqués

reproduisent quantitativement les observations expérimentales reportées dans la littérature.

Les aspects étudiés du glissement d’interface de frottement comprennent, entre autres, la

vitesse de propagation, la position d’arrêt, et l’effet des hétérogénéités à l’interface. Au-delà de

confirmer les observations expérimentales, les modèles numériques et théoriques révèlent de

nouvelles propriétés de la propagation et de l’arrêt des fronts de glissement. Ils montrent, par

exemple, que la vitesse du front de glissement dépend de la direction de propagation et que

la position d’arrêt des précurseurs peut être prédite par la théorie de la mécanique linéaire

élastique de la rupture. En outre, la simulation de fronts de glissement le long d’interfaces

hétérogènes démontre une interaction entre les échelles de longueur du front de glissement

et de la configuration hétérogène.

Mots-clefs :

fronts de glissement, interfaces de frottement, précurseurs, vitesse de propagation, posi-

tion d’arrêt, interfaces hétérogènes, mécanique linéaire élastique de la rupture, simulations

éléments finis dynamiques

vii





Abstract
Even though friction affects everyday life in many ways, it is still one of the biggest mysteries

of physics. Friction is a truly multi-scale phenomenon with a large variety of processes acting

at various length and time scales. In recent years, much attention was paid to the micro- and

nano-scale properties of frictional interfaces in order to uncover the origins of friction. The

structural aspects of friction at the meso- to macro-scales have, however, often been neglected.

This thesis aims at demonstrating that these aspects are key to the frictional response of

macroscopic systems and pursues therefore the objective of improving today’s knowledge of

the rupture-like propagation of slip fronts at frictional interfaces.

The mechanics of frictional interfaces is studied with state-of-the-art dynamic finite-element

simulations of systems mimicking experimental set-ups. Two and three-dimensional simula-

tions are conducted according to the nature of the studied phenomena. In addition, theoretical

models based on fracture mechanics theory are developed and applied to confirm the nu-

merical observations. These models provide insights on the underlying mechanisms of the

slip front propagation and reveal the influence of various system, material, and interface

parameters.

The results presented in this thesis show that the applied numerical models reproduce quan-

titatively well experimental observations as reported in literature. The studied aspects of

frictional slip include, among others, the propagation speed, the arrest position, and the effect

of interface heterogeneity. Beyond confirming experimental observations, the simulations

and theoretical models further reveal new features of the propagation and arrest of slip fronts.

They show, for instance, that the speed of slip fronts depends on the propagation direction

and that the arrest position of slip precursors is predictable with linear elastic fracture me-

chanics theory. Furthermore, simulations of slip fronts at heterogeneous interfaces uncover

an interaction between the length scales of the slip front and the heterogeneous pattern.

Keywords:

slip fronts, frictional interfaces, precursors, propagation speed, arrest position, heterogeneous

interfaces, linear elastic fracture mechanics, dynamic finite-element simulations
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1 Introduction

1.1 Context

Friction is the resistance that solids encounter when they slide over each other.1 As such,

friction affects our lives in many ways every single day. It is present between the tire and the

road when we drive with our cars. At classical concerts, we listen to violin music that originates

from vibrations caused by friction between the strings and the bow. And when we wait in a

cold winter night outside, we rub our hands so that friction provides us with a little bit of heat.

Apart from these everyday examples, friction also plays an important role in the manufacture

industry. Being present at the interface of gears and other moving parts in machines, friction is

sometimes needed in order to enable the apparatus to fulfil its purpose. Other times, friction

reduces the production efficiency or causes wear on machine components. It therefore has

an important economical impact, which was first estimated by Jost (1966) stating that the UK

could save up to 1% of its gross national product if friction was better understood. Persson

(1994) later estimated that developed countries lose about 5% of their gross national products

due to friction and wear.

Another friction-related problem of great importance to humanity is earthquakes and their

unpredictability. At the origin of many earthquakes is relative motion between tectonic plates,

which leads to an energy build-up in the crust of the Earth. Once the frictional strength of the

tectonic interface is reached, the energy is released in form of seismic waves. The variability in

intensity, speed and potential of destructibility is enormous and the prediction of earthquakes

is still out of reach but needed to reduce their deadliness and economic impact.

Considering the relevance of friction for a wide variety of applications, it is not surprising

that our society looks back at a long history of research on this phenomenon. Centuries ago,

Leonardo da Vinci (1452-1519) discovered the first basic friction laws by showing that the

frictional resistance is proportional to the normal load and independent of the apparent area

1Friction also occurs at lubricated interfaces, where the solids are separated by a fluid. This phenomenon is,
however, beyond the scope of this thesis and attention is here limited to unlubricated friction.
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of contact. These observations were later verified and published by Amontons (1699) and

Coulomb (1785) introducing also the coefficient of friction µ= FF/FN, which is the proportion-

ality between the frictional force FF and the normal load FN. Moreover, Coulomb discovered

that static friction, the force needed to start sliding, is generally higher than kinetic friction,

which acts during sliding.

The so-called second Amontons-Coulomb friction law, which states that the friction force

is independent of the apparent contact area, seems counter-intuitive to most people and

constituted therefore for a long time a puzzle to many scholars. It was already mid-twentieth

century, when Holm (1938) as well as Bowden and Tabor (1942b) revealed that, due to surface

roughness, the real contact area is considerably smaller than the apparent contact area and

that it is the real contact area that is proportional to the normal load. These theoretical

findings were later confirmed by Dieterich and Kilgore (1994) with direct observations using

transparent samples, where areas of contact were visualized by transmitted light.

The most popular parameter of friction, the static friction coefficient, has for a long time

been, and is often in engineering still regarded as a material and/or interface property, for

which one can find experimental values given in textbook tables (Blau, 2009). However, a more

realistic view of friction exists today but is still far from being established. Some evidences of

inaccuracy of the classical friction theory were provided by Rabinowicz (1992) showing that

for a given experimental set-up, the static friction coefficient of a gold-on-gold interface varies

from 0.32 up to 0.80. Fluctuations of the same order were also observed by Ben-David and

Fineberg (2011) when the loading conditions of a given acrylic-glass interface were changed.

These large variations in the friction coefficient are clear indicators that the mechanics of

sliding and its related forces is more complicated than assumed so far. Rubinstein et al. (2004)

observed by real-time visualization of the real contact area of an acrylic-glass interface that

the onset of dynamic friction features local slip fronts. These rupture-like events propagate

over the entire or parts of the interface and might be key to the understanding of frictional

sliding. A similar mechanism of dynamic shear-crack propagation is at the origin of many

earthquakes and has been studied for decades (Scholz, 2002).

A better understanding of these local dynamic phenomena is therefore needed to achieve

profound knowledge of fundamental earthquake mechanisms and to possibly predict, in

the future, imminent earthquakes. But mastering the dynamics of friction is also required

to strengthen the manufacturing industry by improving today’s technology and reducing

friction-related losses. However, studying local phenomena of friction and the onset of sliding

presents a variety of challenges, which are outlined in the following section, and requires

therefore a number of different scientific approaches including numerical simulations and

theoretical mechanics, which are the two pillars of this thesis.
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1.2 Challenges

The study of friction has long been limited to macroscopic experiments where, in a simplified

description, a block of a given material was subjected to a normal load and pulled by a cord.

The needed pulling force was measured and analyzed with respect to the material property,

the normal load, the contact area and the sliding speed. Detailed information about what

happens at the interface could not be accessed because the object of interest – the interface –

is hidden behind the bulk material of the samples. Only few qualitative observations could be

deduced from post-mortem examinations of the sliding interfaces.

This main challenge for the investigation of local phenomena in frictional sliding has been

partially overcome by different visualization techniques (Kragelskii, 1965; Dieterich and Kil-

gore, 1994; Rubinstein et al., 2004; Yamaguchi et al., 2011). All these approaches rely on the

transparency of the bulk material, some kind of light source and a camera. Knowing that

the interface transmits light only at points of contact and scatters it everywhere else, the real

contact area can be recorded and visualized by the camera through a light intensity measure-

ment. By tracking the real contact area of an interface during a friction experiment, it was, for

instance, possible to confirm the proportionality between the normal load and the real contact

area (Dieterich and Kilgore, 1994), and to study the propagation speed of local slip events

(Rubinstein et al., 2004; Ben-David et al., 2010). Nevertheless, these measurement techniques

are limited to few transparent materials and constrain a systematic study of frictional slip.

Overcoming the challenges of studying frictional slip experimentally requires additional

insights from computational research. Numerical simulations provide direct access to infor-

mation at the interface. Contact pressure, frictional tractions, state variables, slip velocity

and any other observable phenomenon can be computed or measured numerically at the

interface without the limitation of bulk transparency. Furthermore, simulations give flexibility

of changing easily the geometry or the material properties of the set-up. This also provides the

possibility of simplification and thus enables the investigation of the influence of different

aspects, such as material or interface properties. Another asset of numerical simulations is

high resolution in time and space, which is important for fast phenomena such as slip events

with propagation durations of the order of micro-seconds or shorter.

Even though numerical modeling presents an essential opportunity to support experimenters

in studying the mechanics of local slip and the dynamics of friction phenomena, they also

bear challenges. Knowing that friction is a truly multi-scale phenomenon with various pro-

cesses acting at all length scale, as shown schematically in Figure 1.1, it is impossible with

today’s computational resources to include all types of interactions at all scales into one single

numerical model. It is, therefore, crucial to “design” an accurate representation including

all necessary processes at the essential scales for the studied problem in order to produce

meaningful results that lead to significant insights. At the meso- to macro-scale, which is

the objective of this thesis, the solid samples need to be modeled as a continuum, which is

classically done using the finite-element method. The simulation of the mechanics of the

3



Chapter 1. Introduction

Figure 1.1: Simplified schematic illustration of the multi-scale nature of friction. Various
processes at different length scales contribute to the macroscopic friction force.

interface – the discontinuity in the continuum – requires, however, a modern and advanced

contact and friction model. For the purpose of studying dynamic slip events, it is important

that the applied method is precise in terms of energy conservation/dissipation and minimizes

numerical errors.

Asides from pure technical aspects, additional challenges arise from Coulomb’s friction law,

which is, in mathematical terms, ill-posed under certain conditions at interfaces between

solids of different material properties (Renardy, 1992; Adams, 1995). The exact implications of

this ill-posedness for variations of this basic friction law and different interface stress states are

still not well understood but may impact numerical results considerably. Bulk viscoelasticity

and friction law regularization (Cochard and Rice, 2000) appear to have a stabilizing effect

but change the physical basis of the modeled system. The absence of profound knowledge

about the conditions under which the ill-posedness of Coulomb’s friction law occurs and how

a friction regularization affects the numerical results, requires a careful development of the

model.

Finally, it is a fundamental problem to set up a model that is sufficient but not too complex.2 A

lack of complexity could lead to incomplete or even wrong discoveries, and too sophisticated

models might represent an obstacle to gaining profound knowledge about the studied system.

More particularly for simulations of friction, it is essential to apply appropriate constitutive

equations for the interface as well as the bulk materials, and to create a precise model with

accurate geometry and boundary conditions.

1.3 Objectives

The main objective of this thesis is to improve our knowledge of the mechanics of local slip

at frictional interfaces by conducting numerical simulations. It is therefore a study of the

rupture-like propagation of slip fronts and aims at a better understanding of the link between

meso- and macro-scale phenomena of friction. In particular, this work focuses on different

aspects of slip front propagation, including:

2Or to say it with Albert Einstein’s words: “Everything must be made as simple as possible. But not simpler.”
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• Local frictional strength: Studying meso-scale friction laws that are regularized with

respect to changes in the contact pressure and analyzing the effect of the underlying

characteristic length scale on the propagation of slip fronts.

• Propagation speed: Studying the behavior of slip fronts at interfaces with non-uniform

stress distributions and describing the propagation speed as a function of the interface

stress state.

• Slip arrest: Analyzing the spontaneous arrest of slip fronts at positions far from the

edges of the interface and examining the influence of the macroscopic set-up on the

arrest position.

• Interface heterogeneities: Illustrating the propagation of slip fronts at interfaces with

heterogeneous patterns and studying the effects of the interaction between the charac-

teristic length scales of the slip front and the heterogeneous configuration.

Considering that friction is a multi-scale phenomenon, it is important to emphasize that the

studied aspects concern the mechanics of meso- to macro-scale friction at unlubricated dry

interfaces. Friction mechanisms occurring at smaller scales, as for instance the mechanics of

asperities or atomistic friction, are out of scope for this work. However, their contributions are

integrated into meso-scale friction laws applied at the interface.

1.4 Approach

Given the objective of modeling meso- and macro-scale aspects of frictional sliding, a con-

tinuum approach is most suited to represent well the length and time scales of the studied

system and phenomena. The finite-element method, which is applied for the simulations

conducted for this thesis, is a well-established modeling technique that incorporates correctly

the continuum nature of the solid bodies. Furthermore, the finite-element method allows

the integration of additional tools necessary to represent the interface discontinuity. The

in-house developed finite-element research code named Akantu (Richart and Molinari, 2014;

LSMS-EPFL, 2014) is used and extended according to the needs for fulfilling the objectives.

The goal of this work is to study fast dynamic phenomena of frictional sliding, which occur

over short time periods. Explicit time integration schemes with a lumped mass matrix are a

well-suited approach to study such problems efficiently. In addition, we employ occasionally

static methods to compute initial conditions for dynamic simulations.

The propagation of slip fronts is modeled with a cohesive-type approach similar to modeling

techniques of crack propagation. The applied traction-at-split-node method uses meso-scale

laws for interface tractions. This combines cohesive forces within the process zone (where

the interface breaks) and friction forces in the slip region. The discontinuity at the interface

is handled by splitting nodes into two nodes and by applying cohesive and friction tractions

at the node level. This method is particularly efficient and minimizes numerical noise, but
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requires small displacement discontinuities at the interface. This small-slip condition is

satisfied for problems studied in this work.

In addition to numerical simulations, we apply theoretical approaches to analyze the phenom-

ena of frictional slip. This should not only emphasize the validity of the numerical results, but

also provide a tool to a better understanding of the mechanics of the observed behavior. It also

indicates the influence of different material and interface properties. The applied approach

is based on an analogy of friction and fracture. It thus benefits from the existing knowledge

of fracture mechanics and strengthens the notion of slip fronts being a fracture mechanics

phenomenon.

1.5 Outline of Chapters

This thesis is organized in eight chapters, which are here briefly summarized:

• Chapter 2 – State of the Art: A summary of previous work about unlubricated dry

friction. It first presents main results from large-scale experiments, showing that macro-

scopic friction is, under different conditions, slip-, rate- and/or state-dependent. Fur-

ther, this chapter presents fundamental results of fracture mechanics applied to shear

cracks, summarizes various phenomena occurring during the propagation of slip fronts,

and explains current knowledge about behavior of local frictional strength. This chapter

also summarizes important results of numerical simulations related to frictional slip

propagation.

• Chapter 3 – Theoretical and Numerical Framework: A description of applied theories

and numerical methods. This chapter provides the basics of continuum mechanics,

contact mechanics with friction, and linear elastic fracture mechanics. It also describes

the fundamental theory about the finite-element method and the traction-at-split-node

method.

• Chapter 4 – A Critical Length Scale in Regularized Friction: An analysis of the effect

of friction regularization on a local slip event. This chapter first confirms mesh con-

vergence for a given slip event at a regularized deformable-rigid interface without any

numerical damping in the bulk. It further shows that there is a critical length scale below

which the friction regularization does not affect the propagation of the slip front. This

indicates that slip regions with characteristic regularization lengths below the critical

length propagate as if the interface was governed by Coulomb’s friction. A domain of

influence, which is defined in this chapter, determines the property of the slip event

needed to achieve experimental observation of the characteristic length and shows that

the amount of energy in the high-frequency domain of the slip event is the critical factor.

• Chapter 5 – Criteria for the Slip Front Speed: A study of different criteria describing the

propagation speed of slip fronts at frictional interfaces. This chapter first demonstrates
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that a numerical model reproduces recent experimental observations showing that the

rupture speed is closely related to the shear to normal stress ratio at the interface. It

further highlights that slip fronts propagating in opposite directions do not present

the same rupture speed for a given stress ratio. In order to improve the description of

the slip front speed, two dynamic criteria are proposed and analyzed. While a simple

dynamic stress criteria shows a smaller but still non-negligible difference with respect

to the front direction, a dynamic energy-based approach provides a unique stress-speed

relation.

• Chapter 6 – Predicting the Propagation Distance of Frictional Slip: An analysis of the

mechanics of arresting slip fronts. This chapter presents numerical and theoretical

models to simulate the propagation of slip precursors, which arrest naturally before

reaching the edge. The main theoretical model considers slip fronts as interface ruptures

and uses linear elastic fracture mechanics to predict the propagation distance. The

comparison with experimental data and the analysis of the influence of different inter-

face and material parameters show that the fracture mechanics based model provides a

good quantitative prediction of slip arrest. This observation offers evidence to recognize

frictional slip as a fracture phenomenon.

• Chapter 7 – Heterogeneous Interface: A study of the propagation of slip fronts at fric-

tional interfaces with an organized heterogeneous pattern. This chapter presents the

results of three-dimensional numerical simulations of slip fronts at an interface with

a striped heterogeneous area. The strips are alternatively characterized by higher and

lower fracture energy leading in homogeneous systems to sub-Rayleigh and inter-sonic

propagation, respectively. The simulations show that two distinct propagation mech-

anisms exist and appear depending on the wavelength of strip configuration. A non-

dimensional parameter linking the characteristic length scale of the slip front and the

heterogeneous pattern is proposed and shown to determine well the propagation mech-

anism occurring in a given system.

• Chapter 8 – Concluding Remarks: A summary of the conclusions of the various studies

on the propagation of slip fronts at frictional interfaces. In addition, an outlook for

potential future research on frictional slip in complex systems is provided.
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2 State of the Art

Being of great importance to our society, friction has been studied for centuries. With time

our knowledge about this complex phenomenon as well as our tools to study it have improved

considerably. Nevertheless, there are still uncountable mysteries about the origins of friction.

This thesis addresses the dynamics of meso-scale friction phenomena, such as the propagation

of local slip regions along interfaces with non-uniform stress states, and the link between the

mechanics of meso-scale friction and the macro-scale response of solid body systems with

interfaces. The objective of this chapter is to summarize the current state of knowledge about

meso- and macro-scale friction with a particular focus on previous numerical results. As such,

this chapter reports on

• the experimental observations of macroscopic friction,

• the mechanics of frictional interfaces at the meso-scale, and

• the numerical simulations of the propagation of local slip regions.

This chapter is limited to physical and mechanical aspects of frictional slip, and does not

explain experimental nor numerical techniques in details. The theoretical and numerical

framework of simulation tools applied in this thesis are described in details in Chapter 3.

2.1 Macro-Scale Observations in Friction Experiments

Most macro-scale friction experiments consist of two solids that are brought into contact.

While a normal load is kept constant, the shear load is slowly increased until the two solids are

sliding over each other. By measuring the maximal value of the shear load, the experimenter

finds the static frictional strength of the interface. First friction experiments of this kind were

conducted by Leonardo da Vinci with a set-up as schematically shown in Figure 2.1. A test

object is placed on a flat surface and loaded by a weight. Using gravity acting on a free weight,
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Figure 2.1: Illustration of da Vinci’s set-up for friction experiments. A test object is placed on a
test table and loaded by a weight. A shear load is applied to the test object by a free weight
via a coil at the edge of the table. The frictional strength of the interface is determined by the
weight which sets the test object in motion.

he applied a shear load to the test specimen via a coil. The shear load leading to sliding was

then interpreted as the frictional strength of the tested interface.

Later, similar experiments by Amontons (1699) and Coulomb (1785) led to the definition of

the well-known coefficient of friction µ, which corresponds to the ratio of the friction force to

normal load. This is usually expressed as the so-called Coulomb friction law or Amontons’

first law as

FF =µFN , (2.1)

where FF is the friction force and FN the normal load. Furthermore, these experiments showed

that the friction force is independent of the apparent contact area. This counter-intuitive

discovery was later shown to be caused by the micro-roughness of interfaces resulting in real

contact areas that are much smaller than the apparent contact area (Holm, 1938; Bowden and

Tabor, 1942a; Dieterich and Kilgore, 1994). Often the ratio of the real to apparent contact area

is below 1%.

Other macro-scale experiments showed that the friction force is generally not constant and

that various parameters influence it. Slip rate is one of the most prominent friction parameters.

Depending on the order of the slip rate, its acceleration can result in an increase or decrease

of the friction force. First experimental evidence of rate-dependent friction was reported by

Burwell and Rabinowicz (1953). An example of typical experimental results of rate-dependent

friction is shown in Figure 2.2(a). Slip distance has also been shown to affect the friction force

(Rabinowicz, 1956). Interfaces following a slip-weakening friction process often present a

characteristic length which describes the slip distance needed to decrease frictional strength

from the static to the dynamic value.

Another parameter affecting the friction force was found to be the waiting time between two

consecutive slip periods. A logarithmic time-dependence of the static friction coefficient
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Figure 2.2: (a) General trend of experimental results of a steel-indium interface showing
rate-dependent macroscopic coefficient of friction. Figure adapted from Burwell and Rabi-
nowicz (1953). (b) Trend of experimental data for waiting time-dependent coefficient of static
friction of a sandstone interface under 18.7MPa normal load as reported by Dieterich (1972).
(c) Schematic rate- and state-dependent reaction of the coefficient of friction for a sudden
change in the loading rate.

was observed in experiments at various rock interfaces with a gouge zone (Dieterich, 1972)

as well as at metallic interfaces (Rabinowicz, 1965). In some cases, the reference value of

the static friction coefficient corresponds to the kinetic friction coefficient for waiting times

approaching zero (Dieterich, 1972).

Experiments with sudden changes of the loading rate showed that the friction force adapts

to the new rate over a characteristic slip distance (Dieterich, 1978, 1979). As shown in Fig-

ure 2.2(c), an instantaneous jump of the loading rate results in a quasi-immediate change of

the friction force followed by a phase of transition to a new steady state. Considering that

the real contact area consists of a collection of micro-contacts, sliding results in continuous

renewing of the micro-contact population. This leads to two competing processes, which are

contact zones that become stronger with time (the time-dependent effect) and contact zones

that are replaced by weaker zones (the velocity-dependent effect). This approach led to a

variety of more advanced friction laws, often referred to as rate- and state-dependent friction

laws (Dieterich, 1978, 1979; Ruina, 1983; Rice and Ruina, 1983). They describe the behavior

shown in Figure 2.2(c) with a rate and a state variable, where the latter usually depends on the

past slip rates.

Typical rate- and state-dependent friction laws predict variations of the friction coefficient of

the order of 10% because the experiments on which these laws are based used slow loading

rates (10−5−10−1 mm/s). However, slip rates occurring in dynamic systems, such as in tectonic

faults during an earthquake, can reach much higher values (up to 1m/s). Experiments have

shown that at these rates the frictional strength of an interface can drop to considerably

lower values than predicted by rate- and state-dependent friction laws. The experiments

of Di Toro et al. (2004) suggest that the frictional resistance of quartz rock interfaces may

reach zero for seismic slip rates. Reches and Lockner (2010) observe in their experiments at
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Figure 2.3: Schematic illustration of stick-slip motion of a spring-mass system. The spring of
stiffness Ks is pulled with constant speed v x . The solid black line indicates the spring position.
The block starts to move when the spring force reaches the static friction force FSF = Ks∆xc.
If the friction force FF is governed by Coulomb’s law without weakening, FSF = FKF, the block
enters steady motion (solid blue line indicates the position). However, if the friction force
weakens with slip, FSF > FKF, (for simplicity instantaneous weakening is assumed), the block
accelerates beyond v x and enters a stick-slip regime (dashed red line indicates the position).

a granite interface a reduction of the frictional strength of a factor two to three for slip rates

at 10−60mm/s. Similar observations were made by Goldsby and Tullis (2011) on quartzite

interfaces.

The weakening process of frictional strength during sliding (independent of whether it is slip-,

rate- or state-dependent) is at the roots of a macroscopic friction phenomenon called stick-slip

motion (Scholz, 2002). It is the repetition of periods of interfacial slip followed by periods of

stick. In a simple system consisting of a block lying on a surface and being pulled by a spring,

motion is steady if the weakening rate of the friction force is lower than the spring stiffness.

However, if this is not the case, then the block enters a stick-slip regime because the driving

force of the spring is stronger than the resisting friction force, which leads to the acceleration

of the block. Once motion unloaded the spring, the decelerating friction force causes the block

to stop. After arrest, the spring is loaded until the next slip period. An illustrative example of

stick-slip motion is presented in Figure 2.3. Depending on the loading velocity and the spring

stiffness, the transition from steady motion to stick-slip was shown to be either creep-like or

inertial (Baumberger et al., 1994; Heslot et al., 1994).

Even though macroscopic friction presents systematic behavior, such as rate- or waiting time-

dependence, it also produces large variability. The measured static friction force for a given

pair of solids can vary up to a factor two, as shown by Rabinowicz (1992). Under low normal

loads, he observed static friction coefficients of a gold-on-gold interface ranging from 0.32

up to 0.8. Similar experimental measurements were, more recently, reported by Ben-David

and Fineberg (2011). These large variations in the macroscopic friction force suggest that
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the underlying mechanism is complex and that the local phenomena at the interface play an

important part in the global response of the system. Therefore, a substantial effort was made

to study the local mechanics of interfaces.

2.2 Local Interface Phenomena of Friction

In addition to studying the macroscopic response of a system containing a frictional interface,

it seems obvious that the important friction mechanisms occur locally at the interface. It

is therefore no surprise that the mechanics of interfaces is a subject of great importance.

However, it is also obvious that observing the interface is challenging because of its hidden

position behind the bulk of the solids in contact. Different approaches have been used in

the past to gain knowledge about the mechanics of interfaces. This section summarizes the

main results related to the description of frictional shear cracks with fundamental concepts of

fracture mechanics, the observation of the propagation and various phenomena occurring

during the propagation of slip fronts including the analysis of the local frictional strength and

its development during sticking and sliding.

2.2.1 Fracture Mechanics Applied to Frictional Shear Cracks

It has been known for a long time that earthquakes are essentially periods of slip between

tectonic plates. It was also understood that earthquakes initiate at a given point, called the

hypocenter, and propagate along the interface. Combining these two points, one can (rather

easily) conclude that earthquakes are shear cracks at a frictional interface. Even though this

reasoning was first made in the context of earthquake mechanics, it is just as valid for any slip

front propagating at any frictional interface, including man-made interfaces.

From fracture mechanics, it is known that the presence of a crack in an elastic solid results in

stress singularities at the tip of the crack, which is physically not possible for real materials. As

suggested by Barenblatt (1959), a possibility for eliminating these singularities are cohesive

forces acting across the crack in a limited (cohesive) zone around the tip. One can think of

these forces as the resistance that needs to be overcome to increase the crack size by creating

new surfaces. Various slip-dependent cohesive laws were proposed by Ida (1972) and shown

to remove the crack tip singularity. A popular cohesive force description is the linear slip-

weakening law, which has since been used in many earthquake-related simulations (Andrews,

1976b; Day, 1982b; Madariaga and Olsen, 2000). The concept of fracture mechanics was also

applied to the growth of slip surfaces in over-consolidated clays (Palmer and Rice, 1973).

Linear elastic fracture mechanics with a cohesive zone approach, as used for frictional shear

cracks, is a solid tool to describe the propagation of slip fronts at frictional interfaces. Andrews

(1976a,b) showed on an antiplane and on a plane-strain shear crack that energy considerations

based on fracture mechanics enable the possibility of identifying a critical crack length beyond

which the rupture will propagate.

13
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Figure 2.4: Schematic illustration of a sharp crack tip (top sub-figures with red lines) and a
cohesive zone crack tip (bottom sub-figures with green lines). The left column illustrates the
fracture models, and the right column the slip and stress of a rupture tip propagating to the
right side. The static strength of the sharp crack is infinite (red question mark) which leads
to a stress singularity in front of the rupture tip. The cohesive zone crack tip is smoothed in
space because the stress drop occurs over a finite length. The fracture energy of the cohesive
model is indicated by the green area. Figure adapted from Andrews (1976a).

An illustrative example, which was studied by Andrews (1976b), consists of a plane-strain

shear crack obeying a rupture model in which the interface stress decreases gradually with

increasing slip. The initial stress level τ0 satisfies τu > τ0 > τf, where τu is the yield stress and

τf is the kinetic friction stress of the interface. A static crack of length 2a is created by slowly

decreasing τ from τ0 to τf. As a result, the displacement field u (and slip ∆u) adapts to the

new stress state. The virtual work done during this process corresponds to the strain energy

and can be computed by

U =−1

2
(τ0 +τf)

∫
∆u dx , (2.2)

where x is the position along the crack. The work done against friction corresponds to

Wf = τf

∫
∆u dx . (2.3)

The net work is therefore given by

U +Wf =−1

2
(τ0 −τf)

∫
∆u dx . (2.4)

If the crack length is increased by an increment da, the energy available to create new surfaces

and hence to extend the crack is

−dU −dWf = Γ (τ0 −τf) da , (2.5)

where Γ, often referred to as the energy release rate, is a function of the stress drop τ0 −τf. Its
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form depends on the displacement field of the crack and varies for different set-ups. Crack

growth occurs if, for a length increment da, the available energy Γ exceeds the fracture energy

Γc. Assuming a slip-weakening (cohesive) friction law with characteristic length dc, the

fracture energy is given by

Γc = 1

2
(τu −τf)dc , (2.6)

and corresponds to the green area in the cohesive model shown in Figure 2.4. Note that the

energy below τf is not part of the fracture energy because the work done against friction was

already taken into account through Wf. As an alternative, one could include the friction work

into the fracture energy but would need to reduce the available energy and Equation (2.5)

would change to −dU = Γ(τ0) da.

Energy concepts from fracture mechanics were also used by Freund (1979) to study the energy

flux to the tip of a dynamic shear crack. For the general case1, the crack tip of an in-plane

shear rupture propagating below the Rayleigh wave speed absorbs energy, which is used to

break the interface bonds. However, if the crack propagates between the Rayleigh and the

shear wave speeds, the tip was shown to radiate energy. This is physically not acceptable,

which leads to the conclusion that an in-plane shear crack cannot propagate at this speed.

Out-of-plane shear cracks do not present this energetic behavior and are therefore capable

of propagating at speeds between the Rayleigh and the shear wave speed. In-plane shear

ruptures propagating at super-shear speeds is, however, possible, as was first demonstrated

with numerical simulations by Andrews (1976b). Fracture mechanics concepts are also valid

for the description of such super-shear cracks and show that a sharp crack can propagate atp
2cs and a cohesive zone crack at any speed between the shear and dilatational wave speeds

(Freund, 1979; Broberg, 1989). More details about experimental observations and numerical

simulations of super-shear ruptures are given in Sections 2.2.2 and 2.3.3, respectively.

So far, applying fracture mechanics approaches to the propagation of slip regions along fric-

tional interfaces was mainly based on theoretical considerations. Only recently, experimental

confirmation was provided by Svetlizky and Fineberg (2014) through the measurement of

various strain fields around a dynamic slip front. Near-tip strain fields of the linear elastic

fracture mechanics theory were shown to describe most strain components well around a

sub-Rayleigh slip front.

2.2.2 Propagation of Slip Fronts

The propagation of slip or frictional shear cracks presents various phenomena. It can prop-

agate as a crack-like or pulse-like rupture (see Figure 2.5), at sub-Rayleigh or super-shear

(or intersonic) speeds, spontaneously arrest or reach the end of the interface, and propagate

through an interface heterogeneity or around it.

1In the general case the stress intensity factor is not equal to zero. For more details about the stress intensity
factor see Section 3.3
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Figure 2.5: Illustration of crack-like and pulse-like interface ruptures. An initial crack at the
center of the interface propagates (in the direction of the arrows) until reaching the edges. In a
crack-like rupture, the area behind the propagating front is slipping until the crack does not
extend anymore. A pulse-like rupture propagates with a closing tip behind the rupture front
and the center region sticks already when the ruptures are still propagating.

For a long time, ruptures were generally thought of as crack-like, where slip occurs everywhere

behind the rupture tip until propagation stops. An alternative rupture type was proposed by

Heaton (1990) who discovered by studying ground motion data from earthquakes that the

duration of slip at a given point of the interface is short compared to the overall duration of

the earthquake. He suggested that one possible explanation is the propagation of a narrow

self-healing slip pulse. This pulse-like type of rupture was also considered to be a possible

cause to the absence of massive heat production at faults during earthquakes as observed by

Lachenbruch and Sass (1980).

Experimentally, such pulse-like ruptures were observed along gel-glass interfaces (Baum-

berger et al., 2002, 2003), single-material homalite (Lykotrafitis et al., 2006) and poly(methyl-

methacrylate) (PMMA) interfaces (Lu et al., 2007). Whether an interface rupture is of crack-like

or pulse-like type was experimentally and numerically shown to depend systematically on

the shear pre-stress (Lu et al., 2010). Lower shear loads lead to pulse-like propagation of slip

zones and crack-like ruptures occur at higher shear pre-stress levels.

Another shear rupture type was discovered by Schallamach (1971) in his friction experiments

with a rubber slider on a hard flat surface. He observed waves of detachment that propagate

at high speed along the interface. These waves, which are often referred to as the Schallamach

wave, seem to be produced by buckling due to tangential compressive stresses.

Further, Weertman (1980) showed that at bi-material interfaces, where the interface separates

two solids of different materials, a special type of rupture can occur. If the interface is governed

by Coulomb’s friction law, dynamic changes in normal compressive stresses due to the system

asymmetry lead to unstable slip and the propagation of a pulse-like rupture. This type of

rupture cannot exist at single-material interfaces because the normal stress change does not

occur. The existence of this self-sustained pulse at bi-material interfaces was experimentally
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confirmed by Anooshehpoor and Brune (1999) and Xia et al. (2005). Given that such systems

are asymmetric, the propagation and its speed varies for different directions of propagation. In

the experiments of Xia et al. (2005), ruptures propagating in the slip direction of the softer ma-

terial always travel at the generalized Rayleigh wave speed, whereas in the opposite direction

sub-shear or super-shear ruptures occur.

The propagation of super-shear ruptures was already earlier observed at bi-material interfaces.

Lambros and Rosakis (1995) showed with impact experiments on PMMA-steel interfaces

that cracks transitioning to intersonic speeds are shear dominated. This finding was also

analytically confirmed (Liu et al., 1995).

As mentioned in Section 2.2.1, numerical and theoretical studies predicted that intersonic

ruptures can also occur at homogeneous single-material interfaces. Experiments with inter-

faces between two thin homalite plates initiated by impact (Rosakis et al., 1999; Samudrala

et al., 2002) or by exploding wire-triggering (Xia et al., 2004) presented evidences for intersonic

ruptures at single-material interfaces. A wide variety of rupture speeds, including super-shear

and so-called slow fronts, which propagate an order of magnitude slower than the shear wave

speed, were also observed for slip fronts at a frictional interface between two PMMA blocks of

different thickness (Rubinstein et al., 2004).

Slowly propagating fronts were also systematically observed by Nielsen et al. (2010) during

the initial acceleration phase of spontaneously (without triggering) initiated slip fronts at

an interface under combined shear and normal load. This quasi-static stable rupture later

accelerates to sub-Rayleigh and intersonic speed. Other experiments showed that slow fronts

occur where the shear to normal stress ratio is low at the interface (Ben-David et al., 2010).

Fast ruptures, however, are related to relatively high shear stresses.

Most experiments considered so far consist of shear cracks or slip fronts propagating along

an interface until they reach the edge. However, depending on the system and the loading,

it is possible that a rupture naturally arrests beforehand. In friction experiments with a

concentrated shear load located close to the interface, rupture arrests were observed for slip

fronts that propagate before global sliding occurs (Rubinstein et al., 2007, 2008; Maegawa et al.,

2010). The concentrated load facilitates initiation of slip before the entire system contains

enough energy to support the propagation of the front to the end of the interface. A schematic

illustration of arresting slip fronts as observed by Rubinstein et al. (2007) is shown in Figure 2.6.

The interfaces along which slip fronts propagate are usually not perfectly homogeneous.

In many cases, heterogeneities exist for various reasons and affect the propagation of the

front. When a rupture reaches an interface heterogeneity, three-dimensional effects play an

important role. While a stronger region of the interface might resist longer against the rupture,

the neighboring weak zones help the front to advance around it, which eventually leads to slip

within the strong heterogeneity. Such effects have only very recently been studied in friction

experiments showing that barriers can stop or delay the rupture propagation (Latour et al.,

2013).
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Figure 2.6: Schematic illustration of slip precursors as first observed by Rubinstein et al. (2007).
A sequence of slip fronts initiate spontaneously at an edge with concentrated high stress
level due to a closely located (shear) pusher. Each slip front propagates along the interface
until it naturally arrests, usually at a position further than the arrest of the previous slip front.
The number of slip fronts shown here is below the numbers seen in experiments in order to
facilitate the reader’s understanding.

2.2.3 Evolution of Local Frictional Strength

In the previous section, we reviewed the propagation of slip fronts at frictional interfaces and

showed that the variety of different local friction phenomena is large. The origin of many of

these observations is a weakening process that occurs at the interface. The local frictional

strength and its weakening development is the result of smaller scale mechanisms, such as

plowing of asperities or inter-atomic forces. For the present work, these aspects are out of

scope and the evolution of the frictional strength is considered from a meso-scale point of

view.

Experimentally, it is very challenging to capture the meso-scale evolution of the frictional

strength at an interface. Most known results, presented in Section 2.1, show the macro-scale

behavior of the friction force and it is far from obvious that these observations represent

the actual evolution of the local strength. Some experimental evidence of the existence of

local phenomena were given by Dieterich and Kilgore (1994) showing direct observations

of the real contact area increasing with time. Such results can be used to get insights about

local mechanisms but they do not provide detailed information about how the local frictional

strength evolves. Furthermore, most friction experiments report on steady-state properties.

For instance, the rate-dependence shown by Burwell and Rabinowicz (1953) describes the

friction force for a given sliding speed at steady-state. Exceptions are the experiments by

Dieterich (1979), which present the evolution of the frictional strength after an instantaneous

change of the sliding speed. However, the applied slip rates are very low and probably con-

siderably below the range of velocities occurring at the interface during the propagation of a

dynamic slip front. The transitional behavior of frictional strength for various rock interfaces
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Figure 2.7: Schematic illustration of experimental observation by Prakash and Clifton (1993b).
The friction force, measured as the shear stress, adapts over a characteristic time or slip dis-
tance to an instantaneous drop of the normal stress. This observation contradicts Coulomb’s
friction law, which imposes a sudden reaction of the friction force to an instantaneous change
in the contact pressure.

was experimentally observed by Goldsby and Tullis (2011) for slip rates up to 0.4m/s. However,

as mentioned before, all these experiments study the macroscopic frictional strength which

can only be taken as indicative information about the evolution of the local frictional strength.

Given that the experimental observation of local meso-scale frictional strength is challenging,

different approaches can provide information about the mechanics of the interface. For

instance, various analytical studies demonstrated that it is not very likely that meso-scale

friction is governed by Coulomb’s friction law. It was shown for deformable-rigid (Renardy,

1992; Martins et al., 1995) and deformable-deformable (Adams, 1995; Martins and Simões,

1995; Ranjith and Rice, 2001) interfaces between solids of different material properties that

Coulomb’s friction law is ill-posed under certain conditions. If these are satisfied, a nominally

steady-state solution becomes dynamically unstable and self-excited motion occurs.

Experimental indication for non-Coulomb friction was found in plate impact experiments

(Prakash and Clifton, 1993a,b; Prakash, 1998). The impact of two plates causes a shock wave,

which modifies the contact pressure at the interface. The response of the frictional strength to

a sudden change of the contact pressure is then determined by measuring the shear traction

of the interface. These experiments showed that there is no instantaneous response of the

frictional strength but a characteristic slip distance over which it adapts to the new contact

pressure. A schematic illustration of a typical observation by Prakash and Clifton (1993b) is

shown in Figure 2.7. Other friction experiments confirmed that the shear strength does not

immediately increase for an increased normal stress (Kilgore et al., 2012).

On one hand, analytical (Ranjith and Rice, 2001) and numerical (Cochard and Rice, 2000)

studies suggest that the problem of the ill-posedness of Coulomb’s friction at bi-material

interface can be solved by introducing a regularizing effect to the frictional strength with

respect to the contact pressure. On the other hand, analytical (Adda-Bedia and Ben Amar,

2003) and numerical (Ben-Zion and Huang, 2002) studies showed that dynamically unstable

phenomena do still occur with regularization, but later.
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2.3 Numerical Models of Frictional Slip

Numerical models for the propagation of slip fronts at frictional interfaces are a powerful tool

to support experimental and theoretical work on friction. This section provides an overview

of the state of the art of numerical modeling of friction. It describes the different numerical

methods used for the simulation of frictional slip and presents some applications to various

problems with emphasis on the simulation of slip fronts at different propagation speeds,

arresting naturally, and propagating through interface heterogeneities.

2.3.1 Numerical Methods

Various numerical methods have been applied to the simulation of frictional slip. A short

review of these methods is here provided.

The simplest method is the spring-mass method, which consists of a number of blocks of

given mass connected by springs (Burridge and Knopoff, 1967; Braun et al., 2009). The motion

of the blocks is governed by Newton’s second law of motion, which states that the force on

an object is equal to the acceleration times the mass of the object. These models are often

one-dimensional and sometimes two-dimensional. Friction occurs at an interface formed by

the masses and a rigid flat plane, and is governed either by a local phenomenological friction

law (Carlson and Langer, 1989) or by a group of springs representing contact asperities (Braun

et al., 2009). The advantage of such models is simplicity and low computational cost. However,

the discrete system of masses and springs does not correctly represent the continuum nature

of solids.

Molecular dynamics is another discrete approach to numerical modeling of various physical

phenomena (Griebel et al., 2007). It describes the motion of single atoms by Newton’s second

law and the interactions between particles by an inter-atomic potential. Molecular dynamics

simulations have been used, for instance, to simulate the propagation of frictional shear cracks

(Abraham and Gao, 2000) or the evolution of small-scale surface roughness under shear loads

(Spijker et al., 2011). The frictional interactions in such simulations are the natural result of

inter-atomic reactions. This method is an important tool to study friction at an atomistic scale

and to cast light on the underlying mechanisms. However, limited by current computational

resources, only simulations of tiny systems (∼ 100nm) are feasible.

A well-suited approach for interface problems is the spectral boundary integral method (Perrin

et al., 1995; Geubelle and Rice, 1995). It solves the spectral formulation of the elastodynamic

equation. The contribution of slip history to interface tractions is included by a convolu-

tion operation in Fourier space. In addition, a local friction law governs the interface and

incorporates its efforts to the elastodynamic equation. The advantages of this method are the

continuum approach to model solids, and the need of only discretizing the interface.2 As no

discretization of the surrounding solids is needed, finer meshes and more accurate solutions

2Even though discretization is needed for solving numerically, the method is still continuum based.
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are possible. Boundary element methods are, however, mainly used for problems with infinite

interfaces between two semi-infinite linear elastic solids. More complex systems with material

non-linearities and solids of finite size require more advanced techniques which mitigate or

eliminate the advantages of surface discretization.

Numerical methods that discretize entire solids include the finite-difference method (Thomas,

1995), the finite-element method (Zienkiewicz and Taylor, 2000) and the spectral-element

method (Patera, 1984). These approaches are widely used for simulations of continuum me-

chanics in general, but, if extended, also for modeling the propagation of (shear) cracks and

frictional slip. The finite-difference method uses a finite-difference equation, which is based

on a Taylor series expansion, to solve differential equations. The finite-element method, which

is described in more details in Section 3.4, is a variational approximation method that solves

boundary value problems for differential equations. The spectral-element method is a partic-

ular version of the finite-element method, which uses high-order polynomial basis functions.

All three methods as well as the spectral boundary integral method require additional tools to

treat the discontinuity at the interface. A cohesive zone approach (Barenblatt, 1959; Ida, 1972)

is generally adopted and applied within a traction-at-split-node technique (Andrews, 1973,

1999). The cohesive zone approach assumes a finite zone around the tip in which cohesive

forces act across the interface. The traction-at-split-node method, which is described in more

details in Section 3.5, concentrates these forces to the discretization points (i.e. nodes of the

mesh).

The advantages of the finite-difference, finite-element and spectral-element methods lie in

the continuum approach, the flexibility to model any constitutive behavior of the solids and

the accuracy of information in the entire domain. The disadvantage, however, is the relatively

high computational cost, which often requires high-performance computations (i.e. parallel

simulations).

The comparison of simulation results from different numerical methods for a given test prob-

lem has shown that the solutions of the finite-difference method and the spectral boundary

integral method are almost indistinguishable (Day et al., 2005). A similar comparison came to

the same conclusion for solutions of the spectral-element method and the spectral boundary

integral method (Kaneko et al., 2008)

2.3.2 Simulations of Frictional Slip Problems

Simulations of systems with frictional interfaces have been applied to various problems. Early

numerical work was focused on ideal systems to study the basics of the mechanics of interface

ruptures. An example of three-dimensional slip front simulations is the work by Day (1982a)

who modeled the dynamic propagation of a rupture at fixed velocity along a rectangular

interface.

Another problem studied intensively with numerical simulations is the unstable propagation
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of slip pulses at bi-material interfaces. The dynamic reduction of the normal stress across the

interface results in a continuous sharpening of the slip front leading to self-sustaining pulses

and mesh convergence issues (Andrews and Ben-Zion, 1997; Harris and Day, 1997; Cochard

and Rice, 2000; Ben-Zion and Huang, 2002; Shi and Ben-Zion, 2006). Additional effects, such

as three-dimensional ruptures combining in-plane and anti-plane failure (Brietzke et al.,

2007), the influence of the material mismatch on the propagation speed (Xu and Needleman,

1995), and interface roughness (Di Bartolomeo et al., 2010), have been studied for ruptures at

bi-material interfaces.

The simulation of mechanisms occurring at tectonic faults is a promising path to a better

understanding of earthquakes. For instance, numerical models of rate- and state-dependent

faults with unstable zones surrounded by stable regions were shown to reveal an earthquake-

like cycle with episodic spontaneous ruptures occurring under slow loading over long duration

(Rice, 1993; Ben-Zion and Rice, 1997; Lapusta et al., 2000). Other simulations illustrated

how the material contrast as well as off-fault plasticity affect the fault branching behavior of

earthquakes (DeDontney et al., 2011, 2012). Numerical models can also provide insights about

how to interpret ground motion caused by an earthquake in order to determine whether an

interface heterogeneity is a strong area or a highly pre-stressed zone (Page et al., 2005).

2.3.3 Propagation Speed of Slip Fronts

When slip fronts spread on an interface, they present various propagation speeds. From a

theoretical point of view, it had long been assumed that shear cracks cannot propagate faster

than the shear wave speed at single-material interfaces. It was finite-difference simulations by

Andrews (1976b) that demonstrated that shear ruptures can transition from sub-Rayleigh to

super-shear speeds.3 Theoretical (Burridge et al., 1979) and experimental (Rosakis et al., 1999;

Xia et al., 2004) confirmation followed years later. The transition was shown to occur through

the creation of a small crack (often called “daughter crack”) ahead of the main crack.

The discovery of the sub-Rayleigh to super-shear transition of shear cracks incited a large

number of numerical studies. Needleman (1999) used the finite-element method to confirm

the findings of Andrews (1976b) and to reproduce numerically the experimental observations

of Rosakis et al. (1999). By using a different cohesive characterization of the interface than

Andrews (1976b) and obtaining comparable results, he showed that the existence of the

transition to super-shear rupture is independent of the cohesive law. The daughter-crack

mechanism also exists at the atomic-scale, as was observed by Abraham and Gao (2000)

in molecular dynamics simulations. Numerical studies at the continuum scale using the

spectral boundary integral method analyzed systematically the influence of the external

loading (Geubelle and Kubair, 2001), a favorable heterogeneity (Liu and Lapusta, 2008) and

the nucleation procedure (Lu et al., 2009). The transition to super-shear rupture was also

3In fact, Burridge (1973) showed for the special case of a self-similar shear crack with friction but without
cohesion that the dilatational wave speed is a possible rupture speed. However, according to his theory, the crack
cannot propagate at any other speed between the shear and the dilatational wave speed.
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observed to occur as a three-dimensional effect of interface heterogeneities (Fukuyama and

Olsen, 2002; Dunham et al., 2003).

More recently, slow fronts (Rubinstein et al., 2004; Nielsen et al., 2010), a new aspect of rupture

propagation, draw the attention of the numerical research community. Reproducing with sim-

ulations such slow propagation was found to be challenging. One successful approach consists

of friction models that exhibit a velocity-weakening-strengthening behavior (Bouchbinder

et al., 2011; Bar Sinai et al., 2012). Rupture velocities ranging from slow up to super-shear

are also observed for spring-mass models with friction characteristics based on asperity-type

considerations using interface springs (Braun et al., 2009; Trømborg et al., 2014). Another

possibility for slow fronts was shown to be stress concentrations at a rate- and state-dependent

frictional interface (Kaneko and Ampuero, 2011).

2.3.4 Precursors – the Arrest of Slip Fronts

Slip fronts that propagate along frictional interfaces may never stop and reach the edge, or may

arrest naturally at a point on their paths. The arrest of slip fronts has in the past attracted only

limited attention because of lacking experimental observation. An exception is Ampuero et al.

(2006) who used fracture mechanics arguments to determine rupture arrest and to analyze the

connection between statistical properties at the interface and the macroscopic behavior of

earthquakes.

Most numerical interest arouse from the experimental observation of slip precursors by

Rubinstein et al. (2007). In these friction experiments with a pusher located closely to the

interface, slip fronts initiate well before global sliding, propagate over parts of the interface

and stopped naturally. The length of these slip precursors increases continuously and follows

systematically (for several experiments) the same load-length relation. Using one-dimensional

(Maegawa et al., 2010; Amundsen et al., 2012) and two-dimensional (Trømborg et al., 2011)

spring-mass models, this behavior was qualitatively reproduced and shown to be (in a certain

range) independent of the slider and pusher geometry.

2.3.5 Slip Front Propagation through Interface Heterogeneities

For simplicity, propagation of interface ruptures is often studied at homogeneously loaded

interfaces with homogeneous frictional strength. Real interfaces, however, are rarely homo-

geneous. Heterogeneities are present in the loading and in the strength. Causes include, for

instance, the finite size of the system, varying material or interface properties.

Nevertheless, some numerical studies considered interface heterogeneities. Das and Aki (1977)

showed with two-dimensional simulations that shear cracks can overcome barriers, which are

zones of higher strength. The results of three-dimensional simulations demonstrated that,

under certain conditions, such barriers can lead to a transition from sub-Rayleigh to super-

shear ruptures (Dunham et al., 2003). A different type of interface heterogeneities is a zone of

23



Chapter 2. State of the Art

higher (shear) pre-stress, which makes the propagation of the rupture energetically favorable.

An abrupt (positive) jump in rupture speed for fronts reaching an increased pre-stress region

was observed by Day (1982b) in three-dimensional finite-difference simulations. Similar to

barriers, these zones cause the rupture to transition to super-shear (Fukuyama and Olsen,

2002; Liu and Lapusta, 2008).
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3 Theoretical and Numerical Frame-
work

The research presented in this thesis relies on several theoretical and numerical concepts of

the mechanics of continua. This chapter describes basic theory of continuum solid mechanics,

mechanics of contact and friction, and linear elastic fracture mechanics. It also provides a

fundamental description of the finite-element method and the traction-at-split-node method.

3.1 Continuum Solid Mechanics

Continuum solid mechanics describes the deformation and the stress that a solid – a volume

of a given mass – experiences under a given set of boundary conditions. Basic elements of

continuum mechanics include the following definitions and equations:

• kinematic equations, which describe the deformation of the continua,

• stress measures, which define the concept of internal stresses,

• equations of conservation, which are the fundamental laws of physics, and

• constitutive equations, which describe the material properties.

Considering that continuum mechanics is a well-known subject, this section is kept to a strict

minimum and readers are, for more information, referred to the following textbooks: Bower

(2009); Holzapfel (2000).

3.1.1 Kinematic Equations

The motion of a continuum body is described by the position of its material points over time.

An initial and undeformed configuration of a body at time t0 = 0 occupying the domain de-

notedΩ0 is considered as the reference configuration. At t > t0, the deformed body occupies in

the current configuration the domainΩ. These two configurations are illustrated in Figure 3.1.
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Figure 3.1: Lagrangian description of a continuum body shown with the initial (reference)
configurationΩ0 as well as the deformed (current) configurationΩ.

Assuming a one-to-one correspondence between a material point x0 in reference configuration

and x in current configuration, the motion of this material point is described by

x =χ (x0, t ) ∀ x0 ∈Ω0 , (3.1)

where x0 and x are the positions of x0 and x, respectively, and χ is the mapping corresponding

to the motion. In Lagrangian (material) description, the motion and all other related quantities

are expressed with respect to the so-called material coordinate x0. In Lagrangian form, the

displacement field

u (x0, t ) = x−x0 =χ (x0, t )−x0 x0 ∈Ω0 , (3.2)

relates the current position x with the referential position x0, as also shown in Figure 3.1. The

displacement gradient tensor is defined as

H =∇0u , (3.3)

where ∇0 is the gradient operator with respect to the material coordinate x0. The deformation

gradient is defined as

F =∇0x = ∂χ (x0, t )

∂x0
∀ x0 ∈Ω0 . (3.4)

Based on these definitions, the deformation gradient is related to the displacement gradient

tensor by F = I+H, where I is the identity matrix. The Jacobian of the deformation gradient is

defined by

J (x0, t ) = detF (x0, t ) . (3.5)
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The Jacobian is a measure of the volume change produced by the deformation from the

reference to the current configuration and can be written as dV = J dV0. Physically admissible

displacement fields u impose therefore that J > 0.

The Green-Lagrange strain tensor can be computed by

E = 1

2

(
FT ·F− I

)= 1

2

(
HT +H+HTH

)
. (3.6)

The infinitesimal strain tensor is a linear approximation of the Green-Lagrange strain tensor

and is defined as

ε= 1

2

(
HT +H

)
. (3.7)

This approximation is only valid for small shape changes of the body.

The kinematic equations, as given for instance by Equation (3.3) and (3.7), describe the

deformation of the continua as a function of the displacement of the material points.

3.1.2 Stress Measure

Considering a boundary traction vector t and an outwards-pointing boundary normal vector

n, the First Piola-Kirchhoff stress tensor P is defined as

t = P n , (3.8)

where the function parameters (x0, t ) are omitted for clarity. The definition of P describes the

stress occurring in the current configuration with respect to the reference configuration. It is

therefore also called the nominal stress.

Another well-known stress measure is the Cauchy stress tensor σ, which describes the stress

in the current configuration with respect to the current configuration. Describing the same

stress state, the two measures are related by

P = JσF−T . (3.9)

3.1.3 Conservation Equations / Balance Principle

The balance of linear momentum in terms of nominal stress results in the equation of motion

∇0 ·P+ρ0b = ρ0ü ∀ x0 ∈Ω0 , (3.10)

where ρ0 is the density, b is a body force, and ü is the material acceleration. The function

parameters (x0, t ) were omitted for better readability.
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Figure 3.2: One-dimensional representation of constitutive material laws for (a) linear elastic-
ity, and (b) viscoelasticity modeled by the standard linear solid model.

The balance of angular momentum causes the Cauchy stress tensor to be symmetric σ=σT.

The first Piola-Kirchhoff stress tensor, however, is in general not symmetric: PFT = FPT as

deduced from Equation (3.9).

3.1.4 Constitutive Material Laws

The constitutive laws describe the material properties and provide an equation that links the

stress tensor with the strain tensor. The two constitutive laws applied in this work are linear

elasticity and a basic law of viscoelasticity, the standard linear solid model. A one-dimensional

representation of both laws is shown in Figure 3.2.

Linear Elasticity

Linear elasticity provides a linear stress-strain relation and corresponds, in one dimension, to

a simple spring described by σ= Eε, see Figure 3.5(a). For a continuum solid, the constitutive

equation becomes:

σ= E

1+ν
(
ε+ ν

1−2ν
Trε I

)
, (3.11)

where E is the Young’s modulus and ν the Poisson’s ratio.

An alternative form of Equation (3.11) uses the Lamé parameters, which results in

σ=λTrε I+2Gε , (3.12)

with Lamé’s first parameter λ and the shear modulus G . The Lamé parameters as well as the

bulk modulus K are related to the Young’s modulus and the Poisson’s ratio through

λ= νE

(1+ν)(1−2ν)
G = E

2(1+ν)
K = E

3(1−2ν)
. (3.13)
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In two-dimensional systems, the stress-strain relation can be approximated by the plane-strain

or plane-stress assumptions. In both cases, σ and ε are 2×2 tensors.

The plane-strain approximation imposes the out-of-plane strain to be zero (as if the solid was

infinite in this direction) and the out-of-plane stress component is given by σz = ν(σx +σy ).

The stress-strain relation is valid as given for the three-dimensional problem.

The plane-stress approximation assumes zero stress in the out-of-plane direction (as if the

solid was infinitely thin) and the out-of-plane strain component is given by εz =−ν(σx+σy )/E .

The stress-strain relation is given by Equation (3.12) with modified Lamé parameters. In plane-

stress approximation, Equations (3.13) are adapted to

λ= νE

1−ν2 G = E

2(1+ν)
K = E(1+2ν)

3(1−ν2)
. (3.14)

Note that the shear modulus is the same in plane-stress as in plane-strain approximation.

The propagation speed of longitudinal waves in a continuum is

cd =
√
λ+2G

ρ
(3.15)

with λ and G given by Equation (3.13) or (3.14) depending on the type of the problem, and ρ

the density of the material. The shear waves propagate at

cs =
√

G

ρ
. (3.16)

The Rayleigh wave, which is a surface wave of great importance for the mechanics of interface

ruptures, has a propagation speed of approximately

cR = 0.862+1.14ν

1+ν cs , (3.17)

and is slightly slower than the shear wave speed (Achenbach, 1973).

Standard Linear Solid

Viscoelasticity can be described by a variety of constitutive laws. The standard linear solid

model chosen here, is particularly suitable for modeling polymers. The provided description

is largely build on Chapter 10 of Simo and Hughes (1998). The starting point is an alternative

expression of Equation (3.11), which is split into a spherical and a deviatoric part

σ= K Trε I+2G

(
ε− 1

3
Trε I

)
. (3.18)
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Figure 3.3: Schematic illustration of the viscoelastic response in stress to a rectangular change
in strain of ∆ε = ε− ε. Initially, the system is assumed to be in equilibrium, and the time
between the strain steps t1 and t2 is considerably longer then the relaxation time of the
viscoelastic properties.

As shown in Figure 3.2(b), the standard linear solid model adds parallel to the linear elasticity

spring an element containing another spring and a dashpot. A polymer is best modeled if this

viscous element applies only to the deviatoric part of the stress-strain relation. The Cauchy

stress tensor of a deviatoric standard linear solid model is, therefore, given by

σ(t ) = K∞ Trε I+
∫ t

−∞
2G(t − s)

(
ε̇− 1

3
Tr ε̇ I

)
ds , (3.19)

where ε̇ is the strain rate tensor and the shear modulus evolves over time according to G(t ) =
G∞+Gv exp(−t/tv). The shear modulus is composed of the static G∞ and viscous Gv shear

moduli. The characteristic relaxation time tv = η/Ev depends on the material viscosity η and

the viscous Young’s modulus Ev. The static bulk modulus K∞ is given by Equation (3.13) or

(3.14) for E = E∞. The shear moduli can be computed by Equation (3.13) using the static E∞
and viscous Ev Young’s modulus, respectively.

An illustration of the behavior of the standard linear solid model is shown in Figure 3.3 for a

one-dimensional problem with instantaneous Young’s modulus E0 = E∞+Ev. A solid, which

is initially in equilibrium at σ= E∞ε, is subjected to a rectangular strain change of amplitude

∆ε= ε−ε. The instantaneous response of the stress to the first strain step at t1 is

σ(t+1 ) = E∞ε+E0∆ε= E∞ε+Ev∆ε .

The stress then evolves over time with an exponential decrease from the instantaneous re-
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sponse to the new equilibrium state σ= E∞ε following

σ(t ) = E∞ε+Ev exp

(
− t − t1

tv

)
∆ε ∀ t1 < t < t2 ,

where tv is the characteristic relaxation time of the viscosity. For time periods considerably

longer than the relaxation time, the stress reaches the new equilibrium σ(t À t1 + tv) = E∞ε,

and if t2 − t1 À tv, it does so before the second strain change at t2. The stress evolution due to

this second strain step is the same but with an opposite sign.

The elastic wave speeds for viscoelastic materials are given by Equations (3.15), (3.16) and

(3.17) with λ=λ∞+λv and G =G∞+Gv.

3.2 Fundamentals of Contact Mechanics with Friction

The theoretical basis of contact mechanics with friction are well-established and documented.

Here, we only provide a short summary of the contact conditions, the friction conditions, and

some basic friction laws. For a more detailed description of contact mechanics with friction,

the reader is refered to Kikuchi and Oden (1988); Wriggers (2006); Curnier (2007). The contact

and friction description given here is similar to the approach of Ampuero (2002).

The contact interface of two solids is defined by the two possibly contacting boundaries Sc1
0

and Sc2
0 . Considering a point x0 on Sc1

0 with its pair-point x̃0 on Sc2
0 , we can define the gap as

the vector pointing from x0 to x̃0:

g(x0, t ) = u(x̃0, t )−u(x0, t )+g0(x0) , (3.20)

with initial gap g0(x0) = x̃0(x0)−x0. For simplicity, we here assume that the association of a

pair-point x̃0 to x0 is unique and its position is a function of the position of x0. In most cases,

however, a unique mapping of contacting nodes is not possible and more advanced methods

need to be applied. More details on this popular problem of computational contact mechanics

is given in Yastrebov (2013).

The gap can be decomposed into the normal and tangential part with respect to the boundary

Sc1
0 as

g = gN n+gT , (3.21)

where n is the outward-pointing surface normal on Sc1
0 , gN is the length of the normal gap,

and gT is the tangential gap. With this decomposition it is possible to handle contact and

friction conditions independently, except if the friction condition is governed by a friction law

coupling the friction traction with the contact pressure.

The contact of two solids results in reactions at the interface. In the same way as the gap, these
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interface reactions can be decomposed into the normal and tangential part:

r = rN n+ rT , (3.22)

where rN is the contact pressure and rT is the friction traction (vector) of the interface. In later

chapters of this thesis, the components of the interface reaction are denoted σ for the contact

pressure and τ for the shear traction in order to emphasize the link to the stress state in the

solids.

3.2.1 Contact Conditions

A basic condition of contact is impenetrability of the solids, which only allows the gap at

the interface to be positive, if not in contact, and to be zero while in contact. This condition

is enforced by the contact pressure acting on both boundaries with opposed sign (negative

on the reference boundary Sc1
0 ). When there is no contact, the contact pressure is zero. The

combination of these two conditions leads to the Hertz-Signorini-Moreau conditions:

gN ≥ 0 (3.23)

rN ≤ 0 (3.24)

gN × rN = 0 (3.25)

Such conditions basically describe two states. Either the solids are in contact, which results in

non-zero contact pressure rN < 0 but no gap gN = 0, or the solids do not touch, which leads to

an interface opening gN > 0 but no contact pressure rN = 0. A representation of these contact

conditions is shown in Figure 3.4.

Figure 3.4: Representation of contact conditions. The normal contact reaction, also called
contact pressure, is zero if there is a gap at the interface and is non-zero (negative) if the
contact boundaries are in contact.

These conditions apply only to single points of the interface, which means that some parts of

the interface can be in contact while other parts are detached.
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3.2.2 Friction Conditions

In common language terms, we can describe friction at an interface as a resistance-type of

force, which reacts to a load but does not exist without it. Using the same approach as for

defining contact conditions, friction conditions can be described as

|rT|− rF ≤ 0 (3.26)

|ġT|× (|rT|− rF) = 0 , (3.27)

where rF is the frictional strength given by the constitutive friction law. The frictional strength

is in later chapters also denoted as τs. The two states described by these conditions are:

sticking and sliding. If the two boundaries are sticking to each other, there is no tangential

gap rate |ġT| = 0 (also called slip rate) and the friction traction is smaller than the frictional

strength: |rT|− rF < 0. However, if the two boundaries are sliding over one another, the slip rate

is non-zero |ġT| > 0 and the friction traction is exactly equal to the strength: |rT|− rF = 0.

The friction conditions formulated in terms of the tangential gap rate ġT instead of the tangen-

tial gap gT present the advantage of explicitly illustrating the possibility of a frictional stick-slip

phenomenon. However, a formulation of the friction conditions in terms of gT is preferable

regarding computational techniques. An equivalent form of the friction conditions (3.27) can

be written as

|rT|− rF ≤ 0 (3.28)

|ga
T |× (|rT|− rF) = 0 , (3.29)

using ga
T the tangential part of an adapted gap function, which is defined as

ga (x0, t ) = g (x0, t )−g
(
x0, t̂

)
, (3.30)

where t̂ is the last time the interface stuck. If the interface has never been stuck: g(x0, t̂) = 0.

The adapted gap function behaves in the normal direction the same way as the original gap

function because for any t̂ , we find g a
N(x0, t̂ ) = 0. In the tangential direction, ga is the relative

tangential gap with respect to the last time the interface was sticking.

As for the contact conditions, the friction conditions apply only to single points of the interface,

thus some parts of the interface can be sticking while other parts are sliding. However, the

friction conditions are only valid if there is contact, i.e., gN = 0, and the frictional strength rF is,

by definition, zero if there is loss of contact.

3.2.3 Friction Laws

The frictional strength, which defines the upper limit of possible friction tractions, is given by

a constitutive friction law. The variety of different friction laws is great and we here summarize

only some basic friction laws that are applied in the presented simulations. The choice is
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Figure 3.5: Representation of different friction laws: (a) Coulomb’s friction, (b) linear slip-
weakening friction, and (c) exponential rate-weakening friction.

largely based on simplicity because a simple friction law is often sufficient to model a particular

friction phenomenon and has the advantage of having a limited number of parameters, the

effects of which need to be studied.

Coulomb Friction

The Coulomb friction law, as introduced in Section 2.1, describes the frictional strength rF at

the scale of interface tractions by following Equation (2.1) as

rF =µ rN , (3.31)

where µ is the friction coefficient and rN the contact pressure. Here, µ is a simplified way of

describing an interface property and should not be mistaken for the apparent macroscopic

friction coefficient.

Coulomb’s friction law is often defined using a static µs and a kinetic µk friction coefficient,

where µs >µk. However, this is not what is done here. The present Coulomb friction law, as

shown in Figure 3.5(a), has a single friction coefficient valid for the static and kinetic state.

Weakening processes, which are often observed, are integrated in other Coulomb-based

friction laws described below.

Linear Slip-Weakening Friction

The weakening process of the frictional strength can be described as a function of the slip

distance. One of the most basic friction laws is the linear slip-weakening law which integrates

a slip-dependence into µ. The friction coefficient evolves, as shown in Figure 3.5(b), linearly

from its static value µs to the kinetic value µk over the characteristic slip distance dc, which

can be written as

µ (δ) =
{
µs − δ

dc

(
µs −µk

) ∀ δ< dc

µk ∀ δ≥ dc ,
(3.32)
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where δ is the local slip at the interface. It is a cumulative property that is defined as

δ(t ) =
∫ t

t̂
|ġT(s)| ds (3.33)

where t̂ is the time when this point last stuck. According to this definition, δ is always zero

when no slip occurs. The interface presents, therefore, instantaneous healing. More advanced

friction laws include healing features describing the strengthening process through a time-

dependent process of the friction coefficient.

The presented friction law integrates the slip-weakening process into the local friction coeffi-

cient. The frictional strength, however, is still proportional to the contact pressure as given by

Equation (3.31), which ensures that it is still a Coulomb-based friction law.

Exponential Rate-Weakening Friction

Another possibility of describing the transition of frictional strength from static to kinetic

values are rate-weakening friction laws. One option is the exponential rate-weakening law as

shown in Figure 3.5(c). This friction law is given by

µ(δ̇) =µk +
(
µs −µk

)
exp

(
−δ̇

√(
µs −µk

)
/α

)
, (3.34)

with slip rate δ̇= |ġT| and transition parameter α. Similar to the linear slip-weakening law, the

frictional strength is based on Coulomb and is given by Equation (3.31).

3.3 Basis of Linear Elastic Fracture Mechanics

Linear elastic fracture mechanics (LEFM) is today a well established theory, which is widely

used in engineering design. Many extensions of LEFM for more advanced problems, such as

fracture of elasto-plastic materials, exist and are still developed. In this section, we provide a

short summary of the basics of LEFM, limited to the theory needed for this work. For a more

detailed description, the reader is refered to the following textbooks: Anderson (2005); Freund

(1990).

Fracture of a solid is the creation of an interface (or two surfaces) due to the loss of inter-

atomic bonds. One can distinguish between three fundamental modes of fracture as shown

in Figure 3.6. In Mode I, the opening of the interface is perpendicular to the interface. Mode

II fracture is the propagation of a rupture within the plane of the shear load and the relative

displacement. Out-of-plane loads lead to Mode III ruptures in which the propagation direction

is perpendicular to the relative displacement. This fracture mode is sometimes also called

anti-plane shear rupture.

In this work, we study the propagation of slip at frictional interfaces. Assuming an analogy
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Figure 3.6: Three fundamental rupture modes are defined: Normal fracture (Mode I), in-plane
shear fracture (Mode II), and out-of-plane shear fracture (Mode III).

between fracture and friction, we describe the propagation of slip regions as a combination of

Mode II and III ruptures. In the special case of friction between two thin plates, the onset of

sliding corresponds best to a Mode II fracture. Thus, we focus on the description of Mode II

fracture. The presented theory, however, is valid for all three modes.

There are two basic approaches to the description of fracture mechanics of linear elastic solids.

A global approach based on energy consideration leads to the definition of an energy release

rate and its critical value in order to determine whether a crack undergoes stable or unstable

growth. The second approach is based on the description of the local stress field surrounding

a crack. A stress intensity factor is defined and provides a measure of the crack stability. Both

approaches are equivalent and the different interface properties are uniquely related.

Griffith (1920) proposed that, under equilibrium conditions, the energy balance for an incre-

mental crack area dA is

dΠ

dA
+ dWs

dA
= 0 , (3.35)

withΠ the potential energy of the solid (strain energy and energy from external forces), and

Ws the work required to create a new interface. The total energy in the system isΠ+Ws. The

work used to create a new interface is equal to the work required to create two new surfaces.

Irwin (1956) introduced the energy release rate Γwhich is a measure of the energy available

for an increment of a crack and is defined as

Γ=−dΠ

dA
. (3.36)

Based on the energy balance, Equation (3.35), a critical energy release rate Γc can be defined
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as

Γc = dWs

dA
, (3.37)

which binds the potential energy made available by the energy release rate. Therefore, crack

extension occurs when the energy release rate reaches its critical value.

Once the critical energy release rate is achieved, the crack can either grow under stable or

unstable conditions. Whether a crack grows dynamically or quasi-statically can be determined

with the driving force curve and the resistance curve. Considering a two-dimensional problem

with an initial crack of length a0, the driving force curve Γ(a) is the energy release rate as a

function of the crack extension a. The resistance curve R(a) is the energy needed to increase

the interface depending on the length of the crack. If the surface energy is independent of

the crack length, the resistance curve is equal to the critical energy release rate: R(a) = Γc.

However, if the surface energy changes for an increasing crack, the critical energy release

rate is often used to define the initiation of crack growth independently of whether stable or

unstable. It can therefore be stated as R(a0) = Γc.

Using the driving force curve and the resistance curve, the stability condition of crack growth

can be formulated in the following way. Stable crack growth occurs if

Γ= R and
dΓ

da
≤ dR

da
, (3.38)

with the incremental crack length da, which is related to the incremental crack area dA

through the width of the interface. Stable crack growth appears when the driving force curve

goes below the resistance curve for an increasing crack length. If Γ stays above R the crack

growth will be unstable. This condition can be expressed as

Γ= R and
dΓ

da
> dR

da
. (3.39)

Under these conditions, the available energy for crack growth is higher than the energy

dissipated through the fracturing of the solid. No equilibrium solution exists and the crack

propagates dynamically.

Another approach to the description of fracture mechanics is at the local level by expressing

the stress field surrounding a crack tip. A closed form exists for isotropic linear elastic materials

under certain crack configuration. The stress tensor is, in polar coordinates r and θ, of the

following form:

σij = Kp
2πr

fij(θ)+
∞∑

m=0
Amr m/2g (m)

ij (θ) , (3.40)

with K the stress intensity factor and fij a dimensionless function of θ. Higher-order terms

contribute through the amplitude Am and the dimensionless function g (m)
ij for the m-th term.
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Higher-order terms are, in linear elastic materials, negligible close to the crack tip. Thus, one

can write for Mode II:

lim
r→0

σ(II)

ij = KIIp
2πr

f (II)

ij (θ) . (3.41)

At the interface of Mode II cracks (θ = 0), the dimensionless functions take the values

f (II)
xx = 0 f (II)

y y = 0 f (II)
x y = 1 , (3.42)

which leads to the following stress fields in the 1/
p

r singularity-dominated zone:

σxx = 0 σy y = 0 τx y = KIIp
2πr

. (3.43)

Outside this area, the higher-order terms in Equation (3.40) are not negligible and the stresses

are the result of the remote boundary conditions (i.e. depend on the system set-up).

For linear elastic materials, the principle of superposition is valid for stress intensity factors of

the same mode. Independently determined stress intensity factors for load configurations

A and B can be summed together for the stress intensity factor of the combined load con-

figuration: K (A+B)
II = K (A)

II +K (B)
II . The superposition principle, however, is not valid for stress

intensity factors of different modes: K 6= KI +KII.

The two presented descriptions of fracture are closely related. The connection between the

global approach, the energy release rate, and the local description, the stress intensity factor,

was demonstrated by Irwin (1957). He showed that for any given crack, one can write

Γ= K 2

Ê
(3.44)

with Ê = E for plane-stress and Ê = E/
(
1−ν2

)
for plane-strain configurations.

3.4 The Finite-Element Method

The finite-element method is a variational approximation method that uses piecewise poly-

nomial basis functions for the numerical solution of boundary value problems governed by

partial differential equations. In continuum mechanics, the finite-element method is used to

solve the equation of motion. Before developing the finite-element method, a summary of the

complete boundary value problem, as introduced in Section 3.1, is provided.

The description of the finite-element method is here kept to a strict minimum. For more

detailed information, the reader is refered to the following textbooks: Belytschko et al. (2000);

Curnier (2000); Zienkiewicz and Taylor (2000)
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3.4.1 Problem Statement

The equation of motion, as already given by Equation (3.10), can be written as

∇0 ·P(x0, t )+ρ0(x0)b(x0, t ) = ρ0(x0)ü(x0, t ) ∀ x0 ∈Ω0 (3.45)

with the reference position x0, time t , the material gradient operator ∇0, the First Piola-

Kirchhoff stress tensor P, the density ρ0, the body force b, the material acceleration field

ü, and the reference domain Ω0 of the solid. The First Piola-Kirchhoff stress tensor P is

given by the constitutive material laws, as shown in Section 3.1.4. The boundary of Ω0 can

be divided into the displacement-imposed domain boundary Su
0 and the traction-imposed

domain boundary St
0.

The Dirichlet boundary conditions (also known as the essential boundary conditions) on Su
0

states that

u(x0, t ) = u(x0, t ) ∀ x0 ∈ Su
0 , (3.46)

with the displacement field u, and the imposed boundary displacement vector u.

The Neumann boundary conditions (also known as the natural boundary conditions) on St
0

imposes

P(x0, t )n(x0) = t(x0, t ) ∀ x0 ∈ St
0 , (3.47)

with the outwards-pointing boundary normal vector n, and the boundary traction vector t.

The initial conditions of the problem are given by the initial displacement vector ui and the

initial material velocity vector vi as

u(x0, t0) = ui(x0) ∀ x0 ∈Ω0 (3.48)

u̇(x0, t0) = vi(x0) ∀ x0 ∈Ω0 (3.49)

over the entire domainΩ0 at t = t0.

The problem statement was provided with full information about the function’s parameters.

In the following the parameter information is omitted for better readability.

3.4.2 Weak Formulation

The finite-element method of continuum solid mechanics is based on the principle of virtual

power applied to the equation of motion. The needed test δu (x0) and trial u (x0, t ) functions

are defined in the spaces U0 and U , respectively. Both, U0 and U , are spaces of kinematically

admissible displacements. An additional constraint imposes on U0 that all displacements

vanish on Su
0 .
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Figure 3.7: Schematic illustration of a triangular finite-element mesh. The continuum body is
discretized by the mesh is shown in gray. The nodes of the mesh are numbered from 1 to N .

The weak form results from multiplying Equation (3.45) with the test function and integrating

over the initial configuration:∫
Ω0

(∇0 ·P+ρ0b−ρ0ü
) ·δu dΩ0 = 0 . (3.50)

Applying Gauss’s theorem leads to the following expression of the weak form:∫
Ω0

ρ0ü ·δu dΩ0 +
∫
Ω0

P : ∇0δu dΩ0 −
∫
Ω0

ρ0b ·δu dΩ0 −
∫

St
0

t ·δu dS0 = 0 , (3.51)

where A : B is the inner product of two second-order tensors. Terms are rearranged, grouping

inertial, internal and external forces. For simplicity, this form does not explicitly express the

possibility of having different types of boundary conditions (essential vs. natural) in different

directions at the same point of the boundary.

3.4.3 Space Discretization

The finite-element solution of the equation of motion is based on the Ritz-Galerkin method.

The spatial discretization, for which an example is shown in Figure 3.7, is created using the

following approximation for the trial and test functions:

u(x0, t ) =
N∑

I=1
uI (t ) NI (x0) (3.52)

δu(x0, t ) =
N∑

I=1
δuI (t ) NI (x0) , (3.53)
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3.4. The Finite-Element Method

where NI are the shape functions, uI and δuI are nodal values, and N is the number of nodes

of the mesh (see Figure 3.7). The same shape functions are used for all spatial dimensions of

the problem. The Ritz-Galerkin method as it is applied here, separates the time and space

parameters. The shape functions are constant over time and change only in space, whereas

the nodal values are not associated to the variation in space but evolve over time.

Applying the approximation to Equation (3.51), the weak form of the equation of motion can

be expressed in matrix form as

Mü+ f int − f ext = 0 , (3.54)

with the mass matrix M, the nodal acceleration vector ü, the internal force vector f int, and the

external force vector f ext. These are all global matrices and vectors containing nodal values for

all spatial dimensions of all nodes. The contribution of a given node pair I and J is computed

by

MI J = I
∫
Ω0

ρ0NI NJ dΩ0 (3.55)

f int
I =

∫
Ω0

P ∇0NI dΩ0 (3.56)

f ext
I =

∫
Ω0

NIρ0b dΩ0 +
∫

St
0

NI t dS0 . (3.57)

From a computational point of view, local matrices and vectors (at the element level) are often

a useful tool for the assembly of the global problem.

3.4.4 Time Discretization

A common time integrator is the Newmark β-method named after its developer Newmark

(1959). The two parameters β and γ control stability and artificial viscosity of the integration

scheme. Detailed descriptions of the Newmark β-method are given in Curnier (2000) and

Belytschko et al. (2000).

The explicit central-difference method, which is the Newmark β-method for β= 0 and γ= 1/2,

is a well-suited integration scheme for dynamic problems. It is computationally efficient

because it solves the matrix system explicitly (as the name indicates).

In the following, we state the different steps of the integration procedure. The n-th time step

of the nodal fields is indicated with a subscript n, whereas the superscript i designates the

iteration number. The incremental time step is defined as the difference between the time of

the current step and the next step as ∆t = tn+1 − tn.

The predictor computes the first estimation of the nodal displacement, velocity, and accel-

eration field of the next time step. Based on these fields, the external forces are given by the

boundary conditions, and the internal force field is computed by the constitutive material law.
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The incremental acceleration is computed by solving the equation of motion. The corrector

finally applies the incremental acceleration to correct the nodal displacement, velocity and

acceleration fields. The equations for these steps are the following:

Step 1 – Predictor:

u0
n+1 = un +∆t u̇n +

∆t2

2
ün (3.58)

u̇0
n+1 = u̇n +∆t ün (3.59)

ü0
n+1 = ün (3.60)

Step 2 – Compute Forces:

f exti
n+1 ← boundary condition (3.61)

f inti
n+1 ← constitutive material law (3.62)

Step 3 – Solve (for nodal acceleration increment vector):

δü = M−1
[

f exti
n+1 − f inti

n+1 −Müi
n+1

]
(3.63)

Step 4 – Corrector:

ui+1
n+1 = ui

n+1 (3.64)

u̇i+1
n+1 = u̇i

n+1 +
∆t

2
δü (3.65)

üi+1
n+1 = üi

n+1 +δü (3.66)

In the explicit central-difference method, one iteration is sufficient to solve the problem. For

other (implicit) β-methods, several iterations are needed. In this case, if convergence is not

achieved after the corrector, an additional iteration starting with computing the forces (step 2)

is needed.

From a computational point of view, an explicit integration scheme is generally less expensive

than an implicit method. However, the explicit solution imposes a stability requirement onto

the incremental time step, which has to be smaller than a stable time step:

∆t < min |∆x|
cd

, (3.67)

where min |∆x| is the smallest distance between any two nodes of the system, and cd is the

dilatational wave speed of the material. If∆t fails to satisfy this condition, the integration leads

to unstable (exploding) solutions. Solving the equation of motion can be computationally

demanding because the mass matrix has to be inverted and the matrix equation solved. By

using a diagonalized mass matrix, often called a lumped mass matrix, the matrix system is
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3.5. The Traction-At-Split-Node Method

decoupled and the solution of each degree of freedom can be found independently (without

solving the entire matrix system).

3.4.5 Static Solution

The static deformation of a continuum solid has to satisfy the equation of equilibrium, which

is the equation of motion without the inertial contribution. The equation of equilibrium is

deduced from Equation (3.54) by defining ü = 0. In Voigt form, the internal force can be split

into the product of the stiffness matrix K and the nodal displacement vector u as f int = Ku. The

static solution for the nodal displacement vector can generally be computed for non-linear

problems using the Newton-Raphson method. For a linear elastic problem the static solution

corresponds to

u = K−1f ext . (3.68)

3.4.6 Numerical Damping

Adding numerical damping to the simulation of dynamic systems is sometimes needed for

stability reasons or to avoid accumulation of kinetic energy in a pure elastic system. One way

of applying numerical damping is introducing an additional term to the equation of motion,

such that Equation (3.54) becomes

Mü+Cu̇+ f int − f ext = 0 , (3.69)

where C is a damping matrix. This results in a modification of the solve step in the integration

scheme. Hence, Equation (3.63) becomes

δü =
(

M+ ∆t

2
C

)−1 [
f exti

n+1 − f inti
n+1 −Cu̇i

n+1 −Müi
n+1

]
. (3.70)

There are various ways of defining a damping matrix. A typical method is Rayleigh damping

(Rayleigh, 1945), where the damping matrix is a linear combination of the mass matrix and

the stiffness matrix. It was shown that this kind of numerical damping results in a damped

dynamic system with classical normal modes (Caughey, 1960).

3.5 The Traction-At-Split-Node Method

The development of new and robust techniques for the simulation of contact and friction

within the framework of standard computational methods such as the finite-element method

is the main goal of the computational contact mechanics research community. Various

methods with different advantages and disadvantages exist and the development of a general

approach capable of handling any kind of contact is very complex and intensively studied.
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The list of textbooks on the computational aspects of contact mechanics and friction is long

and includes among others: Laursen (2003); Wriggers (2006); Curnier (2007); Yastrebov (2013).

General contact mechanics methods are particularly useful in commercial software, which

are used in a wide variety of problems. A more specialized approach might represent major

advantages for specific problems. Computational cost is potentially lower and numerical

precision higher. The approach presented here is a forward Lagrange multiplier method

(Carpenter et al., 1991) on a node-to-node discretization of the interface. This is particularly

suitable for the simulation of small slip at nominally flat interfaces. Contact algorithms with a

node-to-node discretization were already applied in the early 1970’s and are often referred to

as traction-at-split-node method (Andrews, 1973, 1999).

The description of the applied computational contact and friction method is kept to a neces-

sary minimum including the basic weak formulation, the discretized matrix equation, and the

numerical algorithm.

3.5.1 Weak Formulation

The weak form of a contact problem is the combination of the weak forms of the two contin-

uum solids and the contact contribution. The weak form of a contact problem is an inequality

because the contact conditions (3.23) and (3.24) are inequalities. However, if the contact

interface is known, the weak form can be written as an equality. The developed node-to-node

algorithm enables a decoupled contact detection for each node pair and provides the possibil-

ity of determining the contact interface “on the fly”. For this reason as well as for simplicity, we

here provide the weak form as an equality (assuming that the contact interface is known). The

following expressions are adapted from the notation of Wriggers (2006).

Using Equation (3.51), the weak form of a continuum solid, we can write

2∑
ι=1

{∫
ιΩ0

ρ0ü ·δu dΩ0 +
∫
ιΩ0

P : ∇0δu dΩ0 −
∫
ιΩ0

ρ0b ·δu dΩ0 −
∫
ιSt

0

t ·δu dS0

}
+Cc = 0 , (3.71)

where ι is the index of the solid bodies, and Cc is the contact interface contribution.

There are various methods to integrate the contact contribution including the penalty method

and the augmented Lagrange method. The Lagrange multiplier method, which is applied here,

describes the contact contribution while the interface is sticking as

C LM
c,stick =

∫
Sc

0

(
ΛN δg a

N +ΛT ·δga
T

)
dS0 +

∫
Sc

0

(
δΛN g a

N +δΛT ·ga
T

)
dS0 , (3.72)

withΛN andΛT the normal and tangential Lagrange multipliers, respectively. The test func-

tion of the adapted normal and tangential gap are δg a
N and δga

T , respectively. The Lagrange

multipliers have test functions δΛN and δΛT for the normal and tangential components, re-

spectively. The first term of C LM
c,stick corresponds to the virtual work of the Lagrange multipliers
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along the variation of the gap function. The second term ensures that the contact and friction

constraints are enforced. The Lagrange multipliers represent the contact pressure and the

friction traction that occur at the interface.

The contact contribution is different if slip motion occurs at the interface. Instead of finding

ΛT from the no-slip constraint of the interface, it is given by the friction law as rT by satisfying

Equation (3.28). As there is no need for the tangential constraint, the contact contribution

becomes

C LM
c,slip =

∫
Sc

0

(
ΛN δg a

N + rT ·δga
T

)
dS0 +

∫
Sc

0

δΛN g a
N dS0 . (3.73)

The stick and slip contact contributions to Equation (3.71) are complementary because an

interface can be sticking in some parts and sliding in other parts.

3.5.2 Node-to-Node Discretization

Using at node-to-node approach and the finite-element space discretization, as given in

Section 3.4.3, the weak form of the contact problem can be expressed as

Mü+ f int − f ext +GTBΛ= 0 , (3.74)

whereΛ is the Lagrange multiplier vector, B is the boundary matrix, and G is a surface con-

tact displacement constraint matrix. The node-to-node discretization leads to a Lagrange

multiplier vectorΛwith one component for each interface node pair and each dimension of

the problem. The diagonal matrix B transforms the Lagrange multiplier vector from a nodal

traction vector to a nodal force vector (in units, from Pascal to Newton).

The enforcement of the contact constraint is ensured by

Gu+g0 −gt̂ = 0 , (3.75)

where g0 is the initial nodal gap vector, and gt̂ is the last stick gap vector, which is the nodal

vector of g(x0, t̂ ) used in the definition of the adapted gap function as given by Equation (3.30).

3.5.3 Time Discretization

The time integration of the contact problem is an essential part of the traction-at-split-node

method and needs to be adapted to the time integration scheme of the finite-element method.

Carpenter et al. (1991) showed that if the Lagrange multiplier in explicit integration enforces

the contact constraints at the current time step, the system of equations presents a singularity

because the contact pressure has no influence on the current displacement. They proposed

the forward Lagrange multiplier method, an alternative formulation, which relates the current
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Lagrange multiplier to the contact constraint of the following time step. This leads to the

following matrix system, where the subscript indicates the time step:

Mün + f int
n − f ext

n +GT
n+1BΛn = 0 . (3.76)

The surface contact displacement constraint matrix G has to satisfy the non-penetration and

stick-slip condition at the following time step through

Gn+1un+1 +g0n+1 −gt̂n+1 = 0 . (3.77)

In an explicit time integration scheme with lumped mass and boundary matrices, this system

is decoupled and the solution of each degree of freedom can be computed independently.

Thus, the contact and friction problem can be treated at the level of the split nodes. The

Lagrange multiplier vectorΛn of the current step is therefore found by pre-computing steps

3,4 and 1 (of the next time step) for all split nodes. OnceΛn is determined, it contributes locally

to the solution through a modified step 3 of the integration scheme presented in Section 3.4.4.
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4 A Critical Length Scale in Regularized
Friction

Even though numerical simulations are powerful tools to study friction and to gain new

insights about local phenomena of slip at frictional interfaces, they also present important

challenges. This chapter deals with numerical instabilities and analyzes the effect of friction

regularizations on the simulation of interfacial slip. First, it is shown that mesh convergence

is obtainable in simulations of slip events at regularized deformable-rigid interfaces without

any numerical damping in the bulk. By varying the characteristic length scale of the friction

regularization, we demonstrate that there is a critical length below which a given slip front

behaves always the same, independent of the regularization. This shows that the propagation

of a given slip event at an unregularized interface governed by Coulomb’s friction law and at a

regularized interface with a characteristic length below the critical value is identical. Therefore,

a domain of influence for the friction regularization is defined and used to show that a slip

event needs to contain sufficient energy in the high-frequency domain in order to present a

propagation affected by the regularization.

This chapter is a modified version of a scientific article originally published by Elsevier as:

D.S. Kammer, V.A. Yastrebov, G. Anciaux, J.F. Molinari, “The existence of a critical length scale

in regularised friction”, Journal of the Mechanics and Physics of Solids, 63(0):40-50, 2014.
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Chapter 4. A Critical Length Scale in Regularized Friction

4.1 Ill-posedness of the Classical Coulomb Friction Law

Adams (1995) as well as Ranjith and Rice (2001) showed that dynamic sliding of bi-material

interfaces under Coulomb’s friction law is in many cases unstable, which results in an un-

bounded increase of displacement oscillations in response to small perturbations at the

interface. In real experiments such behavior has never been observed. For the particular case

of deformable-rigid interfaces, the stability of Coulomb friction was first studied analytically

by Renardy (1992), and Martins and Simões (1995). They showed that sliding of a linear elastic

solid on a rigid surface is ill-posed if the static and kinetic coefficients of friction are equal and

its value is greater than one: µs =µk =µ and µ> 1. Moreover, if velocity weakening friction is

applied, ill-posedness occurs for smaller friction coefficients as well.

In numerical simulations the instability due to the bi-material effect results in a lack of mesh

convergence (Cochard and Rice, 2000). Therefore, most simulations of local slip events need

some regularization to solve this stability problem. Two strategies are known: either the

regularization is applied onto the bulk (e.g., Rayleigh damping or viscoelastic constitutive

material) or at the interface (e.g., friction regularization). In any case, however, it influences the

dynamics of local slip events and thus raises questions about the interpretation of numerical

results.

A physical basis to interface regularizations is found in the results of experimental work

by Prakash and Clifton (1993b). They show that the frictional resistance does not change

instantaneously to a sudden jump of the normal force, but evolves continuously with time.

This observation opposes the Coulomb friction law, as given by (3.31), where the frictional

strength is proportional to the contact pressure with the friction coefficient. Recently, Kilgore

et al. (2012) confirmed on a different experimental set-up that there is no direct effect on the

frictional strength due to a jump in the normal force. A friction law based on these observations

introduces a length scale to the definition of the friction force. It was shown that the use of a

simplified version of such friction laws renders the bi-material friction problem well-posed

and allows to reach mesh convergence (Cochard and Rice, 2000; Ranjith and Rice, 2001). This

regularization of friction has since been used widely for earthquake simulations (Rubin and

Ampuero, 2007; Kaneko et al., 2008; Brietzke et al., 2009).

In purpose of avoiding damping in the bulk, we assume here that friction is governed by the

Prakash-Clifton law and focus our attention on its effect on the mechanics of slip at frictional

interfaces. The parameters of this friction regularization have important implications on the

local as well as the global behavior of friction (Di Bartolomeo et al., 2012), and need therefore

to be chosen wisely in order to get meaningful numerical results. However, the choice of

appropriate parameters is difficult due to the absence of experimental data for most materials.

Furthermore, the characteristic length scale deduced from the experiments of Prakash and

Clifton (1993b) is of the order of micrometers (Cochard and Rice, 2000), which requires very

fine discretization and heavy computational efforts.

In this chapter, we study the rupture of interfaces between deformable and rigid solids gov-
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erned by a regularized friction law. Equal static and kinetic friction coefficients that are smaller

than one ensure a well-posed problem even without regularization (Renardy, 1992). Choosing

a slip event that is well-posed with and without a friction regularization avoids a possible

distortion of the analysis of the mechanics of regularized friction due to the transition from an

ill-posed to a well-posed problem. In Section 4.3, we confirm that mesh-converged solutions

are achieved without numerical damping in the bulk for sliding with regularized friction at

a deformable-rigid interface. We then depict a convergence map with respect to the char-

acteristic length of the friction regularization and the discretization of the interface. Using

mesh-converged solutions, we show that the friction regularization has for a given slip event

a converging behavior with respect to the characteristic length of the regularization.1 The

behavior of a slip event is the same for every characteristic length below the critical length.

These observations are confirmed and explained in Section 4.4 by the high-frequency-filter

effect of the Prakash-Clifton friction law. The implications of the converging regularization are

analyzed in Section 4.5 showing that there is a domain of influence for the Prakash-Clifton

friction regularization linked with the characteristic length of the regularization and the spec-

tral content of the slip event. Outside this domain of influence, the propagation of a slip event

under regularized friction is equivalent to the propagation under Coulomb’s friction law.

4.2 Simulation Set-up

We study the propagation of a rupture at a frictional interface between a semi-infinite isotropic

elastic half-space and a rigid flat surface. The set-up is shown in Figure 4.1. This two-

dimensional plane strain geometry as well as the material properties are similar to the systems

studied by Andrews and Ben-Zion (1997) and Cochard and Rice (2000). We impose in x di-

rection periodic boundary conditions with replication length L = 40m. The height H = 20m

ensures that no reflected elastic wave reaches the interface within the time of rupture propa-

gation and does not influence the results of the simulations. The deformable solid is subjected

to a remote compressive normal load −p = 0.0150Pa and a remote shear load t = 0.0105Pa.

The material properties of the elastic solid are density ρ = 1kg/m3, Young’s modulus E = 2.5Pa,

and Poisson’s ratio ν = 0.25. The resulting elastic wave speeds for dilatational and shear

waves are cd = 1.73m/s and cs = 1.0m/s, respectively. Friction at the interface is governed by

Coulomb’s law with equal static and kinetic coefficient of friction µ= 0.75, as presented in

Section 3.2.3, and is regularized by a simplified Prakash and Clifton (1993b) law as proposed

by Cochard and Rice (2000)

dτes

dt
=− δ̇+ vpc

dpc

(
τes −τs) , (4.1)

where τes is the effective (regularized) frictional strength, τs is the unregularized frictional

1Note that throughout this chapter two different convergences are considered: convergence with respect to the
mesh discretization, and with respect to the characteristic length of the friction regularization.
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Figure 4.1: Two-dimensional plane strain model of a frictional interface between an isotropic
elastic semi-infinite half-space and a rigid plane. PBC indicates a periodic boundary condition.
The deformable solid is subjected to a remote static normal and shear load. A rupture, which
is nucleated artificially, propagates along the interface until it stops naturally.

strength based on Coulomb’s friction law, as given by (3.31), δ̇ is the slip rate, vpc is a (positive)

reference rate, and dpc is the characteristic length of the regularization. The combination of

friction parameters, material properties and imposed loading conditions induces a uniform

shear traction at the interface that is at 93.3% of the frictional strength (t = 0.933µ|p|). This

value enables the propagation of an interface rupture nucleated by an artificial change of

normal contact pressure, as it was done in previous studies (Andrews and Ben-Zion, 1997;

Cochard and Rice, 2000). A detailed description of the nucleation procedure is provided in

Appendix A.1 as it was already presented in Cochard and Rice (2000). This spatial-temporal

nucleation region is of elliptic shape in the x − t plane with aell and bell being half the ellipse’s

minor and major axis, respectively. The parameter vell inclines the elliptic shape of the

nucleation region in the x − t , which ensures that the propagation of the interface rupture is

oriented in the positive direction of x (i.e., the maximum of the artificial change of contact

pressure propagates roughly at velocity vell in the x direction). The parameter choice for

this study is aell = 0.6m, bell = 3.6m, and vell = 0.825m/s. In contrast to previous work,

our simulation tool allows for interface opening. In order to avoid such opening and to be

consistent with previous studies, we decrease the contact pressure by at most 80% of its initial

value.

The system is modeled using the finite-element method with an explicit Newmarkβ-integration

scheme and a lumped mass matrix. A detailed description of the method is given in Section 3.4.

The deformable solid is discretized by regular quadrilateral elements with linear interpolation

and four integration points. The mesh is characterized by the node density nd at the interface,

which ranges in the present study from 10 to 120 nodes per meter (nd/m). The mesh density is

homogeneous in the entire solid in order to avoid spurious wave reflections due to a gradient

of mesh density.
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Figure 4.2: Example of interface rupture with regularization parameters vpc = 10−4 m/s and
dpc = 5 · 10−5 m; and interface mesh density nd = 40nd/m. (a) Slip rate δ̇ is shown in the
spatial-temporal x − t plane as grey area, where darker colors correspond to higher slip rates.
Vertical lines in (a) indicate positions for which in (b) the evolution of δ̇ is shown over time.
The dark line adjacent to the grey area in (a) marks the front of the interface rupture for which
the propagation speed is traced in (c).

A typical result of a nucleated interface rupture is shown in Figure 4.2. The contact pressure

reduction, which triggers the slip event, is located close to the origin. From this point the

rupture propagates in the positive direction of x. The maximal slip rate is δ̇= 8mm/s in the

beginning and decreases continuously until the rupture stops at x ≈ 12.5m. The dark line

adjacent to the grey area in Figure 4.2(a) indicates space and time when the slip rate starts to

be non-zero, which we call hereinafter the slip front. The light area between this dark line and

the dark parts of the grey area shows that the maximal slip rate does not occur at the front of

the interface rupture, which is also notable in Figure 4.2(b). However, the time between the

slip front and the maximum of the slip rate generally reduces with increasing propagation

distance.

The rupture speed vr shown in Figure 4.2(c) corresponds to the slope of the dark curve in

Figure 4.2(a). The rupture propagates with super-shear speed, cs < vr < cd, during almost its

entire propagation. It decelerates fast only shortly before the arrest of slip. Even though the
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slip front in the x − t plane seems to be straight, the rupture speed slows down continuously

except for a short distance at x = 8−10m, where it remains quasi constant. The decreasing

rupture speed along 0 < x < 8m is the transition phase before the rupture enters a steady state,

which lasts in this simulation for approximately 2m until the phase of arrest starts. Other

simulations with different regularization parameters present steady state phases that may

span over almost the entire propagation distance.

In the next section, the slip rate δ̇ as well as the rupture speed vr are analyzed for different

mesh densities and different values of friction regularization parameters. We show that the

interface ruptures simulated with regularized friction do not only converge with respect to the

mesh, but also with respect to the characteristic length of the regularization.

4.3 Influence of Friction Regularization on Slip

The simplified Prakash-Clifton friction regularization as proposed by Cochard and Rice (2000)

has two parameters, dpc and vpc, and depends on the slip rate δ̇. In order to simplify the analy-

sis of this regularization in the present study, we fix vpc = 10−4 m/s and consider the variation

of the characteristic length dpc. Different values for vpc result in equivalent observations and

conclusions. This simplification leads to a regularization that still depends on the slip rate.

Other approaches were applied in previous studies (DeDontney et al., 2011; Di Bartolomeo

et al., 2012), where the (δ̇+ vpc)/dpc term was replaced by 1/t?. The resulting one-parameter

regularization is similar to our simplification but without dependence on slip rate.

Before studying the influence of the friction regularization on the propagation of interface

ruptures, we first confirm the mesh-converging quality of the system under consideration and

determine a convergence map with respect to the characteristic length dpc. This map enables

the choice of an appropriate mesh density for a given dpc in order to study the effects of the

friction regularization on mesh-converged simulations.

4.3.1 Mesh Refinement Analysis

The mesh refinement analysis is conducted on meshes with interface node densities nd

ranging from 10nd/m to 120nd/m. The slip rate and rupture speed for dpc = 5 ·10−6 m and

different meshes are shown in Figure 4.3, where the color intensity is chosen accordingly to the

mesh density with dark colors being finer meshes. High-frequency oscillations with important

amplitudes are present in simulations with coarse meshes. By refining the mesh, the dominant

oscillations increase in frequency and decrease in amplitude. Mesh convergence is achieved

when by refining the discretization the relative error over the slip event’s total propagation

distance is below 0.5%. In addition, we measure the arrival time at x = 11m. The relative error

of this time due to the last mesh refinement is below 0.1% for the case presented in Figure 4.3.

In contrast to the slip rate, the propagation speed of the interface rupture is less affected by
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Figure 4.3: Illustration of mesh convergence for a frictional interface rupture with simplified
Prakash-Clifton regularization dpc = 5 ·10−6 m and vpc = 10−4 m/s. (a) The evolution of the
slip rate over time is shown at two positions. (b) The rupture speed is depicted with respect
to x. (c) The convergence map in the dpc −nd plane indicates the zone of mesh-converged
(solid area) and unconverged (hatched area) simulations for vpc = 10−4 m/s. The filled circles
designate the simulations presented in (a) and (b). The triangles mark mesh-converged
simulations for different dpc.

the mesh density. The difference can be distinguished only in the arrest-phase, where for the

finer mesh the rupture speed decreases significantly faster. A coarser (non-converged) mesh

causes the interface rupture to propagate farther and faster during the arrest phase than the

converged solution. Compared with the results obtained for dpc = 5 ·10−5 m (see Figure 4.2),

the rupture speed for this slip event, with dpc = 5 ·10−6 m, is more steady before arresting and

does not present an important decelerating phase before the steady propagation.

The mesh converging behavior of this interface rupture is summarized in Figure 4.3(c). The

filled circles indicate the characteristic length and the node densities of the simulations for

which slip rates and rupture speeds are presented in Figure 4.3(a-b). Similar analysis were

conducted with different values of dpc. The corresponding node densities at the limit of

mesh convergence are indicated with triangles. Simulations with dpc = 10−3 m present no

interface rupture anymore due to the strong regularization, which prevents initiation of slip
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for the considered triggering. The solid area marks the zone of mesh-converged solutions,

whereas the hatched area shows the zone of non-converged simulations. The limit of mesh-

convergence is located in the white area between the two marked zones. The convergence map

demonstrates that simulations with smaller characteristic lengths of the friction regularization

need finer meshes for mesh-converged solutions. This observation, which was already noticed

without illustration by Cochard and Rice (2000), is here confirmed and visualised.

A main observation in Figure 4.3(a) is that the mesh refinement changes the frequency of the

perturbing oscillations. The origin of these oscillations lies in the non-smoothness of the slip

rate in the transition from stick to slip, which excites all ranges of frequencies of the system.

A finite discretized solid, however, has only a limited and discrete set of eigenfrequencies.

Therefore, the energy in the spectral space above the highest representable frequency of

the discretization seems to be lumped at this maximal eigenfrequency of the mesh, which

is also in the range of the perturbing oscillations. Because smaller elements enable the

representation of shorter wavelengths, mesh refinement causes higher frequencies of the

oscillations. The presence of high-frequency noise is common in this kind of simulations and

it is often eliminated by numerical damping in the bulk. Here, we have shown that simulations

with regularized friction converge without any bulk damping, which is a necessary condition

in order to be able to study the influence of the friction regularization on the propagation

of interface ruptures. It is interesting to note that this (damping like) stabilising effect of

regularized friction on numerical problems has already been exploited in recent studies on

well-posed problems (e.g., frictional interfaces between similar materials) (DeDontney et al.,

2012).

4.3.2 Length Scale Convergence

We now study the influence of the regularization’s length scale dpc on the slip rate and rupture

speed (see Figure 4.4), similarly as in the mesh convergence analysis. The applied meshes are

chosen based on the convergence map, as presented in the previous section, at the limit of

mesh convergence. The value of the friction regularization strongly affects both the slip rate

and the rupture speed, see Figure 4.4(a) and (b). The simulation with the largest characteristic

length dpc (in lightest color) is the most salient with a considerably smaller slip rate at x = 6m.

Further, the slip front reaches x = 6m later than the other simulations despite higher rupture

speeds until this position. At a first glance this seems to be incoherent. However, the strong

regularization delays the initiation of the interface rupture, which explains why the slip front

is behind the rupture tip of the other simulation despite its higher propagation speed. The

interface rupture with the second and third largest characteristic lengths (dpc = 10−4 m and

dpc = 5 ·10−5 m) have a similar behavior. Both have at x = 6m a maximal slip rate of around

3mm/s and reach the point at around 4.5s. Both slip events also present a rupture speed that

decelerates from 1.6m/s to 1.0m/s along almost the complete propagation distance until they

arrest abruptly. Similar to the example shown in Figure 4.2, these interface ruptures do not

have a phase of steady propagation.
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Figure 4.4: The slip rate in (a) and the rupture speed in (b) of mesh-converged simulations are
shown for different characteristic lengths dpc. (c) The squares indicate the node density nd

and characteristic length dpc of the simulations presented in (a) and (b). All shown results are
in the mesh-converged area of the dpc −nd plane. dcrit marks the critical characteristic length
of the simplified Prakash-Clifton friction law for the presented interface rupture, below which
all converged simulations have the same global and local behavior.

The two slip events with the smallest dpc (in darkest colors) obey almost the same propagation

behavior. The slip rate evolution over time at x = 6m and x = 10m are nearly indiscernible.

The most noticeable difference is the rupture speed for x < 2m, where a larger characteristic

length causes a slightly higher rupture speed. As already illustrated on the slip event shown

in Figure 4.3, the propagation speed for interface ruptures with small characteristic lengths

presents a steady phase with an almost constant speed during a large part of the propagation

distance. Comparing the interface ruptures for all five different characteristic lengths, starting

from the largest dpc, we observe a converging behavior with respect to a decreasing charac-

teristic length dpc. This shows that there is a critical characteristic length dcrit below which

the choice of dpc does not influence the propagation of a given slip event. For the interface

rupture presented here, the critical length is estimated as dcrit = 10−5 m. This convergence of

the interface rupture with respect to the friction regularization has not been observed before.
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4.4 Filter Analogy of Frictional Regularization

In Section 4.3, we observed that the regularization affects differently the oscillations of various

frequencies in the slip rate δ̇. These oscillations are closely related to coupled oscillations

of the frictional and normal forces. The oscillations in the frictional force and in the slip

rate vanish with the refinement of the mesh. The evolution of (mesh-converged) regularized

frictional strengths for different dpc at x = 6m are shown in Figure 4.5(a). Similarly to the

slip rates, the evolution of the frictional strength during the propagation of the interface

rupture is smoother if the regularization dpc is larger. Further, the simulation with the smallest

characteristic length, which is converged with respect to dpc, has a sharp peak at t ≈ 4.8s.

This feature is related to the fast transition from stick to slip, which is at the origin of the

perturbing high frequency oscillations. The increasing non-smoothness of the transition for

smaller regularizations gives a first hint to why finer discretizations are needed in order to

achieve mesh-converged solutions for interface ruptures with small dpc.

We suggest to consider the simplified Prakash-Clifton friction as a (temporal) filter for Coulomb’s

friction. The physical phenomenon that is regularized is therefore regarded as a signal. The

filter receives an input signal, which is the unregularized frictional strength τs (Coulomb

friction), and creates a filtered (or regularized) output signal, which is the effective frictional

strength τes (Prakash-Clifton friction). If the filter based on (4.1) receives an input signal with

average value τs and a sinusoidal variation over time t of a given frequency f and amplitude

As, the steady-state output signal (for t À 1) is of the same frequency but with a phase offset

and a modified amplitude Aes. An example of an input signal (solid line) and the resulting

output signal (dashed line) is shown in Figure 4.5(b). The analytical solution of the relative

regularized frictional strength Aes/As is given by

Aes

As = 1√
1+

(
2π f

C

)2
(4.2)

with C =−(
vpc + δ̇

)
/dpc < 0. The complete derivation of (4.2) is given in Appendix A.2. The

filter’s influence on the variation of the output signal is independent from the average value

τs and from the friction coefficient µ. For physical interpretation, we impose As < τs in order

to avoid ambiguity of frictional strength during interface opening. Concerned by spurious

oscillations in the simulations, we neglect the analysis of the phase offset and focus on the

influence of the filter on the amplitude of the signal. The ratio of amplitudes of the output

and input signals (Aes/As) as a function of the signal’s frequency is shown in Figure 4.5(c) for

filters of different characteristic lengths dpc. The values of dpc as well as the color code are the

same as for the simulations of interface ruptures presented in Figure 4.4. The curves as well

as (4.2) confirm that the simplified Prakash-Clifton friction law attenuates more the signals

of high frequencies. It was shown by Ranjith and Rice (2001) that interfacial disturbances

present unstable growth for all wavelengths and that the growth rate is inversely proportional

to the wavelength. By having a stronger filtering of high frequencies, the friction regularization
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Figure 4.5: Frequency analysis of the simplified Prakash-Clifton friction law. (a) Variation
of the regularized frictional strength τes over time at x = 6m for the simulations of triggered
interface ruptures as studied in Section 4.3.2. (b) Spectral analysis of periodic variations in
unregularized frictional strength τs (Coulomb friction) around average value τs with amplitude
As (solid line) shows that the regularized frictional force τes has a shifted phase, the same
frequency and reduced amplitude Aes (dashed line). (c) The relative regularized frictional
strength Aes/As is shown with respect to the frequency of the input signal for friction laws with
different characteristic lengths dpc. The dashed vertical lines designated with f nd

indicate
the highest eigenfrequencies of meshes with node density nd applied in the finite-element
simulations in Section 4.3. Grey stars mark for each characteristic length the node density
needed for mesh-converged solutions.

compensates for the unstable growth due to interfacial disturbances and solves the problem

of the ill-posedness of Coulomb friction at bi-material interfaces.

The signal of a given frequency is more attenuated by a regularization with larger dpc. This

consideration explains the link between dpc and the node density needed to obtain mesh-

converged simulations. The highest eigenfrequencies of the meshes used for the simulations

presented in Section 4.3 are indicated by vertical dashed lines in Figure 4.5(c). They are labeled

with f̄nd where nd specifies the interface node density of the mesh. Considering, for instance,

the mesh with node density nd = 20nd/m, we see that its highest eigenfrequency is reduced to

about 50% for dpc = 10−4 m. This is sufficient to obtain a mesh-converged solution. A smaller
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characteristic length, e.g., dpc = 10−5 m, attenuates a signal of frequency f = 20Hz only by

two percent, which appears to be insufficient for obtaining mesh-converged solutions. In the

previous section, it was shown that a mesh with node density nd = 40nd/m is needed to obtain

mesh convergence for this dpc. The grey stars in Figure 4.5(c) indicate for each characteristic

length the needed node density for mesh-converged solutions. Two different regimes are

observed: 1) simulations with dpc ≥ 5 ·10−5 m, where mesh-converged solutions are achieved

with node density nd = 20nd/m independently of the attenuation of the highest frequency,

and 2) simulations with dpc ≤ 1 · 10−5 m, where different node densities nd are needed to

obtain mesh-converged solutions. For the latter regime, a mesh-convergence criterion can be

defined. The current simulations indicate a need for an attenuation ratio Aes/As of maximal

95% to avoid perturbing oscillations and to obtain mesh-converged solutions. On the other

hand, slip fronts at interfaces with larger dpc (regime 1) do not present a particular attenuation

ratio that satisfies convergence criterion. The explanation for this absence of criterion lies in

the low range of frequencies. Although the highest frequencies of even coarser meshes seem

to be attenuated sufficiently, these frequencies are needed in order to describe accurately the

evolution of the frictional strength as shown in Figure 4.5(a). Therefore, convergence cannot be

achieved with meshes of node densities smaller than nd = 20nd/m for this particular interface

rupture because all needed frequencies are not present with coarser meshes.

The same argument is valid as explanation of the other convergence: the convergence with

respect to the characteristic length dpc of the Prakash-Clifton friction law. The evolution of the

frictional strength over time of this given slip event is mostly composed of low frequencies.

The mesh convergence regime 2 indicates that these frequencies lie below f 20, which present

attenuation ratios that approach one for decreasing characteristic lengths. Therefore, the

influence of the friction regularization on the evolution of the frictional strength is vanishingly

small starting from the critical length dcrit. In our case, we find dcrit = 10−5 m, which has a

minimal attenuation ratio Aes/As of 0.98% at f 20. Every dpc smaller than dcrit has negligible

influence on the frequencies forming the slip event and every simulation with dpc ≤ dcrit obeys

the same behavior, which we call here the convergence with respect to the characteristic

length of the friction regularization. These explanations confirm the observations based

on finite-element simulations as reported in Section 4.3.2 and suggest that similar critical

length scales should exist for slip events propagating at more general deformable-deformable

interfaces.

4.5 Physical Interpretation

The critical characteristic length dcrit depends on the spectral content of the slip event, which is

the result of the nucleation procedure. dcrit decreases for slip events reaching higher frequency

ranges, as shown schematically in Figure 4.6. The relation between the critical length and the

maximal frequency of a slip event is dcrit ∝ 1/ f , if a limiting attenuation ratio is assumed in

(4.2). The hatched area dpc > dcrit in Figure 4.6 indicates the domain, where the parameter

dpc influences the solution. In the white area dpc ≤ dcrit, the solution is no longer affected
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by the regularization. In this zone, the regularized slip propagation is equivalent to the non-

regularized propagation (classical Coulomb friction), because the regularization’s influence is

vanishingly small.

Up to this point we considered a regularization as part of a modeling technique (based on

physical observations) and showed that there is convergence with respect to its length scale dpc

without looking at the physical value of dpc. Let us now assume that the interface has a physical

length dph due to the presence of micro-contacts and that the interface is not governed by

Coulomb friction. In this case, it would be important to determine dph for different interfaces

in order to improve our understanding of frictional dynamics. However, until today, only few

experiments (Prakash and Clifton, 1993b; Kilgore et al., 2012) have been able to show that

friction has a characteristic length dph with respect to sudden changes in the contact pressure.

The value of dph is estimated (Cochard and Rice, 2000) to be of the order of microns for the

experiments of Prakash and Clifton (1993b). The experimental determination of dph, however,

is challenging and our results show that the studied slip events have to be sufficiently rich in

high frequencies in order to make the measurement possible.

Considering a particular interface with a given dph, one can distinguish the frequencies that are

affected by the characteristic length from the frequencies that are not influenced. This critical

frequency is given by dcrit( fcrit) = dph. Any slip event that has approximately all its frequency

content below fcrit – situated to the left of the diamond in Figure 4.6 – is not influenced by

dph and propagates as if the interface was governed by Coulomb’s friction law. Therefore,

one has to chose carefully the studied slip event and its nucleation procedure in order to

determine experimentally dph of a new interface. The recommended evaluation procedure

consists of: 1) experimentally monitor a slip pulse, 2) determine the measured characteristic

length dm by fitting the friction law to the experimental data, 3) compute the measured critical

frequency with dcrit( fm) = dm, 4) if the frequency content of the monitored slip event exceeds

fm, the procedure was successful and the measured length scale is the physical length of the

interface: dph = dm and fcrit = fm. Otherwise, the studied slip event is not sufficiently rich

in high frequencies and the procedure has to be repeated with a sharper slip event, because

dm = dcrit.

From a numerical point of view, the critical length scale dcrit gives in many cases the opportu-

nity of introducing the Prakash-Clifton regularization in order to solve the issue of perturbing

numerical oscillations without influencing the dynamics of the frictional interface rupture.

Any regularization with a characteristic length smaller than the critical length does not affect

the propagation of the slip event and the observable behavior corresponds to the propagation

under Coulomb’s friction law. In addition to the effect of removing nuisance oscillations,

using the critical characteristic length in numerical simulations minimises the computational

efforts because smaller characteristic lengths require finer discretizations. For instance, if

the physical length dph is smaller than the critical length dcrit, numerical simulations can

be carried out using dcrit instead of dph without losing the physical bases of the results. On

the other hand, simulations of interface ruptures for which the spectral content above the
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Figure 4.6: Schematic visualisation of the zone of influence of the Prakash-Clifton friction
regularization. The critical characteristic length dcrit decreases for slip events with a power
spectral density that presents higher non-negligible frequencies. Considering that an interface
is not governed by Coulomb’s law but actually has a physical length dph, assumed to be
independent of the frequency. The intersection of physical and critical lengths defines the
critical frequency fcrit, which separates the slip event’s frequencies that propagate under
Prakash-Clifton’s regularization ( f > fcrit) and that is governed by Coulomb friction ( f ≤ fcrit).
Fitting the Prakash-Clifton law to the friction and contact forces of a particular slip event with
highest non-negligible frequency f results in the measured length scale dm( f ). If f ≥ fcrit,
the measured length scale is the physical property of the interface, whereas if f < fcrit, the
measured length is the critical length, which is higher than dph.

critical frequency f > fcrit is important, does not provide any flexibility in the choice of the

regularization parameters. The characteristic length has to be exactly equal to the physical

length dpc = dph in order to obtain a correct simulation of the physical behavior.

4.6 Conclusion

We studied the simplified Prakash-Clifton friction law, which regularizes Coulomb’s friction

with respect to sudden changes in contact pressure. As a test problem we considered the

rupture of a planar frictional interface between an elastic solid and a rigid plane. The rupture

was triggered artificially such that the slip front propagates in the direction of the movement

of the elastic solid and stops after a while. Different stages of the propagation were observed:

primary (a transition right after the initiation), steady (the front speed is almost constant),

arresting (the front decelerates and stops). We first confirmed that mesh-converged solutions

are achievable in the stable regime (for friction coefficients smaller than one) of the considered
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problem without any numerical damping in the bulk. We delimited a mesh-convergence

map with respect to the characteristic length dpc of the Prakash-Clifton friction law. This map

confirmed that mesh-converged solutions for smaller lengths need finer mesh discretizations.

In addition to mesh convergence, we discovered a convergence of the solution with respect to

the characteristic length dpc. This observation results from the analysis of mesh-converged

solutions for different characteristic lengths. Considering a given slip event, a critical charac-

teristic length dcrit exists, such that for any dpc < dcrit the propagation behavior of the interface

rupture is the same. To confirm and explain this observation, we analyzed the regulariza-

tion’s effect on a range of temporal frequencies of the frictional strength. The damping of

low frequencies, which are the essential part of the slip event, becomes vanishingly small

for small characteristic lengths and influences no longer the propagation of the interface

rupture. This insight enables the definition of a theoretical domain dpc > dcrit of influence of

the Prakash-Clifton friction law with respect to the characteristic length of the regularization

and the frequency content of the slip event. Outside of this domain dpc ≤ dcrit, the damping of

the slip event’s frequencies becomes negligible and the interface rupture propagates as if it

was governed by Coulomb’s friction law despite the presence of the regularization.

In conclusion, the presented results suggest that the experimental determination of the

physical length scale dph of the Prakash-Clifton friction law requires the temporal power

spectrum density of the analyzed slip event to contain enough energy in the high-frequency

domain. We therefore propose an evaluation procedure that includes a verification of the slip

event’s frequency content. This is crucial to a successful determination of dph, because if the

propagation of slip is fully determined by frequencies below a critical value, the real physical

length scale dph of the Prakash-Clifton friction cannot be measured. The observed length

scale instead corresponds to the critical length dcrit, which may be significantly higher.

61





5 Criteria for the Slip Front Speed

When slip fronts propagate at frictional interfaces, they do so at various speeds. Experimentally,

it was observed that the rupture speed is closely related to the shear to normal stress ratio at

the interface. This chapter confirms this observation using numerical simulations. However,

it also demonstrates that the propagation direction affects the front speed and that the stress-

speed relation is not unique. In order to improve the description of the propagation speed, two

dynamic criteria are proposed. First, the stress ratio based on stresses dynamically measured

during the propagation at a small distance in front of the rupture tip is considered. Even

though this criterion is an improvement compared to the static stress ratio description, there is

still a direction dependence in the rupture speed description. Second, a dynamic energy-based

approach is proposed and shown to provide a unique stress-speed relation for slip fronts.

This chapter is a modified version of a scientific article originally published by Springer as:

D.S. Kammer, V.A. Yastrebov, P. Spijker, J.F. Molinari, “On the Propagation of Slip Fronts at

Frictional Interfaces”, Tribology Letters, 48(1):27-32, 2012.
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Chapter 5. Criteria for the Slip Front Speed

5.1 Slip Fronts Propagating at Various Speeds

The onset of dynamic sliding is often globally perceived as a uniform transition from sticking

to sliding. In reality, however, it is a much more complex phenomenon. The shear stress

distribution at an interface is generally nonuniform and reaches therefore the shear strength

only at a narrow zone in which a slip front initiates. This frictional shear rupture propagates

from this point on along the interface until it arrests naturally or reaches the edges.

Frictional shear cracks at interfaces between two solids have been observed in various experi-

ments under different loading conditions and for different initiation processes (Baumberger

et al., 2002; Rubinstein et al., 2004, 2007; Ben-David et al., 2010; Coker et al., 2005). Tracking

the expansion of the slip fronts, it was shown that the measured speed of propagation range

from slow (Baumberger et al., 2002; Rubinstein et al., 2004, 2007) to super-sonic (Coker et al.,

2005).

However, different rupture speeds do not only vary from one experiment to another. A single

slip event can change its speed any time during the propagation. Even surprisingly large speed

jumps occur, such as from super-shear to slow propagation or the opposite (Rubinstein et al.,

2004). By studying the stress field close to the interface, Ben-David et al. (2010) observed

experimentally that the rupture speed of the slip front is coupled to the local ratio of shear

stress τst to normal stress σst measured before slip initiation.

These experimental observations have numerically been reproduced with various models.

One-dimensional (Braun et al., 2009) and two-dimensional (Trømborg et al., 2011, 2014)

mass-spring models presented slip fronts at different speeds for set-ups with varying stress

distributions along the interface. Other numerical models established that friction laws

which consist of a rate-weakening-strengthening process cause the propagation of slow fronts

(Bouchbinder et al., 2011; Bar Sinai et al., 2012).

In this chapter, we study numerically the propagation of a spontaneously initiated frictional

slip front. We re-examine the hypothesis of Ben-David et al. (2010) on the correlation between

the slip front speed and τst/σst with a set-up comparable to the experimental system providing

realistic stress distributions along the interface. The applied finite-element method allows us

to access dynamically, during the propagation of the front, detailed information about the

evolution of the stress and represent correctly the mechanical behavior of the simulated solid

(e.g. isotropy, elasticity).

5.2 Model Set-up

The two-dimensional system under consideration consists of a rectangular isotropic elastic

plate (L = 200mm, H = 100mm) in contact with a rigid plane, as shown in Figure 5.1(a). The

corners of the plate are rounded to avoid stress singularities at the edges. To study this system

we use the finite-element method with an explicit Newmark β-integration scheme. More
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Figure 5.1: Two-dimensional set-up of the problem: (a) a thin rectangular plate in contact
with a rigid plane is loaded on the top by a linearly distributed imposed displacement uy and
a uniform velocity v x ; (b) the nonuniform distribution of shear to normal tractions (τst and
σst, respectively) at the interface causes a first slip nucleation far from the edges [τst/σst >µs

marked by a circle in (a)].

details about the numerical method is given in Section 3.4. The plane-stress approximation

is applied in order to represent the thin geometry of the block used in the experiments (Ben-

David et al., 2010). Contact and friction is modeled with a traction-at-split-node method, as

presented in Section 3.5, adapted to deformable-rigid interface problems. The material prop-

erties are Young’s modulus E = 2.6GPa, Poisson’s ratio ν= 0.37, and density ρ = 1200kg/m3.

This is a first approximation to the properties of poly(methyl-methacrylate) (PMMA) which is

an acrylic glass material also used in the experiments (Ben-David et al., 2010). These parame-

ters result in dilatational wave speed cd = 1584m/s and shear wave speed cs = 890m/s. We

employ Rayleigh damping (Rayleigh, 1945; Caughey, 1960) with mass and stiffness propor-

tionality coefficient of 0 and 0.1µs, respectively. The deformable solid is discretized by regular

quadrilateral elements (with element side ranging for different meshes from 0.67mm to 2mm)

interpolating the displacement field linearly.

A linearly distributed vertical displacement (u1
y = 0.37mm, u2

y = 0.037mm) is imposed at

the top of the plate, as shown in Figure 5.1(a). This loading is, after reaching equilibrium,

complemented by applying a uniform horizontal velocity v x = 10−6cd, where cd is the dilata-

tional wave speed in the deformable solid. The small value of the applied velocity ensures

quasi-static loading conditions, similar to the experiments (Ben-David et al., 2010). The result-

ing stress distribution at the interface is nonuniform. Figure 5.1(b) is a schematic depiction

of the ratio of the local tangential traction τst to the contact pressure σst. These tractions

(denoted with a subscript st) are measured at the moment preceding interface rupture and
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are referred to hereafter as static. The imposed loading conditions ensure a spontaneous

nucleation of the slip front inside the contact interface far from the edges [indicated by a

circle in Figure 5.1(a)], because this is where the non-symmetric stress distribution reaches

a critical value τst/σst >µs, see Figure 5.1(b). The frictional strength is assumed to follow an

exponential rate-weakening friction law. Thus, in the stick state, the tangential resistance of

the interface is proportional to the contact pressure σ with a coefficient µs. As for the slip

state, this coefficient of proportionality µ is determined by the rate-weakening friction law, as

presented in Section 3.2.3. The governing equation, as given by (3.34), describes the friction

coefficient µ as a function of the slip rate δ̇ as

µ=µk + (µs −µk)exp
(
−δ̇√

(µs −µk)/α
)

, (5.1)

which ensures a smooth transition from the static µs to the kinetic µk friction coefficient

governed by the transition parameter α. The parameters of the friction law are µs = 1.3,

µk = 0.6 or 1.0, andα= 0.1m2/s2. The local µs corresponds to experimental results as reported

in Figure 4(a-b) in (Ben-David and Fineberg, 2011) and is considerably higher than the global

static coefficient of friction. An effect that was also observed in spring-mass simulations

(Scheibert and Dysthe, 2010; Maegawa et al., 2010). The local kinetic friction coefficient as

well as the transition parameter were not measured in the experiments. Therefore, they were

studied here qualitatively (see first paragraph of the following section) and eventually chosen

arbitrarily. When the ratio of the local tangential traction to the contact pressure exceeds the

static friction threshold (τst/σst > µs), slip occurs and propagates in one or both directions

along the frictional interface. The dynamics of the slip fronts are determined by the parameters

of the friction law, Equation (5.1), as well as by the local stress state.

5.3 Results & Discussion

We have conducted several simulations (not all presented in this chapter) and have observed

different types of slip: crack-like (the entire interface between the crack tips is slipping),

pulse-like (the slip region propagates along the interface within a narrow pulse) and mixed

modes when a crack converts to pulses and vice versa. The propagation speed of the slip

tip vr is related to the local stress state and seems not to depend on the type of slip. By

studying the influence of the friction law parameters, we have observed that for an increasing

(decreasing) difference between the static and the kinetic friction coefficients ∆µ= µs −µk,

the slip type tends to be crack-like (pulse-like). A higher transition parameter α causes slower

slip propagation especially during slip initiation and slip arrest.

In Figure 5.2, we compare our numerical results with the experimental observations of Ben-

David et al. (2010) presenting the rupture speed vr as a function of the ratio of shear to normal

stress measured before slip initiation. In contrast to the experimentally reported results, we

normalize the propagation speed vr with respect to the dilatational wave speed cd of the

solid. Moreover, the local stress ratio, which was experimentally measured at finite distance
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Figure 5.2: Comparison of numerical results with experimental observations by Ben-David
et al. (2010). The normalized rupture speed is reported with respect to the static ratio of local
tangential surface traction τst to contact pressureσst. Friction parameters areµs = 1.3, µk = 1.0
and α= 0.1 m2/s2

of the interface, is replaced by the local ratio of tangential traction τst to contact pressure σst

measured directly at the interface. These interface tractions are referred to as static because

they are measured at the moment of initiation, before propagation.

Our results confirm the experimentally (Ben-David et al., 2010) and numerically (Trømborg

et al., 2011) observed general trend that the rupture propagation is faster for higher τst/σst

ratios. For friction parameters µs = 1.3, µk = 1.0 and α= 0.1 m2/s2 the slip front speeds are in

good quantitative agreement with the experimental results. Consistently with experiments

(Ben-David et al., 2010), for the given type of loading (only at the top face), we do not observe

slow fronts. Interestingly, we note that the rupture propagates considerably slower in the

direction of the imposed shear load than in the opposite direction: in Figure 5.2 the solid

red line is over the entire propagation distance below the dashed blue line, except during

the initiation phase at τst/σst = 1.25−1.3. These differences have not been reported in the

experiments.

To enable the separation of effects due to slip directionality and any other sources that might

cause a non-unique relation between the τst/σst ratio and the rupture propagation speed we

consider two additional simulations, where slip events are triggered at the edges. In order to

increase the propagation distance (in comparison to Figure 5.2, where the rupture propagating

in the opposite direction of the imposed shear load arrests not far from the initiation zone) the

kinetic coefficient of friction is reduced resulting in the following set of friction parameters:

µs = 1.3, µk = 0.6 and α = 0.1 m2/s2. In all three cases the loading history of the body is

identical up to the moment the tangential surface traction reaches the friction threshold, i.e.,

the initial stress state is the same for all simulations (see solid line in Figure 5.5). The slip

propagation is then triggered by manually increasing the local tangential surface traction
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Figure 5.3: Three different slip events are presented for the same initial stress state (before trig-
gering or spontaneous initiation). Instantaneous material velocity is shown for the slip event
(a) triggered at the left edge, (b)‘spontaneously initiated far from the edges and (c) triggered
at the right edge. Colors from blue to white denote material velocities ranging from 0m/s to
2m/s, respectively. The starting point of each event is marked with a square, a circle and a
triangle, respectively. Small white triangles show the location of the tip of the slip front. Black
arrows indicate the direction of the imposed global shear load, whereas white arrows show the
direction of the rupture propagation.

within small nucleation zones at the edges. The velocity field within the bulk of the solid is

shown for these two simulations in Figure 5.3(a,c). The green square and the red triangle

indicate the left and right triggering positions, respectively. The small white triangle indicate

the current position of the front tip and the white arrows the direction of propagation. In a third

simulation, the global shear load is slightly increased and rupture nucleates spontaneously

far from the edges as for the reference simulation reported in Figure 5.2. The velocity field in

the bulk of the solid for this case is shown in Figure 5.3(b) with the blue point indicating the

position of spontaneous initiation.
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Figure 5.4: The normalized rupture speed for the three slip fronts shown in Figure 5.3 is
depicted with respect to the local static ratio of tangential traction τst to contact pressure
σst (data close to the triggering zone are not shown). All three slip fronts propagate along
an interface with the same initial stress state (before triggering or spontaneous initiation).
The solid blue line is the result of the spontaneously initiated rupture far from the edges, the
dashed-dotted green line for the front triggered at the left edge and the dotted red line for the
rupture triggered at the right edge. Friction parameters are µs = 1.3, µk = 0.6 andα= 0.1 m2/s2

Figure 5.4 presents the normalized rupture speed with respect to the static interface traction

ratio τst/σst. The spontaneously initiated slip front, shown in Figure 5.4 by a solid blue line,

starts at τst/σst = µs, indicated by the same blue point as in Figure 5.3(b), and propagates

fast toward the edges. The front speed decreases along the path with decreasing ratio τst/σst.

Note that under some conditions we observe super-sonic slip fronts, which were not observed

in (Ben-David et al., 2010). However, our results are consistent with rupture in bi-material

interfaces where the stiffer material limits the propagation speed as observed experimentally

and numerically by Coker et al. (2003).

The two edge-triggered ruptures depart at lower τst/σst levels than the spontaneously initiated

front. The start positions are indicated by the same square and triangle as in Figure 5.3(a,c).

While during the initiation these slip fronts propagate relatively slowly, they accelerate con-

tinuously until reaching a maximum value for maximal ratio τst/σst, and finally decelerate.

Although the triggered ruptures are unidirectional, there is no unique slip tip speed associated

with a given τst/σst value along their propagation path. In addition, comparing the three

different slip fronts, one can see that the maximal rupture velocity of the left-triggered rupture

does not exceed 60% of the maximal speed for the other two cases for the same static ratio

τst/σst.

As seen best in Figure 5.3(a), the slip front (marked by a small white triangle) propagating at

super-shear velocity follows the dilatational wave (the circular white zone furthest from the

nucleation zone), which modifies the local stress state at the interface. Therefore, looking at

the dynamic ratio τdy/σdy measured in front of the rupture tip, instead of examining the static

ratio τst/σst, would allow to account for the dynamic nature of the slip propagation.
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Figure 5.5: For each point along the interface x the dynamic stress ratio τdy/σdy is plotted at
the moment when the slip front arrives at this location. Note that contrary to the reported
static stress ratio τst/σst, this is not an instantaneous picture but an assembly of results over
the entire time of propagation. Data close to the triggering zones are omitted. (Inset) The
dynamic values τdy and σdy are measured at the sticking node in front of the slipping region
at the moment t i+1 when the previous node starts to slip

Here, the location of the slip tip is determined to coincide with the position of the sticking

node in front of the slipping nodes, as illustrated in the inset of Figure 5.5. According to this

definition, the position of the rupture tip changes abruptly when the front advances. However,

its velocity is computed in a continuous way as vr = l∗/∆t , where l∗ is a characteristic distance

(here l∗ = 0.67mm) and ∆t is the time interval that the rupture needs to advance this distance.

In the context of discrete contact, we propose to analyze an instantaneous dynamic stress

state (τdy andσdy) at the slip tip right after it jumps to a new position, as illustrated in the inset

of Figure 5.5]. The dynamic ratio τdy/σdy differs significantly from the static one, as shown in

Figure 5.5. It is changed by the dilatational wave often preceding the slip front. It is also worth

noting that the value of the dynamic ratio is far from the critical value µs for a large part of the

propagation path, which implies the need for a strong change of the stress state at the rupture

tip within a short time.

The relation between the speed of the slip front and the dynamic ratio τdy/σdy is depicted in

Figure 5.6. Compared to Figure 5.4, the rupture triggered on the left is in better agreement

with the other two (faster) slip fronts. Particularly, the slopes are more consistent for all curves

and the range of velocities is smaller for a given ratio τdy/σdy. Again it is confirmed that the

character of the slip propagation is directionality dependent. For a given ratio τdy/σdy, the

slip fronts propagating in the direction opposite to the sliding are faster than the oncoming

fronts. In Figure 5.6, the dotted red curve of the left-propagating front is always above the

70



5.3. Results & Discussion

0.5

1

1.5

2

0.4 0.6 0.8 1 1.2

V
/c

L
(-

)

τ0 / σ0 (-)

cL

cS

µs

spontaneous rupture
triggered on the left
triggered on the right

>>
>

>

Figure 5.6: The normalized rupture speed is plotted with respect to the dynamic traction ratio
τdy/σdy for the same three slip events shown in Figures 5.3 and 5.4. The slip front of the solid
blue line spontaneously initiated far from the interface edges, whereas the green and red
curves are ruptures artificially triggered at the left and right edge, respectively. Data close to
the triggering zones are omitted.

dashed-dotted green curve of the right-propagating rupture. Nonetheless, the difference

between the curves cannot be only attributed to the directionality because the two branches

of the dotted red curve in Figure 5.6 are not superposed, nor are the two branches of the

dashed-dotted green curve. The accelerating slip fronts show a faster rupture velocity than

the decelerating ones for the same given ratio τdy/σdy. Further, the general trend of faster

rupture for higher τ/σ is lost (enclosed by the large circle in Figure 5.6); at a certain moment,

the rupture speed starts to decrease rapidly with increasing τdy/σdy along the propagation

path. We observe this phenomenon only for slip fronts advancing against the sliding direction.

Regardless of the simplicity of the static criterion τst/σst and the consistency of the dynamic

criterion τdy/σdy, a stress ratio does not seem able to provide a fully reliable estimation of the

velocity of the slip propagation.

The lack of generality of the speed criteria based on the ratio of the tangential traction to the

contact pressure τ/σ suggests an independent consideration of τ and σ. It was proposed

(Ben-David et al., 2010) that the propagation of the slip front is related to the energy densities

Ũs, stored at the front tip, and Ũr, needed to advance the slip front. We propose a heuristic

energy density at the contact interface as

Ũ (σ,τ) = (
2(1+ν)τ2 +σ2)/2E . (5.2)

The density of stored energy Ũs = Ũ (σdy,τdy) is measured locally at the slip tip at the moment

the front advances one length parameter l∗, similarly to the dynamic ratio τdy/σdy. The

density of rupture energy Ũr = Ũ (σu,µsσu) is computed at the same material point just before

the front advances another l∗, i.e., when the ratio of tangential traction to contact pressure

reaches the static coefficient of friction (τu/σu =µs), as illustrated by the inset of Figure 5.7.
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Figure 5.7: The normalized rupture velocity is shown with respect to a dynamic criterion based
on a heuristic surface energy density Ũ . The ratio

(
Ũr −Ũs

)
/Ũs represents the proportion of

the energy change Ũr−Ũs at the slip tip needed to advance the rupture front with respect to the
locally stored energy Ũs. The gray area is a data fit based on Equation (5.3) with a = 0.76±0.07,
b = 1.80 and c = 3.05. (Inset) Ũs and Ũr are measured when the slip tip, respectively, reaches
the observation point and overpasses it

The normalized rupture speed is shown in Figure 5.7 as a function of the change of the energy

density at the slip tip ∆Ũ = Ũr −Ũs normalized by the stored energy density Ũs. The data of all

three cases collapse within a narrow region properly described by

vr/cd = a +b exp(−c
√
∆Ũ /Ũs) , (5.3)

where a, b and c are fitting parameters (see Figure 5.7). No differences due to the directionality

of the slip propagation nor any other reason that caused branching for the previously studied

criteria are now present. This shows that the energy density criterion is able to account for the

dynamics of slip events at bi-material interfaces. Note that tails of data points falling outside

of the fit range occur when the slip fronts start to decelerate rapidly before arresting.

5.4 Conclusion

In this chapter, it was demonstrated that the static ratio of shear to normal stress (Ben-David

et al., 2010; Trømborg et al., 2011) is not a sufficient criterion for determining the speed of slip

fronts. The use of the dynamic ratio, measured in front of the slip tip, improves the estimation

of this speed. However, for our set-up we observed that, given a stress ratio (static or dynamic),

the front going in the direction of the sliding is always slower than the front propagating in the

opposite direction. Moreover, the decelerating fronts are also slower than the accelerating ones.

The energetic criterion we proposed, eliminates these effects and highlights the similarities

between the rupture of frictional interfaces (Coker et al., 2005) and crack propagation (Coker
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et al., 2003). We hope that these findings motivate experimental work to access dynamic

stress field measurements as well as theoretical studies to extend the principles of fracture

mechanics to problems of frictional sliding.
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6 Predicting the Propagation Distance
of Frictional Slip

Slip fronts propagating at frictional interfaces may stop naturally before reaching the edges.

In particular, series of arresting slip fronts with periods of sticking in between appear sys-

tematically in systems with highly concentrated shear loads. In this chapter, we study the

arrest of frictional shear fronts with numerical and theoretical models. First, we compare the

slip front behavior produced by a dynamic finite-element simulation with experimental data.

Further, in order to get more insights on the fundamental aspects of frictional slip, we develop

a theoretical model based on linear elastic fracture mechanics and analyze the influence of

various interface and material parameters. By showing that the prediction of the theoretical

model is in good quantitative agreement with experimental data, we provide evidence to

recognize frictional slip as a fracture phenomenon.

This chapter is a modified version of a scientific article currently under review as:

D.S. Kammer, M. Radiguet, J.-P. Ampuero, J.F. Molinari, “Linear elastic fracture mechanics

predicts the propagation distance of frictional slip”, Tribology Letters, submitted, 2014.

This work resulted also in the discovery of viscoelastic effects that lead to the survival of stress

concentrations at frictional interfaces and was published in the following scientific articles:

M. Radiguet, D.S. Kammer, Ph. Gillet, J.F. Molinari, “Survival of Heterogeneous Stress Distribu-

tions Created by Precursory Slip at Frictional Interfaces”, Physical Review Letters, 111:164302,

2013.

M. Radiguet, D.S. Kammer, J.F. Molinari, “The role of viscoelasticity on heterogeneous stress

fields at frictional interfaces”, Mechanics of Materials, in press, 2014.
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Chapter 6. Predicting the Propagation Distance of Frictional Slip

6.1 The Propagation of Slip Precursors

Recent laboratory experiments have shown that nominally flat interfaces between solids

under a localized quasi-static shear load may present local slip precursors well before global

sliding (Rubinstein et al., 2007; Maegawa et al., 2010). These findings on the transition from

sticking to sliding have attracted wide attention (Scheibert and Dysthe, 2010; Trømborg et al.,

2011; Bouchbinder et al., 2011; Amundsen et al., 2012; Otsuki and Matsukawa, 2013). In the

experiments, two poly(methyl-methacrylate) (PMMA) blocks are brought into contact under

a constant normal load FN. A shear load FS is applied to the top block (slider) via a pusher

located close to the interface. In this side-driven set-up, which is schematically illustrated in

Figure 6.1(a), local slip fronts nucleate episodically at the trailing edge and propagate over

parts of the interface. Their propagation distance increases proportionally to the applied

load until approximately the middle of the interface. From this point on, the growth of the

precursors is considerably faster (e.g., see experimental data of Rubinstein et al. (2007) shown

in Figure 6.5). Once a slip event propagates over the entire interface, global sliding occurs.

The remarkable increase of precursor lengths and its non-linear relation to the applied shear

force FS was shown to be highly reproducible and, if normalized by sample length and normal

force, unique and independent of the slider geometry (length or height), of the normal load,

and of the pusher position (Rubinstein et al., 2007; Trømborg et al., 2011). In essence, episodic

nucleation and spontaneous arrest of precursor fronts arise from the spatial concentration

of interface stresses induced by the applied load (Rubinstein et al., 2008). Several numerical

models, one-dimensional spring-mass chains with arbitrary normal loads (Maegawa et al.,

2010; Amundsen et al., 2012) as well as two-dimensional spring-mass models (Trømborg et al.,

2011), were proposed to simulate the mechanics of precursors and to analyze the relation

between the normalized precursor length and the measured macroscopic force ratio FS/FN.

They confirmed experimental observations showing the absence of influence of the slider

geometry and produced non-linear evolution of the precursor length. However, none of these

numerical simulations provided quantitative comparison to experimental data. The main

reasons being inconsistent interface stresses due to the discrete nature (Maegawa et al., 2010;

Trømborg et al., 2011; Amundsen et al., 2012) or the one-dimensional geometry (Maegawa

et al., 2010; Amundsen et al., 2012) of these models.

In addition to numerical models, only few theoretical approaches have been proposed so far.

A quasi-static one-dimensional model (Scheibert and Dysthe, 2010) applied a simplified stress

criterion, inspired by Griffith’s energetic criterion, to study the kinematics of the transition

from static to stick-slip friction, and showed that it is dominated by the system instead of

the small scale parameters. Another analytical model (Amundsen et al., 2012) applied a

reverse approach. Given a precursor length, they describe the interface stresses after precursor

arrest and compute the associated macroscopic shear force by integration of the interface

shear tractions. Even though these theoretical models offer interesting intuition about the

propagation length of precursors, they do not give new insights about the mechanics of friction

nor do they provide quantitative comparison with experiments. There are several causes to
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this discrepancy. As for the numerical simulations, the one-dimensional geometry and the

arbitrary initial stress states can result in inconsistent predictions. Moreover, the simplistic

propagation criteria, and the use of post-precursor instead of pre-precursor stress states are

additional limitations of existing models.

In this chapter, we first present a numerical model for the dynamic simulation of frictional slip

in a set-up comparable to the experimental system of Rubinstein et al. (2007). We show that

this model produces sequences of precursors and compare the results with experimental data.

Further, we present a theoretical model based on Linear Elastic Fracture Mechanics (LEFM)

that predicts the kinematics of slip precursors at frictional interfaces. Such LEFM approaches

have long been used in earthquake modeling (Freund, 1979; Ampuero et al., 2006; Kato, 2012),

and recently, experimental evidence was provided by measurements of LEFM strain fields

around Sub-Rayleigh slip fronts (Svetlizky and Fineberg, 2014). We here develop this concept

into a quantitative model that incorporates the continuum approach of linear elastic fracture

mechanics as well as interface stress states resulting from the exact system geometry. The aim

of this model is to be as simple as possible while comprising the essential features of fracture

mechanics theory and addressing the shortcomings of previous theoretical models. With this

approach, we study the link between meso-scale properties and the macro-scale response

of a solid-body system containing a frictional interface. Friction mechanisms acting at even

smaller scales (i.e., atomic scale) are incorporated in a local (meso-scale) friction law.

Specifically, we use real interfacial stress states from a two-dimensional geometry to provide a

prediction of the precursor length based on the shear load measured before the slip event and

compare our results quantitatively with experimental data. In addition, we analyze the influ-

ence of several material and interface parameters, which has not been done before, and point

out various sources of the precursor length non-linearity. This analysis is further extended by

considering simplifications of our model which provide a fundamental understanding of the

origin of the non-linearity of the precursor length evolution.

6.2 Models

Following Rubinstein et al. (2007), we study friction in a system consisting of a rectangular

thin plate of length L = 200mm, height H = 75mm and thickness W = 6mm, in contact with

a much thicker deformable base block of dimension 300×30×27mm. A pusher of width

wp = 5mm is applied at height hp = 6mm from the interface. The material properties are

assumed to be viscoelastic, with Poisson’s ratio ν, viscous Ev and static E∞ Young’s moduli.

The resulting instantaneous Young’s modulus is given by E0 = Ev+E∞. A linear slip-weakening

friction law (Palmer and Rice, 1973; Andrews, 1976a), as introduced in Section 3.2.3, is applied

at the interface, describing the frictional strength as

τs(δ, x) =
{ [

µs +δ/dc
(
µk −µs

)]
σ(x) for δ< dc

µkσ(x) for δ≥ dc ,
(6.1)
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where µs and µk are the static and kinetic friction coefficients, dc is the characteristic weak-

ening length, δ is the local interface slip, σ(x) is the contact pressure, and x is the coordinate

along the interface. More advanced friction laws, such as velocity-weakening-strengthening

friction, have been used in the past to model precursor mechanics at PMMA interfaces (Braun

et al., 2009; Bouchbinder et al., 2011; Bar Sinai et al., 2012; Bar-Sinai et al., 2014). Even though

these models describe well the propagation of frictional slow fronts, they are not indispens-

able to model the propagation distance of precursors, as shown with dynamic finite-element

simulations using slip-weakening friction (Radiguet et al., 2013). Here, the emphasis is on

simplicity and the slip-weakening friction law enables simple determination of the interface’s

fracture toughness, which is essential to LEFM theory.

Figure 6.1: (a) Set-up of the side-driven system. A thin slider is pressed by a constant normal
load FN onto a thicker base block. A pusher applies a slowly increasing shear load FS to the
slider. (inset) Zoom on the pusher. (b) Static stress state at the interface for an applied normal
load. Note the convention of positive σ for compression. (c) Static stress state at the interface
for an applied unit shear load. (d) Interface stresses for an unruptured linear combination of
both loadings with FN = 5FS and normalized by the average interface stress.
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The material as well as interface parameters are chosen in order to correspond best to the

properties of PMMA. The viscoelastic material parameters are based one experimental mea-

surements (Read and Duncan, 1981; Ciccotti and Mulargia, 2004; Svetlizky and Fineberg, 2014)

and are chosen as E∞ = 2.6GPa, Ev = 3.0GPa, ν = 0.37, and ρ = 1200kg/m3. The interface

parameters are difficult to measure and are therefore estimated as well as possible from exper-

imental observations (Rubinstein et al., 2007; Ben-David et al., 2010; Svetlizky and Fineberg,

2014). The values applied for this studies are µs = 0.9, µk = 0.45, and dc = 1µm. The effect of

the parameter choice on the precursor load-length relation is studied in Section 6.3.2. The

normal load of FN = 3300N applied in the experiments of Rubinstein et al. (2007) is adopted

for all results shown in this chapter.

6.2.1 Numerical Model

The numerical model used for dynamic simulations of precursors is the same as presented by

Radiguet et al. (2014), but with adapted geometry as well as material and interface properties.

It is a two-dimensional finite-element model with an explicit Newmark β-method for time

integration and a traction-at-split-node technique to model the frictional interface. More de-

tails about the numerical methods are given in Sections 3.4 and 3.5. The solids are discretized

by regular quadrangular meshes and convergence with respect to the element size is verified.

With the objective of mimicking closely the experimental set-up, the thin slider is approxi-

mated with plane-stress assumption whereas the much thicker base block is modeled with

a plane-strain approximation. The bottom edge of the base block is fixed and the external

shear loading is applied at a constant loading rate v x = 2.5mm/s through a spring of stiffness

Ks = 1GN/m2 and a rigid pusher.

The viscoelasticity of the bulk material is modeled by the standard linear solid approach. It is

particularly well suited to represent polymeric materials, if the viscous property is only applied

to the deviatoric part of the stress-strain relation. A detailed description of this constitutive

law is given in Section 3.1.4. The evolution of the stress-strain relation is governed by the

viscosity parameter η, which introduces the time scale of stress relaxation. For computational

reasons, the viscosity is chosen as η= 5MPas, which results in considerably faster relaxation

times than realistic material properties. However, the relaxation time is still much longer than

the typical duration of an interface rupture and has therefore no effect on the propagation

distance of the precursors.

In the dynamic simulations, the linear slip-weakening friction law is regularized by a simplified

Prakash and Clifton (1993b) law similar to the regularization studied in Chapter 4. The effective

frictional strength is governed by

dτes

dt
= τs −τes

tpc
, (6.2)

where tpc = 50µs is the characteristic time of the regularization. This is a further simplification
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of the regularization given by Equation (4.1), where the slip-rate dependence is eliminated.

This simplified version still contains the essential features of the original regularization, which

is the non-instantaneous adjustment to a change in the contact pressure, but limits the

number of additional parameters to a minimum.

6.2.2 Theoretical LEFM Model

The unruptured tractions at the interface are computed by static finite-element simulations.

An applied unit normal load leads to a normalσN(x) traction satisfying the following condition

W
∫ L

0 σN(x)dx = 1N. The resulting contact pressure, as shown in Figure 6.1(b), is approximately

uniform in the central 80% of the interface and presents singularities at the edges due to the

perfect rectangular shape of the specimen. Poisson’s lateral expansion is frustrated at the

interface by the frictional strength leading to a shear traction τN(x), which is approximately

linear and symmetric with respect to the center point of the interface. Similarly, σS(x) and

τS(x) result from an applied unit shear load and satisfy therefore W
∫ L

0 τS(x)dx = 1N. As shown

in Figure 6.1(c), τS(x) presents a maximum close to the trailing edge, which will eventually

lead to the initiation of precursors.

It is important to note that although the unruptured interface tractions are computed by static

finite-element simulations, the following model is theoretical and independent of numerical

simulations. Any interface stress state, also experimental data, could be used as starting point

for our model.

Once the unruptured interface tractions, caused by external loadings, are known, the effective

interface tractions are then modeled by linear superposition of these tractions and the stress

drops due to previous interface ruptures. The normal σr (x) and shear τr (x) tractions after

r −1 precursors, for any FN and FS, and after viscous relaxation are given by

σr (x) = F̃NσN(x)+ F̃SσS(x) (6.3)

τr (x) = F̃NτN(x)+ F̃SτS(x)+ E∞
E0

r−1∑
i=1

∆τi (x) , (6.4)

with F̃N and F̃S ensuring that the macroscopic normal and shear loads are always equal to

FN and FS, e.g., W
∫ L

0 σr (x)dx = FN and W
∫ L

0 τr (x)dx = FS. The change in the shear tractions

caused by interface rupture i is introduced as ∆τi (x), while contact pressure changes are

neglected. As shown by Radiguet et al. (2013, 2014), the bulk material’s viscoelasticity results in

a partial restitution of pre-rupture shear tractions. The time scale of this viscous effect (given

by η) is not explicitly incorporated in this model because the relaxation time is considerably

longer than the duration of a single precursor, but shorter than the time between two slip

events. As a consequence, the stress drops is multiplied by E∞/E0 in order to account for the

viscoelastic restitution. Furthermore, a non-adhesion condition defines that where σr (x) < 0

we impose: σr (x) = 0 and τr (x) = 0. An example of an effective stress state without a stress

drop is shown in Figure 6.1(d). The contact pressure is rather uniform, while the shear traction
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Figure 6.2: (a) Interfacial shear tractions before and after an interface rupture, given by
Equation (6.4) for r = 13. (b) Fracture toughness KIIc and stress intensity factor K −

II (before)
and K +

II (after) the rupture shown in (a).

presents an important peak close to the trailing edge, which is at the origin of slip nucleations.

Considering local slip events as interface ruptures, we model their propagation using LEFM

(Freund, 1990), which implies that every rupture modifies the stress state of the interface

behind as well as ahead of its tip. An example of how shear tractions change during a slip

event is shown in Figure 6.2(a) for a rupture with arrest position x/L = 0.55. The shear

tractions before and after an interface rupture (in time) are denoted with a superscript − and

+, respectively. The arrest of the precursor creates a peak at x/L = 0.55, and a square root

decrease in shear tractions for x/L > 0.55 (see τ+r ). The peaks in τ−r at x/L = 0.3−0.5 are the

remains of stress concentrations of previous precursors. After the current rupture, they are

erased due to the linear slip-weakening friction law (see τ+r ) and will partially reappear over

time. This effect was shown to be the result of the bulk’s viscoelasticity (Radiguet et al., 2013,

2014).

The tractions before and after the rupture r are linked by the stress change ∆τr (x) through

τ+r (x) = τ−r (x)+∆τr (x). The stress τ−r is equal to τr (x), given by Equation (6.4), for FN and FS at

the time of the rupture. The stress τ+r (x) is the result of the rupture and can be separated into

three different areas as described below.

At the rupture tip, there is a process (weakening) zone, where δ< dc and in which the shear

traction drops from the static frictional strength τs(0, x) to the kinetic strength τs(dc, x). A linear
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slip-weakening friction law results, within the process zone, in a non-linear shear traction

distribution, which, for reasons of simplicity, is here approximated by a linear function. The

size of a static linear process zone is given by wpz = 9πK 2
II (l )/[32σ2

r (l ) (µs −µk)2] (Palmer and

Rice, 1973), where l is the arrest position of the precursor and KII the mode II stress intensity

factor. The leading end of the process zone is at x = la and the trailing end at x = la −wpz = lb.

The position la of the leading end is determined by the stress concentration as defined below,

which always results in a process zone that satisfies lb < l < la.

Behind the process zone, the stress state is imposed by the friction law, Equation (6.1). Because

δ> dc everywhere, we can write τ+r (x) = τs(dc, x) =µkσr (x) for x < lb.

Ahead of the slip event appears a stress concentration caused by the stress drop occurring

behind the rupture tip. The stress change ahead is given in first order approximation as

∆τr (x) ≈ KII(l )/
p

2π(x − l ). Because frictional rupture does not allow for stress singularities,

the frictional strength limits the maximal shear traction, similar to the assumption of a small

plastic zone size in fracture mechanics. Therefore the position of the leading end of the process

zone is determined such that µsσr (la) = τ−r (la)+KII(l )/
√

2π(la − l ).

This is only a simplified approximation to the correct description of the stress state around

a cohesive crack. In fact, the details have no significant effect on the precursor load-length

relation studied here, and even neglecting entirely the process zone results in virtually the

same observations with isolated shorter slip events that do not affect the load-length relation

of the expanding precursors.

The stress change caused by an interface rupture can therefore be summarized as

∆τr (x) =


KII(l )p
2π(x−l )

for x ≥ la

∆τr (lb)+ x−lb
wpz

∆τpz for lb < x < la

µkσr (x)−τ−r (x) for x ≤ lb ,

(6.5)

with ∆τpz =∆τr (la)−∆τr (lb). The process zone is characterized by l the arrest position of the

rupture, la and lb the leading and trailing end, respectively, and wpz = la − lb the process zone

size.

The mode II stress intensity factor for a non-uniform shear stress drop ∆τr along an edge

crack of length a in a semi-infinite solid can be deduced from Equation (8.3) in Tada et al.

(2000) by integration:

KII(a) = 2p
πa

∫ a

0

∆τr (s)F (s/a)√
1− (s/a)2

ds (6.6)

with F (s/a) = 1+0.3(1−(s/a)5/4) and∆τr (s) =µkσr (s)−τ−r (s) because the integration is along

the crack interface and the process zone is neglected. A different possible choice of stress

intensity factor is a semi-infinite crack approaching the edge of a semi-infinite solid [Equation

(9.5) in Tada et al. (2000)]. On the studied system, this stress intensity factor leads to an almost
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identical precursor load-length relation as in the model with Equation (6.6). Only a slightly

steeper curve at l /L > 0.5 is observed (not shown here). As ∆τr is multiplied by the non-linear

factor F (s/a)/
√

1− (s/a)2 over the crack face, the stress intensity factor is one possible source

of non-linearity in precursor mechanics.

Given that the slider is a thin plate, the fracture toughness is computed in the plane-stress

approximation with the frictional fracture energy Γc by:

KIIc(x) =
√

E0 Γc(x) =
√

E0
(µs −µk)dc

2
σr (x) . (6.7)

The fracture toughness is computed using E0 because the characteristic frictional weakening

time is significantly smaller than the relaxation time of the viscoelastic material (Rice, 1979).

Neglecting any dynamic effect, the precursor length l for a given stress state of the interface

is determined by the position at which the stress intensity factor becomes smaller than the

fracture toughness:

K −
II (l ) = KIIc(l ) and

dK −
II (l )

dx
< dKIIc(l )

dx
. (6.8)

An example is shown in Figure 6.2(b). The stress intensity factor right after an event K +
II is

significantly lower than KIIc, hence a finite load increment is required to nucleate the next

precursor event.

Up to this point, we presented how the precursor length can be predicted for any given

interface stress state. In order to complete the proposed model, we need to determine the

shear force at which a slip event is expected. As the initiation of the rupture occurs at the

trailing edge of the system and a rupture only propagates where the stress intensity factor is

larger than the fracture toughness, we introduce a length scale ln which represents the size of

the nucleation zone and define that the next precursor occurs when the following condition is

satisfied:

K −
II (ln) = KIIc(ln) and

dK −
II (ln)

dx
> dKIIc(ln)

dx
. (6.9)

The slip nucleation zone size ln acts like a seed crack to the propagation of an interface rupture

and can be thought of as the stable slip zone that occurs before dynamic ruptures (Uenishi

and Rice, 2003; Garagash and Germanovich, 2012). Its size may vary from one to another

slip event, but is chosen to be constant in our model. However, testing different values for

ln has shown that below a critical length, it has only a negligible influence on the precursor

load-length relation. Decreasing ln only leads to slightly less precursors. In this work, we

chose ln = 0.012m, which is below the critical length and results in approximately the same

precursor occurrence frequency as in the experiment of Rubinstein et al. (2007).

Before comparing our model with experimental data and studying the influence of various
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Figure 6.3: The evolution of the stress intensity factor is shown during the period between
two precursors. Directly after precursor 12, the stress intensity factor K +

II is zero along the
interface and non-zero ahead of the arrest position, as shown by the dash-dotted dark orange
curve. Viscous relaxation of the bulk material, illustrated by the dash-dotted orange curves
going from dark to bright, leads to a partial recovery of the pre-rupture stress intensity factor.
Further, the increasing external shear load lifts continuously the stress intensity factor, as
shown by the solid blue curves going from bright to dark. When the area of K −

II > KIIc reaches
the slip nucleation zone characterized by x ≤ ln = 0.06L, the next precursor propagates. For
simplicity, the effects of the viscous relaxation and the external loading are here illustrated
sequentially. In reality, they occur simultaneously. However, if complete relaxation occurs
between two precursors, the sequential and simultaneous approaches are equivalent.

parameters, we here summarize the events occurring during a cycle of an interface rupture in

order to provide the reader with a basic intuition of the observed phenomenon. Considering

an interface stress state at which a slip event occurs [e.g. Figure 6.2(a)], a rupture propagates

from the trailing (left) edge until a point where the stress intensity factor becomes smaller

than the fracture toughness [Equation (6.8) and Figure 6.2(b)]. Behind the rupture occurs

a stress drop and ahead of the tip a stress concentration as described by Equation (6.5).

The stress concentrations of previous ruptures are erased because behind the process zone

the friction law imposes shear tractions that depend only on the kinetic friction coefficient

and the contact pressure. The viscous memory effect of the bulk material restores these

concentrations partially over time (Radiguet et al., 2013). Directly after the rupture and before

viscous relaxation, the stress intensity factor is zero along the interface up to the arrest position

(see K +
II in Figure 6.2(b) and Figure 6.3). Thus, additional external shear loading is needed

to reach a new interface stress state that allows for the propagation of a slip event. While

the external loading increases, the stress intensity factor exceeds the fracture toughness first,

for this particular set-up, at approximately x/L = 0.15 and short after at a position close

to the last arrest position (see Figure 6.3). Nevertheless, no rupture initiates because the
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shear traction is still below the static strength, τr (x) < τs(0, x) (at the last arrest position due to

viscous relaxation), and the stress intensity factor should be higher than the fracture toughness

starting from the edge (and not solely in the middle of interface). For even higher external

shear loads, the area with K −
II > KIIc expands and once it reaches the seed crack at the edge,

and satisfies Equation (6.9), a new slip event occurs and the cycle starts over again.

6.3 Results and Discussion

6.3.1 Numerical Simulations

The results of a numerical simulation based on the model presented in Section 6.2.1 are

shown in Figure 6.4. The macroscopic shear to normal force ratio increases quasi-linearly

with small force drops occurring at a regular interval until macroscopic sliding takes place

at approximately t = 0.26s. The apparent (macroscopic) static friction coefficient is slightly

above FS/FN = 0.5, which is considerably below the local µs = 0.9 imposed at the interface. This

is the effect of strongly non-uniform interface tractions present in the side-driven set-up. The

macroscopic force ratio is, if dynamic effects are neglected, the ratio of the interface tractions

integrated over the entire interface. The local friction law, however, imposes a maximum to

the local ratio of interface tractions. Thus, the apparent static friction coefficient is always

smaller than the local static friction coefficient, if the interface tractions are non-uniform.

The force drops appearing before macroscopic sliding are the result of local slip events that
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Figure 6.4: Numerical results for precursor propagation. The black line shows the macroscopic
shear to normal force ratio over time. Small force drops appear before global sliding occurs at
approximately t = 0.26s. Colored areas indicate slip regions with respect to time, where the
position is normalized by the interface length. The timing of slip precursors coincide with the
macroscopic force drops.
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Figure 6.5: Evolution of normalized precursor length with increasing macroscopic force ratio
FS/FN. Comparison of LEFM theory with experimental data from (Rubinstein et al., 2007), and
dynamic finite-element simulations from (Radiguet et al., 2014).

propagate over parts of the interface. Such precursors, as shown as colored areas in Figure 6.4,

initiate at the trailing edge x/L = 0 and stop before reaching the leading edge at x/L = 1.

The interval between these slip events is approximately constant because the initiation of

the dynamic rupture is governed by a slowly expending quasi-static slip zone at the trailing

edge that needs to reach a critical length. Because after each slip event the stress state of the

interface close to the trailing edge is nearly the same and the loading rate is constant, this

nucleation procedure repeats itself in an almost identical way and results in a constant stick

period.

As observed in the experiments of Rubinstein et al. (2007), each precursor propagates further

than the previous one. The precursor length increment is almost constant until a slip event

reaches approximately the center point of the interface, from which on only one to two precur-

sors occur before global sliding. The resulting precursor load-length relation, as introduced

in Section 6.1, is shown in Figure 6.5 (red squares). It is in good quantitative agreement with

experimental data from Rubinstein et al. (2007) and presents the same linear relation until

l/L ≈ 0.5 as well as a fast transition to global sliding.

6.3.2 Comparison of LEFM Model with Experimental Data

In Figure 6.5, we compare the prediction of the LEFM model (blue dots) with experimental

data of Rubinstein et al. (2007) (gray triangles). The LEFM prediction is in good quantitative
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Figure 6.6: Analysis of the influence of different interface and material parameters on the
precursors load-length prediction of the LEFM model. Parameters that are changed with
respect to the reference case are given in the legend. The variation of the equivalent slip
distance D for µk = 0.45 corresponds to the uncertainty range of the frictional fracture energy
deduced from experiments (Svetlizky and Fineberg, 2014).

agreement with experimental data and retrieves well the non-linearity of the length vs. load

curve. It is also in good quantitative agreement with the results from the dynamic finite-

element simulation as presented in Section 6.3.1. Further, we also confirm the observation of

(Trømborg et al., 2011) that the slider geometry does not influence the normalized precursor

length behavior by changing the slider length to L = 0.14m (see cyan triangles in Figure 6.5).

We present in Figure 6.6 the influence of various material and interface properties with vari-

ations of the order of their uncertainties. The value of µk is estimated by the macroscopic

force ratio FS/FN measured directly after a slip event, which is often µk ≈ 0.4−0.45 (Rubin-

stein et al., 2007). Introducing an equivalent slip distance D = (
µs −µk

)
dc/2 enables us to

write Equation (6.7) as KIIc(x) =p
E0 D σ(x). According to the experiment-based estimation of

the frictional fracture energy of PMMA interfaces reported by Svetlizky and Fineberg (2014),

the uncertainty of the equivalent slip distance can be determined to be within the range of

D = 0.22±0.06µm for µk = 0.45.

With the exception of µk, the variations of all material and interface parameters within their

uncertainties have negligible effects on the l/L − FS/FN relation (Figure 6.6). Even neglecting

entirely the viscoelasticity of the bulk material (Ev = 0GPa) does not affect the precursor

behavior. This weak influence originates from the square root contribution of E0 and D to KIIc.

Only a change of µk within its uncertainty range results in an important shift of the l /L − FS/FN
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curve due to its additional contribution to KII, see Equation (6.5) and Equation (6.6).

6.3.3 Test of Model Assumptions

We have shown that the LEFM model is able to produce an accurate prediction of the precursor

load-length curve, and reproduce the transition from the initial linear length increase to faster

increase at a finite value of load. In the following, we aim at giving a more fundamental

understanding of the origin of the load-length curve, by identifying several sources of the

non-linearity in this scaling. This is done by removing different components from the LEFM

model.

We present in Figure 6.7 a simplification of the theoretical model (denoted model A), which

is based on the same LEFM approach, but where any change of the interface tractions due

to slip is neglected (∆τi = 0 ∀i ). Under these conditions, the discrete nature of precursors

is lost. The length associated to a given macroscopic force ratio is independent of the slip

history of the interface, and corresponds to the length that the first precursor would reach

if it initiated at that specific loading. The loss in discreteness results in a more (but still not)

linear l/L − FS/FN relation. In this simplified model, for a given FS, the stress drop close to

the trailing edge is larger than in the reference case, resulting in a higher value of KII and in

longer precursors. But for l/L > 0.7, this effect is compensated in the full theory by the stress

redistribution close to the arrest position of the previous precursor.

As noted before, the shear tractions at the interface result not only from the macroscopic shear

load but also, due to frustrated Poisson’s expansion, from the normal load. The influence of

the latter is analyzed in model B. The shear contribution of the macroscopic normal load is

removed by setting artificially τN(x) = 0 ∀x. All remaining interface tractions are kept the

same as for the reference case. The resulting propagation distances reported with respect to

the macroscopic force ratio are shown in Figure 6.7. For any given shear force FS, the precursor

length is longer for the simplified model B than for the reference model. For l/L < 0.5, this is

the logic consequence of neglecting τN(x) which acts against the driving traction τS(x). Beyond

the central point of the interface, the precursor lengths increase faster but still less than in the

reference system, where τN(x) contributes to the propagation of precursors. From a global

perspective, the precursor load-length curve is still non-linear (but less than the reference

model). This indicates that the interfacial shear traction resulting from frustrated Poisson’s

expansion is one but not the only source of non-linearity in the system.

We also present the results of the simplified model AB, which is the combination of model

A and B, where stress drops due to interface ruptures as well as shear traction caused by

frustrated Poisson’s expansion are neglected. As for model A, the discrete nature of precursors

is lost in model AB. The precursor load-length relation, which is shown in Figure 6.7, is almost

perfectly linear indicating that most sources of non-linearity (at least for the studied system

and parameter range) are eliminated from this simplified model. The non-linear form of the

stress intensity factor, which is still part of model AB, does not seem to affect the precursor
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Figure 6.7: Precursor load-length relation for various simplified LEFM models with compari-
son to full LEFM theory. Model A: traction changes due to interface ruptures are neglected
(∆τi (x) = 0). Model B: Interface shear tractions due to frustrated Poisson’s expansion are
neglected (τN(x) = 0). Model AB: combination of model A and B (∆τi (x) = 0 and τN(x) = 0).

propagation distance much within the length of the interface.

6.3.4 LEFM Prediction for Symmetric Set-up

Up to this point, we have compared our model to existing experimental data, analyzed the

influence of different material and interface parameters, and have studied the non-linearity of

the precursor load-length relation. Now, we can use our LEFM model to predict the response

of a different system for which no experimental data has been published yet.

The set-up studied so far consists of a thin slider on a thicker base, which presents character-

istics of a bi-material interface due to differences in the effective stiffness. This bi-material

property influences the rupture propagation (Weertman, 1980). It is potentially interesting

to remove this effect from experimental observations of frictional precursors by using a set-

up with a single-material interface. We thus consider a symmetric system, where the base

has the same geometry as the slider (in all three directions) and provide first insights to the

propagation of precursors along a single-material interface. In this system, the non-zero τN

due to frustrated Poisson’s expansion [see Figure 6.1(b)] is naturally eliminated. Also all other

interface traction components are different in a symmetric set-up and are computed with

additional static finite-element simulations. An example of an effective normalized contact

pressure of the symmetric set-up is shown in Figure 6.8(a) (solid pink line) and compared
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Figure 6.8: Comparison with a symmetric set-up, where the base has the same geometry as the
slider. (a) Normalized contact pressure and (b) normalized shear traction of an unruptured
interface for the reference set-up (blue dashed line), as also shown in Figure 6.1(d), and for a
symmetric set-up (pink solid line) for FN = 5FS. (c) Normalized precursor length l /L reported
with respect to the macroscopic force ratio FS/FN for the reference set-up (blue dots), as also
shown in Figure 6.5, and for the symmetric set-up (pink stars).

with the normalized contact pressure of the reference set-up (dashed blue line), which was

already reported in Figure 6.1(d). As expected, the main difference is the absence of the edge

singularity in the symmetric set-up at x/L > 0.9, which will only have a small influence on

the precursor mechanics. In Figure 6.8(b), the normalized shear traction at the interface of

the symmetric set-up (solid pink line) and the reference set-up (dashed blue line) are com-

pared. The symmetric set-up is generally a system of lower stiffness, which leads to a peak at

approximately x/L = 0.05 which is smaller than in the reference set-up but a stress level that is

considerably higher up to x/L = 0.7.

The precursor load-length prediction of our LEFM model for the symmetric set-up is shown

in Figure 6.8(c) (pink stars) and compared with the prediction for the reference system (blue
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dots), which was already shown in Figure 6.5. In the symmetric set-up, the first precursor

appears at higher macroscopic force ratio, which is the result of the lower stress peak in τr (x)

[see Figure 6.8(b)]. The length of the first precursor is about the same than the precursor

propagating at the same FS/FN in the reference system. However, the precursor lengths increase

faster in the symmetric system and the load-length relation presents an inflection point

between the third and fourth precursors. Moreover, there are considerably less precursors

in the prediction for the symmetric set-up (precursor length increments are larger), which

indicates that it is harder to experimentally observe precursors in such a system.

6.4 Conclusion

We showed that a theoretical model based on linear elastic fracture mechanics predicts quan-

titatively well the precursor behavior observed in laboratory experiments (Rubinstein et al.,

2007). Using this model, we revealed that the kinetic friction coefficient is key to an accurate

prediction of the precursor length as it directly affects the stress intensity factor through the

stress drop along the interface crack. Moreover, we showed that the variation of material pa-

rameters (within their uncertainty range) does not affect the observed precursor load-length

relation. By simplifying this model in various ways, we analyzed different aspects that influ-

ence the non-linearity of the precursor growth and demonstrated that the shear tractions due

to frustrated Poisson’s expansion and the discrete nature of precursors are the main sources

of the observed non-linearity. The redistribution of the shear tractions along the interface

caused by each precursor is essential to the load-length relation. With the results of this

theoretical description of slip precursors, we provide evidence for considering frictional slip

and precursors as a fracture phenomenon.
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7 Heterogeneous Interface

Interfaces at which slip fronts propagate are naturally heterogeneous at various length scales.

The influence of such heterogeneities on the propagation of slip and the interface mechanics

has long remained obscure due to various difficulties in experimental and numerical observa-

tions. It is, however, of great importance to many fields including engineering and earthquake

science. In this chapter, we present results from three-dimensional simulations showing the

propagation of a slip front at a striped heterogeneous interface. By comparing the slip front

propagation at interfaces that differ solely by the length scale of the heterogeneous pattern, we

illustrate that two different propagation regimes exist. These numerical results as well as theo-

retical considerations suggest that the origin of these two distinct propagation mechanisms

lies in the interaction between the length scales of the slip front and the heterogeneous config-

uration. The implications for manufactured interfaces with desired high frictional strength

is important because frictional energy dissipation during the onset of sliding is considerably

increased at the transition from one to the other propagation regime for interfaces of equal

average fracture toughness.

A scientific article containing the work presented in this chapter is currently in preparation for

submission.
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7.1 Slip Front Propagation through Interface Heterogeneities

The propagation of slip fronts at frictional interfaces as well as classic shear cracks at weak

interfaces have, in the past, mainly been studied in two-dimensional systems. Neglecting

the third dimension enabled the use of plane-strain or plane-stress approximations and re-

duced the interface to a one-dimensional line. This simplified the theoretical description

of interface ruptures and decreased significantly computational cost of numerical simula-

tions. Nevertheless, the propagation of ruptures along two-dimensional interfaces presents

interesting additional aspects. The effect of non-homogeneous interfaces, for instance, is of

great importance for earthquake sciences (because faults are not homogeneous) and engi-

neering (where the use of “designed” materials such as composites is increasingly common).

Most ruptures propagate along interfaces that present different types of heterogeneities at

various scales. Examples are non-uniform loading, such as areas of higher or lower pre-

stress, and heterogeneous interface properties, such as zones of stronger/weaker strength

or rate-strengthening/weakening friction. Either of these types of heterogeneities affect the

propagation of any rupture, but become particularly interesting for fronts of at least two

dimensions because areas that are less easily broken can simply be circumvented (or partially

circumvented and broken with delay).

The experimental observation of slip events at frictional interfaces is challenging and only

few results of two-dimensional fronts have been reported so far. Brörmann et al. (2013)

and Romero et al. (2014) showed on interfaces with discrete contacts (pillars and spherical

caps, respectively) that the transition from sticking to sliding is characterized by slip fronts

propagating along the interface, similar to the observations of Rubinstein et al. (2004) but

at a two-dimensional interface. Latour et al. (2013) studied experimentally the effect of

interface barriers on frictional slip. They showed, using different configurations of barriers,

that heterogeneities can cause rupture arrest/delay as well as increase/decrease of the rupture

speed. However, no systematic prediction can be provided because the behavior of a sequence

of ruptures is complex and memory effects potentially cause inter-dependence of subsequent

ruptures.

More experimental observations showing the effects of heterogeneities have been reported

for Mode I (decohesion) ruptures. Natural heterogeneities of the interface (Måløy et al., 2006)

and the bulk material (Ponson, 2009) were observed to affect the propagation speed. Måløy

et al. (2006) analyzed local velocity fluctuations of an interface crack along a heterogeneous

weak plane and showed that local velocities larger than the average front speed present a

power law distribution. Ponson (2009) observed that the speed of a crack in a heterogeneous

sandstone is related to the driving force in two distinct regimes. Theoretical studies of planar

(tensile) cracks in heterogeneous media suggested that elastic wave propagation are a key

component to explain the observed roughness of the fracture (Ramanathan et al., 1997;

Ramanathan and Fisher, 1997, 1998; Bouchaud et al., 2002). Other experiments applied

artificial heterogeneities in order to study their influence on the rupture fronts. Mower and

Argon (1995) performed crack-trapping experiments showing a locally bowed configuration of
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a quasi-static crack between two obstacles with higher interface strength. Dalmas et al. (2009)

and Chopin et al. (2011) described the shape of quasi-static and dynamic decohesion fronts,

respectively, observed at interfaces with strips of different fracture energy. Xia et al. (2012)

showed in thin-film experiments that the macroscopic peel force depends on the shape of the

interface heterogeneities. Experiments with the same cumulative area of stronger interface

results in different peel forces only due to modified heterogeneity configurations.

In addition to experimental observations, some numerical studies of the propagation of

frictional shear ruptures at weak interfaces have been conducted in the past. This includes

one-dimensional as well as two-dimensional interfaces with heterogeneities due to changed

pre-stresses or modified frictional properties of the interface. The number of simulations with

two-dimensional interfaces is limited because a set-up with a rupture far from the edges (to

avoid the influence of wave reflection), with a small process zone compared to the rupture

length, and with a sufficient fine discretization is computationally challenging. Early work by

Day (1982b) showed that the rupture speed presents large changes during the propagation

along an interface with zones of higher and lower pre-stresses. Fukuyama and Olsen (2002)

and Dunham et al. (2003) demonstrated with numerical simulations of two-dimensional inter-

faces that a circular heterogeneity of higher pre-stress or higher fracture energy can provoke

a transition from sub-Rayleigh to (temporary) super-shear propagation. Three-dimensional

simulations provided also the opportunity to study differences in the near-source ground mo-

tion of earthquakes when an interface rupture propagates through an area of higher strength

or higher pre-stress (Page et al., 2005). Other simulations were used to study earthquake

mechanisms at faults with velocity-weakening patches surrounded by velocity-strengthening

areas (Rice, 1993; Ben-Zion and Rice, 1997; Madariaga and Olsen, 2000; Kaneko et al., 2008;

Ariyoshi et al., 2009; Kaneko and Ampuero, 2011; Ariyoshi et al., 2012). In these set-ups, the

velocity-strengthening zone allows for a slowly increasing load and energy accumulation in the

system, which eventually leads to dynamic ruptures (earthquakes) propagating mostly within

the velocity-weakening zones. The dynamic propagation of ruptures at two-dimensional

interfaces was also numerically modeled with heterogeneous initial stresses mimicking a

realistic state of a fault (Andrews, 2005; Brietzke et al., 2009).

Even though the effect of heterogeneities on the propagation of slip fronts is different at

one-dimensional interfaces, such simulations are still important tools to help understanding

the underlying mechanisms. Das and Aki (1977) showed that ruptures at one-dimensional

interfaces can propagate through areas of higher strength with and without breaking the

heterogeneity. In a different set-up with a weak zone and a strengthening zone, Voisin et al.

(2002) studied the arrest of frictional slip at the border of the areas of different properties and

showed the presence of a self-healing slip pulse that penetrates the strong area. A detailed

study of the transition from sub-Rayleigh to inter-sonic propagation by Liu and Lapusta (2008)

demonstrated that a favorable heterogeneity leads to a secondary crack which transitions to

inter-sonic speeds with an abrupt jump from the Rayleigh wave speed to an inter-sonic speed

(without formation of a daughter crack).
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Figure 7.1: Three-dimensional set-up for simulations with heterogeneous interfaces. Two
solids each of length L and height H are in contact and loaded by normal pressure p and
shear traction t . Periodic boundary conditions in z-direction ensure an infinite width (with
replication width W ). A slip front is nucleated by a notch (red area) introduced at t = 0 and
propagates in x-direction. The slipping and sticking areas of the interface are shown in blue
and gray, respectively.

In this chapter, we present a study of the propagation of a rupture at a two-dimensional

frictional interface and challenge the computational limitations of full three-dimensional

(mesh-converged) finite-element simulations. With the goal of limiting the number of param-

eters to as few as possible, we consider a semi-infinite interface at which a (straight) slip front

enters an area with strips of different fracture energies. The friction properties of the strips are

chosen such that the propagation speed of ruptures along corresponding homogeneous inter-

faces result in sub-Rayleigh and inter-sonic speeds for the stronger and the weaker interfaces,

respectively. Combining these properties in a strip configuration, however, leads to different

types of rupture propagation depending on the width of the strips.

96



7.2. Simulation Set-up

Figure 7.2: Configuration of heterogeneous interface (not to scale) of length L in x-direction
and infinite width in z-direction. Periodic Boundary Conditions (PBC) are used to model the
infinite width. Duplicates of the simulated interface are shown in lighter colors in order to
provide an overall view. This figure corresponds to a view of the interface shown in Figure 7.1
from a negative y position in positive direction. The interface is separated into three areas:
notch, establishing zone, and heterogeneous area. In the notch, the fracture energy is set to be
zero, which causes the nucleation of the slip front. In the establishing zone, before reaching
the heterogeneous area, the rupture accelerates and approaches a steady state with a straight
front. In the heterogeneous part, the interface consists of strips of high and low fracture energy.
The strips have wavelength W corresponding to the width simulated between the periodic
boundary conditions.

7.2 Simulation Set-up

The propagation of a slip front at a two-dimensional heterogeneous frictional interface is

studied in a simple set-up as shown in Figure 7.1. The two solids in contact are each of length

L = 200mm and height H = 100mm, and are chosen to be infinite in the z-direction (per-

pendicular to the direction of propagation) in order to avoid edge effects. At a homogeneous

interface, this set-up results in a straight slip front. Infinity in z-direction is modeled by peri-

odic boundary conditions. The rather large geometry of the solids ensures that reflected waves

cannot affect the propagation of the front along large parts of the interface. Perturbations

due to reflected waves cannot be avoided close to the end of the interface because the waves

ahead of the rupture are always reflected by the leading edge.

The system is loaded statically by a normal load p = 5MPa applied in the y-direction, and

an in-plane shear load t = 2MPa applied on all boundaries in the x − y plane. This load

configuration results in uniform contact pressure and friction tractions at the interface and

separates the effect of varying interface tractions from the effects of the heterogeneity. The

influence of non-uniform stress states is studied in Chapter 5.

The material and interface properties do not represent a particular material but are, nev-
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ertheless, realistic values. Emphasis is given to the necessity of enabling mesh-converged

simulations of an interface rupture with a process zone of small size compared to the rup-

ture length. If not indicated differently, the material and interface parameters are as follows.

The bulk material is linear elastic with Young’s modulus E = 2.6GPa, Poisson’s ratio ν= 0.37,

and density ρ = 1130kg/m3. The resulting wave speeds are cd = 2017m/s, cs = 916m/s, and

cR = 859m/s. Friction at the interface is governed by a linear slip-weakening law as described

in Section 3.2.3. Two different sets of parameters are applied to create a heterogeneous pattern

of the interface. Areas of higher fracture energy have a static friction coefficient µs = 0.9, a

kinetic friction coefficient µk = 0.2 and a characteristic weakening length dc = 18µm, which

results in a fracture energy of Γc = (µs −µk)pdc/2 = 31.5J/m2 for the applied normal load p.

Other areas have a low fracture energy of Γc = 10J/m2, which results from µs = 0.6, µk = 0.2,

and dc = 10µm. Note that both sets of parameters have the same kinetic friction coefficient,

which results in a uniform stress state behind the slip front. The weaker interface, however,

has a lower static friction coefficient and a smaller characteristic weakening length.

The dynamic simulations of the slip fronts presented here are based on the finite-element

method. Detailed information about this numerical method is provided in Section 3.4. An

explicit Newmark β-method is used for time integration. Interface reactions including contact

pressure and friction tractions are applied through a traction-at-split-node technique (see

Section 3.5 for more details). A regular mesh with hexahedral elements is used to discretize

the solids in contact. Other numerical methods, such as the spectral boundary integral

method, could potentially be better suited for the simulation of this particular set-up with a

flat interface between two homogeneous linear elastic solids under uniform load and with

heterogeneities limited to the interface. However, this chapter is a first step on a path to

modeling complex systems with non-linear heterogeneous bulk materials as well as a study of

the effect of heterogeneous interfaces on the propagation of slip fronts.

The configuration of the heterogeneous interface is shown in Figure 7.2. The slip front is

nucleated by introducing at t = 0 a notch (shown in red) which acts as a seed crack and in

which the fracture energy is equal to zero by setting µs =µk = 0.2. The rupture starts at the tip

of the notch and propagates in positive x-direction. The slip front is originally straight because

of the infinite width of the interface. During propagation through the establishing zone (shown

in green), in which the interface is homogeneous, the rupture accelerates and constitutes

an interface crack with corresponding near-tip strain fields. At the end of the establishing

zone, the slip front enters the heterogeneous area in which the interface is organized in strips

of alternating frictional properties. Half of the strips present the same properties than the

establishing zone with a high fracture energy (shown also in green). The second half of the

strips is characterized by a lower fracture energy (shown in violet). The weaker and stronger

strips are always of equal width in the simulations presented in this chapter. Hence, the width

of the simulated interface changes if the strips wavelength is modified.
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7.3 Homogeneous Reference Cases

Before studying the effect of the heterogeneous interface on the propagation of a slip front, we

present reference cases with homogeneous interfaces of the same frictional properties as used

in the heterogeneous set-up. The aim of these homogeneous reference cases is to provide a

basic understanding of the slip front propagation caused by the different frictional properties

in this particular system with the given bulk material.

The propagation of a slip front at a homogeneous interface with the frictional properties

corresponding to the high fracture energy is shown in Figure 7.3. The configuration used

Figure 7.3: The propagation of a slip front at a homogeneous interface with fracture energy
Γc = 31.5J/m2. Data behind the seed crack x < 40mm as well as close to the edge x > 180mm is
hidden in order to focus attention to a rupture that is not affected by wave reflections. (a) The
friction traction at the interface is shown in color in a space-time map. The slip front starts at
x = 40mm and propagates in positive x-direction. The front is located in the red area, where
the friction traction is maximal. The initiation phase of the rupture is invisible due to low data
acquisition frequency during the beginning of the simulations (t < 0.2ms). (b) The rupture
speed measured at each point of the space discretization (black points), which is also reported
by an averaged value (red line), indicates that the slip front propagates at sub-Rayleigh speed.
Values are normalized with respect to the dilatational wave speed cd of the bulk material.
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for this simulation corresponds to the interface shown in Figure 7.2 with a notch and a

homogeneous interface everywhere else. The slip front nucleates at the tip of the notch and

propagates in positive x-direction. It accelerates fast over the first 20mm and, beyond this

point, continues increasing slowly the rupture speed. Over the length of the interface, the

rupture approaches the Rayleigh wave speed but stays sub-Rayleigh at all times. The process

zone of the slip front, the yellow-red-yellow area in Figure 7.3(a), shrinks with increasing

rupture speed as expected by linear elastic fracture mechanics theory (Rice, 1980; Freund,

1990).

In a second reference case, shown in Figure 7.4, a slip front is nucleated by the same notch

and propagates first along a homogeneous interface of the same frictional properties as for

the first reference case. During this phase, the observed behavior corresponds to the rupture

propagation shown in Figure 7.3. However, after the same slip front as in the first reference

case is established, the friction properties are modified and correspond to an interface of lower

fracture energy. This set-up is similar to the configuration presented in Figure 7.2, except that

in the so-called heterogeneous area, the interface is homogeneous and of low fracture energy

over its entire width (only violet). The border between the establishing zone and the area of

low fracture energy is at x = 75mm and is marked by vertical lines in Figure 7.4. When the

sub-Rayleigh slip front approaches the border, a secondary rupture nucleates in the area of

lower fracture energy due to a shear stress peak that propagates ahead of the slip front. The

secondary rupture, which merges shortly after with the main slip front, initiates directly at

an inter-sonic speed just above the shear wave speed. The mechanism of a secondary crack

at inter-sonic speed created within a favorable area was also observed by Liu and Lapusta

(2008). From the border on, the slip front accelerates up to 0.83cd at which speed it reaches a

steady state. Similarly, in a set-up with homogeneous frictional properties of lower fracture

energy over the entire length of the interface, the rupture accelerates directly to inter-sonic

speed right after nucleation and reaches the same steady state. The peak value of the friction

traction is smaller in the area of the weaker interface where Γc = 10.0J/m2 (there is no red area

in Figure 7.4(a) for x > 75mm) because the static friction coefficient is smaller with µs = 0.6

(compared to 0.9).

In summary, the reference cases showed that the proposed interface parameters result in

the given system in two different propagation regimes. The set-up with the higher fracture

energy at the interface can be characterized, following Andrews (1976b), by the seismic ratio

S = (µsp − t )/(t −µkp) = 2.5, which causes a sub-Rayleigh propagation over the entire length

of the system. The set-up with the lower fracture energy presents, however, a seismic ratio

of S = 1.0, which results, for the applied nucleation procedure, directly in a rupture with

inter-sonic speed. The effect on the propagation of a slip front by combining both friction

properties in a single heterogeneous configuration is analyzed in the following section.
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Figure 7.4: The propagation of a slip front at a homogeneous interface crossing the boundary
from an area of high to low fracture energy, with Γc = 31.5J/m2 and 10.0J/m2, respectively.
(a) The space-time map of the friction tractions presents a sudden change at the boundary
from the high to low fracture energy area (indicated by a vertical white line). The maximal
friction traction observed in the area of lower fracture energy is smaller than in the establishing
zone because the static friction coefficient is smaller. (b) The rupture speed follows first the
same trend as in Figure 7.3(b) until it reaches the area of lower fracture energy, in which it
accelerates instantaneously to inter-sonic speed.

7.4 Heterogeneous Interface: Dynamic Simulation Results

7.4.1 Two Distinct Propagation Mechanisms

The propagation of slip fronts at heterogeneous interfaces present different behaviors de-

pending on the wavelength of the strip configuration. Various simulations were conducted

with wavelengths between W = 4mm and W = 8mm (W = 4,5,6,7,8mm). In all these simula-

tions, two distinct propagation mechanisms are observed, which are described in this section.

Snapshots of the expansion of the slip area are shown in Figure 7.5 for two representative

interface ruptures, which are strip configurations with wavelength W = 5mm and W = 8mm.

The two distinct mechanisms are strictly separated by the wavelength of the strips. Slip fronts

propagating at interfaces with W ≤ 6mm are equivalent to the slip front presented in the
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Figure 7.5: Interface snapshots of slip area (in blue) at heterogeneous interfaces. The heteroge-
neous area starts at x = 75mm and consists of strips, as presented in Figure 7.2. The strip with
lower fracture energy (violet strip in Figure 7.2) is located in the center of the shown interface.
The same scale is applied to the x and z axes in order to preserve the correct aspect ratio of
the interface. (a) The system with wavelength W = 5mm result in a slip pulses in the weaker
strips propagating ahead of the main front. (b) The configuration with wavelength W = 8mm,
however, presents a slip front propagating over the entire width. At approximately t = 130µs, a
“stick” front initiates at x = 120mm and follows the slip front in positive x-direction.
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system with W = 5mm, whereas ruptures at interfaces with W ≥ 7mm correspond to the

behavior of the slip front in a set-up with W = 8mm.

As shown by the snapshots in Figure 7.5, the front is flat and propagates at the same speed

at both interfaces before it reaches the heterogeneous area (see at t = 60µs). This is the

result of the infinite width, modeled by periodic boundary conditions in z-direction, and the

homogeneous establishing zone, as presented in Figure 7.2. As the slip front approaches the

heterogeneous area starting at x = 75mm (t = 70µs), a secondary rupture initiates in both

systems in the strips1 of lower fracture energy, which corresponds to the behavior observed

for the second reference case presented in Figure 7.4. While the front of the secondary rupture

starts propagating instantaneously at inter-sonic speed, the main rupture continues advancing

and eventually merges (t ≈ 80−90µs) with the trailing end of the secondary rupture forming

one single slip event.

Up to this point in time, the slip fronts in the two interface configurations resemble each

other. However, beyond this moment, the effect of the strip size becomes noticeable. In the

system with thinner strips, the secondary rupture, which just became part of the main rupture,

detaches again and distances itself slowly from the main slip front while propagating only

in the strips of lower fracture energy. In the set-up with wider strips, the secondary rupture

does not directly detach from the main rupture but pulls the front in the stronger strips in

order to catch up with the front in the weaker strips. Nevertheless, at a later point in time,

i.e., t = 130µs, a stick front initiates at x ≈ 120mm which creates again a main and secondary

rupture. However, the secondary slip front propagates over the entire width of the interface

and not only in the weaker strips as observed for the configuration with W = 5mm. Another

striking difference is that there is much more slip occurring in the front rupture of the wider

system compared to the slip pulse of the thinner set-up.

The different behaviors of the slip fronts in these two heterogeneous configurations is also

recognizable at the propagation speed shown in Figure 7.6. Differences in rupture speeds

can also be observed in Figure 7.5 by looking at the position of the fronts at various moments.

Beyond the starting point of the heterogeneous area, the main slip front in the system with

W = 5mm is first pulled by the secondary rupture and accelerates temporarily above the

shear-wave speed. It decelerates, however, shortly after and continues propagation at sub-

Rayleigh wave speeds (see dark green curve). The secondary rupture, which propagates only

in the strips of lower fracture energy, initiates directly at inter-sonic speeds and propagates

without ever entering steady state at various speeds around the Rayleigh- and shear-wave

speeds (see dark purple curve). At approximately x = 155mm, the slip pulse propagates over

10mm continuously at the so-called forbidden speed, which is between the Rayleigh- and the

shear-wave speed.

In the set-up with wider strips, the slip front propagates in the heterogeneous area over the

1The plural form of strip is used because, even though only one weaker strip and two stronger half-strips are
shown in the figures, there is an infinite number of strips due to the periodic boundary conditions.
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Figure 7.6: Propagation speed of slip fronts shown in Figure 7.5. The rupture speed is reported
for the first slip front at the center line of each strip. The slip pulses in the weaker strips
of the configuration with W = 5mm, shown in dark purple, propagate with varying speed
around the Rayleigh- and shear-wave speed. The main slip front in this system, shown in
dark green, propagates at sub-Rayleigh speed with a short inter-sonic period at the beginning
of the heterogeneous area. The slip front propagating at the interface with strip wavelength
W = 8mm is inter-sonic over the entire width. The rupture speed in the strips of higher and
lower fracture energy is depicted by bright green and bright purple line, respectively. The thin
gray lines show the rupture speed of the homogeneous reference cases presented in Figures 7.3
and 7.4. The vertical black line indicates the position at which the heterogeneous area starts.

entire length and width of the interface at inter-sonic speeds (see bright green and purple

curves). Along x = 85−155mm, the slip front propagates faster in the strips of higher fracture

energy than in the weaker strips because the (originally) main front is catching up with the

front that nucleated as secondary rupture ahead of it. However, beyond x = 160mm, the front

presents the same constant propagation speed over the entire interface width. The rear slip

front initiating at x = 120mm at t = 130µs due to the stick area appearing ahead of it, see

Figure 7.5(b), propagates at high sub-Rayleigh speed (curve not shown in Figure 7.6).

It is interesting to note that these two distinct propagation mechanisms occur in systems with

the same residual friction tractions and, more importantly, with the same average fracture

energy. Macroscopically, these systems seem to be the same but result in different slip fronts.

7.4.2 Length Scale Interactions

The presence of two distinct mechanisms at interfaces with the same heterogeneous pattern

and friction properties but with different strip wavelengths suggests that an interaction be-

tween two length scales is at play. This is particularly important during the transition from the

homogeneous to the heterogeneous area of the interface. Zoomed snapshots on the relevant

area during this transition, shown in Figure 7.7(a), illustrate that the size of the process zone,
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Figure 7.7: Interface snapshots for various fields shown for points in time when the slip
front enters the heterogeneous area. The configuration with strip wavelength W = 5mm and
W = 8mm, as presented in Figure 7.5, are illustrated in the left and right column, respectively.
The same scale is applied to the x and z axes in order to preserve the correct aspect ratio of
the interface. The snapshots show the (a) slip area in blue with the process zone in brighter
color, (b) slip (distance) with scale: blue = 0mm and red = 0.03mm, (c) frictional strength
with scale: blue =µk ·p and red =µs ·p (µs of high fracture energy), and (d) friction traction
with the same scale as the frictional strength.
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shown in brighter blue, is of the same order than the width of the strips. The interaction

between the two length scales can be expressed as

ζ= W

wpz
, (7.1)

where wpz is the characteristic size of the process zone in the weaker strips, and W is the

wavelength of the strip configuration.

The determination of wpz in the weaker strips during the transition of the slip front from the

homogeneous to the heterogeneous area is challenging because the rupture is inter-sonic and

transient. At inter-sonic steady state, the process zone length can be computed, following

Broberg (1989), by

wpz = ΓcG

p2(µs −µk)2
T (vr,cs,cd) , (7.2)

where Γc is the fracture energy of the interface, µs and µk are the static and kinetic friction

coefficients, p is the normal pressure, G is the bulk’s shear modulus, and T is a function

depending on the propagation speed vr and the dilatational cd and shear cs wave speeds.

Considering that the secondary slip front in the weaker strips presents in all configurations of

different width the same speed during the transition, we can write

wpz ∼ ΓcG

p2(µs −µk)2
. (7.3)

Substituting the fracture energy with Γc = (µs −µk)pdc/2 and by defining the slope of the fric-

tion weakening process asφ= (µs−µk)p/dc, Equation (7.3) is reduced to two basic parameters:

wpz ∼ G

φ
. (7.4)

Reconsidering Equation (7.1), we can now write

ζ∼ Wφ

G
≡ ζa , (7.5)

which provides a fundamental understanding, in first approximation, of the parameters affect-

ing the preferred propagation mechanism. From the simulations presented in Section 7.4.1,

we know that lower values of ζ lead to sub-Rayleigh ruptures with slip pulses propagating in the

weaker strips ahead, whereas higher values of ζ result in an inter-sonic slip front propagating

over the entire width of the interface.

Before considering the values of ζa of the various systems studied so far, let us first understand

how the friction weakening rate, the shear modulus and the strip width influences the process
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of nucleating either of the two propagation mechanisms. When the slip front approaches the

beginning of the heterogeneous area (x = 75mm), a secondary rupture initiates ahead in the

weaker strips (see snapshots at t = 70µs). Once the main front merged with the secondary

rupture, the front continues propagation over the entire width of the interface (see snapshots

at t = 80−90µs). The front is considerably ahead in the weaker strips than in the stronger

ones due to the earlier initiation through the secondary rupture. During this period, there

is a zone in which, at a given position x, the interface slips in the weaker strips but sticks

in the stronger strips. As a consequence, the maximal slip occurs on the center line of the

weaker strips. Its value depends on the shear modulus of the bulk material and the width of

the weak strips. A higher shear modulus causes higher shear stresses in the xz-component

between the border and the center line of the weaker strips, and results in less slip. A wider

strip, however, presents for the same shear modulus more slip at the center because of the

larger distance from the no-slip condition at the border. This can be observed by comparing

slip in the systems with W = 5mm and W = 8mm at t = 90µs at the center line at x ≈ 90mm in

Figure 7.7(b). Therefore, the maximal slip occurring at the center of weaker strips surrounded

by sticking stronger strips behaves as

max δ∼ W

G
. (7.6)

The resulting frictional strength at the center of the weaker strips depends on the friction

law as well as on the quantity of slip. In the case of a linear slip-weakening friction law, the

strength decreases for increasing slip δ and weakening rate φ. Therefore, the minimal strength

at the center of the weaker strips is given, if the adjoining stronger strips are sticking, by

min τs ∼ 1

φmax δ
∼ G

Wφ
. (7.7)

Note that these are not linear relations because slip and frictional strength are inter-dependent.

On one hand, more slip at the center line of the weaker strips leads to lower strength, but on

the other hand, lower strength resists less against the external load, which results in more slip.

Lower frictional strength and hence a lower friction traction at the interface has two conse-

quences on the transition from the homogeneous to the heterogeneous area. First, a lower

friction traction decelerates less the slip rate which increases the duration of slip and prevents

the detachment of the slip pulse in the strip configuration. Second, a lower friction traction

enables more slip over the same period which results in higher shear stresses in the bulk

material. The later are responsible for pulling the slip front in the stronger strips into an

inter-sonic propagation regime. The result of these pulling tractions is observable as red

areas in Figure 7.7(d). All in all, lower frictional strength at the center of the weaker strips

favors the propagation mechanism of an inter-sonic front over the entire interface width,

whereas systems with a higher strength tend to cause a sub-Rayleigh rupture with a slip pulse

propagating ahead in the weaker strips. This is consistent with Equation (7.5) as can be seen
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Figure 7.8: Propagation speed for slip fronts at different interfaces with heterogeneous strip
configuration of wavelength W = 8mm. The inter-sonic rupture shown in Figure 7.6 is reported
in gray as reference. The propagation speed of two additional slip fronts is shown in color. The
rupture illustrated by cyan curves has a modified friction weakening rate by setting dc = 16µm
(instead of 10µm), which leads to a fracture energy of Γc = 16J/m2. The magenta curves
present the propagation of a rupture in a system of modified shear modulus by setting Young’s
modulus E = 4.2GPa (compared to 2.6GPa). Both slip fronts present at an interface of strip
wavelength W = 8mm the sub-Rayleigh propagation mechanism with a slip pulse ahead. The
thicker lines represent the speed of the main front, whereas the thinner lines indicate the slip
pulse speed.

by writing

ζ∼ 1

min τs ∼ Wφ

G
. (7.8)

The value of ζa limiting the two distinct propagation behavior is deduced from the simulations

presented in Section 7.4.1. The simulation with the largest strip wavelength leading to the sub-

Rayleigh with slip pulse mechanism has W = 6mm and ζa = 1.26. The next larger wavelength

simulated (W = 7mm) presented the super-shear slip front and is characterized by ζa = 1.48.

Up to this point, the two distinct propagation mechanisms have been shown to exist in systems

which differ solely by modified wavelengths of the strip configuration. Equation (7.5), however,

indicates that two additional parameters, the shear modulus of the bulk material and the

friction weakening rate, affect the propagation mechanism occurring in a given system as well.

Two additional simulations are performed in order to confirm the validity of Equation (7.5).

The set-up with W = 8mm and ζa = 1.68 resulting in an inter-sonic slip front, as presented in

Section 7.4.1, is used as reference. The shear modulus of the bulk and the friction weakening

rate in the weaker strips are then independently modified such that ζa = 1.05, which leads,

as shown in Figure 7.8, to the propagation mechanism of a sub-Rayleigh rupture with a slip

pulse.
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The observation of a sub-Rayleigh rupture in a system with W = 8mm but with ζa = 1.05

confirms that the non-dimensional parameter provides an indication of the propagation

mechanism occurring in a given set-up. It is also important to note that ζa is only an approxi-

mation to ζ because the T term is neglected in Equation (7.3). For instance, if the frictional

properties are modified such that the propagation speed of the secondary rupture is changed

considerably during the transition into the heterogeneous area, the estimation of the process

zone size could be different and the value of ζa could indicate the wrong propagation mecha-

nism. Nevertheless, ζa provides fundamental insights by indicating the material and interface

properties that affect the type of propagation mechanism occurring.

The interaction between the length scale of the slip front and the interface heterogeneity,

observed here in a strip configuration, is generally valid and is expected to appear also in

different systems with heterogeneous areas of the order of the process zone size of the slip

front. At interfaces organized with different shapes of heterogeneities, the value of ζa limiting

different propagation behaviors is potentially different from values reported here for the strips

configuration. Nevertheless, Equation (7.5) is applicable and provides information on what

determines the mechanism of slip front propagation.

7.4.3 Energy Dissipation

The occurrence of one or another propagation mechanism in a given system influences the

energy dissipation through frictional processes. At an interface governed by a slip-weakening

friction law, the total dissipated energy can be considered as the sum of two distinct quantities.

First, there is the so-called fracture energy which originates from the weakening process of

friction. It is equivalent to the cohesive energy of a fracture mechanism and corresponds

to the triangular area below the linear slip-weakening friction law for slip smaller than the

characteristic length. If the kinetic friction is equal to zero (µk = 0), the fracture energy is the

only dissipated energy at the interface. Second, there is the friction energy which is caused

solely by the kinetic friction force acting during slip.

The energy dissipation at the frictional interface for homogeneous reference set-ups and for

the two representative heterogeneous systems is shown in Figure 7.9(a). Given that the inter-

face is infinitely wide, all energies are reported per unit width. The homogeneous interface

with the highest fracture energy (Γc = 31.5J/m2) dissipates, compared to all the other systems,

most energy during the propagation of the slip front. The difference to the homogeneous

interface with lower fracture energy (Γc = 10.0J/m2), however, is only indirectly caused by the

fracture energy. Even though the difference of dissipated energy between the two homoge-

neous cases is 18.06J/m when the slip fronts reaches x = 180mm, the difference in fracture

energy accounts only for 2.26J/m. The remaining part is the direct result of different propaga-

tion speeds. The slip front propagating along the weaker interface is inter-sonic, which does

not give the interface much times to slide and dissipate energy. The sub-Rayleigh rupture at

the stronger interface, however, takes considerably more time to reach x = 180mm, during
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Figure 7.9: Energy dissipation of frictional slip fronts at homogeneous and heterogeneous
interfaces. The dissipated energy includes the frictional energy due to the residual friction
tractions as well as the fracture energy due to the weakening process of the frictional strength.
(a) The dissipated energy per unit width is shown with respect to the position of the rupture
tip for the two homogeneous reference cases and for the heterogeneous configurations of
wavelength W = 5mm and 8mm. The rupture tip position is defined as the rearmost point of
the first slip front propagating over the entire width. The reference cases enclose the energy
dissipated by the heterogeneous interfaces. The set-up with W = 8mm results in less energy
dissipation than in the thinner configuration. (b) The temporal energy dissipation rate is
reported for the same set-ups showing that the wider configuration dissipates faster energy
than the thinner interface.

which the interface behind the front continues dissipating energy.

Considering the average fracture energy as well as the speed of slip front propagation, the

heterogeneous configurations stand between the two homogeneous reference cases. As a

natural consequence, the dissipated energy at the heterogeneous interfaces is bounded by the

homogeneous references. However, the slip front propagating through the striped interface of

smaller wavelength dissipates 48% more energy than the rupture in the system with wider

strips despite having the same average fracture energy, Γc = 20.75J/m2. The reason for this

large difference is the same as for the comparison between the two homogeneous reference

cases. The fracture energy accounts only for a small part of the total dissipated energy: 8−14%

for the slip fronts presented in Figure 7.9(a). The main cause is the large difference in the

propagation speed of the slip fronts. The set-up with W = 5mm results in a sub-Rayleigh

slip front and a hardly noticeable slip pulse ahead (propagating slightly faster and only in

the weaker strips). The pulse causes only small slip and hence dissipates only little energy.

The sub-Rayleigh rupture, however, is almost identical with the slip front of the stronger

homogeneous reference case but with lower average fracture energy. Therefore, the total

dissipated energy is slightly smaller. Similarly, the slip front at the heterogeneous interface

with W = 8mm resembles the rupture in the weaker homogeneous set-up. Both propagate at

inter-sonic speed but the slip front at the heterogeneous interface is slower, which provides
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Figure 7.10: Frictional energy dissipation for slip fronts at heterogeneous interfaces as a
function of the wavelength W of the strip configuration. The dissipated energy is reported
per unit width at the point in time when the main slip front reaches x = 180mm. The dashed
gray lines illustrate the dissipated energy of the homogeneous reference cases. The vertical
black line separates the wavelengths resulting in sub-Rayleigh or inter-sonic propagation. The
dissipated energy is not affected by W except when the propagation mechanism changes.

the interface more time to dissipate energy.

The energy dissipation rate, shown in Figure 7.9(b), confirms these observations. The weakest

(homogeneous) interface presents the highest rate because the slip area grows faster, which

results in more dissipation in a shorter time. In the same way, the slip front propagating at

(slightly) slower inter-sonic speed at the heterogeneous interface with wider strips presents a

slower dissipation rate. It is, however, higher than the energy dissipation rate resulting from

sub-Rayleigh ruptures.

It is also interesting to note that the dissipated energy does not present any dependence on the

strips wavelength itself but only on whether it is above or below the critical wavelength limiting

the sub-Rayleigh from the inter-sonic propagation mechanism. As shown in Figure 7.10, the

energy dissipated before the slip front reaches x = 180mm presents an important jump from

W = 6mm to W = 7mm, but remains approximately constant below as well as above the

critical wavelength. This suggests that if higher energy dissipation is sought by introducing

interface heterogeneity, it is sufficient to design the heterogeneity pattern such that ζa is below

the critical value to cause sub-Rayleigh slip fronts. Any heterogeneity configuration with

smaller characteristic length W will not increase the frictional energy dissipation.

7.5 Conclusion

In this chapter, we presented finite-element simulations showing the propagation of slip fronts

along flat two-dimensional heterogeneous interfaces between three-dimensional solids of the

same linear elastic material. The set-up consisted of interfaces that are infinitely wide and
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subjected to a static uniform shear and normal loading. Slip fronts were nucleated by inserting

at one edge a notch of zero fracture energy acting as a seed crack. The slip front propagated

first through a homogeneous part of the interface allowing the rupture to establish its process

zone and to approach a state that evolves slowly (which resembles a steady state). Beyond this

establishing zone, the interface is heterogeneous with areas of two different friction properties

arranged in a strip configuration.

As reference cases, we first presented the propagation of slip fronts at homogeneous interfaces

with the two friction properties of the heterogeneous set-up. These simulations showed that,

over the length of the considered system, the stronger interface properties result in a sub-

Rayleigh rupture, whereas the weaker interface gives rise to an inter-sonic slip front. The

propagation behavior of an interface rupture becomes, however, more complex in a set-up

with a striped heterogeneous area.

In systems with different wavelengths of the strip configuration, we showed that thinner strips

result in the propagation of a sub-Rayleigh slip front preceded by a slip pulse in the strips of

lower fracture energy. This slip pulse produces negligible quantities of slip and propagates in

an “unstable” manner at speeds varying around the Rayleigh- and shear-wave speed including

longer periods of propagation at a so-called forbidden speed. At interfaces with wider strips,

the slip front transitions, after entering the heterogeneous area, to inter-sonic speeds over the

entire width of the interface. At a later point in time, a zone of sticking occurs far behind the

slip front and creates a front and rear rupture. The front rupture continues propagation at

high inter-sonic speeds whereas the rear rupture propagates at a high sub-Rayleigh speed.

The occurrence of two distinct propagation mechanisms at the same interface with the only

difference being the heterogeneous strip wavelength was shown to be caused by the interaction

of two length scale: the process zone size of the slip front and the wavelength of the strip

configuration. The ratio between these two lengths was proposed as a non-dimensional

parameter capable of indicating the type of slip front propagation occurring in a given system.

The existence of two distinct propagation mechanisms was shown to have important impli-

cations on the energy dissipation through frictional processes at the interface. Even though

the various configurations present the same average fracture energy, the dissipated energy

increases substantially when the propagation mechanism switches from inter-sonic to sub-

Rayleigh speeds due to an increased wavelength of the heterogeneous strip configuration. In

the examples presented in this chapter, the energy dissipation was reported to increase by

48%. Similar observations are expected to occur also at other configurations of heterogeneous

interfaces when the process zone size of the slip front and the heterogeneous length scale are

of the same order.
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8 Concluding Remarks

This thesis focused on the propagation of slip fronts at frictional interfaces. Using numerical

as well as theoretical models, various aspects of frictional shear ruptures were analyzed in

order to improve our understanding of the mechanics of slip front propagation. The main

findings are summarized in this concluding chapter and an outlook for potential future work

is provided.

It is interesting to note that structural mechanics has long been considered to be a classical

engineering discipline, which resulted in scientific attention being mostly oriented to micro-

and nano-scale physics. Friction is a typical example of this approach. A large amount of

research efforts is focused on the small scale frictional properties of interfaces and many

(recent) experiments consist of nano-scratching and friction force microscopy. One could

therefore say that tribology, the science of friction, is often considered to be a materials science

phenomenon. This thesis, however, has demonstrated that the meso- and macro-scales of

the friction problem play an (equally) important role. The applicability of fracture mechanics

theory showed that the singular near-tip field and hence the macro-scale geometry are a key

factor to the frictional response of the studied system. One might therefore conclude that this

thesis contributes to the “revival of structural mechanics”.

8.1 Summary

Friction regularization is applied in many numerical simulations of interface slip either to

solve the ill-posedness of Coulomb’s friction law in certain bi-material systems or to eliminate

numerical noise often present due to the non-continuous character of interfaces. One example

of such a regularization, which originates from experimental observations, was analyzed in

a set-up with an artificially nucleated slip pulse. By varying the characteristic length of the

regularization, we showed that there is, for a given slip event, a critical length below which

no regularizing effects are observed. The slip pulse propagates as if no regularization was

applied and the interface was solely governed by Coulomb’s friction law. This observation was

confirmed by a study of the regularization’s effect on the frequency domain of the slip front
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showing that it behaves as a low-pass filter. Decreasing the length scale of the regularization

results in a shift of the cutoff frequency to the domain of higher energy. This suggests that a

slip pulse needs to contain sufficient energy in the temporal power spectrum density above

the cutoff frequency in order to be measurably regularized. If one wishes to determine the

physical length scale of a real interface, this knowledge provides a means to find the necessary

“sharpness” of the slip event needed to make the measurement possible.

The stress state at the interface of friction experiments is usually, for various reasons, non-

uniform, which affects the dynamics of propagating slip fronts. We presented the results of

dynamic finite-element simulations mimicking an exact experimental set-up and confirmed

the observations of Ben-David et al. (2010) that the rupture speed is closely related to the

shear to normal traction ratio at the interface. However, we also showed that this relation is

not perfectly unique and depends on the direction of propagation. Considering the dynamic

(instead of the static) stress ratio close to the rupture tip improved the relation but could not

close entirely the directionality gap. A change of the approach to a dynamic criterion based on

energy considerations, however, was demonstrated to eliminate the directionality effect and

to provide a unique rupture speed description.

In a similar set-up, but with a highly concentrated shear load, slip fronts tend to stop before

reaching the edge of the interface. Slip arrest occurs because the concentrated external load

leads to a concentrated energy accumulation which facilitates the nucleation of an interface

rupture. While it propagates easily within the area of high strain energy, it soon penetrates

zones of lower pre-stress and runs out of the necessary energy to continue its propagation. In

the experiments of Rubinstein et al. (2007), this led to a sequence of slip precursors occurring

before global sliding with propagation distances that scale non-linearly with the external

shear force. The dynamic finite-element simulations presented in this thesis reproduced

well the precursor load-length relation. In addition, with the objective of providing access to

the fundamental mechanics of slip fronts, we presented a theoretical model based on linear

elastic fracture mechanics which relies on the similarity of slip fronts and interface cracks. The

theoretical prediction of the precursor load-length relation was shown to agree quantitatively

well with experimental observations. Moreover, the theoretical model enabled additional

insights on the observed phenomena and indicated that shear tractions due to a frustrated

Poisson’s expansion as well as the discrete nature of these slip events are the main sources of

the non-linearity in the load-length relation.

In realistic systems, slip fronts propagate along interfaces that are characterized by vari-

ous types of heterogeneities. We presented the results of dynamic three-dimensional finite-

element simulations showing the propagation of slip fronts at interfaces with a structured

heterogeneous area. The configuration of the heterogeneous area consisted of strips of higher

and lower fracture energy leading in homogeneous systems to sub-Rayleigh and inter-sonic

propagation, respectively. Two different propagation mechanisms were shown to occur de-

pending on the wavelength of the heterogeneous configuration. The cause for this behavior

was demonstrated to lie in the interaction between the length scales of the slip front and the
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heterogeneous pattern. Estimations of the process zone size of the rupture indicated that the

shear modulus and the slip-weakening rate are key parameters to the propagation regime

occurring in a given system.

8.2 Outlook

The propagation of slip fronts has been studied in this thesis with modern finite-element

simulations as well as theoretical models based on fracture mechanics theory. While the

available tools have been successfully applied to improve our understanding of the mechanics

of slip fronts, simplifications of the models or the set-up were sometimes necessary to gain

insight on the studied phenomenon. These simplifications, however, open now new possi-

bilities to improve the existing models and tools, and to deepen our current knowledge of

frictional sliding.1 Other opportunities for further work consist of applying these models on

new (possibly more complex) problems that promise new advances in the understanding of

slip front propagation. Some tracks for future developments and problems of interest are

provided in this outlook.

The focus for the choice of the meso-scale friction laws applied in this thesis was on simplicity.

The reason for this approach was the desire to explain the observed slip front behavior with

fracture mechanics theory through the fracture energy of the interface, which is well defined

for linear slip-weakening friction. This strategy was shown to be successful for instance

for the prediction of the slip front arrest position. For other interface phenomena, such as

frictional healing or slow fronts, simple friction laws might not be sufficient and more complex

approaches could be required. Examples for friction laws which could be incorporated into

finite-element simulations include velocity-weakening-strengthening laws (Bouchbinder et al.,

2011), and rate- and state-dependent friction (Ruina, 1983).

The arrest of slip fronts in a system with a highly concentrated shear load was shown to

be well predicted by a theoretical model based on linear elastic fracture mechanics. The

proposed model, which applied uniform interface properties, was sufficient to compare with

experimental data because this particular interface does not seem to be very heterogeneous, or

at least is not much affected by the heterogeneity. Other systems, however, might well present

a relevant heterogeneity which results in a less systematic response than the always increasing

precursor length observed in the experiments by Rubinstein et al. (2007). Foreshocks of

earthquakes, for instance, do not generally increase in a systematic way, which is possibly

related to the heterogeneity of the fault. With the objective of studying the link between the

variations of interface properties and the statistics of foreshock occurrence, the linear elastic

fracture mechanics model could be enriched with a statistical distribution of fracture energy,

fracture toughness, or both.

In the work presented in this thesis, the similarity between fracture mechanics and slip front

1Conducting research is not a linear process.
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propagation was used to develop a theoretical model to determine the arrest position of slip

fronts. The good quantitative agreement with experimental data confirms the validity of this

approach and suggests to apply it to other aspects of slip front propagation. For instance, the

rupture speed was analyzed in Chapter 5 with stress-based as well as energy-based criteria but

no description using fracture mechanics considerations was presented. It would be interesting

to incorporate the dynamic contributions, as presented by Freund (1990), into the fracture

mechanics model in order to study the propagation speed of slip fronts at an interface of

non-uniform stress state. A fracture mechanics argument was already used to explain the

existence of a quasi-static slow rupture occurring prior to dynamic ruptures (Kaneko and

Ampuero, 2011). Extending this approach in combination with the fracture mechanics model

for slip arrest could provide a different aspect to our understanding of rupture speed and add

a new piece to the “fracture-friction similarity puzzle”.

Three-dimensional simulations of a system with a two-dimensional interface are, as men-

tioned in Chapter 7, challenging from a computational point of view if edge effects, distur-

bances due to reflected waves, and (too) large process zones are undesired. Systems which

minimize these side effects limit considerably the possibilities of studying the influence of

interface heterogeneity. The finite-element method, which was applied in this work, is com-

putationally demanding because the entire solids, which have to be sufficient large to avoid

effects due to reflected waves, are discretized and computed at every time step. Other meth-

ods, such as the spectral boundary integral method (Perrin et al., 1995; Geubelle and Rice,

1995), which limit discretization to the interface, are advantageous if interest is focused on

the basic mechanism of slip fronts in a system with heterogeneous interface properties but

homogeneous elastic bulk material. Recently, we used a modern two-dimensional imple-

mentation of the spectral boundary integral method to study frictional contact during the

dynamic fracture of bi-material interfaces (Barras et al., 2014). A three-dimensional version

is currently under development. With these numerical tools, the heterogeneous interface

studied in Chapter 7 could be “complexified” and the propagation of slip fronts analyzed at

interfaces with better performing or more realistic heterogeneity patterns. Possible examples

include sinusoidal functions such as sin x · sin y to mimic an interface with regular asperities,

specific shapes of stronger areas designed through engineering in order to improve frictional

properties with minimal stronger areas (similar to the approach of Xia et al. (2012) for decohe-

sion), and interfaces with random friction properties representing the statistical character of

real systems.

In other cases, methods limited to the simulation of infinite two-dimensional interfaces

between two semi-infinite elastic half-spaces are not sufficient to capture the essential mecha-

nisms of slip front propagation. Interfaces between inelastic materials, for instance, require

constitutive modeling of the bulk material. One example is off-fault plasticity, which has been

studied in different two-dimensional set-ups (Templeton and Rice, 2008; DeDontney et al.,

2012; Xu et al., 2012a,b) but has not been looked at in three-dimensional problems so far.

Other cases in which the bulk plays an important role are materials with micro-structures such

as grains or voids. Spatial variation of bulk material causes wave reflection at internal inter-
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faces and could potentially “trap” kinetic energy close to the slip plane resulting in important

modifications of the slip front dynamics. If computational resources prove to be insufficient

for systems large enough to avoid wave reflections from the set-up boundaries, applying a

layer of absorbing boundary conditions, such as developed by Komatitsch and Tromp (2003),

could provide means to reduce the simulated model to a feasible size.

In view of more long-term goals, it is desirable to look at the propagation of slip fronts at a

smaller scale than studied in the present thesis. Slip fronts propagate through interfaces that

are in reality a set of micro-contacts created by the natural surface roughness of the solids. At

this scale, the propagation of a slip front corresponds to a sequence of micro-contacts that

transition from sticking to sliding. Simulations representing explicitly the surface roughness

could provide new insights on the mechanics of slip fronts at the meso-scale. Ideally the

roughness is modeled by asperities satisfying the statistical property of real surfaces. However,

if such simulations are computationally out of reach, one could consider organized regular

surface roughness as an intermediate step to gain a better understanding of meso-scale slip.

In conclusion, this thesis improved our knowledge of the mechanics of slip front propagation

at frictional interfaces using numerical as well as theoretical models. In particular, the propa-

gation speed, the position of arrest and heterogeneity effects at two-dimensional interfaces

were studied in detail. Based on the gained understanding, the main path for future work

concentrates on applying fracture mechanics concepts for the description of other aspects of

slip front propagation and on complex heterogeneous systems approaching more realistic

representation of real interfaces.
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A Details to the Study of Regularized
Friction

A.1 Description of the Nucleation Procedure

This section provides the details of the nucleation procedure applied in the simulations of

which the results are presented in Chapter 4. This appendix was published as part of Kammer

et al. (2014) and follows directly the description given in Appendix B of Cochard and Rice

(2000). The procedure consists of an artificial change of the normal contact pressure in a

spatial-temporal nucleation region of elliptic shape in the x− t plane. The description is based

on following coordinates:

ξ= (x − vellt )/aell (A.1)

η= (x + vellt )/bell −η0 (A.2)

with η0 =
√

a2
ell +b2

ell/bell. The equation of the ellipse

1−ξ2 −η2 = 0 (A.3)

defines the boundary of the nucleation zone, in which the change of the contact pressure is

created by adding an artificial pressure pa (of opposite sign of p) to the initial contact pressure

p. The artificial pressure is defined by

pa =−αp
(
1−ξ2 −η2)2

(A.4)

where 0 <α< 1 is the maximal contact pressure change with respect to p. Outside as well as at

the boundary, the contact pressure is equal to the remote, uniform, compressive normal load

p. Thus, the contact pressure decreases smoothly from p at the boundary down to (1−α) p at

the centre of the ellipse. Here, we choose α= 0.8 in order to avoid interface opening, which is

not desirable to be consistent with previous studies. The normalized artificial pressure pa/p

in the nucleation domain is shown in Figure A.1.
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Figure A.1: The normalised artificial pressure pa/p imposed at the interface is shown for the
simulation presented in Figure 4.2. The spatial-temporal region of nucleation is of elliptic
shape in the x − t plane.

A.2 Regularization: Derivation of the Analytical Solution

In order to improve readability of the derivation, we substitute the physical denotations by the

following symbols: Coulomb friction x = τs, regularized frictional strength y = τes, Prakash-

Clifton parameters C =−(
vpc + δ̇

)
/dpc, and use the angular frequencyω= 2π f . The simplified

Prakash and Clifton (1993b) law as given by (4.1) becomes

ẏ (t ) =C
(
y (t )−x (t )

)
. (A.5)

Taking a Laplace transform in time, we can rewrite (A.5) as

ŷ (s) = −C

s −C
x̂ (s) (A.6)

with initial condition y (0) = 0. Performing an inverse Laplace transform back to the time

domain for t > 0, we find

y (t ) =
∫ t

0
−C exp(Cτ) · x (t −τ)dτ . (A.7)

Considering a sinusoidal input signal, we define

x (t ) = x0 + As Im
(
exp iωt

)
. (A.8)

We then substitute (A.8) into (A.7) and simplify to

y (t ) =−x0
[
expC t −1

]+ Im

[−C exp iωt

C − iω
As [

exp(C − iω) t −1
]]

. (A.9)
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A.2. Regularization: Derivation of the Analytical Solution

Knowing that C < 0, we compute the steady-state solution of y (t ) for t →∞

y∞ (t ) = x0 + As√
1+ (

ω
C

)2
sin

(
ωt +arctan

ω

C

)
. (A.10)

The steady-state output signal is therefore also a sinusoidal signal around the same average

value x0 and with the same (angular) frequency ω. The phase offset is φ= arctanω/C and the

amplitude is

Aes = As√
1+ (

ω
C

)2
. (A.11)
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