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Abstract

Compressed sensing is a new trend in signal processing for efficient data sampling
and signal acquisition. The idea is that most real-world signals have a sparse
representation in an appropriate basis and this can be exploited to capture the
sparse signal by taking a few linear projections. The recovery is possible by running
appropriate low-complexity algorithms that exploit the sparsity (prior information)
to reconstruct the signal from the linear projections (posterior information). The
main benefit is that the required number of measurements is much smaller than the
dimension of the signal. This results in a huge gain in sensor cost (in measurement
devices) or a dramatic saving in data acquisition time. The drawback is that one
needs complicated devices in order to implement the linear projections.

Some difficulties naturally arise in applying the compressed sensing to real-
world applications such as robustness issues in taking the linear projections and
computational complexity of the recovery algorithm. Robustness issue arises because
even if the devices are precisely calibrated, there is still a mismatch with the intended
linear projection. Obtaining stable and low-complexity recovery algorithms has also
been a challenge in compressed sensing. Although there are numerically stable convex
optimization algorithms for recovery, their complexity usually scales like O(n?) in
signal dimension n, which prohibits their use in high dimensional applications that
are encountered more and more nowadays. Consequently, there have been different
attempts to reduce this complexity as much as possible.

In this thesis, we design structured matrices for compressed sensing. In particular,
we claim that some of the practical difficulties can be reasonably solved by imposing
some structure on the measurement matrices. Almost all the thesis evolves around
the Hadamard matrices, which are {41, —1}-valued matrices with many applications
in signal processing, coding theory, optics and theoretical mathematics. As the title
of the thesis implies, there are two main ingredients to this thesis. First, we use a
memoryless assumption for the source, i.e., we assume the nonzero components of
the sparse signal are independently generated by a given probability distribution
and their position is completely random. This is not a major restriction because
most of the results obtained are not sensitive to the shape of the distribution. The
advantage is that the probabilistic model of the signal allows us to use tools from
probability, information theory and coding theory to rigorously assess the achievable
performance. Second, using the mathematical properties of the Hadamard matrices,
we design deterministic matrices for compressed sensing of memoryless sources by
selecting specific rows of a Hadamard matrix according to a deterministic criterion.
We call the resulting matrices partial Hadamard matrices.

ix



X Abstract

We design partial Hadamard matrices for three distinct signal models: memoryless
discrete sources and sparse signals with linear or sub-linear sparsity. A signal has
linear sparsity if the number of its nonzero components k is proportional to n, the
dimension of signal, whereas it has a sub-linear sparsity if the k scales like O(n®)
for some a € (0,1). We develop tools to rigorously analyze the performance of the
proposed Hadamard constructions by borrowing ideas from information theory and
coding theory.

In the last part of the thesis, we extend our construction to distributed (multi-
terminal) signals. Distributed compressed sensing is a very interesting and ubiquitous
problem in distributed data acquisition systems such as ad-hoc sensor networks.
From both a theoretical and an engineering point of view, it is important to know
how many measurements per dimension are necessary from different terminals in
order to have a reliable estimate of the distributed data. We analyze this problem for
a very simple setup, where the components of the distributed signal are generated by
a joint probability distribution which, in some sense, captures the spatial correlation
among different terminals. We give an information-theoretic characterization of
the measurement-rate region that results in a negligible recovery distortion. We
also propose a low-complexity distributed message passing algorithm to achieve the
theoretical limits.

Keywords: Compressed sensing, Hadamard matrices, Deterministic matrix con-
struction, Sparse Fast Hadamard Transform (SFHT), Distributed compressed sens-
ing.



Résumeé

L’acquisition comprimée est une nouvelle tendance dans le domaine du traitement
de signal pour I’échantillonnage de données et ’acquisition de signal efficace. L’idée
est que dans la plupart des applications réelles, les signaux ont une représentation
parcimonieuse dans une base appropriée et celle-ci peut étre exploitée pour capter
un signal parcimonieux avec un petit nombre de projections linéaires. La reconstruc-
tion est possible par 'exécution d’algorithmes de faible complexité appropriés qui
exploitent la parcimonie (information préalable) afin de reconstruire le signal & partir
de projections linéaires (information postérieure). L’avantage est que le nombre
de mesures nécessaires est beaucoup plus moins que la dimension du signal. Cela
implique un gain important dans le cofit du capteur (dans les dispositifs de mesures)
ou une économie considérable en temps d’acquisition des données. L’inconvénient
est que l'on a besoin d’appareils compliqués pour réaliser les projections linéaires.

Certaines difficultés surgissent naturellement dans I'application de la théorie
de l'acquisition comprimée aux applications concrétes, notamment les questions de
la robustesse du processus de prise de projections linéaires et de la complexité de
I'algorithme de reconstruction. Les probléemes de robustesse se posent car méme si
les appareils sont précisément calibrés, un mésappariement avec la projection linéaire
prévue existe tout de méme. Obtenir des algorithmes de reconstruction stables et de
faible complexité est aussi un défi pour 'acquisition comprimée. Bien qu’il existe des
algorithmes d’optimisation convexe numériquement stable pour la reconstruction,
leurs complexités sont généralement d’ordre ©(n3) dans la dimension n du signal,
empéchant leur utilisation dans le cas des applications de grande dimension que 'on
rencontre de plus en plus de nos jours. Par conséquent, différentes tentatives ont été
faites pour réduire cette complexité au minimum.

Dans cette these, nous concevons des matrices structurées pour ’acquisition
comprimée. En particulier, nous affirmons que certaines des difficultés pratique
peuvent étre raisonnablement résolues en imposant une structure aux matrices de
mesure. Presque toute la theése évolue autour des matrices de Hadamard qui sont
des matrices dont les coefficients sont {+1,—1} avec de nombreuses applications
dans les domaine du traitement de signal, la théorie du codage, 'optique, et les
mathématiques théoriques. Comme le titre de la these I'indique, il existe deux
ingrédients principaux a cette these. Premiérement, nous supposons que la source
est sans mémoire, c’est-a-dire que nous supposons que les composantes non nulles
du signal parcimonieux sont sélectionnées indépendamment selon une distribution
de probabilité donnée et leur position est complétement aléatoire. Cette hypothese
n’impose pas une restriction majeure car la plupart des résultats obtenus ne sont

X1



xii Résumé

pas sensibles a la forme de la distribution. L’avantage est que le modeéle probabiliste
du signal nous permet d’utiliser des outils de probabilité, la théorie de I'information,
et la théorie du codage pour évaluer rigoureusement les performances réalisables.
Deuxiémement, en utilisant les propriétés mathématiques des matrices de Hadamard,
nous développons des matrices déterministes pour ’acquisition comprimée des sources
sans mémoire en sélectionnant des lignes spécifiques d’une matrice de Hadamard
selon un critere déterministe. Nous appelons les matrices résultantes les matrices de
Hadamard partielles.

Nous concevons des matrices de Hadamard partielles pour trois modeles distincts:
les sources discretes sans mémoire et les signaux parcimonieux avec parcimonie
linéaire ou sous-linéaire. Un signal a une parcimonie linéaire si le nombre £ de ses
composantes non nulles est proportionnelle a n, la dimension du signal, alors qu’il a
une parcimonie sous- linéaire si k est d’ordre ©(n®) pour un certain o € (0,1). Nous
développons des outils pour analyser rigoureusement la performance des constructions
de Hadamard proposées en empruntant des idées de la théorie de I'information et de
la théorie du codage.

Dans la derniére partie de cette these, nous étendons notre construction aux
signaux distribués (multi-terminaux). L’acquisition comprimée distribuée est un
probléme tres intéressant et omniprésent dans les systemes d’acquisition de données
distribuées tels que les réseaux ad-hoc de capteurs. Tant d’'un point de vue théorique
et de l'ingénierie, il est important de savoir combien de mesures par dimension sont
nécessaires des différents terminaux afin d’avoir une estimation fiable des données
distribuées. Nous analysons ce probléme pour une configuration tres simple, ou les
composantes du signal distribué sont générées par une distribution de probabilité
conjointe qui, dans un certain sens, capte la corrélation spatiale entre les différents ter-
minaux. Nous donnons une caractérisation dans le sens de la théorie de I'information
de la région de mesure-débit qui entraine une distorsion de reconstruction négligeable.
Nous proposons aussi un algorithme de propagation de message distribué de faible
complexité pour atteindre les limites théoriques.

Mots clés: Acquisition comprimée, Matrices de Hadamard, Construction de
matrice déterministe, Transformée parcimonieuse de Hadamard rapide (SFHT),
Acquisition comprimée distribué
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Introduction

In most of the applications in signal processing, one deals with the acquisition or
processing of a usually high-dimensional signal x that can be modeled as a vector in
an abstract linear space. For example, for discrete-time signals, this linear space can
be R" for finite-dimensional signals or ¢?(7Z) for infinite-dimensional finite-energy
sequences, where ¢2(Z) is the space of all real-valued sequences z : Z — R with
finite energy, i.e., >, cz 22 < oco. For continuous-time signals, the appropriate linear
space can be L?(R), the space of all real-valued functions over R, i.e., z : R — R
with a finite energy [ x(t)2dt < co. Albeit being very high dimensional, most of the
time x is a very structured signal and has an inherently low “information content”.
More precisely, it has a very low-dimensional representation in some appropriate
basis depending on the application. For example, a collection of images taken by
a high-resolution photograph might have only a few dominant components in the
frequency domain.

The first step of processing the signal is to appropriately sample or measure
the signal by using suitable sensors or measurement devices. The suitable sampling
procedure highly depends on the application. For example, an air-conditioning
system can use a thermal sensor and sample the output of this sensor every second
or every minute by an ADC (analog-to-digital converter), in order to capture the
room temperature. In a camera the sampling is done by using an array of photo
sensitive sensors to capture a scene. In an optical device such as a telescope, the
suitable sampling might need applying an array of mirrors and lenses to obtain
a high resolution image of the sky. A trivial but costly approach to capture the
signal is to measure or sample all of its components separately. I.e., the number of
measurements is equal to the dimension of the signal. For example, in a camera
this necessitates using one sensor per an image pixel. Therefore, the acquisition task
can be very expensive specially for higher dimensions. In particular, because of the
underlying structure of the signal, the resulting measurements are highly redundant
which implies the inefficiency of the sampling process.

Compressed sensing (CS) is a new paradigm in signal processing for efficient data
acquisition and feature extraction [1-4]. In contrary to what the name suggests,
compressed sensing is not involved with the compression but it mostly deals with
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Figure 1.1 — Compressed sensing problem. One takes measurements from a high-
dimensional signal z via an m x n measurement matrix A. The possible additive
measurement noise is denoted by z.

efficient sampling or acquisition of the signal. The main idea is to optimally sample the
signal up to its information content by taking suitably designed linear measurements
and faithfully reconstruct it by running low-complexity recovery algorithms. This
results in a tremendous saving in the sensor cost because one can use less number
of sensors and at the same time keep the desired performance. For example, one
can decrease the number of sensors in a camera without sacrificing the quality of
the resulting image. The drawback is that the sampling is more sensitive to noise
and mismatch. Moreover, one needs more complex sampling devices and numerically
stable algorithms in order to recover the initial signal from the measurements. An
illustration of the compressed sensing problem is given in Figure 1.1. The goal is
to capture an n dimensional signal x by taking a vector y of m < n possibly noisy
measurements. The signal = is not completely arbitrary but it has some underlying
structure, e.g., it has only a few nonzero components as depicted in the figure.

1.1 Linear Inverse Problems

A more general but closely related problem to compressed sensing is the “Linear
Inverse Problem” (LIP). A linear inverse problem is a general framework that is
used to infer some information about a physical object or system by taking linear
measurements [5]. For example, a famous equation in physics connecting the mass
density and the gravitational field intensity is given by:

g(r) = /r/ Mj (1.1)

|r — /|3

where ¢g(r) is the gravitational field at the observation point r and p is the mass
density all over the space. One can consider this equation as a linear operator with
mass density p as the input and the field intensity g as the output. What the name
‘linear’ implies in this example is that the equation connecting the observations g(r)
and the parameters p is linear. If one has measurements of the Earth’s gravity field,
then one might ask the question: “Given the available data (measurements), what
can one say about the mass density distribution of the Earth in a specific area?” The
solution to this problem, i.e., the density distribution that best matches the data, is
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useful because it generally tells us something about a physical parameter that we
cannot directly observe. The term ‘“nverse’ is more dominant because the direct
problem is frequently straightforward and easy to solve, for example by knowing the
mass density p one can easily find the gravitational intensity everywhere by a simple
integration. Solving the inverse part is however more challenging and one needs to
suitably combine the information obtained from the measurements by the structure
or the underlying model for data generation in order to recover the initial signal or to
find the associated parameters. What distinguishes the compressed sensing problem
from a general LIP is that, in the compressed sensing one has more flexibility in
designing measurement matrices or in general measurement operators in order to
take more informative measurements from the signal. This is not generally possible
in a typical linear inverse problem. For example, in Equation 1.1 the measurement
process is done by a fixed integral operator connecting the input data p to the
observation g, whereas in Figure 1.1, the measurement matrix A is at our hands to
design.

Measurement Matrix

Complexity

Distortion Measure Robustness Recovery Algorithm

Prior Information

Figure 1.2 — Different aspects of a Linear Inverse Problem

1.1.1 Main Essence of a Linear Inverse Problem

A simple literature review reveals the vast applications and extensive variety of
LIPs in general and the compressed sensing in particular that has been studied
recently. Apparently this makes it really difficult to give a comprehensive picture of
the different aspects of the problem. However, we have tried to, at least, summarize
the main essence in Figure 1.2:

e Prior Information: Usually, in a linear inverse problem, one has a suitable
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model or prior information about the signal. For example, most of natural
signals such as images, and sounds have a sparse representation in the frequency
or in the wavelet domain. Signals received in an airport radar are sparse with
a few spikes corresponding to arriving or departing airplanes; and images from
the night sky or deep-space photos from galaxies are sparse images with a
dominant dark background and a few sparsely illuminated points showing the
position of stars or planets.

Although sparsity is the dominant and, of course, one of the most useful models
in signal processing, the LIP is not necessarily restricted to sparse signals. An
interesting and recently well-studied model is the graphical model for signal [6—
8]. It allows to further extend the usual sparsity model to more comprehensive
hierarchical or group sparsity models represented over a graph with many
applications and interesting theoretical results [9, 10]. Another interesting
application of the graphical models is in probabilistic graphical models, a
marriage of probability theory with graphical models, where it is assumed
that the samples of the signals are generated by a probability distribution
structurally consistent with a given graph [11, 12].

Distortion Measure: In a general LIP, one might be interested in recovering a
specific feature of the signal via the measurements, instead of the whole signal.
For example, consider the sparse signal received in an airport traffic radar. An
air traffic agent only needs to know the signal support (positions of the nonzero
components) because it roughly specifies the position of the traveling airplanes.
In this case, probably knowing the amplitude of the signal received from each
airplane is not so important because it might drastically change due to the
shape, orientation or distance of the airplanes from the receiving radar. On
the contrary, for a military radar the received amplitude of the signal is as
important as its support because it allows to identify the target by estimating
its shape or structure. Mathematically speaking, one can assume that there is
a distortion measure d(x, ) between the true signal z and the recovered signal
Z and one adjusts the number of measurements and the recovery algorithm to
achieve an acceptable distortion.

Measurement Matrix and Recovery Algorithm: Depending on the signal model
and the distortion measure, one needs suitable matrices to encode relevant
features in measurements taken from the signal so that the recovery algorithm
can successfully estimate the signal. However, there are also other factors
that should be taken into account such as the ease of implementation, and
physical constraints on measurement devices, which might restrict the choice
of the measurement matrix. For example, assuming a sparsity model for the
signal, it has been shown that random measurement matrices, such as random
Gaussian matrices with i.i.d. entries, provide a close-to-optimal measurement
rate under robust and low-complexity recovery algorithms (implemented as a
convex optimization problem) [3, 4]. Although random matrices are interesting
from an analytic point of view and usually require a minimum number of
measurements, implementing them in real-world applications might not be
easy and one needs to use more structured matrices. There are similarities
with coding theory, where a random code achieves information-theoretically



1.1. Linear Inverse Problems 5

optimal rates but one has to look for more structured codes to facilitate the
implementation and control the decoding complexity. Moreover, there are
other issues that might prevent the use of random matrices, such as storage
limitation for the measurement matrix, robustness problem in implementing the
matrix resulting in measurement mismatches, computational complexity of the
recovery algorithm, etc. There have been several attempts to build structured
matrices with a performance close to optimal. In [13], {0, 1} matrices based on
the random expander graph construction were proposed for compressed sensing.
It was shown that the iterative peeling decoding can be used to recover sparse
signals with a very high probability and with an optimal measurement rate.
There has been other constructions based on the restricted isometry property
(RIP) criterion that also use ideas from coding theory; see [14-17] and the
references therein.

1.1.2 Challenges in Application

As depicted in Figure 1.2, at the heart of an LIP, specifically when applied to real-
world applications is robustness, complexity and measurement rate that we explain
briefly.

e Robustness: Assume that a € R™ and that one needs to take the measurement
(a, ) by projecting the signal x on the measurement vector a. For example,
this can be done by adjusting the position and the angle, or by masking specific
mirrors in an optical measurement device according to the components of a.
In practice, one essentially gets (a,z), where a is only an approximation of a.
The mismatch results due to imperfect adjustment of the components or use
of uncalibrated devices. In general, after the acquisition step, instead of the
desired measurements y = Az, one obtains § = Az+z, where A is a mismatched
measurement matrix and z is the unavoidable additive measurement noise.
It is not difficult to see that the measurement imperfections become more
problematic for high-dimensional settings because they generally scale like
|A — Al ~ O(nm), quadratically in the dimension n, in contrast to the
measurement noise effect which essentially scales linearly in n. In particular,
contrary to the noise effect, the mismatch effect can not be moderated by
taking extra measurements. The mismatch problem usually precludes the
use of random Gaussian matrices because very high precision measurement
devices are required for their implementation. Therefore, one needs to use
more structured measurement matrices for example {0, 1}-valued matrices that
can be implemented as on-off pattern of the measurement devices which can be
implemented with a very high precision on optical devices. In some applications,
{+1, —1}-valued matrices are more suitable because they can be mapped to a
{0, 7} phase shift pattern in electronic devices.

e Complexity: After taking the measurements, in order to recover the initial
signal, one needs to combine the information provided with the measurements
with a good regularization provided by the prior information or the model.
The solution is usually an optimization problem that can be implemented in
software. For example, for compressed sensing of sparse signals, one can use
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the convex ¢;-minimization algorithm [1-4]
#(y) = argmin |Jw|; subject to |y — Awl||3 <, (1.2)

to recover the signal, where € is an estimate of the noise power. Being a convex
optimization problem, this can be solved very efficiently by well-developed
convex optimization tools. There are also other recovery algorithms that
have been proposed with different performance guaranties. A close look to all
these algorithms shows that their run time grows rapidly with the dimension,
prohibiting their use for high-dimensional signals. Recently, this has motivated
many researchers to look for better and faster recovery algorithms in order to
extend the compressed sensing to high-dimensional setups. There have been
different attempts such as using stochastic optimization algorithms [18, 19]
or developing low-complexity message-passing algorithms [20, 21] to speed up
the recovery, but essentially it seems that to get any further improvement
in computational complexity, one inevitably needs to impose some kind of
‘structure’ on the measurement matrices. For example, in [13] the {0,1}-
valued adjacency matrix of a bipartite random expander graph was used as the
measurement matrix. It was shown that the expander structure of the graph
can be used to recover the nonzero components of the underlying sparse signal
via a fast iterative peeling algorithm which was much faster the the traditional
convex optimization.

Another important factor is the space complexity or the amount of memory
required to implement the recovery algorithm. For example, in order to save
an unstructured measurement matrix such as a random Gaussian matrix, one
needs a memory of size O(nm). Even, in the {0, 1}-valued matrix example
that we mentioned, although the recovery algorithm runs very fast but the
requirement is to implement the adjacency matrix as a graph data structure on
the software in order to efficiently recover the nonzero components. Hence, the
space complexity might still be a problem for high-dimensional applications.

Measurement Rate: Usually the main figure of merit for assessing the perfor-
mance of signal acquisition and reconstruction is the required measurement
rate, i.e., the number of measurements needed per signal dimension to achieve
the desired performance. There are a few reasons for this. For example, in an
MRI imaging the time that patient should spend inside the imaging instrument
is proportional to the number of measurements to be taken, thus for medical
convenience, it is reasonable to reduce this time as far as possible. Another
reason reducing the measurements could be important is the unstationary
behavior of the signal. More precisely, in most of the applications, the mea-
surement process is a sequential and time-consuming process and during this
process, the desired signal can change significantly. To cope with this problem,
one needs to take all the required measurements as soon as possible. This will
be more facilitated if one can reduce the measurement rate. There are also
other theoretical interests to characterize the achieved performance (such as
recovery distortion) in terms of measurement rate because it provides invaluable
engineering insights and some rule of thumb measures for design purposes.
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There is no doubt that the picture we provided is a very rough and imperfect
view of what happens in reality, but it might be sufficient to point out some of
the main difficulties that arise in applying the pure theoretical results to more
realistic setups in applications. In particular, another glance at all the parts we
mentioned, in particular robustness and complexity issues, reveals the importance of
the structured matrices in order to obtain robust measurements and low-complexity
recovery algorithms.

1.2 Contribution of this Thesis

In previous sections, we explained the main essence of the compressed sensing problem
and all the benefits that it provides compared with the traditional sampling and data
acquisition. We also outlined some of the issues that arise in applying the compressed
sensing to real-world problems. In particular, we emphasized the inherent role that
the structured measurements play in order to obtain more robust implementations
along with low-complexity recovery algorithms. These are the main requirements
in order to extend the compressed sensing to high-dimensional signals that become
ubiquitous recently.
This thesis includes three main parts that can be summarized as follows:

e Constructing deterministic and structured partial-Hadamard matrices for com-
pressed sensing and designing low-complexity algorithms for recovery

e Using probabilistic model for the signal and applying tools from probability,
coding theory and information theory to rigorously analyze the performance of
the proposed algorithms for compressed sensing

e Extending the traditional (single-terminal) compressed sensing to a distributed
(multi-terminal) setting

In this section, we will explain these parts in more detail. In particular, we try
to emphasize that by the approach taken in this thesis, one can expect to solve some
of the issues that naturally arise in high-dimensional setups. Moreover, under some
mild assumptions on the signal model, which is not difficult to meet in applications,
we use tools from other areas such as information theory and coding theory to assess
the performance of the resulting constructions and the proposed recovery algorithms.

1.2.1 Hadamard Matrices

In this thesis, we emphasize the importance of the Hadamard matrices and their
efficiency for compressed sensing. In particular, we show that under some mild
assumptions on the signal that can be met in applications, using Hadamard matrices
can provide close to optimal performance (e.g., measurement rate or recovery dis-
tortion). We propose a new matrix construction for compressed sensing using the
Hadamard matrices. Specifically, we choose some of the rows of a given Hadamard
matrix deterministically according to an information-theoretic metric, and use the
resulting matrix as a measurement matrix for compressed sensing. We call the re-
sulting matrices partial Hadamard matrices. Interestingly, the resulting construction
can be applied for the compressed sensing of sparse signals which is the dominant
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model used in signal processing. The requirement is that the position of the nonzero
components in the signal be uniformly random. We use different techniques from
information theory and coding theory to analyze the performance of the resulting
constructions.

We design deterministic partial Hadamard matrices for two sparsity regimes:

sub-linear and linear. In sub-linear sparsity regime, we assume that the number of
nonzero components of the signal K = O(N?) scales sub-linearly with the dimension
N for some « € (0,1) whereas in the linear regime K ~ N is proportional to N
with some ¢ € (0,1). A summary of the results proved for these two regimes is as
follows:
Sub-linear Regime: We prove that by using the underlying properties of the
Hadamard matrices, it is possible to deterministically choose some of the rows of a
Hadamard matrix for compressed sensing. Furthermore, assuming that the position
of the nonzero components is uniformly random, we prove that the recovery of the
nonzero components of the signal can be formulated as a belief-propagation algorithm
over a sparse graph. We use tools from probability and coding theory to rigorously
analyze the performance of the resulting algorithm. In particular, we show that the
proposed construction needs to select only O(K logQ(%)) rows of a Hadamard matrix,
and the recovery algorithm decodes all the nonzero components with a computational
complexity O(K log,(K) logQ(%)) and with a very high probability.

Linear Regime: We formulate the compressed sensing problem from an information
theoretic point of view. We prove that in order to capture the information of a
memoryless source, one needs to select some specific rows of a Hadamard matrix
according to some information-theoretic metric (Rényi information dimension). We
use results from coding theory and more recently developed polarization theory to
analyze the proposed construction asymptotically for large block-lengths. Using the
resulting partial Hadamard matrices is beneficial from different aspects. We now
briefly overview some of these advantages.

1. It is not necessary to save the resulting partial Hadamard matrices because
they can be easily generated by a closed form formula. One only needs to keep
the index of the selected rows which is much easier. To explain more, consider a
Hadamard matrix H of order N = 2" and for any number i € {0,1,..., N — 1},
let ¢1,49,...,1%, denote its binary expansion. Then its possible to show that
the i j-th component of a Hadamard matrix is given by H;; = (—=1){@7) | where
(1,7) = >_p—1 ikJjr- This implies that by knowing the index of the selected rows,
one can simply generate the resulting partial Hadamard matrix. Compared with
a random matrix, such as random Gaussian matrix or even a random binary-
valued matrix, where one needs to save all the elements, this results in a huge
saving in the memory of the computer software specially for high-dimensional
settings.

2. Let x be the signal that we are interested to capture and let y = Az be the
measurements taken from z via the measurement matrix A. In order to obtain
the signal from the measurements, it is necessary to run a recovery algorithm. In
almost all the recovery algorithms in compressed sensing (e.g., £; minimization,
Lasso, AMP, MP and so on), one has the matched-filter phase of computation,
where it is necessary to compute A*y, i.e., to compute the correlation of the
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columns of the measurement matrix with the measurements y. The recursive
structure of the Hadamard matrices allows us to compute A*y faster than the

traditional matrix multiplication by at least a factor of O( b&%), where N

denotes the dimension of the signal . For a typical dimension N = 103, this
is around 100 times faster. As we mentioned in Section 1.1.2, nowadays, one
of the main difficulties in using compressed sensing in real-world applications
is the dimensionality scaling problem. In other words, for high dimensional
signals, the computational complexity of most of the algorithms prohibits
their use for recovery. By replacing the unstructured measurement matrices by
structured partial Hadamard matrices, one can get a huge gain in computational
complexity and much better dimensionality scaling.

3. Hadamard matrices are {41, —1}-valued matrices. Generally speaking, they can
be more easily implemented on sensors or measurement devices. In particular,
compared with the unstructured matrices such as random Gaussian matrices,
their implementation can be more resilient to mismatch. This makes them a
favorable option specially for high-dimensional setups.

4. Our simulation results show that Hadamard matrices give a close-to-optimal
performance like random Gaussian matrices. For example, a simple comparison
shows that for a similar measurement rate, they have equal and sometimes
slightly better performance than the Gaussian matrices in terms of the recovery
distortion.

1.2.2 Probabilistic Model for the Signal

Traditionally, the compressed sensing theory was developed assuming a sparsity
model for the signal. Specifically, it is assumed that the signal has only a few number
of nonzero components. This is a reasonable model for most of applications in
signal processing. However, in order to give an information-theoretic flavor to the
compressed sensing problem, we use a probabilistic prior for the signal. More precisely,
we assume that the components of the signal are generated by a given probability
distribution. This model is rich enough to cover most of the applications in signal
processing. In particular, it encompasses a probabilistic relaxation of the traditional
sparsity model. The requirement is that the support (the position of the nonzero
components) of the signal be uniformly random. This is not so restrictive because
one can randomly shuffle the columns of any measurement matrix before taking the
measurements. This results in a uniformly random support for the signal. The benefit
of the resulting probabilistic model is that it allows for an exact information-theoretic
analysis of the compressed sensing problem. Specifically, this is used to design partial
Hadamard matrices that achieve the information-theoretic limits. Moreover, the
probabilistic model of the signal allows to extend the traditional compressed sensing
problem to a distributed case that we will explain in the next section.

1.2.3 Distributed Compressed Sensing

One of the advantages of the probabilistic model for the signal is that it can be
naturally extended to a multi-terminal or distributed setting, where one has a
distributed signal (e.g., temperature, humidity, etc.) that is observed via several
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terminals. For example, in a sensor network, a collection of sensors are spread across
a field in order to measure a distributed signal. It is always important to acquire the
signal by taking as few measurements as possible. One can consider each sensor as a
terminal or an observation point. Naturally, there is an inherent correlation among
the signals in different terminals. The main challenge in this case is to build a good
distributed model that can capture the underlying correlation between the terminals.
There have been several attempts to analyze this problem by extending the traditional
sparsity model to the multi-terminal setting (specially [22, 23]). Specifically, there
was an attempt to make a connection between multi-terminal compressed sensing and
the distributed source coding (Slepian-Wolf) counterpart in information theory; refer
to [24] for extra references. To explain more, let (X1, Xo,..., X}) be a multi-terminal
memoryless source with a probability distribution p(x1,xo,...,z;), where all the X
have a common finite alphabet A. Suppose each terminal i encodes its message with
rate R; and sends the encoded message to a data fusion center. One is interested to
recover the multi-terminal signal from the received encoded messages. Distributed
source coding theorem [25] states that, for large block-lengths, the distributed signal
is recoverable from the encoded messages with a negligible distortion, if and only if
for any subset of terminals S C {1,2,...,t},

> R > H(Xg|Xge),

€S
where H denotes the discrete entropy and S€¢ is the complement of S. Intuitively,
this implies that the amount of the information received from each subset of the
terminals must be larger than the innovation of those subset given all the rest. In
particular, for a simplified three-terminal case, this implies the following constraints
on the encoding rates:

Ry > H(X1|X2), Re > H(X2|X1), R+ Ry > H(X1, X2).

We study the counterpart of this problem in compressed sensing by assuming
a probabilistic model for the signal to imitate the correlation among the different
terminals. As a result, we obtain an information-theoretic characterization of the
required measurement rate very similar to the distributed source coding problem.
For simplicity, consider a two terminal memoryless source (X1, X3) with a joint
probability distribution p(x1,x2). We show that, under a mild assumption on the
distribution p, the two terminal source is recoverable from a set of measurements
from both terminals if and only if the following constraints are satisfied:

p1 > d(X1|X2), p2 > d(X2|X1), p1+ p2 > d(X1, X2),

where p; and py are the measurement rates, the number of measurements per
dimension of the signal, in the first and the second terminal and d denotes the joint
or the conditional Rényi information dimension of the signal. Hence, the probabilistic
model of the signal allows to information-theoretically characterize the required
measurement rate in terms of signal parameters. In particular, in the compressed
sensing setting, the Rényi information dimension plays a role similar to entropy in the
distributed source coding problem. Definitely, it is difficult to realistically model or
efficiently approximate the complicated correlation among the different terminals in a
real-world scenario. However, the probabilistic modeling of the multi-terminal signal
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is rich enough to reasonably approximate the spatial correlation among different
terminals. The insight gained by this approximation can be helpful for designing
efficient data acquisition in such complex settings.

1.3 Applications beyond Compressed Sensing

As we explained in Section 1.2, our main goal in this thesis is to build deterministic
and structured measurement matrices to solve some of the main issues that arise while
applying the compressed sensing to real-world problems. To do so, we essentially
select a specific set of the rows of Hadamard matrices according to a deterministic
criterion. Very briefly, we emphasize that essentially in any compressed sensing
application, as far as the measurement device allows the implementation, one can
replace the unstructured matrices by our proposed partial Hadamard matrices. This
solves some of the practical issues such as robustness, and reduces the computational
complexity dramatically while keeping a close to optimal performance in terms of
the required measurement rate.

Since Hadamard matrices have many applications in signal processing, coding
theory and wireless communication, one might wonder if the tools developed in this
thesis have applications in these other areas. In this section, we deviate from the
main theme of the thesis to explain a potential application of the results developed
in the thesis to wireless and mobile communication.

We start from a very brief introduction to mobile communication, specially the
Code Division Multiple Access (CDMA) technique vastly applied in cellular networks.
In a mobile network, the geographical area decided for communication is typically
divided into cells and there is a base station per cell. When a mobile device physically
moves inside the communication area, depending on the strength of the signal it
receives from different base stations, it is automatically allocated to a specific base
station. The set of all base stations are typically connected to a big central hub
which is responsible for all necessary computations that make the communication
possible such as packetizing data, controlling possible channel errors, identifying
and managing the mobility and handover of the mobile devices in the network, etc.
More importantly, the cellular structure allows frequency reuse in nonadjacent cells,
provided that the resulting interference is kept below some threshold by a suitable
design of the network.

To make the discussion as simple of possible, we restrict ourselves to a specific
base station which is responsible for signal communication inside its cell. Typically,
there are many users inside this cell and some kind of Multiple Accessing (MA)
technique is required to allocate the finite communication capacity of the base station
among the mobile users. In CDMA, a distinct code is assigned to each user in a
cell by means of which the user can send its information in a shared media. Very
briefly, assume that we have K users inside the cell and let us denote the code for
each user by cq,...,cx. In the discrete time model for the communication channel,
without loss of essential generality, one can assume that these codes are vectors in
RY | where the code length N is proportional to the time required to transmit one
information symbol. The base station transmits the signal sq,..., sk for users 1 up
to K by simply multiplying the signal for each user by its associated code. More
precisely, the received signal for user i is given by R; = Z]K:1 sjc; + Z;, where Z; is
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the additive white Gaussian noise for user 4.

To decode its desired signal, the user ¢ uses a matched filter receiver that takes the
inner-product or correlation of the received signal with the code c;. More precisely,
it computes r; = (¢;, R;) and makes decision about s; based on r;, where

K K
ri=Y_sjlci, c) + (e, Zi) =sillcll*+ D sjle, )+ (ci. Zi)- (1.3)
j=1 j=Lj#i

A glance at Equation (1.3) shows three contributing terms: the desired signal, the
interference, and the additive channel noise. In a traditional design, the codes for
different users are selected to be orthogonal, which implies that the interference
term vanishes. Moreover, the orthogonality constraint essentially implies that there
can not be more than N active users in a cell (recall that N is the code length).
There have been different classes of codes that have been designed and frequently
used in implementations and in standards such as Gold codes, Kasami codes, and
Walsh-Hadamard codes to name a few [26].

To make a connection with the compresses sensing problem, let us denote by
{c1,¢c2,...,cn} the full set of codes that the base station can allocate to different
users and let us denote by A = [cica...cy] the matrix obtained by concatenating
these codes. We denote by 0; € {0,1} the code occupancy inside a cell, i.e., §; =1
if the code j is allocated to some active user and ¢; = 0 otherwise. We define the
whole signal of the cell by an N dimensional column vector  whose j-th component
is given by x; = 0;s;. In particular, if the code j is not assigned to a user, we
have z; = 0. Typically, the number of active users in a cell is less than IV, which
implies that the vector x is usually a sparse vector. Therefore, finding the signal s; is
equivalent to solving the sparse equation R; = Ax + Z;, where R; denotes the noisy
received signal of the user i.

Under the orthogonal code assumption, matrix A is an orthogonal matrix, thus it
is invertible. However, we can take advantage of the compressed sensing technique,
in the sense that instead of keeping the whole matrix A, we only need to keep a
specific set of rows of A to recover all the nonzero components since x is sparse. This
is equivalent to shortening the codes allocated to different users which equivalently
increases the transmission rate. If we use Walsh-Hadamard codes for multiple
accessing inside the cell, the problem is completely transformed to the setting that
we have in this thesis, namely, we select a specific set of rows of a Hadamard matrix
according to a deterministic criterion, which directly provides a collection of shorter
codes (shorter than N) for signal transmission. More importantly, the required
length of the code (equivalent to the number of measurements in the compressed
sensing setup) is deeply related to the number of active users (equivalent to the
sparsity § = % of the vector x with K being the number of active users), which is
typically known to the base station and can be made known to all the users.

There are also other nice properties of our proposed construction that can be
used to build an adaptive transmission scenario. More specifically, in Chapter 4, we
propose a deterministic Hadamard construction that depends on the source sparsity.
As we emphasize there, the set of constructed matrices has an embedding property
with respect to the source sparsity. To be more precise, let 0 < d; < d < 1 and
let H; and Hs be partial Hadamard matrices constructed for sparsity d; and
respectively. The embedding property implies that all the rows of H; are included
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among the rows of Hy. This essentially means that one can order all the rows of
a Hadamard matrix based on their importance. Looking from a communication
point of view, this implies that one can build hierarchical codes, namely, the base
station starts the communication by sending more important sections of the code
and refines them further and further by sending the less important parts until all the
users get enough information to resolve the interference caused by the other active
users. Interestingly, this also provides some adaptive power allocation scheme in the
sense that the more the refinements are transmitted to the the users, the more power
is delivered to them.

There are also some issues that should be mentioned. For example, in this
scenario, it is implicitly assumed that each user knows all the codes (the codebook)
exploited in a cell, which might not be the case in reality. Furthermore, every user
jointly decodes its signal along with the signals from all the other users. This might
create some privacy issues that should be appropriately managed.

In this brief section, our main goal was to give a very simple example to show
some of the potential applications of the Hadamard constructions proposed in this
thesis beyond the compressed sensing setting.

1.4 Outline of the Thesis

In this section, we briefly overview the structure of the thesis by explaining each
chapter separately.

Chapter 2

In this chapter, we present a Hadamard construction for the compressed sensing of
memoryless integer-valued sources, which is a good model for those applications in
signal processing that deal with quantized signals. Compressed sensing of integer-
valued signals allows to extend the linear compression problem from finite alphabet
sources to infinite alphabet ones, which is also of independent theoretical interest. To
analyze the problem and characterize the ultimate compression bounds for this class
of signals, we develop information-theoretic tools such as entropy power inequality.

Chapter 3

In this chapter, we propose a new Hadamard construction for a more practical signal
model. We assume that the number of nonzero components of the signal K scales like
O(N®), sub-linearly with the dimension N for some « € (0,1). Moreover, we suppose
the position of these nonzero components is uniformly random. Using the underlying
properties of the Hadamard matrices, we build a measurement matrix by selecting
specific rows of the Hadamard matrices. We also develop a low-complexity algorithm
in order to recover the nonzero components of the signal from the measurements.
The proposed construction can be equivalently seen as a collection of linear hash
functions and a peeling decoder that iteratively reconstructs the nonzero components
from the hash outputs. In particular, using the properties of the Hadamard matrices
and assuming a random support model for the signal, we show that one can randomly
partition the nonzero components in a collection of bins and each hash function
computes the weighted sum of all the signal components that are mapped to the
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same bin. We show that the proposed recovery algorithm is equivalent to a belief-
propagation algorithm over a specific sparse graph. Fortunately, this allows us to
fully analyze the performance of the algorithm for large dimensions by borrowing
results from belief propagation analysis over the sparse graphs. We give a full
characterization of the required number of measurements, the hash construction and
the decoding procedure.

Fortunately, the proposed construction can be applied for computing the Walsh-
Hadamard transform of a signal provided that its Walsh-Hadamard transform is
sparse, which would be of great interest in many applications in signal processing.
In particular, compared with the traditional recursive FFT-like method, the new
algorithm computes the Walsh-Hadamard transform much faster and requires much
less number of signal samples. The only requirement is that the signal be sparse in
the transform domain with a uniformly random support.

Chapter 4

In this chapter, we extend the Hadamard construction to memoryless signals with
the number of nonzero components proportional to the dimension of the signal.
We call this regime the linear sparsity regime in contrast to the sub-linear sparsity
regime studied in Chapter 3. The construction is based on the polarization theory,
recently developed in coding theory [27, 28]. We show that the importance of any
row among the rows of a Hadamard matrix can be characterized by a parameter
called the Rényi information dimension (RID). In particular, we show that for large
block lengths this parameter polarizes to the two extremal values 0 and 1, with
1 denoting the most important and with 0 denoting the less important rows. To
obtain this result, we develop the properties of the RID in vector setting and related
information measures. It is then shown that the RID polarization is obtained with
an analytical pattern. In other words, there is no need to rely on algorithms to
compute the set of components that tend to 0 or 1, as this is given by a known
pattern equivalent to the binary erasure channel (BEC) polarization [27]. This is
then used to construct explicit partial Hadamard matrices for compressed sensing.
Numerical simulations provide evidence that off-the-shelf recovery algorithms such as
/1-minimization or approximate message passing (AMP) for compressed sensing can
be used in conjunction with the constructed matrices. As discussed in this chapter,
using our deterministically-constructed matrices, we achieve the same performance as
the traditional Gaussian matrices while reducing the time complexity of the recovery
algorithm by approximately O(ﬁ) in block length N. This allows to extend the
compressed sensing to higher dimensional signals. Moreover, the simple {+1, —1}
structure of the resulting measurement matrices facilitates the implementation and
reduces the mismatch effect.

Chapter 5

This is the final chapter of the thesis. In this chapter, we extend the traditional
(single-terminal) compressed sensing to a distributed (multi-terminal) scenario. In
particular, we discuss about different correlations that exist in a multi-terminal
signal: the temporal correlation of the signal in each terminal, and the spatial
correlation among signals in different terminals. For simplicity, we restrict ourselves
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to a memoryless case (independent samples across time), where the components of
the distributed signal at each time are generated by a multi-dimensional probability
distribution that models the spatial correlation among the different terminals. In
particular, we neglect the time correlation among the samples in each terminal. This
is a good approximation because the temporal correlation can be moderated by
suitable sampling and processing in each terminal and it seems that the spatial
correlation plays a more important role. Moreover, the memoryless assumption on
the signal allows to give a full information-theoretic characterization of the required
measurement rate of every terminal.

Assuming a memoryless model for the distributed signal also allows us to extend
the AMP algorithm, developed for the recovery of single-terminal sources, to the
distributed setting (MAMP). We prove that for large block lengths the performance
of the MAMP algorithm can be fully characterized by a state evolution equation.
By analyzing the behavior of this equation, we rigorously specify the rate-distortion
region of a multi-terminal compressed sensing problem. In particular, we show that
by spatially coupling the measurement matrices and running the MAMP algorithm,
we can asymptotically obtain all the measurement rate region predicted information-
theoretically.






Hadamard Construction for
Discrete Memoryless Sources

In this chapter!, we study the compressed sensing of discrete memoryless sources
using Hadamard matrices. To do this, we select a specific set of the rows of a
Hadamard matrix to take linear measurements from the signal and use the recursive
structure of the Hadamard matrices to recover the signal efficiently (with a very low
complexity). The proposed matrix construction is deterministic and only depends on
the distribution of the source. We are mainly interested to know how many number
of measurements is necessary to recover the source with a negligible distortion. We
introduce the problem in Section 2.1 and review some of the related works. We review
the polarization theory for source coding in Section 2.2 and make a link between the
polarization theory and the Hadamard matrix construction in Section 2.3. Section 2.4
formulates the problem. Section 2.5 explains the proposed deterministic Hadamard
matrix construction to capture the information of the source. Section 2.7 includes the
simulation results and further intuitions about the problem. Table 2.1 summarizes
the notations used in this chapter.

Table 2.1 — Summary of Notations

Z  the set of integers [m] {1,2,...,m}

Z. the set of positive integers Xg {Xi, Xiv1,..., X;}

N  the set of strictly positive integers | H  discrete entropy

R  the set of reals H, Hadamard matrix of order 2"
I, Galois field of order ¢ H, partial Hadamard matrix

2.1 Introduction and Related Work

One of the most important problems in information and communication theory is
source coding or source compression. Different variants of source coding problem
have been studied in the literature. The main idea is that any information source

LThis chapter is the result of collaboration with Emmanuel Abbe and Emre Telatar.
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has some inherent redundancy which can be used systematically in order to compress
the source. Moreover, the initial data is recoverable from the compressed version
with a very high probability. Shannon in his seminal paper [29] studied this problem
and showed that for discrete memoryless sources over finite alphabets, the ultimate
compression bound is given by the entropy of the source.

Arikan, in his break-through work [27, 28], introduced the polarization phe-
nomenon which can be exploited to build optimal linear source and channel codes
achieving the information theoretic limits. In particular, in the source coding setting,
he showed that based on the polarization theory one can deterministically build
linear block codes to encode any memoryless binary-valued source up to its entropy
by taking linear measurement from the source with arithmetic over the Galois field
IF. The result was later extended to memoryless sources over finite field IF,, where
q is a prime number [30].

Although for most of the applications in signal processing, at least those dealing
with discrete signals, modeling the information sources over finite fields seems to
be sufficient, there are also cases in which the alphabet of the sources is inherently
unbounded, where for simplicity one can assume that the source takes its values in
the set of integers Z. One can still use linear polar encoders in order to compress
the source with the difference that for the integer-valued source all the arithmetics
is done over Z. One can naturally ask whether a phenomenon similar to the
polarization occurs over the integers and if the answer is positive, how one can use
this phenomenon to build deterministic linear matrices to capture the information
of memoryless integer-valued sources. In this chapter, our goal is to answer these
questions.

2.2 Polarization Theory over Finite Field I,

1 1]
0 1
memoryless source with alphabet IF,, where ¢ is a prime number and N = 2". Let
YN = G, X be the resulting linear measurements with arithmetic over I,. For
i € [N], let us define I; = H,(Y;|Y{"!), where H, denotes the discrete entropy in
base q. The polarization phenomenon studied in [27, 30] states that for any ¢ > 0,
as n goes to infinity

Let G, = , where ® denotes the Kronecker product. Assume that X fV is a

#{ie[N]: L€ (5,1-0)}
N

— 0.

As I; € [0,1], this implies that for large n the values I;, i € [N], polarize to either 0
or 1. In other words, all the components of the measurement Y7 are either highly
informative (I; ~ 1) or highly predictable (I; ~ 0). Furthermore, for every 6 € (0,1)

#{ie[N]:H e (1-6,1]}
N

— Hy(X), (2.1)

which implies that the number of informative components is approximately N Hy(X).
Notice that every measurement Y; is associated with one of the rows of the matrix G,,
and (2.1) indicates that the “measurement rate” (number of measurements per source
symbol) required to extract the informative components is close to the entropy of the
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source Hy(X) for large N. In a nutshell, this provides a linear source compression
scheme, i.e., for N = 2™ assuming that G,, is a my X N submatrix of GG,, obtained
by dropping the rows corresponding to the highly predictable Y’s

En:{0,1,...,¢—1}" = {0,1,...,q—1}™~,

EN(‘T{V) = én l,{\f’

is an ensemble of fixed-to-fixed linear source encoders capturing the information of
the source with a measurement rate very close to Hy(X). From classical information
theory, it is known that asymptotically this measurement rate is the best one can hope
for and the polarization theory provides a mathematical tool to design asymptotically
optimal linear source encoders.

2.3 What about Integer-valued Sources?

Suppose that we have a source with alphabet size ¢/, which we assume to be prime for
simplicity. To design a linear code for this source one can treat it like a source with
a larger alphabet IF, for sum prime number ¢ > ¢’ with the arithmetic operations
induced by IF,. By doing so and by constructing a polar code for the source over

Iy, one can decrease the required measurement rate from Hy (X) to Hy(X), i.e., by

a factor of 11<(>)gg((5'))' This implies that by working over larger fields, it is possible to

pack more information in a specific measurement and decrease the measurement
rate. The drawback is that the polarization will happen slowly and one needs to take
larger block-lengths N. Going beyond finite alphabets, one can naturally ask what
happens if one works over infinite alphabets such as the integers Z? Is it possible to
get a zero measurement rate asymptotically?

In this chapter, we provide a positive answer to this question. More precisely, we
prove that, asymptotically, one can fully capture the information of an integer-valued
memoryless source by taking linear measurements with a vanishing measurement
rate (measurement per signal dimension). However, there are also some caveats that
one should be aware of in order to get a reasonable result:

e We only consider linear encoders. Otherwise, since for any m € N the cardinality
of R™ is the same as R, any number of random variables such as X7* € R™
can be non-linearly but reversibly imbedded in R, thus, only one nonlinear
measurement is sufficient for their recovery. Consequently, the asymptotic
measurement rate is 0. However, the resulting measurement scheme is highly
nonlinear and extremely susceptible to measurement noise.

e If the source alphabet is finite, e.g., Iy, there is a magic linear measurement
(1,q,4% ¢3,...) which packs all of the information of the source in only one
measurement. Therefore, it seems that the answer to the posed question is
trivial. However, similar to the previous nonlinear case, the resulting linear
measurement is highly susceptible to measurement noise. Notice that what we
are interested to know is the compression power of the Hadamard matrices
H,, consisting of rows with {41, —1} values. In particular, the numerical
simulations at the end of this chapter show that the resulting matrices seem to
be stable to additive measurement noise. For these family of matrices, a simple
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argument shows that each measurement can carry at most O(logy(N)) bits
of information, which upon considering the total information NH(X) of the
source, gives a measurement rate of at least O(m) vanishing asymptotically.
Thus, it seems that the measurement rate must be 0.

e The problem becomes more challenging if we assume that the source has an
arbitrary distribution over the integers, which does not necessarily have a
finite support. In this case, it is not even obvious that such a magic linear
measurement exists and the problem becomes really interesting.

In the rest of this chapter, we further study this problem and develop mathematical
tools in order to analyze it. In particular, we introduce the family of Hadamard
matrices and use their underlying properties to design appropriate measurement
matrices to capture the information of the signal. We also make a connection
with the polarization theory in order to assess the performance of the constructed
measurement matrices in terms of their measurement rate.

2.4 Hadamard Matrices and the Entropy Process

Let X be an integer-valued memoryless source. For n € N, let H, denote the

1 1
1 -1
be the measurements taken from the i.i.d. sequence X{'. Notice that the Hadamard
matrices { H,, } and the polar matrices {G,} introduced in Section 2.2 have the same
recursive structure and the construction that we proposed for {I,,} is the same as
source polar codes with the difference that the arithmetic operations are done over
the reals. Similar to the source polar codes, we define the process I,,, where for
i € [N], I,(i) = H(Y;|Y{™!) is the conditional entropy of the i-th measurement given
the previous ones. One can convert {I,} to a branching process by the following
procedure (see Figure 2.1):

®n
Hadamard matrix of order N = 2" defined by H,, = [ ] and let YN = H, X{

1. Iy is the root of the tree defined by Iy(1) = H(X), where H(X) denotes the
discrete entropy of the source.

2. From I,(i) the process branches to I,+1(2i — 1) and I,,41(2i) with equal
probability (as shown in Figure 2.1).

With this construction, it is easy to see that for the stochastic process {I,}, any
random variable such as I,, takes all of its 2" possible values {I,,(i)}2", equiprobably.

Using the results of source polarization, it is possible to prove the following
proposition.

Proposition 2.1. Let X be a memoryless source with a probability distribution px
over Z and let {I,,} be its corresponding entropy process (branching process). I, is a
martingale converging to the random variable .

Proof. The martingale property follows from an argument similar to the source polar
codes. Moreover, from the positivity of the discrete entropy, it results that I, is a
positive martingale, thus, from the martingale convergence theorem, it must converge
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Figure 2.1 — Representation of the Entropy Process on a Binary Rooted Tree

to a random variable I, almost surely [31]. Applying Fatou’s lemma [31] to I,,, it
results that

E(Io) = E(liminf I,) < lim inf B(I,) = E(lp) = H(X),

where we used the martingale property that E(1,) = E(ly) = H(X). Thus, I has
a finite expected value. In particular, P(I,, = co) = 0, which implies that I is
finite-valued almost surely. O

Theorem 2.1 (“Absorption phenomenon”). Let X be a memoryless source with the
entropy martingale I, converging to I,. Then P(I, =0) = 1.

Remark 2.1. For polar codes over Iy, the resulting entropy process I,, is bounded
in the interval [0,1]. The polarization theorem states that, for large values of n,
almost all of the branches of the process are polarized to the boundary points {0,1}.
However, the process I, for integer-valued sources has only one extreme point 0 and
that is the reason why we call this phenomenon absorption rather than polarization.

Proof. Let n € N and let X{¥ be an i.i.d. sequence from the memoryless source X
and let YN = H, X} be the resulting measurements taken by the Hadamard matrix
H,. By the definition of the entropy process, one has I,(i) = H(Y;[Y{™'). Let
{In+1(2i — 1),1,+1(2¢)} be the entropy values for time n + 1 resulted by branching
I,,(7) and let fle be an independent copy of Y{V. Using the recursive structure of
the Hadamard matrices and using the result for the source polar codes as in [28, 30],
one can obtain the following expressions for {I,,+1(2i — 1), I,+1(27)}:

Ln1(2i = 1) = HY; + V|7 V7Y Lo (20) = H(Y; = ViYL V7L Y+ 19).
Applying the chain rule for discrete entropy, one can simply check that

It (22 — 1) + It (2@)
2
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confirming the martingale property of {I,,}. As I,, converges almost surely, there
is an event E with P(E) = 1 that consists of all convergent branches w, for which
lim,, oo I exists and is a well-defined real number. Let w € E be a fixed convergent
branch in F. Then for any § > 0, there exist ng(d,w) such that for all n > ny,
[I¢  — 1| < 6. Let i be the branch number of w at time n, i.e., I} = I,(i) and
notice that at time n 4 1 the branch number of w can be either 2¢ — 1 or 2¢. From
the martingale property of {I,,}, it results that

H(Y; + Y[~ Y7 — HY Y1) <6
Using the Conditional Entropy Power Inequality derived in Appendix A, one has
g(I) = g(Hi|Y{ ™) < HYi + Yi[y{ L Y{h) - HYilY{ ) <6, (2.2)

which implies that I¥ < g~1(d), where g is a universal continuous and strictly
increasing function lower bounding the gap between the sum conditional entropy and
individual conditional entropy with the property that g(0) = 0. As d > 0 is arbitrary,
it results that I¥, = lim, o IY = 0 over all branches w € E, which implies that
P(Io =0) =P(E) = 1. O

As we explained in Section 2.2, the polarization phenomenon allows to construct
linear measurement matrices for source compression. More precisely, if one keeps all
the rows of the polar matrix G,, corresponding to the measurements with significant
conditional entropy and drops the remaining rows, the resulting matrix is capable of
preserving approximately all the information of the source with an asymptotically
optimal measurement rate (the entropy of the source). Following a similar procedure
as in source polar codes and using the absorption phenomenon proved in Theorem
2.1, in the next section, we will construct appropriate measurement matrices for an
integer-valued source and will evaluate their asymptotic measurement rate.

2.5 Deterministic Partial-Hadamard Matrix Construction

Let X be a memoryless source with corresponding entropy process {I,,}. Notice that
for a given source distribution, all the possible values of {I,(i) : i € [2"]} can be
exactly computed. In order to capture the information of the source, we construct
the ensemble of measurement matrices {H,}, where H, consists of those rows of
the Hadamard matrix H,, with indices in S,, = {i € [2"] : [,(i) > eH(X)}, where
e € (0,1) is a fixed parameter and H(X) denotes the discrete entropy of the source
X. In other words, we keep those rows of the Hadamard matrix which capture a
significant amount of the information of the source assuming the access to all the
previous measurements. We denote by m,, = |S,| the number of the measurements
or the number of the rows of H,, and define the asymptotic measurement rate of the
ensemble by p = limsup,,_, ., 5.

Theorem 2.2. Let X be a memoryless source with a probability distribution px over
Z and let {Hy,} be the ensemble of partial Hadamard matrices designed for some
e € (0,1). Then for any n,

HONEXY)
Hxy) ST
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Theorem 2.2 implies that for any € € (0,1) the constructed family can capture
more than 1 — e ratio of the information content of the source and has asymptotically
zero measurement rate.

Proof. Let n € N and let S,, denotes the set of rows selected from H,, to construct
H,,. For simplicity, we drop the dependence on n. We have

HXNHAXN) HYN|Ys) H(Ys, Yse|Ys) H(Yse|Ys)

H(xN) — NH(X)  NH(X)  NH(X)
Yiese H(Yi[Y{™) o 1SeH(X)
- NH(X) -~ NH(X) —

where Ys = {Y; : i € S} and S¢ = [N]\S denotes the complement of S. To prove the
other part, notice that
lim sup % = limsup [Snl @ lim supP(I,, > eH(X))

n— o0 n— o0 n— 00

(b)
< P(limsup I, > eH (X)) =P(Ix > eH(X)) =0,

n—o0

where (a) follows from the uniform probability assumption on the branches {I,(7) :
i € [2"]} and (b) follows from reverse Fatou’s lemma. In particular, this shows that
the asymptotic measurement rate of the ensemble is 0. 0

2.6 Lower Bound on the Rate of Absorption

Let {I,} be the entropy process of a memoryless source X. Recall that I,(i) =
H(Y;|Y{™1) for i € [N]. From the chain rule for the discrete entropy, one can check
that 3;c(v) In(i) = NH(X). Moreover, I,(i) = H(Y;|Y{™") < H(Y;).

Proposition 2.2. Let YN be the measurement sequence as defined before. Then for
every i € [N],

H(Y:) < 3 log, { (2me) (N0 + 1)},

where 0% denotes the variance of the source X and the discrete entropy is in bits.

Proof. The proof follows from the result of Problem 8.7 of Cover and Thomas
[32], which states that for a discrete random variable Z taking values in the set
Z ={a1,as,...} with P(Z = a;) = pj,

logy {(27T6) (ipjf - (i pi)? + 112) } :
j=1 j=1

In particular, for the integer-valued random variable Y;, one obtains that

H(Z) = H(p1,p2,...) <

N

H(Y;) < %logg {(2#6)(Var(Yi) + 112)} — %logQ {(27T6)(Na§( n 112)} ’

where we used the fact that Y; = 37y hij X; with h;; € {+1, -1} being the com-
ponents of the i-th row of the Hadamard matrix H,,, thus from the i.i.d. assumption,
Var(Y;) = 3¢ v b7 Var(X;) = Nok. O
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Absorption Scheme for N = 256 and p = 0.05
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Figure 2.2 — Absorption phenomenon for a binary source with p(1) = 0.05 and
N = 512. It is seen that almost all the entropy values are absorbed to 0.

Proposition 2.3. Let {I,,} be the entropy process of a memoryless source X. Suppose
e €(0,1) and let S,, = {i € [N] : I,(i) > eH(X)} and my, = |Sy,|. Then

. My
log, (V)

Proof. Tt is easy to check that S_% | I,,(i) = NH(X) which implies that

NH(X)= > L)+ Y IL(i)< %ng {(27re)(Na§< + 112)} + (N = Sp)e H(X)
1€Sn €[N\ Sn

< mnlogQ(N)(1+O(

< 5 + NeH(X).

ogs (V)

Therefore, one obtains that liminfy o sy > 1 — €. O
logo (V)

2.7 Simulation Results

In this section, we evaluate the performance of the proposed deterministic partial
Hadamard matrices via numerical simulation. For simulation, we use a binary random
variable X with a probability distribution px(0) =1 — p for some 0 < p < %

2.7.1 Absorption Phenomenon

Figure 2.2 shows the absorption phenomenon for the binary source with p = 0.05
and for block-length N = 512. As seen from the figure, almost all the entropy values
are absorbed to 0.
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Nested Property for the Absorption Phenomenon
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Figure 2.3 — Nested property for the absorption scheme of a binary source for different
values of p. It is seen that the entropy process for the larger p dominates the entropy
process for the smaller ones.

2.7.2 Nested Property

Absorption phenomenon for N = 512 and different values of p is shown in Figure
2.3. It is seen that the set of high-entropy indices for lower p are included among the
the set of high-entropy indices of higher p. We call this the “nested” property. The
nested property can be useful in applications because it allows to take measurements
adaptively if the distribution of the binary source is a priori unknown. In other
words, one takes some measurements corresponding to high-entropy indices and if the
recovery is not successful, refines them by adding extra measurements corresponding
to low-entropy ones to improve the quality of the recovery.

2.7.3 Robustness to Measurement Noise

Having the measurement taken from the source, one can use different algorithms
to reconstruct it. We use the optimal Maximum Likelihood (ML) algorithm for
recovery which uses the recursive structure of the Hadamard matrices to speed up
the reconstruction. For simulation, we used N = 512, p = 0.05 and took all of the
indices with entropy greater than 0.01. Let us denote the input random variables by
X} and assume that we keep all of the rows of the matrix H,, with indices in the set
S. Suppose that Yy is the set of all measurements. We denote by Zg the resulting
measurements after adding noise, where for i € S, Z; = Y; + W; and W, are i.i.d.
N(0,02) random variables. We define the signal to noise ratio (SNR) at the input of
2
the decoder by SNR;, = %, where o2 is the noise variance. The SNR at the
output of the decoder is defined by SNRout = 5 i\i fVIEI?I(X)iQ—)XiIZ)’ where X; is the the

estimate of X; from the measurements at the output of the ML decoder. Figure 2.4
shows the stability analysis of the ML algorithm to the Gaussian measurement noise.
The result shows approximately 4 dB loss in SNR for high SNR regime. Notice that
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part of this loss is because of the distortion created by removing the measurements
corresponding to low-entropy indices.

Stability Analysis of the ML Decoder

20F

0 . . . .
) 10 SNRy, 15 20

Figure 2.4 — Stability of the Maximum Likelihood (ML) Decoder to additive Gaussian

measurement noise.



Fast Hadamard Transform:
Construction for Signals with
Sub-linear Sparsity

In Chapter 2, we explained the Hadamard construction to capture the information
of an integer-valued memoryless source!. In this chapter, we give a new Hadamard
construction for compressed sensing of signals with sub-linear sparsity. Specifically,
we assume that for an N-dimensional signal, the number of nonzero components
K scales like K = O(N?), sub-linearly in N for some 0 < o < 1. Depending on
the value of a, we select a specific collection of rows of a Hadamard matrix to
build the measurement matrix. Although in the thesis we mainly focus on matrix
construction for the compressed sensing, the proposed construction in this chapter
can be considered from two completely different points of view:

1. From a compressed sensing point of view, the proposed construction allows to
build ensemble of measurement matrices to capture the information of sparse
signals. By assuming a sub-linear sparsity model for the source and by using the
underlying properties of the Hadamard matrices, we design a fast iterative and
low-complexity algorithm to recover the nonzero components with a very high
probability. The only requirement for the algorithm to work successfully is that
the position of the nonzero components (support) of the signal be uniformly
random. This is not a major problem because one can shuffle the position of
the nonzero components by simply permuting the columns of the measurement
matrix uniformly randomly before taking the measurements. Moreover, as we
will explain, it is possible to know wether the recovery algorithm succeeds to
recover all the nonzero components or not. In particular, if the recovery is
not successful and if it is possible to repeat the measurement process, one can
take a new set of measurements by a using a new random permutation of the
columns of the matrix. We show that the failure probability of the algorithm
decays exponentially fast in the number of repetitions.

2. From another point of view, the proposed matrix construction and low-
complexity recovery algorithm can be exploited to speed up the traditional
Walsh-Hadamard Transform (WHT). To explain more, it is known that the

I This chapter is the result of collaboration with Robin Scheibler and Martin Vetterli.
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recursive structure of the Hadamard matrices allows to compute the WHT of an
N-dimensional signal, which we call the time domain signal, in O(N logy(N))
operations assuming that one has access to all the samples of the signal. We
call the output of the WHT the transform domain signal. Exploiting the con-
struction proposed in this chapter, we improve this algorithm in two directions.
First, the time complexity of the algorithm is reduced significantly. Second,
the sample complexity is much less, i.e., it is not necessary to have all the N
samples of the signal since a few number of time domain samples is sufficient
to compute the transform domain signal. The requirement is that the support
of the signal be random. Specially, in contrast to the compressed sensing setup
already mentioned, where the random support can be created by permuting
the columns of the measurement matrix, in this case the randomness of the
support is crucial for the success of the recovery because in the first place,
one has access only to the time domain signal and one can not shuffle the
components of the transform domain signal before taking the measurements.
This has been pictorially shown in Figure 3.1.

In this chapter, we explain the construction with an inclination towards WHT.
However, the results can be immediately applied to the compressed sensing setup.

The structure of this chapter is as follows. In Section 3.1, we give an overview of
the history and recent results concerning the WHT and its twin Discrete Fourier
Transform (DFT) and their application in signal processing. Section 3.2 gives the
main results. In Section 3.3, we prove some of the properties of the WHT that
are crucial for our construction. Using these properties, we develop a Hashing
Algorithm that is explained in Section 3.4. In Section 3.5, we introduce the Sparse
Fast Hadamard Transform (SFHT) whose performance is analyzed in Section 3.6 and
3.7 for two different sparsity regimes: very sparse and less sparse. Simulation results
are given in Section 3.8. Finally, Section 3.9 concludes the chapter and provides
some suggestions for further extension.

3.1 Walsh-Hadamard Transform: Overview and Related
Work

The Walsh-Hadamard transform (WHT) is a well-known signal processing tool with
application in areas as varied as image compression and coding [33], spreading
sequence for multi-user transmission in cellular networks (CDMA) [34], spectroscopy
[35] as well as compressed sensing [36]. It has interesting properties studied in
different areas of mathematics [37]. It also shares many underlying properties with
the Discrete Fourier Transform (DFT). For example, both have a nice recursive
structure which allows a fast computation with a time complexity O(N logy(N)) in
the dimension of the signal N [38, 39].

A number of recent publications have addressed the particular problem of com-
puting the DFT of an N-dimensional signal under the assumption of K-sparsity of
the signal in the frequency domain [40—44]. In particular, it has been shown that
the well-known computational complexity O(N log,(N)) of the FFT algorithm can
be strictly improved. Such algorithms are generally known as sparse FFT (sFFT)
algorithms. The authors in [45] by extending the results of [44], gave a very low-
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(a) Hadmard Construction for CS: One starts from
the signal X and takes linear measurements to
recover X. The random support for X can be
created by permuting the columns of the matrix
before taking the measurements.
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(b) Hadamard Construction for WHT: One starts
from the signal = (rather than X) and needs to
reconstruct X. Therefore, the measurement matrix
is fixed and it is not possible to shuffle its columns

in order to build a random support for the signal
X.

Figure 3.1 — Comparison of the Hadamard Construction for CS with WHT

complexity algorithm for computing the 2D-DFT of a v/N x v/N signal. In a similar
line of work, based on the subsampling property of the DFT in the time domain
resulting in aliasing in the frequency domain, the authors in [46, 47] developed a
novel low-complexity iterative algorithm to recover the non-zero frequency elements
using ideas from sparse-graph codes [48].

Since the Hadamard matrices share the same recursive structure as the DFT
matrices, one might naturally ask if the results developed for the sparse FFT can be
exploited to develop a fast Walsh-Hadamard Transform. In this chapter, we develop
such an algorithm to speed up the traditional Walsh-Hadamard Transform. Although
the construction seems similar to the sparse FFT (for example [46, 47]), there are
some unique features of the Hadamard matrices that make the construction distinct.
For example, in a DFT matrix of order IV, different rows of the matrix correspond to
different harmonics but a Hadamard matrix consists of only 4+1-valued components
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which, roughly speaking, correspond to two different harmonics.

To give a brief overview of the construction of fast Walsh-Hadamard Transform,
we first develop some useful properties of the WHT, specially the subsampling and
the modulation property, which play a key role in the development the algorithm. In
particular, we show that by suitable subsampling a signal in the time domain, one
can induce a well-designed aliasing pattern over the transform domain components.
In other words, it is possible to obtain a linear combination of a controlled collection
of transform domain components (aliasing). This creates interference between the
non-zero components if more than one of them are involved in the induced linear
combination. Similar to [47] and borrowing ideas from sparse-graph codes, we
construct a bipartite graph by treating the non-zero values in the transform domain
as variable nodes and interpreting any induced aliasing pattern as a parity check
constraint over those variable nodes. We analyze the structure of the resulting graph
assuming a random support model for the non-zero coefficients in the transform
domain. Moreover, we give an iterative peeling decoder to recover those non-zero
components. Very briefly, our proposed sparse fast Hadamard transform (SFHT)
consists of a set of deterministic linear hash functions (explicitly constructed) and
an iterative peeling decoder that uses the hash outputs to recover the non-zero
transform domain variables. It recovers the K-sparse WHT of the signal in sample
complexity (number of time domain samples used) O (K logQ(%)), total computational
complexity O(K logy(K) logQ(%)) and with a high probability approaching 1 as N
tends to infinity. Table 3.1 summarizes the notations used in this chapter.

Table 3.1 — Summary of Notations

Z the set of integers [m] {1,2,...,m}

Zy the set of positive integers Xg {Xi, Xiv1,..., X;}

N the set of strictly positive integers | v; the i-th components of v

R the set of reals Hy  Hadamard matrix of order N
aANb minimum of @ and b aVb maximum of a and b

Iy Binary field {0, 1} F3 n-dimensional binary vectors
N null space of a matrix N neighborhood a node in a graph
supp(v) support of the vector v, {i: v; # 0}

Vigitsesin1 the i-th component of v with binary expansion (ig, i1, ...,n—1)
x and X time domain and frequency domain signals

k-sparse signal signal having only k£ nonzero components

WHT Walsh-Hadamard Transform

SFHT Sparse Fast Hadamard Transform

3.2 Main Results

We summarize the main result of this chapter in the following theorem.

Theorem 3.1. Let 0 < o < 1, N = 2" a power of two and K = N®. Let x € RV be

a time domain signal with a WHT signal X € RN. Assume that X is a K-sparse

signal whose support is selected uniformly at random among all possible (%) subsets
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of [N] of size K. There is an algorithm that can compute X and has the following
properties:

1. Sample complexity: The algorithm uses CK logQ(%) time domain samples
of the signal x. C is a function of a and C' < (é\/ﬁ)-i—l, where for a,b € Ry,
a Vb denotes the maximum of a and b.

2. Computational complexity: The total number of operations in order to
either successfully recover the position and the value of all the non-zero spectral
components or to announce a decoding failure is O(CK logy(K) log2(%)).

3. Success probability: The algorithm correctly computes the K-sparse WHT
of the signal X with very high probability asymptotically approaching 1 as N
tends to infinity, where the probability is taken over all random selections of
the support of X.

To prove Theorem 3.1, we distinguish between the very sparse case (0 < a < %)
and the less sparse one (% < a < 1). Also, we implicitly assume that the algorithm
knows the value of «, which might not be possible in reality. As we will see later, if we
know some range to which « belongs, it will be possible to design an algorithm that
works for all those values of a. However, the sample and computational complexity
of the algorithm might increase compared with the optimal one that knows the value
of a. For example, if we know that the signal is very sparse, a € (0, a*] for some
af < %, it is sufficient to design the algorithm for o* and it will work for all signals
with sparsity index less that o*. Similarly, if the signal is less sparse with a sparsity
index o € (%,a) for some § < o < 1, then again it is sufficient to design the
algorithm for o and it will automatically work for all a € (%, ).

Remark 3.1. In the very sparse regime (0 < a < %), we prove that for any
value of a, the success probability of the optimally designed algorithm is at least
1 —O(1/K3C2=0) with C = [1] where for u € Ry, [u] =max{n € Z:n < u}. It
is easy to show that for every value of a € (0, %) the success probability can be lower
bounded by 1 — O(N_%).

3.3 Walsh-Hadamard Transform and its Properties

Let © be an N = 2" dimensional signal indexed with elements m € 3. The
N-dimensional WHT of the signal z is defined by

1
X, = -1 (k,m) o 3.1
FE mEE ()T (3.1)

where k € 5 denotes the corresponding binary index of the transform domain
component. Moreover, (k, m) = Z?;Ol kim;, where the arithmetic is done over
the binary field Fo. We also use the convention that (—1)® = 1 and (-1)! = —1.
Borrowing some terminology from the DFT, we call the transform domain samples
X, k € Iy, frequency or spectral domain components of the time domain signal x.

Notice that with our notation both the time-domain signal x : I'; — R and the
frequency-domain signal X : Iy — R are functions from the index set Iy to reals.
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Therefore, the WHT given by the Equation 3.1 is a mapping between the function x
(time domain signal) and the function X (transform domain signal). For simplicity
of the notation, we will use x,, and X, for the time and frequency domain function
with the convention that both m and k belong to the index set I5.

3.3.1 Basic Properties

This subsection is devoted to reviewing some of the basic properties of the WHT.
Some of the properties are not directly used and we have included them for the
sake of completeness. They can be of independent interest. The proofs of all the
properties are provided in Section 3.10.1.

Property 1 (Shift/Modulation). Let Xj be the WHT of the signal x,, and let
p € F5. Assume that yp, = Tmp denotes the time domain signal y : 5 — R, where
y = x 01y is the composition of the function x with the index transformation function
ip : By — 5 given by ip(m) = m + p, where m + p denotes the component-wise
module two addition of binary vectors m and p. Then

WHT
Ym = Tm4p < Xk(_1)<p7k>'

The next property explains one of the interesting properties of the WHT. Suppose
that one has access only to the time domain signal and for some reason one is interested
to shuffle the transform domain values by some simple manipulation of the time
domain samples. This property allows to partially permute the Hadamard spectrum
in a specific way by applying a corresponding permutation in the time domain.
However, the collection of all such possible permutations is limited. Technically, this
property is equivalent to finding permutations 7y, mo : [N] — [N] with corresponding
permutation matrices II;, Il such that

My Hy = Hylly, (3.2)

where Hy is the Hadamard matrix of order N and where the permutation matrix
corresponding to a permutation 7 is defined by (II); ; = 1 if and only if 7(:) = j, and
zero otherwise. The identity (3.2) is equivalent to finding a row permutation of Hy
that can be equivalently obtained by a column permutation of Hy.

Property 2. all the permutations satisfying (3.2) are described by the elements of
GL(n,Fy) = {A € ™| A~ emists},
where GL(n, ) denotes the set of n x n non-singular matrices with entries in Fa.

Remark 3.2. The total number of possible permutations in Property 2 is given by
n—1

"o (N = 29), which is a negligible fraction of all N! permutations over [N].

Property 3 (Permutation). Let ¥ € GL(n,IF2). Assume that X is the WHT of
the time domain signal x,,. Then

WHT
Tym — XE_Tk"
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Notice that y,, = s, is the function given by the composition of the function z
and the index transformation iy, y = x o iy, where for m € %, ix(m) = Xm is the
multiplication of the matrix ¥ with the index vector m. Moreover, any ¥ € GL(n, )
is a bijection from F% to Iy, thus zx,, is simply a signal obtained by permuting the
components of the signal x,,.

The last property is that of downsampling/aliasing. Notice that for a signal z
consisting of NV = 2" components, we index every component by a binary vector of
length n, namely, Zy.m,,...m,_,- 1o subsample this signal “along dimension i”, we
freeze the i-th component of the index to either 0 or 1. For example, Zo m,.....m,_,
is a 277! dimensional signal obtained by subsampling the vector z,, along the first
index. More precisely, the subsampled signal is simply the restriction of the function
z: F3 — R to the subset {0} x F3 ™ i.e., Zomy.mn_y = ) {0y <y

Property 4 (Downsampling/Aliasing). Suppose that x is a vector of dimension
N = 2" indexed by the elements of F} and assume that B = 2°, where b € N and
b<n. Let

U, = [Obx(nfb) Ib}T, (3.3)

be the subsampling matrix freezing the first n — b components in the index to 0. If
Xy is the WHT of x, then

WHT B
To,m — Z X, k+tj

where m, k € FY denote the corresponding binary indices of the time and frequency
components and Ty, is a B = 2° dimensional signal labelled with m € F}.

Recall that by our notation, ¥, = v, is a function y : 4 — R given by
y = xoiy,, where iy, : 3 — % is the index transformation given by iy, (m) = Uym.
One can simply check that Wym, which is the multiplication of m € I} with the
matrix ¥, of dimension n x b, gives an index in F5 which is the right argument for
the function x. One can also check that the index Wyk + j with j € N <\I/bT) gives
the suitable index for the function X. Notice that Property 4 can be simply applied
for any matrix Wy that subsamples any set of indices of length b not necessarily the
b last ones.

To give further intuition about the downsampling property, notice that the
elements of I} can be visualized as the vertices of an n-dimensional hypercube. The
downsampling property just explained implies that downsampling along some of
the dimensions in the time domain is equivalent to summing up all the spectral
components along the same dimensions in the spectral domain. This is illustrated
visually in Figure 3.2 for dimension n = 3.

In a general downsampling procedure, one can replace the frozen indices by an
arbitrary but fixed binary pattern. The only difference is that instead of summing the
aliased spectral components, one should also take into account the suitable {4+, —}
sign patterns, i.e., one has

WHT B ;
Toymtp N Yo ()" Xk, (3.4)
JEN(¥7)
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Figure 3.2 — Illustration of the downsampling property on a hypercube for N = 23,
The two cubes represent the time-domain (left) and the Hadamard-domain (right)
signal. We decide to drop all the nodes whose third coordinate is ‘1. We illustrate this
by adding a ‘x’ on the edges connecting those vertices through the third coordinate.
This is equivalent to summing up vertices along the corresponding edges in the
Hadamard domain.

where p is a binary vector of length n with b zeros at the end. To visualize this
property, consider Figure 3.2, where we have a signal over a 3-dimensional cube and
we subsample it along the third dimension, i.e., we keep only 4 variables with the
third index equal to 0. Notice that these variables lie on a 2-dimensional (square)
face of the cube that corresponds to a subsampling with p = 000. Instead we can use
p = 001 for subsampling and this value of p will select all 4 variables on the other
face of the cube corresponding to those variables with the third index equal to 1.
This face of the cube is a square parallel to the square corresponding to p = 000.

3.4 Hadamard Hashing Algorithm

By applying the basic properties of the WHT, one can design suitable hash functions
in the spectral domain. The main idea is that one does not need the spectral values
in order to compute the hash outputs because they can be simply computed by
low-complexity operations on the time domain samples of the signal.

Proposition 3.1 (Hashing). Assume that ¥ € GL(n,F3) and p € Fy. Let N =27,
beN, B=2"withb <n, and let m,k € IFZ denote the time and frequency indices
of a B-dimensional signal and its WHT respectively, where the signal is defined by

uy p(m) = \/% Tw,m+p- Lhe length B Hadamard transform of us , is given by

Uspk) = > X; (-7, (3.5)
JEFD | Hj=k

where H is the index hashing operator defined by
H=ulxT, (3.6)

where Uy, is as in (3.3).
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Remark 3.3. Note that the index of components in the sum (3.5) can be explicitly
written as function of the bin index k, i.e., 7 = ST Wk +q, ¢ € N(H).

The proof simply follows from the properties 1, 3, and 4. Based on Proposition 3.1,
we give Algorithm 1 which computes the hashed Hadamard spectrum. Given an
FFT-like fast Hadamard transform (FHT) algorithm, and picking B bins for hashing
the spectrum, Algorithm 1 requires O(Blog B) operations. Figure 3.3 shows an
illustration of the resulting hashing.

Time Domain

0000000000000 00O0
l4—WHT

AN AN

Transform Domain

Figure 3.3 — Illustration of the Hadamard Hashing. Time domain signal = has
dimension 16 and is subsampled by 4. The red circles show the resulting subsampled
signal. Computing the WHT of the 4-sample signal is equivalent to hashing the
transform domain signal in 4 bins and taking the summation.

Algorithm 1 FastHadamardHashing(z, N, %, p, B)

Require: Signal z of dimension N = 2", subsampling parameters ¥ and p and the
number of output bins B = 2° in a hash.
Ensure: Uy is the hashed Hadamard spectrum of x.

U = TXWym+p, fOr m € ]Fg.
Ui = \/% WHT (u,) is the resulting B-dimensional WHT.

3.4.1 Properties of the Hadamard Hashing

In this part, we review some of the nice properties of the hashing algorithm that are
crucial for developing an iterative peeling decoding algorithm to recover the non-zero
spectral values. We explain how it is possible to identify collisions between the
non-zero spectral coefficients that are hashed to the same bin and also to estimate
the support of non-colliding components.

Let us consider Us; ,(k) for two cases: p = 0 and some p # 0. It is easy to see
that in the former Uy, ,(k) is obtained by summing all the spectral variables hashed
to bin k, i.e., those whose index j satisfies Hj = k, whereas in the latter the same
variables are added together after being weighted by (—1)<p’j>. Let us define the
following ratio test

_ ng(k)
renlk) = G )
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When the sum in Us; (k) contains only one non-zero component, it is easy to see
that |ry (k)| =1 for ‘any value’ of p. However, if there is more than one component
in the sum, under a very mild assumption on the the non-zero coefficients of the
spectrum (e.g., if they are jointly sampled from a continuous distribution), one can
show that |7y (k)| # 1 for at least some values of p. In fact, n — b well-chosen values
of p allow to detect whether there is only one, or more than one non-zero components
in the sum.

When there is only one X; # 0 hashed to the bin k (hx(j") = k), the result
of the ratio test is precisely 1 or —1, depending on the value of the inner product
between j’ and p. In particular, we have

(p,Jj') = Lers (k<o) (3.7)

where 1,9y = 1if ¢ <0, and zero otherwise. Hence, if for n —b well-chosen values of
p, the ratio test results in 1 or —1, implying that there is only one non-zero spectral
coefficient in the corresponding hash bin. By some extra effort, it is even possible
to identify the position of this non-zero component. We formalize this result in the
following proposition proved in Section 3.10.2.

Proposition 3.2 (Collision detection/Support estimation). Let 3 € GL(n,Fq) and
let 0;,1 € [n] denote the columns of ¥.

1. If for alld € [n—"b], |5+, (k)| = 1 then almost surely there is only one non-zero
spectral value in the bin indexed by k. Moreover, if we define

) {11{7“2’%(,6)@} deln—b,

g =
0 otherwise,

the index of the unique non-zero coefficient is given by

F=2"T(Uyk+ ). (3.8)

2. If there exists a value d € [n—b] such that |rx. 5,(k)| # 1 then the bin k contains
more than one non-zero coefficient.

3.5 Sparse Fast Hadamard Transform

In this section, we give a brief overview of the main idea of Sparse Fast Hadamard
Transform (SFHT). In particular, we explain the peeling decoder, which recovers the
non-zero spectral components and analyze its computational complexity.

3.5.1 Explanation of the Algorithm

Assume that z is an N = 2" dimensional signal with a K-sparse WHT X (having
only K non-zero values). Suppose that K = O(N?) scales sub-linearly with N with
index a € (0,1). As Hg,l = Hy, taking the inner product of the vector X with the
i-th row of the Hadamard matrix Hy gives the time domain sample z;. Using the
terminology of coding theory, it is possible to consider the spectral components X
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Xo+ X1+ Xo+ X3 0 0 0
X, WX+ X5+ X6+ X7 5 01 00

L =
Xs+ Xo + Xi0 + X11 8 8 (1] [1)
HaShmg! Xg WX+ X3+ X4+ Xu5 N :
Xo+Xu+ X0+ X - -
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Figure 3.4 — On the left, bipartite graph representation of the WHT for N = 8 and
K = 3. On the right, the underlying bipartite graph after applying C' = 2 different
hashing produced by plugging X1, 39 in (3.6) with B = 4. The variable nodes (e)
are the non-zero spectral values to be recovered. The white check nodes (O) are
the original time-domain samples. The colored squares are new check nodes after
applying Algorithm 1.
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Figure 3.5 — A block diagram of the SFHT algorithm in the time domain. The
downsampling plus small-size low-complexity FHT blocks compute different hash
outputs. Delay blocks denote an index shift by o; before hashing. The S/P and P/S
are serial-parallel and parallel-serial blocks to emphasize that the FHT operates on the
whole signal at once. The collision detection/support estimation block implements
Proposition 3.2 to identify if there is a collision and if not to find the index of the
only non-zero value. The recovered index ¢ is not valid when there is a collision.

as variables nodes (information bits in coding theory), where the inner product of
the i-th row of Hy is like a parity check constraint on X. For example, the first
row of the Hadamard matrix is the all-one vector which implies that the sum of
all the components of X must be equal to the first time domain sample. A similar
interpretation holds for the other rows. Thus, the WHT can be imagined as a code
defined by a bipartite graph. With this picture in mind, one can consider the recovery
of the non-zero spectral values as a decoding problem over this bipartite graph. If we
consider the WHT, it is easy to see that the induced bipartite graph on the non-zero
spectral values is a complete (dense) bipartite graph because any variable node is
connected to all the check nodes as has been depicted in the left part of Figure 3.4,
where { X7, Xg, X711} are the only non-zero variables in the spectral domain and each
check constraint corresponds to the value of a specific time domain sample. It is also
implicitly assumed that one knows the support of X, e.g., {1,8,11} in our case. At
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the moment, it is not clear how one can obtain the position of the non-zero variables.
As we will explain later, in the final version of the algorithm this can be done by
applying Proposition 3.2.

For codes on bipartite graphs, there is a collection of low-complexity belief
propagation algorithms to recover the variable nodes given the value of check nodes.
Most of these algorithms perform well if the underlying graph is sparse. Unfortunately,
the graph corresponding to WHT is dense, and probably not suitable for any of these
belief propagation algorithms.

As explained in Section 3.4, by subsampling the time domain components of the
signal, it is possible to hash the spectral components in different bins as depicted
for the same signal X in the right part of Figure 3.4. The advantage of the hashing
operation must be clear from this picture. The idea is that hashing ‘sparsifies’ the
underlying bipartite graph. It is also important to notice that in the bipartite graph
induced by hashing, one can obtain all the values of parity checks (hash outputs) by
using low-complexity operations on a small set of time domain samples as explained
in Proposition 3.1.

We propose the following iterative algorithm to recover the non-zero spectral
variables over the bipartite graph induced by hashing. The algorithm first tries to
find a degree one check node. Using the terminology of [47], we call such a check
node a singleton. Using Proposition 3.2, the algorithm is able to find the position
and the value of the corresponding non-zero component, thus, the algorithm can
subtract (peel off) this variable from all the other check nodes that are connected to
it. In particular, after this operation the corresponding singleton check node gets
value zero, i.e., it is satisfied. Equivalently, we can update the underlying graph
by removing the mentioned variable node from the graph along with all the edges
connected to it. This creates an isolated (degree zero) check node which we call a
zeroton. Also notice that by removing some of the edges from the graph, the degree
of the associated check nodes decreases by one, thus there is a chance that another
singleton be found.

The algorithm proceeds to peel off one singleton at a time until all the check
nodes are zeroton (decoding succeeds) or all the remaining check nodes have degree
greater than one (we call them multiton) and the algorithm fails to identify all the
non-zero spectral values.

A more detailed pseudo-code of the proposed iterative algorithm is given in
Algorithm 2.

3.5.2 Complexity Analysis

Figure 3.5 shows a full block diagram of the SFHT algorithm. Using this block
diagram, in this section, we prove part 1 and 2 of Theorem 3.1 regarding the sample
and the computational complexity of the SFHT algorithm. The last part of the
theorem concerns the success probability of the algorithm which will be separately
analyzed in Sections 3.6 and 3.7 for the very and less sparse regimes, respectively.
Computational Complexity: As it will be further clarified in Sections 3.6
and 3.7, depending on the sparsity index of the signal «, we will use C different
hash functions, where C < (é \ ﬁ) + 1 each with B = 2° different output bins.
We always select B = K to keep the average number of non-zero components
per bin g = % equal to 1. This implies that computing the hash outputs via an
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Algorithm 2 SFHT(z, N, K,C,L, %)

Require: Input signal x of length N = 2. Sparsity K. Hash count C'. Number of
iterations of decoder L. Array 3 of C' matrices in GL(n,F2), ¥, = [0c1] -+ | 0cnl,
Oci € Fg

Ensure: X contains the sparse Hadamard spectrum of x.
B =0(K)

D=n—-5b+1
forc=1,...,Cdo
U.o = FastHadamardHashing(x, N, 3., 0, B)
ford=1,...,D do
Uc,q = FastHadamardHashing(z, N, ., 0¢ 4, B)
end for
end for
for!=1,...,L do
forc=1,...,C do
for k=0,....,B—1do
if Usor = 0 then
continue to next k
end if
0+ 0
ford=1,...,D do
if Uc,dJc/Uc,O,k = —1 then
@d,1 +~—1
else if U.q/Ucor # 1 then
continue to next k
end if
end for
i+ ST (Wyk + )
Xi < Ucok
ford =1,...,C do
R I
U Usp,;— Xi
ford =1,...,D do
Us iy < Usarj — Xi(=1)(7a 1)
end for
end for
end for
end for
end for
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FHT block of size B needs Blogy(B) operations which assuming K = B, gives
a computational complexity K logy(K). Moreover, we need to compute any hash
output with n —b = logy(%) different shifts in order to do collision detection/support
estimation, thus, the computational cost for each hash is K logy(K)logy(%). Since
we need to compute C' different hash blocks, the total computational complexity of
each iteration will be CK logy(K)logy(%). We will explain later that the algorithm
terminates in a fixed number of iterations independent of the value of o and the
dimension of the signal N. Therefore, the total computational complexity of the
algorithm will be O(C K log,(K) logy(%)).

Sample Complexity: Assuming K = B, computing each hash with n — b
different shifts needs K logg(%) time domain samples. Hence, the total sample
complexity, i.e., the required number of time domain samples, will be CK log2(%).

3.6 Performance Analysis of the very Sparse Regime

In this section, we consider the very sparse regime, where 0 < o < % In this regime,
we show that assuming a random support model for non-zero spectral components
and a careful design of hash functions, it is possible to obtain a random bipartite
graph with variable nodes corresponding to non-zero spectral components and with
check nodes corresponding to outputs of hash functions. We explicitly prove that
asymptotically this random graph behaves similar to the ensemble of LDPC bipartite
graphs. Running the peeling decoder to recover the spectral components is also
equivalent to the belief propagation (BP) decoding for a binary erasure channel
(BEC). Fortunately, there is a rich literature in coding theory about asymptotic
performance of the BP decoder. Specially, it is possible to show that the error
(decoding failure) probability can be asymptotically characterized by a ‘Density
Evolution’ (DE) equation which allows a perfect analysis of the peeling decoder.

We use the following steps to rigorously analyze the performance of the decoder
in the very sparse regime:

1. We explain how to construct suitable hash functions depending on the value of
a € (0, %] Although, in this chapter we only deal with WHT but as the hash
construction is deterministic, it automatically provides a deterministic partial
Hadamard matrix that can be used for compressed sensing.

2. We rigorously analyze the structure of the induced bipartite graph obtained by
treating the non-zero spectral components as variable nodes and the output
of hash functions as check nodes. In particular, we prove that the resulting
graph is a fully random left regular bipartite graph similar to the regular LDPC
ensemble. We also obtain variable and check degree distribution polynomials
for this graph.

3. At every stage, the peeling decoder recovers some of the variable nodes, re-
moving all the edges incident to those variable nodes. We use Wormald’s
method given in [49] to prove the concentration of the number of unpeeled
edges around its expected value which we characterize as well. Wormald’s
method as exploited in [50], uses the differential equation approach to track the
evolution of the number of edges in the underlying bipartite graph. Specifically,
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it shows that the number of edges at every step of the algorithm is very well
concentrated around the solution of the associated differential equations.

4. Wormald’s method gives a concentration bound to the number of remaining
edges as far as their count is a fixed ratio v € (0,1) of the initial edges in
the graph. Another expander argument as in [50] is necessary to show that if
the decoder peels a 1 — v fraction of the edges successfully for a small enough
value of +, it can continue to peel off all the remaining edges with very high
probability.

3.6.1 Hash Construction

For the very sparse regime, 0 < a < %, consider those values of o equal to % for

some positive integer C' > 3. We will explain later how to cover the intermediate
values. For o = %, we will consider C' different hash functions as follows. Let x be
an N-dimensional time domain signal with a WHT X, where N = 2" and let b = &.
As we did before, we label the components of the vector X by an n-dimensional
binary vector from 5. We design C' different subsampling operators, where the i-th
operator takes a binary index-vector from F%, keeps indices i b up to (i + 1)b — 1 of
this vector intact and sets the other binary-indices to zero. Using the terminology
of Proposition 3.1, we define ¥; to be the identity matrix with columns circularly
shifted by (i + 1)b to the left. Then, the hash operator given by (3.6) is

Hi = ULST = [Opip Iy Opn—(it1)0)]:

where I, is the identity matrix of order b and Wy, is as defined in (3.3).

To give further intuition about the hash construction, consider an N = 2"
dimensional signal z. We can label the components of by a length n binary vector.
With some abuse of notation, suppose xg_l € I} is the corresponding binary vector.
Equivalent to the C different subsampling operators, we can consider functions
hi,i € [C], where h; : F§ — I} is given by

hi(wg_l) = ({/Cib, Tibt1y- - ,$¢b+b,1). (39)
Now, let us consider two components of the signal x with binary indices xg_l and
yg_l. Notice that if x; =y fort =ib,ib+1,...,ib4+b— 1, then these two variables
are mapped to the same point in Y, i.e., h;i(zf ") = hi(ys~"). With this notation,
it is easy to reinterpret the subsampling operator H;. This operator constructs a
B = 2° dimensional signal from the N = 2" dimensional signal z as follows: simply
consider a length b binary vector r and among all the elements in the initial signal z
whose index-vector is mapped to r, select the one with maximum number of 0 in its
index-vector.
It is also interesting to see what happens in the transform domain. Assume that
X is the WHT of the signal x. Again with abuse of notation, we assume that the
components of X are labelled by binary indices Xg‘*l € 5. We know that under
the i-th hash function h;, we obtain a B = 2° dimensional signal subsampled from z.
The WHT of this subsampled signal is a B-dimensional signal whose components
can be labelled with 5. Let » € 4 be an arbitrary index-vector in IF§. Ignoring
the multiplicative constants, it is seen from Equation (3.5) that to obtain the WHT
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of the subsampled signal, one should sum up all the spectral component of X with
hi(Xy~1) = r. Intuitively, it is as if we have a bucket labelled with r and all the
spectral components with Xg_l, hi(Xg_l) = r, are mapped to this bucket. In
particular, in order to obtain the value of the WHT at a specific label r, one sums
up all the spectral components mapped to the bucket r.

In terms of computational complexity, to obtain the output of each hash bin,
we only need to compute the WHT of a smaller subsampled signal of dimension B.
Note that by hash construction, KX = B which implies that all the hash functions
can be computed in CK log,(K) operations. As we will explain later, we need at
least C' = 3 hashes for the peeling algorithm to work successfully and that is why
this construction works for a < % For intermediate values of «, those not equal
to % for some integer C', one can construct [é] hashes with B = 2" output bins
and one hash with smaller number of output bins, thus obtaining a computational
complexity of order (1 + [1])K logy(K).

3.6.2 Random Bipartite Graph Construction
Random Support Model

An N-dimensional signal = € RY is called K-sparse if |supp(z)| = K, where for
A C [N], |A] denotes the cardinality of A. For a given (K, N), RS1(K, N) is the class
of all stochastic signals whose support is selected uniformly at random from the set
of all ([]\é) possible supports of size K. We do not put any constraint on the non-zero
components; they can be deterministic or random. Model RS1 is equivalent to
selecting K out of N objects at random without replacement. If we assume that the
selection of the indices for the support is done independently but with replacement,
we obtain another model that we call RS2(K, N). In particular, if V;,i € [K] are i.i.d.
random variables uniformly distributed over [IN], a random support in RS2(K, N) is
given by the random set {V; : i € [K]}. Obviously, the size of a random support in
RS2(K, N) is not necessarily fixed but it is at most K. The following proposition,
proved in Section 3.10.3, shows that in the sub-linear sparsity regime, RS1 and RS2
are essentially equivalent.

Proposition 3.3. Consider the random support model RS2(K,N), where K =
N for some fired 0 < a < 1 and let H be the random size of the support set.
Asymptotically as N tends to infinity % converges to 1 in probability.

‘Balls and Bins’ Model G(K, B,C)

Consider C disjoint sets of check nodes Si, S,...,Sc of the same size |S;| = B.
A graph in the ensemble of random bipartite graphs G with K variable nodes at
the left and C' x B check nodes U ;S; at the right is generated as follows. Each
variable node v in G, independently from other variable nodes, is connected to check

nodes {s1, $2,...,5c} where s; € S; is selected uniformly at random from S; and the
selection of s;’s are independent of one another. Every edge e in G can be labelled as
(v,¢), where v € [K] is a variable node and ¢ is a check node in one of Sy, S, ..., Sc.

For a variable node v, the neighbors of v, denoted by N (v), consist of C different
check nodes connected to v, each of them from a different S;. Similarly, for a check
node ¢ € UY; S;, N(c) is the set of all variable nodes connected to c.
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By construction, all the resulting bipartite graphs in the ensemble are left regular
with variable degree C' but the check degree is not fixed. During the construction,
it might happen that two variable nodes have exactly the same neighborhood. In
that case, we consider them as equivalent variables and keep only one of them and
remove the other, thus the number of variable nodes in a graph from the ensemble
G(K, B,C) might be less than K.

This model is a variation of the Balls and Bins model, where we have K balls, C
buckets of different color each containing B bins and every ball selects one bin from
each bucket at random independent of the other balls.

Here, we also recall some terminology from graph theory that we will use later. A
walk of size £ in graph G starting from a node v € [K] is a set of £ edges ey, ea,. .., ey,
where v is one of the vertices of the edge e; and where consecutive edges are different,
e; # €;1+1, but incident with each other. A directed neighborhood of an edge e = (v, ¢)
of depth £ is the induced subgraph in G consisting of all edges and associated check
and variable nodes in all walks of size ¢ + 1 starting from v with the first edge being
e1 = (v,¢). An edge e is said to have a tree neighborhood of depth ¢ if the directed
neighborhood of e of depth £ is a tree.

Ensemble of Graphs Generated by Hashing

In the very sparse regime (0 < a < %), in order to keep the computational complexity
of the hashing algorithm around O(K logy(K)), we constructed C = 1 different
surjective hash functions h; : F§ — 4, i € [C], where b ~ na and where for an
x € Y with binary representation xg_l, hi(xg_l) = (Tiby Tibt1s- - Tibtb—1). We
also explained that in the spectral domain, this operation is equivalent to hashing
each spectral component labeled with X7'~! € F% into the bin labelled with h; (X7 ™").
Notice that by this hashing scheme there is a one-to-one relation between a spectral
element X and its bin number in different hashes (ho(X), h1(X),..., hc—1(X)).

Let V be a uniformly distributed random variable over IF}. It is easy to check
that in the binary representation of V', VO"_1 are like i.i.d. unbiased bits. This implies
that ho(V),h1(V), ..., hc—1(V) will be independent from one another because they
depend on disjoint subsets of Vonfl. Moreover, h;(V') is also uniformly distributed
over I§.

Assume that X;, Xo, ..., Xk are K different variables in Iy denoting the position
of non-zero spectral components. For these K variables and hash functions h;, we can
associate a bipartite graph as follows. We consider K variable nodes corresponding
to X¥ and C different set of check nodes Sp, S1,...,Sc_1 each of size B = 2°. The
check nodes in each 5; are labelled by elements of IE‘S. For each variable X; we
consider C different edges connecting X; to check nodes labelled with h;(X;) € S,
jelC].

Proposition 3.4. Let h; : F% — TS, i € [C] be as in Equation (3.9). Let
Vi,Va,..., Vi be a set of variables generated from the ensemble RS2(K,N), N = 2"
denoting the position of non-zero components. The bipartite graph associated with
variables V¥ and hash functions h; is a graph from the ensemble G(K, B, C), where
B =2

Proof. As V{ belong to the ensemble RS2(N, K), they are i.i.d. variables uniformly
distributed in [N]. This implies that for a specific V;, h;(V;), j € [C] are indepen-
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dent from one another. Thus, every variable node selects its neighbor checks in
So,51,...,Sc—1 completely at random. Moreover, for any j € [C], the variables
h;j(Vi),...,hj(Vk) are also independent, thus each variable selects its neighbor checks
in S; independent of all other variables. This implies that in the corresponding bipar-
tite graph, every variable node selects its C' check neighbors completely at random
independent of all the other variable nodes, thus it belongs to G(K, B, (). O

In Section 3.5, we explained the peeling decoder over the bipartite graph induced
by the non-zero spectral components. It is easy to see that the performance of the
algorithm always improves if we remove some of the variable nodes from the graph
because it potentially reduces the number of colliding variables in the graph and
there is more chance for the peeling decoder to succeed decoding.

Proposition 3.5. Let a, C, K, h;,i € [C] be as in Proposition 3.4. Let G be the
bipartite graph induced by the random support set VX generated from RS1 and hash
functions h;. For any € > 0, asymptotically as N tends to infinity, the average
failure probability of the peeling decoder over G is upper bounded by its average failure
probability over the ensemble G(K (1 +€), B,C).

Proof. Let G be a graph from ensemble G(K (1 + ¢), B,C). From Proposition 3.3,
asymptotically the number of variable nodes in G, is greater than K. If we drop
some of the variable nodes at random from G, to keep only K of them we obtain a
graph from ensemble G. From the explanation of the peeling decoder, it is easy to
see that the performance of the decoder improves by removing some of the variable
nodes because in that case less variables are collided together in different bins and
there is more chance to peel them off. This implies that peeling decoder performs
strictly better over G rather than G.. O

Remark 3.4. If we consider the graph induced by Vi from RS1 and hash functions
hi, the edge connection between variable nodes and check nodes is not completely
random thus it is not compatible with Balls-and-Bins model explained before. Proposi-
tion 3.5 implies that asymptotically the failure probability for this model can be upper
bounded by the failure probability of the peeling decoder for Balls-and-Bins model of
slightly higher number of edges K (1 + ¢).

Edge Degree Distribution Polynomial

As we explained in the previous section, assuming a random support model for the
non-zero spectral components in the very sparse regime 0 < a < %, we obtained a
random graph from ensemble G(K, B,C). We also assumed that na € N and we
selected b = na, thus K = B. Let us call § = % the average number of non-zero
components per a hash bin. In our case, we designed hashes so that 5 = 1. As the
resulting bipartite graph is left regular, all the variable nodes have degree C' whereas
for a specific check node the degree is random and depends on the graph realization.

Proposition 3.6. Let G(K, B,C) be the random graph ensemble as before with
B =% fired. Then asymptotically as N tends to infinity the check degree converges
to a Poisson random variable with parameter 3.
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Proof. Construction of the ensemble G shows that any variable node has a probability
of % to be connected to a specific check node ¢, independent of all the other variable
nodes. Let Z; € {0,1} be a Bernoulli random variable where Z; = 1 if and only if
variable 7 is connected to check node c. It is easy to check that the degree of ¢ will
be Z = YK | Z;. The Characteristic function of Z can be easily obtained:

Dy(w) = Be?¥? = H Ee/vZi

1 - BB jw
= (1 + E(ew - 1)) — A1),

showing the convergence of Z to a Poisson distribution with parameter j. O

For a bipartite graph, the edge degree distribution polynomial is defined by
pla) = 392, pia=t and M) = Y252, Mia™! where p; ();) is the ratio of all edges
that are connected to a check node (variable node) of degree i. Notice that we have
1 — 1 instead of 7 in the formula. This choice makes the analysis to be written in a
more compact form as we will see.

Proposition 3.7. Let G be a random bipartite graph from the ensemble G(K, B, C)
with B = &. Then Ma) = a®~! and p(a) converges to e P0=2) 45 N tends to
infinity.

Proof. From left regularity of a graph from ensemble G, it results that all the edges
are connected to variable nodes of degree C, thus A(a) = a“~! and the number of
edges is equal to C' K. By symmetry of hash construction, it is sufficient to obtain
the edge degree distribution polynomial for check nodes of the first hash. The total
number of edges that are connected to the check nodes of the first hash is equal to
K. Let N; be the number of check nodes in this hash with degree i. By definition of
pi, it results that

iN; iN;/B
K  K/B°

Pi =

Let Z be the random variable as in the proof of Proposition 3.6 denoting the degree
of a specific check node. Then, as N tends to infinity one can show that

Ni —Bgi
lim N i P(Z =) = S

N—oco B N—o0 7!

a.s.

Thus pi converges Aalmost surely to % As p; < 1, for any « : |a] < 1 — ¢,
lpiai™1| < (1 — €)*~! and applying the Dominated Convergence Theorem, p(c)

converges to Y o e(fﬁl’)' o1 = g—B(1-a) o

Average Check Degree Parameter [

In the very sparse regime, as we explained that assuming that b = na is an integer,
we designed independent hashes with B = 2° output bins so that § = % =1. As we
will see the performance of the peeling decoder (described later by the DE equation
n (3.10)) depends on the parameter 5. The smaller 5 the better the performance of
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the peeling decoder. Also notice that decreasing § via increasing B increases the
time complexity O(Blog,(B)) of computing the hash functions. For the general case,
one can select B such that § € [1,2) or at the cost of increasing the computational
complexity, one can make 3 smaller, e.g., 8 € [%, 1), to obtain a better performance.

3.6.3 Performance Analysis of the Peeling Decoder

Assume that G is the random bipartite graph resulting from applying C hashes to
signal spectrum. As explained in Section 3.5, the iterative peeling algorithm starts by
finding a singleton (check node of degree 1 which contains only one variable node or
non-zero spectral component). The decoder peels off this variable node and removes
all the edges connected to it from the graph. The algorithm continues by peeling off
a singleton at each step until all the check nodes are zeroton, i.e., all the non-zero
variable nodes are decoded, or all the remaining unpeeled check nodes are multiton
in which case the algorithm fails to completely decode all the spectral variables.

Wormald’s Method

In order to analyze the behavior of the resulting random graphs under the peeling
decoding, the authors in [50] applied Wormald’s method to track the ratio of edges in
the graph connected to check nodes of degree 1 (singleton). The essence of Wormald’s
method is to approximate the behavior of a stochastic system (here the random
bipartite graph), after applying suitable time normalization, by a deterministic
differential equation. The idea is that asymptotically as the size of the system
becomes large (thermodynamic limit), the random state of the system is, uniformly
for all times during the run of the algorithm, well concentrated around the solution of
the differential equation. In [50], this method was applied to analyze the performance
of the peeling decoder for bipartite graph codes over the BEC. We briefly explain
the problem setting in [50] and how the results proved there can be extended to our
case.

Assume that we have a bipartite graph G with k variable nodes at the left, ck
check nodes at the right and with edge degree polynomials A\(z) and p(x). We can
define a channel code C(G) over this graph as follows. We assign k independent
message bits to k input variable nodes. The output of each check node is the modulo
2 summation (XOR or summation over IFy) of the message bits that are connected to
it. Thus, the resulting code will be a systematic code with k message bits along with
ck parity check bits. To communicate a k bit message over the channel, we send k
message bits and all the check bits associated with them. While passing through the
BEC, some of the message bits or check bits are erased independently. Assume a
specific case in which the message bits and check bits are erased independently with
probability ¢ and &’ respectively. Those message bits that pass perfectly through the
channel are successfully transmitted, thus, the decoder tries to recover the erased
message bits from the redundant information received via check bits. If we consider
the induced graph after removing all variable nodes and check nodes corresponding
to the erased ones from G, we end up with another bipartite graph G’. It is easy to
see that over the new graph G’, one can apply the peeling decoder to recover the
erased bits.
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In [50], this problem was fully analyzed for the case of 6’ = 0, where all the check
bits are received perfectly but J ratio of the message bits are erased independently
from one another. In other words, the final graph G’ has on average ké variable
nodes to be decoded. Therefore, the analysis can be simply applied to our case, by
assuming that § — 1, where all the variable nodes are erased (they are all unknown
and need to by identified). Notice that from the assumption ¢’ = 0 no check bit is
erased as is the case in our problem, i.e., we have access to all the hash outputs. In
particular, Proposition 2 in [50] states that

Proposition 2 in [50]: Let G be a bipartite graph with edge degrees specified
by A(x) and p(z) and with & message bits chosen at random. Let ¢ be fixed so that

p(1 —0A(z)) >1—=x, forax e (0,1].

For any n > 0, there is some kg such that for all k > kg, if the message bits of
C(G) are erased independently with probability J, then with probability at least
1— k3 exp(—{s/E /2) the recovery algorithm terminates with at most nk message bits
erased.

Replacing 6 = 1 in the proposition above, we obtain the following performance
guarantee for the peeling decoder.

Proposition 3.8. Let G be a bipartite graph from the ensemble G(K, B, C) induced
by hashing functions h;,i € [C] with § = % and edge degree polynomials \(x) = €1
and p(x) = e P1=2) such that

p(1—=Xz)) >1—=x, forxe(0,1].

Given any € € (0,1), there is a Ko such that for any K > K with probability at least
1-K3 exp(—vV/K/2) the peeling decoder terminates with at most € K unrecovered
non-zero spectral components.

Proposition 3.8 does not guarantee the success of the peeling decoder. It only
implies that with very high probability, it can peel off any ratio n € (0,1) of non-
zero components but not necessarily all of them. However, using a combinatorial
argument, it is possible to prove that with very high probability any graph in the
ensemble G is an expander graph, i.e., every small enough subset of left nodes has
many check neighbors. This implies that if the peeling decoder can decode a specific
ratio of variable nodes, it can proceed to decode all of them. A slight modification of
Lemma 1 in [50] gives the following result proved in Section 3.10.4.

Proposition 3.9. Let G be a graph from the ensemble G(K, B, C') with C > 3. There
is some n > 0 such that with probability at least 1 — O(W), the recovery process
restricted to the subgraph induced by any n-fraction of the left nodes terminates
successfully.

Proof of Part 3 of Theorem 3.1 for a € (0, %] In the very sparse regime
a € (0,3], we construct C' = [1] > 3 hashes each containing 2" output bins.
Combining Proposition 3.8 and 3.9, we obtain that the success probability of the
peeling decoder is at least 1 — O(W) as mentioned in Remark 3.1.
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Figure 3.6 — Tree-like neighborhood an an edge e = (v,c¢). Dashed lines show the
edges that have been removed before iteration t. The edge e is peeled off at iteration
t because all the variable nodes v’ connected to ¢ are already decoded, thus, c is a
singleton check.

Analysis based on Belief Propagation over Sparse Graphs

In this section, we give another method of analysis and further intuition about the
performance of the peeling decoder and why it works very well in the very sparse
regime. This method is based on the analysis of BP decoder over sparse locally
tree-like graphs. The analysis is very similar to the analysis of the peeling decoder
to recover non-zero frequency components in [47]. Consider a specific edge e = (v, ¢)
in a graph from ensemble G(K, B, () and a directed neighborhood of this edge of
depth ¢ as explained is Section 3.6.2. At the first stage, it is easy to see that this
edge is peeled off from the graph assuming that all the edges (¢, v") connected to the
check node ¢ are peeled off because in that case check ¢ will be a singleton allowing
to decode the variable v. This pictorially shown in Figure 3.6.

One can proceed in this way in the directed neighborhood to find the condition
under which the variable v’ connected to ¢ can be peeled off and so on. Assuming
that the directed neighborhood is a tree, all the messages that are passed from
the leaves up to the head edge e are independent from one another. Let py be the
probability that edge e is peeled off depending on the information received from the
directed neighborhood of depth ¢ assuming a tree up to depth ¢. A simple analysis
similar to [47], gives the following recursion

piv1 = A1 = p(1 —pj)), j €, (3.10)

where A and p are the edge degree polynomials of the ensemble G. This iteration shows
the progress of the peeling decoder in recovering unknown variable nodes. In [47], it
was proved that for any specific edge e, asymptotically with very high probability
the directed neighborhood of e up to any fixed depth ¢ is a tree. Specifically, if
we start from a left regular graph G from G(K, B, C) with KC' edges, after ¢ steps
of decoding, the average number of unpeeled edges is concentrated around KCypy.
Moreover, a martingale argument was applied in [47] to show that not only the
average of unpeeled edges is approximately K Cp, but also with very high probability
the number of those edges is well concentrated around KCpy.



3.7. Performance Analysis of the Less Sparse Regime 49

0.8

0.6

Pj+1

0.4

0.2

0 0.2 0.4 0.6 0.8 1
Dbj

Figure 3.7 — Density Evolution equation for C' = 3 and different values of g = %.

Equation (3.10) is in general known as density evolution equation. Starting from
po = 1, this equation fully predicts the behavior of the peeling decoding over the
ensemble G. Figure 3.7 shows a typical behavior of this iterative equation for different
values of the parameter § = %.

For very small values of 3, this equation has only one fixed point at 0 which
implies that asymptotically the peeling decoder can recover a fraction of variables
very close to 1. However, for large values of 3, e.g., 8 2 2.44 for C = 3, this equation
has a fixed point greater than 0. The largest fixed point is the place where the
peeling decoder stops and can not proceed to decode the remaining variables. It is
straightforward to check that the only fixed point is 0 provided that for any p € (0, 1],
p>M1—p(1—p). As X:[0,1] — [0,1], A(z) = 297! is an increasing function
of z, by change of variable = A~!(p), one obtains that > 1 — p(1 — A(z)) or
equivalently

p(1 = Xz)) >1—=x, forxze(0,1].

This is exactly the same result that we obtained by applying Wormald’s method as
in [50]. In particular, this analysis clarifies the role of # in Wormald’s method.

Similar to Wormald’s method, this analysis only guaranties that for any € € (0, 1),
asymptotically as N tends to infinity, 1 — € fraction of the variable nodes can be
recovered. An expander argument is still necessary to guarantee the full recovery of
all the remaining variables.

3.7 Performance Analysis of the Less Sparse Regime

For the less sparse regime (% < a < 1), similar to the very sparse case, we will first
construct suitable hash functions that guarantee a low computational complexity of
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order O(K logy(K)logy (%)) for the recovery of non-zero spectral values. Assuming
a uniformly random support model in the spectral domain, similar to the very sparse
case, one can represent the hashes by a regular bipartite graph. Over this graph, the
peeling algorithm proceeds to find singleton checks and peel the associated variables
from the graph until no singleton remains. The recovery is successful if all the
variables are peeled off, thus, all the remaining checks are zeroton. Otherwise some
of the non-zero spectral values are not recovered and the recovery fails.

As we will explain, the structure of the induced bipartite graph in this regime is
a bit different from the very sparse one. The following steps are used to analyze the
performance of the peeling decoder:

1. Constructing suitable hash functions
2. Representing hash functions by their equivalent bipartite graph
3. Analyzing the performance of the peeling decoder over the resulting graph

For simplicity, we consider the case where « = 1 — % for some integer C > 3. In

Section 3.7.4, we will explain how to deal with arbitrary values of C' and «, specially
- 12

those values of a in the range (3, 5).

3.7.1 Hash Construction

Assume that a =1 — % for some integer C' > 3. Let z be an N-dimensional signal
with N = 2" and let X denote its WHT. For simplicity, we label the components of
X by a binary vector X(’}_l € Iy, Let t = & and let us divide the set of n binary
indices Xgil into C non-intersecting subsets rg,71,...,r7rc_1, where r; = Xi(iﬂ)t*l.
Hence, there is a one-to-one relation between each binary vector Xg_l € Iy and its
representation (rg,ry,...,7c—1). We construct C different hash functions h;,i € [C]
by selecting different subsets of (rg,71,...,7c—1) of size C' — 1 and appending them

together. For example

hl (ng_l) = (T’(), T1ye00y TC_Q) = Xéc_l)t_l

)

and the hash output is obtained by appending C — 1 first r;,i € [C]. One can
simply check that h;,i € [C] are linear surjective functions from F} to %, where
b = (C — 1)t. In particular, the range of each hash consists of B = 2’ different
elements of 5. Moreover, if we denote the null space of h; by N (h;), it is easy to
show that for any ¢,5 € [C],i # j, N(h;) "N (h;) =0 € F3.

Using the subsampling property of the WHT and similar to the hash construction
that we had in Subsection 3.6.1, it is seen that subsampling the time domain signal
and taking WHT of the subsampled signal is equivalent to hashing the spectral
components of the signal. In particular, all the spectral components Xg_l with the
same hi(XgLfl) are mapped into the same bin in the hash 7, thus, different bins of
the hash can be labelled with B different elements of IF}.

It is easy to see that, with this construction, the average number of non-zero
elements per bin in every hash is kept at § = % = 1 and the complexity of
computing all the hashes along with their n — b shifts, which are necessary for collision
detection/support estimation, is CK logy(K)logy(%). The sample complexity can
also be easily checked to be CK logQ(%).
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Figure 3.8 — Bipartite graph representation for the less sparse case a =

3.7.2 Bipartite Graph Representation

Similar to the very sparse regime, we can assign a bipartite graph with K left nodes
(variable nodes) corresponding to non-zero spectral components and with CK right
nodes corresponding to different bins of all the hashes. In particular, we consider
C different set of check nodes S1,59,...,Sc each containing B nodes labelled with
the elements of IE‘S and a specific non-zero spectral component labelled with Xgil is
connected to nodes s; € S; if and only if the binary label assigned to s; is hi(Xg_l).
In the very sparse regime, we showed that if the support of the signal is generated
according to RS2(K, N) model, where K random positions are selected uniformly
at random independent from one another from [N], then the resulting graph is a
random left regular bipartite graph, where each variable nodes select its C' neighbors
in 51,59, ...,S5¢c completely independently. However, in the less sparse regime, the
selection of the neighbor checks in different hashes is not completely random. To
explain more, let us assume that o = %, thus C' = 3. Also assume that for a non-zero
spectral variable labelled with X{]‘_l, r; denotes Xf?l)t_l, where ¢t = #. In this

case, this variable is connected to bins labelled with (rg,71), (r1,72) and (rp,72) in 3
different hashes. This has been pictorially shown in Figure 3.8.

If we assume that X' is selected uniformly at random from F} then the
bin numbers is each hash, e.g., (rg,r1) in the first hash, are individually selected
uniformly at random among all possible bins. However, it is easily seen that the
joint selection of bins is not completely random among different hashes. In other
words, the associated bins in different hashes are not independent from one another.
However, assuming the random support model, where K variable VlK are selected
independently as the position of non-zero spectral variables, the bin association for
different variables V; is still done independently.

3.7.3 Performance Analysis of the Peeling Decoder

As the resulting bipartite graph is not a completely random graph, it is not possible
to directly apply Wormald’s method as we did for the very sparse case as in [50].
However, an analysis based on the DE for the BP algorithm can still be applied. In
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other words, setting pp = 1 and

pi+1 = A1 —p(L —p;)), jelt,

as in (3.10) with A and p being the edge degree polynomials of the underlying bipartite
graph, it is still possible to show that after ¢ steps of decoding the average number
of unpeeled edges is approximately KCpy;. A martingale argument similar to [47]
can be applied to show that the number of remaining edges is also well concentrated
around its average. Similar to the very sparse case, this argument asymptotically
guarantees the recovery of any fraction of the variables between 0 and 1. Another
argument is necessary to show that if the peeling decoder decodes a majority of
the variables, it can proceed to decode all of them with very high probability. To
formulate this, we use the concept of trapping sets for the peeling decoder.

Definition 3.1. Let a =1 — % for some integer C' > 3 and let h;,i € [C] be a set of
hash functions as explained before. A subset of variables T C % is called a trapping
set for the peeling decoder if for any v € T and for any i € [C], there is another
w e T, v#w such that h;(v) = hi(w), thus colliding with v in the i-th hash.

Notice that a trapping set can not be decoded because all of its neighbor check
nodes are multiton. We first analyze the structure of the trapping set and find the
probability that a specific set of variables build a trapping set. Let X be a spectral
variable in the trapping set with the corresponding binary representation Xgil and
assume that C' = 3. As we explained, we can equivalently represent this variable with
(ro,7r1,72), where r; = Xz-(z O ith = &+ We can consider a three dimensional
lattice whose i-th axis is labelled by all possible values of r;. In this space, there is a
simple interpretation for a set T to be a trapping set, namely, for any (rg,r1,72) € T
there are three other elements (r(,r1,72), (r0,71,72) and (rg,r1,75) in T that can
be reached from (rg,71,72) by moving along exactly one axis. Notice that in this
case each hash is equivalent to projecting (rg,71,7r2) onto two dimensional planes
spanned by different coordinates, for example, hq(rg,r1,72) = (r9,71) is @ projection
on the plane spanned by the first and second coordinate axes of the lattice. A similar
argument holds for other values of C' > 3, thus, larger values of a.

For C' > 3, the set of all C-tuples (rg,71,...,7c—1) is a C-dimensional lattice. We
denote this lattice by L. The intersection of this lattice by the hyperplane R; = r; is
a (C' — 1)-dimensional lattice defined by

LR =1) ={(roy...,ri-1,Tit1,---,TC—1)
(POsT1y oy Tie1, Ty Tik 1, - - - s TO—1) € L}.
Similarly, for S C L, we have the following definition
S(R; =71i) ={(roy -, 7i1,Tit1s---sTC—1) :
(PO, 1y - oy Tie15 T3y Tit1s-- -, TC—1) € S}
Obviously, S(R; = r;) C L(R; = r;). We have the following proposition whose proof
simply follows from the definition of the trapping set.

Proposition 3.10. Assume that T is a trapping set for the C-dimensional lattice
representation L of the non-zero spectral domain variables as explained before. Then
for any r; on the i-th axis, T(R; = r;) is either empty or a trapping set for the
(C —1)-dimensional lattice L(R; = 1).
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Proposition 3.11. The size of the trapping set for a C-dimensional lattice is at
least 2€.

Proof. We use a simple proof using the induction on C. For C' = 1, we have a one
dimensional lattice along a line labelled with rg. In this case, there must be at
least two variables on the line to build a trapping set. Consider a trapping set T' of
dimension C. There are at least two points (ro,71,...,7c—1) and (ry,r1,...,7c—1)
in T. By Proposition 3.10, T(Ry = 19) and T (R = r{,) are two (C' — 1)-dimensional
trapping sets each consisting of at least 2¢~! elements by induction hypothesis. Thus,
T has at least 2¢ elements. O

Remark 3.5. The bound |T| > 2¢ on the size of the trapping set is actually tight.
For example, for i € [C] consider r;, v} where r; # r; and let

T = {(ap,a1,...,ac_1) : a; € {ry,ri},i € [C]}.

It is easy to see that T is a trapping set with 2 elements corresponding to the vertices
of a C-dimensional cube.

We now prove the following proposition showing that if the peeling decoder can
decode all the variable nodes except a fixed number of them, with high probability,
it can continue to decode all of them.

Proposition 3.12. Let s be a fized positive integer. Assume that o« = 1— % for some
integer C' > 3 and consider a hash structure with C different hashes as explained
before. If the peeling decoder decodes all except a set of variables of size s, it can
decode all the variables with very high probability.

Proof. The proof follows from a similar proof in [47]. Let T" be a trapping set of size
s. By Proposition 3.11, we have s > 2¢. Let p; be the number of distinct values
taken by elements of T" along the R; axis and let pmax = max;¢[c) pi- Without loss of
generality, let us assume that the Ry axis is the one having the maximum p;. Consider
T(Rp = 19) for those pmax values of g along the Ry axis. Proposition 3.10 implies
that each T(Ry = ) is a trapping set which has at least 2¢~! elements according
to Proposition 3.11. This implies that s > 2c_lpm(erX O Pmax < 20%1 Moreover,
T being the trapping set implies that there are subsets T; consisting of elements
from axes R; and all the elements of T" are restricted to take their i-th coordinate
values along R; from the set T;. Considering the way we generate the position of the
non-zero variables Xg_l with the equivalent representation (ro,r1,...,rc—1), the
coordinate of any variable is selected uniformly and completely independently from
one another and from the coordinates of the other variables. This implies that

P(F;) < P{For any variables in T, r; € T}, € [C]}
c-1 . Cc-1 .
Pi\ i Pi 5
< —)° < e —
ST = I (e ) o

where Fj is the event that the peeling decoder fails to decode a specific subset of
variables of size s and where P; denotes the number of all possible values for the
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i-th coordinate of a variable. By our construction, all P; are equal to P = 27/C =
on(l-a) — N(1-2) thug we obtain that

s Cc—-1
e < (L0 () = () (i)
# = \s/20-1 2C¢-1p ) = s 20-1p

sel/(2°71-1) sC(1-1/2C-1)
: <20—1p> '

Taking the union bound over all (Is( ) possible ways of selecting s variables out of K
variables, we obtain that

C—-1
K Pc_l s 1/(26'71_1) 80(171/2 ) y1._C
P(F) < <8>]P’(FS) < (e ) <S€2C_1P —o/P" )

S

< 0(1/P°-20)) — 01 /N 2).

For C' > 3, this gives an upper bound of order O(NN 7§) vanishing asymptotically. [

3.7.4 Generalized Hash Construction

The hash construction that we explained only covers values of o =1 — % for C >3
which belongs to the region o € [%, 1). We will explain a hash construction that
extends to any value of C' and « € (0, 1), which is not necessarily of the form 1 — .
This construction reduces to the very sparse and less sparse regimes when o = ¢
a€(0,1/3], and a =1 — &, o € [2/3, 1), respectively.

In the very sparse regime o = %, we have C' = 3 different hashes and for a
non-zero spectral variable X with index Xg”_l = (ro,71,72), hi(Xg_l) = 7;, thus the
output of different hashes depend on non-overlapping parts of the binary index of X
whereas for a = 2 the hash outputs are (rg,71), (r1,72) and (ro,r2) which overlap
on a portion of binary indices of length 7. Intuitively, it is clear that in order to
construct different hashes for a € (%, %), we should start increasing the overlapping
size of different hashes from 0 for a = % to g for a = % We give the following
construction for the hash functions

C»

hi(XyTh) = X[ i e (0],

where ¢ = & and the values of the indices are computed modulo n, for example

X, = Xg. In the terminology of Section 3.4, we pick H; = \IleEiT € IF’;X", where
¥; € F3*™ is the identity matrix with columns circularly shifted by (i + 1)b to the
left. It is clear that each hash is a surjective map from F% into F5“. Therefore, if we
pick b = na, the number of output bins in each hash is B = 2" = N% = K, thus the
average number of non-zero variables per bin in every hash is equal to g = % =

In terms of decoding performance for the intermediate values of a € (3,%), one
expects that the performance of the peeling decoder for this regime is between the

very sparse regime o = % and the less sparse one a = %



3.8. Simulation Results 55

Psuccess
1
12 1
0.8
of ]
0.6
C 6 1
0.4
3| 0.2
0
1 2
0 1 N : 1

Figure 3.9 — Probability of success of the algorithm as a function of o and C' for
deterministic hash construction. The dimension of the signal is N = 222. The black
line corresponds to o = % and a=1-— % in the very sparse and less sparse regimes
respectively. We fix § = 1. The hashing matrices are deterministically picked as
described in Section 3.7.4.

3.8 Simulation Results

In this section, we empirically evaluate the performance of the SFHT algorithm for
a variety of design parameters. The simulations are implemented in C programming
language and the success probability of the algorithm has been estimated via sufficient
number of trials. We also provide a comparison of the run time of our algorithm and
the standard Hadamard transform.

o Experiment 1: We fix the signal size to N = 222 and run the algorithm 1000
times to estimate the success probability for all range of a € (0, 1). For every
value of C'; we use the deterministic hashing scheme as described in Section 3.7.4.
Figure 3.9 shows the simulation result. The solid line shows our proposed
design with optimal computational complexity, where in the very sparse regime
a= % and in the less sparse regime a =1 — % for some C' > 3. It is seen that
over the solid line, the success probability is very close to 1. Moreover, if the
computational complexity is not important, the generalized hash design (as
explained in Section 3.7.4) for C' = 6 guarantees a good performance over all
values of a € (0,1).

e Frperiment 2: We repeat experiment 1, but instead of deterministic hashing
matrices designed according to Section 3.7.4, we now pick ¥;, i € [C], for hash
construction uniformly at random from GL(n,F3). The result is shown in
Figure 3.10. We observe that the performance of this scheme is comparable to
the deterministic one.
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Figure 3.10 — Probability of success of the algorithm as a function of o and C for
random hash construction. The dimension of the signal is N = 222. The black line
corresponds to @ = % and a =1 — % in the very sparse and less sparse regimes
respectively. We fix § = 1. The hashing matrices are picked uniformly at random

for every trial.
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Figure 3.11 — Probability of success of the algorithm in the less sparse regime as a
function of 8 = K/B. We fix N = 222, B =2!7 C = 4, and vary « in the range 0.7
to 0.9.



3.8. Simulation Results 57

Runtime in [ms]- N = 21°
1.5 ‘

Wl H
WIN -
[

o

Figure 3.12 — Comparison of the Median runtime in ms of the SFHT and conventional
WHT for N = 2'5 and for different values of a.

o Fxperiment 3: In this experiment, we investigate the sensitivity of the algorithm
to the value of the parameter § = K/B; the average number of non-zero
coefficients per bin. As we explained, in our hash design we use § =~ 1.
However, using larger values of 3 is appealing from a computational complexity
point of view. For the simulation, we fix N = 2?2, B =27, C' = 4, and vary o
between 0.7 and 0.9, thus changing K and as a result 5. Figure 3.11 shows the
simulation results. It is seen that the success probability has a sharp transition
for 8 ~ 3.

o Runtime measurement: We compare the runtime of the SFHT algorithm with
the traditional Walsh-Hadamard transform. The result is shown in Figure 3.12
for N = 21 SFHT performs much faster for 0 < o < 2/3.

It is also intersting to identify the range of o for which SFHT has a better
runtime than the traditional WHT. We define o* as the largest value of « such
that SFHT is faster than WHT, i.e.,

o = sup {a: Twur(n) > Tspar(d’,n)},

a€e(0,1)
where Tywpt and Tspgt are the runtimes of the conventional WHT and SFHT,
respectively. We plot a* as a function of n = log, N in Figure 3.13. It is seen
that as n increases, SFHT performs better than the WHT over a larger range
of a.

For computing the the run-time complexity of the SFHT in Section 3.5.2, we have
assumed that matrix-vector multiplications in % can be done in O(1). The reason
is that the deterministic hashing scheme of the algorithm is nothing but a circular
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Oé* = ma‘XaE(O,l){a : TWHT(n) 2 TSFHT(a7 n)}
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Figure 3.13 — In this figure, we plot n = log, N against a*, the largest value of o
such that SFHT runs faster than the conventional WHT. When WHT is always
faster, we simply set o* = 0.

bit shift that can be implemented in a constant number of operations, independently
of the vector size n.

If one is given ¥, some matrix from Fj*", and its inverse transpose X7, the
overall complexity of the algorithm would nonetheless be unchanged. First, we
observe that it is possible to compute the inner product of two vectors in constant
time using bitwise operations and a small look-up table?. Now, given the structure
of ¥y, computing ¥Wym in Algorithm 1 only requires log, K inner products. Thus
the complexity of Algorithm 1 is unchanged. Finally, (3.8) can be split into pre-
computing X7 W,k at the same time as we subsample the signal (in O(log, K)), and
computing the inner product between ¢ and the n — b first columns of 3 when doing
the decoding (O(logy £)).

3.9 Conclusion

In this chapter, we presented a low-complexity iterative algorithm to compute the
Walsh-Hadamard transform of a signal of length N. In particular, we assumed that the
signal is K -sparse in the Hadamard domain with K = O(N®) scaling sub-linearly with
N for some « € (0,1). This equivalently provides a deterministic matrix construction
along with a low-complexity recovery algorithm for compressed sensing of the signals
with sub-linear sparsity. The algorithm has complexity O(K log, K log, %) and only
requires O(K log, %) time-domain samples (measurements in the compressed sensing
setting). We showed that the algorithm reconstructs the Hadamard transform of the
signal with a very high probability asymptotically approaching one.

’http://graphics.stanford.edu/~seander/bithacks.html#ParityLookupTable
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The performance of the algorithm is also evaluated empirically through simulation,
and its speed is compared to that of the conventional fast Hadamard transform.

Our algorithm works for the noiseless case where there is no measurement noise
as can be seen from the the statement of Proposition 3.2. To make the algorithm
fully practical, a robust estimator is needed to replace Proposition 3.2. This can be
a direction for future work.

3.10 Proof of the Auxiliary Results

3.10.1 Proof of the Properties of the WHT
Proof of Property 1

Z (_1)<k7m>$m+p: Z (1) mteig,,

meFy meFy
The proof follows by taking (—1)%*:?) out of the sum and recognizing the Hadamard
transform of x,,. [ |
Proof of Property 2
As we explained, it is possible to assign an N x N matrix II to the permutation 7 as

follows

0 otherwise.

1 ifj=n()ei=711(j)
(i = { :
Let m and m be the permutations associated with II; and Ilp. Since (Hy);; =
(=1){:7) the identity (3.2) implies that
(—1)(m@.3) = (_1)(Em D),

Therefore, for any 7,5 € 4, w1, mo must satisfy (m2(7), j) = <i, Wfl(j)>. By linearity
of the inner product, one obtains that

(ma(i+ k), ) = (i+k,m0' () = (i, 7' () + (b, 7))
= <7T2(Z)7]>+<7T2(k)7]>

As i,j7 € Iy are arbitrary, this implies that m, and by symmetry 7, are both
linear operators. Hence, all the permutations satisfying (3.2) are in one-to-one
correspondence with the elements of GL(n, F2). [ |

Proof of Property 3

Since ¥ is non-singular, then ¥ 7! exists. It follows from the definition of the WHT
that

> ()& Mg, = Y ()T, = S ()T ),

melky mely meky

This completes the proof. |
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Proof of Property 4

> () My = o 3 (<) 3~ e,
mGIFZQ’

mGIFg pelFy

Xp Z (_1)<m,k+@gp>.

pEFy mE]Fg

5- 5

In the last expression, if p = Wk + ¢ with ¢ € N(\Ibe) then it is easy to check
that the inner sum is equal to B, otherwise it is equal to zero. Thus, by proper
renormalization of the sums one obtains the proof. ]

3.10.2 Proof of Proposition 3.2

We first show that if multiple coefficients fall in the same bin, it is very unlikely that
part (1) is fulfilled. Let Zj, = {j|Hj = k} be the set of variable indices hashed to
bin k. This set is finite and its element can be enumerated as Z, = {j,. .. ,j%}.
We show that a set {X,};cz, does not pass the ratio test unless it contains only
one non-zero element. Without loss of generality, we consider } ;.7 X; = 1. Such
{X;}jez, is a solution of

1 1 1
o1,] X
(—1)<‘71’j1> (_1)< 1’J%> 'J1 11
. ' : XjN
o j B +1
(—]_)<O'n—b7j1> (_1)< n7b7]%> B

where 0;,7 € {1,...,n} denotes the i-th column of the matrix ¥. The left hand side
matrix in the expression above, is (n —b+1) x 2", As oq,...,0,_, form a basis for
Tk, all the columns are different and are (omitting the top row) the exhaustive list of
all 27~ possible 41 vectors. Thus the right vector is always one of the columns of the
matrix and there is a solution with only one non-zero component (1-sparse solution)
to this system whose support can be uniquely identified. Adding any vector from
the null space of the matrix to this initial solution yields another solution. However,
as we will show, due to its structure this matrix is full rank and thus its null space
has dimension 2% —n 4+ b — 1. Assuming a continuous distribution on the non-zero
components X;, the probability that {X;};cz, falls in this null space is zero.

To prove that the matrix is indeed full rank, let us first focus on the rank of the
sub-matrix obtained by removing the first row. This submatrix itself always contains
M = —2I + 117, where I is the identity matrix of order n — b and 1 is the all-one
vector of dimension (n — b). One can simply check that M is a symmetric matrix,
thus by spectral decomposition, it has n — b orthogonal eigen-vectors v;,7 € [n — b].
It is also easy to see that the normalized all-one vector vy = —— ; of dimension n — b

n—b
is an eigen-vector of M with eigen-value A\g = n — b — 2. Moreover, assuming the
orthonormality of the eigen-vectors, it results that v] Mv; = \; = —2, where we used

v] 1 = vlvg =0 for i # 0. Thus, for n — b # 2 all the eigen-vlaues are non-zero and
M is invertible, which implies that the sub-matrix resulted after removing the first

row is full rank. In the case where n — b = 2, one can notice that the Hadamard
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matrix of size 2 will be contained as a submatrix, and thus the matrix will be full
rank.

Now it remains to prove that initial matrix is also full rank with a rank of n—b+1.
Assume that the columns of the matrix are arranged in the lexicographical order
such that neglecting the first row, the first and the last column are all 1 and all
—1. If we consider any linear combination of the rows except the first one, it is easy
to see that the first and the last element in the resulting row vector have identical
magnitudes but opposite signs. This implies that the all-one row cannot be written
as a linear combination of the other rows of the matrix. Therefore, the rank of the
matrix must be n — b+ 1.

To prove (3.8), let ¥, and X be the matrices containing respectively the first
n — b and the last b columns of ¥, such that ¥ = [¥ ¥g]. If there is only one
coefficient in the bin, then (3.7) implies that © = [(j7X,) 0]7. Using definitions
(3.3) and (3.6), we obtain that W;Hj = [0 (7Xr)]". We observe that they sum to
7 and the proof follows. |

3.10.3 Proof of Proposition 3.3

For t € [K], let H; denote the size of the random set obtained by picking ¢ objects
from [N] independently and uniformly at random with replacement. Let a; and vy
denote the average and the variance of H; for ¢ € [K]. It is easy to see that { H},c[x]
is a Markov process. Thus, we have

E{H+1 — He|Hi} = (1 — H/N),

because the size of the random set increases if an only if we choose an element from
[N]\H;. This implies that a;+1 = 1 4 ya;, where vy =1 — % Solving this equation
we obtain that

t
B P ke A VO P 3.11
=Y = - N, (3.11)
r=0

In particular, ax = N(1— (1 — +)¥), which implies that E{%} =X(1-1-45).
One can check that for K = N* 0 < a < 1, as N tends to infinity EH—; converges
to 1. To find the variance of H;, we use the formula

Var(Hiy1) = Var(Hygq|Hy) + Var(E{Hy1|Hy) }). (3.12)
Therefore, we obtain that
Var(EH;, 1| H;) = Var(1 + vHy) = ;. (3.13)
Moreover, for the first part in (3.12), we have
Var(Hy41|Hy) = Eg,{Var(Hyy1|Hy = hy)} = Eg,{Var(Hy41 — Hi|Hy = hy) }

(D) . Hi Hy\, a? + v
= ]E{N (1 N)}— N+ NT (3.14)

where in () we used the fact that given Hy, Hy11 — Hy is a Bernoulli random variable
with probability %, thus its variance in equal to %(1 - %) Combining (3.13) and
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(3.14), we obtain that

1
V41 = (’Y + N2) v + N <1 + N) (3.15)

From (3.11), it is easy to see that a; is increasing in t. Moreover, from (3.15), it is
seen that vy is increasing function of a;, thus, if we consider the following recursion

1
- It O T i
W1 (7 +N2>wt+N(+N>

then for any ¢ € [K], v; < wy. As wy is also an increasing sequence of ¢, we have

a a 1
o= (1) (1 )
aK aK 1
[ —— 1 — 1 o .
(1 5)/ (- )
Using Chebyshev’s inequality, we obtain that for any € > 0
Hg VK 1
P{— > (1 < —0(—-—.
{K > ( +6)}_K2(6+1—%)2 <62K>

Obv1ously, K < 1, thus ZZK converges to 1 in probability as N and as a result K
tend to 1nﬁn1ty |

3.10.4 Proof of Proposition 3.9

Let S be any set of variable nodes of size at most nK, where we will choose 7 later.
the average degree of variable nodes in S is C. Let N;(S),7 € [C] be the check
neighbors of G in hash 4. If for at least one of the hashes i € [C], |N;(S)] > |S|, it
results that there is at least one check node of degree 1 ( a singleton) among the
neighbors, which implies that the peeling decoder can still proceed to decode further
variable nodes.

Let £ denote the event that a specific subset A of size s of variable nodes has at
most  check neighbors in hash 4. Also let & = N, &L By construction of G, it is
easy to see that P{&,} = [I%, P{£!}. Let T be any subset of check nodes in hash i
of size 5. The probability that all the neighbors of A in hash i belong to a specific
set T of size § is equal to (5%)°. Taking a union bound over ( /2) of all such sets, it

is seen that P{&} < (5/2)( ), which implies that P{£!} < ((5/2)( )s ) Taking
a union bound over all p0881b1e subsets of size s of variables, we obtam that

o= (= (3) () )
() () ) < S

where u = ¢/ 2+1(§)C/ 2 and where F, denotes the event that the peeling decoder

fail to decode a set of variables of size s. We also used the fact that for n > m,
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(M) < (2&)™ and P{F1} = P{F2} = 0. Selecting n = ch_z) and applying the

m
union bound, we obtain that

s(C/2-1)

P{F} < ZP{F} ZP{F} ZW

=0 (s) + 5 (3) =0 (s

where F' is the event that the peeling decoder fails to decode all the variables. This
completes the proof. [ |






Rényi Polarization: Hadamard
Construction for Signals with
Linear Sparsity

In this chapter!, we give a new Hadamard construction for capturing the information
of a memoryless sources X with a given probability distribution px, recently known
as Analog to Analog compression. The probability distribution of the source px
can be continuous, mixture or discrete. For a source with a discrete distribution,
this construction immediately gives the absorption phenomenon that we studied in
Chapter 2. Although the construction works for general memoryless cases, we are
mostly interested to the case where px = (1 — ) do + 7 pe is a mixture distribution
where p. is a continuous distribution, e.g., Gaussian, Laplace, etc., and dy denotes
a delta-measure at point 0. In a typical realization of the source for a very large
block-length N, approximately N (1 — ) of the components are 0 and the remaining
K = N~ of the components are generated according to the continuous distribution
pe. We call this the linear sparsity regime in contrast to the sublinear case studied in
Chapter 3, where the number of nonzero components K = O(N®) scales sub-linearly
with N for some « € (0,1). In particular, from the memoryless assumption of the
source, it is seen that the support of the resulting sparse signal is uniformly random.
The structure of this chapter is as follows. In Section 4.1, we briefly overview
some of the related work, make a connection with our results and introduce the
notation for the rest of the chapter. We introduce the Rényi Information Dimension
as a suitable information measure for our problem in Section 4.2. The main results
of the chapter are introduced in Section 4.3. Proof techniques and some further
intuition about the problem are given in Section 4.4. In Section 4.5, we discuss two
different but closely related aspects of our proposed construction for compressed
sensing, i.e., the informational aspect versus the operational one. In particular, we
emphasize the operational implications of the proposed construction, i.e., if we use the
constructed matrices to take the measurements and run different recovery algorithms
to recover the signal, how the the resulting performance will change in terms of
the measurement rate. Simulation results are presented in Section 4.6. Section
4.7 concludes the chapter and discusses some of the benefits of the new Hadamard
construction in terms of computational complexity and ease of implementation.

LThis chapter is the result of collaboration with Emmanuel Abbe.
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4.1 Related Work

Analog to analog (A2A) compression of signals has recently gathered interest as
an information theoretic counter part of the compressed sensing problem [51-54].
In A2A compression, a high-dimensional analog signal 2™ € R™ is encoded into a
lower-dimensional analog signal y™ = f,(2") € R™ where m < n. The goal is to
design the encoder so as to preserve in ¢ all the information about z™, and to
successfully reconstruct z™ from y™ for a given distortion measure such as mean
square of the error (MSE) or error probability. In particular, the encoding may
be corrupted by noise. It is worth mentioning that when the alphabet of z and y
is finite, this framework falls into traditional topics of information theory such as
lossless and lossy data compression, or joint source-channel coding. The novelty of
A2A compression is to consider x and y to be real-valued and to impose regularity
constraints on the encoder and the decoder, e.g., the linearity of the encoder as
motivated by compressed sensing [1-4].

The challenge and practicality of A2A compression is to obtain dimensionality
reduction, i.e., 7+ < 1, by exploiting a prior knowledge on the signal, e.g., sparsity
as usually used in signal processing. For k-sparse signals, and without any stability
or complexity considerations, it is not hard to see that the dimensionality reduction
can be of order % A measurement rate of order %log(%) has been shown to be
sufficient to obtain stable recovery by solving tractable optimization algorithms such
as convex programming (¢1-minimization). This remarkable achievement has gathered
tremendous amount of attention with a large variety of algorithmic solutions deployed
over the past years. The vast majority of the research has, however, capitalized on a
common sparsity model.

Several works have explored connections between information theory and com-
pressed sensing?, in particular [58-63], however it is only recently in [51] that a
foundation of A2A compression has been developed, shifting the attention to proba-
bilistic signal models beyond the sparsity structure. It is shown in [51] that under
linear encoding and Lipschitz-continuous decoding, the fundamental limit of A2A
compression is the Rényi information dimension (RID), a measure whose operational
meaning had remained marginal in information theory until [51]. In the case of a
nonsingular mixture distribution, the RID is given by the mass of the continuous
part, and for the specific case of sparse mixture distributions, this gives the dimen-
sionality reduction % It is natural to ask whether this improvement on compressed
sensing is due to potentially complex or non-robust coding strategies. [52] shows that
robustness to noise is not a limitation of the framework in [51]. Two other works
[53, 54] have corroborated the fact that complexity may not be a limitation either.
In [53] spatially-coupled matrices are used for the encoding of the signal, leveraging
on the analytical ground of spatially-coupled codes and the predictions of [64]. In
particular, [53] shows that the RID is achieved using an approximate message passing
algorithm with block diagonal Gaussian measurement matrices. However, the size of
the blocks is increasing as the measurement rate approaches the RID.

In this chapter, we give a new approach to A2A compression by means of a
polarization theory over the reals. The use of polarization techniques for sparse
recovery was proposed in [65] for discrete signals, relying on coding strategies over

2[55-57] investigate LDPC coding techniques for compressed sensing
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finite fields. We show that using the RID, one obtains a natural counter-part over
the reals of the entropy polarization phenomenon over the finite alphabets [27, 28].
Specifically, we show that the RID of an i.i.d. sequence of mixture random variables
polarizes to the two extremal values 0 and 1 (discrete and continuous distributions).
To get to this result, we develop properties of the RID in vector setting and other
related information measures. We then show that the RID polarization is, as opposed
to the entropy polarization, obtained with an analytical pattern. In other words,
there is no need to rely on algorithms to compute the set of components that tend
to 0 or 1, since this is given by a known pattern equivalent to the BEC channel
polarization [27]. This is then used to construct partial Hadamard matrices for
A2A compression. Numerical simulations provide evidence that efficient recovery
algorithms such as ¢;-minimization or approximate message passing (AMP) can be
used in conjunction to the constructed matrices. In particular, using the partial
Hadamard matrices constructed in this chapter allows to tremendously speed up
these recovery algorithms.
Table 4.1 gives a summary of the notations in this chapter.

Table 4.1 — Summary of Notations

Z the set of integers [m] {1,2,...,m}

Zy the set of positive integers Xf {Xi, Xit1,..., Xj}

N strictly positive integers H discrete entropy

R the set of reals Hy Hadamard matrix N = 2"
I(X;Y) mutual information of X and Y | H(X) entropy of discrete R.V. X
I(X;Y]z)  mutual information given Z = z | H(p)  entropy of p

I(X;Y|Z) Ez{I(X;Y]|2)} h(X)  differential entropy of X
b(g) = alq) limgeo % >0 h(p)  differential entropy of p
a(q) = b(q) b(q) = a(q) d(X)  RényiID of X

a(q) = b(g) blg) = alq), b(q) = alq) d(p)  RényiID of p

[z]q g-ary quantization of x : %

All probability distributions are assumed to be nonsingular. Hence, in general, for
a random variable X, the distribution of X can be decomposed as px = dp.+(1—9)pq,
where p. and pg are the continuous and the discrete part of the distribution and
0 <9 <1 is the weight of the continuous part. Thus, é = 0 and § = 1 correspond to
the fully discrete and the fully continuous case respectively. For such a probability
distribution, the RID is interchangeably denoted by d(px) or d(X) and is equal to
the weight of the continuous part §. Assume that U is a continuous random variable
with the probability distribution p. and V is a discrete random variable with the
probability distribution p;. Let © € {0,1} be a binary valued random variable,
independent of U and V' with P(© = 1) = ¢. The random variable X can be written
as X = OU 4 OV, where © = 1 — © and the equality holds in distribution. In this
case, the random variable X will have the distribution px = dp. + (1 — §)pg. Also, if
" is a sequence of such random variables with the corresponding binary random
variables ©F, Cg = {i € [n] : ©; = 1} is a random set consisting of the position of
continuous components of the signal. Similarly, Co = [n]\Ce denotes the position of
the discrete components.
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For a matrix ® of dimension m x n and a set S C [n], ®g is a sub-matrix of
dimension m x |S| consisting of those columns of ® having index in S. Similarly,
for a vector of random variables X7, the vector Xg = {X; : ¢ € S} is a sub-vector
of X' consisting of those random variables having index in S. For two matrices A
and B of dimensions m; x n and mg x n, [A; B] denotes the (m; + m2) X n matrix
obtained by stacking A on top of B (vertically concatenating A and B).

An ensemble of measurement matrices will be denoted by {®y}, where N belongs
to a labeling set which is a subset of N. The dimension of the family for a specific N
will be denoted by mpy x N, where my is the number of measurements taken by ®p.
The asymptotic measurement rate of the ensemble is defined by p = limsupy_,,, “3*.

4.2 Rényi information dimension

Let X be a random variable with a probability distribution px over R. The upper
and the lower RID of this random variable are defined as follows:

90 = if??
]

By Lebesque decomposition or Jordan decomposition theorem, any probability
distribution over R such as px can be written as a convex combination of a discrete
part, a continuous part and a singular part, namely,

PX = QgPd + QcPc + Qs Ps,

where pg, p. and ps denote the discrete, the continuous and the singular part of the
distribution and where ayg, a., as > 0 and ag + a. + as = 1.

The continuous and the discrete distributions are usually well-known and they
are frequently used for modeling the random phenomena in most of the engineering
and signal processing applications. However, the singular distributions are rarely
encountered in applications. Very briefly, a singular distribution is a probability
measure concentrated on a set of Lebesgue measure zero. This is trivially true
for a discrete distribution because its support is countable thus has zero Lebesgue
measure. However, the difference is that in contrast to a discrete distribution a
singular measure assigns zero probability to each individual point. These distributions
are sometimes called singular continuous distributions. Such distributions are not
absolutely continuous with respect to Lebesgue measure. As a result, they do not have
a probability density function with respect to Lebesque measure since the Lebesgue
integral of any such function would be zero. An example is the Cantor distribution
which can be described in the following way. Let Wi, Ws, ... be a sequence of i.i.d.
Binomial random variables taking values {0, 1} with equal probability. Then the
random variable W = "7° 3; is a well-defined bounded random variable in [0, %]
with a singular probability d1str1but10n over [0, 5].

In [66], Rényi showed that if as = 0, i.e., if there is no singular part in the
distribution, thus px = (1 — 9) pg + 0 p. for some § € [0, 1], then the RID is well-
defined and d(X) = d(X) = d(X) = 6. Moreover, he proved that if X7 is a continuous
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random vector then lim, %

continuous random vector is n.

Our objective is to extend the definition of RID to arbitrary vector random
variables, which are not necessarily continuous. To do so, we first restrict ourselves
to a rich space of random variables with a well-defined RID. Over this space, it will
be possible to give a full characterization of the RID as we will see in a moment.

= n, i.e., the RID of any an n-dimensional

Definition 4.1. Let (2, F,P) be a standard probability space and let L1 be the set of
all nonsingular random variables measurable with respect to F. The space L(Q, F,P)
is defined as L = U2 Ly, where for n € N\{1}, L,, is the space of n-dimensional
random vectors defined as

L, ={X]: there exist k e N, A € R™* and Z{“ independent and nonsingular

random variables form L1 such that X7 = AZF}.

We call £ the space of all linearly-correlated nonsingular random variables.
Although it might seem that the linear structure of L is restrictive for modeling
purposes, it is not difficult to see that all n-dimensional vector random variables,
singular or nonsingular, can be well approximated in the space L, e.g., in #1 or in {5
sense. However, this is not sufficient to fully characterize the RID. Specially, the RID
is discontinuous in ¢, topology, p > 1. For example, we can construct a sequence
of discrete random variables in £ converging to a continuous random variable in £,
whereas the RID of the sequence is 0 and does not converge to 1. Although we have
such a mathematical difficulty in characterizing the RID, the space L is rich enough
to model the cases that we encounter in applications.

Over L, we will generalize the definition of the RID to include joint RID, condi-
tional RID and Rényi information defined as follows.

Definition 4.2. Let X7 be a random vector in L. The joint RID of X7, provided
that it exists, is defined as

o HOXTL)
M) = 08 Togata)

Definition 4.3. Let (X7, Y]") be a random vector in L. The conditional RID of
1 given Y{™ and the Rényi information of Y™ about X7, provided that they exist,
are defined as follows:

H([ XM |Yy™
d(XTY") = lim ([ll]qfl)
> 0g2(q)
Ip(X73 YY) = d(XT) — d(XT V"),

Generally, it is difficult to give a characterization of the RID for a general multi-
dimensional distribution because it can contain probability mass over complicated
subsets or sub-manifolds of lower-dimension. However, we will show that the vector
Rényi information dimension is well-defined for the space £. In order to give a
closed-form formula for the RID over £, we also need to define some concepts from
linear algebra of matrices, namely, for two matrices of appropriate dimensions, we
give the following definition of “influence” of one matrix on another matrix and
“residual” of one matrix given another matrix.
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Definition 4.4. Let A and B be two arbitrary matrices of dimension my1 X n and
ma X n. Also, let K C [n]. The influence of the matriz B on the matriz A and the
residual of the matriz A given B over the column set K are defined as follows:

I(A; B)[K] = rank([A4; B]g) — rank(Agk),
R(A; B)[K] = rank([A; B]k) — rank(Bg).

Recall that the [A; B] is the matrix obtained by stacking the matrix A on top of
the matrix B, thus the number of rows of [A; B] is equal to the sum of the number
of rows of A and B. Moreover, for a matrix ®, we denote by ®x a submatrix of ®
consisting of those columns of ® in the set K. It is easy to check that I(A; B)[K]
is the amount of increase of the rank of the matrix Ax by adding the rows of the
matrix By and R(A; B)[K] is the residual rank of the matrix Ax knowing the rows
of the matrix Bx. Moreover, one can easily check that I(A; B)[K] = R(B; A)[K].
The next theorem provides closed-form expressions for the joint and conditional
RID’s. The proof is given in Section 4.4.1.

Theorem 4.1. Let (X1, Y{™) be a random vector in the space L, namely, there are
i.1.d. nomnsingular random variables Z{“ and two matrices A and B of dimension
n x k and m x k such that X} = AZ¥ and Y{" = BZF. Let Z; = ©;U; + O,V; be

the representation for Z;, i € [k|. Then, we have
1. d(XT) = E{rank(Acy)},
2. d(XTY]") = E{R(4; B)[Cel},

where Co = {i € [k] : ©; = 1} is the random set consisting of the position of
continuous components.

Remark 4.1. Notice that the results intuitively make sense, namely, for a specific
realization Hlf, if 6; = 0 we can neglect Z; because it is fully discrete and does not
affect the RID. Moreover, over the continuous components the resulting contribution
to the RID is equal to the rank of the matriz Ac,, which is the effective dimension of
the space over which the continuous random variable Ac,Uc, is distributed. Finally,
all these contributions are averaged over all possible realizations of OF.

Using Theorem 4.1, we prove a list of properties of the RID in the next theorem.
The proof of the theorem is given in Section 4.4.1.

Theorem 4.2. Let (X{',Y{™) be a random vector in L as in Theorem 4.1. Then, we
have the following properties:

1. d(XT) = d(M XT7) for any arbitrary invertible matriz M of dimension n X n.
d(XT, Y{") = d(XT') + d(Y{"|XT).
Ir(XT; V(") = Ir(Y)™; XT').

e e

Ip(XT:Y™) >0 and Ig(X7;Y]™) = 0 if and only if X7 and Y{™ are indepen-
dent after removing discrete common parts, namely, those Z;,i € k] that are
fully discrete.

Further investigation shows that there is a nice duality between the discrete
entropy and the RID as depicted in Table 4.2.
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Discrete random variables
Discrete entropy H
Conditional entropy
Mutual information

Deterministic
Chain rule

Random variables in £
RID d
Conditional RID
Rényi mutual information
Discrete
Chain rule

Single-terminal source coding
Multi-terminal source coding

Single-terminal A2A compression
Multi-terminal A2A compression

Table 4.2 — Duality between H and d

4.3 Main results

In this section, we will give a brief overview of the results proved in this chapter.
Subsection 4.3.1 is devoted to the results obtained for the polarization of the RID.
These results are used in Subsections 4.3.2 to study A2A compression problem from
an information theoretic point of view.

4.3.1 Polarization of the Rényi information dimension

Before stating the polarization result for the RID, we define the erasure process.

Definition 4.5. Let o € [0,1]. An “erasure process” with initial value o is defined
as follows:

1. Leteg=a and let et = e =20 —a? and e™ = ¢ = a?.

2. Let e, = e+t for some arbitrary {+, —}-valued sequence b}. Define

€b1b2~-~bn+ — 26” _ 62

e "

+
n
— _ biba.bp— 2
n — € -

e €.

Remark 4.2. Notice that using the {+,—} labeling, we can construct a binary tree
where each leaf of the tree is labelled by a specific {+,—}-valued sequence and is
assigned the corresponding erasure value.

Let {B,}°; be a sequence of i.i.d. uniform {4+, —}-valued random variables.
Assume that e,, = eP1B82--Bn ig the stochastic process induced by the random sequence
{B,}52, and let F,, be the o-field generated by B}. Using the BEC polarization
[27, 67], we have the following results:

1. (en, Fn) is a positive bounded martingale.

2. e, converges to ey € {0,1} with P(eso = 1) = .

3. For any 0 < 8 < %, liminf,, o P(e, < 2’Nﬁ) =1— «a, where N = 2" is the
number of all possible cases that e, can take.
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Let n € N and N = 2". Assume that Xi¥ is a sequence of i.i.d. nonsingular
random variables with a RID equal to d(X) and let Z&¥ = HyX{", where Hy is
the Hadamard matrix of order N. For i € [N], let us define I,,(i) = d(Z;|Zi™").
Assume that b} is the binary expansion of ¢ — 1. By replacing 0 by + and 1 by
—, we can equivalently represent I,(i) be a sequence of {+,—} values, namely,
I, (i) = %5252 Similar to the erasure process, we can convert I,, to a stochastic
process I, = IB1B2+Bn by using i.i.d. uniform {4, —}-valued random variables BY.
We have the following theorem whose proof is given in Section 4.4.2.

Theorem 4.3 (Polarization of the RID). (I, F,,P) is an erasure stochastic process
with initial value d(X) polarizing to {0, 1}.

Figure 4.1 shows the polarization of the RID for a random variable with RID 0.5
and for a block-length N = 512.

Polarization Scheme for N =512 and § = 0.5
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Figure 4.1 — Polarization of the RID for N = 512 and d(X) = 0.5

4.3.2 A2A compression

In this subsection, we will use the properties of the RID developed in Section 4.2
to study the A2A compression of memoryless sources. We assume that we have
a memoryless source with a given nonsingular probability distribution. The idea
is to capture the information of the source, to be made clearer in a moment, by
taking some linear measurements. As is usual in information theory, we are mostly
interested in the asymptotic regime for large block lengths. To do so, we will use
an ensemble of measurement matrices to analyze the asymptotic behavior. We will
also define the notion of REP (Restricted iso-Entropy Property) for an ensemble of
measurement matrices.
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Definition 4.6. Let X{¥ be a sequence of i.i.d. random variables with a probability
distribution px (discrete, mizture or continuous) over R, and let DY = [X{¥], for
q € N. The family of measurement matrices {®n}, indexed with a subsequence of N
and with dimension my X N, is e-REP(px ) with measurement rate p if
N N
lim sup H(Dy [N X7 <€, limsup N _ p. (4.1)
q—00 H(D{V) N—oo N

To give some intuitive justification for the REP definition, let us assume that
all the measurements are captured with a device with a finite precision q% for some
go € N. In that case, although the potential information content of the signal can
be very high, what we effectively observe through the finite precision device is only
H([X{]4)- In such a setting, the fraction of the information we lose after taking
the measurements is exactly what we have in the definition of REP, namely,

H(DY|onX]")
H(DY) 7

(4.2)

where we assume that DY = [X{¥],,. This might be a reasonable model for application
because pretty much this is what happens in reality. The problem with this model
is that it is not invariant under some obvious transformations like scaling. For
example, assume that we are scaling the signal by some real number. In that case,
through some simple examples, it is possible to show that the ratio in Equation
(4.2) can change considerably. There are two approaches to cope with this problem.
One is to scale the signal with a desired factor to match it to the finite precision
quantizer, which in its own can be very interesting to analyze but probably will be
too complicated. The other way is to take our approach and develop a theory for
the case in which the resolution is high enough so that the quality measure proposed
in (4.2) is not affected by the shape of the distribution of the signal.

Remark 4.3. Notice that in the fully discrete case, the REP definition is simplified
to the equivalent form that we studied in Chapter 2.

HX{|2nXT) <e limsup@ <p.
H(X{V) - N—o0 N —

For a non discrete source with strictly positive RID, d(X) > 0, if we divide the
numerator and the denumerator in the expression (4.1) by log,(q), take the limit as
q tends to infinity and use the definition of the RID, we get the equivalent form

d(X{ 2N X{)
axy)  =f

Interestingly, this implies that in the high resolution regime that we are considering
for analysis, as ¢ tends to infinity, the information isometry (keeping more than
1 — € fraction of the information of the signal) is equivalent to the Rényi isometry.
Moreover, from the properties of the RID, it is easy to see that this REP measure
meets some of the invariance requirements that we expect. For example, it is scale
invariant and any invertible linear transformation of the input signal X fv keeps the
e-REP measure unchanged.

We can also extend the definition when the probability distribution of the source

is not known exactly but it is known to belong to a given collection of distributions
IT.



74 Rényi Polarization: Hadamard Construction for Signals with Linear Sparsity

Definition 4.7. Assume Il is a class of nonsingular probability distributions over
R. The family of measurement matrices {®n}, indexed with a subsequence of N and
with dimension my X N, is e-REP (I1) with measurement rate p if it is e-REP (m)
for every w € 11.

Now that we have the required tools and definitions, we give a characterization of
the required measurement rate in order to preserve the information isometry. As cus-
tomary in information theory, we do this using the “converse” and the “achievability”
parts.

Theorem 4.4 (Converse result). Let Xi¥ be a sequence of i.i.d. random variables
in L. Suppose {®Pn} is a family of e-REP(px ) measurement matrices of dimension
my X N and with measurement rate p. Then, p > d(X1)(1 —€).

Proof. The proof is simple considering the fact that information isometry in the
definition of e-REP is equivalent to the RID isometry, i.e., for an e-REP ensemble

{®n), we have A [N X

X < ¢, which implies that

TR(XY; o X)) > d(XTV)(1 —e).
Therefore, we obtain that
my > d(@nXD) > I(XN: o X)) > d(XN)(1 — €) = Nd(X1)(1 — ¢),

which implies that " > d(X1)(1 — €). Taking the limit as N tends to infinity, we
get the desired result p = limsupy_, o, ¥ > d(X1)(1 —¢). O

This result implies that to capture the information of the signal, the asymptotic
measurement rate must be approximately greater then the RID of the source. This,
in some sense, is similar to the single-terminal source coding problem in which the
encoding rate must be grater then the entropy of the source, which again emphasizes
the analogy between H and d. Moreover, in the discrete case, where d(X) = 0,
Theorem 4.4 gives the trivial result p > 0.

Remark 4.4. It was proved in [51] that under linear encoding and block error
probability distortion, the measurement rate must be higher than the RID of the
source, p > d(X). Theorem 4.4 strengthen this result by stating that p > d(X) must
hold even under the milder e-REP restriction on the measurement ensemble.

Theorem 4.4 puts a lower bound on the measurement rate in order to keep the
e-REP property. However, it might happen that there is no measurement family
achieving this bound. Fortunately, as we will see, it is possible to deterministically
truncate the family of Hadamard matrices to obtain a measurement family with
e-REP property and measurement rate d(X). This is summarized in the following
two theorems. Notice that in the fully continuous case as Theorem 4.4 implies, the
feasible measurement rate, for small e, is approximately 1 which, for example, can
be achieved with any complete orthonormal family, thus no explicit construction
is necessary. For the non-continuous case, we will only deal with the mixture (non
discrete) case.
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Theorem 4.5 (Achievability result). Let X{¥ be a sequence of i.i.d. random variables
in L with d(X1) > 0 and with a common probability distribution px over R. Then, for
any € > 0, there is a family of e-REP(px ) partial Hadamard matrices of dimension
my X N, for N = 2™ with p = d(X1).

We also have the general result in Theorem 4.6, which implies that one can
construct a family of truncated Hadamard matrices which is e-REP for a class of
distributions.

Theorem 4.6 (Achievability result). Let II be a family of probability distributions
with strictly positive RID. Then, for any € > 0, there is a family of e-REP (11) partial
Hadamard matrices of dimension my x N, for N = 2", with p = sup,¢p d(m).

Theorem 4.6 implies that there is a fixed ensemble of measurement matrices
capable of capturing the information of all the distributions in the family II. This is
very useful in applications because usually taking the measurements is costly and most
of the time, we do not have the exact distribution of the signal. If each distribution
needs its own specific measurement matrix, we might need to do several rounds
of measurements each time taking the measurements compatible with one specific
distribution and do the recovery process for that specific distribution. The benefit of
Theorem 4.6 is that one measurement ensemble works for all the distributions. It is
also good to notice that although the measurement ensemble is fixed, the recovery
(decoding) process might need to know the exact distribution of the signal in order
to have successful recovery.

4.4 Proof Techniques

In this section, we will give a brief overview of the techniques used to prove the
results. We will divide this section into two subsections. In Subsection 4.4.1, we will
overview the proof techniques for the RID. Subsection 4.4.3 will be devoted to proof
ideas and intuitions about the A2A compression problem.

4.4.1 Rényi Information Dimension

In this part, we will prove Theorem 4.1 and 4.2 which together give a full characteri-
zation of the RID over the space L.

Proof of Theorem 4.1. To prove the first part of the theorem, notice that
H([XT],) = H([X{]q, OF) = H([X]],07),

because H(OF) < k = 0. As O} ¢ {0,1}* and takes finitely many values, it is
sufficient to show that for any realization 6%,

H([XT]l0r) _
a0 logy(q) k{dco) (4.3)

Taking the expectation over ©F, we will get the result. To prove (4.3), notice that

H([X7]4l07) = H([Ac,Uc, + A, Va,lo) = H([Ac,Uc, + Ac, Ve, ldVe,)  (44)
= H([ACQUCB]Q)7 (4.5)
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where we used H(Vg,) < NH(V1) = 0. We also used the fact that knowing Vg, ,
[Ac,Ucylq and [Ac,Uc, + Ag, Ve, lq are equal up to a finite uncertainty. Specifically,

suppose L is the minimum number of lattices of size % required to cover A@o x [0, %]'CQ‘,

which is a finite number. Then
H([Ac,UcylqlVe, [AcyUc, + A, Ve, lq) < loga(L),

which implies (4.4) and (4.5).

Generally Ac, is not full rank. Assume that the rank of A¢, is equal to m and let
Ap, be a subset of linearly independent rows. It is not difficult to see that knowing
[AnUgy|q there is only finite uncertainty in the remaining components of [Ac,Uc,lq,
which is negligible compared with log,(¢) as ¢ tends to infinity. Therefore, we obtain

H([qu’@]f) = H([ACeUCe]q) = H([AmUCe]q) = mlogy(q)-
Thus, taking the limit as g tends to infinity, we obtain

IICH)

= rank(Ac, ).
a5 logy(g) rank(Ac,)

Also, taking the expectation with respect to ©F, we obtain d(X?') = E{rank(Ac,)},
which is the desired result.

To prove the second part of the theorem, notice that H ([X7],|Y7™) = H([X}],|Y{", ©F).

For a specific realization 0¥, we have

H([XTY1",67) = H([Ac,Uc, + Ag,Ve,lal Be,Uc, + Be, Ve,)
= H([Ac,Uc, + A, Ve,lal Be,Uc, + Ba, Ve, Va,)
= H([ACGUCO]Q|BCGUCG)'

Generally, Ac, is not full-rank. Let A,, be the set of all linearly independent rows of
Ag, of size m. Then H([Ac,Ucy)q|Bc,Uc,) = H([AnUc,lq|Bc,Uc, ).

It may happen that some of the rows of A,, can be written as a linear combination
of rows of B¢,. Let A, be the remaining matrix after dropping m — r predictable
rows of A,,. Given, B¢,Ug,, A-Uc, has a continuous distribution thus

H([A”'UCG}Q|BCO UC@) = rlogy(q).

It is easy to check that r is exactly R(A; B)[Cy]. Therefore, taking the expectation
with respect to ©F, we get d(X7|Y{") = E{R(4; B)[Ce]}. O

Using the results of Theorem 4.1, we can prove Theorem 4.2.

Proof of Theorem 4.2. For part 1, the proof is simple by considering the rank
characterization. We know that X' = AZF and d(X}') = E{rank(Ac,)}. Moreover,
MX? = MAZF, thus d(X}) = E{rank(M Ac,)}. As M is invertible rank(Ac, ) =
rank(M Ac, ), and we get the result.

For part 2, notice that for any realization 6% and the corresponding set Cy,

vank([A; Blc,) = rank(Ac,) + R(B; A)[Cy) = rank(Bc,) + R(A; B)[C)
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Taking the expectation over ©F, we get the desired result
d(XT, V(") = d(X7') + d(Y{"|XT) = d(¥]") + d(XT]YT").

For part 3, using the chain rule result from part 2 and applying the definition of
TR(X75 Y7™), we get

IR(XT5 V(") = d(XT) 4+ d(Y{") — d(X7', Y1),

which shows the symmetry of Ir with respect to X7* and Y{™.

For part 4, notice that for a specific realization 6%, a simple rank check shows
that R(A; B)[Cy] < rank(Ag,). Taking the expectation over OF, we get d(X7|Y{™) <
d(X7).

If X' and Y{" are independent, the equality follows from the definition. For
the converse part, notice that if X7 is fully discrete then d(X7'|Y]") < d(X7") = 0.
Similarly, if Y7 is fully discrete then d(Y{"|X[") < d(Y{™) = 0 and using the identity
d(XT) — d(XT|YT™) = d(Y]") — d(Y{"|XT), we get the equality. This case is fine
because after removing the discrete Z;,i € [k], either X7 or Y™ is equal to 0, namely,
a deterministic value, and the independence holds.

Assume that none of X7 or Y™ is fully discrete. Without loss of generality, let
Z7, r < k, be the non-discrete random variables among Z§ and let X7* and Y;" be the
resulting random vectors after dropping the discrete constituents, namely, we have

XI' = A, Z] and Y{" = B,Z}, where A, and B, are the matrices consisting of the
first 7 columns of A and B respectively. It is easy to check that d(XP") = d(XP) and
d(X}|Y™) = d(X}|Y{™). Thus, it remains to show that X} and Y{" are independent.
As we have dropped all the discrete components, the resulting 6;, i € [r], are 1
with strictly positive probability. This implies that for any realization of 07 and
the corresponding Cy, R(A,; B,)[Cy] = rank(A, ¢,). In particular, this holds for any
Cy of size 1, namely, for any column of A, and B,, which implies that if A, has
a non-zero column the corresponding column in B, must be zero and if B, has a
non-zero column then the corresponding column in A, must be zero. This implies
that X7 and Y{" depend on disjoint subsets of the random variables Z7. Therefore,
they must be independent. O

4.4.2 Polarization of the RID

In this part, we will prove the polarization of the RID in the single and multi-terminal
case as stated in Theorem 4.3. The main idea is to use the recursive structure of the
Hadamard matrices and the rank characterization of the RID in the space L.

Proof of Theorem 4.3. For the initial value, we have Iy(1) = d(X;). Let n € N
and N = 2™. To simplify the proof, instead of the Hadamard matrices, H, we will
use shufled Hadamard matrices, H, constructed as follows: H; = H; and Hoy is
constructed from Hy as follows

R

o

>
2
oSS
|
S
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where h;, i € [N] denotes the i-th row of the Hy. Let X{ be as in Theorem 4.3 and
let Z) = HyX{N, where Hy has been replaced by Hy. Also, let I,,(i) = d(Z;|Z{™1),
i € [N]. We first prove that I is also an erasure process with initial value d(X;) and
evolves as follows

3
—~
~
~

_l’_
Il
S
+
=
—~
[\~
<
|
~—

1) = 21, (i) — I,,(i)?
n(1)” = Int1(20) = In(i)°

where i € [N] with the corresponding {+, —}-labeling b7. Let H*=' and H' denote
the first i — 1 and the first i rows of Hy. Also, let h denote the i-th row of Hy.
We have Zi = H'X{ and ZZ V= A-1X]N. As X are i.i.d. nonsingular random
variables, it results that Zl belong to the space E generated by X{V. Notice that
using the rank characterization for the RID over £, we have

d(Zi| 27" = B{I(H"™ ' hi)[Cel}

where I(H*"'; h;)[Co] € {0,1} is the amount of increase of rank of HC ! by adding
h;. Consider the stage n + 1, where we have the shuffled Hadamard matrix Hoy.
Consider the row i+, which corresponds to the row 2i — 1 of Hyy. If we look at the
first block of the new matrix, we simply notice that adding h; has the same effect in
increasing the rank of this block as it had in Hy. A similar argument holds for the
second block. Moreover, adding h; increases the rank of the matrix if it increases
the rank of either the first or the second block or both. Let 1;(0}) € {0,1} denote
the random rank increase in H*~! by adding h;, then we have

13,-1(07Y) = 1,(07) + Li(031) — Li(07)1;(0F 1)

©f and ©%, are i.i.d. random variables and a simple check shows that 1;(©)
and 1,(0%Y, ) are also i.i.d. Taking the expectation value, we obtain

L))" = I1 (20 — 1) = 21,,(i) — L,(i)> (4.6)

Moreover, if we denote V~V1N =H NXJQVIL, then by the structure of Hy, it is easy
to see that I,,(i)" and I,(i)~ can be written as follows:

!

n(l)"‘ = n+1(21 —-1)= d(Zl + WAZifl, Wlifl)’
Io(i)™ = Lny1(20) = d(Z; — Wil Zs + W, ZE71 Wi,

Using the chain rule for the RID, we have

L)Vt +1,6)" 1 - o o
5 :fd(Zi—Wi,Zi—kWi]Zl Lwith
1 3
= 2d(ZZ,W\ZZ Lwithy = d(Z;,|1 27 = L),

which along with (4.6), implies that I,,(i)~ = I,,(i)?. Therefore, I evolves like an
erasure process with the initial value d(X).

Notice that the only difference between Hy and Hy is the permutation of the
rows, namely, there is a row shuffling matrix By such that H N = ByHpy. It was
proved in [28] that By and Hpy commute, which implies that fNINXfV = HyBy XY,
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However, notice that X{¥ is an i.i.d. sequence and By X{" is again an i.i.d. sequence
with the same distribution as X#V. In particular, adding or removing By does not
change the RID values, which implies that for Z{¥ = HxyX{ and I,(i) = d(Z;|Z{™1),
I,(i) = I,,(i). Therefore, I is also an erasure process with initial value d(X), which
polarizes to {0, 1}. O

4.4.3 A2A Compression

In this part, we prove the achievability part for the single-terminal case.

Proof of Theorem 4.5. We will give an explicit construction of the the measure-
ment ensemble. Let n € N and N = 2". Assume that Xi¥ is a sequence of i.i.d.
nonsingular random variables with RID equal to d(X). Let ZI¥ = HyX{", where Hy
is the Hadamard matrix of order N. Also, assume that I,,(i) = d(Z;|Zi™"), i € [N].
As we proved in Theorem 4.3, [ is an erasure process with initial value d(X). We
will construct the measurement matrix ®» by selecting all the rows of Hy with the
corresponding I,, value greater than or equal to e d(X). Therefore, we can construct
the measurement ensemble {®y} labelled with all N that are a power of 2. Assume
that the dimension of ®y is my x N. It remains to prove that the ensemble {®y}
is e-REP with measurement rate d(X). This will complete the proof of Theorem 4.5.

We first show that the family {®x} has measurement rate d(X). Notice that the
process I, converges almost surely. Thus, it also converges in probability. Specifically,
considering the uniform probability assumption, we have

#{i € [N]: L(i) > ed(X))

m
lim sup TN im sup

N—o0 N—oo N
= limsup P(I,, > ed(X)) = P(Ic > ed(X)) = d(X).
n—00

It remains to prove that {®x} is eREP. Let S = {i € [N]: I,,(i) > ed(X)} denote
the selected rows to construct ®y and let Z¥ = Hy X' be the full measurements.
It is easy to check that ®y X{ = Zg. Also, let B; = S°N[i — 1] denote all the indices
in S¢ before i. We have

A(X{|Zs) = d(Z)|Zs) = d(Zse|Zs) = > d(Zi|Z,, Zs)

€8¢
< S dZ1ZE) = Y (i) < Ned(X) = ed(XD),
iese iese
which shows the e-REP property for {®x}. O

The last step is to prove Theorem 4.6, i.e., to show that for a family of mixture
distributions I with strictly positive RID, there is a fixed measurement family {®x},
which is e-REP for all the distributions in II with a measurement rate vector lying
in the Rényi information region of of the family.

Proof of Theorem 4.6. The proof is simple considering the fact that the construc-
tion of the family {®y} in the proof of Theorem 4.5 depends only on the erasure
pattern. Also, the erasure pattern is independent of the shape of the distribution and
only depends on its RID. Moreover, it can be shown that the erasure patterns for
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different values of & are ordered, namely, for & > &, I(i) > I%(i),i € [N]. Consider-
ing the method we use to construct the family {®y}, this implies that an e-REP
measurement family designed for a specific RID § is e-REP for any distribution with
RID less than . Thus, if we design {®y} for sup,cpyd(nm), it will be e-REP for any
distribution in the family. O

4.5 Operational vs. Informational Characterization

Up to now, we defined the notion of e-REP for an ensemble of measurement matrices.
This definition is what we call an “informational” characterization, in the sense that
taking measurements by the ensemble potentially keeps more than 1 — e fraction of the
information of the source. One can ask the natural question weather this has some
“operational” implication, in the sense that after having the linear measurements, is
it possible to recover the source up to an acceptable distortion (for example mean
square error distortion)? Notice that, at the end of the day, it is the operational
implication that matters because it practically deals with taking the measurements
and reconstructing the signal via a recovery algorithm. More importantly, it takes into
account the computational complexity of the recovery algorithm which is completely
missing in the informational point of view. However, the informational point of view
has its own advantages, namely, it allows to find the underlying fundamental limits
of the problem without dealing with algorithmic issues. In this section, our goal is to
briefly clarify these two different aspects for our proposed Hadamard construction.

Let us start form an example from polar codes for binary source compression
which has lots of similarities with what we have studied in this section. As shown

n [28], for a binary memoryless source with P(0) = p, for a large block length n,
there is a matrix G,, of an approximate dimension nhs(p) x n such that the linear
measurement of the source by this matrix over Fo faithfully captures the randomness
of the source. This in its own only solves the encoding part of problem without
directly addressing the decoding part, namely, it does not imply the existence of a
decoder to recover the source from the measurements up to a negligible distortion (in
this case error probability). Therefore, the operational picture is not complete yet.
Fortunately, in the case of polar codes the successive cancellation decoder (or other
decoders proposed in the literature) fills up the gap and shows that the informational
characterization implies the operational one.

In the compressed sensing setting, the operational fundamental limits have
been studied extensively for different measurement matrices and different recovery
algorithms. In particular, for random Gaussian measurement matrices, the asymptotic
sparsity-measurement rate behavior of different recovery algorithms, such as AMP
and /1-minimization, has been vastly studied. We will mainly focus on the results
for the Gaussian matrices because, generally speaking, they give better measurement
rates than other families of matrices. For the probabilistic model that we studied in
this chapter, it has been observed that the required measurement rate of the Gaussian
matrices is far from optimal. More precisely, for the sparsity d very close to zero, the
required measurement rate for successful recovery of the source under low-complexity
algorithms such as ¢1-minimization and AMP scales like 6 logy (%), which suffers from
an oversampling of order logg(%) compared with the optimal measurement rate ¢
predicted information theoretically. In [53], it was shown that one can compensate
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this extra factor by using spatially coupled Gaussian matrices and running AMP.
This specifically shows that the operational limits meet the informational predictions.

Recently, using extensive numerical simulations, it was shown that the optimal
measurement rate 0 still seems to be achievable by spatially coupling of partial
Hadamard matrices, where the rows of the sub-matrices embedded in each block are
selected completely at random from the rows of a Hadamard matrix [68]. Interestingly,
it was observed that for this random construction, the resulting measurement rate of
the Lasso and AMP recovery algorithms are comparable with (even slightly better
than) that of random Gaussian matrices. It will be very interesting to find out if it is
possible to derandomize this construction to obtain a deterministic partial Hadamard
family of matrices with a close to optimal performance.

In the rest of this chapter, our goal is to operationally compare the performance of
our proposed partial Hadamard matrices with that of the random Gaussian matrices.
We will restrict ourselves to the dense Gaussian matrices without using the spatial
coupling. To build our proposed measurement matrices, we use the REP criterion
that we developed in this chapter. More precisely, we select those rows of the
corresponding Hadamard matrix with a significant RID as we will explain further
in Section 4.6. Since it is difficult to theoretically analyze the performance of the
constructed matrices, we use numerical simulations to asses the performance for
different signal models and different off-the-shelf algorithms from compressed sensing.
Very briefly, the simulation results show that for our construction, the resulting
measurement rate is comparable with (and even slightly better than) the random
Gaussian matrices but it still suffers from the oversampling factor logy(%) for small
sparsity values 6. This shows that even in our construction there is a gap between
the informational and operational characterization and it seems that an extra spatial
coupling as in [68] is still necessary to meet the optimal informational predictions.

4.6 Simulation Results

In this section, we asses the operational performance of the partial Hadamard matrices
proposed in this chapter via numerical simulations. As explained in Section 4.5, this
allows to numerically compare the gap that exists between the informational and
operational characterizations.

4.6.1 Signal Model and the Recovery Algorithm

For simulations, we use a zero mean and unit variance sparse distribution

px(x) = (1= 6)do(x) + dpe(), (4.7)
where dp(x) is the unit delta measure at point zero, p. is the distribution of the
continuous part and ¢ € {0.0,0.1,...,0.9,1.0} is the RID of the signal. We use the
mean square error (MSE) as distortion measure. The simulations are done with the
Hadamard matrix of order N = 512. To build the measurement matrix A, we select
those rows of Hy with highest conditional RID, as stated in Section 4.4.3, until we
get an acceptable recovery distortion. One of the algorithms that we use to recover
the signal is the ¢1-minimization algorithm:

#(y) = argmin ||w||1 subject to y = Aw, (4.8)
weRN
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where y = Az is the vector of measurements taken from the signal x. Another
algorithm that we use is the AMP algorithm given by the following iteration:

A 1 * A
2=y — Ay + ;Zt71<777/5—1(14 Zt—1+ wt—l)% (4-9)

Trp1 = (A2 + ), (4.10)

where y = A x denotes the vector of linear measurements taken by A, v is the mea-
surement rate, (al) = > i g ai/n, m(uw) = (Me1(u1), ..., nen(un)), where ne;(u;) =
E{X|u; = X + 1,W}, with W ~ N(0,1) independent of the signal X and 7, given
by the state evolution equation for AMP, is the soft-thresholding function designed
for the known distribution of X. For initialization, we use g = 0 and zy = 0.
The behavior of the AMP algorithm was rigorously analyzed for random Gaussian
matrices in [21]. Specifically, it was shown that the behavior of the AMP is fully
characterized by a closed-form State Fvolution equation.

4.6.2 Sensitivity to Signal Distribution

In this chapter, we proposed the Hadamard construction for a memoryless source
with a given probability distribution. However, we showed that the polarization
of the RID and as a result the matrix construction only depends on the RID of
the source and not the detail of the distribution of the source. To assess how
sensitive the construction is to the distribution of the signal, we do the simulations
using three different distribution for the continuous part of signal distribution p.
in Equation (4.7). To recover the signal, we use ¢;-minimization algorithm as in
Equation (4.8). Figure 4.2 shows the boundary of the low-distortion region for the
£1-minimization algorithm where for the boundary we use 0.01 of the signal power as
the threshold. The results show that the required measurement rate is not sensitive
to the distribution of the signal.

4.6.3 Comparison of the Performance of /;-minimization and AMP

In this part, we compare the performance of the two algorithms for a Bernoulli-
Gaussian distribution in which p. is the normal distribution. Knowing the exact
distribution of the signal, we use MMSE soft-thresholding function for AMP as in
Equation 4.10. Figure 4.3 shows the simulation results. Although AMP, with the
thresholding function 7; designed for the known distribution of the signal, performs
slightly better than /;-minimization, there is still a gap compared with the optimal
line.

4.6.4 Comparison with Random Gaussian Matrices

In this section, we compare the performance of the Hadamard construction with the
traditional random Gaussian matrices extensively used in compressed sensing.

The simulation results for #1-minimization are depicted in Figures 4.4 and 4.5. A
visual comparison shows that the Hadamard construction works slightly better than
the Gaussian matrices, i.e., for a given measurement rate has less recovery distortion.
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Boundary of the Low Distortion Region for ¢;-minimization
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Figure 4.2 — Boundary of the Low-Distortion Region for £;-minimization for Different
Signal Distributions. It is seen that the performance of the ¢1-minimization is not
sensitive to the distribution of the signal.

Boundary of the Low Distortion Region for AMP and ¢;-minimization
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Figure 4.3 — Boundary of the Low-Distortion Region for AMP and ¢;-minimization.
The solid line shows the optimal boundary. Below this line no algorithm can work with
a low distortion. As seen from the figure, AMP performs better than £;-minimization,
requiring lower measurement rate for low-distortion recovery.
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Rate-Distortion Region for Hadamard Construction
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Figure 4.4 — Rate-Distortion Region for Hadamard Construction and ¢;-minimization
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4.7 Conclusion and Further Discussion

In this chapter, using ideas from information theory and polarization theory, we
proposed a new Hadamard construction which was able to capture the information
of a memoryless signal with information theoretically optimal measurement rate. We
also simulated the resulting measurement matrices for different signal models and
recovery algorithm. In particular, a comparison with the performance of traditional
Gaussian matrices revealed that the constructed Hadamard matrices perform equally
or sometimes slightly better. As a conclusion, it is worth to mention some of the
benefits of the new construction over the usual Gaussian matrices:

e Implementation Gain: as the components of the constructed matrices are
{+1, —1}, generally speaking, it is very easy to implement them on sensors or
measurement devices. In a practical scenario, even after careful adjustment
and calibration of the measurement devices, there is still a mismatch with
the intended measurement. Using the two valued matrices as in our proposed
construction, one can hope to reduce the mismatch significantly.

e Storage Gain: there is no need to store the measurement matrices in the
software. One only needs to store the indices of the rows selected from the
Hadamard matrix and the whole matrix can be simply generated by a closed-
form formula. This is in particular important for the recovery algorithm because
one does not need to save the matrix in the computer, thus the algorithm can
run for very high-dimensional signals.

e Computational Gain: after taking the measurements y = Ax from the signal
x via the measurement matrix A, it is necessary to run the recovery algorithm
to recover the resulting signal. In more or less all the recovery algorithms, one
has the matched-filter phase of computation where it is necessary to compute
A*y, i.e., the correlation of the columns of the matrix with the measurement
y. Applying the new construction and using the recursive structure of the
Hadamard matrices, it is possible to reduce the complexity of this phase
of computation by approximately O( b&%) compared with the traditional
matrix multiplication, where N denotes the dimension of the signal. Even
for a typical value N = 102, this is around 100 times faster. Nowadays, one
of the main difficulties in using compressed sensing in real-world applications
is the dimensionality scaling problem in the sense that for high-dimensional
signals, the computational complexity of most of the algorithms prohibits
their application for recovery. By replacing the unstructured measurement
matrices by structured ones, e.g., partial Hadamard matrices constructed in this
chapter, one can get a huge gain in computational complexity and much better
dimensionality scaling without any loss in performance, e.g., measurement rate
or recovery distortion.






Multi-Terminal Compressed
Sensing

In this chapter, we follow two purposes. First, we show that the information theoretic
setting and the Hadamard construction that we developed in Chapter 4, which we
call single-terminal construction, can be extended in a natural way to a distributed
or multi-terminal scenario in which one observes a distributed signal via multiple
observation points (terminals). This is a typical scenario in a sensor network, where
different sensors observe, for example, the temperature or humidity in multiple
points in the environment and the goal is to recover the distributed signal by taking
sufficiently many measurements from different terminals. We show that in the
information theoretic limit, in order to be able to recover the signal, the required
measurement rate from each terminal can be fully characterized in terms of joint
and conditional Rényi information dimension of the multi-terminal signal.

Second, as it is difficult to analyze and fully characterize the required measure-
ment region for the Hadamard construction, we study the Gaussian case where the
measurement matrices are random Gaussian independent across different terminals.
In order to analytically study the problem, we extend the ‘Approximate Message
Passing’ (AMP) algorithm, initially developed for compressed sensing of signals
under i.i.d. Gaussian matrices, to a multi-terminal setting (MAMP algorithm). In
particular, we show that similar to its single-terminal counterpart, the behavior of
MAMP algorithm is fully characterized by a ‘State Fvolution’ (SE) equation for large
block-lengths. We use this equation to obtain the rate-distortion curve of a multi-
terminal memoryless source. We also extend the analysis to the spatially coupled
measurement matrices and show that the measurement rate region corresponding
to a low distortion (approximately zero distortion) regime is fully characterized by
the joint and conditional Rényi information dimension (RID) of the multi-terminal
source essentially proving that the information theoretic characterization and the op-
erational characterization meet each other. Simulations have been done to investigate
the empirical behavior of MAMP algorithm. It is observed that simulation results
match very well with predictions of SE equation for reasonably large block-lengths.

The structure of this chapter is as follows. In Section 5.1, we introduce the problem
and review some of the related works. We extend the Hadamard construction for
multi-terminal settings in Section 5.2. In Section 5.3, we develop a message passing
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algorithm for Gaussian measurement matrices and approximate it to get the MAMP
algorithm and study the asymptotic behavior of this algorithm as predicted by a state
evolution equation. Section 5.4 extends the results to spatially coupled Gaussian
matrices. Finally, in Section 5.5, we simulate the MAMP and compare the simulation
results with the theoretical results developed in this chapter.

5.1 Introduction and Related Work

Let (z™,y™) be a realization of a two-terminal memoryless sources (X,Y’) with a
probability distribution px y over R? and assume that one is interested in recovering
the signal in both terminals (z",y") by taking sufficiently many linear measurements
u = Az™ and v = By", where A and B denote the measurement matrices in T'x
(terminal X') and 7y (terminal Y') respectively. In particular, it is implicitly assumed
that the measurements are taken separately from each terminal whereas for the
recovery, one has access to the measurements (u,v) from both terminals. One can
compare this setting with a more general case where (2", y™) is considered as a 2n
dimensional signal and each measurement is a linear mixture of components of both x™
and y". The difference is that in the former each terminal takes measurements from
its own signal (separate measurements) but in the latter some coordination between
the terminals is necessary for taking the measurements (joint measurements). Because
of this separate measurement scheme, one can reasonably define the measurement
rate in a specific terminal as the number of measurements taken solely from that
terminal normalized by the signal dimension. Moreover, in a general multi-terminal
setup, we define the measurement rate from a subset of terminals to be the sum of
individual measurement rates in those terminals.

This problem in its general multi-terminal form arises in many distributed
processing systems. For example, in an ad hoc sensor network, a collection of sensors
measure a distributed environmental signal such as temperature, humidity, etc.
One can imagine a particular sensor as a terminal that takes a collection of linear
measurements and transmits the gathered data to a data fusion center by routing
via the other sensors. Because of limited communication and low processing power
of sensors, it is difficult to take joint measurements from two or several different
terminals even if they are very close to one another. Therefore, one can reasonably
assume that the measurements are taken separately from each terminal and processed
jointly in a data fusion center to recover the distributed signal. Usually there is a
high correlation among the terminals and one can exploit it to reduce the required
number of measurements. In particular, in a very low energy scenario such as a
sensor network this results in a saving in the energy consumption of devices, which
in turn, increases the life time of the network.

There are two different kinds of correlations that should be considered: temporal
and spatial. In a sensor network scenario, temporal correlations result because
of the slow changes of the natural phenomenon such as temperature, humidity,
etc. Temporal correlations usually can be moderated by suitable sampling time
and preprocessing of the signal before transmission. Spatial correlations are more
important and much more difficult to deal with. If the sensors are densely distributed
in the environment for precise data acquisition, the resulting measurements from
different terminals will be highly redundant thus the network energy resources are
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wasted without any significant gain. Therefore, it is always desirable to reduce the
number of sensors to a minimum possible and still be able to recover the environmental
distributed signal. Compared with a densely distributed sensor network, this is as
if no sensor is assigned to some of the terminals and as a result the measurement
rate from those terminals is 0. In both cases, one needs to characterize the required
measurement rate region of the terminals for recovery with an acceptable distortion.

This problem has been vastly studied under different signal structures and recovery
algorithms (in particular [22, 23]) as an extension of the traditional single-terminal
compressed sensing introduced in [1, 2]. Specially, it has been attempted to make
a connection between the multi-terminal compressed sensing and the distributed
source coding (Slepian-Wolf) counterpart in information theory; refer to [24] for
extra references. The main difficulty is that, unlike the single-terminal case where
the sparsity model works very well and provides fruitful results and intuitions from
a signal processing point of view, in the multi-terminal case it is difficult to find a
comprehensive model that on one hand models the sparsity of the signal in each
terminal and on the other hand takes into account the spatial correlation existing
among the different terminals.

In this chapter, for simplicity, we address a two-terminal scenario for a memoryless
distributed source (X", Y"™). The memoryless property of the source implies that
there is no temporal correlation between samples of the signals along the time. The
spatial correlation is modeled by assuming that the samples of the signals (X;,Y;)
are generated by a probability distribution px y. The extension to more than two
terminals is also straightforward.

We essentially follow the same notation as Chapter 4. In particular, we will use
d(X) = d(px) to denote the RID of a random variable with probability distribution
px. A closely related parameter to the RID is the MMSE dimension of X defined in
[69]. Let

mmse(s) = E(X - B(X|Y))? Y =sX + Z,

where Z ~ N(0,1) is a Gaussian random variable independent of X. The upper and
lower MMSE dimension of X are defined by

D(X) = limsup s mmse(s)

S—00

E(PX)
D(px)

=D(X) = lim inf s mmse(s),
and if both limits coincide then we define D(X) = D(X) = D(X). In [69], it was
proved that if H(|X]) < oo then

D(X) < d(X) < d(X) < D(X).

Hence, if D(X) exists so does d(X) and they are equal. For simplicity, we will
restrict ourselves to the space of linearly correlated random variables £ introduced
in Chapter 4, where a k dimensional random vector S is linearly correlated if there is
a sequence of independent non-singular variables Z” and a k x n matrix A such that
S = AZ™. This space is rich enough for most of the applications. Furthermore, over
this space it is possible to give a full characterization of the joint and the conditional
RID as explained in Chapter 4.
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5.2 Hadamard Construction for Multi-terminal A2A
Compression

In this section, our goal is to extend the A2A compression theory from the single-
terminal case to the multi-terminal one. In the multi-terminal setting, we have a
memoryless source distributed in more than one terminal and we are going to take
linear measurements from different terminals in order to capture the information
of the source. We are again interested in an asymptotic regime for large block
lengths. We will use an ensemble of distributed measurement matrices that we will
introduce in a moment. Similar to the single-terminal case, we are interested in
the measurement rate region of the problem, namely, the number of measurements
that we need from different terminals in order to capture the signal faithfully. For
simplicity, we will analyze the problem for the two-terminal case.

Definition 5.1. Let {(X;,Yi)}Y, be a two-terminal memoryless source with (X1,Y1)
being in L and having a distribution pxy over R2. The family of distributed mea-
surement matrices {®%, ®% }, indexed with a subsequence of N, is e-REP(px y) with
measurement rate (pg, py) if

H([va]‘b [YIN]II’(I):}:VX{V7 q)?]JVYIN)

lim sup <k, (5.1)
q—00 H([X{V]qv [YlN]q)
T Yy
lim sup N _ Pz, limsup MmN _ Py-
N—oo N—oo N

Remark 5.1. If (X,Y) is a random vector in L with d(X,Y") > 0, similar to what
did in the single-terminal case, dividing the numerator and the denominator in the
expression (5.1) by logy(q) and taking the limit as q tends to infinity, we get the
equivalent definition
A XY 94
d(X{V?YIN) =

which implies the equivalence of the information isometry and the Rényi isometry.

Remark 5.2. Notice that in the fully discrete case, the definition above is simplified
to the equivalent form

H(XN, v N|9% XY, 0% YY)

<e,

H(X{, YY)

my m¥
lim sup - = Pz, limsup =X = Py-
N—o00 N—o0 N

Similar to the single-terminal case, we are interested in the rate region of the
problem. We have the following converse and achievability results.

Theorem 5.1 (Converse result). Let {(X;,Y;)}X, be a two-terminal memoryless
source with (X1,Y1) being in L. Assume that the distributed family of measurement
matrices { %, DX} is e-REP with a measurement rate (pg, py). Then,

Pz + Py > d(XbYl)(l - 6)7
Px Z d(X1|}/1) — Gd(Xl,Yl), py Z d(Yi‘Xl) — Ed(Xl,}/l).
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N yN N N
(XY eR XYoL YY) < ¢. which
X7V, YY) -7

is equivalent to Tr(X1V, Y{Y; @% XN, &% YY) > d(X,Y{V)(1 —€). Therefore, we get

Proof. In the two-terminal case, e-REP implies that d

e+ mly = d@5 XY, YY) = Ia(XY, v 05 XN, 8417 = a(x ), v (1 - o),
x Y

which implies that " + ZX > d(X1,Y1)(1 — €). Taking the limit as N tends to

infinity, we get p, + py > d(X1,Y1)(1 — €). Similarly, we have

mf; > d(PRX]) > d(5 X |04 YY) = d(@F X1, @% YY) — d(@% YY)
> Ip(X], YN @R X1, 0% YY) — d(Y]Y) > d(XT, Y{V) (1 —€) — d(Y}Y),

where in the last inequality we used the e-REP property. This implies that ng\, >
d(X1|Y1) — ed(X1,Y7). Taking the limit as N tends to infinity, we get the result
pz > d(X1]Y1) — ed(X1,Y1). The other inequality follows by symmetry. O

Remark 5.3. This rate region is very similar to the rate region of the distributed
source coding (Slepian € Wolf) problem with the only difference that the discrete
entropy has been replaced by the RID, which again emphasizes the analogy between
the discrete entropy and the RID. Similar to the Slepian & Wolf problem, we call
Pz + py = d(X1,Y1) the dominant face of the measurement rate region.

Theorem 5.2 (Achievability result). Let {(X;, i)}, be a two-terminal memoryless
source with (X1,Y1) belonging to £ with d(X1,Y1) > 0. Given any (pz, py) satisfying

Pz + py > d(XbYl)a Pz = d(X1|Y1)7 Py > d(Y1|X1)a
there is a family of e-REP partial Hadamard matrices with measurement rate (pz, py)-

We have also the achievability result for the fully discrete distributions obtained
by extending the absorption phenomenon introduced in Chapter 2.

Theorem 5.3 (Achievability result). Let {(X;,Y;)}Y, be a discrete two-terminal
memoryless source with finite entropy. Then, there is a family of e-REP partial
Hadamard matrices {®%, D%} with (pz, py) = (0,0).

The proofs of Theorem 5.2 and Theorem 5.3 are given in Section 5.6.1.

5.3 Gaussian Measurement Matrices

Let (2", y") = {(=i,vi)}]=, be a realization of a two-terminal memoryless source
(X,Y) with a probability distribution pxy. Let u = Az™ and v = By" be the
measurement vectors, where A is an m, x n and B is an m, X n matrix whose
components are i.i.d. zero mean Gaussian random variables with variance m%g and
m%/ respectively. We define p, = == and p, = % as the measurement rates of the
two terminals.

In order to recover the initial signal (2" y"), we propose the following joint
message passing algorithm which is an extension of the single-terminal message
passing proposed in [20]. We assign a variable node to each component of 2™ and y"
and a check node to every measurement. Figure 5.1 shows the resulting graphical
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Figure 5.1 — Graphical Model Representation for Two-Terminal Compressed Sensing.
The external check nodes correspond to measurements whereas the internal check
nodes between z" and y" represent the joint distribution px y between (X;,Y;).

model, where the internal check node between variable nodes (x;,y;) denotes the
joint probability distribution pxy. This is used to model the correlation between x;
and y;.

Let a,b € [m,] and i, j € [n] be the indices for check and variable nodes in T'x
(X terminal) and let ¢,d € [m,] and k,[ € [n] be the corresponding indices for Ty
(Y terminal). The multi-terminal message passing algorithm is given by

TZ%’L' = Uq — Z Aajx;'*)aﬂ (52)
J€m\i
Si—}k = V¢ — Z Bcly;—mv (53)
le[n]\k
L =nf (> Awrhai Y. Baishg), (5.4)
be[mg]\a de[my]
y]tg—:lc = 77}5;( Z Abkrlﬁ—)k’? Z Bk’dstd—m)- (5'5)

Notice that the only interaction between the messages in Tx and Ty is via the
threshold functions ¥ and 1. In particular, if 5} only depends on the first argument
and if 7 only depends on the second argument, this message passing algorithms
is transformed into two independent message passing algorithms one running on
Tx and the other one on Ty. As the measurement matrices A and B are dense
matrices with columns that have ¢35 norms close to 1, it is possible to approximate
the above message passing algorithm. This has been done heuristically in Appendix
5.6.2. The resulting MAMP (multi-terminal approximate message passing) algorithm
is as follows, initialized with r=! = 0,57 ! = 0 and 20 = 3° = 0:
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<8177g3(14*7't_1 4 xt_l,B*St_l 4 yt—1)> 1

rt=u— Az’ — T (5.6)
Pz
SonY (A* t—1 t—1 B* t—1 t—1
st —v— By — (Oonf (A*r' ™t + 21 B 4y )>8t717 (5.7)
Py

2t = f(A*rt +at, B*st +y )
y' T =l (A%t + 2!, B* st 4+ oY),

where 7 € R™= and s’ € R™ are the residual terms and zf,3* € R" are es-
timates of the signals at time ¢ and where for a function f : R?> — R, 0;f
and d»f denote the partial derivative of f with respect to the first and the sec-
ond argument respectively. Moreover, with some abuse of notation, we assume
that n:(g', h') = (ne(g1, h1), ..., n:(g1, hy)) applies component-wise. Also for an n-
dimensional vector u", (u™) = 3% u; denotes the average of the elements of
u”.

It is also important to mention the appearance of Onsager terms in the Equations
(5.6) and (5.7) as also mentioned in [20, 21]. This term can be considered as a second
order correction for the mean field approximation of the message passing algorithm
whose addition removes the correlation that exists between the fixed measurement
matrices A and B and the estimated signal (z¢,y') in the thermodynamic limit as
the system size n tends to infinity, which specially allows to completely describe the
system state with a state evolution (SE) equation.

Theorem 5.4. Let (z",y") be a realization of a memoryless source and assume
that (x',y")i>0 is the output of the MAMP algorithm as in Equations (5.6)-(5.9)
with Lipschitz continuous threshold functions nf and 0. Let 1 : R* — R be a
pseudo-Lipschitz function. Asymptotically as n tends to infinity

dem:z, ) = BO(X, 0 (X + 7820, Y +\[712,),
—Zwyz,yl = B (Yl (X + /7820, Y +\[712,)

almost surely, where (1%, Ty)t>0 satisfy the equation

1
it =024 w(x — (X + \JTEZ, Y +\[TLZ,))
W=yt E WX 4720, Y +\[712,))?

(-1 _ (=1

with 7z 7 =1y = o0, with Z,, Z, zero mean unit variance Gaussian variables
independent of each other and X and Y and with o2 and JZ denoting the measurement
noise variance in X and Y terminals.

Proof. The proof follows from the Bolthausen’s conditioning technique used in [21]
with the only difference that one should apply the conditioning to both terminals
instead of a single-terminal. O
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Remark 5.4. Theorem 5.4 provides a single letter characterization of the asymptotic
behavior of the MAMP, in the sense that to estimate a specific variable (X, Yy),
the effect of all the other variables is equivalent to adding a Gaussian noise with
variance (1%, 7). Moreover, replacing 1(a,b) = (a — b)?, one gets the mean square
error (MSE) of the estimator

:ct'H :1:2
o™ = 213 . I2  mx — e+ /r 20, Y +\/712,))?

[yt — I3

— 2 Y 2
W IR S B(Y = (X + i, Y + ﬁszy»

We will also consider a noiseless case where o, = o0, = 0, which using the
SE equation implies that the empirical error after ¢ iteration is given by p,7! and
pyTy- One can also simply check that choosing (17, 7;) to be the MMSE estimator
minimizes the resulting error. We will always assume that the distribution of the
signal is known and we will use the MMSE estimator for (n7,7n¢), thus the resulting
SE equation is

7 = —mmse(X|X + \/7Z$,Y+ \/>Z (5.10)
;H mmse (Y|X + \/7Z$,Y+ \/>Z (5.11)

The behavior of MAMP depends on the stable set of the SE equation. Proposition
5.1 states that for the special choice of MMSE estimators for ¢ and 7/, this stable
set is a fixed point.

Proposition 5.1. For a given py, py and starting from ng_l) = 7-@5_1) = 00, the state
vector (11, 7)) given by the SE equations in (5.10), (5.11) converges to a well-defined

fized point.

Proof. 1t is sufficient to prove that the resulting sequence is non-increasing thus

converging to a well-defined fixed point. We use induction on ¢t. For ¢t = 0, this
B(X?) (-1)

obviously holds because 7-0 < < Tp = oo and the same holds for 7'0 From the
Data Processing inequality, (7% t+1 t“) re 1ncreasmg functlon of (%, y) Therefore,
using the induction hypothes1s 7t <771 and 7' < 7' , it immediately results that
;‘H < 7! and 7'5“‘1 < Ty. O

5.4 Spatially Coupled Gaussian Measurement Matrices

In the single-terminal case, it has been already observed that with traditional
Gaussian matrices, the required measurement rate for complete recovery of the signal
is far from the optimal rate given by the RID and spatial coupling is necessary to
reduce the required measurement rate down to RID. The situation is very similar to
coding theory where the BP threshold associated to a message passing algorithm is
different from the optimal MAP threshold and extra spatial coupling is necessary to
approach the optimal rate [70].

We briefly describe the structure of a spatially coupled measurement matrix as
n [53]. We consider a band diagonal weighting matrix W of dimension L, X L,
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v

v _

Figure 5.2 — The Structure of a band-diagonal Gaussian matrix with non-homogenous
entry variances.

which is roughly row stochastic, i.e. % <> e Wie < 2. In order to obtain the final
measurement matrix, we replace every entry W, . by a i.i.d. M x N Gaussian matrix

C

with entries having variance V[]/\Z , thus the final matrix will be m xn where m = M L,
and n = NL. and the resulting measurement rate is p = 7r = AJ\/%CT Figure 5.2,
borrowed from [53], shows a typical structure of a band diagonal matrix.

Each component of W,.. corresponds to one block containing an M x N matrix.
Following the notations of [53], let C = {1,2,..., L.} and R={1,2,..., L.} denote

the row and column indices of these blocks. Let us define the following operators
mmsey (g, 5y) = mmse(X |\/s: X + Zy, /5, + Zy),
mmse, (8z, sy) = mmse(Y |\/5, X + Z;, \/5,Y + Z,).

In the two-terminal case, for simplicity, we will use the same weight matrix in both

terminals and the final measurement rate for each terminal can be controlled by the
aspect ratios d, = % and d, = % of the corresponding sub matrices.

Definition 5.2. For a roughly stochastic matrix of dimension L, X L., the state evo-

lution sequence {¢"(t), ¥"(t) =0 and {¢¥(t), V¥ (1) }iz0, ¢°(t) = (d5(t))acr, ¥°(t) =
(Y2(t))iec with o € {x,y} is defied as follows: ?(0) = oo, i€ C, and for allt >0,

Bt = 03+ 5 S Waswf(0), (512)
% 4eC
POt + 1) = mmseo (Y Woidh (8) 1D Wi (1)), (5.13)

beR beR
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where o2 is the variance of the measurement noise and 8, = %‘) is the measurement
o

rate of the sub-matrices for terminal o € {x,y}.

Quantities 1;(¢) and ¢,(t) correspond to the asymptotic MSE of the MAMP. In
particular, ¥;(t) is the asymptotic MSE of the variables located in block ¢ € C and
¢a(t) is the noise variance in the residual terms corresponding to row a € R as we
will explain later. Using a {¢, 1} sequence for each terminal, it is possible to define
the following MAMP algorithm. Let Q! be an m x n matrix whose 4, j component is
given by

or(t)”!
L, _
k=1 ch¢k(t) !
where 7 is the row index of the measurement 7 and ¢ is the column index of the

variable j, thus it is a block constant matrix. We also define the MMSE threshold
functions as

Qi = (5.14)

nti(gir hi) = BX|X + 57 ()7 Zo = g5, Y + s{(t) 7 Zy = ha),

with s2(t) = 3 ,er Wa,c9S(t) L, where ¢ is the column index of variable i. The MMSE
estimator for Ty is defined similarly. We also assume that both estimators apply
component-wise, i.e. 7(g', h!) = (7e.1(g1, h1), -+, nea(g1, ). With these notations,
the MAMP can be written as follows

e =t + (Qy © A) g,y 4+ (Q © B)'ry),

t_ topt ot
rp,=u—Az"+b, Or, ",

Y=l (et + (QF © A)'rh, '+ (Q) © B)'ry),
ri=v— By +b ol

where A and B denote the spatially coupled measurement matrices, u = Az, v = By
are the measurements, r, and r, are residual terms, @), and @, are defined according
to Equation (5.14) and b, and b, are defined as follows. Let C(c) denote all the
variables 7 with column index ¢ € C and let

(O, = (Ounf (a! + ((Q © A)'rh)i, vk + (@4 © B)'rh)s)

where the average is taken over all variables belonging to the the column block c.
We define b, as a column vector of length m which takes the same value for all
components belonging to a row block r € R and is defined as follows

1 Nt— x
btx,i = 5 Z Wn,cQZi,i <8177t71>c )

% ceC

where r; is the row block that 7 belongs to and Qt is a L, X L. matrix defined by
Nﬁyc = }'j“] for any 7 that belongs to the row block r and any column that belongs
to the column block c. Notice that Q! itself is also block-constant, therefore it is not
important which i or j is taken from the block. A similar expression holds for the b;
by replacing 917!, with 82775, Q! with Q; and o, by 0.

Using similar steps as in [53], it is possible to show that the performance of the
MAMP algorithm can be described by the state evolution formula given in Equation

(5.12) and (5.13), where the number of states is equal to 2(L, + L.).
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Theorem 5.5. Let (z",y"™) be a two-terminal signal and let w = Ax™ and v = By",
where A and B are spatially coupled matrices with the same weight matriz W.
Let (2%, y') be the output of the MAMP algorithm described by Equations (5.15)-
(5.18), where {@°(t),¥°(t) }1>0,0e{x,y} s obtained from the SE equation (5.12)-(5.13).
Asymptotically, as Ny, Ny go to infinity

1 2
~ Z —Hﬁx()ﬁ > (i —yh)? = ().
JGC i) Y jec()
Based on the results proved in [53] for the single-terminal case and the lower
bound proved in Theorem 5.1, it is possible to give the following characterization for
the achievable measurement rate region in the multi-terminal case.

Theorem 5.6. Let (X,Y") be a linearly correlated two-terminal source and let py, py €
[0, 1] be such that

pe > d(X|Y), py > d(Y|X), ps + py > d(X,Y). (5.19)

There is an ensemble of spatially coupled measurement matrices that separately
captures the signals in the two-terminals and an MAMP algorithm that jointly
recovers the signals in each terminal with a negligible distortion.

Remark 5.5. The optimal measurement rate region given by Equation (5.19) is
very similar to the Slepian- Wolf rate region for distributed source coding where the
RID in the compressed sensing setting plays a role similar to the discrete entropy in
distributed source coding.

Proof. We prove that the corner points (d(X),d(Y|X)) and (d(Y),d(X|Y)) are
achievable under MAMP. In the single-terminal case, if p, > d(X) asymptotically
the signal in T'x can be recovered with a negligible distortion. In the multi-terminal
case, if we consider only the terms related to Tx, from Equation (5.12)-(5.13), we
have

Zwmwz ),

1€C

Y7 (t + 1) = mmse, Z Wy z¢b Z Wy z¢b

beR beR

CE

As 1, n, are MMSE estimators, from the Data Processing inequality, one can check
that mmse,(sz, sy) and mmse,(s;, sy) are decreasing functions of s, and s,. This
implies that mmse, (g Woidf ()71, Sper Wo,idh (£) 1) is less than or equal to
mmse (3 per Wei#% (t) 71, 0), which is equal to the variance of the MMSE estimator
for X which does not use the information of Y. One can also check that the SE
equation is increasing with respect to ¢ (¢), which implies that the ¢* sequence
for the MAMP is dominated by the ¥”* sequence of a single-terminal AMP, which
converges to 0 for any p, > d(X) as proved in [53]. If ¢)F(t) converges to zero so
does the ¢¥ sequence, thus the SE equation for Ty will be as follows

ou(t) Z Wa,i! (t)
Y iecC

Y (t +1) = mmsey (00, Y Waigp(£)™"),

beR
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which using the same steps as in the single-terminal case, can be proved to converge
to zero provided that

py > limsup s mmse(Y'| X, /sY + Z,) = d(Y|X),
§—00

where Z, is a zero mean unit variance Gaussian noise and where we used the fact
that for the class of linearly correlated signals that we use, d(Y|X) is well defined.

Similarly, it is possible to prove that (ps, py) = (d(X|Y),d(Y)) is also achievable.
Furthermore, any point on the dominant face is also achievable because if we consider
two ensembles of measurement matrices (Aj, B1) and (A, By) with rate vectors
Ry = (d(X),d(Y|X)) and By = (d(Y),d(X|Y)) achieving the two corner points
respectively, by diagonally concatenating r copies of the former with s copies of
the latter, one can get an ensemble with measurement rate T—isél + %R)g and a
negligible distortion.

The other points on the region are also achieved because their measurement rate
is larger than or equal to the measurement rate of at least one point on the dominant
face, thus their distortion will be asymptotically negligible as well. O

5.5 Simulation Results

5.5.1 Signal Model

For simulation, we will use a linearly correlated random vector from Lo whose
independent constituents are random variables with Bernoulli-Gaussian distribution.
Let Z* be a sequence of independent random variables with a probability distribution
pi(z) = (1 — a;)00(2) + a;N(0, a%,z) where 0y is a delta measure at point zero
and N(0, 02, z) denotes the distribution of a zero mean Gaussian distribution with
variance o2. One can simply check that Var(Z;) = 1 and d(Z;) = ;. Let ® be a
2 x k real-valued matrix. The two-terminal linearly correlated source is given by ®Z*.
For this class of signals, the joint and the conditional RID are well-defined. Notice
that depending on the values of o; and the structure of the matrix ®, this model
can cover a wide variety of correlations between the signals in two terminals. In
Appendix 5.6.4, we have obtained a closed-form expression for the MMSE estimator
(n®,mY) of this source in the presence of the Gaussian measurement noise which we
will use as a denoising (threshold) function in MAMP algorithm.

5.5.2 Performance without Spatial Coupling

In this section, we use the message passing algorithm given by Equations (5.6)-(5.9) to
recover a linearly correlated Bernoulli-Gaussian signal for the noiseless measurements
taken from both terminals.

Comparison of the Empirical Results and SE predictions

We consider a very simple case where Z1, Zy, Z3 are three Bernoulli-Gaussian random
variables with d(Z1) = d(Z3) = 0.2 and d(Z2) = 0.3. The signal for the two terminals
is given by X = Z1 + Zs and Y = Zy + Z3, thus Z; and Z3 are the private parts of
the signals and Z5 is the common part which creates correlation between X and Y.
It is easy to check that d(X) =d(Y) =0.44 and d(X|Y) = d(Y|X) = 0.248.
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Figures 5.3, 5.4 show the simulation results for p, = 0.5,p, = 0.6. It is seen
that there is a good match between the empirical variance of the estimator and
the predictions of the SE. Moreover, the algorithm can not fully recover the signal
which means that the SE equation has a fixed point other than (7, 7,) = (0,0). The
simulations has been repeated by increasing the measurement rate of the Ty from
py = 0.6 to 0.7. The simulation results have been depicted in Figures 5.5 and 5.6.
Plots show that this time the MAMP algorithm successfully recovers the signal of
both terminals. It is also important to notice that because of the correlation between
the terminals, increasing p, is helpful for recovering the signal in T'x.
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Figure 5.3 — Empirical and State Evolution result for T'x for p, = 0.5, p, = 0.6

Rate-Distortion Region

In this part, we run the MAMP algorithm for the same signal as in Section 5.5.2 for
different measurement rates. As a distortion measure, we consider the average of the
mean square error of the two terminals. Figures 5.7, 5.8, and 5.9 show a contour plot
of the Rate-Distortion curve for three sources with the same individual but different
conditional RID. The dashed lines show the boundary of the optimal pentagon. Low
distortion recovery is not possible outside this region.

In the extreme case where the signals in two terminals are independent from each
other, i.e., there is no common signal, the pentagon region reduces to a square region.
However, if there is no private signal then the signals in both terminals are the same
and the problem is reduced to a simple single-terminal problem. Obviously in this
case, because of the independence of measurement matrices in the two terminals,
individual measurement rates are not important as far as their sum is large enough.
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Figure 5.4 — Empirical and State Evolution result for Ty for p, = 0.5, py, = 0.6
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Figure 5.5 — Empirical and State Evolution result for Tx for p, = 0.5, p, = 0.7
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Figure 5.6 — Empirical and State Evolution result for Ty for p, = 0.5, p, = 0.7

This can be seen from Figures 5.7, 5.8, and 5.9, where we keep d(X) =d(Y) = 0.44
but gradually increase the share of the common signal, thus, as a result d(X|Y") and
d(Y'|X) start to decrease. It is observed that the contour lines gradually become
parallel with p, + p, = constant.

Notice that there is a huge gap between the low-distortion curve (distortion equal
to 0.1) and the optimal region. As we will see this gap is filled by using spatial
coupling and running MAMP.

Effect of Correlation between the Terminals

In order to investigate the effect of correlation between the two terminals, we have
plotted a low distortion contour of the three sources with the same d(X) = d(Y) =
0.44 but three different conditional RID 0.248, 0.1820 and 0.0916. Decreasing the
conditional RID while fixing the individual entropy, makes the signals in two terminals
more correlated. A low distortion curve of the three sources is plotted in Figure 5.10.
The plot shows that the required measurement rate is decreasing by increasing the
correlation.

5.56.3 Performance with Spatial Coupling

In this section, we simulate the SE equation for the MAMP algorithm. We consider
the same source as in Section 5.5.2 where d(X) = d(Y) = 0.44 and d(X|Y) =
d(Y|X) = 0.248. In order to approach the corner point (d(X),d(Y|X)), we consider
a measurement rate with 10 percent oversampling, i.e., p, = 1.1d(X) and p, =
1.1d(Y|X). The simulation results are shown in Figure 5.11. Similar to the single-
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Rate-Distortion Curve
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Figure 5.7 — Rate-Distortion region for a linearly correlated Bernoulli-Gaussian source
with d(X) = d(Y) = 0.44 and d(X|Y) = d(Y|X) = 0.248. The dashed lines show
the boundaries of the optimal region.
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Figure 5.8 — Rate-Distortion Region for the Linearly Correlated Bernoulli-Gaussian
Source with d(X) =d(Y) = 0.44 and d(X|Y) = d(Y|X) = 0.1802. The dashed lines
show the boundaries of the optimal region.
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Figure 5.9 — Rate-Distortion region for a linearly correlated Bernoulli-Gaussian source
with d(X) =d(Y) = 0.44 and d(X|Y) = d(Y|X) = 0.0916. The dashed lines show
the boundary of the optimal region.

Effect of Correlation on the Rate-Distortion Region

1 T T T T T T T T
0.8 |
[«b)
4; L i
o
= 0.6 F )
g
£ - RETTIE —
=
wn
5 04| )
=
ﬁ: L i
0.2 | 1 —
0 0.2 0.4 0.6 0.8 1

Tx Measurement Rate

Figure 5.10 — Effect of Correlation on the Measurement Rate Region. The low
distortion curve of three different two-terminal sources with the same individual
RID is plotted. The required measurement region of the more correlated source is
dominated by that of the less correlated one.
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Figure 5.11 — Spatial Coupling Wave for A Linearly Correlated Source with p, =
1.1d(X) and p, = 1.1d(Y'|X)

terminal case, one can observe a wave-like phenomenon that starts from the boundary
variables and proceeds towards the center recovering all the variables gradually. In
particular, to create the initial wave at the boundary, one needs to oversample the
boundary variables. Figure 5.12 depicts the simulation results for another experiment
where p, is kept fixed but p, is reduced. It is observed that, this time spatial coupling
wave proceeds to decode the variables in Tx. However the initially generated wave
in Ty stops after a while and can not proceed to recover all the variables in Ty.

By checking the results for the non-spatially coupled case, one can see that the
resulting MSE error decreases gradually by increasing the measurement rate. On
the contrary, in the spatially coupled case, either the generated wave proceeds and
recovers all the variables or it stops, thus asymptotically, there is a sharp transition
in the resulting MSE in terms of measurement rate.

For the same source, we have done the simulations to find boundary of the phase
transition. Figure 5.13 depicts the simulation result. It is seen that there is a good
match between the simulation and the boundary predicted information theoretically.

5.6 Appendix

5.6.1 Proofs of the Hadamard Construction

For n € Nand N = 27, let {(X;,Y;)}Y, be a sequence of random vectors in the space
L, with joint and conditional RID d(X,Y), d(X|Y) and d(Y|X). Let Z{¥ = HyX{¥
and assume that WlN =H NYlN . Let us define two processes I,, and J, as follows.

In(z) = d(Zi|Zi71)a Jn(z) = d(Wi‘Wliila Z{V>vi € [N]
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We can label I,, and J, by a sequence of b} as done for the single-terminal
case in Section 4.3.1, and convert them to stochastic processes I,, = I51582-Bn and
J, = JB1B2-Bn By this definition, one can prove the following proposition.

Proposition 5.2 (Multi-terminal RID polarization). (I, Fy,,P) and (J,, Fy,P) are
erasure stochastic processes with initial values d(X) and d(Y|X), both polarizing to

{0,1}.

Proof. For the initial value, we have Ip(1) = d(X;) and Jo(1) = d(Y1]|X1). As
{(X:,Y:)}Y | is a memoryless source, similar to the single-terminal case, it is easy to
see that I is an erasure process with initial value d(X;) and it remains to show that
J is also an erasure process but with initial value d(Y1|X1).

Let H=1, H' and h; denote the first i — 1 rows, the first i rows, and the i-th row
of Hy. As (X1,Y7) € L, there is a sequence of i.i.d. nonsingular random variables
E¥ and two vectors a¥ and b¥ such that X; = Y2 | a;F; and Y1 = Y8 b;E;. As
{(X,, Y;)}Y | is memoryless, there is a concatenation of a sequence of i.i.d. copies of
EY¥, E =[EF(1); E¥(2);...; EF(N)], such that

Z{ = Hx Xy = [Hy @ (af)']E, W' = HyY{" = [Hy @ (0))"1E

where ® denotes the Kronecker product and (a%), (b¥)! are the transpose of the
column vectors a¥ and b¥. Let

I'={0,0,,...,0x} (5.20)

be the random element corresponding to the © pattern of EF(j),j € [N], where
0, € {0, 1}*,j € [N]. Using the rank result developed for the RID, it is easy to see
that for every i € [N], we have the following:

Juli) = dWi Wi, Z17) = E{I([H"" @ (b)) H @ (a})']; s @ (8)") [Cr]}.

For i € [N], let 1, (@N) € {0,1} denote the random increase of rank of [H~! ®
(a¥)]cp. by adding h; @ (a¥). Now, consider the stage n + 1, where we are going to
combine two copies of H N to construct the matrix H on- Then, the row ¢ corresponding
to W; is split into two new rows i™ and i, which correspond to the row number
2i — 1 and the row number 2¢ shown below:

Hy® (af)" ,  Hy @ (a})

Hy @ (ab) , —Hy (af)!

hioi @ (), hio1 @ ()
@), —hi_1 @ (b))

i by
hi (0, hi® (bf)

Similar to the single-terminal case, we see that adding h; ® (b¥) increases the
rank of the matrix if it increases the rank of either the first or the second block. In
other words,

13i-1(07Y) = 1,(07) + Li(03% 1) — Li(01)1,(03Y.1),
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where 1;(0]),1;(03;) € {0,1} are the corresponding amount of increase of the
rank of the first and second block by adding the i-the row. In particular, ©Y and
Of are iid. so are 1;(©)) and 1,(©%",,). Taking the expectation value, similar to
what did in the single-terminal case, we obtain that

Jo())T = 2J,(1) — Jn(i)2 (5.21)

which together with (5.21), implies that J,, (i)~ = J,(i)?. Therefore, J is also an
erasure process with initial value d(Y|X). Similar to the single-terminal case, one
can also show that the shufled Hadamard matrix H ~ can be replaced with Hy and
the permutation matrix By is not necessary. ]

The next step is to construct the two-terminal measurement ensemble. Let n € N
and N = 2". We will construct ®%; by selecting those rows of the Hadamard matrix,
Hy, with I,(i) > ed(X). Similarly, ®% is constructed by selecting those rows of Hy
with J,,(¢) > ed(Y|X). It remains to prove that the family {®%, ®} labeled with
N, a power of 2, and of dimension m%, x N and m¥; x N is e REP with measurement
rate (d(X),d(Y|X)). By this construction, we can achieve one of the corner points
of the dominant face of the rate region. If we switch the role of X and Y we will
get the other corner point (d(X|Y),d(Y)). One way to obtain any point on the
dominant face is to use time sharing for the two family. However, it is also possible
to use an explicit construction proposed in [71], which directly gives any point on
the dominant face of the measurement rate region without any need to time sharing.
We will just prove the achievability for the corner point (d(X),d(Y|X)).

Proof of Theorem 5.2. We first show that the family {®%, ®% } has measurement
rate (d(X),d(Y|X)). Notice that the processes I, I¥ converge almost surely thus,
thay converge in probability. Specifically, considering the uniform probability as-
sumption and using a similar technique as we used in the single-terminal case, we
get the following:

A ) € [N]: I%(i) > ed(X
limsupwzlimsup #{i € [N]: I} (i) > ed(X)}
N—o00 N—oo N
= limsup (I} > cd(X)) = P(I%, > cd(X)) = d(X).
n—oo

Y
Similarly, we can show that im supy_,., ‘= = d(Y|X).

It remains to prove that {®%, %} is eREP. Let Sx = {i € [N] : I,(i) > ed(X)}
and Sy = {i € [N] : J,(i) > ed(Y|X)} denote the selected rows to construct
{®%,®%} and let ZI¥ = Hy X} and W} = HyY{" be the full measurements for
the  and the y terminal. Let B = S N[i — 1] and B} = S§ N [i — 1] be the set of
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all indices in S§ and S5 less than ¢. We have

dX{, YV Zs . Ws,) = d(Z) , W' | Zs,, W)

< A2\ Zs ) + AW |21, Ws, )

< Y dZilZgx, Zs) + Y d(WilWyy, Ws,, Z1)
€SS €SS

<N d(Z)|zZih + Y dwgwiTh Z))
€55 €SS,

< Ned(X)+ Ned(Y|X)
= ENCl(X, Y) = ed(X{Va YIN)a

which shows the eREP property for the ensemble {®%;, ®%}. O

Achievability proof for the discrete case: In the fully discrete case, the con-
struction is very similar to the mixture case with the only difference that instead of
using the RID, we will use the entropy. Similar to the single-terminal case, we can
prove the following.

Lemma 5.1. (I,, Fp,P) and (Jp, Fn,P) are positive martingale converging to 0
almost surely.

We again construct the family {®%,®% } by selecting those rows of Hy with
I, > eH(X) and J, > eH(Y|X).

Proof of Theorem 5.3. Similar to the single-terminal case, it is easy to show that
{®%, @4/} has measurement rate (0,0). It remains to prove that {®%, %} is eREP .
Let Sx ={i € [N] : I,(i) > e H(X)} and Sy = {i € [N] : J,(i) > e H(Y|X)} denote
the selected rows to construct {®%, ®%} and let ZI¥ = Hy X' and W{¥ = HyY{Y
be the full measurements for the X and the Y terminal. Let BX =S¢ N[1:4— 1]
and BY =S¢ N[1:4— 1] be the set of all indices in S and S¢ less than i. We have
the following;:

H(X{V7Y1N‘ZSX7 WSY) - H(Z{Vv WlN‘stv WSY)
< Z H(Zi’ZBiX?ZSX)_'_ Z H(Wi|WBZ?’7WSY?Z{V)

i€Ss ieSs
< H(Z|zi7hY+ > Hwwit, z1)
i€Ss i€se

< NeH(X)+ NeH(Y|X)
= eNH(X,Y) = e H(X{, V"),

which shows the e-REP property for the two-terminal ensemble {®%,, ® }. O

5.6.2 Heuristic Derivation of the Multi-Terminal AMP

In this section, we try to heuristically obtain an approximation to the message passing
algorithm given by equations (5.2)-(5.5). Our derivation is similar to the heuristic
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derivation of the single-terminal AMP in [21]. Intuitively as the measurement
matrices A and B are dense, any two messages emanating from the same check
node are only slightly different from each other. The same is true for the messages
emanating from a variable node. For example, if one considers messages from check
nodes to variable nodes

aﬁz = Z Aaj j—a — Ua — Z A‘U‘x;%a + A‘”ﬂjgﬁ‘”
jen)\i j€ln]

it is seen that for a fixed a € [m,], r’_,; for different values of i € [n] are different
because of the appearance of the last term Ag;z!_,, which is of the order O(\/%) ~

O(ﬁ) as m; and n are assumed to be proportional. Similarly, considering the
messages from variable nodes to check nodes,

t+1
Tisa = nt Z Ablrb—)z? Z Aczsc—n

be[mg]\a c€[my]
( Z Abirlta—n' - Aai/r(tl—)i? Z Acisi—m’)a
be[mz] Ce[my]

it is observed that for a fixed i € [n], the difference of messages '} for different
values of a € [m,] is again of the order O( ﬁ) Therefore, one gets

t .t t t _ .t t
Tasi = Tq + 5ra—>i y Sesk = Sc + 5sc—>k’

t ¢ ¢ ot ¢
Tiq =T +0Ti 0 s Yisa = Yi +0Yias

where the § terms are of the order O(T) Replacing in Equation (5.2) and (5.3),
one obtains

TZ + 5sz—>i = Uaq — Z Agj (ac; + 555;‘—>a) + Aai(l'z + 593§—>a,)7

Jj€(n]
32 + 53?:—% = Ve — Z Bcz(yf + 6ylt—>c) + Bck(yltc + 612—)0)'
l€[n]
The terms Ag;dz!_,, and Bedyl_, . are of the order O(%) and negligible asymptotically.
Thus, one obtains that
rt=u, — Z Aaj(:cg» + 5$§_m) ort L, = Agit, (5.22)
i€
Si = Uc — Z Bcl(ylt + 6yf—>c) ) 6S§€—>c = Be, yi (5.23)
l€[n]

Replacing in Equations (5.4) and (5.5), it results that

sl =nf (Y Aw(rp+ Awal), > Bai(sh+ Baiyl))

be[mg]\a demy]
(D Api(rh+ Awal), > Buai(sh+ Baiyl))

+ 6177f( ey )Am‘(’r‘z + AMSCI;)
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This implies that

et =i+ Y Awrh, yi+ Y Bash), (5.24)
be[my] de[my)

Sxttl = oyn¥ (al + S Awrh s yi 4+ D Baish)Aairh, (5.25)

bE[ma) de[my]
where one uses the fact that for any i € [n], > ,cm,) A% ~ 1, and Agiorl_; = O(%)

thus negligible as n tends to infinity. A similar argument holds for the Ty giving

=t D0 Awrl, i+ Yo Bawsa), (5.26)
Syl = 0ol (xh+ Y. Awrl ., yk+ Y. Barsh)Barl. (5.27)

be[mg] de[my]

Replacing (5.25) in (5.22) and (5.27) in (5.23), and using the approximation A2, ~ -

My

and Bfk ~ -1 one obtains that

R
my

Nicm O T )

rt =g — Agzt + _— T,
O n% t—1 A* t—1 ,t—1 B* t—1
=g — At ¢ AEET FATT VT BET)) 1 (g
Px
where A, denotes the a-th row of the matrix A. Similarly,
Oom (=t oyt
52 — e — B + Zle[n] n (z) 1 )Si_l
My
) Y l‘t_l —l—A*’l“t_l, t—1 +B*St—1
=v. — Bey' + (Oar 5 Y )>s§—l. (5.29)
y

Equations (5.24), (5.26), (5.28) and (5.29) give the the MAMP algorithm.

5.6.3 Heuristic Derivation of the State Evolution

To give an intuitive justification (as in [21]) for the validity of SE for the two-terminal
AMP in Equations (5.10) and (5.11), consider the following version of the AMP
where at each iteration ¢, the measurement matrices A and B are replaced with
independent copies and where we drop the Onsager term in Equations (5.6) and
(5.7). In other words, let u' = A(t)xo + w, and v' = B(t)yo + w, be the noisy
measurements at iteration ¢, where w, and w, are additive noises consisting of i.i.d.
zero mean with variance o2 and JZ respectively. The new AMP algorithm can be
written as follows

rt=aul — A(t)zt | 2 =P (AR + 2, B(t) st + 4Y),
st =o' = B(t)y', ¥yt =0l (A@t) ' + o', B(t)*s' + ).
The first equation can be simplified to the following form
'™ = nf (o + A(t) we + (I — A1) A1) (2" — o),
Yo + B(t) wy + (I = B(t)"B(t))(y' — yo))-
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Conditioned on w,, A(t)*w; is an n dimensional vector with i.i.d. Gaussian compo-

nents with zero mean and variance % ~ 02. Moreover, in the asymptotic limit as
n gets large, by central limit theorem, each row of I — A(t)*A(t) consists of approxi-
mately Gaussian random variables with variance ;- = p%' Similarly, the components
of B(t)*w, are i.i.d. Gaussian with zero mean and approximate variance 05 and each
row of I — B (t ) B(t) converges to independent zero mean Gaussian variables with
variance - = Hence, the components of A(t)*w, + (I — A(t)*A(t))(a! — xo) are
approx1mately éaussmn with variance

1t — ol

t 2
= 5.30
R (5.30)
At t = 0, with the initialization 2° = 0, one obtains that
1 ||z 1
70 = §+—@—>a§+—E(X2),

Pz N Pz

which is compatible with the SE initialization. A similar derivation gives Tg =

UZ + éE(YQ). Moreover, by induction on ¢, one can simply check that at iteration

t+1,
=0 (X + /1820, + /7 2,)

Thus, replacing in Equation (5.30) and using a similar argument, one obtains that
for the iteration t + 1,

t+1

=+ — @03 2
TR S B - (X 4\ 720 Y [T Z,)

which implies that at iteration ¢ + 1:
1
=0l 4 B (X 2 Y [T
X

A similar argument gives the corresponding equation for 7';:

i+l = o2 + E — (X 7820, Y + [ 2,)2.

5.6.4 MMSE Estimator Linearly Correlated Bernoulli-Gaussian Signals

Suppose Z* are independent Bernoulli—Gaussian random variables with probability
distribution p;(z) = (1 — a;)d(2) + a;N(0, = ;7). Let A be atx k matrix and let
S = AZ* be a t dimensional linearly correlated signal. Suppose O = S + N is the
observation vector, where N is a t x 1 zero mean Gaussian measurement noise with
a covariance matrix .. We denote by 7;(z) = E(S;|O = x) the MMSE estimator of
S;, the i-th component of the signal, given a t x 1 observation vector O = z. We will
compute 71 (z). The other estimators can be computed similarly.

It is easy to check that one can represent Z;, i € [k] by ©;N;, where OF are
independent binary random variables with P(©; = 1) = a; and N* are independent
zero mean Gaussian variables with variance a% Assume that ¥ is the covariance

matrix of N* with diagonal elements ¥;; = O% and zero elsewhere. Let a1 denote the
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first row of A and assume that for a given binary sequence 6% and for an arbitrary
n x k matrix B, B(6*) denotes an n x k matrix whose i-th column is the i-th column
of B provided 0; = 1 and zero otherwise.

Using the conditioning on ©%, we have

m)= > E(S1]0 =10 =0"P0"0 = ).
0ke{0,1}+

Conditioned on 6%, S = a1(0¥)N is a zero mean Gaussian with variance a; (6%)% a; (6%)*.
The observation vector is also Gaussian with a zero mean and a covariance matrix
A(6F)S A(0%)* + %, thus the estimation of S is reduced to a Gaussian estima-
tion problem where the estimator is known to be a linear function of observa-
tion. Let S1 (0%, ) = a(0¥)ZA(0%)(A(OF)SA(O%)* + £)~'z. Tt is easy to check that
E(S1|O = x,0% = %) = 51(6%, x). Therefore, one obtains

251 ,2)P(0F|0 = ) =

:Zekéﬁ(@'ﬂ 2)P(6F)N(0, A(6 ) A(0F)* + 5, 2)
S P(OF)N(0, A(0F)SABF)* + 5,2)

251 )P (0%)po(x|0%)

where N(u,C,x) = \/W xp(—3(z — p)*C~(x — p)) denotes the Gaussian

distribution with mean p and covariance matrix C.



Entropy Power Inequality for
Integer-valued Random
Variables

In Chapter 2, we observed that in order to prove the absorption phenomenon for
integer-valued random variables, it is sufficient to find a lower bound for the gap
between the conditional entropy of sum and the individual conditional entropy of
a pair of random variables in terms of their individual conditional entropy'. To be
more precise, suppose that (X,Y) are integer-valued random variables with a given
conditional entropy H(X|Y) = ¢ for some ¢ € Ry and let (X', Y”’) be an independent
copy of (X,Y). We needed to show that there is a universal function g : Ry — R4
such that for any pair of integer-valued random variables (X,Y") and its independent
copy (X', Y7),

H(X + X'|Y,Y') — H(X|Y) > g(H(X|Y)). (A1)

We also required that g be increasing and strictly positive except in the origin
where g(0) = 0. It is important to emphasize that for the proof of the absorption
phenomenon, g must be a universal function not depending on a specific pair (X,Y")
but their conditional entropy H(X|Y).

It is interesting to know that finding universal functions like g as in Equation
(A.1) that establish universal bounds or inequalities between information measures
is vastly studied in information theory, with the first result proposed by Shannon
himself generally known as Entropy Power Inequality (EPI) [29]. EPI yields lower
bounds on the differential entropy of the sum of two independent real-valued random
variables in terms of the individual entropies. Versions of the EPI for discrete
random variables have been obtained for special families of distributions with the
differential entropy replaced by the discrete entropy, but no universal inequality
is known (beyond trivial ones). More recently, the sumset theory for the entropy
function provides a sharp inequality H(X + X') — H(X) > £ — o(1) when X, X’
are i.i.d. with high entropy [72]. We strengthen this result by finding a universal
lower bounds which holds for all range of values of H(X) not necessarily large ones.
Moreover, we extend the result to non-identically distributed random variables and
to conditional entropies.

!This chapter is the result of collaboration with Emmanuel Abbe and Emre Telatar. I am also
grateful to Christophe Vignat for helpful discussions on this problem.
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The structure of this appendix is as follows. In Section A.1, we overview a history
of the EPI and recent results and extensions. In Section A.2, we state the main
results that we obtained and give further intuitions. Section A.3, explains the proof
techniques. Finally, in Section A.4, we explain some open problems and state a
conjecture under which one can further strengthen the proven lower bounds.

A.1 History and Introduction

For a continuous random variable? X on R”, let h(X) be the differential entropy

of X and let N(X) = 27MX) denote the entropy power of X. If Y is another
continuous R™-valued random variable independent of X, the EPI states that

N(X+Y)>N(X)+N(Y), (A.2)

with equality if and only if X and Y are Gaussian with proportional covariance
matrices. A weaker statement of the EPI, yet of key use in applications, is the
following inequality stated here for n =1,

h(X + X') — h(X) > =, (A.3)

N

where X, X’ are i.i.d., and where equality holds if and only if X is Gaussian.

The EPI was first proposed by Shannon [29] who used a variational argument
to show that Gaussian random variables X and Y with proportional covariance
matrices and specified differential entropies constitute a stationary point for h(X +Y").
However, this does not exclude saddle points and local minima. The first rigorous
proof of the EPI was given by Stam [73] in 1959, using the De Bruijin’s identity
which connects the derivative of the entropy with Gaussian perturbation to the
Fisher information. This proof was further simplified by Blachman [74]. Another
proof was given by Lieb[75] based on an extension of Young’s inequality.

While there is a wide variety of entropic inequalities, the EPI is the only general
inequality in information theory giving a tight lower bound on the entropy of a sum
of independent random variables by means of the individual entropies. It is used as
a key ingredient to prove converse results in coding theorems [76-80)].

There have been numerous extensions and simplifications of the EPI over the
reals [81-91]. There have also been several attempts to obtain discrete versions of the
EPI, using Shannon entropy. Of course, it is not clear what is meant by a discrete
version of the EPI, since (A.2), (A.3) clearly do not hold verbatim for Shannon
entropy.

Several extensions have yet been developed. First, there have been some extensions
using finite field additions, for example, the so-called Mrs. Gerber’s Lemma (MGL)
proved in [92] by Wyner and Ziv for binary alphabets. The MGL was further extended
by Witsenhausen [93] to non-binary alphabets, who also provided counter-examples
for the case of general alphabets. More recently, [94] obtained EPI and MGL results
for abelian groups of order 2". Second, concerning discrete random variables and
addition over the reals, Harremoes and Vignat [95] proved that the discrete EPI holds
for binomial random variables with parameter %, which later on was generalized by

2All continuous random variables are assumed to have well-defined differential entropies.
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Sharma, Das and Muthukrishnan [96]. Yu and Johnson [97] obtained a version of
the EPI for discrete random variables using the notion of thinning.

More recently, Tao established in [72] a sumset theory for Shannon entropy,
obtaining in particular the sharp inequality

H(X+X')—-H(X)>=-o(1),
where o(1) vanishes when H(X) tends to infinity. Further results were obtained for
the differential entropy in [98].

We are mostly interested in integer-valued random variables with arithmetic over
the reals. We show that there exists an increasing function ¢g : R4 — Ry, such that
g(c) =0 if and only if ¢ = 0, and

H(X + X') - H(X) > g(H(X)),

N

for any i.i.d. integer-valued random variables X, X’. Although we have provided
an explicit characterization of g, we found that even proving the existence of such
a function (without explicit characterization) is equally challenging. We further
generalize the result to non-identically distributed random variables and to conditional
entropies.

To briefly overview the notations: the set of integers and reals will be denoted by
Z and R. Similarly, Z, and R will denote the set of positive integers and positive
reals. We will use capital letters for random variables and lower case letters for their
realizations (the random variable X can have realization x). The natural logarithm
and the logarithm in base 2 will be denoted by In and log, respectively, and for
x € [0,1], ha(z) = —zlogy(z) — (1 — z)logy(1 — =) will denote the binary entropy
function with the convention that 0log,(0) = 0. The entropy of a discrete random
variable X in base 2 (bits) will be denoted by H(X). We will interchangeably use
H(p) or H(X), where p is the probability distribution of X. The conditional entropy
of a random variable X given another random variable Y will be denoted by H(XY").
For a,b € R, we will use a Vb and a A b for the maximum and minimum of ¢ and b.
Also, at = a V 0 denotes the positive part of a.

A.2 Statement of the Results

In this section, we will give an overview of the results. The first theorem gives a
lower bound on the entropy gap of sum of two i.i.d. random variables as a function
of their entropies.

Theorem A.l. There is a function g : Ry — Ry such that for any two i.i.d.
integer-valued random variables X, X',

HX+X")—-H(X)>g(H(X)). (A.4)

Moreover, g is an increasing function, lim. . g(c) = %logQ(e) and g(¢) =0 if and
only if ¢ = 0.

Remark A.1. The function g in Theorem A.1 is given by
1—x)%((1 - 4x — 2)1)?
L (=221 —2) v (42 —2)") ng(e)}'

8
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Remark A.2. As we mentioned in the introduction, a recent result by Tao [72]
implies that for i.i.d. integer-valued random variables X, X' of very high entropy,
HX+X)-HX) = % In comparison with this result, we get an asymptotic
lower bound of é log,(e) =~ 0.18, which is also valid for the general independent case

provided that the entropy of both random wvariables approaches infinity.
The next theorem extends the i.i.d. result to the general independent case.

Theorem A.2. There is a function g : Rf_ — Ry such that for any two independent
integer-valued random variables X, X',

H(X)+ H(X)
2

H(X +X') - > g(H(X),H(X")).

Moreover, g is a positive and doubly-increasing’® function, lim ¢ 4) s (c0,00) g(c,d) =
%logz(e) and g(c,d) = 0 if and only if c =d = 0.

Remark A.3. One might be tempted to prove the stronger bound

H(X +X') - (H(X) Vv H(X')) = g(H(X), H(X")), (A.5)
for some doubly-increasing function g. However, this fails because, for example,
assume that X, X' are random variables uniformly distributed over {1,2,..., M} and
{1,2,...,NM}, for some number N > 2. It is not difficult to show that

N+1

H(X +X') = (H(X) vV H(X")) < log,( );

which decreases to 0 with increasing N. Hence, the strong inequality (A.5) does not
hold universally over all integer-valued random variables.

The next theorem extends the results in Theorem A.1 to the conditional case.

Theorem A.3. There is a function g : Ry — Ry such that for any two i.i.d.
integer-valued pairs of random variables (X,Y) and (X', Y"),

HX+X'|V,Y) - H(X|Y) > gH(X|Y)).
Moreover, g : Ry — Ry is an increasing function and g(c) = 0 if and only if ¢ = 0.

Remark A.4. The function g is given by

g(e) = min {(g(c,c) ~ ha(3)) V &gle,c)}, (A.6)
€[0,35]

where g is as in Theorem A.2.

A.3 Proof Techniques

In this part, we will give an overview and also some intuition about the techniques
used to prove the theorems. For clarity of the explanation, we have postponed some
of the proofs to Section A.5.

3A function g : R2 — Ry is doubly-increasing if for any value of one of the arguments, it is an
increasing function of the other argument.
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A.3.1 EPI for i.i.d. Random Variables

We will start from the EPI for i.i.d. random variables. The main idea of the proof is
to find suitable bounds for H(p x p) — H(p) in two different cases: one case in which
p is close to a spiky distribution (a unit mass at a single point) and the other case
where p is close to a uniform distribution over a subset of Z.

Lemma A.1. Assume that p is a probability distribution over Z with H(p) = ¢ and
let © = ||p|loc- Then,
H(pxp)—c>cx— hax).

Proof. In Subsection A.5.1. O

Remark A.5. Notice that Lemma A.1, gives a tight bound for spiky distributions
for which ||p||eo is very close to 1, i.e., for H(p) = ¢, one gets H(pxp) — ¢ ~ ¢, which
is the best one can hope for.

The next step is to give a bound for non-spiky distributions. The main idea is
that in this case, it is possible to decompose the probability distribution p into two
different parts pi1, ps with disjoint non-interlacing supports such that pxp; and p*ps
are sufficiently far apart in ¢;-distance. We formalize this through the following
lemmas.

Lemma A.2. Assume that p1, p2 and p are arbitrary probability distributions over
Z such that p1 and ps have non-overlapping supports and ||p||cc = . Then

[pxp1 —pxpafi =222 —1)".
Proof. In Subsection A.5.1. 0

Lemma A.3. Letc> 0,0 < a < % and n € Z. Assume that p is a probability
distribution over 7 such that o < p((—oo,n]) <1 — « and H(p) = c. Then,

lpxp1 —pxp2|li > 20,

where p1 = mp‘(*wm] and py = mm[nﬂm) are scaled restrictions of p
to (—oo,n] and [n + 1,00) respectively.

Proof. In Subsection A.5.1. O

Lemma A.4. Assuming the hypotheses of Lemma A.3,

2 * — D%
H(p*p)—cZ «Q Hp p12 P *p2

Proof. In Subsection A.5.1. O

12,
ogy(e).

Lemma A.5. Assume that p is a probability distribution over Z with H(p) = ¢ and
Iplloc = . Then

(1—2)*((1—z)V (4z—2)*)

H(pxp)—c> 3

log,(e).
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Now that we have the required bounds in the spiky and non-spiky cases, we can
combine them to prove Theorem A.1.

Proof of Theorem A.1. Assume that p is a probability distribution over Z with
H(p) = c and ||p|lcc = z. It is easy to see that x > 27¢ Using Lemma A.1 and
Lemma A.5, it results that H(pxp) — ¢ > l(c), where

(1 2)((1 = 2) v (42 = 2)+)’ 10g2<e>} |

8

l(e) = min {(ex — ha(@)) V

We will use a simpler lower bound given by

(1—2)%2((1 —2)V (4z —2)*)?

g(c) = min {(cx — ha(z)) v 3 logz(e)} ;

where obviously [(c) > g(c). It is easy to check that g(c) is a continuous function of
c. The monotonicity of g follows from monotonicity of cx — he(x) with respect to
¢, for every x € [0,1]. For strict positivity, note that (1 — x)%((1 — x) V (42 — 2)T)?
is strictly positive for z € [0,1) and it is 0 when x = 1, but lim,_,; cx — ha(x) = c.
Hence, for ¢ > 0, g(c) > 0. If ¢ = 0 then

1-—2)*(A-x)V @4z —2)*)°

{(ew = ha(w)) v - loga(e)}
— )2 —x x—2)1)2
U (R VIR W

and its minimum over [0,1] is 0. For asymptotic behavior, notice that at x = 0,
cx — ha(z) = 0 and

(1—2)*((L—=2)V (4o —2)")
8

1
logy(e) = 3 logy(e).

Hence, from continuity, it results that g(c) < % logy(e) for any ¢ > 0. Also for any
0<ex< % there exists a ¢y such that for every ¢ > ¢g and every z, ¢ < x < 1,
cx — ho(x) > Llogy(e). Thus for any € > 0 there is a ¢o such that for ¢ > co, the
outer minimum over z in the definition of g(c) is achieved on [0, €], which is higher

than % logs(e). This implies that for every € > 0,

1 1—¢)t
—logsy(e) > limsup g(c) > liminf g(c) > ( 2 log,(e),
8 c—00 Cc—00 8
thus lim,_,~ g(c) = %logQ(e). O

Figure A.1 shows the EPI gap. As expected, the asymptotic value of the gap is
£ log,(e) ~ 0.18.

A.3.2 EPI for non-i.i.d. random variables

Theorem A.2 is an extension of Theorem A.l1 to independent but non-identically
distributed random variables. Similar to the i.i.d. case the idea is to distinguish
between the spiky and non-spiky distributions.
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Figure A.1 — EPI gap (A.4) for i.i.d. integer-valued random variables

Lemma A.6. Assume that p and q are two probability distributions over Z with
H(p) = c and H(q) = d. Suppose that x = ||p|lcc and y = ||q||cc. Then,

2H(p*q) —c—d > dz — ha(x) + cy — ha(y). (A7)
Proof. In Subsection A.5.2. O

When at least one of the distributions is spiky, Lemma A.6 gives a relatively
tight bound. Hence, we should try to find a good bound for the non-spiky case.

Lemma A.7. Let p,q be two probability distributions over Z. Assume that there are
0<a,pB< % and m,n € Z such that o < p((—oo,m]) < 1—a and B < q((—o0,n]) <
1— 3. Then

lg*p1 —qg*xpall1 + lp*xq1 — pxa2ll1 > 2(a + B),

— 1 _ 1 _ 1
where py : mpkfoo,m}; b2 = mp‘[m+l,oo); q = mm(foo,n}i and
q2 = q([n+17m))Q‘[n+l7w)'
Proof. In Subsection A.5.2. O

Lemma A.8. Assume that the hypotheses of Lemma A.7 hold and let H(p) = ¢ and
H(q) =d. Then

2 2
a®llgxp1 — g xpa
92 1 10g2(€)7
2||p % D% 2
> ﬂ Hp C]12 b QQHl 10g2(6).

Proof. In Subsection A.5.2. O

H(pxq)—d>

H(pxq) —c
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Lemma A.9. Letp and q be probability distributions over Z with H(p) = ¢, H(q) = d,
Ipllco = = and ||q|lcc =y. Then 2H(p*q) —c —d > l(x,y), where

B ) (1—2)%a® + (1 —y)?p?
Hwy) = (ah)eT (o) 8

IOgZ(e)v

and T(z,y) is a subset of (a,b) € R% parameterized by (z,y) € [0,1] x [0,1] and
given by the following inequalities

a> My —-2)Tb>U4r—2)T,a+b>2—z—y.

Moreover, l(x,y) is a continuous function of (z,y), l(xz,y) > 0 and l(z,y) = 0 if and
only if (z,y) = (1,1).

Proof. In Subsection A.5.2. O

Proof of Theorem A.2. Let z = ||p||oc and y = ||q|lco- It is easy to check that
x> 27¢y > 29 Using Lemma A.6 and Lemma A.9, we obtain that H (pxq)— # >
s(c, d), where s(c, d) is given by

1
- i dr — h +cy—h Vo l(z,y) 1,
2 (x,y?ean(c,d) {( ! 2(55) Y 2(3/)) (x y)}

for R(c,d) = [27¢,1] x [27¢,1]. We will use a simpler lower bound given by

gle.d) =5 min, {(d = ha(e) + oy = ha(w) V U}

where R = [0, 1] x [0,1]. It is easy to see that g(c,d) is a continuous function. It is
also a doubly-increasing function of its arguments. To prove the last part, notice
that the [(x,y) in the definition of g is strictly positive except for (z*,y*) = (1, 1).
But lim, ) (1,1) dx — ha(z) + cy — ha(y) = ¢ + d, which is strictly positive unless
¢ =d = 0. Therefore, for (c,d) # (0,0), g(c,d) > 0.

The function dx — ho(x) 4 cy — ha(y) is a doubly-increasing function of (¢, d) over
R, which implies that g(c,d) must be a doubly-increasing function of (¢, d). Also,
using an argument similar to what we had in the proof of Theorem A.1, it is possible
to show that for high values of ¢ and d, the outer minimum in the definition of g is
achieved in a neighborhood of (0,0), namely, [0, €] x [0, €], where € goes to zero as
¢, d approach infinity. From the continuity of I(z,y), it can be shown that in this
range, the value of [(x,y) is very close to

a’® + bv?
min
(a,b):a,b>0,a+b>2 8

1
logy(e) = 1 log(e).
This implies that im . g)—(cc,00) 9(¢, d) = %logz(e). O

A.3.3 Conditional EPI

In this part, we will prove the EPI result for the conditional case, namely, we will
find a lower bound for the conditional entropy gap, H(X + X'|Y,Y’) — H(X|Y), for
i.i.d. integer-valued pairs (X,Y) and (X', Y”) assuming that H(X|Y) = ¢, for some
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positive number c. Notice that as Y and Y’ only appear in the conditioning, we
do not lose generality by assuming them to be integer-valued. Let us denote the
probability distribution of Y by ¢, then the conditional entropy gap can be written
as follows

> qigiH(pi *pj) — c,
1,JEL

where p; is the conditional distribution of X given Y = .

Notice that we are interested to the infimum of this gap over all possible ¢, p;
satisfying Y ;c7 ¢;H (p;) = c¢. Even if the minimizing ¢ exists, it may not be finitely
supported and in general, finding the corresponding gap requires an infinite dimen-
sional constrained optimization.

To cope with this problem, we will show that it is possible to restrict the support
size of ¢ to 2 provided that instead of the i.i.d. case we consider the general
independent case. Of course, at the end we get a looser bound at the price of
simplifying the problem.

To be more specific, let (X,Y) and (X', Y”’) be independent (not necessarily i.i.d.)
integer-valued pairs with H(X|Y) = H(X'|Y') = ¢ and let t,(c) be the infimum of
H(X +X'|Y,Y') — cover all (X,Y),(X’,Y’) having a conditional entropy equal to
¢ with Y and Y’ having a support size at most n. Also, assume that ¢ (c) is the
corresponding infimum when there is no constraint on the support size. We first
prove the following lemma.

Lemma A.10. For every n > 2, too(c) = ty(c).

Proof. Obviously, t,(c) > te(c). Moreover, given any € > 0, there is an e-optimal
independent pair (X,Y) and (X’,Y”) such that

H(X + X'|V,Y") —c < txlc) + e

Let g, ¢’ denote the distribution of ¥,Y” and let p;, p; be the conditional distribution
of X, X' given Y =14,Y' = j. Let

V= {Uij € Rs U = (H(pl*p;)aﬂ(pl)uﬂ(p;))v Z?] € Z}
It is easy to see that

Z QZq;vlj == (H(X _’_X/’KY/)vcv C) = h’a
1,JEZL

which implies that the three dimensional vector h = (H(X + X'|Y,Y’),¢,¢) can
be written as a convex combination of the vectors v;; € V with weights qiq;. Let
v, = Zj q}'vij. Then, we have ), gjv; = h. Notice that the second component of v;
is equal to H(p;). Also, the third component is equal to ¢ independent of i, which
implies that there are only two components depending on ¢ in v;. Therefore, by
Carathéodory theorem, it is possible to write h as a convex combination of at most
three v;,4 € Z, which without loss of generality, we can assume to be {vg, vi,v2}. In
other words, there are positive v;,7 =0, 1,2, Z?:o v =1and h = Z?:o ~v;v;. Also,
note that if we change the distribution of Y from ¢ to ~, the resulting (X,Y), (X', Y”)
is again an e-optimal solution. Now, we claim that we can simplify the problem



122 Entropy Power Inequality for Integer-valued Random Variables

further and find a probability triple 1) = (vo, %1, ¥2) with at most 2 non-zero elements
such that Y%, ¢;H(p;) = ¢ and at the same time

2 2 2
Zwivfl) < Z'yz-'vl(l) = Zqivi(l) = H(X + X'|Y,Y"),
i=0 i=0 i=0
where 'vlm denotes the first coordinate of the vector v;. This implies that if we
replace the distribution « for Y by v, which has a support size at most 2, we get a
lower H(X + X'|Y,Y"). To prove the claim, let us consider the following optimization
problem

2 . 22=0 Vi =1,
minimize Zz/zivi( ) s.t. Z?:O Vi H(p;) = c,
i=0 ¥ > 0.

First of all, notice that as Z%:o ~viH (pi) = ¢, 7 is a feasible point. Therefore, the
feasible set is a non-empty subset of the three dimensional probability simplex. Also,
as the objective function is linear in 1), the optimal point must be an extremal point
(boundary point) of the feasible set, which implies that there is an optimal solution
with at most two non-zero components and this proves the claim.

By symmetry, we can apply the same argument to the probability distribution ¢
of Y/ to get an e-optimal solution in which the support of both ¢ and ¢’ has at most
size 2. Hence, this implies that for any € > 0 and any n > 2, ¢,(c) < t2(c) < too(c)+e,
thus t,(c) = to(c). O

Lemma A.10 allows us to simplify finding the lower bound. However, we might
get a looser bound because we relaxed the condition that (X,Y) and (X', Y”) be
identically distributed. From now on, we will assume that Y and Y’ are binary
random variables. We will use the following two lemmas to get a lower bound for
the conditional entropy gap.

Lemma A.11. Let (X,Y), (X', Y') be an independent pair of random variables,
P(Y =0)=a, P(Y' =0) = 8 and H(X|Y) = H(X' =Y') = c. Then,

H(X +X'IY,Y') —c > g(e, ) — (ha(a) A ha(B)),
where g is the same function as in Theorem A.2.
Proof. In Subsection A.5.3. O

Lemma A.12. Assume that all of the conditions of Lemma A.11 hold. Suppose
there is a 0 < 0 < % such that § < o, 8 < 1—90. Then,

H(X +X'lY,Y") — ¢ > 6%g(c, c).
Proof. In Subsection A.5.3. O

Proof of Theorem A.3. The proof follows by combining the results obtained in
Lemma A.11 and A.12. Let 6 = min{«a,1 —a, 3,1 — 8}. Then 0 <§ < % and using
Lemma A.12, we get the lower bound 6%g(c,c). Similarly, from Lemma A.11 and
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using the fact that ha(a) A ho(B8) = h2(0), we get the lower bound g(c, c) — ha(9).
Combining the two, we obtain the desired lower bound

gle) = min {(g(c,c) = ha(9)) v 6%g(c,c)}.
€[0,3]

The monotonicity of g follows from the monotonicity of g(c,c). Also, notice that
62g(c, c) is strictly positive unless § = 0 but lims_,q g(c, ¢) — ha(d) = g(c, ¢), which is
strictly positive if ¢ > 0. Therefore, for ¢ > 0 we have g(c¢) > 0. This completes the
proof. O

A.4 Open problems

A.4.1 Closure convexity of the entropy set H

As we saw in the proof of Theorem A.3, the conditional EPI does not directly follow
from the unconditional one. In particular, we had to relax the i.i.d. condition in
order to get a relatively weak lower bound. In this part, we propose another approach
to the problem which uses the closure convexity of the entropy set as we will define
in a moment.

Definition A.1. The entropy set H is defined as follows
H={(H(pxq),H(p),H(q)) € R : p,q are probability distributions over Z}.

Remark A.6. Notice that multiple (p,q) pairs may be mapped to the same point in
H space. For example, if (p,q) is mapped to a point v € H, then any distribution
(P, qG) in which p and G are shifted versions of p and q is also mapped to v.

Remark A.7. Some of the boundaries of the set H trivially follow from the properties
of the entropy, i.e., for any v € H,

where v denotes the i-th coordinate of the vector v. Also the boundary v(t) =
v@ + v®) s achievable. To show this, let v, v®) € R4 and consider two finite
support distributions p and q of support {0,1,...,M — 1} and {0,1,...,N — 1} for
appropriate M and N such that H(p) = v? and H(q) = v®. Now, fix p and define
a new distribution ¢ as follows

d(i)Z{O L MEE

q(57) eZ.

SES

It is not difficult to show that H(G) = H(q) = v® and H(px §) = H(p) + H(g) =
v @),

We propose the following conjecture about the set H.
Conjecture A.1. The closure of the set H is convex.

Using this conjecture, we can prove the following lemma, which is a stronger
version of the conditional EPI.
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Theorem A.4. Assume that Conjecture A.1 holds. Let (X,Y) and (X', Y') be
independent pairs of integer-valued random variables with H(X|Y) = ¢, H(X'|Y') = d.
Then

d
HX + X',y - <2

> g(c,d),
where g is the same function as in Theorem A.2.

Proof. Let us assume that the distribution of Y,Y” is ¢, ¢’ respectively. Also assume
that p;, p is the distribution of X, X" when Y =i,Y" = j. Let
vij = (H(pi x p}), H(pi), H(p})), i, € Z.
Notice that v;; € H. We also have
(HX +X'|Y,Y"),c,d) = Z qiqgvij,
1,JEZL

which is a convex combination of the vectors v;;. By the closure convexity of H, for
any € > 0, it is possible to find an h € H in e-neighborhood of (H (X + X'|Y,Y’), ¢, d).
In other words, for the given € > 0, there are two distributions 1, puo over Z such
that

H(p xp2) — € < HX + X'|Y,Y') < H(u1x p2) + e,
H(p) —e<c< H(u) +e,
H(po) —e<d<H(u)+e.

In particular, this implies that

d d
H(X + X'|Y,Y") - c; ZH(M*M)—% .
H H

2
> g(H(p1), H(p2)) — 26 > g(c —€,d — €) — 2¢,

where we used the monotonicity of g with respect to both arguments. As e > 0 is
arbitrary and ¢ is a continuous function, H(X + X'|Y,Y”) — # > g(c,d). O

Remark A.8. In the case that (X,Y) and (X',Y') are i.i.d. pairs with H(X|Y) =
H(X'|Y'") = ¢, this result reduces to

H(X + X'|V,Y") —c > g(c,c),

which is tighter than the bound (A.6) obtained in Theorem A.3.

A.5 Proof of Auxiliary Lemmas

A.5.1 EPI for i.i.d. random variables

Proof of Lemma A.1. Assume that X is an integer-valued random variable with
probability distribution p. Let i € Z be such that p(i) = ||p||cc = . Let p; be the
probability distribution p shifted by i, i.e., p;(k) = p(k + i) for every k € Z. Assume
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that P = p;. Note that H(pxp) = H(P % P) and H(P) = H(p) = c¢. Hence, without
any loss of generality, one can assume that p(0) = ||p||cc. Let B be a binary random
variable with P{B = 0} =z = 1 —P{B = 1}, and let R be a random variable defined
by P{R =k} = pi(k)/(1—z) for every k € Z\ {0} and P{R = 0} = 0. One can check
that X = BR for independent B and R. We also have H(X) = ha(z)+ (1 —x)H(R).
Let X’ be an independent copy of X. Then, we have

H(pxp)=H(BR+ X')> HBR+ X'|B) =2c+ (1—-2)H(X' + R)
>xzc+ (1 —x)H(R) = xc+ ¢ — ha(x).

This yields H(p *p) — ¢ > xzc — ha(x). O

Proof of Lemma A.2. Let ng € Z be such that p(ng) = ||p|lcc = x. We have the
following;:

Ip*p1 —p*pally =Y Ip*pi(i) —prp2(i)] =D 1> p(i)(p1(i — §) — pa(i — j))|
1EZ €L jJEL
> p(no)lp1(i —no) — pa(i = no)l = > Y p(4)Ip1(i — 5) — pa(i — 7))
€L 1€Z jF#no

= z[lp1 — p2li — (1 = 2)|lp1 — p2ll1 = 2(22 — 1),

where we used the fact that p; and py have non-overlapping supports thus ||p1 —p2||1 =
Ipilli + |lp2lli = 2. Therefore, we get the desired result ||p * p1 — p * p2|1 >
2(22 — 1)*. O

Proof of Lemma A.3. Let a1 = p((—oo,n]) and as = p([n + 1,00)) = 1 — ay.
Note that p = a1p1 + aspa. We distinguish two cases a; < % and aq > % If g < %
then we have

[p*p1 —pxp2| = [laapr x p1 — (1 — 1)p2 * p2 + (1 — 2a1)p1 * 2|1
> [lonpr *p1 — (1 — aq)p2 % pall1 — (1 — 2a1)||p1 * p2l1
=a1+ (1 —a1)—(1-201) =201 > 2a,

whereas if aq > %, we have

|lp*p1 —pxp2| = [Jaapr *p1 — (1 — aq)p2 * p2 + (1 — 2a1)p1 * p2||1
> |laipr xp1 — (1 — a1)p2 * pa|l1 — (2a1 — 1)||p1 * p2||1
=a;+(1—a)— (201 — 1) =2(1 — ) > 2q,

where we used the triangle inequality, 1 — a1 > « and the fact that p; xp; and p2 % pa
have non-overlapping supports, thus the £1-norm of the sum is equal to sum of the
corresponding /1-norms. O

Proof of Lemma A.4. Let o and as be the same as in the proof of Lemma A.3.
Let vy = p1 *p, va = pa xp, and for z € [0,1], define p, = zv1 + (1 — )y and
f(z) = H(ug). We have

v1(i) — v9(i))?
@) = = 01 0) = 1200) o sa (). 1'(@) = ~ oo 5 LI(;( i
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Therefore, f(x) is a concave function of x. Moreover,
f'(0) = D(llva) + Hn1) = H(va), ['(1) = =D(v2|v1) + H(v1) — H(vz).

Since p; and po have different supports, there are ¢, j such that v1; = 0,v2(i) > 0
and vi; > 0,19; = 0. Hence D(v1]|v2) and D(v»||vq) are both equal to infinity. In
other words, f/(0) = +o0, f'(1) = —o0.

Hence, the unique maximum of the function f must be between 0 and 1. Assume
that for fixed v1 and 9, x* is the maximizer. If 0 < a3 < z* then

a1 f (1) =Y o (vali) — v1(i)) logy (phay (i) > 0,

which implies that

=D oy (1) 10gy (1t () = = Y (12 (i) + a1 (1) — va(i))) loga(tay (7))

ZVQ ) logy(ia, (i) = H(v2) + D(vallpta,)
> H) + v — peal} = H) + =2 oy — wa]?
— ||y — = — ||y — v
= p 2111(2) 2 = Maq |1 p 21n(2) 1 21115
where we used Pinsker’s inequality for distributions r and s, D(r[[s) > 5
Similarly, we can show that if 2* < a3 <1 then

oy llr—slli.

—a1)?
fla) 2 ) + 50 -l

Asa<ai<l—-—aand a< % it results that

052

= _ 2

H(pxp) = H(aipxp1 + (1 —a1)p*p2) = f(a1) > H(p) +

2
>c+ aiHVl - 1/2||2
= 2In(2) b

which is the desired result. OJ

Proof of Lemma A.5. Let z = ||p||os and o = 15%. It is easy to show that there
is an n € Z such that o < p((—oo,n]) <1 —a. Also, let p; and po, as in Lemma A.3,
be the restriction of p to (—oo,n] and [n+1,00). As p; and py have disjoint supports,
using Lemma A.3 and A.2, it results that ||pxp; —p*xpal1 > (1 — )V (4z — 2)*.
Therefore, using Lemma A.4, we get

1-2)*(1-2)V @4z —2)*)
8

This completes the proof. O

H(p*xp)—c> log,(e).

A.5.2 EPI for non-i.i.d. random variables

Proof of Lemma A.6. Let X and Y be two independent random variables with
probability distribution p and ¢. Let © = ||p|loo. Similar to the proof of Lemma
A.1, it can be shown that there is a binary random variable B, P(B = 0) = = and
a random variable R independent of B such that X = BR, where X is a suitably
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shifted version of X with P(X = 0) = 2. Also, H(X) = ha(x) + (1 — 2)H(R). Then,
we get

Hpxq)=H(X+Y)=H(X+Y)=H(BR+Y)>H(BR+Y|B)
>P(B=0HY)+P(B=1)H(R+Y)>ad+ (1 —-x)H(R)
= xd + ¢ — ha(x),

which implies that H(p x q¢) — ¢ > xd — he(x). By symmetry, we also obtain
that H(p x q) —d > yc — ha(y). Combining the two, we get the desired result
2H(pxq) —c—d > dx — ha(x) + cy — ha(y). O

Proof of Lemma A.7. Let a1 = p((—oo,m]), ae =1 — aq, 51 = q((—o0,n]) and
B2 =1 — (1. Note that p = a1p1 + aepe and g = S1q1 + S2g2. Thus we obtain

lg*p1 —qxpalli +lpxq1 —praalli > [lgxp1 —q*p2+p*q —p* gl
= [[(a1 + B)p1 x q1 + (B2 — c1)p1 x g2 + (a2 — B1)p2 x 1 — (a2 + B2)p2 * g2|l1
> |[(a1 + B1)p1 x 1 — (2 + B2)p2 * q2ll1 — [|(B2 — a1)p1 x g2 + (a2 — B1)p2 * 11
> a1+ f1+az+ B2 — B2 — ar]| — |2 — B
=2(1—[1 = (aa + B1))),

where we used the triangle inequality and the fact that p; x ¢; and ps * g2 have non-

overlapping supports. We consider two cases: if oy + 01 < 1 then (1—|1—(a1+051)|) =
(a1 + B1) > (a+ B). Otherwise, a1 + 81 > 1 and we obtain

I-1=(aa+pB)))=2—(a1+b1) =az+ B2 >a+p.

Therefore, in both cases we get

lg*xp1 — gxpali + [P *q1 —p* @21 = 2(a + B),
which is the desired result. O

Proof of Lemma A.8. Let a1 = p((—oo,m]), ag =1 — vy, 11 = p1xq, V2 = pa*q,
and for z € [0,1], let py, = 21 + (1 — x)ve and f(z) = H(u,). By an argument
similar to what we had in the proof of Lemma A.4, we can show that

2

-}
2In(2) "t AL

H(pxq) = f(an) > d+

which implies that

2

2

H(pxq)—d=
The other inequality in the lemma follows by symmetry. O

Proof of Lemma A.9. Let o = 1771 and 8 = I_Ty It can be checked that « and
[ satisfy the conditions of Lemma A.7 and A.8. Therefore, using Lemma A.8, we
obtain

o?a® + B2h? (1 —x)%a%+ (1 — y)?b?

logy(e) = 3 logy(e),

2H(pxq) —c—d >
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where a = ||g*p1 — ¢ *p2|j1 and b = ||[p*x g1 — p* q2||1. Also, from Lemma A.7, we
have

a+b>2(a+p)=2—x—y. (A.8)

Furthermore, applying Lemma A.2 to the distribution p with ||p||c = x and ¢1, ¢2
with disjoint supports, and similarly to g with ||¢|[cc = v and pi, p2 with disjoint
supports, we get

b> (4o —2)T,a > (4y —2)7". (A.9)
Therefore, 2H (px q) — ¢ — d > l(x,y), where

1—x)%a® 4+ (1 —1y)%b?
e amt)

l(z,y) = i

B9 = e
and where T'(z,y) is defined by the three inequalities derived in (A.8) and (A.9).
The continuity of [(x,y) can be easily checked. For the last part of the lemma, notice
that if M = 2V y < 1 then it is not difficult to show that

(1 — M)?(a® +b?) (1—M)*

> i >
Hay) 2 ab>, a+b>2-20 8 loga(e) = 4

log,(e) > 0,

which is strictly positive. Moreover, if zVy =1 but (z,y) # (1, 1) then, for example,
y € [0,1),x = 1, which implies that b > 2. Therefore, we get I(z,y) > % log,(e),
which is strictly positive unless y = 1. A similar argument applies to z € [0,1),y = 1.
Therefore, over (z,y) € [0,1] x [0,1], I(z,y) > 0 and I(z,y) = 0 if and only if
(z,y) = (1,1). O

A.5.3 Conditional EPI

Proof of Lemma A.11. To prove the lemma, notice that we have the constraint
H(X|Y) = H(X'|Y’') = c and the probability distribution of Y,Y” has a support of
size 2. We first prove that it is possible to modify the conditional distribution of the
random variables X and X’ given Y and Y’ in a way that none of the constraints are
violated, H(X + X'|Y,Y”) remains fixed and simultaneously, H(Y|X) and H(Y’|X"’)
become as small as desired. To show this , let p;, p;», i,7 € {0,1} be the distribution
of X, X’ conditioned on Y = 7,Y’ = j. Notice that if we shift any p;,p/; to the
right or to the left by as many steps as we want, the conditional entropies remain
unchanged so does H(X + X'|Y,Y”). We claim that by suitable shift of distributions,
it is possible to make H(Y'|X) as small as we want. The same is true for H(Y'|X").

To prove the claim, let € > 0 and assume that A, and B, are subsets of Z of
minimal size such that pg(Ac) > 1 — § and p1(B:) > 1 — §. In particular, for any
i € Ae,j € Be, po(i) > 0,p1(j) > 0. Moreover,

P(X € AcUB.) > apo(Ad) + (1 — a)py(B) > 1 — %

For n € Z,, let us define Be(”) ={i+n:i € B¢}, to be the right shift of B, by n.

Also assume that p&n) is the probability distribution shifted to the right by n, namely,

for k € Z, pgn)(k:) = p1(k —n). Specially, this implies that pg")(BE(n)) = p1(Be).
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Now let us replace pp, by pgn) and let us the denote the resulting random variable
by X. This assumption does not change H(X|Y) and H(X + X'[Y,Y"). As A, and
B, are finite sets, there is N7 such that for all n > N7 , the two sets A, and Bén) are
disjoint. For a € A, and b € B, let us compute the conditional distribution of Y

given X=agand X =b+nc Be(n). We have

-~ apo(a)
P =0lX =a) = apo(a) + (1 — a)pi(a —n)’
(1 —a)p1(b)

(1 = a)p1(b) + apo(b+n)’
It is not difficult to see that for all a € A, and all b € B, both of these numbers
converge to 1 as n goes to infinity, which implies that both H(Y|X = a) and

H(Y|X = b) converge to 0. In particular, there is an Ny such that for n > Ny these
two numbers are less than §. Therefore, for n > max{Ny, No} we have

H(X) =Y psmHYX =k < 3 pX(k)Xg—i- S pe(k)x1

P(Y =1 X =b+n) =

kez keA.uB™ k¢A.UB™
€
= Z px (k) x 5 + Z px (k) <e
k€A UB. k¢ A UB.

which proves the claim. Now assume that we have selected (X,Y), (X', Y”) such
that H(Y|X), H(Y'|X’) < € for some positive small number e. Then we have

HX+ XY, Y)—c=HX+X)-HX)-I(X+X,;,Y,Y)+1(X;Y)
>HX+X)-HX)-HY,Y)+H®Y)-H(Y|X)
>HX+X)-HX)-H({Y')—¢
> g(H(X), H(X")) — ha(B) —
> g(e,¢) = ha(B) —

where we used the independence of Y,Y’, doubly-increasing property of g and the
fact that H(X) > H(X|Y) = ¢ and similarly H(X') > ¢. As this is true for any
e > 0, we obtain H(X + X'|Y,Y') — ¢ > g(c,c) — ha(B).

By symmetry, we also have H(X + X'|Y,Y’) — ¢ > g(c, ¢) — ha(a). Therefore, we
get the desired result H(X + X'|Y,Y") — ¢ > g(c,¢) — (ha(a) A ha(B)). O

Proof of Lemma A.12. Assume that the distribution of Y,Y” is ¢,¢’. Also, for
k,1 € {0,1}, let pg, p; be the conditional distribution of X, X’ given Y = k,Y’ = L.
By the assumption, § < o, 3 < 1 — §, we have ¢, ¢, > § for any r,s € {0,1}, thus
there must be i,j € {0, 1} such that H(p;), H(p}) > c. Therefore, we have

H(pr) + H (p})
2

H(p;) + H(p})
> qiq;(H (pi * pj) — fj

> 6%g(H(pi), H(p})) > 6%g(c, c),

where we used the doubly-increasing property of g. O

1
HX+X'[VY)—c= Y auq(Hpp*p)) —
k,1=0

)

)
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