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Abstract—Hardware trends oblige software to overcome three
major challenges against systems scalability: (1) taking advantage
of the implicit/vertical parallelism within a core that is enabled
through the aggressive micro-architectural features, (2) exploiting
the explicit/horizontal parallelism provided by multicores, and (3)
achieving predictively efficient execution despite the variability in
communication latencies among cores on multisocket multicores.
In this three hour tutorial, we shed light on the above three
challenges and survey recent proposals to alleviate them.

The first part of the tutorial describes the instruction- and
data-level parallelism opportunities in a core coming from the
hardware and software side. In addition, it examines the sources
of under-utilization in a modern processor and presents insights
and hardware/software techniques to better exploit the micro-
architectural resources of a processor by improving cache locality
at the right level of the memory hierarchy. The second part
focuses on the scalability bottlenecks of database applications at
the level of multicore and multisocket multicore architectures. It
first presents a systematic way of eliminating such bottlenecks
in online transaction processing workloads, which is based
on minimizing unbounded communication, and shows several
techniques that minimize bottlenecks in major components of
database management systems. Then, it demonstrates the data
and work sharing opportunities for analytical workloads, and
reviews advanced scheduling mechanisms that are aware of non-
uniform memory accesses and alleviate bandwidth saturation.

I. INTRODUCTION

Length: 3 hours
Target Audience: Researchers and developers in the field

of data management systems who are non-experts on modern
hardware and the challenges that emerging hardware poses
on high-performance transaction and query processing. Also,
PhD students who are interested in learning more about the
underlying hardware and seeking a challenging and high-
impact research topic on data management systems on modern
hardware.

Related Previous Tutorials: This tutorial expands our
SIGMOD 2014 tutorial by 20% [1]. In addition to what was
presented there, here we plan to discuss in detail recent on
new storage devices such as non-volatile memory, dynamic
query compilation, and specialized hardware for database
operations. Furthermore, the first half of the second part
of this tutorial, related to scaling up OLTP on multicores,
borrows some content from our VLDB 2013 tutorial titled
Toward Scalable Transaction Processing - Evolution of Shore-
MT [2]. However, this constitutes less than 20% of this
tutorial. Slides for both of these tutorials can be found at
https://sites.google.com/site/shoremt/presentations.

II. IMPLICIT/VERTICAL PARALLELISM

In step with Moore’s law [3], processor technology has
gone through major advancements over the years. Before the
last decade hardware vendors mainly innovated on implicit
parallelism within a core boosting the performance of a
single thread. They either kept clocking the processors at
higher frequencies or designing aggressive micro-architectural
features (e.g., long execution pipelines, super-scalar execution,
out-of-order execution, branch prediction, vector processing,
etc. [4]) that increase the complexity of a processor. However,
taking advantage of such features is never straightforward for
the complex data management applications [5], [6], mainly
due to the low instruction level parallelism they exhibit. These
applications usually require fundamental algorithmic changes
in order to really exploit both data and instruction level
parallelism opportunities that exist on modern processors [7],
[8], [9].

The algorithmic changes that take into account the micro-
architectural features of a core are only one part of the solu-
tion. One also needs to account for the memory hierarchy on
the machines being used. Recent studies analyzing the micro-
architectural behavior of typical data management workloads
on modern hardware emphasize that more than half of the
execution time goes to memory stalls when running data
intensive workloads [10]. As a result, on processors that have
the ability to execute four instructions per cycle (IPC), which
is common for modern commodity hardware, data intensive
workloads, especially transaction processing, achieve around
one instruction per cycle [11]. Such under-utilization of micro-
architectural features is a great waste of hardware resources.

Several proposals have been made to reduce memory stalls
through improving instruction and data locality to increase
cache hit rates. For data, these range from cache-conscious
data structures and algorithms [12] to sophisticated data par-
titioning and thread scheduling [13]. For instructions, they
range from compilation optimizations [14], and advanced
prefetching [15], to computation spreading [16], [17] and
transaction batching for instructions [18], [19]. In addition,
several recent proposals opt for hardware specialization for
some of the database operations ([20], [21], [22]).

In this part of the tutorial, we first give an overview of
the instruction and data parallelism opportunities in a core, as
well as the typical memory hierarchy of a server processor
today. Then, we illustrate the strengths and weaknesses of
the techniques that aim to better utilize micro-architectural



resources of a core with examples from recent work while
presenting the key insights behind each of them.

III. EXPLICIT/HORIZONTAL PARALLELISM

Since the beginning of this decade, power draw and heat
dissipation prevent processor vendors from relying on ris-
ing clock frequencies or more aggressive micro-architectural
techniques for higher performance. Instead, they add more
processing cores or hardware contexts on a single processor to
enable exponentially increasing opportunities for parallelism
[23]. Exploiting this parallelism is crucial for utilizing the
available architectural resources and enabling faster software.
However, designing scalable systems that can take advantage
of the underlying parallelism remains a challenge. In tradi-
tional high performance transaction processing, the inherent
communication leads to scalability bottlenecks on today’s
multicore and multisocket hardware. Even systems that scale
very well on one generation of multicores might fail to scale-
up on the next generation. On the other hand, in traditional
online analytical processing, the database operators that were
designed for unicore processors fail to exploit the abundant
parallelism offered by modern hardware.

Servers with multiple processors and non-uniform memory
access (NUMA) design present additional challenge do data
management systems, many of which were designed with im-
plicit assumptions that core-to-core communication latencies
and core-to-memory access latencies are constant regardless of
location. However, today for the first time we have Islands, i.e.,
groups of cores that communicate fast among themselves and
slower with other groups. Currently, an Island is represented
by a processor socket but soon, with dozens of cores on the
same socket, we expect that Islands will form within a chip.
Additionally, memory is accessed through memory controllers
of individual processors. In this setting, memory access times
vary greatly depending on several factors including latency
to access remote memory and contention for the memory
hierarchy such as the shared last level caches, the memory
controllers, and the interconnect bandwidth.

Abundant parallelism and non-uniformity in communica-
tion present different challenges to transaction and analytical
workloads. The main challenge for transaction processing is
communication. In this part of the tutorial, we initially teach a
methodology for scaling up transaction processing systems on
multicore hardware. More specifically, we identify three types
of communication in a typical transaction processing system:
unbounded, fixed, and cooperative [24]. We demonstrate that
the key to achieve scalability on modern hardware, especially
for transaction processing systems, but also for any system
that has similar communication patterns, depends on avoiding
the unbounded communication points or downgrading them
into fixed or cooperative ones. We show how effective this
methodology is in practice by surveying related proposals from
recent work (e.g., [25], [26], [27], [28], [29], [30]).

Non-uniform communication latencies make it appealing
to regard multisocket as a distributed system and deploy
multiple nodes in a shared-nothing configuration [26], [28].

While this approach works great for perfectly partitionable
workloads, it is very sensitive to distributed transactions and
the workload skew. At the same time, hardware-oblivious
shared-everything systems suffer from non-uniform latencies
that amplify bottlenecks in the critical path [31]. In order to
achieve scalability on multisockets one needs to make the
system aware of the hardware topology and dynamically adapt
to workload and hardware [13].

On the other hand, traditional online analytical processing
workloads are formed of scan-heavy, complex, ad-hoc queries
that do not suffer from the unbounded communication as
in transaction processing. Analytical workloads are still con-
cerned with the variability of latency, but also with avoiding
saturating resources such as memory bandwidth. In many
analytical workloads that exhibit similarity across the query
mix, sharing techniques can be employed to avoid redundant
work and re-use data in order to better utilize resources and
decrease contention. We survey recent techniques that aim
at exploiting work and data sharing opportunities among the
concurrent queries (e.g., [32], [33], [34], [35]).

Furthermore, another important aspect of analytical work-
loads, in comparison to transaction processing, is intra-query
parallelism. Typical database operators, such as joins, scans,
etc., are mainly optimized for single threaded execution.
Therefore, they fail to exploit intra-query parallelism and can-
not utilize several cores naı̈vely. We survey recent parallelized
analytical algorithms on modern non-uniform multisocket
multicore architectures [36], [37], [38], [39].

Finally, in order to optimize performance on non-uniform
platforms, the execution engine needs to tackle two main
challenges for a mix of multiple queries: (a) employing a
scheduling strategy for assigning multiple concurrent threads
to cores in order to minimize remote memory accesses while
avoiding contention on the memory hierarchy, and (b) dynam-
ically deciding on the data placement in order to minimize
the total memory access time of the workload. The two
problems are not orthogonal, as data placement can affect
scheduling decisions, while scheduling strategies need to take
into account data placement. We review the requirements
and recent techniques for highly concurrent NUMA-aware
scheduling for analytics, which take into consideration data
locality, parallelism, and resource allocation (e.g., [40], [41],
[42], [43]).

IV. TUTORIAL OUTLINE

• INTRODUCTION AND OVERVIEW (10 minutes)
• Tutorial overview: goal, audience, and schedule
• Hardware trends
• Problem statement:
• dimensions of parallelism
• challenges traditional data management systems

face on modern hardware
• WHAT HAPPENS IN A CORE (40 minutes)
• Instruction Level Parallelism
• Data Level Parallelism and SIMD



• Simultaneous Multithreading
• MINIMIZING MEMORY STALLS (40 minutes)
• Results from recent workload characterization studies
• Techniques to improve instruction and data cache lo-

cality
• Toward specialized hardware

• SCALING UP OLTP (40 minutes)
• Communication types in transaction processing
• Recent work on scaling up OLTP on modern hardware

by identifying and eliminating the various communi-
cation types

• Quantifying the impact of non-uniform communication
on OLTP performance

• Dynamically adjusting to the hardware topology and
workload characteristics on NUMA hardware

• SCALING UP OLAP (40 minutes)
• Memory access bottlenecks in multisocket multicore

architectures
• Sharing data and work across concurrent analytical

queries
• NUMA-aware parallel analytical algorithms
• NUMA-aware scheduling for highly concurrent analyt-

ical workloads
• CONCLUSIONS AND FUTURE DIRECTIONS (10
minutes)
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University in 2009.

Danica Porobic is a fifth year PhD student at École
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