
Contracts for Real-Time, Safety Critical Systems

Software Systems Group,
ABB Corporate Research,
Baden-Daettwil

Laboratory for Automated Reasoning and Analysis,
School of Computer and Communication Sciences,
École Polytechnique Fédérale de Lausanne

Masters Thesis
August 8, 2014
Submitted in fulfillment of the
requirements for the degree of Master of Science
in Computer Science
by

Chandrakana Nandi

accepted on the proposal of the jury:
ABB supervisors: Dr. Manuel Oriol,Dr. Aurelien Monot
EPFL supervisor: Prof. Viktor Kuncak

Lausanne, EPFL, 2014

https://epfl.academia.edu/ChandrakanaNandi
http://www-users.cs.york.ac.uk/~manuel/Manuel_Oriols_Website/Profile.html
http://ch.linkedin.com/in/aurelienmonot
http://lara.epfl.ch/~kuncak/




Karmanye Vadhikaraste, Ma Phaleshou Kada Chana,
Ma Karma Phala Hetur Bhurmatey Sangostva Akarmani.

—Lord Krishna, Bhagvad Gita

To my grandparents. . .





Acknowledgements
The author would like to express her sincere gratitude towards Dr. Manuel Oriol and Dr. Aure-
lien Monot for giving her the opportunity to work in their group at ABB Corporate Research.
They have been very supportive and provided valuable suggestions. She would also like to
thank Dr. Stefan Stattelmann of ABB Corporate Research, Germany, for his feedback, which
was very helpful.

The author is extremely grateful to Prof. Viktor Kuncak for accepting her as a thesis student in
his laboratory and for his support and guidance. She would like to thank Eva Darulova and
Ravichandhran Kandhadai Madhavan for their kind advice.

She is deeply indebted to Prof. Joseph Sifakis for introducing her to the field of Formal Verifi-
cation and Correctness by Construction and encouraging her to pursue research in this area.

Finally, she expresses her heartfelt gratitude towards God who gave her the strength to carry
on with her work. She thanks her parents who have always had faith in her and given her the
courage to move forward in life. She remains ever grateful to her siblings and Puma who are
always there for her in all situations.

It is only due to the cumulative support of all that this thesis could be successfully compiled.

Lausanne, 08 August, 2014 C. N.

i

http://www-users.cs.york.ac.uk/~manuel/Manuel_Oriols_Website/Profile.html
http://ch.linkedin.com/in/aurelienmonot
http://ch.linkedin.com/in/aurelienmonot
http://scholar.google.de/citations?user=OcURVt4AAAAJ&hl=de
http://lara.epfl.ch/~kuncak/
http://people.epfl.ch/eva.darulova
http://people.epfl.ch/ravi.kandhadai?lang=en
http://people.epfl.ch/joseph.sifakis




Abstract
Verifying real-time systems goes beyond the verification of functional properties: it also
requires the checking of real-time properties. This makes traditional contract-frameworks
partially inept for checking real-time programs. This is a major problem because the failure
of real-time and safety critical systems can have serious consequences. This thesis presents
a solution to this problem by incorporating Design by Contract (annotating programs with
function pre and post conditions) to such systems. The main contribution of this thesis is
the development of a contract framework for cyclic real-time control applications written
in C++. The contract framework allows the users to specify both functional and temporal
properties for the applications. A novel approach of empirical cumulative distribution function
(cdf) based statistical inference is used for dynamically estimating temporal constraints and
incorporating them in future contracts. The thesis also illustrates the use of Real-time Logic
(RTL) for formal specification of the temporal properties. For evaluating our methodology,
we have integrated it to a component-based framework called FASA (Future Automation
System Architecture) developed at ABB Corporate Research for writing hard real-time control
applications. Experiments show that this contract framework can be smoothly integrated
to existing control applications thereby increasing their reliability while having a acceptable
overhead (less than 10%) on the performance.

Key words: Design by Contract, Dynamic Verification, Real-time Applications, Statistical
Inference, Component-based Software Engineering, Formal Logic

iii





Contents
Acknowledgements i

Abstract (English) iii

List of figures vii

List of tables ix

List of algorithms x

1 Introduction 1
1.1 Statement of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 State of the Art 3
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Design by Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 FASA Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Temporal Logic (focusing on Real Time Logic) . . . . . . . . . . . . . . . . 8

2.2 Analysis of previous research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Preliminary experiments and problem exploration . . . . . . . . . . . . . . . . . 12
2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Development of the Framework 15
3.1 Requirements of the FASA contract framework . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Deciding the acceptable overhead level . . . . . . . . . . . . . . . . . . . . 16
3.2 Features and underlying principles . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Functional Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Real-time (temporal) Contracts . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Temporal specification using RTL . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.1 FASA Temporal Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 FASA Real-Time Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Implementation 31
4.1 fasa_assert.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Logging of the messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Approaches towards the contract framework . . . . . . . . . . . . . . . . . . . . . 33

v



Contents

4.2.1 Dedicated function blocks for contracts . . . . . . . . . . . . . . . . . . . . 34
4.2.2 Dedicated routines for contracts . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Parametric temporal contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 The "Old" construct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Results and Validations 45
5.1 Simple Counter Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1.1 Application description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1.2 Contract analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Gaussian Random Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.1 Application description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.2 Contract analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 Binary Search Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3.1 Application description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3.2 Contract analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4 Energy-Pack-Core-Model example . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4.1 Application description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4.2 Contract analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.5 NetProxy Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.5.1 Application description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.5.2 Contract analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Conclusions and Future Work 65
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1.1 Major Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A Box-Muller Transform 69

B Binary Search Algorithm 71

Bibliography 76

Curriculum Vitae 77

vi



List of Figures
2.1 FASA Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Case study 4-A four block FASA application . . . . . . . . . . . . . . . . . . . . . . 7
2.3 File structure of a typical FASA application . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Standard Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Block execution times of a FASA application . . . . . . . . . . . . . . . . . . . . . 14

3.1 Empirical cumulative distribution functions . . . . . . . . . . . . . . . . . . . . . 22
3.2 Sliding window principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Continuously updating the parameters . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 High level view of the contract framework . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Fundamental mechanism of the contract framework . . . . . . . . . . . . . . . . 32
4.3 Logging for the contract framework . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 Screen shot showing exceeding slack time . . . . . . . . . . . . . . . . . . . . . . 34
4.5 A two block FASA application with dedicated blocks for contracts . . . . . . . . 36
4.6 Modifed schedule in FASA xml file . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.7 Performance-flexibility trade-off diagram . . . . . . . . . . . . . . . . . . . . . . . 37
4.8 Snippet from the configuration file of FASA . . . . . . . . . . . . . . . . . . . . . . 38
4.9 Screen shot showing the empirical cdf related computations . . . . . . . . . . . 40
4.10 An example of a real-time post-condition . . . . . . . . . . . . . . . . . . . . . . . 40
4.11 Statistically computed contract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.12 Placement of different types of contracts . . . . . . . . . . . . . . . . . . . . . . . 41
4.13 Variadic macro definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.14 Use of variadic template function for parametric contracts . . . . . . . . . . . . 42
4.15 Examples of user defined functions for parametric contracts . . . . . . . . . . . 43
4.16 An example of a parametric contract . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.17 Macros for the "Old" construct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.18 Block code showing the "Old" Construct . . . . . . . . . . . . . . . . . . . . . . . 44

5.1 Case study 1-Simple counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Case study 1-Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Case study 2-Gaussian random number generator . . . . . . . . . . . . . . . . . 49
5.4 Case study 2-Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.5 Case study 3-Binary Search application . . . . . . . . . . . . . . . . . . . . . . . . 52
5.6 Case study 3-Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.7 Case study 4-Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.8 Case study 5-NetProxy application . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

vii



List of Figures

5.9 Case study 5- Performance analysis of net-proxy sender . . . . . . . . . . . . . . 62
5.10 Case study 5- Performance analysis of net-proxy receiver . . . . . . . . . . . . . 63

viii



List of Tables
2.1 Temporal logic symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Feature analysis of contract frameworks . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Requirement 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Requirement 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Requirement 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Requirement 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 Execution time comparison for sender-receiver application . . . . . . . . . . . . 37

5.1 Status of requirement 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Status of requirement 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3 Status of requirement 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.4 Status of requirement 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.5 Case study 1-contract summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.6 Performance analysis of case study 1 . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.7 Case study 2-contract summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.8 Performance analysis of case study 2 . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.9 Case study 3-contract summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.10 Performance analysis of case study 3 . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.11 Case study 4-contract summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.12 Performance analysis of case study 4 . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.13 Case study 5-contract summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.14 Performance analysis of case study 5, sender application . . . . . . . . . . . . . 62
5.15 Performance analysis of case study 5, receiver application . . . . . . . . . . . . . 62
5.16 Requirement fulfillment analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

ix





List of Algorithms
1 Empirical Cdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2 Loop Variant Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3 Binary Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

xi





1 Introduction

In our day to day lives, our activities are influenced by many complex systems for which
correct functioning is absolutely necessary. Any failure for such systems can have serious
consequences. Let us take the example of the safety system of an automobile. Most modern
cars have air bags for preventing the occupants from hitting the dashboard in case of an
accident. The way it works is that there is an accelerometer which is capable of detecting
collision forces. When this force becomes more than a particular threshold value, the collision
is considered to be a crash and a crash sensor is notified. This sensor then causes the airbag to
inflate [13]. If there is a slight delay in the transmission of the signals from the sensor to the
controller that ejects the airbag or if there is a bug in the program that calculates the collision
force, it may lead to failure of the safety system, causing loss of life. This is an example of a
real-time, safety critical system. Other examples are pacemakers, nuclear reactors, the control
system of an aircraft and online banking transaction systems [26].

In today’s generation, most real-time, safety critical systems rely on computer systems and
software in some form or the other. In order to ensure the reliability of safety critical systems, it
is essential to ensure the reliability and correctness of the underlying computer hardware and
software. In this sense, a real-time system can be considered as a layered system consisting of
a software that implements various tasks and an execution platform (hardware) on which the
software is run [40]. There are continuous interactions between these two layers which makes
it a major challenge to ensure the dependability, safety and reliability of safety-critical systems.
One common technique adopted in industries for developing complex real-time systems is to
use a component-based approach. In this approach, a complex system is composed of several
reusable components which interact with each other. For such systems, reliability is even
more challenging because merely ensuring the reliability of the independent components will
not be sufficient. One needs to think about the correctness of the system as a whole. Ensuring
the correct construction of these systems requries verification of functional as well as real-time
properties.

This thesis tackles the issue of correct construction of component-based real-time and safety
critical systems by means of using the principle of Design by Contract [33]. We present a
library-based contract framework for specifying executable contracts for such systems. Our
experiments show that for applications deployed on a single host, the average overhead added
due to the contract framework is only 5.4 % for a cycle time of 10 ms, which renders it efficient

1



Chapter 1. Introduction

and easily incorporable on top of existing component-based control applications.

1.1 Statement of the problem

The challenge of this thesis is to bring Design by Contracts to real-time safety critical systems
for allowing verification and testing. It entails the development of a contract framework for
FASA which allows checking of preconditions, postconditions and invariants. The framework
has been developed such that it can be turned on/off depending on whether the user wants to
have contracts enabled at runtime. It allows users to specify functional as well as real-time
properties for the applications while mainly focusing on the latter. What makes it challenging
is that FASA targets a cycle time of 1 ms, which requires the contract framework to have as
little overhead as possible.

While contracts have been used in the past to specify functional properties for programs,
using it together with statistical inference for dynamically estimating and defining temporal
properties of real-time systems is something that has not been explored in the past.

Moreover, this thesis uses Real Time Logic (RTL) [25] to formalize the stochastic temporal
contracts. This is a unique contribution of this thesis because RTL has not been used so far for
formalizing statistical properties.

1.2 Structure of the thesis

This thesis contains six chapters. Chapter 2 describes the principle of design by contract, the
FASA framework, real time logic and presents an analysis of previous research. Chapter 3
describes the requirements and development principles of the contract framework. Chapter 4
presents the implementation details of the framework. Chapter 5 illustrates benchmarks
and validates the techniques described in the previous chapters with results. We conclude in
chapter 6 and describe possible future extensions.

2



2 State of the Art

2.1 Background

This section describes the concept of design by contract, introduces the FASA framework
and also highlights some features of Real-time Logic (RTL) which is used for formalizing the
contract framework developed in this thesis.

2.1.1 Design by Contracts

One of the first attempts towards verifiable programming was done in the 1970s using the
language Euclid [28]. This language was not meant for writing large application but it allowed
the use of external verification tools on moderately sized programs for verification [28]. Later,
the concept of verifiable programs became more popular with the advent of contract program-
ming. The term Design by Contract (DbC) [33] was coined by Bertrand Meyer, which is an
approach for developing reliable Object Oriented Programming (OOP)-based software. Most
programmers often adopt a defensive programming approach [33] in which the programmers
makes numerous checks to make sure that all corner cases are handled well. This usually
introduces several redundant checks and at times, increase the complexity of the program,
thereby degrading its performance. DbC prevents this from happening. In most moderate
to large sized applications, a program is broken down into several tasks and subtasks and a
particular job is accomplished by making calls to these tasks and subtasks. In DbC terminology,
the callers are called clients and the called routines are called suppliers and there is a contract
between the client and the supplier in which the demands and requirements for each of them
are listed. This is done by means of assertions. Assertions are boolean expressions. They can
be of three types, preconditions, postconditions and invariants.
Eiffel Language: Contracts are inherently supported in the Eiffel programming language. The
following pseudo code shows how pre and post conditions are written in Eiffel [33].

3



Chapter 2. State of the Art

routine_name (argument declarations) is
require

Preconditions
do

Routine body
ensure

Postconditions
end

Pre and post conditions: Theoretically, pre and post conditions can be expressed as a Hoare
triplet [22] as:

P { S } Q ,

where P is a precondition, S is the program and Q is the post condition.

A caller is expected to satisfy the preconditions if it wants to make a call to the routine and in
turn, the routine is expected to satisfy the postconditions after its execution. In Eiffel, there
is also the old construct in postconditions which is used to check the value of a variable
after the execution of a routine. These assertions can be monitored at runtime. Failure of a
precondition indicates a bug in the caller while failure of a postcondition indicates a bug in
the routine.
Invariants: Class invariants are assertions that should be true for every instance of a class.
Every routine must ensure that the class invariant is true upon exit if it was true at entry. Apart
from class invariants, there are also loop invariants. A loop invariant is a condition which is
true at the beginning of a loop, is preserved throughout all the iterations and also true when the
loop condition fails and the loop is exited. A loop invariant is used to prove partial correctness
of programs with loops, i.e it ensures that if the loop terminates, the postconditions will hold.
A loop invariant is represented in Hoare Logic as:

{ Condi ti on ∧ Invar i ant } loop_bod y { Invar i ant }
{ Invar i ant } whi le ( Condi ti on ) loop_bod y { ¬Condi ti on ∧ Invar i ant }

However, a loop invariant is not sufficient for proving the total correctness of a loop. In order
to ensure total correctness, one must prove that the loop terminates. To ensure termination,
we need a loop variant. A loop variant is a non-negative integer which decreases atleast by one
in each iteration.

A key feature of OOP is inheritance. It is important to note how contracts behave with inheri-
tance. For a parent class A and a child class B inheriting from A, it should be guaranteed by the
programmer that the preconditions of A are not weaker than the preconditions of B and the
postconditions of B are atleast as strong as the postconditions of A. In case of class invariants,
B inherits the invariants of its parent A. Thus, if there are some new invariants for B, then the
final invariant of B would be obtained by the logical AND operation on the invariants of B and

4



2.1. Background

those that it inherited from A, thereby making the invariant of the child class stronger than the
invariant of the parent class.
Other Languages supporting DbC: Apart from Eiffel, another programming language that
supports contracts is SPARK [9], which is based on the ADA language. Several efforts have been
made to introduce contracts explicitly into programming languages that did not have contract
support before. For instance, Java Modeling Language (JML) is a behavioral specification
language for defining contracts in Java [29]. Another technique for using DbC for Java is
presented in [8]. This approach proposes two tools, Jtest and Jcontract for static analysis and
dynamic verification of contracts respectively. Microsoft Research has developed a framework
called Code Contracts [5] for .NET programming. The structure of this framework is quite
similar to the classic framework from Eiffel. In [1], a list of other existing contract frameworks
developed for Perl, Python, C++ etc. is provided.

2.1.2 FASA Framework

The contract framework presented in this thesis can be smoothly integrated to any existing
component-based framework. We have evaluated its performance by integrating it with one
state-of-the-art component-based framework, FASA. FASA stands for Future Automation
System Architecture. It is a component-based framework developed at ABB Corporate Re-
search, used for developing cyclic control applications [34]. FASA is based on the principle of
keeping the applications, runtime framework and execution platform independent of each
other [44] as shown in Figure 2.1. Due to this separation, it is very flexible in the sense that
the applications can be executed on any platform, without requiring the application code
to be changed. This allows a clear separation between the development of the applications
and their deployment [34]. Application developers are only concerned with the code of the
control application. In the background, the FASA framework is responsible for compiling the
code, deciding upon a static schedule for the initial deployment of the application and also
the best communication protocol to be used among the components which depends on their
deployment with respect to each other [34].

Figure 2.1 – FASA Architecture [34]

5



Chapter 2. State of the Art

Main constituents

In FASA, applications are composed of the following:

1. function blocks

2. components

3. ports

4. channels

Components are made up of one or more blocks which are the basic units of FASA. All the
blocks enclosed by a component are deployed on the same host controller. Every block has a
function, construct() meant for the initialization of the block, which is done only once when
an application is launched. This includes initialization of variables and declaration of ports.
The blocks also have a dedicated routine, operator() in which the behaviour is defined by
the application developer. This routine is executed in every cycle.

Blocks have input and output ports for data transfer. Data can only be written on the output
ports and read from the input ports. The channels are used to connect an input port to
an output port. They are stateless and do not monitor the data they transmit. They are
unidirectional.

A single FASA application may be executed on more than one host and the communication
among the blocks depends on their deployment. If they are on the same core, they commu-
nicate by shared memory. If they are on different cores of the same host, they communicate
by message passing. Finally, if they are deployed on different hosts, the blocks communicate
through network proxies [34].

A typical FASA application

In Figure 2.2, a four block FASA application is shown which demonstrates the concepts of
blocks, components, input and output ports and channels. The 4 function blocks are: a
Sensor, a Feed Forward block, a Current Controller and a Monitor, each of which are enclosed
by a component shown in the figure by the surrounding outer rectangles. The order of
execution of the blocks is shown by the integers at the bottom of each block. In the actual FASA
application, this information is provided in an xml file. The Sensor block collects data from the
environment and sends them to the Feed Forward block and the Current Controller through
ports data_out_ff and data_out_cc respectively. After receiving the input from the Sensor,
the Feed Forward block performs some computations and sends the output to the Current
Controller through port data_out. At this point, the Current Controller has the previous values
from the Sensor which it received at port data_in and a new value from the Feed Forward
block which it receives at data_in_ff, on which it then performs some computations and sends
the obtained output to the Monitor through data_out. The Monitor is used for displaying the
data on some form of console. This completes one cycle and it is repeated in the same way in
each cycle.

6



2.1. Background

Figure 2.2 – A four block FASA application

File structure of FASA applications

Figure 2.3 shows the file structure of a typical FASA application. As we can see, there are three
types of files that are required.

1. source files: The source files are written in C++. All blocks and components are classes
that inherit from base classes Block and Component respectively. The behavior of the
blocks are defined in these source files and they are instantiated in their corresponding
component classes.

2. xml files: For every component, there is an associated xml file specifying the compiled
dll file of the application, in which it will be used. This xml file is parsed by the FASA
framework to identify the components to be executed. There is one main xml file for
storing the description of the entire FASA application. The components that are actually
used in an application are listed in this file. The channels are defined here in terms of
the source port and the destination port. The other information that is provided in this
main xml file is the schedule according to which the blocks are supposed to be executed.

3. def files: It contains information for the FASA framework regarding the header files,
source files and namespaces used in an application.

Details of the functioning of FASA

The scheduling of FASA applications is done offline. During this phase, the components are
allocated to the available hosts and then time intervals are assigned to the blocks for execution.
The output of this phase is a static non-preemptive schedule [34]. In order to run a FASA
application, a host computer needs to run the FASA kernel which is implemented in C++.
The framework has a parser which extracts information regarding the components, channels
and the schedule of the FASA application (the order of execution of the function blocks) as
described in the xml file. Finally, the application is launched and the blocks are executed by
the FASA kernel. FASA applications are cyclic which means that after the execution of all the
blocks of an application, the execution of the application is repeated [34]. After the execution

7



Chapter 2. State of the Art

Figure 2.3 – File structure of a typical FASA application

of all the blocks in a cycle, there is usually some slack time during which blocks could be
updated. If no such update activity is necessary, then the kernel sleeps until the start of the
next cycle.

2.1.3 Temporal Logic (focusing on Real Time Logic)

Satisfying temporal constraints is vital for hard-real time systems. Missing a deadline for
such systems is not acceptable because the consequences could be severe. FASA is used for
developing control applications for hard-real time systems. Thus, in order to ensure the cor-
rectness of FASA applications, it should be ascertained that they meet the timing requirements.
These timing requirements can be represented as a part of the formal specification of the
system. Temporal logic has long been a popular mathematical tool for formal specification
and verification of safety and liveness properties of reactive systems[31]. A safety property is
used to ensure that nothing bad ever happens in a system and a liveness property ensures
that eventually something good happens. Properties represented by temporal logic can be
verified using techniques such as model checking to prove the correctness of a system. Initially,
classical logic systems such as propositional logic and first order logic were used for system
specification. However, these logic systems work well when the truth values of the assertions
do not depend on time. This is the case for static systems. However, real-time systems are
dynamic systems and time is an important aspect in this case. This led to developments in the
field of temporal logic. Temporal logic is basically an extension of the classical logic systems
using additional modal operators [27]. Table 2.1 shows the temporal logic symbols and their
corresponding meanings.

Table 2.1 – Symbols in temporal logic and their interpretations

symbol meaning
©φ φ is true in the next moment of time
2φ φ is always true
¦φ φ is eventually going to be true

ϕ until φ ϕ is true until φ is true
φ�ϕ ϕ is true atleast as long as φ is true

8



2.2. Analysis of previous research

Over time, there has been a lot of research on adapting temporal logic to different needs. Bellini
et al. [11] have provided a review of the properties of different temporal logic systems. In this
thesis, we are going to focus on temporal contracts for real-time systems. For our purpose, we
have exploited Real Time Logic (RTL) [24]. RTL is an extension of first-order logic dedicated
to specification of real time systems. Strictly speaking, despite what the name suggests, RTL
is not a typical temporal logic system because it does not have the modal operators listed
above [11]. One of the main advantages of RTL is that it allows us to reason about both absolute
and relative time [25]. With the help of an occurrence function, @, RTL facilitates capturing
of the time of occurrence of some event. In the contracts that we defined in this thesis, we
needed to handle both these cases which is why RTL has been chosen for our specifications.
Below, we provide an overview of the syntax of RTL.

RTL syntax

In Real-Time Logic defined by Jahanian & Mok [25], the notations defined for formal specifica-
tion of a system are as follows:

Events: In RTL, an event is a temporal marker that describes the real-time behavior of a sys-
tem [24]. An event is different from an action. An action requires system resources [25],
while an event only gives us information regarding the time of occurence of an ac-
tion. For every action, there are two associated events, a start event and a stop event.
Following is a description of the different types of events in RTL.

1 Execution of an action is represented by two events, start and stop. For an action A,
↑ A and ↓ A respectively represent these two events.

2 Transition Events: These event occurs when the value of a state changes.

3 Ω EVENT_NAME: Events that impact the system behaviour but cannot be made to
happen from within the system. Such events are called external events.

R: Occurrence relation R(E,i,t) is used to represent that the i th occurrence of an event E
takes place at time t, where, i is an integer such that i > 0 and t is an integer such that
t ≥ 0. Here time is considered to be a discrete quantity.

@: Occurrence function @(E,i) represents the time of the i th occurrence of event E.

2.2 Analysis of previous research

Contracts have often been used in the past for specifying functional requirements of programs.
Not only is it popular practice to use contracts in application software [46], but even in
industrial software, the use of contracts has gained a lot of popularity because it allows both
dynamic and static verification of the code. For example, DbC is incorporated in Ada 2012 [39]
for functional specifications of real-time applications [15].

As described in [18], DbC is used in Component Based Software Engineering (CBSE) for de-
scribing the behavior of the components. From this point of view, contracts can be considered
as a specification technique used in the Design level of complex systems.

9



Chapter 2. State of the Art

In [41], [19], [38], [10], [12] and [43], the use of DbC in the system design phase is shown,
focusing on the real-time aspects of the underlying systems.

Real-time contracts not only refer to temporal contracts but also to non-temporal contracts
such as resource consumption related constraints [38], [43], [19], [12], [41].

Contracts using interface description languages (IDL):
Härtig et al. [19] and Barbacci et al. [10] show the use of interface description languages for
specifying contracts.

In [19], contracts are specified for a real-time system in an OCL [7] based language called
Extended Component Quality Modeling Language (CQML+) and a dedicated runtime envi-
ronment is designed to execute an application defined in CQML+. This runtime environment
is responsible for converting the component-specifications into executable task specifications
for a real-time operating system (RTOS).

Barbacci et al. [10], represent the functional and temporal properties using two separate
formalisms. The functional specifications are written in Larch Interface Language (LIL) [45]
and the temporal requirements are written in an event expression language [10].

While in [10], the focus is on functional and temporal contracts, in [19], other non-functional
aspects such as allocation of resources like CPU are also taken into account while defining the
contracts.

The above approaches use a separate language for the specifications which would involve a
lot of overhead due to parsing and interpreting the contracts. Since this thesis aims at very
small cycle times and dynamic verification of contracts, the approaches in [10] and [19] are not
suitable for our need.

Contracts for embedded systems:
Stierand et al. [43] show the use of interfaces and contracts for distributed embedded system
design. In this paper, focus is mainly on the scheduling aspects. They have proposed a
technique for designing an interface for a real-time system for which the scheduling policy
and the contracts are given. They have used finite state machines for modeling the system and
then they check whether this state machine satisfies the contracts.

Contrary to their objective, in this thesis, the contracts are not given and the objective is to
define the contracts themselves.

Layered real-time contracts:
Sojka et al. [41], Benveniste et al. [12] and Sangiovanni et al. [38], have presented contracts in
multiple layers of real-time systems.

Benveniste et al. [12] and Sangiovanni et al. [38] have used contracts for platform-based
systems. The design of a complex system is classified into two orthogonal directions. The
vertical direction relates to different levels in the design hierarchy, such as application level and
platform level. The horizontal direction refers to various components which interact with each
other in the same vertical level. In other words, platform-based design is an amalgamation
of model-based (vertical) and component-based (horizontal) system design. Contracts in

10



2.2. Analysis of previous research

this setting are therefore classified as horizontal and vertical depending on the nature of the
assume-guarantee pairs they represent. Contracts in the same horizontal level can undergo
conjunction operation while contracts in the vertical layers undergo refinement [12], [38].

Our contract framework handles two levels of the contracts, block level and scheduler level.
The details are given in chapter 3.

The layered contract framework of Sojka et al. [41] is a part of the FRESCOR project [6]. The
two layers are generic and resource specific. The generic layer has an agent called a broker
which acts as a mediator between the actual resources and the applications. The broker runs
on every node in case of a distributed scenario.

If we try to model this approach according to our requirements, it would be equivalent to
having an extra function block acting as the mediator. As we will see in chapter 4, having
additional function blocks adds an overhead to the execution time. Moreover, the FASA
framework is IEC 61131 compliant and it is a time-triggered system. The authors in [41] have
mentioned that their framework has not yet been tested for time-triggered systems.

Use of RTL for real-time system specifications:
Barbacci et al. [10] and Jahanian et al. [25] illustrate the use of RTL for specifying properties of
real-time systems. In this thesis as well, RTL has been used to formally define the real-time
contracts.

What makes our approach distinct and unique is the use of RTL for specifying stochastic con-
tracts, which has not be done before.

To conclude, contracts have been used for a wide range of applications, including several
real-time systems. However, to the best of our knowledge, they have not been used for
dynamically computing real-time contracts based on statistical estimates of parameters of
the probability distributions of the execution times. Further, this thesis aims at performing
these computations at runtime while keeping the overhead on the execution time as little as
possible.

To summarize this section, table 2.2 shows the characteristic features of the existing contract
frameworks which are relevant for our research and the characteristics of our own contract
framework.

11



Chapter 2. State of the Art

Table 2.2 – Characteristics of different contract frameworks

functional
contracts

temporal
contracts

other non-
funtional
contracts

stochastic
analysis

OCL based
contracts

RTL specs
for formal-
ization

AdaCore’s
frame-
work [15]

X × × × × ×

Barbacci et
al. [10]

X X × × X X

Härtig et
al. [19]

X X X × X ×

Stierand et
al. [43]

× X X × × ×

Sangiovanni
et al. [38]

X × X × × ×

Benveniste
et al. [12]

X X X × × ×

Sojka et
al. [41]

× × X × × ×

FASA
contract
framework

X X × X × X

As the table shows, our framework focuses on functional and temporal contracts only. It illus-
trates the use of statistical inference for computing the temporal contracts dynamically. The
framework does not rely on any IDL in order to avoid additional overhead due to parsing and
interpreting the contracts. Our framework has been formalized using RTL thereby highlighting
its use for specification of statistical properties.

2.3 Preliminary experiments and problem exploration

Stochastic contracts: One of the key contributions of this thesis is the computation of stochas-
tic temporal contracts for the function blocks.

In order to do this, we use a novel approach of empirical cumulative distribution function (cdf)
of the execution times of the function blocks. The analysis is based on samples collected by
executing the blocks for n cycles. Chapter 3 provides the details of this technique.

Here, we describe the preliminary experiments whose results motivated us to adopt this
approach.

Although in many settings, the execution time of a program can be observed to have a well
known probability distribution, such as the Pearson group of distributions [37], predicting
this distribution is a research area on its own. Things would become much simpler if one
could argue that for large number of executions, the probability distribution can be assumed
to converge to a Gaussian distribution. This assumption is often far from the truth, thereby
rendering statistical analysis of the execution times of programs a very challenging field. An
example of such a scenario is presented in [32].

12



2.3. Preliminary experiments and problem exploration

−4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
N(0,1)

 

 

µ + 2σ

µ+3σ

µ − σ

µ − 2σ

µ − 3σ

µ + σ
34.1%

13.6%

0.1% 2.1%

13.6%

2.1%

34.1%

0.1%

Figure 2.4 – Standard Normal Distribution

Analysis of execution times can broadly be classified into static, probabilistic and hybrid
approaches [35]. A lot of research has been done in the field of static analysis. However, the
drawback of static analysis is that it requires knowledge of the code. This is not always feasible
when systems are designed using CBSE. Components are meant to be used off the shelf and
we cannot always expect to have access to the code of the components [35]. FASA is based on
the idea of CBSE. Therefore, although static analysis is a solution for analyzing the WCET of
the FASA function blocks, it is not always a plausible approach.

In this thesis, we consider two scenarios.

In the first scenario, we assume that WCET analysis for the function blocks has been done by
some external static analysis tool and that we know the WCET values of the blocks. A part of
the contract framework works on this assumption as we will see in Chapter 3.

In the second scenario, we assume that there is no information about the WCETs of the
function blocks. In this setting , we use statistical approaches to compute the temporal
contracts based on estimated upper bounds on the execution times of the function blocks.

For a Gaussian distribution, N (µ,σ2), according to the 3-sigma rule, 99.7% of the data drawn
lies within µ±3σ, which can be seen in Figure 2.4. Now, to consider this as an upper bound for
the execution times of the function blocks, the probability distribution of the execution times
should conform to a Gaussian distribution. The distribution of the execution times depends
on the nature of the computations being done within the blocks and it was observed that upon
running the function blocks for 1000 cycles or more, although the distributions converge to a
single peaked distribution, it is far from Gaussian.

We conducted the experiments for 11 FASA applications and in total 24 function blocks.

The results for one of the applications (the four block FASA application in Figure 2.2) is shown
in Figure 2.5. This application is based on a Simulink case study. As it can be seen from the

13



Chapter 2. State of the Art

0.5 1 1.5 2 2.5

x 105

0

50

100

150

200

250

300
SensorBlock1000

time in ns

nu
m

be
ro

fo
cc

ur
an

ce
s

0 5 10 15

x 105

0

200

400

600

800

time in ns

nu
m

be
ro

fo
cc

ur
an

ce
s

FeedForwardBlock1000

0 0.5 1 1.5 2

x 106

0

200

400

600

800

1000

time in ns

nu
m

be
ro

fo
cc

ur
an

ce
s

CurrentControlBlock1000

0 1 2 3

x 106

0

200

400

600

800

1000
MonitorBlock1000

time in ns

nu
m

be
ro

fo
cc

ur
an

ce
s

Figure 2.5 – Block execution times of a FASA application with four function blocks. This
application is based on a case study obtained from Simulink

histograms, the distributions are not Gaussian even for n as large as 1000. Thus, we could
not use an estimated value of µ+3σ as an upper bound on the execution times. This led us
to adopt an approach based on the empirical cdf of the execution times of the blocks. We
describe the approach in detail in chapter 3.

2.4 Conclusions

This chapter gave an overview of the underlying concepts used in the development of the
contract framework. It presented a rigorous analysis of previous work on real-time contracts.

Finally, the chapter illustrated a very important experiment that we conducted showing that
for a component-based platform such as FASA, it is non-trivial to estimate the probability
distribution of the execution times of the function blocks. Known distributions can rarely be
used to fit the execution times.

Therefore, an empirical cdf -based approach is used in the rest of the research. This approach
subsumes the properties of the function blocks and as a result, it is a generic approach suitable
for estimating the cdf of function blocks with varied behaviors.

14



3 Development of the Framework

FASA is a platform for developing real-time control applications. When we talk about contracts
for such a platform, there are two important aspects to be considered - functional and real-
time. By functional, we refer to the behavior of a function block. Functional contracts are thus
related to properties such as variables, their values and relationships with other variables. For
our research, real-time contracts refer to the temporal properties of a function block and also
an application as a whole. This chapter first states the requirements of the contract framework,
describes its features along with the underlying development principles and finally formalizes
it using RTL.

3.1 Requirements of the FASA contract framework

The first step in the development of any software is the analysis of its requirements. For the
contract framework developed in this thesis, there were four main requirements, which are
given in tables 3.1, 3.2, 3.3 and 3.4.

Table 3.1 – Requirement 1

Req1 Flexibility of the contract framework: it should not have any effect on the
original FASA platform and the user should have the freedom to turn the
contracts on/off as and when required.

Rationale Contracts should preferably only be used in the debug mode and disabled in
the production code in order to avoid any overhead. Therefore the framework
should allow the user to enable or disable contracts according to the mode in
which the applications are compiled.

Test A dummy contract designed to fail, will be put in the base Block class. Appli-
cations should be executed with contracts enabled and disabled. In the latter
case, the application should run as if no changes have been made to FASA.
In the former case, a contract failure message should be logged in the slack
time.

Classification Required.

15



Chapter 3. Development of the Framework

Table 3.2 – Requirement 2

Req2 Allowing users to specify functional contracts at the function-block level.
Rationale Contracts are required for ensuring the correct functionality of the blocks.

The framework should provide the user a set of tools for defining functional
contracts.

Test Dummy pre and post conditions, class invariants and variable checks using
the Old construct will be inserted in the applications. The dummies are
designed to fail. The contract framework should be able to log the failure
messages during the slack time when contracts are enabled.

Classification Required.

Table 3.3 – Requirement 3

Req3 Allowing the users to specify temporal contracts.
Rationale Temporal correctness is vital for hard real-time, safety critical systems. The

contract framework should allow defining of temporal contracts to ensure
that the blocks meet the temporal requirements.

Test Dummy temporal contracts will be inserted in the applications which are
designed to fail. As an example, setting the WCET of a block to zero and
checking the execution time of a block against it will always fail because
execution time cannot be zero (assuming that the block gets started). The
contract framework should be able to log failure messages corresponding to
the contracts during the slack time when contracts are enabled.

Classification Required.

Table 3.4 – Requirement 4

Req4 Have minimum effect on the performance of the FASA platform, i.e limit the
overhead due to contracts to the bare minimum.

Rationale Since FASA is used for developing control applications, performance of the ap-
plications is a great concern. The contract framework should take this into ac-
count and ensure that the overhead is not more than 10% [23](section 3.1.1).

Test Overhead should be measured when the contract framework is activated.
The percentage increase in the execution time of the applications should not
exceed 10.

Classification Required.

3.1.1 Deciding the acceptable overhead level

In control systems, it is a common practice to fix a tolerance limit on the execution time
overhead. This is necessary because control applications are hard real-time systems and
missing of a deadline is considered as a failure. For the development of the contract framework,
we had to decide how much overhead due to contracts would be considered as acceptable.

Huang et al. [23] have described a supervisory feedback control mechanism called SMCO to
limit the overhead due to monitoring tools. The user specifies a target overhead which should

16



3.2. Features and underlying principles

not be exceeded by the monitoring software. A feedback mechanism is used to ensure that this
bound is respected. In the experiments conducted by Huang et al. [23], the target overhead
has been taken to be 10% and it is shown that a very high accuracy (in terms of the number of
events monitored) can be attained by the monitoring services even with such a small target
overhead. For our contract framework, we have fixed 10% as the maximum tolerance in the
overhead.

3.2 Features and underlying principles

The contract framework allows the application developer to specify the contracts while defin-
ing the behavior of the function blocks in C++. It is important to note that the FASA platform
does not require the application developer to interfere with the scheduling or the deployment
of the application. In this sense, the contracts are local to the function blocks and do not
have any effect on the platform abstraction layer. At the same time, contracts at the scheduler
level are important for ensuring the temporal correctness of the applications. To tackle this
situation, some contracts are made implicit in the FASA platform. They are checked by default
whenever contracts are enabled. This is explained in more detail in section 3.2.2.

The objective behind the contract framework is to provide the user a set of tools for specifying
the contracts according to the requirement of a particular application and then to dynamically
verify whether the application satisfies the contracts in every cycle.

If a contract is not satisfied in a cycle, a message is logged and later the cause of the failure can
be inspected. In the production code, the contract framework is disabled by default.

3.2.1 Functional Contracts

The FASA contract framework allows the users to define preconditions, postconditions, class
invariants, loop invariants and loop variants for a function block. This feature satisfies Req2.

Preconditions are checked before the operator() method in the function block inside a
routine dedicated to functional preconditions. An example of a functional precondition for a
function block which has an output port for data transfer would be to ensure that the output
port is connected to the input port of the destination function block.

Postconditions are similarly specified in a dedicated routine for functional postconditions
and checked after the operator() method. An example of a functional postcondition for a
function block that computes the cosine of an angle would be to ensure that the result lies in
[−1,+1].

Invariants are checked both before and after the operator() method. If the operator method
has loops within it, one can also specify loop invariants and loop variants for checking the
correctness of the loops. The contract framework will then dynamically check if they are
satisfied in every cycle.

Contracts can also be defined for monitoring the value of a data member of a function block.
This feature is inspired by the old construct of Eiffel.

17



Chapter 3. Development of the Framework

3.2.2 Real-time (temporal) Contracts

Apart from functional properties, real time applications also have temporal properties which
must be satisfied. The FASA contract framework ensures that such temporal contracts are
satisfied by a FASA application, in order to fulfill Req3. Three real time aspects have been
considered in this research:

1. WCET related properties

2. Cycle time related properties

3. Jitter related properties

Three fundamental temporal properties are checked by default whenever contract checking is
enabled, without requiring the user to specify them explicitly. They are as follows:

1. WCET: Each function block has a WCET (worst case execution time) value. For the
correct functioning of the application, it is necessary for each function block to meet
the WCET requirement in each cycle. This can be verified at runtime using an implicit
contract that is embedded in the FASA framework. For this, it is assumed that the WCET
values of the function blocks are provided by an external static analysis tool. For the
purpose of validating the framework, these values are assumed to be provided by the
application developer. This is a block level contract.

2. CYCLE_TIME: The cycle time for FASA is a parameter that is predefined in a configuration
file. A contract is defined that ensures that the total execution time of all the function
blocks strictly respects this upper bound. This is a scheduler level contract.

3. JITTER_MARGIN: The contract framework allows the user to check the jitter margin. Jitter
margin is a value that determines the maximum deviation from the required cycle time
that is acceptable. At runtime, the user can specify an upper bound on the jitter that can
be tolerated. The contract framework then dynamically verifies whether this bound is
respected in every cycle. This is a scheduler level contract.

Apart from the above fundamental temporal contracts, the framework also allows the user to
perform more complex real-time contract verifications. Following is a description of these
properties.

Online estimation based

The contract framework allows the user to perform a dynamic estimation of an upper bound
on the execution time of a block. Following are the rationales behind this approach:

• In situations when the WCET values of the function blocks are not known in advance
(by means of static analysis or other techniques) the user has to compute the temporal
requirements on the fly using statistical techniques. This is often the case for CBSE
because components are meant to be used off the shelf and access to the component
code is not always feasible. In such settings, statistical inferencing is a very useful
technique for determining upper bounds on the execution times.

18



3.2. Features and underlying principles

• Since contracts are dynamically verified, it is important to make sure that the current
platform conditions are taken into account while computing the contracts. For instance,
the execution time of the applications depends on the resources like memory and
availability of the CPU. If the contracts are never updated, then they may become
insignificant with time because the conditions under which they were originally defined
may no longer be valid.

• The execution time of a function block also depends on the path followed by the execu-
tion. For instance, if in a certain cycle, there is an exception that has to be handled, it
might take more time to execute the block as compared to the normal cycles. Online
updating of the upper bound ensures that eventually the execution times for all such
possible paths are subsumed.

• Additionally, when an application is started for the first time, the execution times are
in a transient phase. With execution, they tend to become more stable. The present
approach makes sure that this fact is not neglected while computing the contracts.

There are two possible scenarios to be considered here.

case 1 The probability distribution of the execution times is known and the population param-
eters such as mean and variance are also known.

case 2 The probability distribution of the execution times is not known and the population
parameters are unknown as well.

Let us consider case 2 first. In order to compute an estimate of the upper bound, first of all we
need to estimate the population parameters. Here we only consider the first two moments of
the probability distribution, mean and standard deviation, because computations are done
dynamically while executing the applications and computing the higher order moments would
degrade the performance of our framework. This approach respects Req4.

In order to compute the estimates, we need to use sample data. Samples are generated by
running the function blocks for an exper i ment al _c ycle_number number of times. This
value is hard coded in the framework. For our experiments, this value is taken as 1000. After the
block is executed exper i ment al _c ycle_number times, the framework computes the sample
mean, µ̂n and sample variance, s2

n of the execution times and estimates the upper bound
using statistical inference, where n = exper i ment al _c ycle_number . This upper bound is
used for checking temporal contracts from the (exper i ment al _c ycle_number +1)th cycle
onward. It is shown below that the sample statistics, µ̂n and s2

n are unbiased estimators of
the population mean and variance respectively and thus, they can be used for estimating the
upper bounds.

Unbiased Estimator : Let e1,e2,e3...en be a random sample drawn from a population and let θ
be an unknown parameter of the population which is to be estimated. Let θ̂ = υ(e1,e2,e3...en)
be a statistic (function of a random sample) based on the sample. By definition, θ̂ is an
unbaised estimator of θ if the expected value of θ̂ is equal to θ.

E [θ̂] = θ (3.1)

19



Chapter 3. Development of the Framework

Let the execution time of a function block B be represented by e. Let the experimental cycle
number be represented by n. Let µ̂n and s2

n be statistics based on our sample, e1,e2...en as
defined in equations 3.2 and 3.3 respectively. Let the population mean of the probability
distribution of the execution time be µ and the population variance be σ2.

µ̂n =
∑n

i=1 ei

n
(3.2)

s2
n =

∑n
i=1 (ei − µ̂n)2

n −1
(3.3)

Then,

E [µ̂n] = E

[∑n
i=1 ei

n

]
(3.4)

=
∑n

i=1 E [ei ]

n
(3.5)

=
∑n

i=1µ

n
(3.6)

=µ (3.7)

This result along with equation 3.1 implies that the sample mean is an unbiased estimator of
the population mean. Further, let the sample variance be defined as:

σ̂2
n =

∑n
i=1(ei − µ̂n)2

n
(3.8)

Then,

E [σ̂2
n] = E

[∑n
i=1(ei − µ̂n)2

n

]
(3.9)

= E [
∑n

i=1(ei − µ̂n)2]

n
(3.10)

= E [
∑n

i=1 ei
2 +nµ̂2

n −2µ̂n
∑n

i=1 ei ]

n
(3.11)

20



3.2. Features and underlying principles

= E

[∑n
i=1 e2

i

n
− µ̂2

n

]
(3.12)

=
∑n

i=1 E [e2
i ]

n
−E [µ̂2

n] (3.13)

Now, we know that the population variance is defined as:

V ar (e) =σ2 = E [e2
i ]− [E [ei ]]2 (3.14)

⇒σ2 = E [e2
i ]−µ2 (3.15)

⇒ E [e2
i ] =σ2 +µ2 (3.16)

and,

V ar (µ̂n) =V ar

(∑n
i=1 ei

n

)
= σ2

n
(3.17)

= E [µ̂2
n]−µ2 ∵ E quati on 3.7 ⇒ [E [µ̂n]]2 =µ2 (3.18)

⇒ E [µ̂2
n] =µ2 + σ2

n
(3.19)

Using equations 3.16 and 3.19 in 3.13, we get:

E [σ̂2
n] = nσ2 +nµ2

n
− σ2

n
−µ2 (3.20)

⇒ E [σ̂2
n] = (n −1)σ2

n
(3.21)

Thus, we see that the sample variance is not an unbiased estimator of the population variance.
However,

E

[
nσ̂2

n

n −1

]
= E [s2

n] =σ2 (3.22)

Thus, s2
n is an unbiased estimator of the population variance.

21



Chapter 3. Development of the Framework

0.5 1 1.5 2 2.5

x 10
5

0

0.2

0.4

0.6

0.8

1

time in ns

F
(x

)

SensorBlock1000

0 2 4 6 8 10 12 14

x 10
5

0

0.2

0.4

0.6

0.8

1

time in ns

F
(x

)

FeedForwardBlock1000

0 0.5 1 1.5 2

x 10
6

0

0.2

0.4

0.6

0.8

1

time in ns

F
(x

)

CurrentControlBlock1000

0 0.5 1 1.5 2 2.5 3

x 10
6

0

0.2

0.4

0.6

0.8

1

time in ns

F
(x

)

MonitorBlock1000

Figure 3.1 – Empirical cumulative distribution functions of four function blocks of an applica-
tion, based on sample size of 1000

Estimating the bound: For our sample e1,e2, ...en , let f (x) denote the probability density
function and F (x) denote the cumulative distribution function(cdf). By definition, cdf of a
random variable X is given by:

F (x) = P [X 6 x] (3.23)

For our case, we can determine the empirical cdf of the execution times of the function
blocks from the sample data obtained from exper i ment al _c ycle_number cycles as shown
in Algorithm 1. It classifies the data into bins and computes the cumulative sum of the number
of items in each bin as shown in line 18. The number of bins is chosen using the square root
rule, accoring to which, it is equal to the square root of the total number of data. Algorithm 1
describes the computation of the empirical cdf after the first exper i ment al _c ycle_number
cycles. Its also shows how the upper bound is estimated using equations 3.23.

Figure 3.1 shows the empirical cdfs of four function blocks of the application shown in fig-
ure 2.2. Now, using equation 3.23, we can find out the probability, 0 ≤π≤ 1 of the execution
time to be less than a certain value, say τπ. If the value of π is given as the desired threshold
probability value, then τπ can be used as the estimation of the upper bound for computing
contracts on the execution times. The value of π is defined by the user at runtime.

Further, the value of τπ can also be used to compute a bound of the nature,
µ+γσ, where,

γ= τπ−µ
σ

(3.24)

Equation 3.24 simply tells us that the execution times must lie within γ standard deviations of
the mean, where the value of γ is specific to every function block.

22



3.2. Features and underlying principles

Figure 3.2 – This figure shows the sliding window principle for dynamically updat-
ing the estimates of the parameters, µ and σ. The term h in the figure denotes
sl i di ng _wi ndow_upd ate_i nter val and exper i ment al _c ycle_number = 1000.

Going back to case 1 in item 3.2.2, if the population mean and variance of the execution times
of the function blocks are known in advance, then the contract framework can test that the
execution times of the function blocks do not exceed an upper bound that is computed the
same way as described above. In this case, the estimation of the µ and σ is skipped.

1. SLIDING WINDOW BASED UPDATE: This technique is used to update the upper bound by
using a sliding window principle. It requires the user to specify the value of a parameter,
h = sl i di ng _wi ndow_upd ate_i nter val , at runtime. This value tells the framework
how often the parameter estimates have to be updated. First of all, the execution
times of the function block are stored in a buffer until exper i ment al _c ycle_number
is reached. Then, the upper bound for the execution time is computed using equa-
tions 3.23 and 3.24. Depending on the value of sl i di ng _wi ndow_upd ate_i nter val ,
this bound is used for specifying the contracts for sl i di ng _wi ndow_upd ate_i nter val
cycles starting from the (exper i ment al _c ycle_number +1)th cycle. When the cycle
value is (exper i ment al _c ycle_number + sl i di ng _wi ndow_upd ate_i nter val )th ,
the framework updates the parameters taking the most recent values of the execution
times. Let us take an example of h = 5. First of all, the values from cycle number 1 to
1000 are taken to estimate the parameters. These estimates are used for specifying the
contracts from cycle number 1001 to 1005. Then, at the 1005th cycle, the first 5 values
of the execution times are removed from the buffer and the estimates are computed
again, using values from cycle number 6 to 1005. These estimates are then used for
the contracts from cycle 1006 to 1010 and the process continues. This is illustrated in
Figure 3.2.

2. CONTINUOUS UPDATE: Another feature of the contract framework is that it can recom-
pute and update this upper bound by taking into account the most recent value of the
execution time in the computation of the mean and standard deviation, without remov-
ing the oldest value. Figure 3.3 illustrates this. In order to make the update efficient, the
following mathematical results are used in the algorithm :

23



Chapter 3. Development of the Framework

Figure 3.3 – This figure shows the continuous update principle for dynamically updat-
ing the estimates of the parameters, µ and σ. The recomputation of the values is
done in every cycle, starting from the (exper i ment al _c ycle_number +1)th cycle, where
exper i ment al _c ycle_number = 1000.

From equation 3.2, we can say that,

µ̂n+1 =
∑n+1

i=1 ei

n +1
(3.25)

using (3.2) in (3.25),

µ̂n+1 = nµ̂n +en+1

n +1
(3.26)

From equation 3.3, it follows that,

s2
n =

∑n
i=1 e2

i −nµ̂n

n −1
(3.27)

or,

s2
n =

∑n
i=1 e2

i

n −1
− nµ̂n

n −1
(3.28)

Similarly,

s2
n+1 =

∑n+1
i=1 e2

i

n
− (n +1)µ̂2

n+1

n
(3.29)

Let S2
n =∑n

i=1 e2
i

Then, from (3.29), we get

s2
n+1 =

S2
n +e2

n+1

n
− (n +1)µ̂2

n+1

n
(3.30)

Equations (3.26) and (3.30) are used for updating the values of µ̂ and σ̂. They represent
the updated parameters in the (n +1)th cycle as functions of the parameters in the nth

cycle and thus recomputing the values from scratch can be avoided. This makes the
algorithm more efficient.

24



3.3. Temporal specification using RTL

Further, in the continuous update mechanism, after the first n cycles, it is no more
necessary to store the execution times in the buffer because the only information
required for continuously updating the parameter estimates are their estimates in the
immediately preceding cycle and the current execution time value. This approach is
more memory efficient compared to the sliding window technique where the most
recent n execution times have to be stored.

3. CONSECUTIVE CYCLE BASED: The contract framework allows one to monitor the execu-
tion time of a block for l consecutive cycles, where l is specified by the user at runtime.
This contract is important because if for l > 1 consecutive cycles, the function block
keeps exceeding the WCET, then it means that there is a fault in the system and it needs
to be investigated. Exceeding the WCET in one random cycle could happen by chance
or due to platform related problems and it is not a strong enough evidence of a fault in
the application code.

Parametric real-time contracts

An important aspect addressed in this thesis is to enable the FASA application developer to
specify temporal contracts as functions of the properties of various data-structures used in
the function blocks (for example the size of an array). We term this feature as Parametric Real-
Time Contracts. Section 4.3 in chapter 4 highlights the details of this feature. Madhavan and
Kuncak [30] illustrate the computation of bounds on execution times of functional programs.
In their work, the user is allowed to define templated expressions to define the bounds. These
templates contain unknowns which are then solved for. However, in this thesis, the idea of
parametric contracts is different from the research in [30]. In our case, we do not solve for
the unknown parameters and it is upto the user to determine these values externally. In fact,
one way for the user to find out the values of the unknowns would be to use the algorithm
presented in [30].

The implementation details for entire contract framework in described in chapter 4.

3.3 Temporal specification using RTL

This section uses RTL for formalizing the temporal part of our contract framework. As stated
in chapter 2, RTL is a useful mathematical tool for real-time system specification. What makes
our approach unique is that we illustrate the use of RTL for formalizing statistical temporal
contracts.

Let B1,B2,B3...Bn be n blocks in a cyclic FASA application, A , which are scheduled to be
executed in the order: B1 → B2 → ... → Bn by a static non-pre-emptive schedule.
The j th block is thus represented as B j and the WCET of the j th block is represented as C j .
Let the cycle time of an application be represented as P . Also, let the execution time of block
B j in cycle k be represented as e j ,k . Let the jitter margin be represented as J .

25



Chapter 3. Development of the Framework

3.3.1 FASA Temporal Requirements

Based on the terminology of Real-Time Logic (RTL) given in 2.1.3, any FASA application should
respect the following three specifications:

R1 The start of the kernel must be followed by the execution of the first block of the
schedule: The following RTL formula states that for every i th launch of the kernel at
time t ≥ 0, i.e. ΩK ERN EL, there exists a time t

′ ≥ t such that the first block B1 will
start at t

′
. Here, the launch of the kernel is treated as an external event in RTL termi-

nology.

∀i > 0,∀t ≥ 0,R(ΩK ERN EL, i , t ) → [∃t
′ | R(↑ B1, i , t

′
)∧ t

′ > t ]

R2 Cyclic behaviour of the applications: This formula states that the function blocks
must respect the cyclic behavior expected from all FASA applications. It says that
the termination of block Bn in cycle k at timet ≥ 0 must be followed by the start of
block B1 in the (k +1)th cycle at time t

′ > t ≥ 0.

∀t ≥ 0,∀k > 0,R(↓ Bn,k ,k, t ) → [∃t
′ | R(↑ B1,k+1,k +1, t

′
)∧ t

′ > t ]

R3 Respecting the schedule: The formula states that the function blocks must respect
the order of execution, B1 → B2 → ... → Bn provided in the schedule of the applica-
tion’s xml file.

∀1 ≤ j ≤ n,∀i > 0,∀t ≥ 0,∀k > 0,R(↓ B j ,k , i , t) → [∃t
′ | R(↑ B j+1,k , i , t

′
)∧ t

′ > t ]∧ [@m ∈
[1,n] | m 6= j +1∧R(↑ Bm,k , i , t

′′
)∧ t < t

′′ < t
′
]

3.3.2 FASA Real-Time Contracts

This section defines the temporal contracts for FASA using RTL.

C1 The start of the execution of block B j should eventually be followed by the block’s ter-
mination and respect the WCET constraint: The following RTL formula states that
for all blocks B1,B2, ...,Bn , the i th start event of a block’s execution at time t ≥ 0 in
cycle k, i.e. ↑ B j ,k must be followed by the i th stop event, i.e. ↓ B j ,k of its execution

at time t
′ > t and the duration of execution of the block, (t

′ − t) must not exceed the
WCET, C j of the block.

∀1 ≤ j ≤ n,∀i > 0,∀t ≥ 0,∀k ≥ 1,R(↑ B j ,k , i , t ) → [∃t
′ | R(↓ B j ,k , i , t

′
)∧ (t

′ − t ) ≤C j ∧ t
′ > t

C2 A block’s execution should not reach or exceed the WCET in l consecutive cycles,
where l ≥ 1 is decided by the user at run-time:

26



3.3. Temporal specification using RTL

∀k ≥ 1,∀1 ≤ j ≤ n,¬(e j ,k ≥C j ∧e j ,k+1 ≥C j ∧ ...∧e j ,k+l−1 ≥C j )

C3 If τπ is the estimated upper bound on the execution time of block B j , computed from
the empirical cdf obtained over 1000 cycles, then starting from the 1001th cycle, the
execution time of B j should always lie within τπ.

∀k > 1000,∀1 ≤ j ≤ n,e j ,k ≤ τπ
C4 This is a corollary of C3. If µ j and σ2

j are the known mean and variance of the exe-
cution time of block B j respectively, then the execution time of B j should always be
less than µ j +γσ j in each l ≥ 1 consecutive cycles where l is given at runtime:

∀k ≥ 1,∀1 ≤ j ≤ n, (e j ,k ≤µ j +γσ j )∧ (e j ,k+1 ≤µ j +γσ j )∧ ...∧ (e j ,k+l−1 ≤µ j +γσ j )

where γ is computed using equation 3.24.

C5 This is a corollary of C3. If µ̂ j and σ̂2
j are the estimated mean and variance of the

execution time of block B j , executed over 1000 cycles, then starting from the 1001th

cycle, the execution time of B j should always lie within µ̂ j +γσ̂ j in each l ≥ 1 consec-
utive cycles where l is given at runtime:

∀k > 1000,∀1 ≤ j ≤ n, (e j ,k ≤ µ̂ j +γσ̂ j )∧ (e j ,k+1 ≤ µ̂ j +γσ̂ j )∧ ...∧ (e j ,k+l−1 ≤ µ̂ j +γσ̂ j )

where γ is computed using equation 3.24.

C6 This contract is based on a sliding window update technique of the parameters. The
window size is taken to be 1000. The principle is to update the mean and variance
of the execution time of a function block at an interval of h cycles where the value
of h ≥ 1 is decided by the user at runtime. The h oldest value of the execution times
are replaced by the h most recent value and the parameters are recomputed for per-
forming the contract checks. If µ̂ j ,((k−1)h+1)...(1000+(k−1)h) and σ̂2

j ,((k−1)h+1)...(1000+(k−1)h)
are the estimated parameters of the execution time of block B j , computed for ev-
ery k th set of 1000 cycles at an interval of h cycles, then the execution time of B j

from the (1000+ (k −1)h +1)th cycle to the (1000+ (kh))th should always be less than
µ̂ j ,((k−1)h+1)...(1000+(k−1)h) +γσ̂ j ,((k−1)h+1)...(1000+(k−1)h), where k ≥ 1 :

∀k ≥ 1,∀h ≥ 1,∀1 ≤ j ≤ n ,[
e j ,(1000+(k−1)h+1) ≤ µ̂ j ,((k−1)h+1)...(1000+(k−1)h) +γσ̂ j ,((k−1)h+1)...(1000+(k−1)h)

]∧[
e j ,(1000+(k−1)h+2) ≤ µ̂ j ,((k−1)h+1)...(1000+(k−1)h) +γσ̂ j ,((k−1)h+1)...(1000+(k−1)h)

]∧ ...∧[
e j ,(1000+(kh)) ≤ µ̂ j ,((k−1)h+1)...(1000+(k−1)h) +γσ̂ j ,((k−1)h+1)...(1000+(k−1)h)

]
where γ is computed using equation 3.24.

To elaborate further, let us take the value of h as 5. For k = 1, we compute the estimates
of the mean and variance based on the f i r st 1000 cycles as µ̂ j ,((k−1)h+1)...(1000+(k−1)h)

and σ̂2
j ,((k−1)h+1)...(1000+(k−1)h) respectively.

27



Chapter 3. Development of the Framework

If we substitute h = 5 and k = 1, we get these estimates as µ̂ j ,1...1000 and σ̂2
j ,1...1000.

These estimates are used for computing an upper bound for the contracts from the
(1000+ (k −1)h +1)th cycle to the (1000+ (kh))th cycle. Again substituting the value of
h = 5 and k = 1 here, we get cycles from 1001 to 1005.

Then this contract states that from cycle 1001 to 1005, the execution time of block B j

should not exceed the estimated upper bound, computed as: µ̂ j ,1...1000 +γσ̂ j ,1...1000,
where where γ is computed using equation 3.24.

C7 This contract is based on the continuous update technique. It updates the estimated
parameters in each cycle starting from the 1001th cycle by taking into account the
current value of the execution time of a function block. Let µ̂ j ,1000 and σ̂2

j ,1000 be the
parameters for block B j over the first 1000 cycles. Then the parameters can be up-
dated in every (1000+k)th cycle using equations (3.26) and (3.28) , k ≥ 1. The contract
is then given as:

∀k ≥ 1,∀1 ≤ j ≤ n,e j ,1000+k ≤ µ̂ j ,(1000+k−1) +γσ̂ j ,(1000+k−1)

where γ is computed using equation 3.24

C8 The sum of the execution times of all the blocks in each cycle must be strictly less
than the required cycle time:

∀k ≥ 1,Σn
j=1e j ,k < P

C9 This contract checks that the jitter margin J is respected by application A . It states
that for two consecutive starts of A at times t and t

′
, the difference between the cycle

time P and (t
′ − t ) should not exceed J :

∀k ≥ 1,∀1 ≤ j ≤ n,∀t , t
′ ≥ 0,[R(↑A ,k, t )∧R(↑A ,k +1, t

′
)] ⇒| (t

′ − t )−P |≤ J

C10 These contracts are used for specifying an acceptable time interval between the start
(or end) of two function blocks with respect to each other.

For two blocks B j and Bm ,1 ≤ m < j ≤ n and ∀t ≥ 0,∀i > 0, it is possible to define
contracts of the forms:

1. @(↑ B j , i ) ≤ @(↑ Bm , i )+ t

2. @(↓ B j , i ) ≤ @(↑ Bm , i )+ t

3. @(↑ B j , i ) ≤ @(↓ Bm , i )+ t

4. @(↓ B j , i ) ≤ @(↓ Bm , i )+ t

This set of contracts is particularly useful when function blocks are deployed in separate
hosts and communicate over a network. We will see a related case study in section 5.5.
In such applications, if a receiver block (which depends on data sent by a sender) is

28



3.4. Conclusions

deployed in a host machine different from the one on which the sender is launched,
there might be a large communication delay. In order to detect such delays, temporal
contracts are introduced on the receiver end to check whether it received the data within
a predefined time interval.

3.4 Conclusions

This chapter described the requirements of the contract framework, its features and the un-
derlying principles. It showed how stochastic contracts are computed using online estimation
techniques, based on the empirical cdf of the execution times of the function blocks. It also
introduced the concept of parametric real-time contracts, which will be described in detail in
the next chapter.

It illustrated the use of RTL for formally defining the temporal contracts. Using RTL for
formalizing stochastic temporal properties is a new concept which this chapter introduced.

29



Chapter 3. Development of the Framework

Algorithm 1 Empirical Cdf

1: procedure EMPIRICALCDF(execution_times)
2: y ← 0
3: bu f f er _si ze ← SIZE(executi on_t i mes)
4: mi n ← 0
5: max ← 0
6: upper _bound ← 0
7: cumul ati ve_sum ← 0
8: SORT(executi on_t i mes)
9: mi n ← executi on_t i mes[0]

10: max ← executi on_t i mes[bu f f er _si ze −1]
11: upper _bound ← max
12: number _o f _bi ns ← SQRT(bu f f er _si ze)
13: bi n_wi d th ← (max−mi n)

number _o f _bi ns
14: upper _l i mi t_o f _bi n ← (executi on_t i mes[0]+bi n_wi d th)
15: while upper _l i mi t_o f _bi n ≤ max do
16: while y ≤ bu f f er _si ze do
17: if executi on_t i mes[y] ≤ upper _l i mi t_o f _bi n then
18: cumul ati ve_sum ← cumul ati ve_sum +1
19: end if
20: y ← y +1
21: end while
22: pr obabi l i t y ← cumul ati ve_sum

bu f f er _si ze
23: if pr obabi l i t y ≥π then
24: upper _bound ← upper _l i mi t_o f _bi n
25: break
26: end if
27: upper _l i mi t_o f _bi n ← upper _l i mi t_o f _bi n +bi n_wi d th
28: cumul ati ve_sum ← 0
29: y ← 0
30: end while
31: return upper _bound
32: end procedure

30



4 Implementation

This chapter describes the implementation of the contract framework. The entire coding
was done in C++ to ensure compatibility with the FASA framework. ABB’s Git Repository was
used for version control. It required about 5000 loc to implement the contract framework and
validate it. All the plots have been generated using MATLAB.

Figure 4.1 shows a high level view of the contract framework. It shows that the contract
framework handles contracts in two levels, block-level and schedule level. The FASA scheduler
is responsible for scheduling the logging of the failed contracts depending on the availability
of slack time. This is shown in figure 4.3.

Figure 4.1 – High level view of the contract framework

4.1 fasa_assert.h

The first step in developing the contract framework was to develop a dedicated library for con-
tracts, which is the backbone of the entire framework. In this library, the following categories
of macros are defined:

1. preconditions :
PRECONDITION(expression)

2. postconditions :
POSTCONDITION(expression)

3. class invariants :
INVARIANT(expression)

31



Chapter 4. Implementation

4. loop invariant :
LOOP_INVARIANT(expression)

5. loop variant:
LOOP_VARIANT(expression)

4.1.1 Logging of the messages

Upon failure of a contract, which in the above syntax, is the value of the expression, a message
is stored in a dynamic string array as shown in figure 4.2.

Figure 4.2 – Fundamental mechanism of the contract framework

The structure of the message for all the categories, except the loop variant is:

<message> ::= <contract_type> "failed:" <file_name> ":" <line_number>
":" <contract_condition> ":" <time_of_failure>

<contract_type> ::= precondition | postcondition | invariant | loop invariant

For the loop variant, the message also contains information regarding the iteration number at
which the variant expression failed. In this case, the message structure is:

<message> ::= "loop variant failed :" <file_name> ":" <line_number> ":"
<contract_condition> ":" <time_of_failure> ": loop number : "
<loop_number>

The messages in the array are logged during the slack period, which is the time that is left
in each cycle after all the blocks are executed. In case the slack period expires before all the
messages could be logged, the remaining messages are put into a buffer [16]. In the next cycle,
before logging its own contract failure messages, the messages from this buffer are logged and
the buffer is cleared. Figure 4.4 shows a screen shot to demonstrate the working of the contract
framework. After every cycle, the dynamic array where the failure messages are stored, is also
cleared. The logging mechanism is illustrated in figure 4.3.

FASA uses the log4cpp [20] library for logging. For the contract failure messages, we use
the DEBUG level. It has the lowest priority (value=700) as defined by the library. This means
that only messages with DEBUG priority and lower priorities are going to be captured by the
logger. The only other log level for FASA which has lower priority than DEBUG is the MONITORED
level [42], which is used by the monitoring facilities of FASA. However, the monitoring feature

32



4.2. Approaches towards the contract framework

Figure 4.3 – Logging for the contract framework

of FASA is by default turned off. Thus, using the DEBUG level for contracts ensures that the
time taken for logging the contract failure messages in the slack time will be minimal as
long as the monitoring feature is turned off. During the testing and validation phase of the
contract framework, monitoring was always disabled, thereby keeping the logging time for the
contracts as small as possible.

Old construct: The library also allows monitoring of the value of a variable similar to Eiffel. In
section 4.4, this feature is described in detail.

For the first four contract categories listed at the beginning of this section, we need to check
whether the value of expression evaluates to true. For the fifth category, i.e. the loop variants,
the principle is different. As mentioned in 2.1.1, loop variants are conditions which ensure
termination of a loop and are therefore important for proving the total correctness of a loop.
Both loop invariants and loop variants are conditions that should be checked after every
iteration. The loop invariants additionally must also be checked before the first iteration and
after the termination of the loop.

The checking of loop variants for cyclic applications such as in FASA is non-trivial. This is
because, we need to find a mechanism, that, starting from the second iteration will store the
value of the variant expression in the previous iteration and compare it with the value in the
current iteration, while being in the same cycle. Once a cycle is over, the value of the variant
expression becomes invalid and we need to start the process again. Algorithm 2 describes the
mechanism adopted for this purpose. In line 4 of the algorithm, the condition ensures that
the variants are checked starting from the second iteration and that this is done only after the
value of the cycle_no gets updated to the current cycle number.

4.2 Approaches towards the contract framework

This thesis demonstrates the use of two different approaches for developing the contract
framework. The following sections will illustrate the merits and demerits of both and will

33



Chapter 4. Implementation

Figure 4.4 – This screen shot shows how the messages are logged in the remaining slack time
after all blocks are executed. It also shows how the messages are carried to the next cycle in
case the slack period is over in the current cycle. The screen shot is generated while testing the
contract framework on case study-2, Gaussian Random Generator, described in Chapter 5.

justify the use of the second approach throughout the rest of the research. The two approaches
are:

1. To have dedicated function blocks for contracts.

2. To have dedicated routines for contracts within the main function blocks.

4.2.1 Dedicated function blocks for contracts

In this approach, the contracts are specified in dedicated function blocks for pre-conditions,
post-conditions and invariants. Figure 4.5 shows the structure of such an application. The
schedule of the corresponding FASA application is modified such that the pre-condition block
is executed before the actual function block and the post-condition block is executed after the
actual block. The invariant block is executed both before and after the function block. The
classes for the pre and post conditions and class invariants are declared as friends of the actual

34



4.2. Approaches towards the contract framework

Algorithm 2 Loop Variant Analysis

1: procedure LOOPVARIANT(expression)
2: static i ter ati on_number ← 1
3: static c ycle_no ← 1
4: if i ter ati on_number > 1 and cur r ent_c ycle_number = c ycle_no then
5: cur r ent_value ← expr essi on
6: if ol d_value > cur r ent_value then
7: assertion holds
8: else
9: store failure message

10: end if
11: end if
12: i ter ati on_number ← i ter ati on_number +1
13: ol d_value ← expr essi on
14: c ycle_no ← cur r ent_c ycle_number
15: end procedure

function blocks in order to allow them access to the private and protected members of the
actual blocks. The advantages of this approach are:

• It imparts flexibility to the contract framework. Since the contracts are defined in
separate function blocks, it makes the contract framework independent of the rest of
the FASA application. As a result, in a setting with multiple cores, the contract blocks
can be deployed in separate cores.

• They can be used off the shelf, respecting the concept of CBSE. For a new applications,
the contracts need not be written down again and pre-existing contract blocks can be
simply plugged in at appropriate locations as shown in figure 4.5.

The demerits of this approach are:

• It adds overhead to the FASA application in terms of the execution time thereby degrad-
ing its performance.

• This approach requires substantial additional work from the application developer.
If an actual FASA application has n function blocks, this approach would require the
developer to create 3n additional function blocks (for preconditions, postconditions
and invariants).

4.2.2 Dedicated routines for contracts

In this approach, contracts are defined in dedicated routines within the actual function blocks.
The merits of this approach are:

35



Chapter 4. Implementation

Figure 4.5 – Sender-Receiver application with dedicated blocks for contracts

• It is more efficient than the dedicated function block approach in the sense that it adds
less overhead to the application.

• It does not require much additional effort on the developer’s side.

The demerit of this approach is that:

• It is less flexible compared to the dedicated function block approach. All contracts have
to be executed on the same core as the application even in a distributed setting.

Both the approaches were tested on a simple two block sender-receiver application. Only one
precondition and one postcondition was checked for both the sender and receiver blocks.

First, precondition and postcondition blocks were inserted before and after the function blocks
respectively. Figure 4.6 shows the corresponding modifications in red in the application’s
xml file. For our experiment, the pre and post condition blocks were put inside the same
component as the main function block implying that they were deployed on the same host
machine.

Then, the same contracts were put inside the actual function blocks in dedicated routines. For
each case, the execution time of the application was observed over 1000 cycles, repeated three
times for precision.

Table 4.1 shows the mean execution time of the application in ns (nanoseconds) with dedicated
contract blocks inserted in the application and with dedicated contracts routines within the
actual function blocks. As it can be seen, the execution time of the application with dedicated
contract blocks is more than twice the execution time with dedicated routines.

This shows that there is trade-off between the flexibility and the performance of the two ap-
proaches as shown in figure 4.7. Referring to Req4 in chapter 3, one of the main requirements
to be fulfilled by the contract framework is to keep the overhead to the bare minimum. From
this point of view, the dedicated routine approach proved to be a better option and for the rest
of the research, this approach has been adopted.

36



4.2. Approaches towards the contract framework

Figure 4.6 – Modified schedule in the main xml file for the sender-receiver application that
enables precondition and postcondition blocks.

Figure 4.7 – Performance-flexibility trade-off diagram

The entire process of developing the contract framework is comprised of several steps which
are discussed in detail below:

1. Flexibility of the contract framework: Two levels of flexibility have been added to the
FASA contract framework. This takes care of the Req1 as described in chapter 3.

(a) Compile time flexibility: The contract framework has been developed so that it can
be turned on/off during the compilation of the FASA platform. This is necessary
because during the release build, the developer might want to have the contract
framework deactivated in order to avoid any overhead, while in the debug build,
having the contract framework active is desirable. For this, the makefile of FASA
has been extended. By default, the framework is always deactivated such that users
who are not concerned with the dynamic verification aspect of FASA do not see
any change in the actual FASA platform. The developer would have to add a flag in

Table 4.1 – Execution time comparison for sender-receiver application

dedicated contract blocks dedicated contract routines

167760 ns 74533 ns

37



Chapter 4. Implementation

order to activate it at compilation, which is defined as :

CONTRACTS::=enabled | disabled

Additionally, the directory structure for the contract framework was also changed
in order to avoid mixing of this feature with the rest of the FASA platform. When
contracts are disabled, the directory structure remains the same as before. When
they are enabled, the depth of the directory tree is increased to an extra level,
enabled and the compiled dll files of the FASA applications are stored here.

(b) Runtime flexibility: The FASA platform has a configuration file (xml file format)
in which all the features of the framework are specified, such as the default cycle
time, paths to the applications, enabled features like monitoring variables, logging
messages etc. There is a default setting for this configuration file hardcoded in
the FASA makefile, which can be updated by arguments passed at runtime. This
configuration file has been augmented to facilitate contract features. A boolean
valued element, contracts has been added with attributes, jitter_margin and
consecutive_cycles, threshold_probability and sliding_window_interval.
By default, the value of contracts is set to false. When FASA is compiled with
contracts enabled, this value is set to true. For jitter_margin, the default value
is 0. During runtime, the user can pass a value to this attribute. Additionally, the
attribute consecutive_cycles is used for specifying contracts which check the
execution time of a block for a certain number of consecutive cycles as explained
in section 3.2.2. The default value of this attribute is set to 1. As described in 3.2.2,
threshold_probability is used to estimate an upper bound for the block execu-
tion times and sliding_window_interval specifies the frequency of executing
the sliding window algorithm. The default value of the former is set to 0.95 and for
the latter, it is set to 1.

Figure 4.8 shows a snippet from the configuration file containing the contract
framework addons. The figure corresponds to the case where the contract frame-
work is turned off.

Figure 4.8 – xml code snippet from the configuration file of FASA illustrating the contract-
addons.

2. Augmenting the base class Block with real-time properties and contract checking
features: The base class Block has a method run_one_cycle() which is executed in
every cycle. In this method, the operator() method is invoked which is overriden in
every derived function block and describes its behavior. For the contract framework, we
add the following routines to this class which are overriden in each function block:

(a) functional_pre_conditions()

(b) realTime_pre_conditions()

(c) functional_post_conditions()

38



4.2. Approaches towards the contract framework

(d) realTime_post_conditions()

(e) invariants()

(f) default_real_time_post_conditions()

Out of the above, default_real_time_post_conditions() is used for checking the
block-WCET related fundamental contract as described in section 3.2.2 and is invoked
after the operator() method by default, whenever the contract framework is activated.
For this, it is assumed that the WCET value used in this contract is known to us from
some external source that does static analysis of the function block and computes
this value. Figure 4.10 shows an example of a fundamental real-time post condition
related to the WCET of a block and figure 4.11 shows a real-time contract computed
using the sliding-window update technique. The routine invariants() is checked
before and after the operator() method. It is used for class invariants. As the names
suggest, the methods for the pre-conditions are invoked before the operator() method
and the post-condition related routines are invoked after the operator() method. In
addition to the above, the base Block also has real-time properties in the form of a
structure, Real_Time_Properties which is inherited by all the function blocks. This
structure contains information such as cycle time of an application, the WCET of the
blocks, starting and ending time of the execution of a block and several other properties
used for the statistical analysis of the execution times. In figures 4.10 and 4.11, rt is an
instance of the structure containing real-time properties.

One point to noted here is that when we refer to the execution time of a function block,
we mean the execution time of the main functionality of the block which is invoked in
every cycle. It implies that the execution time of a block is the time it takes to execute
operator() in each cycle because it is the only function that is invoked in every cycle
which actually describes the behavior of a block.

For the contracts related to the statistical analysis of the temporal aspects of the FASA
function blocks, there is a method, statistical_analysis(). This method takes as an
argument, a circular buffer that contains the execution times of a function block, with
capacity set to exper i ment al _c ycle_number as introduced in chapter 3. Circular
buffer is also used for checking contracts related to the the execution times of the
function blocks for l consecutive cycle where the size of the buffer is set to l . It is in this
method that the computations regarding the sliding window and continuous updating
of the statistical parameters are done using the principles described in item 1 and item 2
in section 3.2.2 respectively. Additionally, the method empirical_cdf() computes
the empirical cdf of the execution times of the function blocks using Algorithm 1. The
screen shot in figure 4.9 illustrates the working of this feature.

3. Contracts at one level higher than the blocks: Above, we saw how the contract frame-
work has been developed for assertions local to the function blocks. The block level
is the lowest level in the hierarchical structure of a FASA application. While contracts
related to execution times of the blocks can be specified at the block level, contracts
related to the cycle-time and jitter margin of an application, have to be specified at
the schedule level. Taking this into account, the contracts for the cycle time and jitter
margin have been made implicit in the framework at the schedule level. The value of

39



Chapter 4. Implementation

Figure 4.9 – The screen shot shows the computation of the γ parameter described in equa-
tion 3.24 for the function blocks, Sensor and FeedForward at the 1000th cycle. This figure
refers to the simulink based case study-4, described in chapter 5.

the cycle time can be retrieved from the configuration file of FASA and this is used to
impose a contract that ensures that the cycle time is not exceeded by an application. For
the jitter margin, the principle described in C9 of subsection 3.3.2 is used. Figure 4.12
illustrates the structure of the contract framework with respect to FASA’s architecture.

4.3 Parametric temporal contracts

As described in chapter 3, the contract framework allows the application developer to specify
real-time contracts as functions of certain data-structures or variables used in the description
of the function block behavior. Here we describe how this is done in practice. The variadic

Figure 4.10 – An example of a real-time post-condition related to block WCET.

40



4.3. Parametric temporal contracts

Figure 4.11 – Real-time contract based on sliding-window update technique for statistical
parameters. In the figure, k_value represents the γ parameter as described in equation 3.24.
rt.estimated_mean_var is a circular buffer of size two, which stores the mean and variance
after every update. The mean is the first term and the variance is the second term in the buffer.

Figure 4.12 – This figure illustrates the structure of the contract framework on top of the FASA
architecture.

templates feature of C++ 11 has been used for this purpose. We have defined a singleton
class, User_Defined_Function, which is instantiated once in the base Block class and we
define a variadic macro in this file (block.h) as shown in figure 4.13. In this figure, the ellipsis
argument to the macro f(...) indicates that this is a variadic macro. The term VAR_ARGS
in the macro definition is replaced by the actual arguments separated by comma [4].

The function user_defined_function_for_parametric_contracts(Block b, Argumen-
ts... parameters) as defined in figure 4.14 is a variadic template function. This function
can take any number of any types of arguments as parameters, which is indicated by the
ellipsis on the left hand side of the second argument to the function. It represents the packing
of the parameters. The first argument to this function is a Block type, b. Inside this function as
we can see from figure 4.14, we invoke yet another variadic function and pass on the arguments
to it. For the second argument to this inner function call, we see that the ellipsis occurs on the
right hand side of the argument, which indicates unpacking of the arguments passed to it [2].

41



Chapter 4. Implementation

Figure 4.13 – Use of variadic macro and variadic template functions from C++ 11 for parametric
real-time contracts in FASA.

Figure 4.14 – Definition of the variadic template function in the User_Defined_Function
class used for parametric temporal contracts in FASA.

This inner function function_definition() has to be defined by the FASA application
developer. Figure 4.15 shows an example of this definition. The figure explains why we need
to pass the block as a necessary argument to this routine. To elaborate further, let us consider
two function blocks. In FASA, every block has a unique i d . Let the i d s for these two function
blocks be block1 and block2 respectively, as we can see from figure 4.15. Let us consider an
application which uses both block1 and block2. Let block1 be performing merge sort of
an array of length, say n, where n is an integer. In the worst case, the performance of merge
sort is given by O(n ∗ log (n)). Let block2 be performing binary search in an array for which
the length is again an integer. The worst case running time of binary search is O(log (n)). Let
us now consider the situation in which the developer wants to represent a contract for the
execution times of these two function blocks as a function of the length of the array on which
they operate.

In other words, for both the blocks, the user would like to define the execution time as a
function of an attribute of type int. However, it is not necessary that both the blocks will have
the same function definition. In this particular example, we can see that for block block1,
the function is n ∗ log (n) while for block2, the function is l og (n). If we do not pass the
i d of the block to user_defined_function_for_parametric_contracts(), then such a
situation cannot be handled in which different function blocks within the same application
have different dependencies on the variables or data structures of the same type, because
we cannot have multiple definitions of the same function prototype. This is a way to make
user_defined_function_for_parametric_contracts() return the correct function of n
for the blocks. The return type of the function is an unsigned 64 bit integer which is sufficient
for representing time in nanoseconds.

42



4.4. The "Old" construct

Figure 4.15 – Examples of user defined functions in the User_Defined_Function class used
for parametric temporal contracts.

Figure 4.16 shows an example of how to write parametric real-time contracts for function
blocks. As we can see, the first argument is a pointer to the block itself, and the second
argument in this case is the size of an array.

Figure 4.16 – A parametric contract based on the concept of variadic template function.

4.4 The "Old" construct

The Eiffel programming language [33] has the Old construct that allows one to check assertions
related to the correct updating of the value of a variable. For the FASA framework as well, this
construct has been simulated. For this, two macros have been defined as shown in Figure 4.17.

Figure 4.17 – Macros for the "Old" construct

The OLD macro is used before any change is made to a variable and GET_OLD is used to

43



Chapter 4. Implementation

retrieve the old value. The principle behind this feature is to create a map data structure,
old_construct_map that stores the name of the variable as the key and the current value
as the value. This map is inherited by all the function blocks and thus, it is declared in the
base class Block. The keys are of type string and the values have type boost::any. This is a
feature of the boost::any class [21] which allows the values to be of any type. This feature is
safe for use because it only allows the data to be of any arbitrary type but does not facilitate
conversion between them. Thus, we can use this map to store any kind of value corresponding
to its variable name. The only additional requirement from the user’s side here is to pass
the type of the variable as an argument to GET_OLD while defining the postcondition. In
Figure 4.18, snippets from a sample function block depicting this feature are shown.

Figure 4.18 – Block code showing the "Old" Construct

4.5 Conclusions

This chapter illustrated the implementation details of the contract framework. Two approaches
for developing the contract framework were explored, dedicated function blocks and dedicated
routines. Experiments showed the trade-off between them. Finally, in order to fulfill Req4
stated in chapter 3, the dedicated routine approach was chosen.

44



5 Results and Validations

In this chapter, we describe five case studies which have been used to validate the contract
framework. The performance of the framework has been analyzed for each benchmark and
discussed in detail. For every case study, we first describe the application, then summarize the
contracts and finally provide an analysis of the performance of the contract framework.

Tables 5.1, 5.2, 5.3 and 5.4 illustrate the status of the requirements stated in chapter 3.

Table 5.1 – Status of requirement 1

Req1 Flexibility of the contract framework: it should not have any effect on the
original FASA platform and the user should have the freedom to turn the
contracts on/off as and when required.

Status Passed.
Proof The contract framework when turned off, showed no change in the execution

of the applications. It was exactly the same as in the original FASA platform.
When the contract framework was activated, a failure message for the dummy
contract was logged in the slack period.

Remarks The contract framework provides two layers of flexibility, compile time and
run-time. When it is disabled at compile time, no change is observed in the
original FASA platform. The run-time flexibility allows the user to define
complex temporal contracts by passing parameters.

Table 5.2 – Status of requirement 2

Req2 Allowing users to specify functional contracts at the function-block level.
Status Passed.
Proof Failure messages for the dummy functional contracts were logged in the

slack period when contracts were enabled. This showed that the contract
framework supports functional contracts.

Remarks Users can define pre and post conditions, class invariants, loop variants and
loop invariants. The framework also simulates the "Old" construct of Eiffel.

45



Chapter 5. Results and Validations

Table 5.3 – Status of requirement 3

Req3 Allowing the users to specify temporal contracts.
Status Passed.
Proof When the contract framework was activated, failure messages for the dummy

temporal contracts were logged in the slack time. This showed that the
contract framework supports temporal contracts.

Remarks The contract framework can dynamically compute temporal contracts using
statistical inference.

Table 5.4 – Status of requirement 4

Req4 Have minimum effect on the performance of the FASA platform, i.e limit the
overhead due to contracts to the bare minimum.

Status Partially met.
Proof The overhead due to the contract framework was measured. It was shown

to be less than 10% for all cases except for those applications which involve
network communication.

Remarks This requirement is satisfied for applications that are deployed on the same
host. When network communication is involved, the overhead is large,
mainly due to network delay.

The applications were tested on MacMini computers, with 4 GB RAM running 64 bit Ubuntu
13.04 and quad core processors, each core running at 0.8 GHz. In actual embedded systems,
performance of the contract framework is expected to be further enhanced because of ded-
icated hardware infrastructure and the use of RTOS. Nevertheless, the following results are
definitely an indication of the feasibility of using the contract framework on top of FASA.

We use box plots to summarize the performance of the contracts for neat handling of outliers.
The results are shown for 10000 executions of each application, repeated three times for
precision. The desired cycle time is taken as 10ms for the first four case studies while for the
fifth case study, it is taken as 100ms in order to take care of the network communication delay.
Additionally, the unit for the WCETs is ns. In the contract summary tables below, the notations
used are as follows:

pr e Preconditions
post Postconditions
I Invariant
C I Class Invariant
L I Loop Invariant
LV Loop Variant

46



5.1. Simple Counter Application

5.1 Simple Counter Application

5.1.1 Application description

This is a basal one block FASA application. The block does not have any ports and is not
connected to any other block through any channels. Figure 5.1 shows this application. An
integer variable, counter is initialized to 1 in the block constructor. A macro M AX _I T ER is
assigned value 10. In every cycle, the block iterates M AX _I T ER times to increment the value
of counter. In section 5.1.2, z is the variable used in the iteration of the loop.
This application has been designed such that we could test the contracts related to the "Old"
construct, loop variants and invariants.

Figure 5.1 – Simple one block FASA application.

5.1.2 Contract analysis

List of contracts

1. Functional:

• POSTCONDITION(this->counter==GET_OLD(int, counter)+10)

• LOOP_INVARIANT(z<=MAX_ITER)

• LOOP_VARIANT(MAX_ITER-z)

The explanation behind the loop variant (MAX_ITER-z) is that since z is incremented
upto MAX_ITER, the value of (MAX_ITER-z) should decrease in every iteration. The
same explanation follows for all the loop variants that are presented in the other case
studies below.

2. Real-time:

• C1 with W C ET = 50000

• C5 with π= 0.95 and l = 1

• C6 with π= 0.95 and h = 1

• C7 with π= 0.95

3. Scheduler level contracts:

• C8
• C9 with J = 100000 ns

47



Chapter 5. Results and Validations

Summary table

Table 5.5 summarizes the contracts for case study 1.

Table 5.5 – Case study 1-contract summary at block level

HH
HHHHType

# pre # post # I # LV TOTAL

# C I # L I

functional 0 1 0 1 1 3
real-time 0 4 0 4

Performance analysis

In figure 5.2, we show a summary of the execution times of case study 1 executed for 10000
cycles. The first plot shows the case without contracts and the second one illustrates the
performance with contract enabled (logging feature of FASA deactivated). The third one shows
the performance when the logging feature of FASA is also enabled. Table 5.6 shows the results
of the analysis.

4

5

6

7

8

9

x 10
5

1 2 3

without contracts                             contracts without logging                                  contracts with logging

ti
m

e
 i

n
 n

s

case study 1

Figure 5.2 – Box plot showing the execution times over 10000 cycles for case study 1 for the 1)
original application, 2) with only contracts enabled and 3) with contracts enabled along with
logging; the cycle time being 10 ms.

48



5.2. Gaussian Random Generator

Table 5.6 – Performance analysis of case study 1

enabled features mean execution time overhead
without contracts 0.5447 ms -

contracts without logging 0.5574 ms 2.33%
contracts with logging 0.6640 ms 21.9 %

5.2 Gaussian Random Generator

5.2.1 Application description

This is a three block FASA application. It is used for generating random numbers having a
Gaussian distribution. The mathematical principle on which this application is based is the
Box-Muller transformation. Appendix A contains the details of this statistical technique. The
first block, Random_Generator_Block generates two random numbers according to Uniform
Distribution, U [0,1]. It then sends the two values to a second block, Gaussian_Generator_Block
which generates two standard normal, N (0,1) random values using the Box-Muller transfor-
mation. These two values are sent to a third block, the Range_Block which calculates the range
of the two Gaussian random numbers. Figure 5.3 shows the structure of this application. This
application illustrates functional contracts related to the connectivity of ports in channels and
some contracts specific to the application.

Figure 5.3 – A application with three function blocks for generating Gaussian random values.

5.2.2 Contract analysis

List of contracts

1. Uniform Random Generator:

(a) Functional:

• PRECONDITION(send_rand.is_connected()) : This contract is related to the
connectivity of the output port of the block.

• POSTCONDITION(0<=this->two_rand.urand[0] && this->two_rand.urand[0]<=1)

• POSTCONDITION(0<=this->two_rand.urand[1] && this->two_rand.urand[1]<=1)

In the last two contracts above, we check whether the two random numbers that are
generated indeed belong to [0,1] because otherwise the Box-Muller transformation
will fail.

(b) Real-time:

• C1 with W C ET = 10000

• C2 with W C ET = 10000 and l = 3

49



Chapter 5. Results and Validations

• C5 with π= 0.97 and l = 3

• C6 with π= 0.97 and h = 10

• C7 with π= 0.97

2. Gaussian Generator

(a) Functional:

• PRECONDITION(get_rand.is_connected())

• PRECONDITION((*get_rand).urand[0]>=0 && (*get_rand).urand[0]<=1)

• PRECONDITION((*get_rand).urand[1]>=0 && (*get_rand).urand[1]<=1)

• PRECONDITION(send_gaussian.is_connected())

• POSTCONDITION(this->two_gaussian.gaussrand[0]<=0)

In the last contract above, we check whether both the Gaussian values generates
belong to [−∞,0]. This is an example of an application specific contract. The rest
of the contracts check the connectivity of the input port, asserts that the random
numbers received at the port get_rand belong to [0,1] and checks the connectivity
of the output port respectively.

(b) Real-time:

• C1 with W C ET = 200000

• C2 with W C ET = 200000 and l = 3

• C5 with π= 0.97 and l = 3

• C6 with π= 0.97 and h = 10

• C7 with π= 0.97

3. Range Block

(a) Functional:

• PRECONDITION(get_gaussian.is_connected())

• POSTCONDITION(range>=0)

In the second contract above, we check whether the range is correctly computed
and is always greater than or equal to zero.

(b) Real-time:

• C1 with W C ET = 20000

• C2 with W C ET = 20000 and l = 3

• C5 with π= 0.97 and l = 3

• C6 with π= 0.97 and h = 10

• C7 with π= 0.97

4. Scheduler level contracts:

• C8

• C9 with J = 100000 ns

50



5.2. Gaussian Random Generator

Table 5.7 – Case study 2-contract summary at block level

Block # pre # post # I # LV TOTAL
# C I # L I

Random Generator functional 1 2 0 0 0 3
real-time 0 5 5

Gaussian Generator functional 4 1 0 0 0 5
real-time 0 5 5

Range Block functional 1 1 0 0 0 2
real-time 0 5 5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

x 10
6

1 2 3

without contracts                                      contracts without logging                                    contracts with logging

ti
m

e
 i

n
 n

s

case study 2

Figure 5.4 – Box plot showing the execution times over 10000 cycles for case study 2 for 1) the
original application, 2) with only contracts enabled and 3) with contracts enabled along with
logging; the cycle time being 10 ms.

Summary table

Table 5.7 summarizes the contracts for case study 2.

Performance Analysis

In figure 5.4, we show the execution times of case study 2 executed for 10000 cycles. Table 5.8
shows the results of the analysis.

51



Chapter 5. Results and Validations

Table 5.8 – Performance analysis of case study 2

enabled features mean execution time overhead
without contracts 1.4202 ms -

contracts without logging 1.5161 ms 6.75%
contracts with logging 2.0114 ms 41.63%

5.3 Binary Search Application

5.3.1 Application description

In this application, there are five blocks. In each cycle, a Random_Integer_Generator block
generates a random integer. This random number is then sent to a second block, Cre-
ate_Array_Block which creates a dynamic array to store this number. It then sends the array
to another block, Sort_Array_Block for sorting in ascending order. The sorted array is sent to
Binary_Search_Block. This block has another input port where it receives a random number
from a second instance of the Random_Integer_Generator block. It then searches for this
random number in the sorted array that it receives from Sort_Array_Block and shows the index
of the number if it is found, otherwise it prints -1 as the index. Algorithm 3 in appendix B shows
the mechanism of binary search for reference. This completes one cycle. After every 10th

cycle, the memory allocated to the array is cleared. Thus, the maximum size of the array can
be 10. Figure 5.5 illustrates this application. This application highlights the use of parametric
temporal contracts among other features of the contract framework.

Figure 5.5 – An application with 5 function blocks.

5.3.2 Contract analysis

List of contracts

1. Random Integer Generator:

(a) Functional:

• PRECONDITION(this->send_rand.is_connected())

(b) Real-time:

52



5.3. Binary Search Application

• C1 with W C ET = 70000

• C2 with W C ET = 70000 and l = 5

• C5 with π= 0.98 and l = 5

• C6 with π= 0.98 and h = 5

• C7 with π= 0.98

2. Create Array Block:

(a) Functional:

• PRECONDITION(this->get_rand.is_connected())

• PRECONDITION(this->send_array.is_connected())

• INVARIANT(count<=10)

• LOOP_VARIANT(count-z)

• LOOP_INVARIANT(z<=count)

The variable count keeps track of the size of the array formed. Initially the value
of count is 0 and it increments in every cycle until its value is equal to 10. At
every 10th cycle, its value is reinitialized to 0 because as described in the previous
section, the maximum size of the array can be 10. Thus, for this block an invariant
is to ensure that the value of count is never more than 10. In order to send the
values of the array to the next function block, we have a loop that iterates count
number of times. The loop variant and loop invariant above are meant to ensure
the correctness of this loop. The rationale behind them is the same as described in
section 5.1.2.

(b) Real-time:

• C1 with W C ET = 100000

• C2 with W C ET = 100000 and l = 5

• C5 with π= 0.98 and l = 5

• C6 with π= 0.98 and h = 5

• C7 with π= 0.98

• C10, item 1 with t = 10000 ns and j = m +1, where B j represents the current
block. This contract states that the current block should start no later than
10000 ns from the start of the previous block.

3. Sort Array Block:

(a) Functional:

• PRECONDITION(this->get_array.is_connected())

• PRECONDITION(this->send_sorted_array.is_connected())

• LOOP_VARIANT((*get_array).size-x)

• LOOP_INVARIANT(x<=(*get_array).size)

• LOOP_VARIANT(this->received_array.size-y)

• LOOP_INVARIANT(y<=this->received_array.size)

53



Chapter 5. Results and Validations

In this block, we have two loops. The first loop is to receive the values from Create
Array Block and store them in an array for sorting. The second loop is meant for
sending the sorted array to Binary Search Block. The loop variants and invariants
above correspond to these two loops respectively.

(b) Real-time:

• C1 with W C ET = 200000

• C2 with W C ET = 200000 and l = 5

• C5 with π= 0.98 and l = 5

• C6 with π= 0.98 and h = 5

• C7 with π= 0.98

• C10, item 1 with t = 15000 ns and j = m +1, where B j represents the current
block. This contract states that the current block should start no later than
15000 ns from the start of the previous block.

• parametric real-time contract:
POSTCONDITION(EXEC_TIME_THIS_CYCLE<=f(this,received_array.size));

4. Binary Search Block:

(a) Functional:

• PRECONDITION(this->get_rand.is_connected())

• PRECONDITION(this->get_sorted_array.is_connected())

• LOOP_VARIANT((*get_sorted_array).size-y)

• LOOP_INVARIANT(y<=(*get_sorted_array).size)

• LOOP_VARIANT(high-low)

• LOOP_INVARIANT(low<=high)

In the above list, the last loop variant and invariant is for the loop that performs
the binary search. The rest are similar to the ones explained before.

(b) Real-time:

• C1 with W C ET = 500000

• C2 with W C ET = 500000 and l = 5

• C5 with π= 0.98 and l = 5

• C6 with π= 0.98 and h = 5

• C7 with π= 0.98

• parametric real-time contract:
POSTCONDITION(EXEC_TIME_THIS_CYCLE<=f(this,sorted_array.size))

5. Scheduler level contracts:

• C8

• C9 with J = 100000 ns

Summary table

In table 5.9, we present a summary of the contracts for case study 3.

54



5.4. Energy-Pack-Core-Model example

Table 5.9 – Case study 3-contract summary at block level

Block # pre # post # I # LV TOTAL
# C I # L I

Random Integer Generator functional 1 0 0 0 0 1
real-time 0 5 5

Create Array Block functional 2 0 1 1 1 5
real-time 1 5 6

Sort Array Block functional 2 0 1 2 2 7
real-time 1 6 7

Binary Search Block functional 2 0 0 2 2 6
real-time 0 6 6

Performance Analysis

In figure 5.6, we show the execution times of case study 3 executed for 10000 cycles. Due to
the presence of outliers, the median is a better measure of central tendency in this case. Thus,
we consider the median values in the analysis.

It should be noted here that the outliers in the execution time that can be seen in figure 5.6
are not due to the contracts because they are present in the case without contracts as well. A
possible explanation for observing the outliers could be the complexity of the computations
being done in the function blocks. Regardless of the outliers, we can see that the overhead due
to the contract framework is still negligible. Table 5.10 shows the result of the analysis.

Table 5.10 – Performance analysis of case study 3

enabled features median execution time overhead
without contracts 1.5865 ms -

contracts without logging 1.6761 ms 5.65%
contracts with logging 1.8725 ms 18.03%

5.4 Energy-Pack-Core-Model example

5.4.1 Application description

The code for this application is generated from a Simulink case study. This application has
been explained in detail in chapter 2 and the function block diagram is given in figure 2.2. The
rationale behind choosing this as a case study is that it gives us an idea regarding how the
contract framework can be integrated smoothly with pre-existing code. Additionally, we also
see how the "Old" construct works successfully for struct variables as well.

55



Chapter 5. Results and Validations

0

0.5

1

1.5

2

2.5

3

3.5

x 10
6

1 2 3

without contracts                                           contracts without logging                                     contracts with logging

ti
m

e
 i

n
 n

s
case study 3

Figure 5.6 – Box plot showing the execution times over 10000 cycles for case study 3 for 1) the
original application, 2) with only contracts enabled and 3) with contracts enabled along with
logging; the cycle time being 10 ms.

5.4.2 Contract analysis

List of contracts

1. Sensor Block:

(a) Functional:

• PRECONDITION(data_out_cc.is_connected())

• PRECONDITION(data_out_ff.is_connected())

• POSTCONDITION(this->state.interval_no==GET_OLD(unsigned int, state.interval_no)+1).
In this contract, interval_no is an attribute of a structure, state, of type
unsigned int. In the operator() method, this variable is incremented by
one in every cycle, which explains this contract.

(b) Real-time:

• C1 with W C ET = 250000

• C2 with W C ET = 250000 and l = 7

• C5 with π= 0.95 and l = 7

• C6 with π= 0.95 and h = 5

• C7 with π= 0.95

56



5.4. Energy-Pack-Core-Model example

2. Feed Forward Block:

(a) Functional:

• PRECONDITION(data_in.is_connected())

• PRECONDITION(data_out.is_connected())

• INVARIANT(localB->Switch_g>=0). localB is a pointer to a structure variable
with Switch_g as an attribute. In the operator() method, this variable is
assigned the absolute value of another variable which means that its value
cannot be negative. This is the rationale behind this invariant.

(b) Real-time:

• C1 with W C ET = 210000

• C2 with W C ET = 210000 and l = 7

• C5 with π= 0.95 and l = 7

• C6 with π= 0.95 and h = 5

• C7 with π= 0.95

• C10, item 1 with t = 20000 ns and j = m +1, where B j represents the current
block. This contract states that the current block should start no later than
20000 ns from the start of the previous block.

3. Current Control Block:

(a) Functional:

• PRECONDITION(data_in.is_connected())

• PRECONDITION(data_out.is_connected())

• PRECONDITION(data_in_ff.is_connected())

• INVARIANT(this->state.TnIBatCtrol_TN!=0.0). state is a structure variable
and TnIBatCtrol_TN is an attribute of the structure. This variable is used
as a denominator in a division operation in the operator() method. This
requries state.TnIBatCtrol_TN to be non-zero which is what this invariant
checks.

(b) Real-time:

• C1 with W C ET = 200000

• C2 with W C ET = 200000 and l = 7

• C5 with π= 0.95 and l = 7

• C6 with π= 0.95 and h = 5

• C7 with π= 0.95

• C10 with t = 15000 ns and j = m +1, where B j represents the current block.
This contract states that the current block should start no later than 15000 ns
from the start of the previous block.

4. Monitor Block:

(a) Functional:

• PRECONDITION(data_in.is_connected())

57



Chapter 5. Results and Validations

(b) Real-time:

• C1 with W C ET = 100000

• C2 with W C ET = 100000 and l = 7

• C5 with π= 0.95 and l = 7

• C6 with π= 0.95 and h = 5

• C7 with π= 0.95

• C10 with t = 10000 ns and j = m +1, where B j represents the current block.
This contract states that the current block should start no later than 10000 ns
from the start of the previous block.

5. Scheduler level contracts:

• C8

• C9 with J = 100000 ns

Summary table

In table 5.11, we can see a summary of the contracts for case study 4.

Table 5.11 – Case study 4-contract summary at block level

Block # pre # post # I # LV TOTAL
# C I # L I

Sensor functional 2 1 0 0 0 3
real-time 0 5 5

Feed Forward functional 2 0 0 1 0 3
real-time 1 5 6

Current Control functional 3 0 1 0 0 4
real-time 1 5 6

Monitor functional 1 0 0 0 0 1
real-time 1 5 6

Performance Analysis

In figure 5.7, we show the execution times of case study 4 executed for 10000 cycles. As we can
see, there is some jitter introduced by the contract framework. We use the median to analyze
this case study. Table 5.12 shows the summary of the analysis.

Table 5.12 – Performance analysis of case study 4

enabled features median execution time overhead
without contracts 1.7467 ms -

contracts without logging 1.8657 ms 6.81%
contracts with logging 2.2961 ms 31.45%

58



5.5. NetProxy Application

1

1.5

2

2.5

3

x 10
6

1 2 3

without contracts                                                contracts without logging                                  contracts with logging

ti
m

e
 i

n
 n

s

case study 4

Figure 5.7 – Box plot showing the execution times over 10000 cycles for case study 4 for 1) the
original application, 2) with only contracts enabled and 3) with contracts enabled along with
logging; the cycle time being 10 ms.

Table 5.12 shows that even though the contract framework added some jitter to case study
4 which can be seen in figure 5.7, its effect on the over all performance of the application is
negligible.

5.5 NetProxy Application

5.5.1 Application description

In this case study, there are two separate applications launched on two separate hosts. The
first application is a sender application with a sender block and a net-proxy block which
sends data from the sender through the network. The second application is a receiver appli-
cation with a net-receive block and a receiver block which are deployed on another host
computer. The FASA kernel is launched on both the hosts. As can be seen from figure 5.8,
Application 1 is deployed on Host 1 and Application 2 is deployed on Host 2. The sender
sends data to the net_proxy_send block. The latter communicates with net_proxy_receive over
the local network and the receiver block receives the data from the net_proxy_receive block.
The two net_proxy blocks belong to the FASA framework and can be used off the shelf. In order
to synchronize the clock on the two hosts, the Precision Time Protocol(PTP) is implemented
by the FASA platform. Before starting the FASA kernel on the hosts, we first need to start a
PTP daemon in them. This application mainly highlights the real-time contracts in case of
communication through a network proxy. This application illustrates how the communication
delay is incorporated in the contract framework through the network.

59



Chapter 5. Results and Validations

Figure 5.8 – An application with communication through network proxy.

5.5.2 Contract analysis

List of contracts

1. Sender:

(a) Functional:

• PRECONDITION(NET_SEND.is_connected())

• POSTCONDITION(this->sizeToSend==GET_OLD(int,sizeToSend)+1 ||
this->sizeToSend==STRING_MAX/2)

• INVARIANT(this->sizeToSend<=STRING_MAX/2). The sender block is not
supposed to send a value larger than STRING_MAX/2, where STRING_MAX is
a macro whose value is set to 1024. This is the rationale behind having this
invariant.

(b) Real-time:

• C1 with W C ET = 500000

• C2 with W C ET = 500000 and l = 10

• C5 with π= 0.99 and l = 10

• C6 with π= 0.99 and h = 10

• C7 with π= 0.99

2. Receiver:

(a) Functional:

60



5.5. NetProxy Application

• PRECONDITION(NET_RECEIVE.is_connected())

• POSTCONDITION(this->sizeToReceive==GET_OLD(int,sizeToReceive)+1 ||
this->sizeToReceive==STRING_MAX/2). The value received by the receiver
in a cycle should either be one more than the value it had received in the
previous cycle or it should be STRING_MAX/2, because STRING_MAX/2 is the
maximum value that the sender can send.

(b) Real-time:

• C1 with W C ET = 500000

• C2 with W C ET = 500000 and l = 10

• C5 with π= 0.99 and l = 10

• C6 with π= 0.99 and h = 10

• C7 with π= 0.99

• C10, item 2 with t = 200000 ns. This states that the receiver block should
finish executing no later than 200000 ns from the start of the sender block.

3. Scheduler level contracts:

• C8

• C9 with J = 100000 ns

Summary table

In table 5.13, a summary of the contracts for case study 5 is presented.

Table 5.13 – Case study 5-contract summary

Block # pre # post # I # LV TOTAL
# C I # L I

Sender functional 1 1 1 0 0 3
real-time 0 5 5

Receiver functional 1 1 0 0 0 2
real-time 0 6 6

Performance Analysis

For the analysis of the contract framework for this case study, we separately illustrate the
performance of the two FASA application in the two hosts, for the case when contract are
disabled and when they are enabled (with and without FASA logging). Figure 5.9 shows the
performance of the sender application while figure 5.10 shows the performance of the receiver
application. Tables 5.14 and 5.15 present the performance analysis of the sender and receiver
blocks respectively.

61



Chapter 5. Results and Validations

2

4

6

8

10

12

14

16

x 10
5

1 2 3

without contracts                                               contracts without logging                                 contracts with logging 

ti
m

e
 i

n
 n

s
case study 5, sender application in host 1

Figure 5.9 – A sender application with communication through network proxy.

Table 5.14 – Performance analysis of case study 5, sender application

enabled features mean execution time overhead
without contracts 0.4746 ms -

contracts without logging 0.6359 ms 33.99%
contracts with logging 1.3006 ms too large overhead

5.6 Conclusions

The contract framework has been validated using the 5 case studies described above. As
described in chapter 3, our overhead tolerance limit is 10% [23].

1. The average overhead due to the contract framework (without any logging) for the first
four case studies is 5.38% and the maximum observed value is 6.81%. Both these values
are well within our overhead tolerance limit.

Considering that the cycle time for these four case studies was 10 ms, a 5.38% overhead
would amount to an overhead of 0.54 ms which is negligible.

2. In the fifth case study, the overhead is much more than 10% even without logging
because of the fact that the function blocks communicate through the network. Since

Table 5.15 – Performance analysis of case study 5, receiver application

enabled features mean execution time overhead
without contracts 0.8016 ms -

contracts without logging 1.1531 ms 43.85%
contracts with logging 1.3677 ms too large overhead

62



5.6. Conclusions

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

6

1 2 3

without contracts                                            contracts without logging                                 contracts with logging 

ti
m

e
 i

n
 n

s

case study 5, receiver application in host 2

Figure 5.10 – A receiver application with communication through network proxy.

some of the contracts are computed based on data received over the network, any
communication delay results in an increase in the execution time of the application.

Overhead due to the communication delay cannot be avoided whether contracts are
enabled or disabled.

3. It is observed that when the logging feature of FASA is enabled, the mean overhead for
the first four case studies is 28.25%. This result however has nothing to do with the
contract framework because these are application log messages [42] which were already
there. The messages related to the failure of the contracts are logged in the slack time.
As a result, they have no impact on the performance of the application.

Now, referring to the four requirements of the contract framework stated in chapter 3, table
5.16 gives a summary which illustrates the fulfillment of the requirements. Only for case study
5 (involving network communication), the framework failed to meet the requirement of having
less than 10% overhead. Apart from that, the contract framework passed all the remaining test
cases.

Table 5.16 – Requirement fulfillment analysis

XXXXXXXXXXXTest Case
Req

Req1 Req2 Req3 Req4

case study 1 passed passed passed passed
case study 2 passed passed passed passed
case study 3 passed passed passed passed
case study 4 passed passed passed passed
case study 5 passed passed passed failed

63





6 Conclusions and Future Work

Here, we present a summary of the entire work of the thesis and mention some possible
extensions to this work.

6.1 Conclusions

In this thesis, we have developed a contract framework for a real-time platform, FASA. We
formalized the framework using RTL, validated it on 5 different types of case studies and
analyzed its performance for each case study.

6.1.1 Major Contributions

There are three major contributions of this thesis.

Development of a contract framework A contract framework for real-time control applica-
tions is developed in this thesis. We investigated two different approaches for developing
the contract framework, dedicated blocks and dedicated routines. Based on experimental
results, the dedicated routines approach proved to be twice as efficient as the dedicated blocks
approach. The framework supports both functional and temporal contracts and is very flexible.
It can be turned on during the debug mode while in the production code, it can be turned
off. In order to keep the overhead due to the contracts to the bare minimum, failed contract
messages are logged during the slack period to avoid having any effect on the execution time
of the application. The framework is validated using five benchmarks and experiments have
shown that the overhead due to the contract framework is less than 10% for applications
deployed on the same host machine. In terms of functional contracts, the framework supports
pre and post conditions, class invariants, loop variants and loop invariants. It also simulates
the "Old" construct of Eiffel for monitoring variables. The temporal part of the framework
supports contracts related to WCET, cycle time and jitter. The framework handles two levels of
temporal contracts: block level (WCET) and schedule level (cycle time and jitter).It also allows
the users to define parametric temporal-contracts which are functions of data-structures used
in the blocks.

Stochastic temporal contracts A novel approach based on empirical cdf is used to dynami-

65



Chapter 6. Conclusions and Future Work

cally estimate statistical parameters of the execution time-probability distributions. These
estimates are incorporated in computing future temporal contracts. When static analysis tools
are not avaliable and the WCET values of the function blocks are unknown, this approach is
highly suitable for determining upper bounds on the execution times. Function blocks can
have varied behaviors and often, a known probability distribution cannot be used to fit the
probability distributions of their execution times. In such settings, the empirical cdf approach
is ideal for subsuming the behavior of the blocks.

Using RTL specifications for formally defining statistical properties This thesis illustrates
the use of RTL for formalizing stochastic temporal properties of a system. While RTL has been
used in the past for system specifications, it has not been exploited for formalizing statistical
properties.

6.1.2 Results

This thesis has presented a contract framework for the dynamic verification of real-time control
applications. Our experiments have shown that the framework adds a very low overhead to
the platform (5.38% on an average), when the function blocks do not communicate over the
network.

Two novel contributions of the thesis are the use of an empirical cdf based approach for
computing complex temporal contracts dynamically while having negligible effect on perfor-
mance and the use of RTL for formal specification of statistical timing properties of cyclic hard
real-time applications.

6.2 Future work

The work presented in this thesis can be extended further in certain ways. The first thing would
be to test it on many more benchmarks and allow users to use it more. It will tell us how user-
friendly the contract framework is. This is very important because the primary reason why
contracts are usually not included in programs is that programmers find it tiresome and time
consuming. They would rather debug the code later than add contracts in the development
phase itself. The main objective of correctness by construction is to avoid this. Having an
easy-to-use contract framework is a step towards this goal.

The framework can be futher extended by enabling the computation of other real-time con-
tracts. Also, here we have used statistical inference to estimate the population parameters of
the distributions of the execution times. One could use other machine learning techniques
such as neural networks. That would however have a much higher overhead and it would then
be difficult to perform the computations at runtime. It would be more suitable to perform the
learning offline in that case.

Another direction that could be explored is to automatically generate stochastic real-time
contracts using pre-existing tools. For instance, Daikon [17] could be extended to allow the
automatic generation of temporal contracts based on statistical techniques. It would then be
interesting to compare these stochastic contracts with the ones defined by the application

66



6.2. Future work

developers [36]. Further, formal verification could also be done as a part of the extension to
this work using model checking tools such as CBMC [14]. However, this poses some issues
regarding the compatibility of the tools with C++ code. The FASA framework and all its
applications are written in C++ and when tools like CBMC are used with C++ code, it does not
always work as expected. This is because many C++ standard header files and namespaces
and are not recognized by the parsers used in these tools.

67





A Box-Muller Transform

The Box Muller transform is used for generating i i d random numbers according to N (0,1)
distribution from U [0,1] random numbers. The form of Box-Muller transformation used in
the Gaussian Random Generator case study takes two samples from U [0,1] and generates two
i i d N (0,1) samples.

Let U1 and U2 be two i i d random variables∼U [0,1]. Their pdf is gives by:

f (x) =
{

1 06 x 6 1
0 elsewhere

The Box-Muller transformation is given as:

Z0 =
√
−2lnU1cos(2πU2)

Z1 =
√
−2lnU1si n(2πU2),

where Z0 and Z1 are i i d standard normal variates,N (0,1) with pdf:

f (x,µ,σ) =
{

1p
2πσ

e−
(x−µ)2

2σ2 −∞< x <∞

where µ= 0 and σ2 = 1.

69





B Binary Search Algorithm

The algorithm for Binary Search which is used in the Binary Search case study is as follows:

Algorithm 3 Binary Search

1: procedure BINARYSEARCH(array,number)
2: si ze ← size of ar r ay
3: low ← 0,hi g h ← si ze, i ndex =−1
4: while low < hi g h do

5: mi d ← low+hi g h
2

6: if ar r ay[mi d ] == number then
7: i ndex = mi d
8: else if ar r ay[mi d ] < number then
9: low = mi d +1

10: else
11: hi g h = mi d −1
12: end if
13: end while
14: return i ndex
15: end procedure

71





Bibliography

[1] Design by contract, May 2014. URL http://c2.com/cgi/wiki?DesignByContract.

[2] Parameter pack, 2014, URL http://en.cppreference.com/w/cpp/language/parameter_
pack.

[3] Empirical distribution function, 2014, URL http://en.wikipedia.org/wiki/Empirical_
distribution_function.

[4] Variadic macros, 2014, URL http://msdn.microsoft.com/en-us/library/ms177415.aspx.

[5] Code contracts, May 2014. URL http://research.microsoft.com/en-us/projects/
contracts/.

[6] Framework for real-time embedded systems based on contracts, 2014, URL http://www.
frescor.org/index.php?page=FRESCOR-homepage.

[7] Object constraint language (ocl), 2014, URL http://www.omg.org/spec/OCL/.

[8] Using design by contract to automate java software and component testing, 2014, URL
http://www.parasoft.com/products/article.jsp?articleId=579&product=Jtest.

[9] Spark 2014, expanding the boundaries of safe and secure programming, May 2014. URL
http://www.spark-2014.org/about/.

[10] Mario Barbacci and Jeannette M. Wing. Specifying functional and timing behavior for
real-time applications. In Proceedings of the Parallel Architectures and Languages Europe,
Volume I, pages 124–140, London, UK, UK, 1987. Springer-Verlag.

[11] P. Bellini, R. Mattolini, and P. Nesi. Temporal logics for real-time system specification.
ACM Comput. Surv., 32(1):12–42, March 2000.

[12] Albert Benveniste, Benoit Caillaud, Dejan Nickovic, Roberto Passerone, Jean-Baptiste
Raclet, Philipp Reinkemeier, Alberto Sangiovanni-Vincentelli, Werner Damm, Thomas
Henzinger, and Kim G. Larsen. Contracts for System Design. Rapport de recherche
RR-8147, INRIA, November 2012.

[13] Marshall Brain. How airbags work, 2014, URL http://auto.howstuffworks.com/
car-driving-safety/safety-regulatory-devices/airbag1.htm.

73

http://c2.com/cgi/wiki?DesignByContract
http://en.cppreference.com/w/cpp/language/parameter_pack
http://en.cppreference.com/w/cpp/language/parameter_pack
http://en.wikipedia.org/wiki/Empirical_distribution_function
http://en.wikipedia.org/wiki/Empirical_distribution_function
http://msdn.microsoft.com/en-us/library/ms177415.aspx
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/
http://www.frescor.org/index.php?page=FRESCOR-homepage
http://www.frescor.org/index.php?page=FRESCOR-homepage
http://www.omg.org/spec/OCL/
http://www.parasoft.com/products/article.jsp?articleId=579&product=Jtest
http://www.spark-2014.org/about/
http://auto.howstuffworks.com/car-driving-safety/safety-regulatory-devices/airbag1.htm
http://auto.howstuffworks.com/car-driving-safety/safety-regulatory-devices/airbag1.htm


Bibliography

[14] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ANSI-C programs.
In Kurt Jensen and Andreas Podelski, editors, Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2004), volume 2988 of Lecture Notes in Computer Science,
pages 168–176. Springer, 2004.

[15] Yannick Moy Cyrille Comar, Johannes Kanig. Integrating formal program verification
with tesing, 2014, URL http://www.adacore.com/uploads_gems/Hi-Lite_ERTS-2012.pdf.

[16] Beman Dawes. Boost c++ libraries, 2014, URL http://www.boost.org/doc/libs/1_55_0/
libs/libraries.htm.

[17] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos Pacheco,
Matthew S. Tschantz, and Chen Xiao. The Daikon system for dynamic detection of likely
invariants. Science of Computer Programming, 69(1–3):35–45, December 2007.

[18] C.J.M. Geisterfer and S. Ghosh. Software component specification: a study in perspective
of component selection and reuse. In Commercial-off-the-Shelf (COTS)-Based Software
Systems, 2006. Fifth International Conference on, pages 9 pp.–, Feb 2006.

[19] Hermann Härtig, Steffen Zschaler, Martin Pohlack, Ronald Aigner, Steffen Göbel,
Christoph Pohl, and Simone Röttger. Enforceable component-based realtime contracts.
Real-Time Syst., 35(1):1–31, January 2007.

[20] Dimitri Van Heesch. Log for c++ project, 2014, URL http://log4cpp.sourceforge.net/.

[21] Kevlin Henney. Boost c++ libraries, 2014, URL http://www.boost.org/doc/libs/1_55_0/
doc/html/any.html.

[22] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, October 1969.

[23] Xiaowan Huang, Justin Seyster, Sean Callanan, Ketan Dixit, Radu Grosu, Scott A. Smolka,
Scott D. Stoller, and Erez Zadok. Software monitoring with controllable overhead. Int. J.
Softw. Tools Technol. Transf., 14(3):327–347, June 2012.

[24] F. Jahanian and AK. Mok. Safety analysis of timing properties in real-time systems.
Software Engineering, IEEE Transactions on, SE-12(9):890–904, Sept 1986.

[25] Farnam Jahanian, Aloysius K. Mok, and Douglas A. Stuart. Formal specification of real-
time systems. Technical report, Austin, TX, USA, 1988.

[26] John C. Knight. Safety critical systems: Challenges and directions. In Proceedings of the
24th International Conference on Software Engineering, ICSE ’02, pages 547–550, New
York, NY, USA, 2002. ACM.

[27] Leslie Lamport. What good is temporal logic? In IFIP Congress, pages 657–668, 1983.

[28] B. W. Lampson, J. J. Horning, R. L. London, J. G. Mitchell, and G. J. Popek. Report on the
programming language euclid. SIGPLAN Not., 12(2):1–79, February 1977.

[29] Gary T. Leavens and Yoonsik Cheon. Design by contract with jml, 2006.

74

http://www.adacore.com/uploads_gems/Hi-Lite_ERTS-2012.pdf
http://www.boost.org/doc/libs/1_55_0/libs/libraries.htm
http://www.boost.org/doc/libs/1_55_0/libs/libraries.htm
http://log4cpp.sourceforge.net/
http://www.boost.org/doc/libs/1_55_0/doc/html/any.html
http://www.boost.org/doc/libs/1_55_0/doc/html/any.html


Bibliography

[30] Ravichandhran Madhavan and Viktor Kuncak. Symbolic Resource Bound Inference.
Technical report, 2014.

[31] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag New York, Inc., New York, NY, USA, 1992.

[32] A Mazouz, S. Touati, and D. Barthou. Study of variations of native program execution
times on multi-core architectures. In Complex, Intelligent and Software Intensive Systems
(CISIS), 2010 International Conference on, pages 919–924, Feb 2010.

[33] Bertrand Meyer. Applying "design by contract". Computer, 25(10):40–51, October 1992.

[34] Manuel Oriol, Michael Wahler, Robin Steiger, Sascha Stoeter, Egemen Vardar, Heiko
Koziolek, and Atul Kumar. Fasa: A scalable software framework for distributed control
systems. In Proceedings of the 3rd International ACM SIGSOFT Symposium on Architecting
Critical Systems, ISARCS ’12, pages 51–60, New York, NY, USA, 2012. ACM.

[35] Ricardo Perrone, Raimundo Macedo, George Lima, and Veronica Lima. An approach
for estimating execution time probability distributions of component-based real-time
systems. J. UCS, 15(11):2142–2165, 2009.

[36] Nadia Polikarpova, Ilinca Ciupa, and Bertrand Meyer. A comparative study of
programmer-written and automatically inferred contracts. In Proceedings of the Eigh-
teenth International Symposium on Software Testing and Analysis, ISSTA ’09, pages 93–104,
New York, NY, USA, 2009. ACM.

[37] G. L. Reijns and A. J. C. van Gemund. Predicting the execution times of parallel-
independent programs using pearson distributions. Parallel Comput., 31(8-9):877–899,
August 2005.

[38] Alberto Sangiovanni-Vincentelli, Werner Damm, and Roberto Passerone. Taming dr.
frankenstein: Contract-based design for cyber-physical systems*. European Journal of
Control, 18(3):217 – 238, 2012.

[39] Edmond Schonberg. Towards ada 2012: An interim report. In Proceedings of the ACM
SIGAda Annual International Conference on SIGAda, SIGAda ’10, pages 63–70, New York,
NY, USA, 2010. ACM.

[40] Joseph Sifakis. Modeling real-time systems - challenges and work directions. In In
Proceedings of the 1st International Workshop on Embedded Software (EMSOFT), Lecture
Notes in Computer Science, pages 373–389. Springer Verlag, 2001.

[41] M. Sojka and Z. Hanzalek. Modular architecture for real-time contract-based framework.
In Industrial Embedded Systems, 2009. SIES ’09. IEEE International Symposium on, pages
66–69, July 2009.

[42] Iosif Spulber. Lightweight monitoring for distributed control systems, 2013, Master
Thesis, ABB Corporate Research.

[43] I Stierand, P. Reinkemeier, T. Gezgin, and P. Bhaduri. Real-time scheduling interfaces
and contracts for the design of distributed embedded systems. In Industrial Embedded
Systems (SIES), 2013 8th IEEE International Symposium on, pages 130–139, June 2013.

75



Bibliography

[44] M. Wahler, M. Oriol, E. Ferranti, and A. Monot. Reconciling flexibility and robustness in
industrial automation systems, and living happily ever after. In Emerging Technologies
Factory Automation (ETFA), 2013 IEEE 18th Conference on, pages 1–8, Sept 2013.

[45] Jeannette M. Wing. Writing larch interface language specifications. ACM Transactions on
Programming Languages and Systems, 9:1–24, 1987.

[46] H. Conrad Cunningham Yi Liu. Software component specification using design by
contract.

76



Chandrakana Nandi

Pflugstrasse 1
Zurich, 8006

(+41) 76 290 14 64

PERSONAL Nationality: Indian
Email: chandrakana.nandi@epfl.ch
Website: https://epfl.academia.edu/ChandrakanaNandi

EDUCATION Master of Science, Computer Science
École Polytechnique Fédérale de Lausanne(EPFL), 1024 Lausanne, Switzerland
Expected: August 2014
Thesis: Contracts for Real-Time, Safety Critial Systems, Supervisors: Prof. Viktor
Kuncak, LARA, EPFL, Dr. Manuel Oriol, ABB Corporate Research

Bachelor of Science, Statistics, Mathematics and Computer Science
Banaras Hindu University (BHU), Varanasi 221005, India, June 2012
Concentration: Statistics
Thesis: Social Network-based Analysis of Behavior, Supervisor: Prof. R.D Singh
GPA: 9.68/10 , Valedictorian, Faculty of Science, BHU, 2012

COMPUTER
SKILLS

Languages: C, C++, Java, Python (basic), C# (basic)
Database: SQL, XML
Operating Systems: Unix, Windows 7, 8
Web development: HTML, XML, Javascript, PHP
Software: Eclipse, MATLAB, Visual Studio, Unity3D, LaTeX
Libraries: OpenCV, AruCo, Bullet Physics

EXPERIENCE Masters Thesis student Feb’14-Aug’14
ABB Corporate Research Center, Baden, Switzerland
Supervisor: Dr. Manuel Oriol

• Development of a contract framework for the FASA platform

Software Intern Aug’13-Jan’14
ABB Corporate Research Center, Baden, Switzerland
Supervisor: Dr. Manuel Oriol

• Development of a bi-directional model transformation tool between two state-
of-the-art component based frameworks, BIP and FASA.

Summer Intern at BIOROB, EPFL Jun’10-Jul’10
Supervisor: Prof. Auke J. Ijspeert

• Analysis of the locomotion of a salamander from X-Ray movies

• Obtaining a graphical representation of the temporal variations of the angles
at different joints on the salamander’s body.

MAJOR
PROJECTS

1. Semester Project: Using business rules for coordinating OSGI applications with
the Behavior Interaction Priority (BIP) framework.
Supervisor: Prof. Joseph Sifakis, Turing Award 2007, Head, Rigorous System
Design Lab, EPFL.

77



2. Recognition of 3D images from the small NORB dataset.
Instructor: Prof. Mathias Seeger, Head, Laboratory of Probabilistic Machine
Learning, EPFL.

3. Developing a 3D bouncing ball game.
Instructor: Prof. Ronan Boulic, Immersive Interaction Group, EPFL

4. Bachelors Thesis: Analysis of a dynamic social network data.
Supervisor: Prof. R. D Singh, BHU

ACADEMIC
ACHIEVEMENTS

1. Received 5 awards including 3 Gold medals in the 95th convocation of BHU

• Topper of the Faculty of Science, BHU
• Topper of the Department of Statistics, BHU
• Female Topper in Faculty of Science, BHU
• Dr. Basudeo Sahni Gold Medal
• Cash award and university scholarship holder for academic excellence

2. Awarded the Swiss Government Scholarship for September 2012-2014 for pur-
suing masters in computer science at EPFL

3. Selected for the M.Sc Research Scholar Program of the School of Computer and
Commmunication Sciences at EPFL, by Prof. Joseph Sifakis at the Rigorous
System Design Lab.

4. Secured All India Rank 14 in the IIT-Joint Admission Test for Mathematical
Statistics in 2012 for graduate studies.

5. Attended Microsoft Theory Day, 2010 at IIT-Madras.

6. Accepted as a summer intern at Indian Institute of Information Technology,
Allahabad in May, 2010.

EXTRA-
CURRICULAR
ACTIVITIES

1. Professionally trained Bharatnaytam dancer
2. Won first prize in Web designing in the tech fest TORQUE in 2010 conducted

by Department of Computer Science, BHU
3. Reached the Semi-finals of Microsoft Imagine Cup-Worldwide Digital Media

Contest-2010
4. Qualified for round 2 in ACM-ICPC coding contest in December 2010 and

awarded ACM student membership
5. Member of the organizing team of a National Conference and Workshop on

High Performance Computing and Applications and Graph and Geometric Al-
gorithms organized by Banaras Hindu University from 08-02-1010 to 13-02-2010

6. Vice captain during my high school
7. Member of Student’s editorial board in high school

LANGUAGE
PROFICIENCY

English: fluent, TOEFL score 110/120, October 2013
Bengali: mother tongue
Hindi: fluent
French: basic

78


	Acknowledgements
	Abstract (English)
	List of figures
	List of tables
	List of algorithms
	Introduction
	Statement of the problem
	Structure of the thesis

	State of the Art
	Background
	Design by Contracts
	FASA Framework
	Temporal Logic (focusing on Real Time Logic)

	Analysis of previous research
	Preliminary experiments and problem exploration
	Conclusions

	Development of the Framework
	Requirements of the FASA contract framework
	Deciding the acceptable overhead level

	Features and underlying principles
	Functional Contracts
	Real-time (temporal) Contracts

	Temporal specification using RTL
	FASA Temporal Requirements
	FASA Real-Time Contracts

	Conclusions

	Implementation
	fasa_assert.h
	Logging of the messages

	Approaches towards the contract framework
	Dedicated function blocks for contracts
	Dedicated routines for contracts

	Parametric temporal contracts
	The "Old" construct 
	Conclusions

	Results and Validations
	Simple Counter Application
	Application description
	Contract analysis

	Gaussian Random Generator
	Application description
	Contract analysis

	Binary Search Application
	Application description
	Contract analysis

	Energy-Pack-Core-Model example
	Application description
	Contract analysis

	NetProxy Application
	Application description
	Contract analysis

	Conclusions

	Conclusions and Future Work
	Conclusions
	Major Contributions
	Results

	Future work

	Box-Muller Transform
	Binary Search Algorithm
	Bibliography
	Curriculum Vitae

