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APPENDIX

A. Convergence for decreasing step size

We analyze the convergence properties of Algorithm 1. Recall that our goal is to find the parameter vector w∗ that minimizes
the empirical objective function:

L(w) =

N∑
n=1

l(Y n, Y ∗,w) +
1

2C
||w||2 . (1)

At each iteration, Algorithm 1 chooses a random training example (Xn, Y n) by picking an index n ∈ {1 . . . N} uniformly
at random. We then replace the objective given by Eq. 1 with an approximation based on the training example (Xn, Y n),
yielding:

f(w, n) = l(Y n, Y ∗,w) +
1

2C
||w||2 . (2)

We consider the case where l : W → R is a convex loss function so that f(w) is a λ-strongly convex function where
λ = 1

C .
Recall that the definition of an ε-subgradient of f(w) is:

∀w′ ∈ W,gT (w −w′) ≥ f(w)− f(w′)− ε. (3)

In the following, we will assume that the magnitude of the ε-subgradients we compute is bounded by a constant G,
i.e. ||g||22 ≤ G2.

Let w∗ be the minimizer of L(w). The following relation then holds trivially for w∗:

gT (w −w∗) ≥ f(w)− f(w∗)− ε. (4)

1) Convergence properties of the tth parameter vector: This proof for subgradients was derived in [1] and we extend it to
approximate subgradients here. We first present some inequalities that will be used in the following proof.

By the strong convexity of f(w), we have:

〈g(t),w(t) −w∗〉 ≥ f(w(t))− f(w∗) +
λ

2
‖w(t) −w∗‖22 − ε. (5)

An equivalent condition is:

〈g(t),w(t) −w∗〉 ≥ λ‖w(t) −w∗‖22 − ε. (6)

In the following, we first start by bounding ‖w(1) −w∗‖ and then derive a bound for E‖w(t+1) −w∗‖.

Lemma 1. The error of w(1) is:

‖w(1) −w∗‖22 ≤
G2 + 2ελ

λ2
. (7)
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Proof. From Eq. 6, we have:
〈g(1),w(1) −w∗〉 ≥ λ‖w(1) −w∗‖22 − ε,

Using the Cauchy-Schwarz inequality (|〈X,Y 〉| ≤ ‖X‖‖Y ‖), we get:

‖g(1)‖22 ≥
(
λ‖w(1) −w∗‖22 − ε

)2
‖w(1) −w∗‖22

= λ2‖w(1) −w∗‖22 − 2ελ+
ε2

‖w(1) −w∗‖22
, (8)

and from the assumption that ‖g(t)‖2 ≤ G2, we have that:

G2 ≥ λ2‖w(1) −w∗‖22 − 2ελ+
ε2

‖w(1) −w∗‖22
. (9)

We then derive the following bound for ‖w(1) −w∗‖22:

‖w(1) −w∗‖22 ≤ max

(
G2 + 2ελ

λ2
,

ε2

G2 + 2ελ

)
. (10)

G2 + 2ελ

λ2
− ε2

G2 + 2ελ
=

(G2 + 2ελ)(G2 + 2ελ)− ε2λ2

λ2(G2 + 2ελ)
=

(G2 + 2ελ)2 − ε2λ2

λ2(G2 + 2ελ)

=
(G2 + 2ελ+ ελ)(G2 + 2ελ− ελ)

λ2(G2 + 2ελ)
=

(G2 + 3ελ)(G2 + ελ)

λ2(G2 + 2ελ)
≥ 0. (11)

Therefore, we see that:

max

(
G2 + 2ελ

λ2
,

ε2

G2 + 2ελ

)
=
G2 + 2ελ

λ2
. (12)

We get Eq. 7 by combining Eq. 10 and 12 .

Theorem 1. The error of w(t+1) is:

E‖w(t+1) −w∗‖22 ≤
G2

λ2t
+
ε

λ
. (13)

Proof.

E‖w(t+1) −w∗‖22 = E‖w(t) − η(t)g(t) −w∗‖22
= E‖w(t) −w∗‖22 − 2η(t)E(〈g(t), (w(t) −w∗)〉) + (η(t))2(E‖g(t)‖22)

≤ E‖w(t) −w∗‖22 − 2η(t)(λE‖w(t) −w∗‖22 − ε) + (η(t))2G2

= (1− 2η(t)λ)E‖w(t) −w∗‖22 + (η(t))2G2 + 2η(t)ε (14)

By applying the inequality recursively:

E‖w(t+1) −w∗‖22 ≤ (1− 2η(t)λ)E‖w(t) −w∗‖22 + (η(t))2G2 + 2η(t)ε

≤ (1− 2η(t)λ)((1− 2η(t−1)λ)E‖w(t−1) −w∗‖22 + (η(t−1))2G2 + 2η(t−1)ε) + (η(t))2G2 + 2η(t)ε

≤

(
t∏
i=2

(1− 2η(i)λ)

)
(E‖w(2) −w∗‖22) +

t∑
i=2

t∏
j=i+1

(1− 2η(j)λ)(η(i))2G2 +

t∑
i=2

t∏
j=i+1

(1− 2η(j)λ)2η(i)ε. (15)
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Plugging in η(i) = 1
λi , we get:

E‖w(t+1) −w∗‖22 ≤
t∏
i=2

(
1− 2

i

)
(E‖w(2) −w∗‖22) +

t∑
i=2

t∏
j=i+1

(
1− 2

j

)(
1

i

)2
G2

λ2

+

t∑
i=2

t∏
j=i+1

(
1− 2

j

)
2ε

iλ

=
G2

λ2

t∑
i=2

t∏
j=i+1

(
1− 2

j

)(
1

i

)2

+

t∑
i=2

t∏
j=i+1

(
1− 2

j

)
2ε

iλ
(16)

Rakhlin [1] showed that setting η(i) = 1
λi gives us a O(1/t) rate. Indeed, we have:

t∏
j=i+1

(
1− 2

j

)
=

t∏
j=i+1

(
j − 2

j

)
=

(i− 1)i

(t− 1)t
, (17)

and therefore
t∑
i=2

1

i2

t∏
j=i+1

(
1− 2

j

)
=

t∑
i=2

(i− 1)

i(t− 1)t
≤ 1

t
, (18)

t∑
i=2

t∏
j=i+1

(
1− 2

j

)
2ε

iλ
=

t∑
i=2

2(i− 1)iε

i(t− 1)tλ
=

2ε

(t− 1)tλ

t−1∑
i=1

i =
2ε

(t− 1)tλ

(
(t− 1)t

2

)
=
ε

λ
(19)

By combining Eq. 16 with Eq. 18 and Eq. 19, we then get:

E‖w(t+1) −w∗‖22 ≤
G2

λ2t
+
ε

λ
. (20)

We can deduce that the conditions of convergence are the same as the ones for subgradient descent (i.e. for ε = 0) :

lim
T→+∞

T∑
i=1

η(i) →∞

lim
T→+∞

T∑
i=1

(η(i))2 <∞ (21)

As long as the choice of the step size satisfies Eq. 21, we can see that the first term on the right side of Eq. 20 goes to 0
so stochastic ε-subgradient descent will convergence to a distance ε

λ away from the optimal value.

B. Convergence for adaptive step size

We start by deriving a bound on the adaptive step size η(t) before giving a proof of convergence of Algorithm 2.
1) Bound on the step-size: Recall that the step size η(t) is chosen to minimize the following heuristic function:

η(t) ← arg min
η

hRAn,w(t)(η)

= arg min
η

max
Y ∈An

ρ(t)
∣∣∣∣∣∣g(t)

∣∣∣∣∣∣2 η2 + l
(
Y n, Y,w(t) − ηg(t)

)
+
λ

2

∣∣∣∣∣∣w(t) − ηg(t)
∣∣∣∣∣∣. (22)

We will make use of the following definitions from the paper:
– ρ(t) is a constant that controls the regularization strength. We choose ρ(t) = Ct where C is a constant value that can be

determined by cross-validation
– g(t) is a subgradient of f(Y n, Y ∗w,w) = l(Y n, Y ∗w,w) + λ

2
– λ is a constant that controls the trade-off between margin and training error

Using the definition of the hinge loss function l, the second term in Eq. 22 becomes:

l
(
Y n, Y,w(t) − ηg(t)

)
=

〈
w(t) − ηg(t), ψ(X,Y )

〉
+ ∆(Y n, Y )−

〈
w(t) − ηg(t), ψ(X,Y n)

〉
=

〈
w(t), ψ(X,Y )− ψ(X,Y n)

〉
− η

〈
g(t), ψ(X,Y )− ψ(X,Y n)

〉
+ ∆(Y n, Y )

=
〈
w(t), δψn(Y )

〉
− η

〈
g(t), δψn(Y )

〉
+ ∆(Y n, Y ), (23)
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where δψn(Y ) = ψ(X,Y )− ψ(X,Y n).

The last term in Eq. 22 is:

λ

2

∣∣∣∣∣∣w(t) − ηg(t)
∣∣∣∣∣∣2 =

λ

2

(∣∣∣∣∣∣w(t)
∣∣∣∣∣∣2 − 2

〈
w(t), ηg(t)

〉
+
∣∣∣∣∣∣ηg(t)

∣∣∣∣∣∣2)
=

λ

2

∣∣∣∣∣∣w(t)
∣∣∣∣∣∣2 +

(
λ

2

)
η2
∣∣∣∣∣∣g(t)

∣∣∣∣∣∣2 − η 〈λw(t),g(t)
〉
. (24)

By the definition of η(t) in Eq. 22, we know that hAn,w(t)(η(t)) ≤ hAn,w(t)(0). Combining Eq. 23 and 24 into Eq. 22, we
get:

max
Y ∈An+

(
λ

2
+ ρ(t)

) ∣∣∣∣∣∣g(t)
∣∣∣∣∣∣2 (η(t))2 −

〈
g(t), δψn(Y ) + λw(t)

〉
η(t) (25)

+

(
λ

2

∣∣∣∣∣∣w(t)
∣∣∣∣∣∣2 +

〈
w(t), δψn(Y )

〉
+ ∆(Y n, Y )

)
≤ max
Y ∈An+

(
λ

2

∣∣∣∣∣∣w(t)
∣∣∣∣∣∣2 +

〈
w(t), δψn(Y )

〉
+ ∆(Y n, Y )

)
Canceling the constant terms that do not depend on η(t) on both sides, and using the shorthand notation Y ∗ = arg maxY ∈An+ hAn,w(t)(0),
we get: (

λ

2
+ ρ(t)

) ∣∣∣∣∣∣g(t)
∣∣∣∣∣∣2 (η(t))2 −

〈
g(t), δψn(Y ∗) + λw(t)

〉
η(t) ≤ 0 (26)

η(t)
((

λ

2
+ ρ(t)

) ∣∣∣∣∣∣g(t)
∣∣∣∣∣∣2 η(t) − 〈g(t), δψn(Y ∗) + λw(t)

〉)
︸ ︷︷ ︸

=T (η(t))

≤ 0. (27)

In order to solve Eq. 27, we consider separately the following two cases: either η(t) ≥ 0 and T (η(t)) ≤ 0, or η(t) ≤ 0 and
T (η(t)) ≥ 0.

In the first case, we have: (
λ

2
+ ρ(t)

) ∣∣∣∣∣∣g(t)
∣∣∣∣∣∣2 η(t) − 〈g(t), δψn(Y ∗) + λw(t)

〉
≤ 0 (28)(

λ

2
+ ρ(t)

) ∣∣∣∣∣∣δψn(Y ∗) + λw(t)
∣∣∣∣∣∣2 η(t) − 〈δψn(Y ∗) + λw(t), δψn(Y ∗) + λw(t)

〉
≤ 0, (29)

where the last line was obtained by using g(t) = δψn(Y ∗) + λw(t) for the exact subgradient case as derived in the paper.

We then get an upper bound on η(t):

η(t) ≤
〈
δψn(Y ∗) + λw(t), δψn(Y ∗) + λw(t)

〉(
λ
2 + ρ(t)

) ∣∣∣∣δψn(Y ∗) + λw(t)
∣∣∣∣2 =

1
λ
2 + ρ(t)

. (30)

Using the same reasoning for the second case, we can show that T (η(t)) ≥ 0 implies η(t) ≥ 1
λ
2 +ρ(t)

> 0, but because we

assumed η(t) ≤ 0, this case is not feasible.

We therefore conclude that the solution to Eq. 27 is η(t) ∈
]
0; 1

λ
2 +ρ(t)

]
.

2) Proof of convergence: As shown in Section. B1, η(t) close to 0 is a valid solution to Eq. 22, but this could cause the
proposed approach to stop prematurely. In order to prevent this issue, we enforce a lower bound on η(t) as done in [2]. We
thus restrict the bound to η(t) ∈

[
ε
t ;

1
λ
2 +ρ(t)

]
where ε is taken to be a very small value so that ε

t ≤
1

λ
2 +ρ(t)

.

We now show that the step size η(t) satisfies the following conditions of convergence:

lim
T→+∞

T∑
t=1

η(t) =∞ and lim
T→+∞

T∑
t=1

(η(t))2 <∞. (31)
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a) Upper bound
: We start with the upper bound 1

λ
2 +ρ(t)

. Using the integral test for convergence, we get:∫ T

t=1

1
λ
2 + ρ(t)

dt ≤
T∑
t=1

1
λ
2 + ρ(t)

. (32)

We also know, recalling that ρ(t) = Ct, that∫ T

t=1

1
λ
2 + ρ(t)

dt =
log
(
Ct+ λ

2

)
C

∣∣∣∣∣
T

t=1

+ cst
T→∞−−−−→∞ (33)

Therefore

lim
T→∞

T∑
t=1

1
λ
2 + ρ(t)

→∞, (34)

and we see that the upper bound also meets the conditions of convergence.

The same test of convergence can be used to bound the sum of the squares:∫ T

t=1

1(
λ
2 + ρ(t)

)2 dt ≤ T∑
t=1

1(
λ
2 + ρ(t)

)2 . (35)

We also know: ∫ T

t=1

1(
λ
2 + ρ(t)

)2 dt = − 1

C(Ct+ λ
2 )

∣∣∣∣∣
T

t=1

+ cst. (36)

Assuming λ > 0, we therefore get

lim
T→+∞

T∑
t=1

1(
λ
2 + ρ(t)

)2 <∞ (37)

b) Lower bound
: Using the integral test for the lower bound, we also get:

lim
T→+∞

T∑
t=1

ε

t
=∞ and lim

T→+∞

T∑
t=1

(ε
t

)2
<∞, (38)

and we see that the lower bound also meets the conditions of convergence.

We have shown that the lower and upper bounds both satisfy the conditions of convergence from Eq. 31. Therefore any step
size η(t) within the interval η(t) ∈

[
ε
t ;

1
λ
2 +ρ(t)

]
also satisfies these conditions, thus prooving that Algorithm 2 converges.
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