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Abstract—Efficient and accurate segmentation of cellular
structures in microscopic data is an essential task in medical
imaging. Many state-of-the-art approaches to image segmentation
use structured models whose parameters must be carefully
chosen for optimal performance. A popular choice is to learn
them using a large-margin framework and more specifically
structured support vector machines (SSVM). Although SSVMs
are appealing, they suffer from certain limitations. First, they are
restricted in practice to linear kernels because the more powerful
non-linear kernels cause the learning to become prohibitively
expensive. Second, they require iteratively finding the most
violated constraints, which is often intractable for the loopy
graphical models used in image segmentation. This requires
approximation that can lead to reduced quality of learning.

In this article, we propose three novel techniques to overcome
these limitations. We first introduce a method to “kernelize”
the features so that a linear SSVM framework can leverage the
power of non-linear kernels without incurring much additional
computational cost. Moreover, we employ a working set of
constraints to increase the reliability of approximate subgradient
methods and introduce a new way to select a suitable step size
at each iteration.

We demonstrate the strength of our approach on both 2D and
3D electron microscopic (EM) image data and show consistent
performance improvement over state-of-the-art approaches.

I. INTRODUCTION

Semantic segmentation of 2D images and 3D image stacks
is a fundamental medical image processing task. Graphical
models, such as conditional random fields (CRF) [6], [25] are
widely used for this purpose because they capture the inter-
dependency between nearby pixels by minimizing an energy
function, or equivalently maximizing a score function, which
depends on both local data evidence and spatial consistency
of the output. These models, however, typically involve a
large number of parameters that must be carefully chosen
to achieve good performance and learning them efficiently is
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Fig. 1. A nearly isotropic stack of neural tissue acquired from the CA1
hippocampus using EM microscopy. Top. This stack is made of 1065 2048×
1536 slices and its resolution is 5 nanometer in all three directions. This
represents more than 3 billion voxels for a volume whose largest dimension
is in the order of 10 µm. The black arrows point towards mitochondria, which
we use to train our CRF-based segmentation algorithm. Bottom. 3D rendering
of the mitochondria found in a 1024× 1024× 1024 subvolume.

a challenging task. It is particularly daunting when dealing
with large datasets such as the one depicted by Fig. 1, which
modern imaging devices can now routinely produce.

The maximum-margin framework [52] has gained much
popularity in recent years as a means to do this. As an
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alternative to maximum likelihood and maximum a posteriori
learning, it makes unnecessary the difficult task of estimating
the partition function and can be used in conjunction with
many different performance metrics. The structured support
vector machine (SSVM) [55] is a particularly successful
variant of this approach, in which the learning objective is
to minimize a regularized hinge loss caused by the violation
of a set of soft margin constraints.

Although SSVMs have made the learning task easier than
before, they are, nevertheless, not without their limitations.
Though highly efficient when the CRF energy function is
linear, they can become prohibitively expensive when non-
linear kernels are involved, especially in the case of kernels
computed over the graph nodes. This is because the number of
kernel evaluations required, and hence the training time, scales
quadratically with respect to the number of pixels or nodes in
the CRF. This quickly makes the problem unmanageable for
even moderate size datasets. Thus, it is usually impractical
to directly apply non-linear kernels in an SSVM framework,
even though they are often more powerful than their linear
counterpart.

Moreover, optimizing the SSVM objective function can be
challenging regardless of the linearity of the CRF energy. It is
usually done iteratively using either the SSVM cutting plane
algorithm [55] or by solving the equivalent unconstrained
optimization problem using subgradient based methods [40],
[32], [35], [58]. Either way, the most violated constraint
must be found at every iteration. This means finding the
labeling that maximizes the margin-sensitive hinge loss [55]
and yields a valid cutting plane or true subgradient of the
objective. This, however, is intractable for the loopy graphical
models used for image segmentation. Although approximate
maximizers obtained by approximate inference, such as belief
propagation [34] and graph cuts [7] can be used as substi-
tutes, the approximation are usually so imprecise that they
adversely impact the learning process. In the worst case, an
unsatisfactory constraint can cause the cutting plane algorithm
to prematurely terminate if it does not have a higher hinge loss
than previous constraints. It can also induce erratic behavior in
subgradient-based methods when the implied descent direction
is too far away from any true subgradient.

Another difficulty with subgradient-based methods is that
they rely heavily on choosing an appropriate step size, that is,
the distance by which to advance in the negative subgradient
direction at each iteration. Many algorithms rely on preset,
non-adaptive, and usually decreasing sequences of values.
In theory, they provide theoretical asymptotic convergence
guarantees. However, in practice, the inflexible nature of fixed-
sequence step sizes often causes unsuitable values to be used,
which negatively impacts the quality of the solutions obtained
in finite time.

These phenomena make the learning process more suscep-
tible to failure and limit the predictive power of the model. In
this work, we develop and combine three new techniques to
overcome these limitations.
• Kernelized Features. We formulate a two-stage training

procedure that lets us combine the strength of SSVM and
non-linear kernels in an efficient manner. To this end,

we first use a regular non-linear non-structured SVM to
create a set of support vectors from the training data.
We then use it to transform our initial feature vectors
into kernelized features, that is, the kernel product of the
input feature vectors and the support vectors. We then
train a linear SSVM using the kernelized features instead
of the original ones, which lets us leverage the power of
non-linear kernels without the computational burden of
non-linear SSVM training.

• Working Set Approach to Computing Subgradients.
We introduce an approximate subgradient method that
uses a working set of constraints to make learning more
robust. It is specifically designed to minimize the margin-
sensitive hinge loss in the SSVM formulation when
the most violated constraints and hence the resulting
subgradients are not exact. We use a whole working
set of constraints, unlike existing subgradient approaches
that only consider the most recent one. This makes
our method more reliable even when the subgradients
estimated from individual constraints are noisy. In cases
where fast training is important, it also allows us to
estimate the subgradients by randomly sampling label-
ings instead of explicitly looking for the most violated
constraints. This speeds up training at only a small loss
in classification accuracy.

• Adaptive Step Size Selection. We propose a new ap-
proach to setting the step sizes adaptively at each iteration
by exploiting knowledge about the objective function
that we have accumulated during earlier iterations. More
specifically, we use the working set of previously found
constraints to compute the next step size. Our key ob-
servation is that previous constraints can be used to
calculate a lower bound on the learning objective, which
is informative for guiding the optimization. Our method
preserves the asymptotic convergence properties of the
sub-gradient descent (SGD), has a low computational
overhead, and consistently yields improved solutions.

We introduced the first two techniques separately in [29]
and [28] and the third one is new. We show that these
three techniques can be combined and demonstrate that the
resulting approach boosts CRF performance on both 2D and
3D datasets.

The remainder of the article is organized as follows. We
discuss prior work in Section II and provide the background
on the large-margin framework and corresponding learning
techniques in Section III. Our three contributions are intro-
duced in the three following sections, our kernelized features
in Section IV, our working set approach in Section V and
our adaptive step size selection in Section VI. We present our
experimental results in Section VII.

II. RELATED WORK

For tasks such as segmentation, the labels of neighbor-
ing pixels tend to be highly correlated and modeling such
correlations is often key to achieving high accuracy. As a
result, structured prediction has emerged as a highly useful
framework for tackling this class of problems. In this section,
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we first briefly review existing versions of this framework and
then discuss current approaches to learn their parameters and
adjusting step-sizes during the optimization.

A. Structured Prediction and Non-linear Kernels

Structured prediction methods such as conditional random
fields (CRFs) [25] have been widely applied to problems with
structured outputs. While traditional classifiers, such as deci-
sion trees and SVMs independently map each data instance to
a single label, structured prediction methods take into account
the correlations between labels. This is critical for tasks such
as image segmentation, where such correlations are strong
between nearby pixels. Learning CRF models using large-
margin methods has rapidly gained popularity in recent years,
largely due to the fact that they are more objective-driven
and do not involve the daunting partition function that can
render maximum-likelihood approaches intractable in CRFs
with loopy graph structures. Compared with earlier approaches
including the max-margin Markov network [52], the structured
support vector machine (SSVM) [55] is especially appealing
because of its expressiveness and flexibility, and has since been
successfully applied to many computer vision tasks, such as
in [50], [36], [27], among many others.

SSVMs, however, require the CRF energy function to be
expressible in a linear form, which in turn places the same
restriction on all the unary and spatial terms due to the
additive nature of CRF energies. While, in principle, the linear
function can be defined in some high dimensional or possibly
infinite-dimensional space, reproducing this kernel Hilbert
space through the use of non-linear kernels is often infeasible
in practice given that the number of kernel evaluations grows
quadratically with the model size and must be optimized in
the dual space. Though SSVM learning techniques based on
sampled cuts [59], [44] have alleviated this problem to some
extent, they sacrifice performance for speed. Even with this
trade-off, they are still much slower than linear SSVMs [59].
Moreover, earlier implementations of these techniques were
intended for use in conjunction with the cutting-plane method
to speed up training of regular non-linear SVMs. This results
in a multivariate output space in the SSVM formulation, which
is analogous to a CRF without edges, and thus considerably
simpler than the models typically used for image segmentation.

Kernel Approximation is another way to improve SSVM
training efficiency by seeking a lower, finite-dimensional rep-
resentation of the kernel-induced feature map that lies in a
higher or infinite dimensional space. This can be achieved
by random sampling from the typically infinite-dimensional
feature map [39], [3] whose analytical form can be obtained
using Fourier analysis when the kernel is homogeneous or
stationary [56]. While promising results have been shown
for specific additive kernels [31], [56], it is less clear how
this approach generalizes to non-additive kernels, such as
the Gaussian RBF that is more difficult to approximate.
Alternatively, the locally linear SVM [24] can be used to
simulate a non-linear decision boundary. However, this does
not yield a globally linear function and, thus, does not fit
into the SSVM framework. Moreover kernel approximation

typically introduces additional tuning parameters such as the
number of samples, which often present a performance-speed
trade-off for which there are no well-defined tuning criteria.

Finally, it is worth pointing out the difference between our
approach and the recently proposed structural kernels, which
also perform structured prediction using non-linear kernels,
but in a very different setting. In [44], [4], the kernels are
defined on the overall output space, that is, the entire CRF,
to exploit image-level “structural” information such as shape
and color. While this serves to bias local labels and is useful
for segmenting large dominant objects from the background,
it often requires training data that completely characterizes the
possible object configurations, such as binary masks. Multiple
objects or objects whose pose are not represented in the trained
model will cause the approach to fail. Our approach, on the
other hand, uses regular kernels defined as products between
a set of support vectors and the feature vectors extracted from
individual nodes. This has the effect of making it more “local”,
and thus not susceptible to such failures.

B. Learning methods for structured models

Maximum margin learning of CRFs was first formulated in
the max-margin Markov networks (M3N) [52], whose objec-
tive is to minimize a margin-sensitive hinge loss between the
ground-truth labeling and all other labelings for each training
example. This is especially appealing for learning CRFs with
loopy structures, due to its more objective-driven nature and
the fact that it completely bypasses the partition function,
which presents a major challenge to maximum likelihood
based approaches. Nevertheless, the number of constraints in
the resulting quadratic program (QP) is exponential in the size
of the graph, making the optimization a non-trivial problem.
In M3N this is handled by rewriting the QP dual in terms
of a polynomial number of marginal variables, which can
then be solved by a coordinate descent method analogous to
the sequential minimal optimization (SMO) [37]. However,
solving such a QP is not tractable for loopy CRFs with
high tree widths that are often needed in many computer
vision tasks. In fact, even solving it approximately can become
overwhelmingly expensive on large graphs.

Structured SVMs (SSVM) [55] optimize the same kind of
objective as M3N, while allowing for a more general class of
loss functions. It employs a cutting plane algorithm to itera-
tively solve a series of increasingly larger QPs, which makes
learning more scalable. However, the cutting plane algorithm
requires the computation of the most violated constraints,
namely the labeling that maximizes the hinge loss [55]. This
involves performing the loss augmented inference [51], which
is intractable on loopy CRFs. Though approximate constraints
can be used [14], they make the cutting plane algorithm
susceptible to premature termination and, in the worst case,
can lead to catastrophic failure. This problem is considered
in [50], which limits the optimization to a smaller parameter
space where exact inference can be performed with graph cuts.
However the addition of the hard submodularity constraints
makes the resulting QP more expensive to solve, especially
when the dimensionality of the feature space is also high.
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In order to speed up the computation, a caching strategy was
proposed in [19]. Instead of performing the loss augmented
inference at every iteration, the algorithm first tries to construct
a sufficiently violated constraint from the cache. While its use
of a cache bears certain apparent similarity to the working set
method described in this article, the goal of caching in [19] is
to decrease the number of calls to the separation oracle while
our approach aims at increasing the robustness of approximate
subgradient methods.

An alternative to solving the quadratic program determin-
istically is to employ a stochastic gradient or subgradient
method. This class of algorithms has been studied extensively
for non-structured prediction problems [46]. In the context of
structured prediction, learning can be achieved by finding a
convex-concave saddle-point and solving it with a dual extra-
gradient method [53]. In [40] max-margin learning is solved
as an unconstrained optimization problem and subgradients
are used to approximate the gradient in the resulting non-
differentiable problem. This method trades optimality for a
lower complexity, making it more suitable for large-scale
problems. The approach of [32] proposes a perceptron-like
algorithm based on an update whose expectation is close to the
gradient of the true expected loss. However, the soundness of
these methods heavily depends on the assumption that a valid
subgradient is obtained at each iteration. Hence they become
much less reliable when the subgradients are noisy due to
inexact inference, as is the case for loopy CRFs.

The recently proposed SampleRank [57] avoids performing
inference altogether during learning. Instead, it samples label-
ings at random using Markov chain Monte Carlo (MCMC).
At each step, parameters are updated with respect to a pair
of sampled labelings. Hence, unlike our method, it solves a
problem that is substantially different from the original max-
margin formulation. Though achieving notable speed improve-
ment, the method does not in fact optimize the actual hinge
loss but rather a loose upper bound on it.

C. Adaptive step-size

The performance of SGD largely depends on the ability to
choose appropriate step sizes. They often have to be carefully
tuned for the specific data at hand because inappropriate
choices can easily lead to inferior solutions and slow con-
vergence.

Several strategies for automatically choosing them are dis-
cussed in [5]. Most methods use preset step size sequences that
are determined offline and are not adaptive [42], [46]. Typical
choices include simple diminishing sequences and Polyak step
sizes [38], the latter being suitable only when the optimal
function value is known or can be estimated, and the evaluation
of the objective function is possible and easy.

Nevertheless, a number of adaptive or “online” schemes
have been studied in the literature and typically involve a
line search to decide how far to move along a given descent
direction. Exact searches are usually expensive and tend to be
replaced by approximate searches methods based on Wolfe’s
sufficient conditions for convergence, where step sizes depend
on the current point and the current search direction. Gain

adaptation methods such as stochastic meta-descent (SMD)
also accelerate convergence by using second-order information
to adjust the gradient step sizes [43], but require being able to
efficiently compute the Hessian. Another online approach is
the margin infused relaxed algorithm (MIRA) [10] that uses
the notion of margin to update its solution. It attempts to keep
the current solution and the solution at the next iteration as
close as possible while fully satisfying the margin requirement.

Choosing step sizes adaptively for subgradient based struc-
tured learning is also gaining attention. For example, the
MIRA algorithm [10] was extended to structured outputs
in [11]. Recently a stochastic coordinate ascent algorithm for
solving structured SVM based on the Frank-Wolfe algorithm
was developed in [23]. This approach automatically computes
the step sizes in closed-form that corresponds to the result
of line search in the dual space. The bundle approach to
structured prediction [15], [26], [54] generalizes the cutting
plane one by estimating a piecewise linear lower bound from
cutting planes computed as objective function subgradients.
A proximal function or a regularizer is commonly used to
prevent over-large iteration steps. In fact, the bundle method
of [54] generalizes SSVM [55] when the objective function
includes a quadratic regularizer. Like both the cutting plane
and bundle methods, ours exploits all the previously accu-
mulated constraints. However, unlike these methods, it only
requires a 1D line search in the subgradient direction, which
can be efficiently done. Note that the soundness of most of
the aforementioned subgradient methods depends heavily on
the assumption that a valid subgradient is obtained at each
iteration. Hence they become much less reliable when the
subgradients are noisy due to inexact inference, as is the case
for loopy CRFs. Our method is not exempt from this problem
but we found empirically that using a working set increases
the reliability of our subgradients.

III. MAX-MARGIN LEARNING OF CRFS

In this section, we begin by describing the standard CRF
model [25], [49] for segmentation. We then discuss how to
learn its parameters within the SSVM framework, with specific
attention to expressing the CRF model in the required linear
form for effective learning. We will use it in Sec. IV in
conjunction with our kernelized features, thus enabling us to
leverage the power of non-linear kernels while the SSVM
remains linear. In Section V-B, we will introduce our approach
to computing the subgradients required to learn its parameters.

A. CRF for Image Segmentation

As a standard preprocessing step, we first perform a prelim-
inary over-segmentation of our input image into superpixels or
supervoxels [1], such as those depicted by Fig. 2. The CRF
G = (V, E) is thus defined so that each node i ∈ V corresponds
to a superpixel and there is an edge (i, j) ∈ E between two
nodes i and j if the corresponding superpixels are adjacent in
the image. Let X = {xi}i∈V be an input example, such as
the image or features associated to it and Y = {yi}i∈V the
corresponding labeling of the CRF which assigns a class label
yi to each node.
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(a) Input image (b) Ground truth for the CRF

Fig. 2. The input image (a slice through a 3D volume) is shown in (a). Figure
(b) shows the ground truth labeling of the CRF used in our method. The pink
and black colors correspond to the foreground and background classes while
the gray contours are the boundaries of the SLIC supervoxels.

The score function associated with the CRF can then be
written as

Sw(X,Y ) =
∑
i∈V

Di(xi, yi) +
∑

(i,j)∈E

Vij(yi, yj), (1)

where Di is the unary data term and Vij is the pairwise spatial
term.

Both Di and Vij depend on the observed data and the CRF
parameters w, in addition to the labeling Y . The negated score
is also commonly referred to as the “energy” in the literature
and we will use the two terms interchangeably. The inferred
optimal labeling is simply the one that minimizes it, that is,

Y ∗ = arg max
Y ∈Y

Sw(X,Y ) , (2)

where Y denotes the set of all possible labelings. In the
remainder of this section, we will omit the input X , a
constant with respect to the maximization in Eq. 2, from
the notation Sw(X,Y ) for the sake of conciseness. While
the exact minimization of the score function is generally
intractable on loopy CRFs, good approximate solutions can be
found efficiently using techniques such as graph cuts [9] and
belief propagation [34]. In our case, we use graph cuts when
the score function is submodular [22] and belief propagation
otherwise.

B. Discriminative Learning

Discriminative learning uses the labeled training data to
learn the CRF parameters so that the inferred labeling of the
CRF is “close” to that of the ground truth, defined as yielding a
low loss. More specifically, given a set of N training examples
D = ((X1, Y 1), . . . , (XN , Y N )) where Xi ∈ X is an input
example and Y i ∈ Y is the associated labeling, the learning
task consists in finding model parameters w that achieve low
empirical loss subject to some regularization. In other words,
we seek

w∗ = arg min
w

L(D,w)

= arg min
w

1

N

∑
(Xn,Y n)∈D

l(Xn, Y n,w) +R(w),(3)

where R(w) is the regularizer (such as the L2 norm of
w) that helps prevent overfitting and l is the surrogate loss

function, a quantity that is usually related to and often defines
an upper bound on the training error. Note that the definition
of the surrogate loss l depends on the score function Sw, since
the goal of learning is to make the maximizer of Sw a desirable
output for the given input. The most common choice of l is
the hinge loss, as used in [52], [55] and defined as

l(Y n, Y,w) = [Sw(Y ) + ∆(Y n, Y )− Sw(Y n)]+, (4)

where [v]+ = max(0, v) and the task loss ∆ measures the
closeness of any inferred labeling Y to the ground truth
labeling Y n.

C. Max-margin Formulation

The max-margin approach is a specific instance of discrim-
inative learning, where parameter learning is formulated as a
quadratic program (QP) with soft margin constraints [55]

min
w,ξ≥0

λ

2
||w||2 +

1

N

N∑
n=1

ξn (5)

s.t. ∀n : Sw(Y n) ≥ max
Y ∈Yn

(Sw(Y ) + ∆(Y n, Y ))− ξn,

where Yn is the set of all possible labelings for example n, the
constant C controls the trade-off between margin and training
error.

The QP can be converted to an unconstrained optimization
problem by incorporating the soft constraints directly into the
objective function, yielding

min
w
L(w) = (6)

min
w

λ

2
||w||2 +

1

N

N∑
n=1

[Sw(Y ∗) + ∆(Y n, Y ∗)− Sw(Y n)]+,

where
Y ∗ = arg max

Y ∈Yn

(Sw(Y ) + ∆(Y n, Y )) (7)

is the most violated constraint of all possible labelings for
example n given current parameters w.

Finding the optimal labeling Y ∗ as described in Eq. 7 is a
key challenge named loss-augmented inference.

D. Linearizing the CRF Score Function

Since the SSVM operates by solving a quadratic program
(QP), all the constraints in Eq. 5 must be linear [55]. This
requires that the score function Sw be expressible as an inner
product between the parameter vector and a feature map. Since
the score is the sum of individual unary and pairwise terms,
this implies that Di and Vij also must be expressible as

Di(yi) =
〈
wD, ψDi (yi)

〉
(8)

and
Vij(yi, yj) =

〈
wV , ψVij(yi, yj)

〉
, (9)

where ψDi (yi) and ψVij(yi, yj)
1 are feature maps dependent

on both the observed data and the labels, and where

w = ((wD)T , (wV )T )T (10)

1Again, we omit the input xi from the notation for conciseness since it is
a constant.
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is the vector of parameters that define the functions Di and
Vij respectively.

If we let ΨD(Y ) =
∑
i∈V ψ

D
i (yi) and ΨV (Y ) =∑

(i,j)∈E ψ
V
ij(yi, yj), then Ψ(Y ) = (ΨD(Y )T ,ΨV (Y )T )T

allowing the CRF score to now be written linearly as

Sw(Y ) = 〈w,Ψ(Y )〉 . (11)

Let xi be a feature vector associated with node i extracted
from the observed data. We can define the data feature map
as

ψDi (yi) = (I(yi = 1)xTi , . . . , I(yi = K)xTi )T , (12)

where K is the number of possible labels, i.e., yi ∈
{1, . . . ,K}. If we write wD = ((wD

1 )T , . . . , (wD
K)T )T , the

unary term becomes the inner product

Di(yi) =
〈
wD
yi ,xi

〉
, (13)

which represents the score of node i taking on label yi.
Similarly, if we define the pairwise feature map as

ψVij(yi, yj) = (I(yi = a, yj = b))(a,b)∈{1,...,K}2 (14)

where I(a) is the indicator function that takes value 1 if the
predicate a is true and 0 otherwise. Given the corresponding
parameters wV = (wab)(a,b)∈{1,...,K}2 , the pairwise term

Vij(yi, yj) = wyiyj (15)

reflects the transition cost between nodes i and j from label
yi to label yj . Although the above definition depends only
on the labels yi and yj , the pairwise term can, in fact, be
made data-aware, as in [48], [27]. For instance, it can be made
gradient-adaptive by including parameters for each discretized
gradient level, as this is the case for the experiments presented
in Section. VII.

IV. KERNEL-TRANSFORMED FEATURES

As discussed above, standard SSVMs require a score func-
tion that is linear in both parameters and features. This
constitutes a major limitation, since unary terms based on
non-linear SVMs are often more powerful and produce better
results [16], [27]. It should be possible, in principle, to
learn non-linear unary terms within the SSVM framework by
implicitly defining w and xi of Eq. 13 in a high-dimensional
space through kernels. However, since computations have to
be done in the dual space, this would involve quadratic number
of kernel products to compute the inner products making such
an approach prohibitively expensive for large CRFs.

Our approach aiming at circumventing this problem is
illustrated on Fig. 3. It starts from the observation that a non-
linear binary (+1/-1 label) SVM classifier always takes the
form

Score(x) =
∑
j

αjy
S
j K(xSj ,x) , (16)

where xSj ∈ S are the support vectors with corresponding
labels ySj . Extended to multi-class labels (yi ∈ {1, . . . ,K})
for a general unary term, it becomes

Di(yi) =
∑
j

αyi,jc(y
S
j , yi)K(xSj ,xi) , (17)

(a) Superpixel segmentation (b) Resulting graph

��

(c) Linear SSVM (d) Linear SSVM segmentation

��
���

(e) Standard RBF SVM trained (f) Kernel transform
on individual superpixels

���������

(g) “Kernelized” (h) “Kernelized” SSVM
SSVM segmentation

Fig. 3. Kernelized features. (a) A superpixel over-segmentation of an image.
The + and • in the middle of each denotes either foreground or background.
(b) In the graph used to construct the CRF, each node corresponds to
a superpixel and each and edge indicate adjacency in the image. In 3D
biomedical volumes, the superpixels become supervoxels and graph becomes a
3D grid. (c) An illustration of the feature space. Each point represents a feature
vector extracted from a superpixel. Because it is not linearly separable, the
standard SSVM gives a poor segmentation result in (d). (e) To address this, we
train a non-structured kernel SVM on individual superpixels to obtain a set of
support vectors, indicated by outlined points. (f) Kernel-transformed features
gK,S(xi) are obtained for each feature vector xi from the kernel products
of xi and the support vectors. (g) Data in the |S|-dimensional “kernelized”
feature space is linearly separable, and can be used to train a linear SSVM.
(h) The improved segmentation result.

where c(ySj , yi) is 1 if yi = ySj and −1 otherwise. Note that,
although the function is non-linear in the input features xi,
because of the non-linear kernel K, it is linear in the kernel
products K(xSj ,xi).

If we define gK,S(xi) as the vector of kernel products

gK,S(xi) = (K(xS1 ,xi), . . . ,K(xS|S|,xi))
T , (18)
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Fig. 4. Comparison of a linear SVM, RBF-SVM, and a linear SVM trained
on the feature vectors described in Section VII-C and kernelized using the
support vectors of an RBF-SVM. For classification of individual samples
(ignoring structure), training a linear SVM on kernelized feature vectors yields
a similar performance to a standard RBF-SVM. Error bars indicate standard
deviation over 10 experiments on the hippocampus dataset with different
samples randomly drawn from the training set.

and w′yi as their coefficients

w′yi = (αyi,1c(y
S
1 , yi), · · · , αyi,|S|c(y

S
|S|, yi))

T , (19)

then the unary term can be re-expressed as

Di(yi) = 〈w′yi ,gK,S(xi)〉 , (20)

which is of the finite-dimensional linear form needed for
learning within the SSVM framework, as discussed in the
previous section.

This suggests a simple 2-step learning approach to incor-
porating kernels into an SSVM, illustrated in Fig. 3. First,
we train a standard non-structured, non-linear kernel SVM to
obtain a set of support vectors. These vectors are then used
to create a set of kernel-transformed, or “kernelized”, feature
vectors gK,S(xi), which are used to train the linear SSVM.

Although our formulation is not equivalent to a non-linear
kernel SSVM2, nor does it intend to approximate a non-linear
SSVM as kernel approximation methods do [39], [31], [56], it
does produce models with the same functional form as those
learned using a kernel SSVM. Most importantly, the resulting
models perform well in practice as we will show later.

To demonstrate the principle that a linear SVM trained
using kernel-transformed features performs similarly to a non-
linear SVM that uses the same kernel, we conducted a simple
proof-of-concept experiment for a classification task with
a linear SVM classifying each sample independently while
ignoring structure. We compare the performance of a standard
linear SVM, an SVM trained with an RBF kernel, and a
simplification of our approach in which kernelized feature
vectors – obtained using the support vectors of the RBF-SVM
– are used to train a standard linear SVM. The results in Fig. 4
support our intuition: So long as we transform the original
feature vector using the right set of support vectors, learning
the new coefficients under a different objective function (i.e.,

2The parameters w′ now correspond to the primal variables of a linear
SSVM instead of the dual variables of a non-linear SSVM.

as primal instead of dual variables) yields performance similar
to a non-linear kernel SVM.

V. WORKING SETS

We begin with a review of the stochastic subgradient method
in the context of structured learning. We then introduce a novel
technique to make the stochastic subgradient method more
robust to approximation errors in the computation of subgra-
dients using working sets of previously computed constraints.

A. The Stochastic Subgradient Method
The objective function of Eq. 6 can be minimized via a

stochastic subgradient method [40], [32]. This class of meth-
ods iteratively computes and steps in the opposite direction of
a subgradient vector with respect to an example (Xn, Y n)
chosen by picking an index n ∈ {1 . . . N} uniformly at
random. This implies finding, at each step, the subgradient
of the function

f(Y n, Y ∗,w) = l(Y n, Y ∗,w) +
λ

2
||w||2 . (21)

A subgradient of the convex function f : W → R at w is
defined as a vector g, such that

∀w′ ∈ W,gT (w′ −w) ≤ f(w′)− f(w). (22)

The set of all subgradients at w is called the subdifferential
at w and is denoted ∂f(w). The subdifferential is always a
non-empty convex compact set.

For the hinge loss, a valid subgradient g(Y n, Y ∗,w) with
respect to the parameter w can always be computed as:

∂f(Y n, Y ∗,w)

∂w
= ψ(Y ∗)− ψ(Y n) + λw. (23)

This results in a simple algorithm that iteratively computes and
steps in the direction of the negative subgradient as described
in Algorithm 1. In order to guarantee convergence, the step
size η(t) needs to satisfy the following conditions:

lim
T→+∞

T∑
t=1

η(t) =∞ and lim
T→+∞

T∑
t=1

(η(t))2 <∞. (24)

Algorithm 1 SGD + inference
1: INPUTS :
2: D : Training set of N examples.
3: β : Learning rate parameter.
4: w(1) : Arbitrary initial values, e.g., 0.
5: OUTPUT : w(T+1)

6: for t = 1 . . . T do
7: Pick some example (Xn, Y n) from D
8: Y ∗ = arg maxY ∈Yn

(Sw(Y ) + ∆(Y n, Y ))

9: η(t) ← β
t

10: g(t) ← ∂f(Y n,Y,w(t))
∂w(t)

11: w(t+1) ← w(t) − η(t)g(t)

12: end for

For loopy CRFs, however, true subgradients of the hinge
loss cannot always be obtained due to the intractability of loss-
augmented inference, namely finding the Y ∗ for each example.
This can lead to erratic behavior due to noisy subgradient
estimates and loss of performance.
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B. The Subgradient Method With Working Sets

Our algorithm aims at increasing the reliability of subgradi-
ent methods by using working sets of constraints, denoted An,
for learning loopy CRFs where exact inference is intractable.

We first outline a batch version of our method in Algo-
rithm 2 that uses subgradients computed as an average over the
working sets of constraints. Later on, we will present a more
efficient variant of this algorithm that uses atomic updates
for every constraint in the working set. The batch version
first solves the loss-augmented inference to find a constraint
Y ∗ and add it to the working set An. It then steps in the
opposite direction of the approximate subgradient computed
as an average over the set of violated constraints belonging to
An.

Algorithm 2 Working sets + inference – batch version
1: INPUTS :
2: D : Training set of N examples.
3: β : Learning rate parameter.
4: w(1) : Arbitrary initial values, e.g., 0.
5: OUTPUT : w(T+1)

6: Initialized An ← ∅ for each n = 1 . . . N
7: for t = 1 . . . T do
8: Pick some example (Xn, Y n) from D
9: Y ∗ = arg maxY ∈Yn

(Sw(Y ) + ∆(Y n, Y ))
10: An ← An ∪ {Y ∗}
11: An′ ← {Y ∈ An | l(Y, Y n,w(t)) > 0}
12: η(t) ← β

t

13: g(t) ← 1
|An′ |

∑
Y ∈An′

∂f(Y n,Y,w(t))
∂w(t)

14: w(t+1) ← w(t) − η(t)g(t)

15: end for

Hence unlike dual averaging methods [35], [58] that aggre-
gate over all previous subgradients, our algorithm only con-
siders the subset of active, namely violated, constraints when
computing the parameter updates. Therefore all subgradients
are computed with respect to the parameters at the current
iteration, as opposed to using their historical values. We will
show that this produces better results in the experiments
reported in Section VII.

We now analyze the convergence properties of the algorithm
presented in Algorithm 2. Although finding true subgradients
as defined in Eq. 22 cannot be guaranteed for loopy CRFs,
interesting results can still be obtained even if one can only
find an approximate ε-subgradient g, as defined in [47]:

∀w′ : gT (w −w′) ≥ f(w)− f(w′)− ε (25)

The convergence properties of ε-subgradient methods were
studied in [41], [47], [40]. The “regret” or loss of the parameter
vector w can be bounded by

E‖w(t+1) −w∗‖22 ≤
G2

λ2t
+
ε

λ
, (26)

where G is a constant satisfying the condition ||g||2 ≤ G2 and
λ = 1

C . The re-derivation of this proof using our notations is
given in the appendix.

Given that the choice of the step size satisfies Eq. 24, we
can see that the first term on the right side of Eq. 26 goes
to 0 so stochastic ε-subgradient methods converge to a certain
distance ε to the optimum. The key to improving convergence
is thus to obtain more accurate ε-subgradients, and we show
below how this could be achieved through the use of working
sets.

Let g1, . . . ,gm ∈ Rd be the approximate subgradients of
L with respect to example (Xn, Y n), for the labelings in the
working set An that still violates the margin constraint at a
given iteration. Assume that each gi ∈ Rd comes from some
distribution with mean µi ∈ ∂L(w) and bounded variance.

Let δi = gi − µi be the difference between approximate
ε-subgradient gi and true ε-subgradient µi, and assume that
all δi are independent of one another. Note that, by definition,
each δi has zero expectation and hence their average δ̄ =
1
m

∑
δi = 1

m

∑
gi − 1

m

∑
µi.

Therefore, using Hoeffding’s inequality [17] and the union
bound, we can show that the average error δ̄ concentrates
around its expectation, i.e., 0 in this case, as the number of
violated constraints in the working set m increases:

Pr
(∣∣∣∣δ̄∣∣∣∣ ≥ r) ≤ 2d exp

(
−mr2

2G2

)
. (27)

The convexity of the subdifferential ∂L(w) implies that
µ̄ = 1

m

∑
i µi ∈ ∂L(w). Therefore the probability of

g(t) , 1
m

∑
gi being more than a distance r away from any

true subgradient is bounded by Eq. 27 as well.

Algorithm 3 Working sets + sampling
1: INPUTS :
2: D : Training set of N examples.
3: Q : MCMC walker.
4: β : Learning rate parameter.
5: w(1) : Arbitrary initial values, e.g., 0.
6: OUTPUT : w(T+1)

7: Initialized An ← ∅ for each n = 1 . . . N
8: for t = 1 . . . T do
9: Pick some example (Xn, Y n) from D

10: Sample Y ∗ according to Q(w(t), Y n)
11: An ← A∪ {Y ∗}
12: An′ ← {Y ∈ An | l(Y, Y n,w(t)) > 0}
13: z← w(t)

14: for Y ∈ An′ do
15: g(t) ← 1

|An′ |
∂f(Y n,Y,z)
∂w(t)

16: η(t) ← β
t or η(t) ← Line search(g(t))

17: z← z− η(t)g(t) * atomic update *
18: end for
19: w(t+1) ← z
20: end for

Given that the assumption of independence between all δi
might not always hold, we experimented with an adaptation
of the batch version that replaces the standard update of
Algorithm 2 with a sequence of atomic updates that has
been shown to improve the rate of convergence [57]. We also
introduce a second modification to Algorithm 2 where, instead
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Algorithm 4 Working sets + inference
1: INPUTS :
2: D : Training set of N examples.
3: w(1) : Arbitrary initial values, e.g., 0.
4: OUTPUT : w(T+1)

5: Initialized An ← ∅ for each n = 1 . . . N
6: for t = 1 . . . T do
7: Pick some example (Xn, Y n) from D
8: Y ∗ = arg maxY ∈Yn

(Sw(Y ) + ∆(Y n, Y ))
9: An ← A∪ {Y ∗}

10: An′ ← {Y ∈ An | l(Y, Y n,w(t)) > 0}
11: z← w(t)

12: for Y ∈ An′ do
13: g(t) ← 1

|An′ |
∂f(Y n,Y,z)
∂w(t)

14: η(t) ← β
t or η(t) ← Line search(g(t))

15: z← z− η(t)g(t) * atomic update *
16: end for
17: w(t+1) ← z
18: end for

of stepping by an arbitrarily fixed distance in the subgradient
direction, we choose the step size using a line search so as
to best satisfy all currently active constraints, as explained in
Section VI. The resulting method is outlined in Algorithm 4.

In addition, the analysis presented in Section V-B suggests
that it is possible to use a sampling method instead of the
loss-augmented inference to obtain new constraints, and under
similar assumptions the average subgradient ḡ still converges
to a valid subgradient. Based on this observation, we propose
an adaptation of Algorithm 2 that uses sampling instead of
solving the loss-augmented inference. This adaptation de-
scribed in Algorithm 3 generates new constraints using an
MCMC walker denotedQ similar to the one described in [57].

VI. ADAPTIVE STEP SIZE SELECTION

We aim at providing a systematic way to pick the step size
by which to advance in the descent direction by minimizing
a regularized loss. Instead of stepping by an arbitrarily fixed
distance, we want to choose the step size η(t) that minimizes
an objective function hAn,w(t)(η) that depends also on the
current value of the parameters w(t) as well as the working
setAn that contains all the constraints for example n generated
at the previous iterations, i.e.,

η(t) ← arg min
η

hAn,w(t)(η). (28)

More specifically, we would like to choose η(t) to ensure
that none of the previous constraints in the working set An
are highly violated at time t+ 1, namely after the subgradient
update w(t+1) ← w(t)− η(t)g(t). We thus define the function
hAn,w(t)(η) as

hAn,w(t)(η) = max
Y ∈An

l(Y n, Y,w(t+1)
η ) +

λ

2

∣∣∣∣∣∣w(t+1)
η

∣∣∣∣∣∣2
= max
Y ∈An

[〈
w(t+1)
η , δψn(Y )

〉
+ ∆(Y n, Y )

]
+

+
λ

2

∣∣∣∣∣∣w(t+1)
η

∣∣∣∣∣∣2
(29)

where w
(t+1)
η and δψn(Y ) are shorthand notations:

w(t+1)
η = w(t) − ηg(t)

δψn(Y ) = ψ(Y )− ψ(Y n), (30)

recalling that vector ψ(Y ) is the feature map for labeling Y .
The intuition is that hAn,w(t)(η) is a lower bound on the

SSVM objective at w
(t+1)
η with respect to example n, i.e.,

f(Y n, Y ∗w,w) (Eq. 21), and therefore an informative heuristic
for the line search in the negative subgradient direction.

To simplify Eq. 29, we can remove the floor function [ · ]+
by adding an extra (trivial) constraint Y n to An since by
definition l(Y n, Y n, · ) ≡ 0 and δψn(Y n) = 0. Hence

hAn,w(t)(η)

= max
Y ∈An

+

〈
w(t+1)
η , δψn(Y )

〉
+ ∆(Y n, Y ) +

λ

2

∣∣∣∣∣∣w(t+1)
η

∣∣∣∣∣∣2,
(31)

where An+ = An ∪ {Y n}.
Since h is not the same quantity as the SSVM objective

function, minimizing h may occasionally produce excessively
large step sizes, which impede convergence. To avoid this, we
include a quadratic penalty on the magnitude by which w can
move in space, that is,

∣∣∣∣∣∣w(t+1)
η −w(t)

∣∣∣∣∣∣ =
∣∣∣∣g(t)

∣∣∣∣ η. This
term is also known as a prox-function (i.e., proximity control
function) which prevents overly large steps in the iterates and
is commonly used in machine learning [21], [10]. This gives
us the regularized line search objective function

hRAn,w(t)(η) = hAn,w(t)(η) + ρ(t)
∣∣∣∣∣∣g(t)

∣∣∣∣∣∣2 η2, (32)

where ρ(t) is a regularization constant. We choose ρ(t) = Ct
where C is a constant value that can be determined by cross-
validation. Finally we choose the step size η(t) that minimizes
hR, i.e.,

η(t) ← arg min
η

hRAn,w(t)(η). (33)

To compute the minimum of hR, we first observe that, by
expanding w

(t+1)
η and after rearranging terms, Eq. 32 can be

explicitly written as

hRAn,w(t)(η) =

max
Y ∈An

+

(
λ

2
+ ρ(t)

) ∣∣∣∣∣∣g(t)
∣∣∣∣∣∣2 η2 − 〈g(t), δψn(Y ) + λw(t)

〉
η

+

(
λ

2

∣∣∣∣∣∣w(t)
∣∣∣∣∣∣2 +

〈
w(t), δψn(Y )

〉
+ ∆(Y n, Y )

)
. (34)

It is easy to see that hR is the upper envelope of a set of
quadratic functions of η. In fact, since the quadratic term
does not depend on the specific constraint Y , the quadratic
upper envelope can be obtained easily by computing the cor-
responding linear upper envelope, for which there are simple
O(m logm)-time algorithms [18] where m is the number of
constraints being considered. The resulting envelope is then
shifted vertically by the quadratic term, as shown in Figure 5.

Let Y1, . . . , Ym ∈ An+ be the constraints that correspond
to segments on the upper envelope and η1, . . . , ηm−1 be their
intersections, both sorted left-to-right (visualized in Figure 5),
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η
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η

f(
η

)

(a) Set of linear functions (b) Set of quadratic functions (c) Quadratic upper envelope

Fig. 5. Graphical illustration of the optimization problem posed by Eq. 34 for three random constraints shown in different colors. The two rows illustrate
the two different cases explained in the main text: A) the minimum lies at the intersection itself, B) the minimum lies on the interior of one of the adjacent
segments. In (a) and (b), the areas below the upper envelope are shaded in yellow. The solid lines in (a) represent the linear part of hR, while those in (b)
and (c) represent the full objective. Figure (c) shows the upper envelope over the three constraints with the optimal η shown in magenta.

given by the upper envelope. Let η0 = −∞ and ηm = ∞
for notational convenience, so that [ηi−1, ηi] is the interval
bounding the i-th segment of the upper envelope. The min-
imum for each segment i can be computed in closed form
as the minimum of the parabola subject to the bounds of the
interval, i.e.,

η∗i = max

(
ηi−1,min

(
ηi,

〈
g(t), δψn(Yi) + λw(t)

〉(
λ+ 2ρ(t)

) ∣∣∣∣g(t)
∣∣∣∣2

))
.

(35)
Let h∗(η∗i ) denote its respective vertical values on the
parabola, which is equal to hRAn,w(t)(η

∗
i ) since by definition

the segment of parabola i between ηi−1 and ηi is part of the
upper envelope. Then η(t) is simply the η∗i that results in the
smallest value of h∗,

η(t) = arg min
η∗i ∈{η∗1 ,...,η∗m}

h∗(η∗i ). (36)

In practice, we need only consider the two quadratic seg-
ments on either side of the lowest intersection point, as shown
in Fig. 5. The minimum must lie on either the intersection itself
(case A) or the interior of one of the adjacent segments (case
B), due to strong convexity and monotonicity of the upper
envelope on either side of minimum. This helps to further
reduce computational cost.

As outlined in Algorithm 4, the optimal step size η(t) for
each violated constraint in An is computed using Eq. 33 – 36
and used to decide how far to move in the opposite direction
of the corresponding approximate subgradient g(t). In order

to ensure convergence, we include a hard lower bound on the
step-size in the algorithm to prevent it to converge to a point
which is not optimal. In the supplementary material we show
that the step size η(t) resulting for this procedure satisfies the
conditions of convergence stated in Eq. 24.

VII. EXPERIMENTAL RESULTS

In this section, we first introduce baselines against which we
compare our approach. We then present our results on 2D and
3D data and discuss the length of the training times involved.

A. Multiple Versions of our Approach and Baselines

We will compare three versions of our approach
• Working sets + sampling. Compute each subgradient

using the working set of constraints where instead of per-
forming inference we use MCMC to sample constraints
from a distribution targeting the loss-augmented score.
We use a simple decreasing learning rate.

• Working sets + inference. Compute each subgradient
using the working set of constraints where each constraint
is computed by performing loss-augmented inference
using graph-cuts or belief-propagation. We also use a
simple decreasing learning rate.

• Working sets + inference + autostep. This is similar
to Working sets + inference but the decreasing learning
rate is replaced by the adaptive step sizes of Section VI.

against the following six baselines
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• SVM. A linear SVM that classifies each sample indepen-
dently without using a CRF.

• SSVM. The cutting plane algorithm introduced in [55]
and discussed in Section II.

• SampleRank. The method proposed in [57] and also
discussed in Section II.

• FW-Struct. The Frank-Wolfe algorithm for the L2-Loss
SSVM [23]. We used the version without averaging
known-as BCFW.

• SGD + inference. Loss-augmented inference using
graph-cuts or belief-propagation. This is the subgradient
descent (SGD) formulation of [40]. We try different
values for the step size η(t) = β

t and use cross-validation
to determine the best β in the interval [10−5, . . . , 10−10].

• SGD + sampling. Instead of performing inference, use
MCMC to sample constraints from a distribution target-
ing the loss-augmented score. This is equivalent to the
method referred to as “SampleRank SVM” in [57].

In addition to these methods, we also experimented with aver-
aging all past subgradients [35], [58], which did not produce
competitive results for our biomedical tasks. We therefore did
not include them in our comparison charts.

The loss-augmented inference of Eq. 7 required by the struc-
tured methods was implemented using the maxflow library
of [8] and the Loopy Belief Propagation implementation of
[33].

In all cases, we used cross-validation on the training set to
determine the regularization constants. All the methods were
run for a sufficiently high number of iterations T = 1000
to ensure that they reach convergence. Because they involve
randomization, the results for Working sets + sampling and
SampleRank were averaged over 5 runs.

The task loss ∆ of Eq. 5 is the per-superpixel weighted
loss ∆(Y n, Y ) =

∑
i∈V I(yi 6= yni )r(yni ). The term r(yni )

in the loss function weighs errors for a given class inversely
proportional to the frequency at which it appears in the training
data.

B. 2D Data

We performed segmentation of photon receptor cells in 2D
retinal images. We use the publicly available UCSB retinal
dataset, 3 which consists of 50 laser scanning confocal images
of normal and 3-day detached feline retinas. The images were
annotated by three different experts and the performance is
measured by the Jaccard index commonly used for image
segmentation [12]. The Jaccard index is the ratio of the areas
of the intersection between what has been segmented and the
ground truth, and of their union. It is written as

Jaccard index =
True Positive

True Positive + False Positive + False Negative
.

The segmentation process begins by over-segmenting the
images using SLIC superpixels [1]. For each superpixel, we
extract a feature vector that captures texture information using
8× 8 co-occurrence matrices and 10-bin intensity histograms.

3http://www.bioimage.ucsb.edu/research/biosegmentation

Fig. 7. Left. A second isotropic stack of neural tissue, similar to the one
show in Fig. 1 but this time acquired from the striatum. This stack is made
of 318 872 × 1536 slices with around 6-nanometer resolution in all three
directions. Right. 3D rendering of the mitochondria found in a 450× 711×
318 subvolume.

These feature vectors are used to train each baseline method,
as well as our model. In a second set of experiments, we also
transform the features using the kernel method described in
Section IV. The original feature vectors are 74-dimensional
and are thus mapped to a higher dimensional space. Example
segmentations are shown in Fig. 6 and quantitative results are
provided in Table I.

In the first line of this table, we compare our results
against those of the six baselines using standard features.
Working sets clearly improve performance over that of the
baselines when using either Working sets + inference or
Working sets + sampling. Among the two, Working sets
+ inference yields the best results, at the cost of a higher-
computational load as discussed in Section VII-D. Finally, also
incorporating the adaptive step sizes, as in Working sets +
inference + autostep, further improves performance. In the
second line of the table, we use kernelized features instead of
standard ones and observe exactly the same trends. We also
see a performance increase due to the kernelized features by
themselves.

C. 3D Data

Here we test our approach for the purpose of mitochondria
segmentation from a 3D electron microscopy dataset. The
segmentation of mitochondria and other organelles is a critical
step for providing new insights into brain functionality, and
has received a lot of interest from the computer vision and
medical imaging communities [2], [20]. We use both the large
and publicly available hippocampus stack 4 depicted in Fig. 1
and a second stack from the striatum and depicted in Fig. 7.

We first over-segment the volume into supervoxels [1].
For each one, we extract a feature vector that captures local
shape and texture information using Ray descriptors [30],
intensity histograms and the following features computed at

4http://cvlab.epfl.ch/data/em
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SVM SSVM Sample- FW-Struct SGD + SGD + Working set Working set Autostep
[55] Rank [57] [23] sampling inference [40] + sampling + inference

Original features 81.1% 89.4% 82.6% 89.4% 83.0% 87.2% 86.0% 89.8% 90.2%
Kernelized features 83.0% 90.1% 82.9% 90.3% 83.9% 87.6% 86.4% 91.4% 91.8%

TABLE I
SEGMENTATION PERFORMANCE FOR THE PHOTON RECEPTOR DATASET MEASURED IN TERMS OF THE JACCARD INDEX. THE LAST COLUMN REFERS TO

THE METHOD Working sets + inference + autostep.

Ground truth SVM SGD + inference [40] Working set + inference

Fig. 6. Segmentation outlines obtained on one image of the photon receptor dataset using some of methods we tested overlaid in red.

Ground truth SVM SGD + inference [40] Working set + inference

Fig. 8. Outlines of mitochondria volumes obtained by different methods overlaid in red on a specific slice of the hippocampus dataset of Fig. 1. Our results
are closer to the ground truth than the others.

SVM Lucchi SSVM Sample- FW-Struct SGD + SGD + Working set Working set Autostep
[30] [55] Rank [57] [23] sampling inference [40] sampling inference

Original features 78.6% 80.0% 90.5% 82.6% 92.1% 85.4% 88.7% 87.1% 91.8% 92.9%
Kernelized features 82.3% - 92.7% 83.3% 92.7% 87.4% 89.2% 88.1% 94.4% 94.8%

Hippocampus

SVM Lucchi SSVM Sample FW-Struct SGD + SGD + Working set Working set Autostep
[30] [55] Rank [57] [23] sampling inference [40] sampling inference

Original features 81.5% 74.0% 90.0% 84.2% 88.8% 81.7% 84.8% 86.5% 90.1% 90.7%
Kernelized features 87.6% - 90.6% 89.6% 90.5% 87.9% 88.1% 90.2% 90.6% 92.1%

Striatum

TABLE II
SEGMENTATION PERFORMANCE MEASURED IN TERMS OF THE JACCARD INDEX FOR THE TWO EM DATASETS. THE LAST COLUMN REFERS TO THE

METHOD Working sets + inference + autostep.

five different scales: gradient magnitude, Laplacian of Gaus-
sian and eigenvalues of the Hessian matrix, eigenvalues of
the structure tensor. These feature vectors are used to train
each baseline method, as well as our model. In a second
set of experiments, we also transform the features using the
kernel method described in Section IV. The original feature
vectors are 140-dimensional and are thus mapped to a higher
dimensional space. We trained a non-structured kernel SVM
using the 140-dimensional standard features extracted from
N = 40000 randomly sampled supervoxels. This yields a set

of 4223 support vectors for the striatum dataset and 4568 for
the hippocampus that are then used to compute the transformed
features.

In the case of the hippocampus dataset, due to the difficulty
in obtaining labels for such large volumes, we performed our
experiments on two subvolumes containing 1024× 768× 165
voxels. The first subvolume was used to train the various
methods while the second one was used for testing. Each
subvolume contains ∼13K supervoxels. The resulting graphs
have ∼91K edges. The same kind of splitting was also done
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for the striatum dataset, which resulted in CRFs of similar
sizes.

The mitochondria we find are depicted as 3D volumes in
Figs. 1 and 7. Their outlines are overlaid in Fig. 8 on a single
slice, along with those obtained using competing methods.

Performance is again measured by comparing 3D volumes
against ground-truth ones in terms of the Jaccard index de-
scribed in Section VII-B, but using volumes instead of areas.
The corresponding results are provided in Table II. For [30],
we use is a non-linear RBF-SVM classifier. The numbers
exhibit the same trends as those discussed at the end of
Section VII-B.

For the sake of completeness, we have also tested a very
recent mitochondria segmentation method [45] that does not
rely on structured learning. Instead, it trains a cascade of
classifiers at different scales and has been shown to outperform
earlier algorithms based on Neural Networks, SVMs, and
Random Forests on EM imagery. For the hippocampus and
striatum datasets, it yields 83.8% and 83.5% Jaccard indices,
which is much lower than what we obtain. The time required
to train this method on our data (72605s) is also significantly
longer than all those in Table III, and discussed in the next
section.5

D. Training Cost

The time and memory required to train a classifier are
important considerations for any Machine Learning approach.
Concerning the memory requirements, the working set used by
our approach does not lead to a significant increase in memory
as we only need to store the feature maps, which are generally
much more compact than the full labelings of the CRF.

While the linear SSVM is fast to train thanks to the use
of kernelized features, the training of the first non-linear
SVM used to transform the features can still potentially incur
quadratic cost. Fortunately, it can be kept in check using
known techniques such as randomly sampling the data or
iteratively mining for hard examples [13]. However, these
techniques cannot be used to directly speed up the SSVM
though because they treat pixels as independent examples and
disregard the structure of the graph.

We conducted a run-time analysis of the standard subgradi-
ent method of [40] against the three versions of our algorithm
discussed in this section. Table III gives the training time for
each method for the same 1000 iterations, which is enough for
all methods to have converged. Note, however, that Fig. 10
shows that Working sets + inference + autostep requires
only about 200 iterations to converge. So, even though each
iteration is a little slower due to the overhead attributable to
maintaining the working set and doing a line-search, Working
sets + inference + autostep yields in practice better solutions
faster. Table III also shows that Working sets + sampling is
much faster than solving the loss-augmented inference to find
the most violated constraint.

5We used the publicly available Matlab implementation.

EM Photon receptor

SSVM [55] 43250s 1113s
SampleRank [57] 2524s 382s
SGD + Sampling 2481s 354s
Working sets + sampling 2619s (+5.5%) 370s (+4.5%)
SGD + inference [40] 5315s 438s
Working sets + inference 5842s (+9.9%) 492s (+12.3%)
Working sets + inference + autostep 6142s (+15.6%) 510s (+16.3%)

TABLE III
TRAINING TIME REQUIRED TO REACH CONVERGENCE (T = 100

ITERATIONS FOR SSVM AND T = 1000 ITERATIONS FOR ALL OTHER
METHODS) ON THE HIPPOCAMPUS EM DATASET. THE THREE VERSIONS
OF OUR APPROACH DISCUSSED AT THE BEGINNING OF SECTION VII ARE

LABELED IN BOLD. THE SLOWDOWN RESULTING FROM USING THE
WORKING SET AND THE ADAPTIVE STEP SIZES IS SHOWN IN

PARENTHESES.

(a) Training set, EM (b) Test set, EM

Fig. 9. Learning curves showing the training and test scores (Jaccard index)
on the Hippocampus dataset as a function of the number of iterations t. We
report results for the sampling method with and without working set in green
and blue respectively.

E. Generalization Error

The evolution of the training scores and test scores as a
function of the number of iterations is shown in Figs. 10
and 9. The parameters for the methods reported in these figures
were found using cross-validation to avoid over-fitting. We
have seen that all these methods could reach higher scores on
the training set using different sets of parameters. Working
sets + inference + autostep achieved the highest score on
the training set and had to be regularized by increasing the
value of λ (increasing ρ(t) also lead to a better generalization
error). The curves in Fig. 9 clearly show that the working set
of constraints produces much higher score on both the training
and test sets. Fig. 10 shows that Working sets + inference +
autostep significantly outperforms SGD on the training set as
well as the test set. As shown in Table IV, it also outperforms
SSVM on the training set.

Hippocampus Striatum Photon receptor

SSVM 90.9% 86.3% 86.3%
Autostep 93.8% 90.6% 89.2%

TABLE IV
TRAINING SCORES ACHIEVED BY SSVM AND Working sets + inference +

autostep USING THE ORIGINAL FEATURES ON ALL THREE DATASETS.
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(a) Training set, EM (b) Test set, EM

Fig. 10. Learning curves showing the training and test scores, expressed in
terms of the Jaccard index, on the Striatum dataset as a function of the number
of iterations t. We report results for Working sets + inference + autostep
and SGD + inference in red and yellow respectively.

F. Further Observations

1) Approximate subgradients: Our approach, and most of
the existing methods presented in the related work section, all
optimize the same objective function, given in Eq. 3, and rely
on the computation of the most violated constraints. When
these constraints cannot be obtained exactly, as is usually the
case in image segmentation, the subgradient estimates are then
necessarily only approximate. Certain methods, such as [55],
require these quantities to be exact, while others, such as
[40], [14] and [23], may work with approximate subgradients
to obtain convergence up to a certain accuracy. The experi-
mental results suggest that using a history of constraints as
well as appropriate step sizes make learning more robust to
approximation errors. An in-depth theoretical analysis of the
accuracy of the subgradients will undoubtedly provide further
insight into the behavior of this class of methods; though this
is beyond the focus of this work, which is motivated by the
need to improve performance in known applications.

2) Parameter selection for Kernelized features: While in
certain cases kernel methods show improved performance
compared with linear methods, they also introduce tuning
parameters such as the number of support vectors. The kernel
method presented in Section IV is not exempt from this
difficulty. The selection of the number of support vectors for
this method was done by cross-validation over the regulariza-
tion constant λ and by empirically selecting an appropriate
number of training samples. The memory complexity of the
linear SSVM is affected by the dimension of the kernelized
features and is therefore another limiting factor that must be
considered. We found empirically that the number of support
vectors scale almost linearly with the number of training
samples when fixing the regularization constant λ. In our case,
we found a training set of 40,000 samples to be a good trade-
off between performance and training complexity.

3) Our Approach vs SSVM: Although SSVM takes fewer
iterations to converge, we found the cost per iteration to
be much higher than SGD-based methods, which is mostly
due to the higher cost of the loss-augmented inference. We
hypothesize that the region of the space visited by SSVM
is highly non-submodular. One alternative to address this
problem proposed in [50] is to perform the optimization over

a much smaller set of parameters for which exact optimization
can be performed with graph-cuts.

4) Working sets + inference vs Working sets + inference
+ autostep: As stated earlier, all methods converged after at
most 1000 iterations. The improvement due to the automatic
step size selection reported in the experimental section is thus
not due to a faster rate of convergence. Rather, we believe it
to be attributable to the difficulty of manually setting the right
step size at each iteration. We found empirically that different
step size selections can occasionally yield improvements on
specific datasets but we did not find a specific one that would
perform well for all datasets. We thus opted for the standard
decreasing scheme η(t) = β

t that gave the best results overall.

VIII. CONCLUSION

Understanding neural connectivity, function, and structure
of the brain requires detailed 3D models. Although new
imaging techniques such as FIB-SEM allow neuroscientists
to visualize the brain in great detail, these crucial models
are mostly still traced by hand. To eliminate this barrier to
progress, new automatic segmentation techniques for identify-
ing structures of interest in these rich datasets are required.

To address this need, we have presented a new segmentation
framework that nearly achieves a human level of performance,
raising the bar over previous methods, including our own
earlier work. To this end, we introduced three key innovations,
including a technique to leverage the power of non-linear
kernels in a structured prediction framework as well as a
working set based approximate subgradient method with line-
search to learn graphical models when inference is challeng-
ing. Our method is particularly appealing for learning large
CRFs with loops, which are common in computer vision
tasks, since under these circumstances the use of working sets
of constraints makes the subgradient method more robust to
approximation errors and produce higher-quality solutions.

The benefits of our approach were clearly demonstrated on
2D confocal optical images and 3D EM image stacks, but it
is important to note that our method is general and can be
applied to imagery from any type of microscopy.
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