Engineering Structures 84 (2015) 29-41

journal homepage: www.elsevier.com/locate/engstruct

Contents lists available at ScienceDirect | ENGINEERING
= 1 STRUCTURES

Engineering Structures

Determination of minimum CFRP pre-stress levels for fatigue crack
prevention in retrofitted metallic beams

@ CrossMark

E. Ghafoori #%*, M. Motavalli %, A. Nussbaumer ®, A. Herwig?, G.S. Prinz ¢, M. Fontana ¢

2 Empa, Swiss Federal Laboratories for Materials Science and Technology, Structural Engineering Research Laboratory, Diibendorf, Switzerland
b EPFL, Swiss Federal Institute of Technology Lausanne, Steel Structure Laboratory (ICOM), Lausanne, Switzerland

€ Department of Civil Engineering, University of Arkansas, Fayetteville, AR, USA

dETHZ, Swiss Federal Institute of Technology Ziirich, Institute of Structural Engineering (IBK), Ziirich, Switzerland

ARTICLE INFO

ABSTRACT

Article history:

Received 3 April 2014
Revised 27 September 2014
Accepted 11 November 2014

Keywords:

Fatigue damage prevention

Mean stress influence

Constant life diagram (CLD)

Fatigue crack

Metallic beams

Pre-stressed carbon fiber reinforced
polymer (CFRP)

Strengthening

Steel

The majority of fatigue strengthening studies focus on reducing propagation rates of existing cracks,
ignoring the crack initiation stage. Many existing metallic bridge members however do not contain exist-
ing cracks, but rather are nearing their design fatigue life. Limited research exists on the prevention of
crack initiation using carbon fiber reinforced polymer (CFRP) materials. In this paper, constant life dia-
grams (CLDs) are used to determine the minimum level of CFRP pre-stress required to indefinitely extend
the fatigue life of existing metallic beams. It is shown that by applying a compressive force to an existing
fatigue-susceptible detail using pre-stressed CFRP plates, the mean stress level can be reduced such that
the detail is shifted from the ‘finite life’ regime to the ‘infinite life’ regime. The proposed fatigue strength-
ening approach is advantageous particularly when the stress history from the prior traffic loadings is not
known. To validate the proposed method, a pre-stressed un-bonded CFRP reinforcement system is intro-
duced and tested on four metallic beams. The proposed un-bonded CFRP system is advantageous over
traditional bonded CFRP systems as it can be applied to rough or obstructed surfaces (surfaces containing
rivet heads or corrosion pitting for example). Additionally, the new un-bonded CFRP system offers a fast
on-site installation (no glue and surface preparation are required) and an adaptive pre-stress level. Exper-
imental results show that strengthening using pre-stressed CFRP plates are capable of shifting the work-
ing stresses from a finite fatigue-life zone to an infinite fatigue-life zone preventing crack initiation.
Although according to many structural standards, the stress range is the main parameter that affects
the fatigue life of a metallic detail, the results of this study clearly show that the mean stress level also
plays a significant rule in the detail fatigue life. Based on the proposed CLD approach in this paper, the
combined effects of the stress range and mean stress level can be taken into account for prediction of
fatigue life of metallic members.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

the contribution of ¢; is much higher than t, (often reaching 80% of
tio¢ OF MOre).

When a structural element experiences repeated cyclic loads,
accumulated fatigue damage can ultimately lead to cracks which
progress until complete fracture. The loading time prior to this
complete fracture is considered the elements ‘life time’, t;,, and
is considered as the sum of three distinct time intervals: the time
for crack initiation, t; the time for stable crack propagation, ¢,
and the time for fast crack propagation, t;. The latter, t4, is very
short and is often neglected, thus t; = t; + tp. For structural metals,
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It is important to distinguish between the crack initiation and
crack propagation periods, because the parameters that influence
the duration of each period are different. Surface conditions, for
example, have an important influence on the duration of the initi-
ation time period, but have insignificant effect on the crack growth
period. In the crack initiation period, cyclic slip due to cyclic load-
ings results in crack nucleations followed by some microcrack
growth and coalescence. The sizes of the microcracks in the begin-
ning of the initiation period are on the order of a single grain and
are not visible with the naked eye. Note that the process of crack
initiation begins only when the applied cyclic stress is above the
material fatigue limit, which depends on the stress range and the
mean stress level. Microcrack growth typically turns into one
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Nomenclature

CLD constant life diagram

CFRP carbon fiber reinforced polymer

R stress ratio

Sa alternating strength

Sm midrange strength

S, fatigue endurance limit of rotary-beam test specimen

Se fatigue endurance limit in geometry and condition of
use

N total no. of cycles to failure

Nps, Ngs ~ applied no. of cycles ‘before’ and ‘after’ strengthening

n, number of rivets in a line

n factor of safety

D overall accumulated damage

Ao 956 area of stressed at 95%

T, temperature in degree Celsius

ke stress-concentration factor (SCF)

ke fatigue SCF

q notch sensitivity parameter

Vva Neuber constant

r radius of the notch

a° nominal stress

(e stress far from hole

a" maximum stress at hole location

NDT non-destructive testing

kpearing  SCF due to bearing effect of rivet shank
Knote SCF due to a center hole in a plate

h, A, I, height, area and inertia of metallic beam section

e eccentricity between CFRP plate and beam neutral plane
F load applied by each hydraulic actuator

Fpre CFRP pre-stress force to prevent crack initiation

R, surface roughness

primary visible macrocrack, which is the beginning of the stable
crack growth period. The crack initiation period is assumed to be
completed when the propagation of the microcracks do not any-
more depend on the material surface conditions [1]. This paper
focuses on the crack initiation period (t;) and presents a method
that is capable of lengthening this time period.

Fatigue retrofits made from carbon fiber reinforced polymer
(CFRP) materials offer a promising solution for extending the total
life time, t;, of the structural metallic members. Many old metallic
bridges still in operation are subjected to ever-increasing traffic
loads which affect the remaining fatigue life by reducing the crack
initiation period, t; [2]. Rather than replacing the entire bridge or
member, municipalities often seek for retrofit solutions that can
extend member fatigue life. CFRP materials have been used for
many retrofit solutions in past decades due to their high
strength-to-weight ratio, high corrosion resistance and excellent
fatigue performance. By adding a pre-stress to the CFRP material,
a larger portion of the material strength is used, resulting in higher
yielding and ultimate load capacity in strengthened elements (e.g.,
[3,4]). Existing literature related to fatigue strengthening of metal-
lic members have shown the superior performance of CFRP-
strengthened members (e.g., [5-13]); however, the majority of
these studies use an artificial initial crack, thereby neglecting the
time required for completing the crack initiation period, t;. With
the inclusion of an artificial crack, the CFRP material only acts to
lengthen the time for stable crack propagation, t, by reducing
the stress intensity factor at the crack tip. In this paper, a method
based on the constant life diagram (CLD) is proposed for predicting
the minimum pre-stress level required to prevent fatigue crack ini-
tiation (i.e., t; = infinity) in metallic members. The validity of the
proposed model is examined using laboratory fatigue experiments.

Flexural stiffening methods for structural members, using pre-
stressed strings or cables, have been commonly used in construc-
tion for many structure types. For example, [14,15] present
research on the flexural behavior of steel beams strengthened by
pre-stressed steel tendons/cables. In this paper, a pre-stressed
un-bonded reinforcement (PUR) system, with friction-based
clamps, is introduced and tested. The main advantage of the pro-
posed PUR system compared to the traditional method (using steel
cables) is that it uses the CFRP laminates instead of steel tendons/
cables. CFRP laminates are much lighter than steel cables, which
makes the process of on-site application easier. Furthermore, CFRP
laminates have excellent fatigue and corrosion resistance and offer
a wide range of Young’s modulus ranging from less than 160 GPa to
more than 500 GPa, with ultimate strength up to around 4000 MPa.

Although the majority of CFRP-strengthened steel members
have used glue to bond the laminates to the steel (e.g., [9,16-18]),
it has been shown that the environmental conditions such as
elevated or subzero temperatures, ultraviolet light, moisture and
water as well as dynamic loadings such as impacts, earthquakes
and fatigue can significantly affect the performance of the
CFRP-to-steel bonded joints [19]. Since the proposed PUR system
in this paper is un-bonded, it is applicable to rough or obstructed
metallic surfaces (e.g., riveted beams) and offers a fast on-site
installation (no glue and no surface preparation are required).
Due to un-bonded nature of the system, the level of pre-stress
in the CFRP plates can be still adjusted after strengthening.
Furthermore, the system can be also removed from the metallic
member, if necessary, without any damage to the original
structure. The presented trapezoidal PUR system in this paper
has been used for fatigue strengthening of metallic girders of a
120-years-old railway riveted bridge in Switzerland [20].

2. Background theory

In general, two methods are used to assess the fatigue life of
structures, the stress-life and strain-life methods. With each of
these methods, the number of cycles to failure (N) is estimated;
however the applicability of each method varies based on high
cycle fatigue life or low cycle fatigue regimes. Fatigue life with
N < 103 cycles is normally considered as ‘low cycle’ fatigue while
‘high-cycle’ fatigue occurs when N>10% [21]. The stress-life
method represents high-cycle applications adequately, is easily
applied in design, and extensive data on various materials are
available. The strain-life method is based on the true stress—strain
behavior during localized yielding and is mainly applicable for
low-cycle fatigue applications. Because the main concern in civil-
type infrastructure is high-cycle fatigue (many applied service load
cycles), the stress-life method is chosen for the design approach of
the post-tensioning in this paper.

2.1. Fatigue failure criteria

It can be assumed that fluctuating stresses often take the form
of a sinusoidal pattern. Maximum stress, 0,q, Minimum stress,
O min, Stress amplitude, g, and stress midrange, o,,,, of sample stress
histories are shown in Fig. 1, where ¢, and o, are given by:

_ ’Gmax — Omin

2

, (1)
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Fig. 1. Fluctuating stresses with various stress ratios.

and

O-max + O mi
O = 5 min (2)

In addition, the stress ratio, R, is defined as:

R— O min (3)

Omax

Fig. 1 shows several fluctuating stresses with the same stress
amplitude, g, but different stress midranges, o,,. As the stress
midrange decreases, the fluctuating stress shifts from a full tension
zone, to a tension—-compression zone, and finally a full compression
zone, thereby creating different R ratios. Fig. 2 shows the stress
amplitude, g, versus the corresponding mean stress, g, in the
constant life diagram, CLD. In Fig. 2, S,, Sy and S, are yield stress,
ultimate tensile stress and the fatigue endurance limit, respec-
tively. Note that the term fatigue endurance limit is equivalent to
constant amplitude fatigue limit (CAFL) in civil engineering con-
text. The fatigue endurance limit is typically determined as result
of rotating-beam tests; however, the calculated fatigue endurance
amplitude, S,, is valid only for the stress ratio of R = -1 (i.e., 6, = 0,
see Fig. 1). For the case of non-zero mean stress, the endurance
amplitude is different and has to be calculated. Several models
have been suggested to estimate the endurance amplitude for
non-zero mean stress levels, as shown in Fig. 2. Goodman proposed
a straight line through o, =S, and o, = S;, which is quite conserva-
tive for ductile metals but non-conservative for brittle metals. The
criterion equation for the Goodman line is [21]:

Sa | Sm

s, ts, =1 (4)
where S, and S, are the alternating and midrange strength for any
limiting point along the Goodman line. Gerber suggested a parabola
for ductile metals passing through ¢,=S. and o, =S, and is
written by [22]:
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Sa <Sm>
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Fig. 2. Different CLDs to estimate the endurance limit of various metals as a
function of the mean stress.

Smith represented a fatigue failure criterion that follows a con-
cave upward curve in the first quadrant, as shown in Fig. 2. For the
second quadrant, a straight line between (0, S¢) and (—Sy, Sy) is
used. The Smith criterion is valid for most brittle metals [22] and
is given by Eqgs. (6.a) and (6.b).

Se 1 Su/Su

S—e*m7 0 < Sm < Sus, (6.a)
Se

So =S¢ + S——l Smy —Su <Sn <0. (6.b)
ut

In Fig. 2, yield strength is plotted with two dashed straight lines
and shows the first-cycle yielding criterion with the following
relations for the first and second quadrants, respectively:

Sa+Sm=S5, 0<S,<S), (7.a)

Sa—Sn=S5,, S, <Sm<O. (7.b)

2.2. Modified endurance limit

Results of lengthy fatigue tests [21] have shown that the fatigue
endurance limit can be estimated by Eqgs. (8.a) and (8.b).

- {0'55““ Su < 1400 MPa for steel and wrought iron
¢~ {700 MPa, S, > 1400 MPa & :
(8.a)
 (04S.., S <400MPa .
- for cast iron. 8b
e {160 MPa, S, >400Mpa O castiron (8.6)

The prime sign on S, in Eqgs. (8.a) and (8.b) refer to rotating-beam
specimens (i.e.,, R=—1) which were prepared very carefully and
tested in laboratory conditions. The results of these tests cannot
be readily used for details in civil engineering. Structural details
often have geometrical imperfections and different surface prepara-
tions. Marin [23] has performed many different experiments to find
out the influence of size, surface condition, loading and temperature
on the fatigue endurance limit obtained from rotating beams. Marin
could develop different parameters to quantify the influence of size,
surface condition, loading and temperature through statistical anal-
ysis as:

Se = kukbkckdkeS;, (9)

where kg, ky, ke, kg and k. are modification factors for surface condi-
tion, size, load, temperature and reliability. S, is the endurance limit
at the critical location of the member in condition and geometry of
use, while S, is the rotary-beam test specimen endurance limit. The
procedure to calculate the modification factors for the Marin equa-
tion of different beam types is described in Appendix A. Note that
the results of rotating-beam specimens provide the endurance lim-
its that are valid for R = —1, however using the CLD diagrams it is
possible to estimate the endurance limits for any mean stress level.
Although the modified Goodman criterion is relatively accurate, but
it requires much knowledge (and computations) in order to calcu-
late different coefficients in Marin’s equation. The authors have sug-
gested (see [20]) to use the Goodman formula when sufficient
knowledge about the existing metallic girder exits, however when
such information is lacking, the modified Johnson CLD criterion is
recommended. Based on Johnson criterion, the endurance limit is
estimated to be one third of the tensile strength (S, =S,,/3), and
therefore there is no need to calculate the Marin’s coefficients. More
details about the Johnson criterion can be found in [20].
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2.3. Stress concentration and notch sensitivity factors

Notches, holes, or defects within members can drastically affect
the stress ranges applied to the structure during fatigue loading.
Stress concentration factors are often used to account for such
defects, holes, or notches. A stress-concentration factor, k;, is
defined as the ratio of the actual maximum stress ¢" at the edge
of hole to the nominal stress ¢° along the section of the hole.
Fig. 3 shows the stress-concentration factor (SCF) of a thin plate
with a center hole loaded in tension, where ¢* is the stress far
from hole. The SCF depends only on the geometry of the sample
and not the material properties. Nevertheless, it has been found
that some materials are not sensitive to presence of a notch [21]
and a reduced value of k, may be used. The maximum stress at
the location of a hole, ", is written by:

h _ o W
o" =kio W (10)
where k (which is a reduced value of k;) is often called the fatigue
SCF, w is the width of plate, d is the diameter of hole and ¢ is the
stress level far from hole. Unlike k;, kr depends on both geometry
and material properties of the part and is defined by Eq. (11).

ke =1+q(k. - 1). (11)

In Eq. (11), q is the notch sensitivity parameter and is normally
between zero and unity. Notch-sensitivity is defined as [24]:

1

=— 12
=17 7 (12)
where r is the radius of the notch and +/a is the Neuber constant,
which depends on the material properties. The Neuber constant
for steels are given in Table 1. Cast irons have very low notch sen-
sitivity, values ranging from 0 to 0.2 depending on their tensile
strength. For design purpose, it is recommended to use the conser-
vative value of q = 0.2 for all grades of cast irons [21]. A notch sen-
sitivity of g = 1 can also be used for wrought irons, which are more
sensitive to notches. A more conservative and simple approach to
find the fatigue SCF is to simply use k¢= k.

3. Fatigue in metallic riveted bridges

3.1. Fatigue performance of structural cast iron, wrought iron and mild
steel

Cast iron contains 2.4-4% weight of carbon and is strong in
compression but weak and brittle in tension. In contrast, wrought
iron is a ductile material due to low quantity of carbon (0.1-0.25%).
It has a laminar non-homogenous microstructure with identical
characteristics in compression and tension. Currently, mild (or
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Fig. 3. SCF (kl = g—g) in a plate with a center hole in tension [17]. The nominal stress
is0p =04 ﬁ

Table 1
The Neuber constant for steels and wrought irons [20].
Notch type v/a(mm), Sy in MPa
Transverse hole 174/Su.
Shoulder 139/Sye
Groove 104/Sy;

low carbon) steel is the most common structural steel with
0.05-0.3% carbon that results in a ductile behavior. Fatigue proper-
ties are dependent on material ductility. This difference can be
seen clearly in the fatigue diagrams that were suggested in
Section 2 (i.e., the Smith line for brittle and Gerber line for ductile
materials). The fatigue failure criterion for brittle material (cast
iron for example) is different significantly from ductile materials
(such as wrought iron and mild steel) since in brittle materials:
(1) yielding is not involved, (2) the ultimate compressive strength
is larger than ultimate tensile strength and (3) they are more sen-
sitive to mean stress level (see the Smith line in Fig. 2). For more
ductile materials: (1) yielding shall be considered in design and
(2) nearly identical compressive and tensile behavior is achieved.
Note that based on the results of previous studies (e.g., [25-27]),
wrought iron and mild steel have similar fatigue strength behavior.
However, one problem related to fatigue strengthening of a
wrought iron member is its interlaminar fatigue strength that is
decreased substantially by delamination. Externally bonding CFRP
to a wrought iron beam may be difficult due to this corrosion pro-
cess and is not recommended until more research in this area has
been performed [28].

3.2. Fatigue performance of riveted connections

The well known SCF for a plate with a center hole is shown
in Fig. 3. When the ratio of the hole diameter to the plate
width (d/w) approaches 0, the SCF tends to 3 (kpoe =3), and for
larger d/w ratios, the SCF decreases. Riveted metallic bridge
girders typically contain connections with many pre-tensioned
rivets (or bolts) [2]; therefore, the SCF depends on the number of
rivets in a line as well as the magnitude of pre-tensioning in the
rivets. In this section, the fatigue strength of connections with
and without pre-tensioned rivets is studied.

3.2.1. Connection with pre-tensioned rivet

In a connection with pre-tensioned rivets (or bolts), force is
transmitted through frictional shear of the rivet-head contact sur-
face, and by bearing of the rivet shank on the wall of rivet hole.
When the rivet pre-tension level is high, friction between contact
surfaces dominates, and for low (or no) pre-tension shank
bearing dominates. The fatigue strength of a connection with one
pre-tensioned rivet is much higher than the fatigue strength of a
plate with one free center hole [29].

3.2.2. Connection with non-pre-tensioned rivets

As already mentioned, connections having one non-pre-ten-
sioned rivet transfer a majority of the load through bearing of
the rivet shank. The SCF of this joint type is equal to or larger than
5 (e.g., kpearing=5) [30]. If the same joint has multiple rivets in a
line, n, > 1, the effective SCF (key) is reduced [31] (see Eq. (13)):

kg = e T, (13)

This SCF reduction is due to flow of stresses that tend to distrib-
ute the force in plates among different rivets. As the number of
rivets in a row increases, the fatigue strength of the riveted joint
with and without pre-tension both approach to the fatigue
strength of a plate with a center hole:
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ke = lim (k"en% + %Mw) = Knole- (14)

From this simplified model, it is concluded that for connections
with non-pre-tensioned rivets, fatigue resistance increases with an
increase in the number of rivet holes. In order to confirm this con-
clusion, several joints with various number of rivets along a row
subjected to fatigue loading, as shown in Fig. 4, has been tested
[31]. From Fig. 4, for more than four rivets in a line, the fatigue
strength of joints with and without pre-tension is equal to that
of a plate with a center hole.

Since riveted metallic bridge girders usually consist of connec-
tions with many rivets (more than 4) in a line, the design or verifi-
cation of the girders in this study can be reasonably performed with
the free hole assumption independent of any rivet pre-tension level.

4. Minimum pre-stressing level to prevent fatigue crack

The main idea in this type of strengthening is to apply a com-
pressive force to an existing metallic detail such that the mean
stress level is reduced and the life of the detail is increased to infin-
ity. However, the required compressive force can be provided by
means of traditional or advanced pre-stressing techniques. As an
example for traditional pre-stressing techniques, galvanized
greased high-density polyethylene (HDPE) sheathed strands can
be used. As an advanced strengthening material, CFRP plates were
used in this study for strengthening of steel beams, because they
are light and have excellent fatigue and corrosion resistance. The
strengthening elements shall be chosen to be as light as possible
to have little effect on the structure dead weight. Note that any
increase in the dead weight of the structure results in an increased
mean stress level that is counterproductive to the strengthening
method goal (i.e., reducing the mean stress level).

In this section, a method to approximate the minimum CFRP
pre-stress level required to prevent fatigue crack initiation in an
existing metallic member is suggested for brittle and ductile metal-
lic girders. Note that the method used in this paper is only to pre-
vent fatigue crack initiation. In the case when a crack has been
already detected in the metallic member prior to strengthening,
the model that has been suggested by Ghafoori et al. [7,8] can be
used. The model is based on fracture mechanics and can determine
the CFRP pre-stress level required to arrest the fatigue crack growth
of an existing crack. Using non-destructive testing (NDT) examina-
tions it is possible to assess the state of damage in the structural ele-
ments. Therefore, bridge authorities can use the results of the NDT
inspections to choose the right strengthening scheme.

4.1. Brittle metals

The Smith criterion described in Section 2 is recommended for
design with brittle materials such as structural cast iron. Fig. 5

Riveted joint
with pre-tension

Plate with holes

Riveted joint
without pre-tension

Fatigue strength

o 1 2 3 4 5 6 7 8 9 10 11 12
Number of rivets in a line

Fig. 4. Scheme of the fatigue strength of joints with multiple rivets along a line
(based on the experimental results in [27]).
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Fig. 5. Reducing the mean stress level from ¢ to ¢} using pre-stressed CFRP plates
such that the fatigue life prediction of the metallic detail is displaced form the finite
to the infinite life region according to the Smith CLD criterion for brittle metals.

shows the Smith fatigue failure diagram. n is the design safety fac-
tor. If the fatigue stresses remain outside of the Smith curve, the
member has finite fatigue life, while any stress level inside this
region has an infinite life.

Using pre-stressed CFRP plates, it may be possible to shift the
stresses from the finite life zone to the infinite life zone. Point A
in Fig. 5 refers to stress components in critical location of metallic
member before strengthening and point B refers to the same loca-
tion after strengthening. Because the stiffness of normal modulus
CFRP is similar to that of steel, and CFRP plates are often thin in
dimension, increase in beam stiffness due to CFRP strengthening
is often negligible, along with the effect on beam stress amplitude.
This is not the case for mean stress, which can be shifted by
increasing the CFRP pre-stress. It is noted that if the pre-stress level
is not sufficiently high to shift the stresses entirely into the safe
region (somewhere along the line connecting points A and B, see
Fig. 5), the pre-stress still increases the life of the member to some
extent; however, in this paper, the conservative aim is to reach an
infinite fatigue life after strengthening. From Eq. (6.a), the Smith
line in the first quadrant, becomes:
no, 1—non/Su

S, itnonsa =0 (1)

Note that g, and o, in Eq. (15), associated with the critical location
of the part (e.g., at the hole location), are equal to ¢" and ¥, respec-
tively, and shall be calculated using Eq. (10). Hereafter, to keep the
notations simple, o, and &, are used in place of ¢" and ¥

Consider a typical riveted girder, as shown in Fig. 6. Suppose the
beam is subjected to cyclic loads resulting to fluctuating stresses of
04 and o, at the rivet holes at the beam mid-span. The coordinate
of stress components, shown with marker A in Fig. 5, is outside of
fatigue safe zone specified by the Smith criterion. The magnitude of
the required compressive stress in the beam bottom flange in order
to shift the stresses into the safe zone is written by:

AGy = Ope — O e, (16)

where g;; is given by rewriting Eq. (15) in terms of mean stress
level as:

ok SE - no_z

m stuu (17)

Substituting Eq. (17) into Eq. (16) gives:

Se — nog

AOp =0 —————
m ™ 1S, + n20,

Suts (18)

where Ag;, is the minimum required compressive stress in the
metal. As mentioned earlier, if the medium modulus CFRP plates
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Fig. 6. A typical metallic riveted girder strengthened with pre-stressed un-bonded CFRP plates.

are used, the increase in stiffness of metallic member is negligible.
Thus, to be more conservative, it is assumed that the stress in
CFRP plate increases negligibly when the strengthened element is
subjected to live loads. The minimum pre-stress force (Fp) in CFRP
plate can be estimated by a simple cross-section analysis as:

_ erreh Fpre
Adm =1 =+ =

where h, A, and I, are the height, the cross-sectional area and the
moment of inertia of the metallic beam; e is the eccentricity
between CFRP plate and beam neutral axis, as shown in Fig. 6. In
Fig. 6, e, is the eccentricity between the CFRP plate and the bottom
flange of the metallic beam. Rearranging Eq. (19) gives the mini-
mum required pre-stress force in terms of stress range:

+

(19)

Ao
Fore = "’L. (20)
21171 Am
Substituting Eq. (18) into Eq. (20) gives:
Om + ngji;;gi» Sut
pre = £+L ) (21)
2Im Am

where Fp is the required pre-stress force in CFRP plate to have infi-
nite fatigue life at the bottom flange of the metallic girder.

To determine the damage due to the variable amplitude (VA)
fatigue loading, the Palmgren-Miner linear damage accumulation
rule is used:

D:Z%:],

where N; and n; are the number of cycles to failure and the applied
number of cycles both at stress level a;, respectively. D is the overall
accumulated damage. The number of cycles to failure can be calcu-
lated with different methods (e.g., bilinear S-N curves with cut-off
limit or the method in [21]). Note that in contrast to the Palmgren-
Miner rule, there are several other damage accumulations theories
(e.g., Manson’s approach [32]) in which the order of application of
the cyclic stresses are important. However, all these methods
require more computational efforts, and at the end, they do not
always improve the results of failure prediction [21]. In this regard,
Collins says: “In spite of all the problems cited, the Palmgren linear
damage rule is frequently used because of its simplicity and the
experimental fact that other more complex damage theories do
not always yield a significant improvement in failure prediction
reliability” [33].

According to the Palmgren-Miner rule in Eq. (22), when accu-
mulated damage is lower than unity, fatigue failure does not occur.
Thus, the overall accumulated damage before and after strengthen-
ing shall remain lower than unity as:

n; nbs nas nbs
D:ZM:ZWJrZN?S—‘_:ZWd,
1

(22)

(23)

where superscripts ‘bs’ and ‘as’ refer to ‘before strengthening’ and
‘after strengthening’, respectively. Since the strengthening is per-
formed prior to completion of crack initiation phase (i.e., no visible
macrocracks), and the applied level of pre-stress is sufficient to shift
the stresses into the infinite fatigue life range, knowledge of prior
traffic loading on the bridge is irrelevant. If the CFRP pre-stress level
is not high enough to shift the stress components into the infinite
fatigue life region (i.e., stresses remain somewhere along the line
connecting points A and B, see Fig. 5), a finite fatigue life is expected
(i.e., Ngs # o) and the overall accumulated damage including the
damages induced before and after strengthening (Ng # co =
ngs/Ngs # 0) need to be checked. This requires knowledge of the load
histories before and after strengthening.

4.2. Ductile metals

The Goodman line described in Section 2 was suggested for
design of more ductile metals such as wrought iron and mild steel.
Fig. 7 shows the modified Goodman guards against yielding. In
order to estimate the required CFRP pre-stress to avoid fatigue
crack in ductile members, the same procedure as was implemented
for brittle metals in the last sub-section shall be used. The modified
Goodman line in the first quadrant (before yielding) is written by:

Oa
Se

om 1

—=—. 24

S, n (24)
The minimum required compressive stress in the critical loca-
tion of metallic member is found in a similar way as Eq. (18) by:

Sut

O g
S

Se
Thus, the minimum pre-stress force (Fo) in CFRP plate is
estimated as:

AGp = G + (25)
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Fig. 7. Shifting stresses from the finite life regime to the infinite life regime using
pre-stressed CFRP plates based on the modified Goodman criterion for ductile
metals.
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5. Experiments

5.1. Test set-up

In order to examine the accuracy of the presented method, a
total of four steel beams were subjected to cyclic loads. All beams
were tested using a symmetric four-point bending set-up shown in
Fig. 8a. As shown in Fig. 8a, the loading span is 1700 mm while the
support span is 5000 mm. A hydraulic testing machine (Pulsator
P960), with 100 kN actuator capacity and a force control system,
was used to perform the cyclic loads. The loading frequency was
chosen at 4.2 Hz for all specimens. Two small holes each with a
diameter of 23 mm were drilled on bottom flange at mid-span
(see Fig. 8b and c) to create stress concentrations to initiate fatigue
cracks while additionally simulating the effect of rivet holes in riv-
eted bridges.

Special attention was paid during drilling of the holes and qual-
ity control was ensured using NDT methods to verify the surface
condition of the holes between specimens. The drilling procedure
to create the holes was kept identical for all beam specimens. A
surface roughness tester machine (Surftest-211 Mitutoyo) was
used to measure the roughness of surface of the drilled
holes. The surface of holes were polished up to a roughness
R, =0.95-0.98 um. Before beginning the tests, in order to ensure
there is no defect or damage at the surface of holes, the Eddy Cur-
rent testing system (Elotest B1) was used to inspect the samples.
Eddy Current system works based on electromagnetic induction

of circular coils and is often used to find flaws down to 0.5 mm
in conductive metals.

5.2. Pre-stressing technique

The beams were strengthened using the trapezoidal PUR sys-
tem, shown in Fig. 8a. The PUR system was developed at Empa
and also patent [34]. Mechanical clamps hold three CFRP plates
of 50 mm width and 1.2 mm thickness. The clamps work with

Actuator force

friction eliminating the need to create holes in the specimen flange.
The CFRP plates are gripped inside the mechanical clamps and are
initially straight with no tension. As the eccentricity, e, between
CFRP plates and steel beam increases (using a jack), the CFRP
pre-stress level increases too (see Fig. 8a). Once the desired pre-
stress level is achieved in the CFRP plates, the jack is replaced by
a column. Note that during strengthening there is no external load
on the beam (F=0KkN). When the CFRP pre-stress increases, the
compressive stress in steel bottom flange also increases. Details
about the different elements of the PUR system including the
mechanical clamps, the jacks and the columns are illustrated in
[20,35]. This paper focuses on development of a method to
quantify the required CFRP pre-stressing that can prevent fatigue
cracking. Detailed FE modeling of the mechanical clamp and its
contact with the I-beam can be found in [35].

The advantages of using the proposed PUR system are: (1) there
is no need to glue CFRP to the member, (2) fast installation with no
surface preparation, (3) easy applied pre-stress, (4) no traffic inter-
ruptions for bond curing, (5) no required damage to existing mem-
ber (holes, gluing, grinding, etc.) using the friction clamps, (6) if the
pre-stress level is reduced (due to relaxation or creep effects), it
can be increased again, (7) the system can be uninstalled easily
(if necessary) without any residual effect on the existing member.

A possible disadvantage of the trapezoidal PUR system is that it
needs some space below the bridge (about 20-30 cm). This reduces
the headroom below the bridge that is need for the under bridge
traffic. However, the PUR systems could have different configura-
tions such as flat, triangle and trapezoidal. The decision about
the type of PUR configuration depends on the ease of on-site appli-
cation and efficiency of the system. In the flat PUR system, there is
no need for columns, however a hydraulic actuator is required to
pre-stress the CFRP plates. The hydraulic actuator pulls one end
of the CFRP plates, while the other end is fixed to the bottom chord
of the beam. Once the desired pre-stress force in CFRP plates is

reached, the moving end of the CFRP plates is fixed to the beam
chord.
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Fig. 8. (a) Scheme of the fatigue test set-up and the trapezoidal PUR system, (b) the beam cross-section, (c) the holes at the beam bottom flange and (d) the FE model of part of

the flange including the hole.
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Fig. 9. (a) Steel samples cut from flange of one beam, (b) tensile test according to DIN 50125, and (c) fractured samples after the tensile test.

5.3. Material

All steel beam specimens were of type S355]J0 (ST 52-3), with
cross-sectional dimensions shown in Fig. 8b. All beam specimen
materials were taken from the same steel production line to min-
imize the difference in behavior between production batches. In
order to characterize the mechanical properties of the beams, ten-
sile tests were performed on three samples cut from the flange of
one specimen, as shown in Fig. 9. The tensile tests were designated
according to DIN EN ISO 6892-1 with the specimen shape accord-
ing to DIN 50125. Results show an average Young's modulus, yield-
ing and ultimate strength of 209 GPa, 417 MPa and 562 MPa,
respectively, with a relative standard deviation of less than 0.4%.
The CFRP plates were of type 150/2000 (provided by the S&P Com-
pany), with a width of 50 mm and a thickness of 1.2 mm. Based on
supplier tests, the CFRP plates had an average elastic modulus of
158.5 GPa and a tensile strength of 2714 MPa. The strain gauges
used in the experiments were of type 6/120 LY16, with a k-factor
of 2.06 £ 1 and an electric resistance of 120 Q + 0.35%. One strain
gauge was glued on the bottom flange of each steel beam (far from
hole) (see Fig. 8c) and one strain gauge was glued at the middle of
each CFRP plate.

5.4. Fatigue parameters

The modified Goodman fatigue failure criterion is used for the
beam specimens given the higher ductility of the S355J0 (ST
52-3) steel. Conservative Marin factors (see Eq. (9)) were obtained
through a conservative statistical approach, however the experi-
ments in this work were performed under laboratory conditions
and the specimens were polished at critical locations to smooth
out any scratches. Thus, preliminary laboratory fatigue tests were
performed to estimate the endurance limit of the beam specimens;
with the endurance limit estimated as S, = 256 MPa. The SCF due
to holes with diameter d =23 mm from Fig. 3 with a ratio of
d/w=23/115=0.2 is 2.5. To further investigate the stress distribu-
tion around the hole, ABAQUS finite element package was used to
model a part of the bottom flange of beam including the hole, as
shown in Fig. 8c. For computational efficiency, and based on
symmetry, only one quarter of part of the flange was modeled.
Twenty-node brick elements with reduced integration (C3D20R)
were used. A refined mesh size of 1.2 mm was used for the area
near the hole to accommodate the high stress gradient. The bottom
flange was assumed in tension (see Fig. 8c and d). Material
behavior obtained from tensile tests was used in the FE model.

Critical locations (shown in red") are prone to mode-I fatigue cracks.
The SCF calculated by FE modeling is 2.48 which is in a good agree-
ment with one obtained by Fig. 3. The notch sensitivity factor in
Table 1 for transverse hole is v/a = % = 0.31, thus the notch sensi-
tivity parameter as calculated using Eq. (12) is 0.92, and the fatigue
SCF calculated by Eq. (11) is 2.38. The maximum stress at the edge of
the hole ¢ is written in term of remote stress (¢°°) using Eq. (10) by:

115

o =k 11523

0% = 2.38( >0°C =2.9750>. (27)

w-—d

5.5. Test plan

Four steel beams including one unstrengthened beam (B1), and
three strengthened beams (B2, B3 and B4), as shown in Table 2,
were subjected to cyclic loads till a fatigue crack is detected.

5.5.1. Specimen B1 (control specimen, no strengthening)

Fatigue test 1 (B1F1) was performed on specimen B1 having no
CFRP strengthening (intended as a control test). The control beam
was subjected to a fatigue load range of F = 2.5-68 kN, as shown in
Fig. 10. The stress level at the bottom flange of steel beam (far from
the hole), was measured using the bonded strain gauge. Using Eq.
(27), the minimum and maximum stress components at the loca-
tion of the holes are calculated. Thus, the midrange and alternating
stress components, calculated by Eqs. (1) and (2), are plotted in
Fig. 11a (i.e., B1F1). Since the stress components are in the finite
life region, it is expected that a macrocrack will be detected from
the hole. As it has been mentioned earlier, detecting a macrocrack
indicates that the crack initiation period is completed. Eddy cur-
rent NDT system was used to inspect the near hole region to detect
any possible crack. The fatigue test was stopped in intervals of
about 100,000 cycles for an NDT inspection. A fatigue crack was
detected at N =600,000 cycles and cyclic loading was stopped
(see Table 2).

5.5.2. Specimen B2 (strengthened specimen)

5.5.2.1. Fatigue test B2F1. Fatigue test 2 (B2F1) was performed on
the second beam (specimen B2) containing pre-stressed CFRP
strengthening. The beam was strengthened using the PUR system,
shown in Fig. 8a. Fig. 12a shows the time-history of stresses in the
CFRP plates and steel while increasing the eccentricity e, The

! For interpretation of color in Figs. 3 and 11, the reader is referred to the web
version of this article.
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Table 2
The test matrix.

Fatigue test name Beam no. Load range (kN) Applied no. of cycles Strengthening scheme Crack detected? CFRP pre-stress level (%)

B1F1 B1 2.5-68 600,000 Un-strengthened Yes -
B2F1 B2 2.5-68 2,000,000 Strengthened No 30
B2F2 B2 2.5-68 4,000,000 Strengthened No 22
B2F3 B2 2.5-68 4,000,000 Strengthened No 14
B2F4 B2 2.5-68 1,500,000 Strengthened Yes 4
B3F1 B3 2.5-68 2,000,000 Strengthened No 30
B3F2 B3 2.5-68 4,000,000 Strengthened No 22
B3F3 B3 2.5-68 1,200,000 Strengthened Yes 14
B4F1 B4 2.5-68 8,000,000 Strengthened No 22
B4F2 B4 2.5-68 6,000,000 Strengthened No 14
B4F3 B4 2.5-68 900,000 Strengthened Yes 4

70 — . - - — the same, the fluctuating stress in CFRP (blue curve in Fig. 11c)

| | | I : decreased, while the level of fluctuating stress in critical location

601 Force (kN) of steel beam (black curve in Fig. 11c) increased. In general, as
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§ 407 ] Fig. 11a represents the location of the stress components (in the
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Fig. 10. The time-histories of the force and the deflection for fatigue test B1F1,
specimen B1.

eccentricity between CFRP plate and beam bottom flange was
increased to about e, = 190 mm, inducing a CFRP pre-stress equal
to about 30% of the CFRP strength. At this pre-stress level, the max-
imum compressive stress at the hole in the flange reached
—211.7 MPa. After strengthening, the beam was subjected to a sim-
ilar load range as the control beam (i.e., F=2.5-68 kN). Fig. 11b
shows the time-histories of the hydraulic actuator force as well
as stresses in the CFRP plates and steel. Points 1 and 2 in Fig. 11a
indicate the critical stress components (at the hole location), in
the CLD, before and after strengthening, respectively. The gray
arrows in Fig. 11a illustrate how stresses are moving in the CLD
diagram after strengthening at different CFRP pre-stress levels. In
Fig. 11a, the stress components shift into the safe region after
strengthening, thereby an infinite fatigue life is expected. After
2,000,000 cyclic loading cycles, no crack was detected (using the
Eddy current system) near the holes in the flange. From Fig. 11a,
with 30% CFRP pre-stress, the alternating stress component
decreased to some extent. The reason is that the cross-section
dimensions of the beam are not significantly bigger than those of
CFRP plates. Thus when the beam is strengthened with 30% CFRP
pre-stress, the stiffness of the system slightly increases (due to
adding CFRP materials and also CFRP eccentricity).

5.5.2.2. Fatigue test B2F2. The CFRP eccentricity was decreased from
e, =190 mm (corresponding to 30% CFRP pre-stress) to e, =172
mm (corresponding to 22% CFRP pre-stress), resulting in a stress
increase from —211.7 MPa to —135.1 MPa at the critical location
of steel beam. The strengthened beam was then subjected to a sim-
ilar load range as for control beam (i.e., F=2.5-68 kN). Fig. 11c
shows the variation of stresses in CFRP plates and steel beam
and cyclic applied force. Note that compared to fatigue test B2F1,
the level of applied external load (red curve in Fig. 11¢) remained

lic loadings, without any detectable macrocrack, as expected by the
theory.

5.5.2.3. Fatigue test B2F3. The CFRP eccentricity was decreased from
ep =172 mm (corresponding to 22% CFRP pre-stress) to e, =151.2
mm (corresponding to 14% CFRP pre-stress), changing the stress
at the critical location from —135.1 MPa to —95.8 MPa. After pre-
stressing was released to 14%, the strengthened beam was sub-
jected again to F=2.5-68 kN, as shown in Fig. 11d. Note that the
previous loading histories on specimen B2 (i.e., B2F1 and B2F2
tests) do not affect the current fatigue test. It is because an infinite
fatigue life (N = oco0) was estimated for both tests B2F1 and B2F2,
which results in a negligible damage based on the Palmgren-Miner
linear damage formulation. Point 4 in Fig. 11a represents the CLD
location of the stress components after strengthening. The stress
component has shifted to the region outside of modified Goodman
line which is often called the risky region. The specimen survived
4,000,000 cyclic loadings, and no fatigue crack was detected. The
reason that specimen did not fail is due to that fact that the mod-
ified Goodman line is a conservative criterion for ductile metals.

5.5.2.4. Fatigue test B2F4. In the fourth fatigue test on specimen B2
(B2F4), the CFRP eccentricity was decreased again from e, = 151.2
mm (corresponding to 14% CFRP pre-stress) to e, = 119.2 mm (cor-
responding to 4% CFRP pre-stress), again changing the stress at the
critical location from —95.8 MPa to —71.5MPa, as shown in
Fig. 12b. After pre-stressing was reduced to 4%, the strengthened
beam was subjected to F=2.5-68 kN. Fig. 11e shows the variation
of stresses in CFRP plates and steel beam. Point 5 (shown with a red
marker) in Fig. 11a represents the CLD location of stress compo-
nents (in the steel) after strengthening. Compared to the B2F3 test,
the stress components in B2F4 test are closer to the Gerber curve
which increases the possibility of detecting a fatigue macrocrack.
Thus, more frequent NDT inspection was carried out during the
fatigue test. Eventually, a fatigue crack was detected at
N =1,500,000 cycles at hole location. Results of fatigue experiment
on specimen B2 show that as long as the stress components in steel
beam remained in the fatigue safe area determined by the
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Fig. 11. (a) CLDs for specimens B1 and B2. The time-history of the stresses in the CFRP plates and the steel beam for (b) 30% pre-stress, (c) 22% pre-stress, (d) 14% pre-stress
and (e) 4% pre-stress. “Maximum stress in steel refers to critical locations (i.e., at holes, see Fig. 9d).

modified Goodman line, infinite fatigue life was attained. Fatigue
design based on the Gerber failure criterion is not conservative.

5.5.3. Specimen B3 (strengthened specimen)

Due to inherent scatter in fatigue lives, specimen B3 was pre-
pared and tested with an identical experimental procedure as
described for specimen B2. Similar to specimen B2, specimen B3
was strengthened by the PUR system with 30% CFRP pre-stress
and was subjected to 2,000,000 cycles. Since no crack was
detected, the pre-stress level was reduced to 22% and 4,000,000
cycles were applied. No fatigue crack was identified. Again, the
CFRP pre-stress level was decreased to 14% and after 1,200,000
cycles, a fatigue crack was found at the hole location. The stress

components for different pre-stress levels are illustrated in
Fig. 13a. Results from fatigue test B3F3 show that the specimen
cracked while its stress components were in the risky area outside
the modified Goodman line. Nevertheless, the test with the same
pre-stress level on specimen B2 (i.e., B2F3) survived, indicating
the scatter results of fatigue tests. Fatigue tests on specimen B3
still show that the modified Goodman is conservative for design.

5.5.4. Specimen B4 (strengthened specimen)

Fatigue tests were conducted on specimens B2 and B3 by
strengthening starting with a high pre-stress level and reducing
it stepwise. This type of testing procedure is often called ‘modified
staircase method’ which is normally used to determine the fatigue
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Fig. 12. The time-history of the stresses in the CFRP plates and the steel while (a) increasing the eccentricity, ep, to reach 30% pre-stress in the CFRP plate and (b) decreasing e,

to release the CFRP pre-stress level from 14% to 4%.
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strength of steels/when a limited number of specimens are avail-
able. Although miodified staircase is a well-known method in fati-
gue testing, some studies have shown the tendency to increase the
fatigue strength in this testing method. This phenomena is the
called ‘training effect’. The training effect sometimes happens
when a specimen is subjected to a stress level that is below its fati-
gue strength,/and the stress level increases incrementally. In some
cases, it tended to increase the actual fatigue strength. In order to
check the possible influence of the training effect on results of con-
ducted tests on specimens B2 and B3, specimen B4 was prepared
identically as previous specimens; however, unlike specimens B2
and B3, specimen B4 was strengthened initially by 22% CFRP pre-
ich is on the modified Goodman line). The specimen sur-
vived 8,000,000 cycles during the first fatigue test (B4F1). Follow-
ing, the CFRP pre-stress level was decreased to 14% and the cyclic
loading was restarted. The specimen survived 6,000,0000 more
cycles during B4F2 test. Once more, the CFRP pre-stress level was
reduy{:’ed to 4% and a fatigue crack was detected after 900,000 cycles
at the hole location. Fig. 13b shows the stress components for
different levels of pre-stress. Results from these fatigue tests do
not reveal any training effect.

5.6. Discussions on test results

Fig. 14 summarizes the fatigue test results using the modified
staircase method. In this figure, the pre-stress level in which the
specimen failed is referred to as failure, while run-out indicates
the last pre-stress level by which the specimen survived and,
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Fig. 13. Fatigue test results presented in the CLD diagrams for specimens (a) B1 and B3 and (b) B1 and B4.

I
Failure ]
Run-out A
4 Insignificant A
g
5 14
]
5
%
o 22
=%}
=™
£
o 30
0 1 2 3

Specimen No.

Fig. 14. Presentation of test results using the modified staircase method.

insignificant markers show the rest of lower pre-stress levels.
The CFRP pre-stress level of 22% is found to be the minimum
pre-stress that all specimens could have an infinite life. This pre-
stress level corresponds to a stress component located on the mod-
ified Goodman line. Note that based on Eq. (26), the minimum
required pre-stress level (with a safety factor of n = 1) is calculated
to be about 28%, which is higher than 22% pre-stress level obtained
from experiment. As mentioned earlier in deriving Eq. (26), it was
assumed that the stiffness of the girder increases negligibly by
strengthening. This conservative assumption is more realistic for
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strengthening of girders of existing large-scale bridges where typ-
ical cross-sectional dimensions are large relative to the CFRP
dimensions. If high modulus CFRP plates are used, the alternating
stress component is probably not negligible and may have to be
considered.

All specimens tested herein were strengthened using the devel-
oped PUR system described previously. Only one pair of friction
clamps was used for strengthening of all three specimens B2, B3
and B4. The high flexibility of the designed PUR system allowed
easy modification of the pre-stress level several times for each
specimen. The strengthening system survived a total of
33,000,000 applied cycles on strengthened specimens. During the
33,000,000 cycles, slipping was not noticed between the CFRP
plates and clamp, or between the clamp and steel flange, indicating
excellent fatigue performance of the PUR system.

6. Conclusions

In this study, analytical formulations based on the CLD method
were presented to predict the minimum required pre-stress level
to prevent fatigue crack in existing metallic riveted bridges. A
PUR system was developed and tested to validate optimum pre-
stress levels determined from the analytical study. A total of four
identical steel beams were tested, including one unstrengthened
beam and three strengthened beams, in a modified staircase
method. The following conclusions are determined from the ana-
lytical and experimental study:

e The minimum required pre-stress level determined from the
CLD analysis corresponded well with observed experimental
result. The minimum pre-stress calculated for the test speci-
mens using the developed Eq. (26) from the modified Goodman
CLD corresponds to nearly 28% the CFRP strength, which is
slightly higher than 22% pre-stress level obtained from the
modified staircase experimental testing. This pre-stress differ-
ence is likely associated with a conservative assumption made
during the derivation of Eq. (26), which assumed negligible
stiffness increase from the strengthening system. This assump-
tion is more realistic for strengthening of large-scale bridge
girders where typical cross-sectional dimensions are large rela-
tive to the CFRP dimensions.

The proposed method can be used particularly for fatigue
strengthening of metallic structures with unknown stress his-
tory from the past traffic loadings. The method can determine
the required CFRP pre-stress, based on the stress history from
the current traffic loadings on the bridge, to prevent fatigue
crack cracking. Note that the strengthening can only be made
after NDT inspection to ensure that there are no existing macro-
cracks. If such macrocracks are found, another method [7,8],
which is based on fracture mechanics, shall be used to deter-
mine the required CFRP pre-stress that can arrest the crack
propagation.

The developed PUR system performed well during the fatigue
testing, surviving more than 33,000,000 cycles without any
damage or sliding of the friction clamps. The pre-stress level
with the PUR system was easily changed between multiple fati-
gue tests, indicating increased versatility over other bonded
CFRP strengthening methods.

The modified Goodman line presents a safe regime of cyclic
loading for infinite fatigue life in ductile metals (such as
wrought iron and structural carbon steels).

Many structural design standards consider the stress range as
the only parameter that affect the fatigue life of the metallic
members, however the results of this study clearly show that
reducing the mean stress level (with preserving the stress
range) can transfer a member from finite fatigue-life regime

to infinite fatigue-life regime. The presented CLD approach, in
this paper, can reflect the combined effect of both the stress
range and the mean stress and can be used for fatigue strength-
ening designs.
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Appendix A

Surface condition modification factor: the rotating-beam sample
has a highly polished surface. A surface modification factor which
is a function of tensile strength of the actual part and its quality of
surface finish is written by [36]:

k, = aS?,, (A1)

where a and b are two coefficients given in Table A.1.

Size modification factor: the size factor for round rotating bars
has been obtained through curve fitting from many experimental
data as [37]:

~ [1.24d°" 279 <d <51 mm

= : A2
’ {1.51d°"57, 51 < d < 254 mm (A2

The size factor presented in the above equation is for the case of
rotating bars. For structural members (that often do not rotate)
and have a non-tubular section, the method of effective dimension
is used. The effective dimension d, is calculated by equating the
area of stressed at 95% (Ap.95,) Of maximum stress to the same area
in the rotating-beam samples [38]. Fig. A.1 shows Apgss and the
corresponding effective dimension d. for rectangular and [-beam
cross-sections. Once d, is calculated, it can be used in Eq. (A.2) to

Table A.1
Surface coefficients for different levels of the surface finish [32].

Surface finish Exponent b Factor a S, (MPa)
As-forged —-0.995 272
Hot-rolled -0.718 57.7
Machined/cold-drawn -0.265 451
Ground —0.085 1.58
a
tf

- LT—L
d.=0.808vhb d.=0.808vab

Fig. A.1. Effective dimension, d., for rectangular and I-beam cross-sections [34].
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Table A.2
Reliability factors based on probabilistic analysis with
Gaussian distribution assumption [36].

Reliability (%) Za ke

50 0 1.000
90 1.288 0.897
95 1.645 0.868
99 2.326 0.814
99.9 3.091 0.753
99.99 3.719 0.702

find the right size factor. Note that for axial loading, the size factor
is kb =1.

Load modification factor: results of obtained endurance limits
are different if tests are carried out with rotating bending, axial
(tension-compression) or torsion and are estimated by [21]:

1, bending
k. = ¢ 0.85, axial
0.59, torsion

for steel and wrought iron . (A.3)

The average k. for axial and torsional loading for cast irons is
0.9.

Temperature modification factor: experimental results have
shown that if operating temperature is much higher or lower than
room temperature, yielding or brittle failure, respectively, shall be
the first investigated [21]. The following fourth order polynomial,
which has been obtained by fitting to the experimental results at
different operation temperature, can be used to determine the
temperature factor as [39]:

ks = 0.9877 + 0.6507(10 )T, — 0.3414(10°)T?
+0.5621(10 )T — 6.246(10'4)T?, (A4)

where T, is the temperature in degree Celsius.

Reliability modification factor: as was mentioned earlier, the pre-
sented modification factors have been calculated through a statis-
tical analysis where data have been very scatter but reported as
mean values. A relation for standard deviation of endurance
strengths has been presented by [40] as:

ke =1—0.08z, (A5)

where z, is defined through a probabilistic analysis with Gaussian
distribution assumption and is shown in Table A.2. The table also
includes the corresponding reliability factors for each z,. Since the
data were reported as mean values of several experiments, it is
evident that 50% reliability results in k. = 1.
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