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I would like to thank Dr. Jaćim Jaćimović who introduced me to the fascinating subject of TiO2.
My great acknowledgements go to Helmuth Berger, Philippe Bugnon and Dr. Arnaud Magrez
for their tireless passion to develop crystals of higher and higher quality, and for their support of
my work. I would like to thank Dr. Osor Barišić for modeling the polaron spectral function and
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Abstract
Transition metal oxides (TMOs) are emerging strong players in many domains, ranging from
superconductivity, to microelectronics to spintronics to light harvesting for photovoltaics. Be-
yond their non-toxicity, low corrosiveness and low price, they exhibit a whole range of exciting
electronic properties, which could be realistically exploited in new devices. Typically, TMOs are
governed by strong correlation of its 3d electrons, often dressed by lattice or magnetic excitations
and thus leading to complex electronic behavior. This work is focused on the electronic structure
of two benchmark TMOs – anatase TiO2 and tetragonal CuO – spectroscopically investigated by
angle resolved photoemission (ARPES) and resonant inelastic x-ray scattering (RIXS).

Anatase TiO2, a 3d0 system, has been proposed for many applications from transparent con-
ducting layers to photovoltaic- and photocatalytic- devices, as well as memristors. For the
performance of these devices, the charge carrier lifetime and their control is of primordial im-
portance. By means of ARPES, the possibility to achieve a fine control of the mobile charge
carrier concentration through x-ray beam doping is demonstrated. We show that the conduction
electrons in anatase, and their nature, is determined by significant electron-phonon-coupling and
by the number of oxygen defects. At low defect densities, charge carriers behave as a gas of
weakly interacting large polarons. At larger densities, the polarons spatially overlap and dissolve
into a weakly correlated Fermi liquid. The role of the electron-lattice coupling is further resolved
by RIXS. The spectral signatures of phonons hint towards isotropic electron-phonon-coupling in
anatase. Phonon frequency and electron-phonon coupling both show low doping sensitivity.

The cupric oxide CuO, a 3d9 system, exhibits an insulating ground state with a correlation-
induced charge-transfer gap and antiferromagnetism. It is, in principle, the most straightforward
parent compound of the doped cuprates, and therefore has been theoretically studied as a model
material for high temperature superconductivity. Bulk CuO crystallizes in a low-symmetry mono-
clinic form, in contrast to the rocksalt structure typical of late 3d transition metal monoxides. In
this work, CuO was synthesized by epitaxial growth on SrTiO3 substrates in a higher symmetry
tetragonal structure (T-CuO) much closer to the one observed in most cuprates. ARPES identifies
its first ionization state as a Zhang Rice Singlet (ZRS). This is the first observation of the ZRS on
a quasi 2D edge-sharing cuprate system with possible implications for magnetism and potential
superconductivity in the doped phase.

Keywords: ARPES, RIXS, anatase TiO2, polarons, oxygen vacancies, beam doping, tetragonal
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CuO, strong correlation, Zhang-Rice-Singlet, cuprates, magnons
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Zusammenfassung
Übergangsmetalloxide gewinnen in vielen Bereichen an zunehmender Bedeutung, angefangen
von der Supraleitung, über die Mikroelektronik und Spintronik bis zur Lichtausbeutung in der
Photovoltaik. Neben ihrer gesundheitlichen Unbedenklichkeit, ihrer geringen Korrosivität und
den geringen Materialkosten, weisen sie eine ganze Reihe von spannenden elektronischen Eigen-
schaften auf, die in realistischer Hinsicht zu neuen Anwendungen führen könnten. Üblicherweise
sind die Übergangsmetalloxide durch starke Korrelation ihrer 3d Elektronen beherrscht, die oft
mit Gitter- oder magnetischen Anregungen wechselwirken und damit zu komplexem elektroni-
schen Verhalten führen können. Die vorliegende Arbeit konzentriert sich auf die elektronische
Struktur zweier exemplarischer Übergangsmetalloxide – Anatas - TiO2 und tetragonales CuO –
die hier spektroskopisch mittels winkelaufgelöster Photoelektronenspektroskopie (ARPES) und
resonanter inelastischer Röntgenstreuung (RIXS) untersucht werden.

Anatas-TiO2 ist ein 3d0-System, das für viele Anwendungen angefangen bei transparent-leitfähigen
Schichten über Photovoltaik- und photo-katalytische Bauteile bis hin zu Memristoren in Frage
kommt. Für deren Effizienz ist die Lebensdauer der Ladungsträger und deren Kontrolle von
erheblicher Bedeutung. Mittels ARPES wird hier die Möglichkeit zur Feineinstellung der be-
weglichen Ladungsträgerkonzentration in Anatas durch Röntgenstrahldotierung demonstriert. Es
wird gezeigt, dass die Leitungselektronen in Anatas und ihre Eigenschaften durch maßgebliche
Elektron-Phonon-Wechselwirkung und die Anzahl der Sauerstoff-Fehlstellen bestimmt ist. Bei
niedrigen Defektkonzentrationen verhalten sich die Ladungsträger als Gas schwach wechsel-
wirkender großer Polarone. Bei höheren Dichten überlappen die Polarone räumlich und lösen
sich in einer schwach korrelierten Fermi-Flüssigkeit auf. Des weiteren wird die Bedeutung der
Elektronen-Phonon-Wechselwirkung mittels RIXS aufgezeigt. Die Signatur der Phononen im
RIXS Spektrum deutet in Richtung einer isotropen Elektron-Phonon-Wechselwirkung in Anatas.
Die Frequenz als auch die Interaktion der Phononen mit den Elektronen zeigen eine geringe
Abhängigkeit von der Dotierung.

Das Kupferoxid CuO, ein 3d9 System, ist ein korrelations- bedingter Ladungstransfer-Isolator
mit anti-ferromagnetischem Grundzustand. Im Prinzip ist es das einfachste Ausgangsmaterial
der dotierten Cuprate, und wurden daher theoretisch als Modellsystem für die Hochtemperatur-
supraleitung studiert. Kristallines CuO wächst in einer monoklinen Gitterstruktur mit niedriger
Symmetrie, im Gegensatz zur typischen Steinsalz Struktur der 3d Übergangsmetalloxide. In
dieser Arbeit wurde CuO in einer höher-symmetrischen tetragonalen Struktur (T-CuO) epitaktisch
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auf SrTiO3 Substraten gewachsen, welche der Struktur der Cuprate viel näher kommt. ARPES
identifiziert den ersten Ionisierungszustand als so genanntes Zhang-Rice-Singulett (ZRS). Dies
ist die erste Beobachtung eines ZRS auf einem quasi zwei-dimensionalem Kuprat-System, bei
dem sich benachbarte CuO4 Plaketten jeweils eine Kante teilen, und was möglicherweise Aus-
wirkungen auf Magnetismus und Supraleitung in der dotierten Phase hat.

Schlagwörter: ARPES, RIXS, Anatas TiO2, Polarone, Sauerstoff Störstellen, Strahldotierung,
tetragonales CuO, starke Korrelation, Zhang-Rice-Singulett, Kuprate, Magnonen
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Introduction

Society as we know it today is widely based on a model assuming unlimited supply of natural
resources [1]. This resource problem is known and nowadays widely accepted to be at the
cause of severe social unrest and national conflicts [2–4]. Even though most people in this
context naturally think of phenomena like “peak-oil” and the energy crisis, serious problems
also arise from society’s current consumption behavior of electronic devices. For example, cell
phones, laptops, tablets or televisions all depend on fast switching capacitor technology based
on tantalum, a rare earth element gained from Coltan (columbite-tantalite), which by definition
is a rare resource. This rareness and associated economic risks puts society into a longstanding
dependence of a scarce good, and causes severe social, political and ecological problems all over
the planet.

Trying to solve the central challenge of a transition from limited to unlimited resources at constant
standard, society requires abundant materials with useful electronic properties [5, 6]. Besides the
replacement of existing technologies, grand challenges in the generation and storage of energy
- e.g. via water splitting and hydrogen storage - drives research into advanced solar energy
generation and the search for hydrogenated materials [7]. The capacity and efficiency of energy
grids could be significantly increased using high temperature superconductors [8]. The drive to
miniaturize electronics beyond the foreseen limits of silicon leads to research in molecular-scale
electronics [9].

Transition metal oxides (TMOs) are prospective candidates in many of these domains. They
are typically non-toxic, show low corrosiveness (since they are already oxidized), are typically
available in “unlimited” quantities and therefore low in price. Besides, they exhibit a whole range
of exciting electronic properties interesting for applications.

Typically, TMOs are governed by strong correlation of their 3d electrons, leading to a complex
electronic behavior. In a technological sense, complexity is derived from the manipulation of
many length scales and degrees of freedom in the structure and composition of materials to lead
to new and useful properties. For example, fabrication of patterned materials from the micron to
the atomic scales can simultaneously control the photon, phonon, and electron density of states
and is expected to play a key role in the development of new solar energy technologies [10]. In a
mathematical sense, complexity emerges from the inherently non-linear interactions between the
microscopic parts of a system. This nonlinearity leads to intricate dynamical behavior in time and
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space that cannot be easily predicted by a “bottom-up” consideration of the local interactions.

The problem thus amounts to understand the collective behavior of up to ∼ 1023 free electrons in
a shifting landscape of nuclei and bound electrons from their experimental spectra. The electrons
in the system are perturbed – e.g. by x-rays – and advanced detection tools and modeling measure
and interpret their response. From these insights, further predictions on similar or even more
complex systems can be made. In this work, we focus on two binary oxides with conceivably
simplest stoichiometry but high importance for modern applications: anatase TiO2 and tetragonal
CuO.

We start the discussion by introducing the experimental techniques. In Ch. 1, a consistent
introduction to the basic concepts of angle resolved photoemission (ARPES) is given. A special
focus is put on the so called “one electron matrix element”, which can be directly related to the
local properties of the groundstate wavefunction.

In Ch. 2, the main concepts of resonant inelastic x-ray scattering (RIXS) are summarized. Some
useful tools to exploit the local symmetries of the ground state wavefunction are developed to
optimize the RIXS experimental geometry and to interpret the data.

In Chs. 3 and 4, entire focus is put on TiO2 anatase, investigated by ARPES and RIXS. We
will discuss the role of electron phonon coupling and oxygen defect concentration in this polar
material for the re-normalization of the charge carriers and test the theoretical concepts developed
in Chs. 1 and 2. We further propose a new industrial method to manipulate the charge carrier
concentration in TiO2 based devices.

In Ch. 5, we introduce tetragonal CuO (T-CuO), a new high symmetry form of CuO – proxy
structure for the high temperature superconducting cuprate parent compounds – and discuss its
low energy electronic structure based on ARPES results. The preliminary RIXS data presented in
Ch. 6 will deliver some unexpected surprises.
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1 Angle resolved photoemission

1.1 Summary

In this chapter, a pedagogical introduction to the basic principles of angle resolved photoemission
is given. Based on a simple model, we derive the most important properties exploited in a modern
ARPES experiment, introduce the concepts of the spectral function and the single electron
transition matrix element. From a simple tight binding model we will estimate how ARPES
intensity varies as a function of the experimental configuration and the crystal symmetry. The
tools developed will prove useful for the data interpretation in the chapters to follow.

1.2 Motivation

Angle resolved photoemission spectroscopy (ARPES) is a many-body spectroscopy with the
potential to answer some of the deepest questions in condensed-matter physics, especially in
correlated electron systems like Mott insulators or high temperature superconductors [11]. It is
the only tool that can give direct information on energy, momentum, and scattering processes
of the least-bound valence electrons near the Fermi level - those electrons that determine all the
fundamental properties of the solid [12, 13]. In its simplest incarnation, ARPES measures the
bandstructure, i.e. the energy-momentum relationship E vs k that is the fundamental electronic
property of all crystals.

With sufficient energy and momentum resolution, ARPES also measures the spectral function
A(k, ω), which encodes the single-particle bandstructure, the scattering lifetime and the mass
re-normalization accompanying many-body interactions. From these quantities one can determine
various transport properties, the self-energy, and the many-body coupling constants [14–22].
The latter quantities are very important to understand effects such as superconductivity, colossal
magnetoresistance or spin-charge separation. As such, the spectral function serves as the lingua
franca between many-body theorists and experimentalists.
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Chapter 1. Angle resolved photoemission

Photoemission spectroscopy is an old and well established technique, dating back to the discovery
of the photoelectric effect by Albert Einstein in 1905 [23]. Many of the theoretical concepts and
models used to interpret our today’s experimental observations therefore have been developed
many years ago and summarized in reviews and textbooks [12, 24].

With the advent of 3rd generation synchrotrons in the 1990ies, improvements in resolution and 2D
detectors however came a dramatic increase in the throughput of ARPES experiments, enabling
much more elegant and thorough experiments. An explosion of results in the study of magnetic,
quantum-confined and correlated materials followed [21]. The ability to efficiently sample large
volumes in energy-momentum space with polarized light gave access to experimental parameters
often not considered rigorously in the data interpretation. One example is the variation of ARPES
intensity throughout k-space, often times rationalized by hand-waving symmetry arguments.
It is therefore useful to return and build on concepts developed during the “early days” of
photoemission and try a more rigorous treatment of these effects.

The aim of this chapter is to consistently introduce the most important concepts of ARPES guided
by a simple model. We will put a special focus on the one electron transition matrix elements1

and their relationship to the experimental geometry, typically strongly varied throughout the
scope of one experiment. We will further show a method to simulate matrix elements for systems
that are well described by their local molecular orbitals in the tight binding approximation.

1.3 The photoemission cross section

Photoemission measures the transition probability wfi for an optical excitation between an
N -electron ground state ΨN

i and one of the available final states ΨN
f with one photoelectron.

Assuming the interaction between incoming light and matter to be weak, this process can be
conveniently described by Fermi’s Golden rule for first order processes

wif =
2π

h̄

∣∣〈ΨN
f |Hint|ΨN

i 〉
∣∣2 δ(ENf − ENi − hν) , (1.1)

where ENi and ENf are the initial and final state energies of the N -particle system, respectively,
and hν is the photon energy.

In the nonrelativistic limit, the light matter interaction can be treated as

1The term matrix element in the following refers to the simplified picture of a transition from a Bloch state to a
plane wave final state. The complex behavior of the final state is therefore neglected.
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1.3. The photoemission cross section

Hint =

N∑

i=1

[
e

m
A(ri) · p̂i +

e2

2m
A2(ri) +

eh̄

2m
σ̂i ·∇×A(ri)

− e2h̄

(2mc)2
σ̂i ·

∂Ai(ri)

∂t
×A(ri)

]
, (1.2)

where p̂i is the momentum operator and ri the position of electron i. The σ̂i are the Pauli spin
matrices. Neglecting the spin dependent parts and the terms quadratic in the vector potentialA,
we remain with

Hint ∼
e

m

N∑

i=1

A(ri) · p̂i =
e

mc

N∑

i=1

eikhν ·riε · p̂i = −i h̄e
mc

N∑

i=1

eikhν ·riε ·∇i , (1.3)

where ε is the polarization vector and khν the momentum vector of the incoming light.2 In
second quantization, this Hamiltonian can be expressed as

Hint =
∑

kf ,k

Mkfkĉ
†
kf
ĉk , (1.4)

where ĉk destroys an electron in Bloch state |Ψnk〉 and ĉ†kf creates a free electron |kf 〉. The

matrix element Mkfk hereby is defined as Mkfk = −i h̄emc〈kf |eikhν ·rε ·∇|Ψnk〉.

Within the “sudden approximation”, we can assume the ionization process to be very rapid and
the photoelectron to be decoupled from the N − 1 electron state. The final state thus factorizes
into the (N − 1) electron wave function |ΨN−1

f 〉 and the wave function |kf 〉 of the photoemitted
electron with momentum kf and kinetic energy Ekin.

|ΨN
f 〉 ∼ Â(|kf 〉 ⊗ |ΨN−1

f 〉) = ĉ†kf |Ψ
N−1
f 〉 . (1.5)

2This expression for Hint accounts mainly for bulk direct transitions. In general, this term has to be complemented
by a surface photoemission term accounting for the discontinuity of the vector potential at the surface and a term
depending explicitly on spin [25].

5



Chapter 1. Angle resolved photoemission

The operator Â assures the proper anti-symmetrization of the N electron wave functions. Eq. 1.1
can so be rewritten as

wif =
2π

h̄

∣∣∣∣∣∣
〈ΨN−1

f |ĉkf
∑

k′f ,k

Mk′fk
ĉ†
k′f
ĉk|ΨN

i 〉

∣∣∣∣∣∣

2

δ(EN−1
f + Ekin − ENi − hν)

=
2π

h̄

∣∣∣∣∣
∑

k

Mkfk〈ΨN−1
f |ĉk|ΨN

i 〉
∣∣∣∣∣

2

δ(EN−1
f + Ekin − ENi − hν) (1.6)

Neglecting interference effects, i.e. assuming there is only one channel ĉk connecting the initial
state |ΨN

i 〉 with the final state |ΨN−1
f 〉, we can approximate

wif =
2π

h̄

∑

k

∣∣Mkfk

∣∣2
∣∣∣〈ΨN−1

f |ĉk|ΨN
i 〉
∣∣∣
2
δ(EN−1

f + ENkin − ENi − hν)
︸ ︷︷ ︸∑

f⇒A(k,ω)

. (1.7)

The spectral function

A(k, ω) =
∑

f

|〈ΨN−1
f |ĉk|ΨN

i 〉|2δ(EN−1
f + ENkin − ENi − hν) (1.8)

contains all the many body effects of the N particle system, whereas the one-electron matrix
element Mkfk ∝ 〈kf |eikhν ·rε ·∇|Ψnk〉 depends largely on geometrical factors like photon
momentum khν , the polarization ε and the momentum kf of the photoelectron.

1.4 The spectral function

The spectral function A(k, ω) relates directly to the single - particle Green’s function

A(k, ω) = − 1

π
Im [G(k, ω)] , (1.9)
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1.4. The spectral function

where G(k, ω) is expressed as in terms of the noninteracting one-electron energy E0
k

G(k, ω) =
1

ω − E0
k − Σ(k, ω)

. (1.10)

The self energy Σ(k, ω) = Re[Σ(k, ω)]+iIm[Σ(k, ω)] describes the interaction of the electrons
and encodes the energy and the lifetime of the re-normalized QP within its real and imaginary
part, respectively.

The spectral function so reads

A(k, ω) =
1

π

Im[Σ(k, ω)]

(ω − E0
k −Re[Σ(k, ω)])2 + (Im[Σ(k, ω)])2

(1.11)

In the noninteracting case, Σ(k, ω) = 0 and we obtain the ideal case of a particle with infinite
lifetime

lim
Σ→0

A(k, ω) = lim
ε→0

1

π

ε

(ω − E0
k − ε)2 + (ε)2

= δ(ω − E0
k) . (1.12)

Equally useful, the concept of the Fermi-liquid describes interacting particles which themselves
can be mapped on a system of noninteracting particles. The self energy of a Fermi liquid in the
limit ω → EF = 0 is Σ(k, ω) = αω + iβω2 and the spectral function reduces to

A(k, ω) =
1

π

βω2

(ω − E0
k)2 + (βω2)2

. (1.13)

Now, the lifetime of the quasi-particle (QP) is determined by its interaction with the Fermi liquid
(βω2)2. For ω → EF = 0 however, (βω2)2 → 0 and the lifetime of the QP is again infinite.

The discussion of the spectral function for more complex systems can be very complicated and is
a research topic in itself. We thus refer the interested reader to the literature [26].
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Chapter 1. Angle resolved photoemission

1.5 The one-electron matrix element

The one-electron matrix element has been subject to longstanding interest. Historically, important
contributions were made by authors such as Schaich, Ashcroft, Gadzuk and Mahan in the
1970ies [27–31]. These were followed by important work by Goldberg et al., calculating in detail
the atomic orbital cross sections in fixed orientation [32].

The advent of modern third generation synchrotron light sources gave access to polarized photons
with high flux over typically large intervals of photon energies. The rising performance of state
of the art photoemission end stations further has enabled detailed access to complete sets of
photoemission data over a wide range of reciprocal space. Consequently, matrix element effects
varying over broad ranges of k-space become systematically accessible. Especially in systems
with high purity of the orbital character, matrix element effects can lead to severe ARPES intensity
modulation [33–36].

In the following, we will illustrate a simple but effective model to estimate the contribution of
the matrix element to bulk photoemission. As a byproduct, we will directly derive the basic
kinematic relations of photoemission.

1.5.1 Matrix elements without surface

We first consider the simplest situation conceivable: excitation of an electron from an initial
Bloch state |Ψnk〉 into a plane wave final state |kf 〉 inside the solid. A sketch of this situation is
shown in Fig. 1.1 (a), where we assume an infinitely extending solid without any influence of
the surface. To calculate the matrix element, it is helpful to rewrite Ψnk in terms of its Fourier
components – the maximally localized Wannier functions [37]

|Rn〉 =
V

(2π)3

∫

BZ
d3ke−ik·R|Ψnk〉 . (1.14)

R is a real space lattice vector, V the real-space primitive cell volume and the integral is carried
out over the entire Brillouin zone. The Wannier function |Rn〉 is in general exponentially
localized to lattice siteR and can be interpreted as the equivalent of a localized molecular orbital
in a solid.

The Bloch functions

|Ψnk〉 = eik·runk(r) (1.15)
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1.5. The one-electron matrix element
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Figure 1.1: (a) Photoemission from an initial Bloch state h̄k into a final state plane h̄kf
wave without taking into account the surface. Translation invariance requires full momentum
conservation. (b) Photoemission in the presence of a surface from an initial Bloch h̄k state into
a damped final state plane h̄kf wave inside the solid. Along the surface normal, translation
symmetry is broken. The surface now acts as a source of out of plane momentum k⊥.
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Chapter 1. Angle resolved photoemission

so can be written as an inverse Fourier transform

|Ψnk〉 =
∑

R

eik·R|Rn〉 , (1.16)

where the sum runs over all lattice sitesR and

unk = e−ik·r
∑

R

eik·R|Rn〉 . (1.17)

A simple example of how Bloch- and Wannier functions transform into each other is shown in
Fig. 1.2.

The matrix element Mkfk of Eq. 1.6 now can be written as

Mkfk ∝ 〈kf |eikhν ·rε ·∇|Ψnk〉
= 〈kf |eikhν ·rε ·∇

∑

R

eik·R|Rn〉

= ε ·
∑

R

eik·R〈kf |eikhν ·r∇|Rn〉

= ε ·
∑

R

eik·R
∫
d3r e−i(kf−khν)·r∇ Φn(r −R)

= −ε ·
∑

R

eik·R
∫
d3r Φn(r −R)∇ e−i(kf−khν)·r

= iε · (kf − khν)
∑

R

eik·R
∫
d3r Φn(r −R) e−i(kf−khν)·r

= iε · kf
∑

R

eik·R
∫
d3r Φn(r −R) e−i(kf−khν)·r (1.18)

where we defined

Φn(r −R) = 〈r|Rn〉 , (1.19)
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1.5. The one-electron matrix element

and made use of ε · khν = 0 and ∇† = −∇.3

r

ønk(r) e
ikr

unk(r)

Ön(r)

Figure 1.2: Transformation from Bloch functions (top) to Wannier functions (bottom). (Top)
Real-space representation of a Bloch function Ψnk(r) = eikruk(r) associated with a single band
in 1D for one value of the wave vector k. Filled circles indicate lattice atoms, and the green
line indicates the eikr envelope. (Middle) Lattice periodic function uk(r) associated with the
same band, forming periodic images of one another. (Bottom) Single site Wannier function
Φn(r) = 〈r|0n〉.

Introducing the coordinate transformation r → x = r −R and d3r = d3x and approximating∑
R as an integral

∑
R → N

V

∫
d3R, with the total sample volume V and number of lattice sites

N , we find

3We assume that Φn(r − R) is exponentially localized at lattice site R and thus lim
r→∞

Φn(r −R) = 0. By

partial integration we obtain
∫

Ψ∗(r)∇φn(r − R) = [Ψ∗(r)Φn(r − R)]∞−∞ −
∫
∇Ψ∗(r)Φn(r − R) =

−
∫
∇Ψ∗(r)Φn(r −R) and thus ∇† = −∇.
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Chapter 1. Angle resolved photoemission

Mkfk ∝ i
N

V
ε · kf

∫
d3R eik·R

∫
d3x Φn(x) e−i(kf−khν)·(x+R)

= i
N

V
ε · kf

∫
d3R eik·R eiG·R︸ ︷︷ ︸

≡1

∫
d3x Φn(x) e−i(kf−khν)·(x+R)

= i
N

V
ε · kf

∫
d3R ei(k+G−kf+khν)·R

︸ ︷︷ ︸
δ(k+G−kf+khν)

∫
d3x Φn(x) e−i(kf−khν)·x

︸ ︷︷ ︸
〈kf−khν |0n〉

= i(2π)3/2N

V
ε · kf δ(k +G− kf + khν) 〈kf − khν |0n〉 ,

(1.20)

where we took into account the translation invariance eiGR = 1 with respect to some arbitrary
reciprocal lattice vectorG. We can see that the well known momentum conservation is a property
of the one-electron matrix element, and therefore reasonably independent of the multibody effects
in the solid. More interestingly, we find the total matrix element to be well approximated by the
Fourier transform 〈kf − khν |0n〉 ∼ 〈kf |0n〉 of one localized Wannier function. In other words,
the matrix element related ARPES intensity distribution is a direct measure of the real space
distribution of the local Wannier function, i.e. the local molecular orbital.

1.5.2 Matrix elements in the presence of a surface

Photoemission is a surface process. This mirrors in two important facts: For one, the penetration
depth of the incoming photon beam is finite (O(100 nm)). Second and important for our
considerations, the outgoing electrons interact with the solid through electron-electron and
electron-phonon interaction. Consequently, the electrons only possess a limited lifetime and
thus are strongly damped with characteristic mean free paths of λ ∼ O(5 Å).4 In the presence
of a surface, the final state so needs to be expressed more properly as inverse LEED state,
phenomenologically described by an evanescent plane wave

〈r|kf 〉 = eikfrer⊥/λ , (1.21)

for r⊥ within reach of the crystal potential. The mean free path λ can so be interpreted as the
penetration depth of the inverse LEED state which characterizes the damping of the evanescent

4The electrons which lose energy on their way out of the solid are typically termed “secondary electrons”. Their
number as a function of binding energy increases in an integral manner [38].
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1.5. The one-electron matrix element

wave inside the solid.5

Eq. 1.18 now reads

Mkfk ∝ ε ·
∑

R,R⊥<0

eik·R
∫
d3r e−ikf ·rer⊥/λeikhν ·r∇ Φn(r −R)

= −ε ·
∑

R,R⊥<0

eik·R
∫
d3r Φn(r −R)∇ e−i(kf−khν)·rer⊥/λ

= ε · (ikf − ikhν −
1

λ
e⊥)

∑

R,R⊥<0

eik·R
∫
d3r Φn(r −R) e−i(kf−khν)·rer⊥/λ

= ε · (ikf −
1

λ
e⊥)

∑

R,R⊥<0

eik·R
∫
d3x Φn(x) e−i(kf−khν)·(x+R)e(x⊥+R⊥)/λ

= ε · (ikf −
1

λ
e⊥)

∑

R,R⊥<0

ei(k−kf+khν)·ReR⊥/λ
∫
d3x Φn(x) e−i(kf−khν)·xex⊥/λ

= ε · (ikf −
1

λ
e⊥)

∑

R,R⊥<0

ei(k−kf+khν)·ReR⊥/λ 〈kf − khν +
i

λ
e⊥|0n〉 , (1.22)

where e⊥ is the sample surface unit vector and where we again used the coordinate transformation
r → x = r −R with r⊥ → x⊥ = r⊥ − R⊥. Writing

∑
R,R⊥<0 in terms of integrals parallel

and perpendicular to the crystal surface N
V

∫
dR‖

∫ 0
−∞ dR⊥ and assuming explicitly, that the

Wannier function decays exponentially faster as er⊥/λ rises, the total matrix element becomes

Mkfk ∝ N

V
ε · (ikf −

1

λ
e⊥) 〈kf − khν +

i

λ
e⊥|0n〉

×
∫
dR‖e

i(k‖−kf‖+khν‖)R‖ eiG‖R‖︸ ︷︷ ︸
≡1

∫ 0

−∞
dR⊥e

(i(k⊥−kf⊥+khν⊥)+ 1
λ

)R⊥

= 2π
N

V
ε · (ikf −

1

λ
e⊥) 〈kf − khν +

i

λ
e⊥|0n〉

× δ(k‖ +G‖ − kf‖ + khν‖)
1

i(k⊥ − kf⊥ + khν⊥) + 1/λ
. (1.23)

5 It is important to emphasize here that we intentionally do not define a strict surface (e.g. r⊥ = 0) but rather
expect the exponential factor er⊥/λ to be active within reach of the crystal potential. Since the Wannier function
is assumed to decay exponentially “faster” than the divergent term er⊥/λ of the evanescent wave, this allows for a
smooth convergence of the integrals in the following.
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Chapter 1. Angle resolved photoemission

In the presence of the surface, only the in plane components of the electron momentum are strictly
conserved within some in plane reciprocal lattice vectorG‖. For the out of plane component, we

find a Lorentzian “pseudo momentum conservation” |Mkfk|2 ∝ 1
(k⊥−kf⊥+khν⊥)2+1/λ2

λ→∞−−−→
πδ(k⊥ − kf⊥ + khν⊥), which becomes sharper and sharper with larger penetration depth λ of
the final state.

We further find the angular distribution of photoelectrons still to be determined by the Fourier
transform 〈kf − khν + i

λe⊥|0n〉 of the local Wannier function |0n〉, with a λ – dependent

phase shift in the argument. Since 1/λ ∼ O(0.2 Å
−1

) and khν = 2πν/c ∼ O(0.05 Å
−1

) are
small with respect to kf ∼

√
2mEkin ∼ O(5 Å

−1
) in UV- and soft x-ray photoemission with

hν ∼ O(100 eV), 〈kf − khν + i
λe⊥|0n〉 will be typically well approximated by 〈kf |0n〉.

1.5.3 The electron escape depth λ

It is - once again - important to note that the integrals in the model above only converge if the
Wannier functions decay faster than the divergent term er⊥/λ of the evanescent wave rises. It has
been theoretically shown however, that it is always possible to construct exponentially localized
Wannier functions in dimensions D ≤ 3 which fulfil this criterion for sufficiently high λ [37, 39].

For a quick estimate and in analogy to an atomic orbital with quantum number n, we can assume
the radial part of a Wannier function to decay exponentially as e−r/(an), where a is the spatial
extension (typically the size of one unit cell) of this “molecular orbital”. The integrals of Eq. 1.23
hence converge only if λ > an, i.e. if the evanescent wave covers at least one unit cell. In many
cases of photoemission however, λ is actually quite close to a and discussed model therefore at
risk.

Mostly, the photoelectron escape depth λ is determined by electron-electron interaction. In
the energy range of Ekin ∼ O(100 eV), the electrons involved in the scattering process can
be considered a free electron gas and their bonding to the solid is no longer important. The
electron-electron interaction is therefore largely determined by the plasma frequency of the solid,
which is only a function of electron density ρ and therefore largely independent of the constituents
of the solid. Consequently, the overall attenuation length λ is well described by a “universal
curve” which only depends on the kinetic energy of the photoelectron Ekin and which can be
empirically described as

λ[Å] ∼ c1(Ekin[eV] + Φ[eV])−2 + c2

√
a[nm](Ekin[eV] + Φ[eV]) , (1.24)

where c1 ∼ 538 and c2 ∼ 0.41 are good parameters to describe elements, 2170 and 0.72 good
for inorganic compounds [40]. Ekin and Φ are kinetic energy and workfunction as defined in
Fig. 1.2.
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1.5. The one-electron matrix element

Figure 1.3: Universal curve describing the electron mean free path λ as a function of energy
(above the Fermi level). The graph was taken from the internet [41].

Fig. 1.3 reproduces the original data by Seah et al. [40]. Clearly, λ is of the order of few Å,
which demonstrates the high importance of the surface in photoemission. The very thin surface
layer sampled by ARPES hence requires for atomically clean surfaces prepared under ultra high
vacuum conditions.

1.5.4 The photoelectron escape

To understand how the “pseudo momentum conservation” shown in previous sections is reflected
in the actual measurement of the photoelectron momentum p, it is instructive to recall the
propagation of an unbound free electron across a step potential as illustrated in Fig. 1.1 (b).

V (r) =

{
−V0 r⊥ < 0

0 r⊥ > 0
(1.25)

where V0 is the inner potential of the solid.

Energy conservation during the emission process requires that E(r⊥ < 0) = E(r⊥ > 0) and
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Chapter 1. Angle resolved photoemission

thus

h̄2k2
f

2m
=
p2

2m
+ V0 (1.26)

Since the in plane momentum h̄kf‖ = p‖ remains conserved due to translation symmetry, the
out of plane momentum has to absorb the effect of the inner potential and we find

h̄2k2
f⊥

2m
=
p2
⊥

2m
+ V0 . (1.27)

In photoemission, one typically measures the emission angles (φk, θk) and the kinetic energy
Ekin of the photoelectron, which are related to the photoelectron momenta as

px =
√

2mEkin sin θk cosφk , py =
√

2mEkin sin θk sinφk , pz =
√

2mEkin cos θk . (1.28)

We thus have

h̄2k2
f‖ = p2

‖ = p2
x + p2

y = 2mEkin sin2 θk

h̄2k2
f⊥ = p2

⊥ + 2mV0 = 2m(Ekin cos2 θk + V0) , (1.29)

and finally

kf‖ =
1

h̄

√
2mEkin sin θk

kf⊥ =
1

h̄

√
2m(Ekin cos2 θk + V0) . (1.30)

According to Fig. 1.1, the kinetic energy Ekin further is related to the binding energy EB of the
electron via photon energy hν and the workfunction Φ of the solid: Ekin = hν − EB − φ.6

6Note that in the experiment, the photoelectron has to be “absorbed” by the electron analyzer. The analyzer is in
electrical equilibrium with the sample and thus the quantity Φ which enters here is the actually workfunction of the
analyzer ΦAna.
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1.5. The one-electron matrix element

1.5.5 Matrix elements in tight binding approximation

As we saw, the total matrix elementMkfk is to a large extent determined by the Fourier Transform
〈kf |0n〉 of the localized Wannier function |0n〉. In complex systems, the determination of the
Wannier function can be a tedious task and is typically subject to the vast field of density
functional theory.

In certain cases however, the groundstate electron wave function can be well approximated by a
linear combination of generalized atomic orbitals |0n〉 ∼∑Ri

∑
nlm cinlm|Ri, nlm〉 located at

each lattice site. |Ri, nlm〉 are atomic wave functions |nlm〉 centered at coordinatesRi within
one unit cell. The coefficients cinlm need to be adapted to the unit cell’s local point group. In
other words, the linear combination of atomic orbitals needs to respect the symmetry properties
of the crystal.7

The Bloch function |Ψk〉 has now the same form as the Bloch-sum formula in tight-binding
theory, where the Wannier functions are replaced by molecular orbitals

|Ψk〉 =
∑

R

eik·R
∑

Ri

∑

nlm

cinlm|Ri, nlm〉 , (1.31)

whereR labels all lattice sites in the solid andRi again labels all the atoms within one unit cell.
Omitting the terms for “pseudo momentum conservation” in Eq. 1.23, the total matrix element
can be written as the Fourier transform

Mkfk ∝ ε · (ikf −
1

λ
e⊥) 〈kf − khν +

i

λ
e⊥|

∑

Ri

∑

nlm

cinlm|Ri, nlm〉

= ε · (ikf −
1

λ
e⊥)

∑

Ri

∑

nlm

cinlm〈kf − khν +
i

λ
e⊥|Ri, nlm〉

= ε · (ikf −
1

λ
e⊥)

∑

Ri

∑

nlm

cinlme
i(kf−khν+ i

λ
e⊥)·Ri〈kf − khν +

i

λ
e⊥|0, nlm〉

=
∑

Ri

∑

nlm

cinlme
i(kf−khν+ i

λ
e⊥)·RiMnlm(kf ,khν , λ) , (1.32)

7For an instructive example refer to Sec: 5.13.
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Chapter 1. Angle resolved photoemission

where

Mnlm(kf ,khν , λ) ∝ ε · (ikf −
1

λ
e⊥) 〈kf − khν +

i

λ
e⊥ |0, nlm〉︸ ︷︷ ︸

≡|nlm〉

. (1.33)

The main task is hence to calculate the Fourier transform 〈kf − khν + i
λe⊥|nlm〉 of the atomic

orbitals.

The radial cross section

Already in 1929, B. Podolsky and L. Pauling have shown that wave functions of the form [42]

|Φ(r)〉 = |nlm〉 = Rnl(r)|l,m〉 (1.34)

with radial part Rnl and r = {r, θr, φr} possess a Fourier transform

|Φ̃(kf )〉 = fnl(kf )|l,m〉 (1.35)

with kf = {kf , θk, φk}.

Whereas the Fourier transform of the spherical harmonics |lm〉 is just the spherical harmonics
itself, the Fourier transform of radial part Rnl(r) transforms to

fnl(kf ) = 4π(−i)l
∫ ∞

0
dr r2jl(kfr)Rnl(r) , (1.36)

where jl(kfr) is a Bessel function. Fig. 1.4 shows |fnl(kf )| calculated for different radial atomic
functions

Rnl(r) =

√(
2

na

)3 (n− l − 1)!

2n(n+ l)!
e−r/na

(
2r

na

)l
L2l+1
n−l−1

(
2r

na

)
, (1.37)

18



1.5. The one-electron matrix element

Figure 1.4: The radial contribution to the matrix element |fnl(kf )| calculated for several radial
atomic wave functions (n, l) with (blue) λ→∞, (red) λ = 20a, (yellow) λ = 10a. At distinct
values of kf , sharp “Cooper minima” are observed, which are softened for finite penetration
depths λ.
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Chapter 1. Angle resolved photoemission

where a is the characteristic radius of the orbital. Overall, |fnl(kf )| falls off with increasing
kf ∝

√
Ekin. Depending on the quantum numbers n and l, |fnl(kf )| develops additional sharp

minima, which leads to a severe suppression of photoemission intensity for certain orbitals at
distinct photon energies. These minima are the so called “Cooper minima” [43]:

With increasing kf , the final state plane wave – represented by the Bessel function in the integral
of Eq. 1.36 – oscillates more rapidly in space. This leads to more cancelation effects for increasing
kf , and |fnl(kf )| consequently diminuishes. The Cooper minima form at low kf , where the
Bessel function jl(kfr) changes its sign on a length scale of O(a). On the same length scale,
Rnl(r) decays and likewise exhibits a total of n − l − 1 sign changes. The interplay of sign
changes of both function so leads to a complete suppression of the integral |fnl(kf )| at distinct
momenta kf , or equivalently at distinct kinetic energies Ekin.

To qualitatively test the effect of the surface penetration depth λ on fnl(kf ), we develop |kf +

i/λe⊥| in terms of small values 1/λ:

∣∣∣∣kf +
i

λ
e⊥

∣∣∣∣ =

√
k2
f‖ +

(
kf⊥ +

i

λ

)2

∼
√
k2
f‖ + k2

f⊥ +
ikf⊥√
k2
f‖ + k2

f⊥

1

λ
+O

(
λ−2

)

= kf +
ikf⊥
kf

1

λ
+O

(
λ−2

)
(1.38)

At normal emission, kf‖ = 0 and the result collapses to

∣∣∣∣kf +
i

λ
e⊥

∣∣∣∣ ∼ kf⊥ +
i

λ
+O

(
λ−2

)
. (1.39)

Fig. 1.4 additionally plots the results of fnl(kf + i
λ) for λ = 20a and λ = 10a. Interestingly, the

imaginary phase i/λ, only softens the Cooper minima, but does not change the overall envelope
of the curve. It should however be noted that according to the “universal Curve” of Eq. 1.24 and
Fig. 1.3, λ varies as a function of Ekin ∝ k2

f and a more realistic result would therefore be in
between the extremes shown in this plot.
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1.5. The one-electron matrix element

Figure 1.5: Angular distribution |M(θk, φk)| of matrix elements for different polarizations ξ and
an incident light angle of α = 60◦ (light coming from left).
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Chapter 1. Angle resolved photoemission

The angular cross section

As we saw, the angular part of an atomic orbital is basically invariant under Fourier transformation.
The influence of the experimental geometry for the distribution of spectral weight relies on the
projection of the polarization vector ε onto the wavevector kf of the outgoing photoelectron
ε · kf . In a hypothetical experimental configuration with isotropically unpolarized light, the
matrix element will consequently cancel out all variations of ε · kf and express the same angular
distribution as the Wannier function.

In a linearly polarized configuration, the polarization vector ε can be written as

ε =




εx
εy
εz


 = ε




1 0 0

0 cosα − sinα

0 sinα cosα


 ·




cos ξ

sin ξ

0


 = ε




cos ξ

cosα sin ξ

sinα sin ξ


 (1.40)

where α is the angle in between incoming x-ray beam and analyzer, and ξ is the polarization as
defined in Fig. 1.6 and 1.7 (ξ = 0: σ-polarized; ξ = π/2: π-polarized).

ε · (ikf − 1
λe⊥) so simplifies to

ε · (ikf −
1

λ
e⊥) = iε

(
cos ξ kx + cosα sin ξ ky + sinα sin ξ (kz +

i

λ
)

)
(1.41)

In a typical experimental geometry with α = π/3, this quantity vanishes if ky = −
√

3(kz + i/λ)

in π-polarization, which is impossible to fulfil if λ is finite. In σ-polarization, it will always
vanish for kx = 0.

Exemplary plots of the angular distribution of matrix elements calculated according to Eq. 1.33
are shown in Fig. 1.5 for the s, p and d orbitals. The effect of a finite penetration depth λ to the
angular distribution of the matrix element was found to be minor and was therefore not taken into
account.8

The left column “(lm)” shows the angular distribution of the orbital |lm〉 which is identical
to matrix elements obtained in an isotropic light configuration. This distribution is essentially
captured by matrix elements obtained in an unpolarized light configuration (“unpolarized”).9

Further we show the angular distribution of spectral weight in σ- and π-polarization in the third

8We will see however in Ch. 3, that taking into account a finite λ may change the intensity distribution on a small
angular scale.

9Isotropic light refers to light with polarizations distributed isotropically along all directions of 3D space. Unpolar-
ized light refers to the physical situation of light with polarization vectors distributed along the 2D polarization plane,
perpendicular to the incoming light direction.
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1.5. The one-electron matrix element

Figure 1.6: Typical geometry of an ARPES setup with π-polarized light (yellow wiggles,
ξ = π/2) and π-polarized analyzer slits (blue curve, φk = π/2). All possible sample rotations
are indicated by arrow-headed circles. The sample in this example can be rotated around x-, y-
and z-axis by dependent angles θ, β and φ, respectively. At most synchrotrons, the polarization ξ
can be chosen as well. The orientation of the analyzer slit φk is typically fixed.
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Chapter 1. Angle resolved photoemission

Figure 1.7: Sideview of the ARPES geometry of Fig. 1.6.
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1.5. The one-electron matrix element

and fourth column.

Let us exemplarily discuss the most simple case of an s-orbital. The left column shows its angular
distribution which is of course isotropic and basically the same result of the matrix element in an
isotropic light configuration. The second column shows the unpolarized case, namely the light
polarization isotropically distributed within the incoming polarization plane. The third column
shows the result of π-polarized light. The polarization vector now suppresses all components
along the incoming light direction and the resulting intensity distribution conforms with a linear
combination of py- and pz orbital. In σ-polarization, this node is along the yz plane and the
distribution of spectral weight consequently px-like.

It is also interesting to quickly discuss the circular polarized configurations. In analogy to
Eq. 1.40, the polarization vector ε± for right and left handed circular polarization can be written
as

ε± =




1

±i cosα

±i sinα


 . (1.42)

The polarization dependent term of the matrix element ε± · (ikf − 1
λe⊥) so becomes

M± ∝ iε
(
kx ± i cosα ky ± i sinα (kz +

i

λ
)

)
. (1.43)

Calculating circular dichroism we find

|M+|2 − |M−|2 ∝ −4kx sinα

λ
, (1.44)

which is clearly non zero for finite penetration depths λ and thus has to be taken into account as
geometric side effect even in systems without spin polarization.

1.5.6 Rotation of atomic orbitals

In a typical ARPES experiment with a 2D detector, only a certain interval of angles θk at a
given φk can be sampled at a time, determined by the acceptance angle of the analyzer and
the orientation φk of the entrance slits of the analyzer. Analogous to the terminology for light
polarization, slits oriented along the x-axis and φk = 0 are referred to as σ-configuration, whereas
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Chapter 1. Angle resolved photoemission

slits oriented along y-axis and φk = π/2 are referred to as π-configuration.

For the experimental geometry of the ARPES setup used in this work, beamline 7 of the Advanced
light source (Fig. 1.6 and 1.7), the scattering plane yz is fixed and contains the polarization vector
ε as well as the analyzer slits. The angle between the incident light and the spectrometer’s axis
(z-axis) is 60◦ and the photoelectrons are collected within an angular range −15◦ < θk < 15◦

and φk = 0. Due to this limitation, the sample has to be rotated to access the complete k-space
information.

The rotation of the sample by angles θ, β and φ around the x-, y- and z-axis, can be expressed in
terms of a unitary transformation U(θ, φ, β) which rotates the orbitals according to a rotation
matrixR(θ, φ, β).10 At normal emission, β = θ = φ = 0 and the sample normal coincides with
the z axis. In a typical kxky ARPES measurement, β is changed, while θ and φ remain constant.

The total matrix element Mnlm(kf ) thus becomes a function of θ, φ and β and consequently
transforms as11

Mnlm(kf ,khν , λ) → Mnlm′(kf ,khν , λ, θ, φ, β)

= 〈kf |(eikhν ·rε ·∇) U(θ, φ, β)|n, l,m〉

=
l∑

m′=−l
〈kf |eikhν ·rε ·∇|n, l,m′〉〈n, l,m′|U(θ, φ, β)|n, l,m〉

=
l∑

m′=−l
Dl
m′,m(θ, φ, β)〈kf |eikhν ·rε ·∇|n, l,m′〉

=

l∑

m′=−l
Dl
m′,m(θ, φ, β)Mnlm′(kf ,khν , λ) , (1.45)

where the Dl
m′,m(θ, φ, β) are the coefficients of the Wigner D-matrix which are given explicitly

for s-, p- and d-orbitals in appendix 1.6.2.12

10The order of the angles φ, θ and β represents the order of rotation. At BL7, the only independent angle is θ which
rotates the manipulator. The rotation stage φ sits on the manipulator and is therefore dependent on θ. Likewise, β
depends on both θ and φ.

11In the appendix we show that the matrix element of a rotated Bloch wave can be reduced to the matrix element of
the rotated the Wannier function.

12Typically, the Wigner D-Matrix is expressed in the z-x-z convention namely a first rotation αz0 about the z-axis,
a second rotation αx about the x-axis and another rotation αz1 about the z-axis. In general, great care has to be taken
to express αz0 , αx and αz1 in terms of an arbitrary rotation (e.g. β, θ φ as given in the particular experimental case).
Such a transformation of rotation R(θ, φ, β) into a rotation around Euler angles R(αz1 , αx, αz0) can be difficult. For
a detailed demonstration on this topic see Ref. 44.
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1.6. Appendix

In less mathematical words, the rotation of the sample in an otherwise fixed experimental
geometry of course rotates the orbitals of the sample as well. These rotated orbitals however are
now no good representation of basis functions in the reference frame of analyzer and polarization
vector anymore. In fact, these orbitals now have to be considered -depending on the rotation
- as a linear combination of proper representations in the experimental frame. For example,
if we probe a pure dxy state at normal emission and we start to rotate the sample around the
x-axis we will intermix more and more dxz and dyz components to the initial state. Likewise, the
angular distribution of matrix elements will become a superposition of contributions from dxy
and dxz/dyz .

1.6 Appendix

1.6.1 Matrix elements of a rotated bloch Wave

Let us define a unitary transformation U which rotates the Bloch function Ψnk according to an
arbitrary rotation matrixR. Expressing Ψnk in terms of Wannier functions φn(r −R)

UΨnk(r) =
∑

R

eik·RUΦn(r −R)

=
∑

R

eik·RΦn(Rr −R) (1.46)

Analogue to Eq. 1.23 we so get

〈kf |(eikhν ·rε ·∇)U |Ψnk〉 = ε ·
∑

R,R⊥<0

eik·R
∫
d3r e−i(kf−khν)·rer⊥/λ∇ Φn(Rr −R)

= −ε ·
∑

R,R⊥<0

eik·R
∫
d3r Φn(Rr −R)∇ e−i(kf−khν)·rer⊥/λ

= ε · (ikf −
1

λ
e⊥)

×
∑

R,R⊥<0

eik·R
∫
d3r Φn(Rr −R) e−i(kf−khν)·rer⊥/λ (1.47)

We now perform a coordinate transformation r → x = Rr −R. The Jacobian of this transfor-
mation is just the rotation matrixR itself, its determinant therefore 1 and we have d3x = d3r.
r can be expressed in terms of a back rotation r = R−1(x + R) = R−1x + R−1R and
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Chapter 1. Angle resolved photoemission

r⊥ = (R−1(x+R))⊥ = (R−1x)⊥ + (R−1R)⊥ and we have

〈kf |(eikhν ·rε ·∇)U |Ψnk〉 = ε · (ikf −
1

λ
e⊥)

∑

R,R⊥<0

eik·R (1.48)

×
∫
d3x Φn(x) e−i(kf−khν)·R−1(x+R)e(R−1(x+R))⊥/λ

Now we make use of a property of the dot product (kf − khν) · R−1(x+R) = R(kf − khν) ·
(x+R) and (R−1(x+R))⊥/λ = (e⊥ · (R−1(x+R)) = (Re⊥) · (x+R)/λ, where e⊥ is
the surface unit vector, and find

〈kf |(eikhν ·rε ·∇)U |Ψnk〉 = ε · (ikf −
1

λ
e⊥)

∑

R,R⊥<0

ei(k−R(kf−khν))·ReRe⊥·R/λ

×
∫
d3x Φn(x) e−iR(kf−khν)·xeRe⊥·x/λ

= ε · (ikf −
1

λ
e⊥)

∑

R,R⊥<0

ei(k−R(kf−khν))·ReRe⊥·R/λ

×
∫
d3x e−i(kf−khν)·R−1xee⊥·R

−1x/λ Φn(x)

= ε · (ikf −
1

λ
e⊥)

∑

R,R⊥<0

ei(k−R(kf−khν))·ReRe⊥·R/λ

×
∫
d3x e−i(kf−khν)·x′ee⊥·x

′/λ Φn(R−1x)

= ε · (ikf −
1

λ
e⊥)

∑

R,R⊥<0

ei(k−R(kf−khν))·ReRe⊥·R/λ

× 〈kf − khν +
i

λ
e⊥|U †|0n〉 (1.49)

Writing
∑

R,R⊥<0 in terms of in and out of plane integrals N
V

∫
dR‖

∫ 0
−∞ dR⊥ and assuming

explicitly, that the Wannier function decays exponentially faster as er⊥/λ rises, the total matrix
element becomes
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1.6. Appendix

〈kf |(eikhν ·rε ·∇)U |Ψnk〉 =
N

V
ε · (ikf −

1

λ
e⊥) 〈kf − khν +

i

λ
e⊥|U †|0n〉

×
∫
dR‖e

i(k‖−R(kf−khν−ie⊥/λ))‖·R‖ eiRG‖·R‖︸ ︷︷ ︸
≡1

×
∫ 0

−∞
dR⊥e

i(k⊥−R(kf−khν−ie⊥/λ))⊥·R⊥ eiRG‖·R⊥︸ ︷︷ ︸
≡1

= 2π
N

V
ε · (ikf −

1

λ
e⊥) 〈kf − khν +

i

λ
e⊥|U †|0n〉

× δ

(
k‖ − (R(kf +G‖ − khν −

i

λ
e⊥))‖

)

× 1

(Re⊥)⊥/λ+ i(k⊥ − (R(kf +G‖ − khν))⊥)
(1.50)

The rotation R now implies that some of the momentum created along the surface normal
necessarily has to be absorbed by in the in plane momentum of the photoelectron kf‖ and the in
plane momentum conservation reads δ

(
k‖ − (R(kf +G‖ − khν − ie⊥/λ))‖

)
.

For the out of plane component, we again find a Lorentz distributed “pseudo momentum con-
servation” |〈kf |(eikhν ·rε ·∇)U |Ψnk〉|2 ∝ 1

(Re⊥)2
⊥/λ

2+(k⊥−(R(kf+G‖−khν))⊥)2 , which becomes
sharper with increasing penetration depth λ of the final state. We interestingly also find the effect
of the rotation (Re⊥)2

⊥, which is zero if the sample is rotated by 90◦. In such a configuration,
the momentum component kf⊥ of the photoelectron only contains in plane components k‖ of the
Bloch wave momentum, which is of course completely conserved.

Most importantly however, the angular distribution of the matrix element of a rotated Bloch wave
is determined by 〈kf |(eikhν ·rε ·∇)U |Ψnk〉 ∝ 〈kf − khν + i

λe⊥|U †|0n〉. This is the Fourier
transform of the Wannier function rotated back into the experimental reference frame.

1.6.2 Explicit rotation of atomic orbitals

Rotations in the ARPES experiments performed in this work can be expressed in terms of angles
angles β, θ and φ corresponding to rotations around the x-, the y- and the z-axis:

R(θ, φ, β) =




1 0 0

0 cosβ − sinβ

0 sinβ cosβ







cosφ − sinφ 0

sinφ cosφ 0

0 0 1







cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ




(1.51)
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or in general

R =




a b c

d e f

g h o


 (1.52)

Under such a rotation, the atomic orbitals |nlm〉 transform according to the coefficients Dl
m′,m =

〈n, l,m′|R(θ, φ, β)|n, l,m〉. Rather than calculating these coefficients explicitly, we perform the
transformation directly to the adapted orbital basis sets {s}, {px, py, pz} and {dx2−y2 , dxz, dz2 , dyz, dxy}
[45].

The trivial case of a spherical s-orbital under rotation simply transforms as

sx2+y2+z2 → s′x2+y2+z2 = Dss · sx2+y2+z2 = 1 · sx2+y2+z2

The p-orbitals, transform as functions x, y and z and the coefficients Dp′,p transforming orbitals
p to p′ hence simply can be expressed in terms of the rotation matrix:




px
py
pz


→




p′x
p′y
p′z


 =




a b c

d e f

g h o


 ·




px
py
pz




For the d-orbitals, the situation is not so easy anymore and we have to calculate the matrix
element 〈d′|R|d〉 explicitly. We demonstrate the method for one example and give the full result
down below:

Let us calculate 〈dx2−y2 |R|dx2−y2〉 for demonstration. CalculatingR(x2 − y2) we find

R(x2 − y2) = a2x2 + 2abxy + 2acxz + b2y2 + 2bcyz + c2z2

−d2x2 + 2dexy + 2dfxz + e2y2 + 2efyz + f2z2

= (a2 − d2)x2 + 2(ab− de)xy + 2(ac− df)xz

+(b2 − e2)y2 + 2(bc− ef)yz + (c2 − f2)z2 (1.53)
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The matrix elements with odd terms in x, y and z will vanish and we remain with:

〈dx2−y2 |R|dx2−y2〉 = 〈x2(a2 − d2)x2〉+ 〈x2(b2 − e2)y2〉+ 〈x2(c2 − f2)z2〉
−〈y2(a2 − d2)x2〉 − 〈y2(b2 − e2)y2〉 − 〈y2(c2 − f2)z2〉(1.54)

Integrals of the form 〈x4〉 give the same as 〈x4〉. Similarly, 〈x2y2〉 give the same as 〈x2z2〉 and
so forth. Collecting together all terms of type 〈x4〉 gives (a2− d2− b2 + e2) and collecting terms
of the type 〈x2y2〉 gives (b2 − e2 + c2 − f2 − a2 + d2 − c2 + f2) = −(a2 − d2 − b2 + e2)

and we finally have

〈dx2−y2 |R|dx2−y2〉 = (a2 − d2 − b2 + e2)
(
〈x4〉 − 〈x2y2〉

)

= (a2 − d2 − b2 + e2)
1

2

(
〈x4〉 − 2〈x2y2〉+ 〈y4〉

)

=
1

2
(a2 − d2 − b2 + e2) 〈(x2 − y2)2〉︸ ︷︷ ︸

≡1

(1.55)

The full result is




dx2−y2

dxz
dz2

dyz
dxy



→




d′x2−y2

d′xz
d′z2

d′yz
d′xy




=




a2−d2−b2+e2

2 (ac− df) 2c2−b2−a2−2f2+e2+d2
√

12
(bc− ef) (ab− de)

ag − bh ao+ cg 2co−bh−ag√
3

bo+ ch ah+ bg
2g2−d2−a2−2h2+e2+b2√

12

2go−df−ac√
3

4o2−2(h2+g2+f2+c2)+e2+d2+b2+a2

6
2ho−ef−cb√

3

2gh−ed−ab√
3

dg − eh do+ fg 2of−eh−dg√
3

eo+ fh dh+ eg

ad− be af + cd 2cf−eb−ad√
3

bf + ce ae+ bd



·




dx2−y2

dxz
dz2

dyz
dxy




(1.56)
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2 Resonant inelastic x-ray scattering

2.1 Summary

In the following chapter, we give a brief introduction to resonant inelastic x-ray scattering (RIXS)
in the framework of the Kramer-Heisenberg formalism. We show that the spectral weight of RIXS
can be reduced to matrix elements mostly sensitive to the on site properties of the wave functions
involved. Based on this finding and the Wigner-Eckart theorem, we develop a formalism to
estimate the relative spectral weight of transitions to final states with different total symmetries.
We further briefly address the problem of self absorption in bulk systems and thin films.

2.2 Introduction

During the past decade, resonant inelastic x-ray scattering (RIXS) became increasingly popular,
especially in the domain of correlated electron physics [46]. Even if more and more spectrometers
with higher and higher resolution are under construction all over the planet,1 the available machine
time cannot satisfy the increasing demand for experimental shifts. E.g. “the overbooking factor
(i.e., the ratio of requested shifts to available shifts) at each station of the ADRESS beamline is
typically > 4” [48]. For a researcher, every minute of granted beam time is obviously precious
and the experiment should thus be subject to a careful preparation. In contrast to ARPES, RIXS
is a second order process and the underlying cross sections thus very low, which results in
typical data acquisition times on the order of hours - with respect to minutes in ARPES - for
one spectrum. Performing time consuming k-space mapping experiments therefore requires
an optimized experimental geometry with respect to the sample and the desired effect. The
experimentalist should be able to perform an “educated guess” of what geometry - e.g. what
polarization - and what excitation energy to use to observe the desired effect.

Similar to RAMAN spectroscopy, careful consideration of the experimental geometry with

1E.g. high resolution spectrometer “Centurion” (R = 100000) and a high throughput spectrometer “Viking”
(R = 5000) are currently under construction at NSLS II, [47].
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Chapter 2. Resonant inelastic x-ray scattering

respect to the the point group symmetry of the sample therefore is important. So is the detailed
knowledge about the final state properties of the related x-ray absorption spectra.

Even if these fundamental considerations sound trivial, the situation becomes less obvious for
the “less experienced” researcher typically carrying out the experiment. Rather than resuming
a complete theory of RIXS, the following chapter aims to depict some useful tools to find a
promising geometry.2

2.3 The RIXS cross section

In the Kramers–Heisenberg picture, the RIXS amplitude is described as [51]

F (hν, hν ′) =
∑

f

∣∣∣∣∣
∑

i

〈f |T̂ 2|i〉〈i|T̂ 1|g〉
Ei − Eg − hν − iΓi

∣∣∣∣∣

2

δ(hν − hν ′ + Eg − Ef ) , (2.1)

where T̂ 1/2 = ε1/2 · p̂ e±ik2r is the transition operator for absorption (emission) of a photon with
polarization ε1 (ε2), energy hν (hν ′) and wavevector k1 (k2). |g〉, |i〉 and |f〉 are the ground-,
the intermediate and the final state in the RIXS process and Eg, Ei and Ef their corresponding
energies.

In the absorption process, a core electron is excited above the Fermi level, forming an excited
core-hole electron state |i〉. In the subsequent de-excitation process, an electron refills the core-
hole, leaving the system either in its groundstate |f〉 = |g〉 (resonant elastic scattering) or in some
excited state |f〉 6= |g〉 (resonant inelastic scattering).

From Eq. 2.1 we immediately can see the main difference between RIXS and non-resonant
x-ray scattering 〈f |Hint|g〉: only the atoms absorbing the photon hν, are directly involved in the
resonance process and contribute coherently to the RIXS amplitude. This intimate connection
between the excitation and de-excitation process will be the main justification for the symmetry
selectivity of both absorption and re-emission process exploited in the following sections.

We now assume that an electron interacts with only one photon at a time and that Coulomb
interaction does not significantly perturb the other electrons during the excitation and de-excitation
process. This “frozen core approximation” is valid only in case the excited charge carriers are
sufficiently delocalized and therefore screening effects only marginally affect the other electrons,
i.e. if the excitations concern valence states. The many particle wave functions |g〉 and |f〉 can
thus be approximated as single particle wave functions. In an ordered system, initial and final
states are naturally described by Bloch functions of the form

2For a more thorough introduction to RIXS, the reader is referred to refs. 49 and 50.
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2.3. The RIXS cross section

|g〉 = eiki·rvki(r)

|f〉 = eikf ·rckf (r) (2.2)

where vki and cki denote lattice periodic functions of the valence and conduction band, respec-
tively. The intermediate state – strongly localized by the Coulomb force in between core-hole and
electron – may be represented by an atomic wave function with core level index n and centered
at atomic positionRj

|i〉 = Ψn(r −Rj) . (2.3)

We now can calculate the matrix elements of Eq. 2.1 more explicitly. Making use of the periodicity
of vki and cki and performing a coordinate transformation r → x −Rj and d3x = d3r, we
obtain

〈f |T̂ 2|i〉 =

∫
e−ikf ·rc∗kf (r)ε2 · p̂2e

−ik2rΨn(r −Rj)d
3r

=

∫
e−ikf ·(x+Rj)c∗kf (x)ε2 · p̂2e

−ik2(x+Rj)Ψn(x)d3x

= e−i(kf+k2)·Rj

∫
eikf ·xc∗kf (x)ε2 · p̂2e

−ik2xΨn(x)d3x (2.4)

and in a similar way

〈i|T̂ 1|g〉 = ei(ki+k1)·Rj

∫
Ψn(x)ε1 · p̂1e

ik1xeiki·xvki(x)d3x (2.5)

Carrying out the sum
∑

i partially over all intermediate state lattice sites Rj in Eq. 2.1 and
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Chapter 2. Resonant inelastic x-ray scattering

approximating
∑

R as an integral
∑

R → N
V

∫
d3R, we can simplify

∑

Rj

ei(ki+k1−kf−k2)·Rj =
N

V
δ(ki + k1 − kf − k2) , (2.6)

and find the conservation of total momentum. This important finding is especially exploited
in RIXS experiments used to determine the dispersion relation of low energy excitations like
spinwaves [52, 53].

We now write the periodic functions vki and cki in terms of maximally localized Wannier
functions Φn(r −R)

vki = e−iki·r
∑

R

eiki·RΦn(r −R) (2.7)

c∗kf = e−ikf ·r
∑

R

eikf ·RΦn(r −R) (2.8)

and find the remaining integrals to be of the form

∫
eikf ·xc∗kf (x)ε2 · p̂2e

−ik2xΨn(x)d3x =
∫
eikf ·xe−ikf ·x

∑

R

eikf ·RΦn(x−R)ε2 · p̂2e
−ik2xΨn(x)d3x =

∑

R

eikf ·R
∫

Φn(x−R)ε2 · p̂2e
−ik2xΨn(x)d3x (2.9)

and

∫
Ψn(x)ε1 · p̂1e

ik1xeiki·xvki(x)d3x =

∑

R

eki·R
∫

Ψn(x)ε1 · p̂1e
ik1xΦn(x−R)d3x (2.10)
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2.4. Momentum transfer

Assuming that the intermediate state wave function is strongly localized by the core-hole electron
attraction, the major contribution of the sum

∑
R is covered by the on site term R = 0. We

further notice that the matrix elements of the RIXS process - as similar to ARPES - can again
be written in terms of local integrals. We will thus in the following make use of the symmetry
properties of the local Hamiltonian to obtain an “educated guess” of the expected RIXS amplitude.

2.4 Momentum transfer

The typical experimental geometry (e.g. SAXES at SLS or BL07LSU at SPring 8) is shown in
Fig. 2.1. The wavevector of the ingoing light k1 can be expressed as a function of its energy hν
and the angles of incidence α and φ and we find

k1 = −hν
h̄c




cosφ − sinφ 0

sinφ cosφ 0

0 0 1


 ·




1 0 0

0 cos(α) − sin(α)

0 sin(α) cos(α)


 ·




0

0

1




=
hν

h̄c



− sin(α) sinφ

sin(α) cosφ

− cos(α)


 . (2.11)

The outgoing light direction is related to the incoming light direction α and φ and the scattering
angle τ . By replacing α with τ + α− π in above formula we find

k2 =
hν

h̄c



− sin(τ + α) sinφ

sin(τ + α) cosφ

− cos(τ + α)


 . (2.12)

Assuming hν ∼ hν ′, the momentum transfer to the sample q = kf − ki = k1 − k2 is expressed
as

q =
hν

h̄c



− sinφ(sinα− sin(τ + α))

cosφ(sinα− sin(τ + α))

− cosα+ cos(τ + α)


 . (2.13)
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Chapter 2. Resonant inelastic x-ray scattering

Figure 2.1: Typical RIXS experimental configuration as employed at SAXES at SLS or BL07LSU
at SPring 8. The sample is represented by its natural coordinate system. The scattering angle τ is
kept fixed while the momentum transfer direction is varied by changing α.
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2.5. Basis functions of the tetrahedral system

The in plane momentum q‖ = | sinα− sin(τ +α)| is zero for α = arccos
(

1−cos τ√
2−2 cos τ

)
, which is

α = 45◦ for a scattering geometry τ = 90◦ and α = 25◦ for a scattering geometry τ = 130◦, i.e.
the specular geometries. Since α is confined by the sample surface, the out of plane component
q⊥ = | − cosα+ cos(τ + α)| is always nonzero.

2.5 Basis functions of the tetrahedral system

The systems studied in this work, anatase TiO2 as well as T-CuO are both systems with tetrahedral
point group symmetry. The following concepts are consequently demonstrated for D4h. The
irreducible representations and standard basis functions |Γ, γ〉 of D4h are tabulated in Tab. 2.1
[54].

stand.
Γ

γ
1 2

A1g 1 x2 + y2 + z2

A2g 2 xpy − ypx
B1g 3 x2 − y2

B2g 4 xy
Eg 5 ypz − zpy zpx − xpz
A1u 1 (x2 − y2)xyz
A2u 2 z
B1u 3 xyz
B2u 4 (x2 − y2)z
Eu 5 x y

Table 2.1: Definition of the irreducible representations and standard basis functions |Γ, γ〉 of
D4h. For example, the component of irreducible representation Eu transforming as y is labeled
|5, 1〉 in Griffith notation.

The basis functions are labeled in Griffith’s notation |Γ, γ〉 as used later in this work [55]. The
usefulness of this notation will become obvious by analogy to a spherical system: its basis
functions (e.g. of an atomic Hamiltonian), are given by the spherical harmonics |l,m〉, where
m = {−l...l}. All spherical harmonics with a fixed l belong to the same irreducible representation
of the symmetry group of rotations around a fixed point. Varying m selects distinct components,
i.e. the basis function of this representation.

In a non spherical system, |l,m〉 are no proper basis functions anymore. Their place is now taken
by the irreducible representations of the point group in focus, labeled by Γ. Their components -
which can be transformed into one another by the symmetry operations of the group - are labeled
by γ.

In D4h for example, the function x is a component of irreducible representation Eu. In Griffith’s
notation this corresponds to |5, 1〉− where the “−” sign indicates the parity. By a simple symmetry
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Chapter 2. Resonant inelastic x-ray scattering

operation, e.g. a rotation of 90◦ around the z-axis, x can be transformed into function y, in
Griffith’s notation |5, 2〉−, and therefore a component of the same irreducible representation. One
can thus use Γ and γ analogously to the orbital quantum numbers l and m of atomic physics.

2.6 Dipole approximation in RIXS

The wavelength of the soft x-rays we use in this work is large compared to the typical extension of
the excited core-hole (e.g. 100 eV∼ 12.4 Å). The transition operator T̂ can thus be approximated
as the leading order term of a Taylor series

T̂ =
e

mc
eikrε · p̂ ∼ e

mc
ε · p̂+ ... = −i h̄e

mc
ε · ∇̂ (2.14)

The components Tx ∝ ∂/∂x, Ty ∝ ∂/∂y, Tz ∝ ∂/∂z of this dipole operator T̂ transform like
the functions x, y and z. In analogy to the work of Matsubara et al. [56–59] and following the
group theoretical algebra developed by Tanabe and Sugano [60], Tanabe and Kamimura [61],
Griffith [55] as well as Fano and Racah [62], we will now make use of these symmetry properties
to reduce the matrix elements in Eq. 2.1.3

We start from the Wigner-Eckart theorem, which in Griffith’s notation [55] takes the form

〈Γγ|ÔΓ
γ |Γ′γ′〉 = 〈Γ||ÔΓ||Γ′〉

(
Γ Γ′ Γ

γ γ′ γ

)
(2.15)

where the matrix element of the operator Ô transforming as component γ of representation Γ

connects states transforming as components γ and γ′ of the representations Γ and Γ′ respectively.
Relation 2.15 holds strictly only for real components. The double-bar reduced matrix element
〈...||...||...〉 is independent of the component labels γ, γ′ and γ and can be conveniently defined
as [55]

〈Γ||ÔΓ||Γ′〉 ≡ cΓΓ′Γ
γγ′γ δΓ,Γ′⊗Γ :=

{
cΓΓ′Γ
γγ′γ ∀ Γ ∈ {Γ⊗ Γ′}
0 otherwise

, (2.16)

3Note that the following concepts are neither restricted to the point group symmetry D4h, nor to the dipole
approximation. In certain situations, it may we useful to estimate the quadropole terms contributing to the RIXS cross
section. In this case the components of the quadropole operator have to be considered. In D4h, these are transforming
as z2, x2 − y2, xy and xz/yz, and thus represented by irreducible representations A1g , B1g , B2g and Eg .
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2.6. Dipole approximation in RIXS

where cΓΓ′Γ
γγ′γ are arbitrary coefficients adapted to the explicit problem to solve. In other words,

〈...||...||...〉 can only be nonzero if the total symmetry is conserved, i.e. if the final state has a
symmetry which is contained in the direct product of initial state symmetry and the symmetry of
the operator Ô.

The tensor
(

Γ Γ′ Γ
γ γ′ γ

)
contains coupling coefficients determined by the point group of the system –

analogous to the Wigner 3-j symbols (∝ Clebsch Gordan coefficients) in spherical symmetry SO3.
For the most common point groups, these are tabulated e.g. in Refs. 55 and 54 or online [63].

As discussed in the previous section, the group representations Γ, Γ′ and Γ “act” as the orbital
quantum number l and their components γ, γ′ and γ as the magnetic quantum number m. Let
us illustrate this concept on a simple example: photon absorption in a single atom. The basis
function of this problem are the spherical harmonics |l,m〉, where m runs from −l to l. The
dipole operator Ô = T̂ is represented by |lT ,mT 〉 = |1, 0〉 for linear polarized light and |1,±1〉
for circular polarized light. The transition propability to excite the initial state electron |lg,mg〉
into a final state |lf ,mf 〉, is given by the dipole matrix element 〈lf ,mf |T |lg,mg〉. The addition
of angular momentum imposes that adding angular momentum lT = 1 to lg can only give final
state results lf = lg − 1, lg and lg + 1. Further, the total parity w = (−1)l has to be conserved,
i.e. wf = (−1)lf = (−1)lT (−1)lg = −wg and therefore lf 6= lg. These arguments describe the
action of the reduced matrix element 〈...||...||...〉. The remaining component mg depends on the
Clebsch Gordon coefficients, which give non-zero contributions only if mf = mg + mT . We
thus recover the well known selection rules

∆l = ±1

∆m = 0, ±1 . (2.17)

(2.18)

In a non-spherical system, the matrix element of Eq. 2.15 analogously will only be non-zero, if Γ

is contained in the direct product Γ⊗ Γ′ and if the coefficients
(

Γ Γ′ Γ
γ γ′ γ

)
are nonzero. Given that

in a general experimental configuration, the dipole operator T̂ can have components of several
different irreducible representations, the total matrix element can be expressed as the weighted
sum of all independent partial components of the operator T̂ . The total transition matrix element
therefore involves all nonzero projections of the final state onto a linear combination of the form
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Chapter 2. Resonant inelastic x-ray scattering

|Γγ〉 = Ô
Γ
γ |Γ′γ′〉

=
∑

Γ′′,γ′′
|Γ′′γ′′〉〈Γ′′γ′′|

︸ ︷︷ ︸
≡1

Ô
Γ
γ |Γ′γ′〉

=
∑

Γ′′,γ′′
|Γ′′γ′′〉〈Γ′′||ÔΓ||Γ′〉

(
Γ′′ Γ′ Γ

γ′′ γ′ γ

)

=
∑

Γ′′,γ′′
|Γ′′γ′′〉cΓ′′Γ′Γ

γ′′γ′γ δΓ′′,Γ⊗Γ′

(
Γ′′ Γ′ Γ

γ′′ γ′ γ

)
, (2.19)

where the completeness of the orthonormal basis set {|Γγ〉} is exploited.

2.6.1 Symmetry selectivity in the RIXS excitation process

Figure 2.2: Typical RIXS experimental configuration as employed at SAXES at SLS or BL07LSU
at SPring 8. The sample is represented by its natural coordinate system. The scattering angle τ
is kept fixed while the momentum transfer direction is varied by changing α. (left) σ-polarized
configuration (polarized, ξ = 0), (right) π-polarized configuration (depolarized, ξ = π/2).
Note that the polarization of the outgoing light in general can contain polarized and depolarized
components. The azimuthal orientation φ is typically fixed once the sample is mounted.

Let us now apply the above findings to a RIXS experiment done on a system of D4h point group
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2.6. Dipole approximation in RIXS

εx

τ

τ + α− π
hν

α

τ

hν ′

εz

Figure 2.3: Projections of a π-polarization vector onto its principal components εx and εz .

symmetry, like the perovskite oxides, the cuprates or titanates discussed in this thesis. The typical
experimental geometry (e.g. SAXES at SLS or BL07LSU at SPring 8) is again shown in Fig. 2.2,
for simplicity, we keep the scattering plane fixed in yz. The coordinate system is adapted to the
basis functions describing the sample, i.e. the z axis is oriented along its surface normal.

The Kramer Heisenberg formula of Eq. 2.1 involves two dipole matrix elements, one for the
photon absorption and one for the photon emission process. For the absorption, we are primarily
interested in the relative orientation of the incident polarization with respect to the symmetry
planes of the sample as sketched in Fig. 2.3. Assuming linear polarization, the vector potential of
the incoming light can be written as

ε1 =




εx
εy
εz


 = ε




cosφ − sinφ 0

sinφ cosφ 0

0 0 1


 ·




1 0 0

0 cosα − sinα

0 sinα cosα


 ·




cos ξ

sin ξ

0




= ε




cosφ cos ξ − cosα sinφ sin ξ

sinφ cos ξ + cosα cosφ sin ξ

sinα sin ξ


 , (2.20)

where α is the angle in between the surface normal z and the incoming light, and ξ is the
polarization angle. φ is the azimuthal rotation angle of the sample, which will be typically fixed
once the sample is mounted. Depending on (φ, α, ξ), the dipole operator can have projections
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onto x, y and z components and according to Tab. 2.1 is contained both in the Eu(x, y) and
A2u(z) irreducible representations of D4h.

To simplify the discussion, we now keep the scattering plane oriented along a high symmetry plane
yz with φ = 0, but give the general results in the associated tables. We identify two important
experimental configurations: in the σ-polarized configuration (ξ = 0), the polarization vector
ε is along x and perpendicular to the scattering plane yz. The dipole operator T̂

σ
1 representing

the incident light thus is contained solely in the Eu(x) (→ |51〉−) representation of D4h. In
the π-polarized configuration (ξ = π/2), the polarization vector lies in the scattering plane yz.
Now, a fraction cosα of the photons represented by T̂

π
1 involve transitions of Eu(y) (→ |52〉−),

whereas a fraction sinα involve transitions of A2u(z) (→ |21〉−) symmetry.

|g〉 T1 Γ′′γ′′

A1 A2(z) B1(x2 − y2) B2(xy) E(x) E(y)

Γ′γ′ × Γγ × |11〉 |21〉 |31〉 |41〉 |51〉 |52〉
E(x) |51〉

√
(cosφ cos ξ − cosα sinφ sin ξ)2 0 0 0 0 1 0

A1(x) |11〉 1 E(y) |52〉
√

sinφ cos ξ + cosα cosφ sin ξ)2 0 0 0 0 0 1
A2(z) |21〉

√
(sinα sin ξ)2 0 1 0 0 0 0

Table 2.2: Symmetry selectivity in the RIXS excitation process from an A1g groundstate in D4h

symmetry. The use of this table is explained in detail in the caption of Tab. 2.5.

Absorption from an A1g groundstate

In undoped anatase TiO2, the d0 groundstate of the system |g〉 is of spherical A1g symmetry and
thus can be labeled by basis function |11〉+ in Griffith notation. Now we apply the Wigner-Eckart
theorem to the absorption process in σ-polarization in order to calculate the linear combination
|iσ〉 associated to all symmetry allowed XAS final state projections |Γ, γ〉 with non zero matrix
elements.

|iσ〉 =
∑

Γ′′,γ′′
cΓ′′15
γ′′11 δΓ′′,5

(
Γ′′ 1 5

γ′′ 1 1

)
|Γ′′γ′′〉

= c515
111|51〉−

= |51〉− (2.21)

The coefficient c515
111 is determined by the orientation of the dipole operator ε1 with respect to

the crystal coordinates, or in other words by the fraction of photons polarized along x, namely
c515

111 =
√

(cosφ cos ξ − cosα sinφ sin ξ)2 = 1 for φ = ξ = 0.

In an analogous way, we yield

44



2.6. Dipole approximation in RIXS

|iπ〉 =
∑

Γ′′,γ′′

(
cΓ′′15
γ′′12 δΓ′′,5

(
Γ′′ 1 5

γ′′ 1 2

)
+ cΓ′′12

γ′′11 δΓ′′,2

(
Γ′′ 1 2

γ′′ 1 1

))
|Γ′′γ′′〉

= c515
212|52〉− + c212

111|21〉−

= cosα|52〉− + sinα|21〉− (2.22)

in π-polarization ξ = π/2. Whereas we only find spectral weight from Eu total symmetry final
states in σ-polarization, we can find additional final states of A2u symmetry in π-polarization.
The general result of an arbitrary experimental configuration is presented in Tab. 2.2.

Absorption from a B2g groundstate

|g〉 T1 Γ′′γ′′

A1 A2(z) B1(x2 − y2) B2(xy) E(x) E(y)

Γ′γ′ × Γγ × |11〉 |21〉 |31〉 |41〉 |51〉 |52〉
E(x) |51〉

√
(cosφ cos ξ − cosα sinφ sin ξ)2 0 0 0 0 0 1

B2(xy) |41〉 1 E(y) |52〉
√

sinφ cos ξ + cosα cosφ sin ξ)2 0 0 0 0 1 0
A2(z) |21〉

√
(sinα sin ξ)2 0 0 0 0 0 0

Table 2.3: Symmetry selectivity in the excitation process from a ground state B2g in D4h

symmetry. The use of this table is explained in detail in the caption of Tab. 2.5.

Doping anatase TiO2 with oxygen vacancies introduces Ti3+ sites with d1
xy character. Locally,

the system now can be described by a 3dxy ground state with ground state symmetry B2g (|41〉+).

Again, we apply the Wigner-Eckart theorem to the absorption process in σ- and π-polarization in
order to calculate all symmetry allowed XAS final states:

|iσ〉 =
∑

Γ′′,γ′′
cΓ′′45
γ′′11 δΓ′′,5

(
Γ′′ 4 5

γ′′ 1 1

)
|Γ′′γ′′〉

= c545
211|52〉− (2.23)

where the weight c545
211 is determined by the fraction of photons causing the transition, namely

c545
211 = 1.

In an analogous way, we have
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|iπ〉 =
∑

Γ′′,γ′′


c

Γ′′45
γ′′12 δΓ′′,5

(
Γ′′ 4 5

γ′′ 1 2

)
+ cΓ′′42

γ′′11 δΓ′′,2

(
Γ′′ 4 2

γ′′ 1 1

)

︸ ︷︷ ︸
=0


 |Γ

′′γ′′〉

= c545
112|51〉− = cosα|51〉− . (2.24)

Absorption from a B1g groundstate

|g〉 T1 Γ′′γ′′

A1 A2(z) B1(x2 − y2) B2(xy) E(x) E(y)

Γ′γ′ × Γγ × |11〉 |21〉 |31〉 |41〉 |51〉 |52〉
E(x) |51〉

√
(cosφ cos ξ − cosα sinφ sin ξ)2 0 0 0 0 0 1

B1(x2 − y2) |31〉 1 E(y) |52〉
√

sinφ cos ξ + cosα cosφ sin ξ)2 0 0 0 0 1 0
A2(z) |21〉

√
(sinα sin ξ)2 0 0 0 0 0 0

Table 2.4: Symmetry selectivity in the excitation process from a B1g ground state in D4h

symmetry. The use of this table is explained in detail in the caption of Tab. 2.5.

In tetragonal CuO, the hole of the d9 groundstate mostly occupies the dx2−y2 orbital. Tab. 2.4
therefore summarizes the same consideration starting from a B1g groundstate. We immediately
see that the result is equivalent to the result obtained for B2g.

It is important to note that a high exchange coupling J in the correlated cuprates leads to
antiferromagnetic ordering. The ground state wave function therefore necessarily needs to take
into account the spin and the ground state symmetry is more appropriately described by the
according magnetic (Shubnikov) point group.

2.6.2 Symmetry selectivity in the re-emission process

In the de-excitation process, the system will create photons represented by the dipole operator
T̂ 2. The principal components of T̂ 2 are Eu(x), Eu(y) and A2u(z) as exemplarily demonstrated
in Fig. 2.4. However, only photons with principal components that have a non-zero projections
perpendicular to the outgoing light direction will be measured. In order to calculate the number
of photons escaping along the outgoing light direction k2, we therefore need to calculate the
projections of ex = {1, 0, 0}, ey = {0, 1, 0} and ez = {0, 0, 1} onto the polarization plane. The
outgoing light direction is
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Tz

hν hν ′

|P2z|

α

τ

τ + α− π

Figure 2.4: Projection |P2z| of the principal component Tz onto the polarization plane of the
emitted light.

h̄c

hν
k2 =



− sin(τ + α) sinφ

sin(τ + α) cosφ

− cos(τ + α)


 , (2.25)

The projection of an arbitrary vector v onto the polarization plane perpendicular to k2 is given by

P 2 = v − (v · k2

k2
)
k2

k2
. (2.26)

The absolute projections |P2x|, |P2y|, |P2z| of ex = {1, 0, 0}, ey = {0, 1, 0} and ez = {0, 0, 1}
onto the outgoing polarization plane can therefore be easily calculated as



|P2x|
|P2y|
|P2z|


 =




1
2

√
3 + cos(2φ) + 2 cos [2(α+ τ)] sin2 φ

1
2

√
3− cos(2φ) + 2 cos [2(α+ τ)] cos2 φ√

sin2(α+ τ)


 . (2.27)
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Chapter 2. Resonant inelastic x-ray scattering

|i〉 T2 Γ′′γ′′

A1 A2(z) B1(x2 − y2) B2(xy) E(x) E(y)

Γ′γ′ × Γγ × |11〉 |21〉 |31〉 |41〉 |51〉 |52〉
E(x) |51〉 1

2

√
3 + cos(2φ) + 2 cos [2(α+ τ)] sin2 φ 1/

√
2 0 1/

√
2 0 0 0

E(x) |51〉
√

(cosφ cos ξ − cosα sinφ sin ξ)2 E(y) |52〉 1
2

√
3− cos(2φ) + 2 cos [2(α+ τ)] cos2 φ 0 1/

√
2 0 1/

√
2 0 0

A2(z) |21〉
√

sin2(α+ τ) 0 0 0 0 0 0
E(x) |51〉 1

2

√
3 + cos(2φ) + 2 cos [2(α+ τ)] sin2 φ 0 −1/

√
2 0 1/

√
2 0 0

E(y) |52〉
√

(sinφ cos ξ + cosα cosφ sin ξ)2 E(y) |52〉 1
2

√
3− cos(2φ) + 2 cos [2(α+ τ)] cos2 φ 1/

√
2 0 −1/

√
2 0 0 0

A2(z) |21〉
√

sin2(α+ τ) 0 0 0 0 0 0
E(x) |51〉 1

2

√
3 + cos(2φ) + 2 cos [2(α+ τ)] sin2 φ 0 0 0 0 0 −1

A2(z) |21〉
√

(sinα sin ξ)2 E(y) |52〉 1
2

√
3− cos(2φ) + 2 cos [2(α+ τ)] cos2 φ 0 0 0 0 1 0

A2(z) |21〉
√

sin2(α+ τ) 0 0 0 0 0 0

Table 2.5: Symmetry selectivity in the re-emission process after absorption from a spherical
ground state A1g in D4h symmetry. Note that parity is omitted. The table consists of three major
parts. The left part, here marked by |i〉, marks the initial state of the transition. The column
indicated by “×” gives the relative weight of initial state Γ′γ′. The middle part, here indicated by
T2, gives the relevant transitions Γγ and their relative weight indicated by “×”. The right part
summarizes all coupling coefficients between initial state and transition operator. To find the
spectral weight of a certain final state |Γ′′, γ′′〉, one has to sum over all non zero components of
the associated column multiplied by the weights “×” of the same row. For final state |5, 2〉 this

would be e.g.
(
−1

2

√
3 + cos(2φ) + 2 cos [2(α+ τ)] sin2 φ

√
(sinα sin ξ)2

)2
.

Re-emission after absorption from an A1g groundstate

The dipole allowed intermediate states of the RIXS process calculated in 2.6.1 will now be used
to apply the Wigner-Eckart theorem a second time, corresponding to the emission process in the
RIXS process. The calculation is completely analogous - except that coefficients cΓΓ′Γ

γγ′γ are now
determined by {|Px|, |Py|, |Pz|} - and itemized in detail in Tab. 2.5.

We find that dipole allowed contributions to the final state in σ-polarized (ξ = 0) are described
by the linear combination

|fσ〉 =
1√
2

[
|11〉+ + cos(τ + α)|21〉+ + |31〉+ + cos(τ + α)|41〉+

]

and for π-polarization (ξ = π/2)

|fπ〉 =
1√
2

[
cosα cos(τ + α)|11〉+ − cosα|21〉+ − cosα cos(τ + α)|31〉+ + cosα|41〉+

]

+ sinα cos(τ + α)|51〉+ − sinα|52〉+ .
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2.6. Dipole approximation in RIXS

Note that we again kept φ = 0 for ease of discussion. The spectral weight of an isolated final
state |Γ, γ〉 is finally given by I ∝ |〈Γ, γ|f〉|2 and summarized in Tab. 2.6.

φ pol A1g A2g B1g B2g Eg(yz) Eg(xz)

0 σ 1
2

1
2 cos2(α+ τ) 1

2
1
2 cos2(α+ τ) 0 0

0 π 1
2 cos2 α cos2(α+ τ) 1

2 cos2 α 1
2 cos2 α cos2(α+ τ) 1

2 cos2 α cos2(α+ τ) sin2 α sin2 α

π/4 σ 1
4(3 + cos [2(α+ τ)]) 0 0 1

4(3 + cos [2(α+ τ)]) 0 0
π/4 π 1

4 cos2 α(3 + cos [2(α+ τ)]) 0 0 1
4 cos2 α(3 + cos [2(α+ τ)]) 1

4 sin2 α(3 + cos [2(α+ τ)]) 1
4 sin2 α(3 + cos [2(α+ τ)])

Table 2.6: Spectral weight of the final states as a function of scattering angle τ and the incoming
light direction α starting from a A1g groundstate.

The expected dependence of all dipole allowed final states on the incidence angle α for σ and
π-polarization is plotted in Fig. 2.5. For φ = 0, final states of A1g and B1g symmetry, behave in
the same way. So behave final states of A2g and B2g symmetry. For φ = 45◦, A1g groups with
B2g and A2g with B1g. Apart from these “degeneracies”, the behavior of the branches is quite
complex, and it is often possible suppress certain final state symmetries with respect to others.

Re-emission after absorption from a B1g or B2g groundstate

|i〉 T2 Γ′′γ′′

A1 A2(z) B1(x2 − y2) B2(xy) E(x) E(y)

Γ′γ′ × Γγ × |11〉 |21〉 |31〉 |41〉 |51〉 |52〉
E(x) |51〉 1

2

√
3 + cos(2φ) + 2 cos [2(α+ τ)] sin2 φ 1/

√
2 0 1/

√
2 0 0 0

E(x) |51〉
√

sinφ cos ξ + cosα cosφ sin ξ)2 E(y) |52〉
√

sinφ cos ξ + cosα cosφ sin ξ)2 0 1/
√

2 0 1/
√

2 0 0
A2(z) |21〉

√
sin2(α+ τ) 0 0 0 0 0 0

E(x) |51〉 1
2

√
3 + cos(2φ) + 2 cos [2(α+ τ)] sin2 φ 0 −1/

√
2 0 1/

√
2 0 0

E(y) |52〉
√

(cosφ cos ξ − cosα sinφ sin ξ)2 E(y) |52〉
√

sinφ cos ξ + cosα cosφ sin ξ)2 1/
√

2 0 −1/
√

2 0 0 0
A2(z) |21〉

√
sin2(α+ τ) 0 0 0 0 0 0

Table 2.7: Symmetry selectivity in the re-emission process from a ground state B1g or B2g in
D4h symmetry. The use of this table is explained in detail in the caption of Tab. 2.5.

From the absence of spectral weight for A2u contributions to the RIXS intermediate state (see
Tabs. 2.3 and 2.4) we can immediately infer that the Eg states must be suppressed in the final
state. However, the c-coefficients in σ and π-polarization exchange according to Tab. 2.7 and we
find

|fσ〉 =
1√
2

[
cos(τ + α)|11〉+ − |21〉+ − cos(τ + α)|31〉+ + |41〉+

]

as well as

|fπ〉 =
1√
2

[
cosα|11〉+ + cosα cos(τ + α)|21〉+ + cosα|31〉+ + cosα cos(τ + α)|41〉+

]
.
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Chapter 2. Resonant inelastic x-ray scattering

ô = 90° ô = 130° Ö = 0°
ó - pol

Ö = 0°
ð - pol

gr. em. gr. inc. gr. em. gr. inc.

Ö = 45°
ð - pol

Ö = 45°
ó - pol

Figure 2.5: Angular dependence of all dipole allowed final states from a A1g ground state in σ-
and π-polarized configuration. The results are shown (left) for scattering angles τ = 90◦ and
(right) 130◦ as used throughout the scope of this thesis.
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2.6. Dipole approximation in RIXS

φ pol A1g A2g B1g B2g Eg(yz) Eg(xz)

0 σ 1
2 cos2(α+ τ) 1

2
1
2 cos2(α+ τ) 1

2 0 0
0 π 1

2 cos2 α 1
2 cos2 α cos2(α+ τ) 1

2 cos2 α 1
2 cos2 α cos2(α+ τ) 0 0

π/4 σ 1
4(3 + cos [2(α+ τ)]) 0 0 1

4(3 + cos [2(α+ τ)]) 0 0
π/4 π 1

4 cos2 α(3 + cos [2(α+ τ)]) 0 0 1
4 cos2 α(3 + cos [2(α+ τ)]) 0 0

Table 2.8: Spectral weight of the final states as a function of scattering angle τ and the incoming
light direction α starting from a B1g or B2g groundstate.

Clearly, having started from a B1g or B2g ground state flips the α-dependence in between A1g

and A2g as well as B1g and B2g states with respect to a A1g groundstate. Except of the inverted
labeling, Fig. 2.5 therefore stays valid. Turning the system φ = 45◦ about the z axis gives
identical results to the A1g groundstate except for the suppression of Eg states in the former case.
Going from φ = 0 to φ = 45◦, we thus can expect a complete suppression of states A2g and B1g.

It is important however that our estimation only gives information on the total symmetry. Assum-
ing that close to zero energy loss, the electronic wave function will hardly have changed. The
total symmetry so has to be decomposed into the symmetry of the electronic wave function B1g

or B2g and the symmetry of the excitation remaining in the crystal.

It is necessary to note again that formally above method should apply equally for the cuprates.
However, previous considerations did not take into account the full symmetry of the wavefunction,
which explicitly includes the spin. In order to obtain a reliable result, the ground state symmetry –
including magnetic long range order – must be known and described by the appropriate magnetic
(Shubnikov) point group and not by the ordinary point groups. Given that the magnetic ground
state of T-CuO (compare Ch. 6) is not known to date, we forbear from doing such a treatment in
this work.4 A careful consideration of symmetry selectivity in the antiferromagnetic cuprates has
been done in detail in refs. 69 and 217.

2.6.3 Intermediate state selection

In some cases, we find the resonance of a distinct RIXS signal at excitation energies that
correspond to a certain orbital configuration of the intermediate or in other words the XAS final
state. In Ch. 4, we e.g. find a phonon resonance in anatase TiO2 at XAS peaks relating to
electronic transitions into dx2−y2 and dz2 orbitals. Such a situation can in principle help to further
narrow the criteria for final state selection. Given this orbital selectivity, the intermediate state
must be contained in the representations of the possible core hole state. In Tab. 2.9 we apply this
idea to a 2p53d1 state and show the multiplication table of the according subspace of D4h.

The intermediate states with the electron in a dx2−y2 or dz2 orbital can contain both the Eu and
A2u representations. Therefore, all possible final state symmetries – discussed in Tab. 2.5 – can
be expected in the RIXS experiment.

4The coupling coefficients for the magnetic point groups are tabulated in refs. 64–67 and an application of magnetic
point groups to symmetry selection rules is given in Ref. 68.
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Chapter 2. Resonant inelastic x-ray scattering

“Oh” “eg” “t2g”
D4h B1g(dx2−y2) a1g(dz2) b2g(dxy) eg(dyz/dxz)

Eu(px/py) Eu Eu Eu A1u,A2u,B1u,B2u

A2u(pz) B2u A2u B1u Eu

Table 2.9: Intermediate state selection for a p → d transition. In a d0 system like TiO2, the
excited electron can occupy “t2g” and “eg” states. Thus all direct product intermediate states are
possible. In a d9 system like CuO, the excited electron can only occupy the B1g(x

2 − y2) orbital.
Intermediate state selection thus allows only the Eu and B2u states of which only the Eu can be
reached in XAS.

2.7 Selfabsorption

So far, we neglected the angular dependent effect of selfabsorption for the modulation of the
RIXS intensity. A thorough correction method has been presented in [71]. Here, we will reduce
the treatment to a very simple model. Incident x-rays hν traveling a distance l in the solid will
exponentially lose intensity

I(hν, l) ∝ e−µ(hν)l , (2.28)

where µ(hν) is the absorption cross section.5 Consequently, the quantity−dI ∝ µ(hν)e−µ(hν)ldl

will be absorbed along the infinitesimal path length [l, l+ dl]. Some fraction of this number – e.g.
determined by the symmetry considerations discussed in the last chapter – will cause the RIXS
transition of Eq. 2.1 and create photons hν ′. On their way l′(l, α, τ) out of the solid, these x-rays
will lose intensity as well, resulting in an effect called self-absorption. According to Fig. 2.6, the
law of sines gives

l

cos(τ + α− π)
=

l′

cos(α)
. (2.29)

and we therefore find

dIRIXS(hν, hν ′, l) ∝ µ(hν)e
−
(
µ(hν)+µ(hν′) cos(α)

cos(τ+α−π)

)
l
dl . (2.30)

5In general, µ(hν) depends on the orientation of the polarization vector with respect to the crystal orientation.
In titanates like TiO2, dichroism effects are typically weak and µ(hν) thus can be treated isotropically. In the
non-isotropic case, the absorption cross section µ(hν) becomes a function of experimental geometry α and φ and the
polarization ξ. µ(hν′) additionally depends on the scattering angle τ .
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Figure 2.6: Self absorption geometry in RIXS.

2.7.1 Selfabsorption in a bulk material

To obtain the total RIXS signal in a bulk material, we need to integrate over the half-space∫∞
0 dIRIXS and obtain

IRIXS(hν, hν ′) ∝ 1

1 + µ(hν′)
µ(hν)

cos(α)
cos(τ+α)

. (2.31)

Fig. 2.7 shows the results of Eq. 2.31 for scattering angles τ = 90◦ and 130◦ and different ratios
µ(hν ′)/µ(hν) of the absorption coefficient of out and ingoing x-rays. Clearly, self absorption
is not symmetric around the specular angle. Towards grazing incidence, suppression is mostly
determined by the absorption of the incident beam. Towards grazing emission however, the
traveling distance of the outgoing light is long and suppression of RIXS signal high. Additionally,
outgoing photons of different energy are subject to the energy dependence of the absorption cross
section µ(hν ′), which modifies the spectra in an inhomogeneous way.

For µ(hν ′) � µ(hν) – which can be the case when exciting with an energy higher than the
main absorption feature in XAS – significant spectral weight can only be expected close to
grazing incidence. If µ(hν ′) can be neglected however – as can be the case for RIXS features
far away from the absorption edge probed – signal will only be significantly reduced close to
grazing emission. If absorption coefficients of incident light and RIXS signal are comparable, the
RIXS intensity to some approximation goes linear for scattering angles τ = 90◦. Towards larger
scattering angles τ , this trend flattens considerably and intensity would remain constant for a
broad interval of α in backscattering geometry. Experimental configurations with large scattering
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ô = 90° ô = 130°

gr. em. gr. inc. gr. em. gr. inc.

Figure 2.7: Self absorption in bulk samples. Results are shown for two experimental geometries
with (left) τ = 90◦ and (right) τ = 130◦ scattering angle in units of the total RIXS signal created
in the solid. The characteristic parameter µ(hν ′)/µ(hν) is varied over 4 orders of magnitude.

angle therefore not only provide a wider range of momentum transfer vectors but considerably
improve the “dynamic range” of angles to work with.

2.7.2 Selfabsorption in a thin film

In case of a thin film – like the thin films of T-CuO we present in Ch. 6 – one can neglect the
contribution of the bulk and needs to integrate Eq. 2.30 only over film thickness d:

∫ d/ cosα

0
dIRIXS =

cos(α+ τ)(e
µ(hν) d

cosα

(
µ(hν′)
µ(hν)

cosα
cos(α+τ)

−1
)
− 1)

µ(hν′)
µ(hν) cosα− cos(α+ τ)

(2.32)

The results for τ = 90 and 130◦ scattering geometry obtained for several normalized film
thicknesses d × µ(hν) = 0.1, 1 and 10 are shown in Fig. 2.8. For small film thicknesses,
selfabsorption is quite insensitive to the ratio µ(hν ′)/µ(hν). The RIXS intensity suppression so
remains largely independent on hν ′ and the spectra are modified in a homogeneous way. In the
limit of a thick film we approach the bulk result shown in Fig. 2.7.
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d ì(hí) =0.1

d ì(hí) =1

d ì(hí) =10

ô = 90° ô = 130°

Figure 2.8: Self absorption in thin film samples. Results are shown for two experimental
geometries with (left) τ = 90◦ and (right) τ = 130◦ scattering angle in units of the total RIXS
signal created in the solid. The characteristic parameter µ(hν ′)/µ(hν) is varied over 4 orders of
magnitude for three different normalized film thicknesses d× µ(hν).
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3 Anatase TiO2 – a polaronic semicon-
ductor investigated by ARPES

3.1 Summary

In this chapter, we investigate the electronic structure of anatase TiO2 (001) surfaces on both
in situ prepared thin films and bulk single crystals by means of ARPES. We demonstrate the
possibility to fine tune electron doping through the amount of oxygen vacancies created in the
x-ray beam spot - which can be exploited in applications. We reveal the bottom of the conduction
band, a bulk dxy state similar to the conduction state observed previously in SrTiO3, which is
subject to significant e-ph coupling. The “peak-dip hump” signature of the ARPES spectra are
indicative for the formation of so called large polarons, and points out the importance of distinct
longitudinal optical (LO) phonons for charge renormalization in this material. In the high doping
limit, the single polaron wavefunctions start to overlap and a weakly correlated Fermi liquid
picture becomes more adequate.

3.2 Motivation

The anatase polymorph of TiO2 is a celebrated candidate for many innovative applications in
photo-catalysis [72–74] and photo-voltaics [75–77]. The crucial quantity for the figure of merit in
these devices is the valence exciton lifetime, and it is therefore of major interest to understand and
control the electronic properties of pristine and doped anatase, both in bulk and nano-crystalline
form.

Pristine anatase is a classic band insulator with a band gap of Egap ∼ 3.2 eV. As depicted in
Fig. 3.1, the valence band is mostly O 2p derived and completely filled whereas the conduction
band is mostly Ti 3d derived and completely empty. In the bulk, mobile charge carriers can be
obtained by creation of oxygen defects, the natural dopants of TiO2. The mobility of these charge
carriers is determined by the defect concentration and by the e-ph coupling.
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Chapter 3. Anatase TiO2 – a polaronic semiconductor investigated by ARPES

Figure 3.1: Electronic structure of anatase TiO2. (a) atomic levels, (b) crystal-field split levels,
and (c) final interaction states. Solid lines indicate strong, dashed lines weak hybridization. The
picture was taken from Ref. 78.

Resistivity measurements over a temperature range from 4.2 to 300 K 1 (Fig. 3.2) clearly reveal the
presence of two distinct temperature regimes. In the 300 - 60 K interval, the sample is a relatively
good conductor (∼ 1 Ωcm) and surprisingly exhibits a metal-like temperature dependence
dρ/dT > 0, despite the large band gap Egap ∼ 3.2 eV of the pristine phase [79]. In contrast to
what is expected for a typical semiconductor, resistivity rises by more than 5 times from 60 to
300 K which speaks in favor of non-conventional transport of charge carriers, determined by the
interaction with thermally activated phonons.

Below 60 K, an insulating phase characterized by a rapid increase of the resistivity emerges, in line
with the semiconductor picture. From this temperature region one can extract an activation energy
Ea ∼ Egap/2 for charge transport of about 10 meV, as previously shown in Ref. 80. This energy
corresponds to shallow donor states resulting from oxygen vacancies, which electron dope the
system by the following relationship: Ti4+O2−

2 → Ti4+
1−xTi3+

x (O2−
2−x) +xe− [80–82]. In the very

low doping regime ∼ 1017 cm−3, defect states are localized, and the Fermi level aligns between
donor (Ed) and the conduction band level ECB . Thus, temperature promotes charge carriers into
the conduction band following a Boltzmann distribution factor exp[−(ECB − Ed)/kBT ]. For
significantly higher doping concentrations, one expects donor states to form an impurity band
which eventually merges with the conduction band.

Consequently, charge carriers will be found at the Fermi level even at very low temperatures and

1Transport experiments were carried out by Jaćim Jaćimović for samples with carrier densities in the 7×1017 cm−3

regime. The carrier density was determined independently from Hall measurements not shown here.
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Figure 3.2: Resistivity as a function of temperature, measured on a single crystal of anatase TiO2.
The steep increase of ρ above 60 K suggests enhanced e-ph scattering. Below 60 K, carriers are
deactivated and resistivity rises exponentially.

the resistivity is expected to saturate at a minimal value. These expectations are in agreement with
independent transport measurements on Nb-,F- and oxygen vacancy doped anatase [83, 84, 105].
However, transport is very bulk sensitive and may integrate over a variety of different effects. In
order to get a complete picture on the nature and behavior of these donor states, we investigate
anatase in a much more direct way by APRES applied to oxygen vacancy doped anatase thin
films and single crystals.

3.3 Crystal growth and preparation

The three polymorphs of TiO2 are rutile, anatase, and brookite. Whereas rutile in general is the
most studied phase, anatase has the highest efficiency among the three in many applications and
is used almost exclusively in nanoparticle form [75]. The origin of differences in performance
is still unclear. The lack of information on the details of the electronic structure of anatase is
partially due to the difficulty of synthesizing both bulk single-crystals and stoichiometric films.

Anatase has a body centered tetragonal (bct2) lattice reflected in a D19
4h symmetry with lattice

parameters a = 3.782 Å−1 and c = 9.502 Å−1 [85]. Locally, titanium atoms are coordinated
tetrahedrally, almost octahedrally by the oxygen atoms. Transparent single crystals were grown
by a chemical transport method, similarly to the one described by Berger et al. [86]. 0.5 g of high
purity anatase powder were sealed in a 3 mm thick, 2 cm large and 20 cm long quartz ampule
together with 150 mg of NH4Cl, previously dried at 60 ◦C under dynamic vacuum for one night,
and 400 mbar of electronic grade HCl. Both HCl and NH4Cl serve as transport agent. The
ampules were placed in a horizontal tubular two-zone furnace and heated very slowly to 740 ◦C at
the source, and 610 ◦C at the deposition zone. After two weeks, millimeter-sized crystals with a
bi-pyramidal shape were collected and cut into rectangular bars (typically 0.8× 0.6× 0.15 mm3).

Transport measurements shown in the introduction were performed by a standard four point
technique. The electrical leads were gold wires, glued onto pre-evaporated gold pads by means
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Figure 3.3: Crystal structure of anatase TiO2. Grey and red balls indicate titanium and oxygen
atoms, respectively. Locally, titanium atoms are coordinated tetrahedrally (almost octahedrally)
by 6 oxygen atoms.
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3.3. Crystal growth and preparation

of silver paste, which ensured stable electrical contacts.

For ARPES measurements, a crystal was polished and cleaned in a buffered 5% fluoridic acid
solution before introducing it into the UHV system (< 10−10 mbar). Several cycles of sputtering
with 1.5 kV argon ions and annealing at 500 ◦C were performed to obtain a clean, ordered surface.
In order to compensate oxygen loss caused by the sputtering process, the crystal was annealed in
35 mbar of oxygen at 400 ◦C for 30 minutes before the ARPES experiments. A reflective high
energy electron diffraction (RHEED) pattern is shown in Fig. 3.4 (a). Besides the expected 2D
signature, we clearly observe 3D spots indicative of some surface roughness (e.g. terraces and
steps), but no sign of additional phases.
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Figure 3.4: (a) RHEED image of an anatase (001) surface grown by PLD. Traces of the
two-domain 4 × 1 surface reconstruction indicate high surface quality. (b) RHEED intensity
oscillations of the (0,0), (0,1) and (0,2) streak during film growth of anatase (001) (c) RHEED
image of the polished anatase single crystal (001) surface. 3D spots indicate residual surface
roughness. (d) LEED image of the anatase single crystal (001) surface reveals traces of the
two-domain 4× 1 surface reconstruction.
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3.4 Film growth and characterization

Thin films were grown in situ at the electronic structure factory end station at beamline 7 of
the Advanced Light Source, Lawrence Berkeley National Laboratory. Anatase thin films were
grown by means of pulsed laser deposition (PLD) on (001) oriented 0.5 % Nb-doped SrTiO3

and undoped LaAlO3. Films grown on Nb:STO yielded somewhat sharper spectral features
in ARPES, possibly reflecting a better surface quality, the good electrical conductivity of the
substrate, or both. During deposition, the substrate was kept at 650 ◦C in 7 × 10−4 mbar O2

atmosphere. PLD was performed from a monocrystalline TiO2 rutile target using a 248 nm
Coherent Complex Pro 205 F Excimer Laser. The sample was grown at a repetition rate of 10 Hz
with about 20 mJ per pulse. Film growth was monitored by in situ RHEED and film thickness
was estimated through corresponding RHEED oscillations. We have measured films of varying
thickness between 5 and 20 ML, with no detectable change in the ARPES signal. A typical
example of a RHEED image and oscillations of an anatase (001) surface are shown in Fig. 3.4 (a)
and (b). Clearly visible are traces of the two-domain 4× 1 surface reconstruction reported by
several authors [87–89]. Additionally, we show a RHEED image on a polished anatase single
crystal in Fig. 3.4 (c) and a LEED image on a single crystal with a natural atomically flat surface
which was used in the experiment of Ch. 4.

3.5 Anatase TiO2 – a large polaron system

ARPES experiments on antatase single crystals and in situ grown thin films show surprising
results: even though the system is expected to be a band insulator, we observe significant
dispersive spectral weight at the Fermi level for samples that are sufficiently oxygen vacancy
doped. The number of oxygen vacancies in the (sub-)surface region thereby can be increased
through x-ray beam exposure and decreased through subsequent re-oxidation, which allows
to control the charge carrier concentration in between ∼ 1018 to ∼ 1020 cm−3. Due to the
polarity of the lattice, these doped in charge carriers are strongly interacting with the LO phonon
background, forming so called large polaron quasi-particles (QPs). An overview over these
findings is presented in the following paper [90]. Additional in depth information will be given
from Sec. 3.6.
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Oxygen vacancies created in anatase TiO2 by UV photons (80–130 eV) provide an effective electron-

doping mechanism and induce a hitherto unobserved dispersive metallic state. Angle resolved photo-

emission reveals that the quasiparticles are large polarons. These results indicate that anatase can be tuned

from an insulator to a polaron gas to a weakly correlated metal as a function of doping and clarify the

nature of conductivity in this material.

DOI: 10.1103/PhysRevLett.110.196403 PACS numbers: 71.38.Fp, 79.60.Bm

The anatase structural phase of titanium dioxide (TiO2)
can be the key element in novel applications. Whereas
extensive work has been focused on its famous photocata-
lytic behavior [1–3], more and more proposed devices,
such as memristors [4], spintronic devices [5], and photo-
voltaic cells [6–8], rely on its less well-known electronic
properties. In particular, anatase has been recently sug-
gested as a candidate for replacing the In-based technology
for transparent conducting oxides [9] in a wide range of
applications from solar cell elements, to light-emitting
devices, to flat panels, to touch-screen controls [10]. The
crucial quantity for the figure of merit in these devices is
conductivity, and it is therefore of major interest to under-
stand and control the electronic properties of pristine and
doped anatase.

Stoichiometric anatase is an insulator with a 3.2 eV band
gap [11] but oxygen vacancies, typically present with
concentrations in the 1017 cm�3 range [12,13], create a
shallow donor level �10 meV below the conduction band
(CB) [14]. Since large single crystals became available for
transport studies, a better insight has been gained on the
influence of these donors on the electronic response of
anatase. Above �60 K, the electrons thermally excited
into the CB give rise to metalliclike transport. At lower
temperatures, the anomalous increase of resistivity indi-
cates that the charge carriers are not bare electrons
but polarons [14], i.e., electrons coherently coupled to a
lattice distortion induced by the Coulomb interaction.
Understanding the properties of such composite particles
in anatase is important to better engineer the material for
targeted applications, where the low electron mobility
often represents the overall performance bottleneck. We
will also demonstrate that, from the point of view of
fundamental physics, anatase represents an excellent
model compound to study the behavior of the ‘‘rare’’ large
polaron quasiparticles (QPs), intermediate between local-
ized small polarons and free electrons.

We performed angle resolved photoemission (ARPES)
measurements on TiO2 single crystals [Fig. 1(a)] and thin
films grown in situ on insulating LaAlO3 and conducting
Nb-doped SrTiO3 (Nb:STO) substrates. Clean (001) sur-
faces were prepared as described in the Supplemental
Material [15]. The results presented have been obtained
consistently both for single crystals and thin films, and
therefore reflect intrinsic properties of the anatase phase,
independent of the sample preparation method. The thin
film samples grown on Nb:STO yielded somewhat sharper
spectral features, reflecting a better surface quality [15].
While oxygen defects are always present to some extent
after the surface preparation, exposure to UV photons indu-
ces a much larger amount of vacancies, and provides a
substantial electron doping [16]. Hence, we could tune the
electron density over more than 2 orders of magnitude by
varying the beam intensity and the oxygen partial pressure
during the ARPES experiment, and explore samples with
carrier densities in the 1018–1020 cm�3 range.
Figures 1(c) and 1(d) show two ARPES constant energy

maps measured at the Fermi level in two perpendicular
sections ofmomentum space, parallel (c) and perpendicular
(d) to the (001) surface. The two planes completely define
the three-dimensional (3D) Fermi surface (FS) of an ellip-
soidal electron pocket, elongated in the kz direction and
centered at the� point, center of the 3DBrillouin zone (BZ)
[Fig. 1(b)]. The data are in agreement with theoretical
calculations for the bottom of the conduction band of ana-
tase TiO2 [17], and more importantly, they establish the
existence of conduction electrons with a well-defined FS in
electron-doped anatase. Note that the closed FS contour
proves the 3D nature of the electronic dispersion, in contrast
with the two-dimensional character of the metallic states
observed at the surface of SrTiO3 [18,19] and KTaO3 [20].
The ARPES intensity map of Fig. 1(e) illustrates the

energy-momentum dispersion of the conduction states for
a sample with electron density ne � 3:5� 1019 cm�3, as
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determined from the volume of the electron pocket. It
consists of a shallow QP band with the minimum at

�40 meV, which crosses the Fermi level EF at kF ¼
�0:12 �A�1. Remarkably, the QP band is followed by a
satellite with a similar dispersion at �100 meV higher
binding energy, and by a broad tail. The satellite is more
clearly resolved in samples with lower carrier densities,
e.g., in the spectrum of panel (f) measured on a sample
with ne � 5� 1018 cm�3, where also a weaker replica is
visible �100 meV below the first satellite.

The intensity distribution of Fig. 1(e) reveals the clearly
dispersive nature of the states, but also a substantial renor-
malization of the spectral function, incompatible with a
simple scenario of a metal with weakly interacting elec-
trons. A parabolic fit yields an effective mass of m�

xy ¼
ð0:7� 0:05Þme, where me is the bare electron mass. A
comparison with mxy ¼ 0:42me from a band structure cal-

culation [21], yields a mass renormalization ðm�
xy=mxyÞ �

1:7. Indeed, at these carrier densities (ne�1018–1019 cm�3)
the low energy states appear to fit in the intermediate regime
of the so-called large polarons. The electron-phonon (e-ph)
coupling induced by the ionic anatase lattice causes the QP
dressing and the mass enhancement, but the polaron
wave functions extend over several lattice constants. We
stress here that, although similar claims are valid for the
rutile phase of TiO2 [22], the same ARPES experiment
repeated on several (001) rutile surfaces failed to show
any trace of a metallic edge, even after a long exposure to
the photon beam.

The well-known Franck-Condon scenario for an elec-
tron coupled to a vibrational mode provides a schematic

but instructive guideline to interpret the data [23]. In the
electron-removal spectrum, the main ‘‘zero phonon’’ peak
is followed by a progression of vibronic satellites, sepa-
rated by the phonon energy @!0, with peak intensities
following the Poisson distribution [24]. A Franck-
Condon line shape indeed provides a good qualitative
description of the spectrum of Fig. 1(f) for a phonon
energy of @!0 ¼ 108 meV, the energy of a longitudinal
optical (LO) Eu phonon mode observed by Raman spec-
troscopy [25]. Within the photoemission literature, the
series of distinct satellites is hardly observable, and the
distinctive sign of a polaronic system is the characteristic
‘‘peak-dip-hump’’ spectrum [26–29]. Figures 1(g)–1(i)
illustrate the physical picture underlying the polaron state
as measured by ARPES. After absorbing a photon (g), the
solid is left with a photohole coherently coupled to a
phonon cloud, moving through the lattice in its ground
state (h), or in one of its vibrational excited states (i).
The case (h) corresponds to the QP band, while (i) corre-
sponds to the satellite replica(s).
In order to get more quantitative information on the

effect of e-ph coupling in this (unusual) regime, we con-
sider, as appropriate for a polar material, a Fröhlich po-
laron model. It is characterized by the nonlocal interaction
between the electron and a LO phonon branch [24]:

Ĥe-ph ¼ 1
ffiffiffi
�

p X

~k; ~q
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jqj c
y
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c ~kðb~q þ by� ~qÞ;

M2 ¼ 4��@ð@!0Þ3=2ffiffiffiffiffiffiffiffiffi
2mb

p :

1

2

3

k y
 (

/a
)

-1 0 1

-0.50

0

E
ne

rg
y 

(e
V

)

1/2-1/2 0

kx ( /a)

In
te

ns
ity

-0.5 -0.4 -0.3 -0.2 -0.1 0

Energy (eV)

 EDC
 FC

-h

13

14

15

12

16

k z
 (

/c
)

-1 10

kx ( /a)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

e
_

e
_h

+

h
+

h

FIG. 1 (color online). (a) An as-grown anatase single crystal. (b) The BZ of anatase. (c),(d) constant energy maps at EF (T ¼ 20 K,
h� ¼ 85 eV) of electron-doped anatase (001) in the kxky (c) and kxkz (d) planes, respectively. The blue lines outline the boundaries of

the 3D BZs. (e) E vs k dispersion of the bottom of the conduction band for a sample with ne ’ 3:5� 1019 cm�3. (f) ARPES intensity
measured at k ¼ kF for a sample with ne ’ 5� 1018 cm�3. The solid line is a Frank-Condon line shape. Voigt peaks of width �E ¼
90 meV (FWHM) are separated by 108 meV, while intensities follow a Poisson distribution. (g)–(i) Cartoon of the polaron formation
induced by the photoemission process, showing the solid in its ground state (g) and two possible final states (h),(i) of ARPES.
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cy~k and by~q create, respectively, an electron with wave

vector ~k and a phonon with wave vector ~q. mb is the
band mass of the uncoupled electron and the dimensionless
constant � defines the e-ph coupling strength. For suffi-
ciently small dopings, a single-polaron approach is appro-
priate, since the effective polaron-polaron interaction is
weak in this limit.

The ARPES spectrum is proportional, via dipole matrix

elements, to the one-particle spectral function Að ~k; EÞ. For
a Fröhlich polaron it takes the form Að ~k; EÞ ¼ Að0Þ

c ð ~k; EÞ þ
Aðl>0Þ
inc ð ~k; EÞ. The coherent QP spectrum Að0Þ

c ð ~k; EÞ corre-

sponds to transitions to an excited state where the lattice
remains unperturbed. It follows the renormalized band

dispersion Eð0Þð ~kÞ ¼ @
2k2=2m� ��, where � is the

chemical potential. The remaining l > 0 contributions are
the incoherent parts of the spectrum, and involve l phonon
excitations in the final state. The leading l ¼ 1 term can be
calculated analytically. It exhibits a logarithmic singularity

at energyEð1Þð ~kÞ ¼ Eð0Þð ~kÞ � @!0, i.e., the same dispersion
as the QP band, and increased broadening [15]. The l > 1
terms yield a fairly homogeneous background in the energy
ranges �l@!0 ��< E<�l@!0. Figure 2 compares the
experimental spectra extracted from the intensity map of
Fig. 1(e) with the calculated spectral function, including
the l ¼ 0 and l ¼ 1 terms, with @!0 ¼ 108 meV. A
Gaussian broadening (85 meV full width at half
maximum—FWHM) was applied to the theory. It accounts
for the coupling to low-energy phonons and other scatter-
ing mechanisms, and for the instrumental resolution
(30 meV). The overall agreement between theory and
experiment is very satisfactory, considering that the theory
does not include the background tail of the l > 1 terms.

The above calculation is too simple to provide an accu-
rate estimation on the strength of the e-ph coupling. We
can assess it more reliably analyzing the intensity distri-
bution of the ARPES signal between the two branches.
Quite generally, spectral weight is transferred from the QP
band to the incoherent satellites as the e-ph coupling is
increased. The coherent fraction ZðkFÞ of the total spectral
weight can be inferred from the experimental spectrum of

Fig. 1(f), yielding ZðkFÞ ¼ 0:36. For this value, diagram-
matic quantum Monte Carlo simulations of the electron
addition spectrum deduce an e-ph coupling constant � ’ 2
[30], in a regime of intermediate coupling. Using as a
starting point the experimentally observed mass renormal-
ization factor of 1.7, the same numerical calculations
predict � ’ 2:5, in fairly good agreement and in the
same coupling regime.
The size of the e-ph coupling also has an influence on

the energy broadening of the photoemission signal. This is
illustrated by the spectra in Fig. 3(a), measured between
20 K and 300 K on a sample with ne ’ 5� 1018 cm�3. The
spectral line shape exhibits a temperature dependence
besides the trivial broadening of the Fermi cutoff. The
intrinsic (Lorentzian) FWHM �EL of the QP peak,
extracted from the spectra after removal of an experimental
(Gaussian) broadening, is shown in Fig. 3(b).�EL exhibits
an approximately linear T dependence above T ¼ 150 K,
and saturates below T ¼ 50–60 K to a value �55 meV,
which includes contributions from impurity scattering and
from the finite photoelectron lifetime. The data are well
described by the Bloch-Grüneisen curve modeling resis-
tivity in metals [31]. From its high temperature limit
�EL ¼ 2��kBT one can extract the mass-enhancement
parameter � ’ 0:7, which again yields ðm�

xy=mxyÞ ¼ 1þ
� ¼ 1:7. This � accounts for the electron interaction with
all the phonons, in particular with the low-energy acoustic
modes, and should not be confused with � introduced
above, which embodies the coupling with the single LO
mode at 108 meV.
We now turn to the doping dependence of the spectra.

During the ARPES measurement, oxygen vacancies are
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FIG. 2 (color online). (a) Spectra extracted from the intensity
map of Fig. 1(e) in the range �0:25< kx < 0:25 �A�1.
(b) Spectral function Aðk; EÞ for the Fröhlich polaron, including
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FIG. 3 (color online). (a) Spectra measured between T ¼ 20 K
and T ¼ 300 K on a sample with ne ’ 5� 1018 cm�3, showing
a progressive broadening with increasing temperature. The sig-
nal extracted from the shallow electron pocket was integrated
over a momentum range of �kF < kx < kF. (b) Temperature-
dependent intrinsic QP line width. Colors of the symbols
correspond to those of the spectra in (a). The line is a Bloch-
Grüneisen curve.
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created by the photon beam in a thin layer below the
surface. If the sample is at the same time exposed to a
small O2 partial pressure, a competing reoxidation process
takes place. A dynamic equilibrium is reached, which
depends on the photon flux at the sample. This offers a
unique opportunity to study the electronic states of anatase
at various electron densities, without changing ex situ
the stoichiometry or adding extrinsic impurities. In the
following experiment, we kept the photon flux on the
sample constant, and varied the oxygen pressure between
2� 10�10 and 5� 10�8 mbar. The corresponding elec-
tron densities, estimated from the volume of the elec-
tron pocket at the bottom of the CB, varied between
�5� 1020 cm�3 and 1018 cm�3, respectively. At constant
oxygen pressure, data could be collected for several hours
without appreciable changes.

Figure 4 shows spectra of the CB for various doping
levels. Panel (a) for ne ¼ 5� 1018 cm�3 shows a very
shallow electron pocket and well-defined satellites. At T ¼
20 K, the momentum width �k of the ARPES spectral

function at kF gives a QP coherence length l ¼ 1=�k ¼
7 �A. Therefore, in this low-density limit the polaronic QPs
cannot move freely for more than�2 unit cells. Increasing

the carrier density to ne ¼ 3� 1019 cm�3 in (b) and to
ne ¼ 1� 1020 cm�3 in (c), one observes that (i) the QP
band dispersion deviates from a parabola, and (ii) near the
bottom of the band, the QP intensity is reduced and the
satellite spreads into the background. At ne ¼ 3:5�
1020 cm�3 the QP band is visible only near the Fermi level
crossings at �kF. For smaller wave vectors, the QP inten-
sity is strongly suppressed, with most of the spectral weight
spread over a broad energy range (the ‘‘hump’’).
The dispersion seen in Figs. 4(d1) and (d2) in the vicinity

of E ¼ @!0 is reminiscent of the characteristic kink struc-
ture encountered in several Fermi liquids with more mod-
erate e-ph coupling. The evolution of the CB states with
doping indeed suggests a breakdown of the single-polaron
picture, as charges added to the CB progressively screen
the e-ph interaction. Polarons, which are well-defined QPs
at low density, eventually lose coherence and dissociate
into an electron liquid coupled to the phonon(s). The
spectral weight distribution for high dopings can be repro-
duced by standard perturbation theory [24] (Supplemental
Material [15]).
Our observations shed light on the conduction mecha-

nisms taking place in anatase-based devices, and in par-
ticular on the role of the e-ph coupling, which has been
shown to represent the dominant scattering process at
typical operating temperatures in pristine and doped films
[9]. The tunability of the doping level by UV (or e-beam)
illumination over a very broad range is attractive for
numerous applications, and in particular in the field of
transparent conductors. Carrier densities >1020 cm�3,
necessary for thin film operation, can be reached without
extrinsic metal dopants, which are additional scattering
centers [10]. Moreover, the possibility of after-growth
patterning of conductive paths could yield important prac-
tical advantages. Namely, the initial growth conditions
could be set independently of the required final conductiv-
ity, and etching processes often involved in oxide structur-
ing could potentially be avoided.
Finally, the present study is likewise relevant for

anatase-based devices employing nanostructured materi-
als, where the overall transport properties depend on inter-
as well as intraparticle processes. The crossover from a
polaronic to a diffusive regime is expected to occur
when the overlap between the polaron clouds becomes
significant. The ARPES data of Fig. 4 suggest that this
happens around n�e ’ 1019 cm�3. Estimating the polaron
radius rp from the average separation between polarons

d� n�1=3 ¼ 2rp, gives rp � 20 �A. By comparison,

Fröhlich’s model in the intermediate coupling regime

yields rp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=2m�!0

p ’ 10 �A. Both values are much

smaller than the typical dimensions (few nm) of anatase
nanoparticles considered for applications. Therefore, the
polaronic nature of the QPs and their evolution upon
electron doping must necessarily be taken into account
when modeling transport in actual devices.
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FIG. 4 (color online). Evolution of the CB states with doping.
The ARPES spectra (h� ¼ 85 eV) were measured at T ¼ 20 K
along the dashed line (ky ¼ 2�=a) of Fig. 1(c) for samples with

ne ¼ 5� 1018 cm�3 (a1), ne ¼ 3� 1019 cm�3 (b1), ne ¼ 1�
1020 cm�3 (c1), and ne ¼ 3:5� 1020 cm�3 (d1). The same data
are also presented as E vs kx image plots in the bottom panels
(a2)–(d2). A doping scan with finer steps is presented as a movie
with the Supplemental Material [15].
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Chapter 3. Anatase TiO2 – a polaronic semiconductor investigated by ARPES

3.6 k-space mapping in anatase

The ARPES data of Fig. 3.5 give a more detailed overview of the band structure of anatase.
Panel 3.5 (a) is a constant energy (CE) map measured at the Fermi level at T = 20 K with photon
energy hν = 85 eV. Blue lines are projections of the three-dimensional (3D) Brillouin zone (BZ)
onto the (001) surface. The partially resolved circular contours at the centers of the projected
BZs correspond to a small electron pocket at the bottom of the conduction band. Changes in
the perpendicular wave vector kz across the CE map (see Sec. 3.6.1), as well as ARPES matrix
elements, explain their unequal intensities in different BZs, e.g. the very low intensity around
(0, 0). Suppression of emission in the ky = 0 plane is consistent with the odd parity of the
dxy states that are believed to form the bottom of the conduction band [78, 91] and with our
experimental geometry, where the light is π-polarized with respect to the scattering plane. This
point will be discussed in more detail in Sec. 3.6.3. Weaker (4× 1) replicas of the main contours
along both kx and ky reflect a known surface reconstruction [87, 88] and two equivalent domains.

The kxkz CE contour of Fig. 3.5 (b) taken at the Fermi level for ky = 2π/a (red dashed line in
(a)) completely determines the shape, size and position of the electron pocket in k-space. It is
an ellipsoid elongated in the c direction and centered at the Γ point, the center of the 3D BZ, in
agreement with band structure calculations [92–94]. From its volume we determine a carrier
density of ne ' 2× 1020 cm−3 for the sample in Fig. 3.5. The top of the valence band (VB) is
visible at theX point of the E = −3.3 eV CE map in panel 3.5 (c), consistent with the theoretical
prediction that TiO2 is an indirect semiconductor [78, 95], and with recent ARPES data [96].

3.6.1 kykx CE-maps

ARPES measurements taken at fixed photon energy hν, as in Fig. 3.5 (a), sample the reciprocal
space on the surface of a sphere of radius k = 2m/h̄2

√
hν − Φ + V0, where Φ is the work

function of the electron analyzer and V0 is the inner potential of the electrons in the solid. In the
center of the second BZ (kx, ky) = (0, 2π/a), this gives a kz mismatch of about 1/4th of the unit
cell extension 4π/c, and at (0, 4π/a), center of the third BZ, of a whole unit cell. Therefore, care
has to be taken when labeling the high symmetry points in a constant energy (CE) cut, especially
for large k|| values. In order to illustrate this point, Fig. 3.6 (a-d) show CE maps at four different
photon energies. Panels 3.6 (e) and (f) show the kx = −2π/a and kx = 0 planes of the reciprocal
space, respectively. The curved lines represent the intersections of such planes with the spheres
sampled by the energies used in (a-d) for an inner potential V0 = 13 eV and Φ = 4 eV.

By matching panels 3.6 (a-d) with panels 3.6 (e) and (f), the metallic state can be located at the Γ

points of the BZs. In panel 3.6 (a), the intensity e.g. is maximal at (0, 2π/a) and (−2π/a, 4π/a).
Here, the measurement sphere cuts the 3D BZ almost exactly at Γ. By contrast, the intensity is
weaker at (−2π/a, 2π/a) or (0, 4π/a), where the cut falls between Γ and Z. Note that since
the elongation of the electron pocket along kz is comparable to c∗ = 2π/c there is always some
intensity at (kx, ky) points corresponding to surface projections of the Γ/Z points of the bulk
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3.6. k-space mapping in anatase

Figure 3.5: (a) Fermi surface in the kxky plane (T= 20 K, hν = 85 eV) of oxygen-vacant anatase
(001) with ne ' 2× 1020 cm−3. Blue dashed lines indicate projections of the 3D BZs. Electron
pockets are seen most intense at (0,±2π/a) and (−2π/a, 4π/a), which correspond to Γ-points at
this photon energy. Black arrows indicate ARPES signatures of the (4×1) surface reconstruction.
(b) kxkz Fermi surface extracted from a photon energy scan for ky = 2π/a (red dashed line in
(a)). The point Γ = (0, 2π/a, 14π/c) is probed at hν = 85 eV. (c) CE map (hν = 128 eV) at
E = −3.3 eV, showing the highest intensity at the X-points (±π/a,±π/a, 18π/c), the top of
the VB.
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Figure 3.6: (a-d) kykx CE-maps at the Fermi level measured at 85, 110, 135 and 165 eV photon
energy. Blue dashed lines indicate the bulk BZ projection. Colored vertical lines mark cuts along
which the BZ trajectory is studied. (e) Study of the BZ trajectory at kx = −2π/a. The arcs trace
the trajectory through the three dimensional BZ. Their colors correspond to the photon energies
in the top panels. (f) Study of the BZ trajectory at kx = 0. The pink and red vertical lines mark
the intersection with the ky = 2π/a plane. The intersections between each arc and such a plane
are indicated as crosses in the top panels.
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3.6. k-space mapping in anatase

BZ. An exception is (kx, ky) = (0, 0), the center of the first BZ, where the intensity is almost
completely suppressed by matrix elements because of the dxy symmetry of the conduction band,
as discussed in detail in Sec. 3.6.3.

3.6.2 kxkz CE-maps

The kxkz CE-map in Fig. 3.5 (b) is built from a series of ARPES images taken at different
photon energies. The energies are chosen in such a way as to maintain a constant stepsize
∆kz = ∂kz

∂hν∆hν, where kz = 1
h̄

√
2m(Ekin cos2(θ) + V0) and Ekin = hν − Φ− |Eb| with the

binding energy |Eb|. Since k|| = 1
h̄

√
2mEkin sin θ also is a function of hν, the probing angle θ

has to be adjusted for every photon energy. The inner potential is determined in a self consistent
way: starting from a best guess, V0 is adjusted until the ARPES signal follows the periodicity
imposed by the value of c∗. For anatase TiO2 we extract V0 ∼ 13 eV, similar to the value reported
by Emori et al. [96]

3.6.3 Matrixelements in anatase TiO2

In doped anatase TiO2, the lowest energy state probed by ARPES are conduction band carriers
populating the otherwise empty 3d bands. Given the small tetrahedral crystal field and negligible
spin orbit interaction of the d-electrons, the lowest energy band populated by electrons is formed
by 3dxy orbitals. The photoemission signal building the spectral weight consequently results from
an emitting orbital of dxy symmetry. The local part of the initial state hence can be approximated
as

|dxy〉 =
1

i
√

2
(|2, 2〉 − |2,−2〉) . (3.1)

According to Eq. 1.45 the matrix element so becomes

Mdxy(kf , θ, φ, β) ∝ 1

i
√

2

2∑

m′=−2

(
D2
m′,2(θ, φ, β)M2m′(kf )−D2

m′,−2(θ, φ, β)M2m′(kf )
)

=
1

i
√

2

2∑

m′=−2

M2m′(kf )
(
D2
m′,2(θ, φ, β)−D2

m′,−2(θ, φ, β)
)

(3.2)

To simulate the spectral function of the electron pocket, we use a tight binding dispersion
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Chapter 3. Anatase TiO2 – a polaronic semiconductor investigated by ARPES

εk = −8 cos(akx/2) cos(aky/2) cos(akz/2)+µ eV adapted to the periodicity to the bct2 lattice
of anatase where µ = 7.7 eV is the chemical potential. We further approximate the spectral
function of Eq. 1.13 by a Gaussian

A(k, E) ∝ 1√
2πσ

e−
(E−εk)2

2σ2 (3.3)

with broadening σ ∼ 0.5 eV.2

Figure 3.7: Simulated ARPES constant energy maps calculated for 85 eV photon energy and
taking into account matrix elements. Blue lines indicate projections of the 3D BZs. (a) Simulated
kxky map directly comparable to Fig. 3.5 (a). (b-d) Simulated kxkz maps calculated with (b)
θ = 0◦, λ = 0, (c) θ = 0.5◦ and λ = 0 and (d) θ = 0.5◦, λ = 200 nm. (e) Close up measurement
of the electron pocket at (kx, ky) = (0, 2π/a) compared to the simulation (f) with θ = 0.5◦ and
λ = 200 nm.

Calculation results of the matrix element effect for the dxy conduction state are shown in Fig. 3.7.
Panel 3.7 (a) gives a simulated Fermi surface calculated for 85 eV photon energy, which can be
directly compared to the experimental result of Fig. 3.5 (a).

The suppression of spectral weight at normal emission and along ky = 0 is reproduced. In the BZs

2The Gaussian takes into account the experimental broadening and the intrinsic lineshape. For the illustration of
the matrix element effect, σ and the doping level of the model dispersion were arbitrarily to reproduce somewhat
shape and side of the experimental electron pocket.
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3.7. Oxygen vacancy formation

centered at (−2π/a, 2π/a) and (0, 4π/a), we find residual spectral weight, similar to the mea-
surement. In contrast to the elliptical Fermisurface of anatase, our simple isotropic band εk yields
a spherical Fermi surface. The ARPES probing sphere with radius k = 2m/h̄2

√
hν − Φ + V0

consequently cuts the pockets in a different way. This leads to un unrealistic distortion of signal.
The effect could be simply compensated by taking into account the significantly higher bandmass
m∗z ∼ 1.7m∗xy, which elongates the pockets along kz and by fine tuning of σ and the chemical
potential µ. However this would over stress the predictive capabilities of this simple model.

3.7 (b-d) show simulated kxkz Fermi surfaces that should be compared to Fig. 3.5 (b). The
result calculated for θ = 0 (b) is symmetric with respect to kx = 0, which is at variance with the
experimental result. Panel 3.7 (c) takes into account some slight misaligned of θ = 0.5◦, which
produces the asymmetry. Overall, the suppression of spectral weight however is overestimated by
the calculation. We therefore take into account a finite mean free path of the electrons λ = 200 nm
in panel 3.7 (d), which reduces the suppression along kx = 0. This value of λ is unrealistic high,
a clear deficit of the model which assumes a simple evanescent wave inside the bulk.

A close up of the electron pocket of the BZ centered at (0, 2π/a) measured with θ ∼ 0 is shown
in panel 3.7 (e). Again, the intensity distribution can be well reproduced taking into account a
small misalignment of θ = 0.5◦ and a finite λ = 200 nm in panel 3.7 (f).

3.7 Oxygen vacancy formation

In the last chapters, we have shown that oxygen vacancies in anatase TiO2 can be created in the
intense x-ray beam spot of synchrotron radiation. The underlying mechanism has been studied
by Knotek and Feibelman in the late 1970ies [97]: ionizing radiation with energies beyond the Ti
M-edge threshold can create Ti 3p core holes. One possible subsequent electron decay channel
involves an LVV Auger decay with one valence electron refilling the 3p shell and another one
leaving the solid. Due to the large oxygen character of the valence band, this process locally
removes two O 2p electrons and thus leads to the formation of unbound O0 species. These are
not affected by the Coulomb potential of the Ti ions anymore and can desorb before the valence
states are refilled. Locally, this leaves titanium in a Ti3+ state, with a gain of one 3d electron.
Unlike in rutile, this excess charge has a strong tendency to delocalize in anatase.

Fig. 3.8 (a) shows a study of the oxygen vacancy formation process while exposing an anatase thin
film to 85 eV X-rays in ultra high vacuum < 10−10 mbar. The photon flux was ∼ 1012 photons/s
focused onto a spot size of ∼ 100 µm ×50 µm. The photoemission signal is integrated over
E-k-windows of E = [−0.6; 0.1] eV × k = [−0.5; 0.5] Å−1 for the metallic state. Similarly, we
integrate over an interval of E = [−1.5;−0.6] eV × k = [−1; 1] Å−1 to monitor a prominent
oxygen vacancy in gap state at E ∼ −1.5 eV discussed in detail in Sec. 3.8.

At t = 0, the anatase crystal is nearly stoichiometric. We observe no signal at the Fermi level.
With time however, more and more oxygen vacancies are created by the UV radiation. The
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Figure 3.8: (a) Time and temperature dependent study of the oxygen vacancy formation in
anatase during 85 eV x-ray irradiation. After about 100 s the metallic state saturates while oxygen
vacancy formation continues. The effect does not depend on temperature. (b) Study of the reverse
process. After about 100 s, metallic state and oxygen vacancy signal only diminish slightly due
to further re-oxidation of deeper TiO2 layers. (c) Evolution of the Ti 2p core level peak and (d)
the O 1s core level peak as a function of oxygen partial pressure. (e) Evolution of the Fermi
surface as a function of oxygen partial pressure.
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3.7. Oxygen vacancy formation

additional electrons provided by oxygen vacancies populate the bottom of the conduction band
and the signal of the metallic state increases. The increasing amount of conduction band electrons
opens up additional LCC Auger channels involving conduction band electrons. With the LVV
channel becoming less and less important, oxygen vacancy formation eventually slows down
after about 100 s.

While the number of vacancies continues to increase, the signal of the metallic channel saturates
and no further population of the conduction band takes place. Presumably, this is due to oxygen
vacancy clustering which prevents further delocalization of the doped in charge carriers. The
negligible dependence of this effect on temperature shows that T = 200 K is well below the
threshold that drives oxygen vacancy diffusion processes in anatase. This is consistent with recent
experiments on anatase (101) surfaces by Scheiber et. al. [98].

Fig. 3.8 (b) shows a study of the reverse process. Here, the time dependence of a fully saturated
metallic state is monitored with a constant oxygen pressure. The oxygen is replenishing the
O-vacancy sites which therefore competes with the effect of radiation. The major drop of metallic
state and oxygen vacancy state occurs during the first 100 s, indicating surface and subsurface
re-oxidation. The ongoing lowering of signal after 100 s may result from re-oxidation of deeper
TiO2 layers. Again, the effect is not temperature dependent up to 200 K.

Fig. 3.8 (c) shows the effect of increasing oxygen vacancy concentration on the Ti 2p XPS core
level peak. Whereas at low concentration, we only identify the signature of Ti4+ species, a
distinct shoulder of Ti3+ origin develops on its low binding energy side. Besides, the Ti4+ feature
shifts about 100 meV higher in binding energy. Fig. 3.8 (d) shows a similar spectrum of the O 1s
XPS core level peak. Whereas we solely identify the signature of O2− species, the shift of about
210 meV towards higher binding energies is clearly more pronounced.

The shift in the core level spectra is given by ∆EB = ∆µ+K∆Q+ ∆VM + ∆εs, where ∆Q

is the change in the number of doped in electrons [12]. ∆µ is the associated chemical potential
shift, K describes the Coulomb interaction between core-hole and valence electrons, ∆VM is the
change in the Madelung potential and ∆εs describes the screening of the core hole potential.

Both Ti4+ and O2− core level peaks shifts towards higher binding energies EB . Thus we can
assume the Madelung potential VM to have no significant effect on EB . The increase in the
number of the conduction electrons ∆Q, scaling with the concentration of Ti3+ defect sites, is
typically on the order of ∼ 1 % and therefore negligible (see Sec. 3.11). We are thus left with
∆EB ∼ ∆µ+ ∆εs. Since the doped in 3d carriers are primarily located at Ti sites, screening of
Ti 2p core holes will be more efficient than screening of O 1s holes, consequently involving a
smaller shift. The O 1s core level shift thus gives an estimate of the chemical potential achievable
by oxygen vacancy doping µ ∼ 210 meV. Subtracting the shift of Ti 2p yields an estimate for
the screening ∆εs ∼ (210 − 100) meV= 110 meV. Both values are in reasonable agreement
with independent estimates in Sec. 3.10.5 (∆µ ∼ 185 meV, εs ∼ 100 meV), indicating weak
screening of O 1s core holes ∼ O(10 meV).
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Chapter 3. Anatase TiO2 – a polaronic semiconductor investigated by ARPES

Fig. 3.8 (e) demonstrates how the regulation of oxygen partial pressure vs photon flux can be
exploited to achieve a fine regulation of the Fermi surface volume and therefore of the charge
carrier concentration. A momentum distribution curve (MDC) cutting the electron pocket centered
at (0, 2) π/a along the red dashed line in Fig. 3.5 is plotted as a function of the oxygen partial
applied to the sample. Clearly, oxygen dosing allows for a fine tuning of the metallicity of anatase
from insulating (∼ 1017 cm−3) to metallic (∼ 1020 cm−3).
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Figure 3.9: Direct lithographic patterning of anatase TiO2. The top panels (a1,b1) trace paths
along which we drag the photon beam. The bottom panels (a2,b2) show spectral weight at the
Fermi surface as a function of position measured with low photon flux. Clearly, the photons
spatially modulate the charge carrier concentration of the sample.

In principle, this allows to directly write charge transport channels into intrinsically insulating
oxides without disturbing the crystalline quality of the sample, which lead to the patent application
in Ref. 99. The method in principle does not need the development of new infrastructure but can
exploit standard UV, EUV (13.5 nm∼ 92 eV) and e-beam lithography techniques.

When x-rays or electrons are used to write a certain path, they will – depending on their penetration
depth – create oxygen vacancies in a spatially defined way and allow to tune the material from a
band insulator to a semiconductor to a metal. As we have seen, the method allows for spatial
regulation of the charge carrier concentration in these films from 1017 to 1020 cm−3.

A demonstration of the patterning effect of anatase is shown in Fig. 3.9. In the first step,
a stoichiometriclly grown anatase thin film is illuminated according to the pattern shown in
panels 3.9 (a1) and (b1). Afterwards, the surface is imaged by scanning the region of interest and
measuring the photoemission intensity at the Fermi level with low photon flux. Since this probing
step itself also involves x-ray illumination to generate the photoelectron signal, the background
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3.8. Doping dependence of the electron pocket

intensity of the non-patterned region is always nonzero. In the bottom right panel, a vertical
streak can be seen that results from RHEED measurements (1.2 keV) during film deposition. This
is the indirect indication that e-beam lithography might also be a suitable technique for direct
anatase patterning.

Two major problems endanger the stability of metallic anatase regions created by oxygen defects
however: first, applications in ambient atmosphere present the risk of refilling the vacancies from
the oxygen in air. This effect can in principle be avoided by capping techniques.

A second problem might result from bulk diffusion of oxygen vacancies, which would confine
the lifetime of a device to the typical timescale of the defect diffusion process. Our observations
indicate that non stoichiometrically grown single crystals remain stable over years at ambient
pressure and temperature. A thorough re-oxidation requires annealing these crystals for several
days in air at temperatures as high as 600◦C, which indicates defect stability. Very few studies
treated this problem more systematically at the microscale so far. A recent study on anatase (101)
surfaces found oxygen vacancies migrating towards the subsurface for temperatures higher than
200 K, corresponding to a subsurface migration activation energy of about 0.6-1.2 eV. Hence,
vacancies are more stable in the bulk than at the surface [81, 98].

3.8 Doping dependence of the electron pocket

3.8.1 Along k‖

As demonstrated, subtle regulation of the oxygen partial pressure vs photon flux allows for
a fine study of the development of the polaron pocket with doping. Fig. 3.10 (a)-(e) shows
energy distribution curve (EDC) stacks measured at oxygen partial pressures from 6.5× 10−10

to 6.5× 10−8 mBar applied to an anatase thin film. The re-oxidation process reduces the carrier
density from ∼ 1020 to about ∼ 1018 cm−3.

At low doping, we observe stable QPs at the zone center. Injecting more and more carriers,
interaction between polarons become significant and the single particle picture breaks down.
Thus, the QP continuously smears out at k = 0 towards high doping. Close to EF however, the
Landau argument holds and the QP remains stable. A thorough theoretical discussion is presented
in Sec. 3.10.5. Fig. 3.10 (f) and (g) show a similar, but finer study on the anatase single crystal.
EDCs at the zone center k = 0 and the Fermi wave vector k = kF are presented in panels 3.10 (f)
and (g), respectively and depict the continuous QP breakdown at k = 0 for high doping.

The increasing amount of oxygen vacancies here is reflected in the strong peak at around
−1.5 eV which moves towards lower binding energies while doping increases - an effect that
to date is hardly understood. In analogy to rutile, one can speculate that low oxygen vacancy
concentrations give rise to isolated point defects with well defined defect states. At higher
concentrations, stoichiometries intermediate between TiO2 and Ti2O3 can arise forming a variety
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Figure 3.10: Fine study of the development of the polaron pocket with doping. (a-e), EDC
stacks measured at oxygen partial pressures from 6.5× 10−10 to 6.5× 10−8 mBar on an anatase
thin film. Injecting more and more carriers, interaction between polarons cannot be neglected
anymore and the single particle breaks down at the zone center. (f,g), Similar study on the anatase
single crystal. EDCs are shown at the k = 0 and k = kF and demonstrate the continuous QP
breakdown at k = 0 for high doping.
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3.9. Temperature dependence of the pocket

of Magnéli phases, i.e. ordered clusters of oxygen defects [100]. Each of these involves a series
of spectral contributions. Eventually these defect states merge with the incoherent contribution of
the polaron pocket at high concentrations.

In a thin film, the number of Magnéli phases reduces due to the c-axis confinement, and this
effect is much weaker as shown in panels 3.10 (a) to (e).

3.8.2 Along kz

Figure 3.11: kzky CE-maps over several BZs measured at ky ∼ 2π/a for samples with (a) low
doping ∼ 1018 cm−3 (b) medium doping ∼ 1019 cm−3 and (c) high doping ∼ 1020 cm−3.

kxkz CE-maps over several BZs are shown in Fig. 3.11. Panels 3.11 (a), (b) and (c) correspond
to low, medium and high doping cases of carriers ∼ 1018 cm−3, ∼ 1019 cm−3 and ∼ 1020 cm−3,
respectively, measured at ky ∼ 2π/a. They present ellipsoidal contours, visible in particular at
kx = −2π/a, which grow along all direction going from low to high doping as the conduction
band is filled.

A striking feature in Fig. 3.11 (a-c) is the particularly strong intensity enhancement at the
BZ center. Whereas at first sight this indicates the presence of a second electronic state, a
careful analysis of both EDCs and MDCs rules out the presence of another band. However, this
phenomenon can be understood taking again into account the curved ARPES probing sphere with
radius k = 2m/h̄2

√
hν − Φ + V0. This sphere can have a large intersection with the ellipsoidal

Fermi surface, giving rise to this intensity enhancement.

3.9 Temperature dependence of the pocket

Fig. 3.12 shows a detailed study of the temperature dependence of the polaron spectral line shape
for samples with carrier densities of (a) ne ' 5× 1018 cm−3, (b) ne ' 3× 1019 cm−3 and (a)
ne ' 3.5×1020 cm−3. EDC stacks of the electron pocket are shown as a function of temperature
from 20 to 300 K. Below 100 K, the QP as well as first and second incoherent contribution are
clearly visible. Above 100 K, the peaks become significantly broader.
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Figure 3.12: Temperature dependence of the polaron pocket. (left) low doping 5× 1018 cm−3

(middle) medium doping 3× 1019 cm−3 (right) high doping 3.5× 1020 cm−3. Below 100 K,
the QP as well as first and second incoherent contribution are clearly visible. Above 100 K, the
peaks are broadening significantly.
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3.9. Temperature dependence of the pocket

To explain this broadening, we need to consider the interactions between electrons and the other
phonon modes, especially the acoustic branches of much lower energy. These lattice vibrations
are expected to be excited with increasing temperature and hence to affect the lineshape of the
spectral function. In the following, electron-phonon scattering theory for metals shall be used to
qualitatively discuss the temperature dependent broadening of the spectral function. Well known
from Fermi liquid theory, this broadening in energy corresponds to the imaginary part of the self
energy and thus to the inverse lifetime of the QP. The spectral width is given by

∆E = 2ImΣ =
h̄

τ
. (3.4)

When phonons and impurities dominate the scattering mechanism of a metal, the inverse lifetime
can be calculated from Boltzmann theory [101–103]

h̄

τ
= 4πkBT

∫ Ωmax

0

dΩ

Ω
β2F (Ω)

(
h̄Ω/2kBT

sinh(h̄Ω/2kBT )

)2

(3.5)

In the 3D Debeye approximation Ω(q) = ΩD/VBZq, the Eliashberg function β2F (Ω) reads

β2F (Ω) = 2λ

(
Ω

ΩD

)4

Θ(ΩD − Ω) (3.6)

where ΩD is the effective Debye frequency [103].3 λ is an effective electron-phonon (e-ph) cou-
pling strength. It describes the coupling of electrons to the (mostly) acoustic phonon background
characterized by ΩD. It is not to be confused with α, which was introduced in Sec. 3.5 to describe
the coupling to one distinct LO phonon h̄ω0 in the polaron formation process. Substituting
dx = h̄

2kBT
dΩ and using the identity h̄ΩD = kBΘD, we obtain the Bloch-Grüneisen formula

for resistivity in metals

3In general, the Eliashberg function describes strength and spectrum of electron-boson coupling. β(Ω, q) charac-
terizes the coupling strength whereas F (Ω, q) is the boson density of states. β2F thus describes the total scattering
probability of an electron state (E,k) to a state (E ± Ω,k ± q).
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h̄

τ
= 4πkBT

∫ ωmax

0

dΩ

Ω
2λ

(
Ω

ΩD

)4( h̄Ω/2kBT

sinh(h̄Ω)/2kBT

)2

= 4πkBT2λ

∫ h̄ΩD
2kBT

0

dx

x

(
2kBT

h̄ΩD
x

)4 x2

sinh(x)2

= 8λπkBT

(
2T

ΘD

)4 ∫ h̄ΩD
2kBT

0
dx

x5

sinh(x)2
. (3.7)

Deconvolving the experimental EDC lineshape by an experimental Gaussian broadening of
25 meV yields the intrinsic Lorentian linewidth as a function of temperature (see Fig. 3 (b) of
Sec. 3.5). Fitting theses values with Eq. 3.7 and using an experimental value for the Debye
temperature ΘD = 520 K [104], we obtain λ = 0.7 and consequently an effective mass
renormalization of m∗xy/mxy = 1 + λ = 1.7. It is interesting to note that for a calculated
DFT mass of 0.42me, this yields an effective mass of m∗xy = 0.71me, which matches with
the effective polaron mass of (0.7 ± 0.05)me extracted directly from the curvature of the QP
dispersion [107].

The line width below 50 K saturates to a value of 55 meV, corresponding to contributions from
impurity scattering and the finite photoelectron lifetime. This is in apparent contrast to transport
data obtained for carrier densities in the 1017 cm−3 regime of Fig.3.2. However, this can be
understood from the fact that ARPES measurements were done for carrier densities typically one
to two orders of magnitude higher with respect to the transport measurements. In this regime,
donor states merge with the conduction band to form an occupied band even for T → 0. This
observation is in agreement with independent transport results on doped samples [83, 84, 105].

3.10 Derivation of the polaron spectral function

3.10.1 Model

In polar semiconductors, such as TiO2 anatase, e-ph coupling is often found to be strong. In
particular, because of long-range electric fields introduced by LO lattice vibrations, the coupling
of electrons to these lattice modes plays the most prominent role. The part of the Fröhlich
Hamiltonian describing the interaction between electrons and the LO phonon branch is given
by [26]
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Ĥe-ph =
1√
ν

∑

q,s

Mq c
†
k+q,sck,s (b†−q + bq) , (3.8)

Mq =
M0

|q| = 2πe2h̄ω0

(
1

ε∞
− 1

ε0

)
1

|q| , (3.9)

where h̄ω0 is the LO phonon energy, ε∞ and ε0 are the low- and the high-frequency dielectric
constant, respectively, ν/N is the volume of the unit cell, with N the number of lattice sites.
The bare e-ph interaction in Eq. 3.8 is long ranged, Mq ∝ 1/q. However, it is worth noting that
by increasing the charge density, the screening of the polar interaction increases, removing the
q → 0 singularity in Eq. 3.9 as discussed in Sec. 3.10.5. The full Fröhlich Hamiltonian reads

Ĥ =
∑

k,s

εk,sc
†
k,sck,s + ω0

∑

q

b†qbq + Ĥe-ph , (3.10)

where εk is the bare electron dispersion. c†k,s (ck,s) and b†q (bq) are creation (destruction) operators
of electrons and phonons, respectively. k and q denote momenta, while s is the spin index. In
order to simplify the analysis, we consider electrons with an isotropic effective mass. In the
nearest-neighbor (NN) approximation with a cubic lattice symmetry, the bare electron dispersion
can be written in the tight binding form εk = −2t cos(akx/2) cos(aky/2) cos(akz/2), with the
electron hopping integral t. In the long-wavelength limit, such a dispersion takes the form of
the free-particle like dispersion, εk = ta2k2 ≡ h̄2k2/2m, with m = h̄2/2ta2 being the electron
band mass.

3.10.2 Low doping

Due to the long-ranged e-ph interaction, electrons doped in the conduction band form large
polaron states. For large polarons, lattice discreteness effects are weak, meaning that it is
enough to analyze the long-wavelength limit behavior of Eq. 3.8. Due to the phonon cloud, the
polarons are characterized by an increased effective mass m∗ compared to the electron band
mass m, t/t∗ ∝ m∗/m > 1, where t∗ and m∗ are the polaron NN-hopping integral and the
effective mass, respectively. For small dopings of the conduction band, the effective overlap
between polarons is small and can be neglected. Therefore, our starting point for the analysis
of the ARPES properties is the gas of noninteracting polarons. It is convenient to introduce ξ∗k,
representing the polaron energy ε∗k shifted by the Fermi level energy µ, ξ∗k = ε∗k − µ. We use
the Fermi-Dirac statistics n(k) assuming that the polaron gas behaves approximately as a gas
of fermions, i.e., at T=0 all polaron states are occupied for ξ∗k < 0. In the present context, the
ARPES intensity is given by the single-electron removal processes, where the initial state is the
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ground state Ei = ξ∗k. The final state corresponds to a photohole coupled to its phonon dressing,
leaving the lattice with or without phonon excitations, Ef =

∑
q nqh̄ωq, with h̄ωq = h̄ω0 for

LO phonons. Using the standard Lang-Firsov transformation to describe the phonon cloud
associated with the polaron, the electron spectral function (ARPES intensity) takes the form
A(k, E) = A

(0)
c (k, E) +A

(l>0)
inc (k, E) [106],

A(0)
c (k, E) = π Z n̄(k) δ(E − ξ∗k)

A
(l>0)
inc (k, E) = π Z

∑

q1,...,ql

Πl
r=1 |γ(qr)|2

(2N)ll!
× n̄(k +

∑

r

qr)× δ(E +
∑

r

h̄ωqr − ξ∗k+
∑

qr
)

=
π

2
Z
∑

q

|γ(q)|2
N

× n̄(k + q)× δ(E + h̄ωq − ξ∗k+q)

+
π

8
Z
∑

q1,q2

|γ(q1)|2|γ(q2)|2
N2

× n̄(k + q1 + q2)

×δ(E + h̄ωq1
+ h̄ωq2

− ξ∗k+q1+q2
)

+ ... (3.11)

where Z is the QP weight, defined by the projection of the excited polaron wave function onto the
free electron state. The first, coherent contribution A(0)

c (k, E) in Eq. 3.11 corresponds to a final
state of the lattice without phonon excitations. The spectral weight follows the polaron dispersion
ξ∗k , while the description of its broadening is absent within the single-phonon coupling approach
taken in Eq. 3.8. The remaining l > 0 contributions in Eq. 3.11 are incoherent, involving the
simultaneous excitation of l phonons. In Eq. 3.11, γq are the amplitudes of coherent states that
describe the polaron lattice deformation (polarization) [106]. That is, each amplitude γq is the
displacement of a given oscillator q due to the presence of the electron, |γq|2 ∝M2

q /ω
2
0 .

3.10.3 l = 1 contribution to the ARPES spectral weight

Let us analyze in more detail the l = 1 contribution to the incoherent part of the spectral weight
in Eq. 3.11. Assuming the low density limit, µ � t∗, and by recognizing that in this limit the
polaron dispersion is parabolic, one may replace the summation over the BZ by the integral,

1

N

∑

q

|γ(q)|2 =
M2

0

ν (h̄ω0)2

∑

q

1

|q|2 →
(
M0

h̄ω0

)2 1

(2π)3

∫
d3q

1

|q|2 , (3.12)

where ν = Na3, a is the lattice unit and N is the total number of lattice sites. With the change of
the integration variable in Eq. 3.11 to p = k + q, one obtains
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3.10. Derivation of the polaron spectral function

A(1)(k, E) = Z
π

2

1

N

∑

p

|γ(p− k)|2 n̄(p)δ(E + h̄ω0 − ξ∗p)

= Z
π

2

(
M0

h̄ω0

)2 1

(2π)3

∫
d3p

1

|p− k|2 n(εp)

×δ(E + h̄ω0 − ξ∗p) (3.13)

Because of the δ-function, the integration in Eq. 3.13 is over the spherical surface, given by the
condition h̄2p2/2m∗ = E + h̄ω0 + µ > 0. That is, the radial component of the wavenumber p
in Eq. 3.13 is fixed by E = h̄ω, p = p(ω),

∫
d3p

1

|p− k|2 n(p) δ(E + h̄ω0 − ξ∗p)

= 2π

∫ ∞

0
p2dp

∫ 1

−1
dν

1

p2 + k2 − 2νpk
n(p)

m∗

h̄2p
δ(p− p(ω))

= π
2m∗

h̄2 n(p(ω)) p(ω)

∫ 1

−1
dν

1

p2(ω) + k2 − 2νp(ω)k

= π
2m∗

h̄2 n(p(ω))
1

2k
ln

(
p2(ω) + k2 + 2kp(ω)

p2(ω) + k2 − 2kp(ω)

)
(3.14)

= π

√
2m∗

h̄
n(E + h̄ω0 + µ)

1√
ε∗k

ln

( √
E + h̄ω0 + µ+

√
ε∗k

|√E + h̄ω0 + µ−
√
ε∗k|

)

where E ≥ −h̄ω0 − µ. Using the Heaviside step function Θ(E), the final result for A(1)(k, E)

may be expressed as

A(1)(k, E) =
Z

32π

(
M0

h̄ω0

)2 √2m∗

h̄
Θ(E + h̄ω0 + µ) n(E + h̄ω0 + µ)

1√
ε∗k

× ln

( √
E + h̄ω0 + µ+

√
ε∗k

|√E + h̄ω0 + µ−
√
ε∗k|

)
. (3.15)

This expression diverges logarithmical for E = εk − h̄ω0 − µ, i.e. for energies following the

85



Chapter 3. Anatase TiO2 – a polaronic semiconductor investigated by ARPES

QP dispersion εk − µ by one phonon quantum h̄ω0. The linewidth of A(1)(k, E) is therefore
intrinsically finite. In distinct contrast to quantum well states, this satellite is subject to a Fermi
cutoff at E = −h̄ω0 − µ.

3.10.4 l = 2 contribution to the ARPES spectral weight

For A(2)(k, ω) one has

A(2)(k, ω) = Z
π

8

∑

q1,q2

|γ(q1)|2|γ(q2)|2
N2

× n̄(k + q1 + q2)

×δ(ω + ωq1
+ ωq2

+ µ− εk+q1+q2
)

A(2)(k, E) = Z
π

8

∑

q1,q

|γ(q1)|2|γ(q − k − q1)|2
N2

× n̄(q)× δ(E − εq) (3.16)

where E = ω + 2ω0 + µ ≥ 0. Using the integration derived for A(1)(k, ω), we obtain

A(2)(k, E) = Z
1

4N

∑

q1

|γ(q1)|2 π
2

1

N

∑

Q

|γ(q − k − q1)|2 × n̄(q)× δ(E − εq)

= Z
1

4N

∑

q1

|γ(q1)|2 α
8

n̄(E)

h̄ω0

√
h̄ω0

εk+q1

ln

( √
E +

√
εk+q1

|
√
E −

√
εk+q1

|

)

= Z
α

32

n̄(E)

h̄ω0

1

N

∑

q

|γ(q − k)|2
√
h̄ω0

εq
ln

( √
E +

√
εq

|
√
E −

√
εq|

)

= Z
α

32

n̄(E)

h̄ω0
4πα

√
DJ

h̄ω0
a

1

(2π)3

×
∫
d3q

1

|q − k|2

√
h̄ω0

εq
ln

( √
E +

√
εq

|
√
E −

√
εq|

)

= Zπ
α2

8

n̄(E)

h̄ω0

1

(2π)2

∫
q2dq

∫
dν

1

q2 + k2 − 2qkν

1

q
ln

( √
E +

√
εq

|
√
E −

√
εq|

)

= Zπ
α2

8

n̄(E)

h̄ω0

1

(2π)2

∫
dq

1

k
ln

(
k + q

|k − q|

)
ln

(
pE + q

|pE − q|

)
(3.17)
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A numerical analysis of this integral yields another singularity atE = εk−2h̄ω0−µ. Overall, the
singularity is less pronounced and the spectral weight of A(2) distributed more homogeneously
between −2h̄ω0 − µ < E < −2h̄ω0 with respect to A(1). We assume the distribution of spectral
weight to become more and more homogeneous for spectral contributions l > 2.

3.10.5 High doping

With more and more charge carriers occupying the conduction band, the single polaron picture
can no longer be maintained. Screening of the positively charged ion cores by the electron
background becomes important, leading to an effective reduction of e-ph coupling. The polarons,
until this point stable QPs, dissociate into an electron-liquid. In this Fermi liquid picture, the self
energy of the system is altered. Following the derivation of Ref. 26, the one-phonon self energy
then can be written as

Σ(k, ik) = − 1

β

∫
d3q

(2π)3

M2
q

ε(q, iω)2
D(q, iωn)G(0)(k + q, ip+ iωn) , (3.18)

where G(0) is a free-particle electron Green’s function and D(q, iωn) is the renormalized phonon
propagator. Assuming here one single Einstein type of LO phonon, D(q, iωn) takes the form

D(q, iωn) = D(iωn) =
−2ω0

ω2
n + ω2

0

. (3.19)

For a phonon frequency ω0 smaller than the plasma frequency, screening may be assumed to be
static and the dielectric function ε(q, iω) can be written in the Thomas-Fermi approximation

ε(q, iω) = 1 +
q2
TF

q2
, (3.20)

where qTF is the Thomas-Fermi wave vector. The self energy given in Eq. 3.18 describes how
the electrons screen and modify phonons and their interactions with the electrons. For electrons
εk = ta2k2 ≡ h̄2k2/2m, the imaginary part of the self energy can be written as

Im [Σ(k, E)] = −αω
3/2
0

4
√
εk

[Θ(E − h̄ω0)gp(E − h̄ω0) + Θ(−E − h̄ω0)gp(E + h̄ω0)] ,

gp(x) = ln

[
εs + (

√
x+ µ+

√
εk)

2

εS + (
√
x+ µ−√εk)2

]

+ εs

[
1

εs + (
√
x+ µ+

√
εk)2

− 1

εs + (
√
x+ µ−√εk)2

]
, (3.21)

87



Chapter 3. Anatase TiO2 – a polaronic semiconductor investigated by ARPES

with εs = h̄2qTF /2m. The real part can be obtained through the Kramers-Kronig relationship

Re[Σ(k, E)] =

∫ ∞

−∞

dE′

h̄π

Im[Σ(k, E′)]

E′ − E , (3.22)

and the spectral function from

A(k, E) =
2

π

|ImΣ|
|h̄ω − εk −ReΣ|2 + |ImΣ|2

. (3.23)
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Figure 3.13: (a) Measured dispersion of the electronic state at (kx,ky)=(0,2π/a) for the high
carrier density limit n = 1020 cm−3. Close to kF , a significantly renormalized kink structure
appears. At the center of the BZ, the QP weight smears into the background resulting in a broad
incoherent feature. This incoherent part follows the bare band. (b) The renormalized band (1)
as well as the dispersion of the incoherent part (2) are well reproduced by the second order
perturbation model of Eq. 3.23 for α = 2. (c) Schematics of the low doping case. The polaron
parabola is followed by a succession of vibronic satellite bands. (d) Schematics of the high
doping case. The polaron band crosses the one phonon threshold h̄ω0. Close to h̄ω0, the band is
strongly renormalized.

Fig. 3.13 (a) shows ARPES results at the high doping limit next to a calculation (b) of Eq. 3.23. To
obtain the best possible agreement with ARPES, the phonon frequency was set to ω0 = 80 meV,
T was set to 20 K and t = h̄2/2ma2 = 445 meV with m/me = 0.6 and a = 3.782 Å [107]. The
chemical potential µ was calculated from a free electron model

n =
8
√

2πm3/2

h3

(
2

3
µ3/2

)
(3.24)

and yields µ ∼ 185 meV for n = 1020 cm−3. We used a screening εs of 100 meV and an
intrinsic broadening of the spectral function of 10 meV. Our calculations are in good qualitative
agreement with the ARPES data for α ∼ 2, which is slightly below the value of 2.5 estimated in
the low-density limit. Although this points to a small decrease of the coupling strength, we point
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out that besides α, the band renormalization depends sensitively on k, the chemical potential µ
and the band mass m. For this reason, a derivation of α solely from the QP dispersion accessed
by ARPES has been shown to be inaccurate in this regime [108].

In the vicinity of E ∼ h̄ω0, the dispersion clearly presents a kink (1) and then evolves into the
(non renormalized) incoherent branch εk (2). Fig. 3.13 (c-d) sketches the evolution from the
low doping limit to the high doping limit. At low carrier concentration (c), the QPs are polarons
and their dispersion above the one phonon threshold h̄ω0. The QP parabola is followed by a
succession of phonon emission lines set of by multiples of h̄ω0. When the filling is high enough
for the QP dispersion to cross the one phonon threshold, the QP becomes unstable in the vicinity
of h̄ω0, and the dispersion strongly renormalizes. Far below the threshold however, carriers
follow the unrenormalized dispersion. Carriers in this regime can always de-excite by emitting
one or multiple phonons h̄ω0, their lifetime therefore is low and the ARPES lineshape broad.

3.11 Some quantitative estimates

3.11.1 Electrical properties

Let us now try to estimate some characteristic properties of the “conductive channels” created
by the x-ray beam. The most important parameters we extract from the data is (i) the in plane
effective mass m∗xy of the QP (from the curvature of the QP dispersion), (ii) the Fermi wave
vector kf (from the MDC at EF ) and (iii) its uncertainty ∆kf (from the MDC broadening) as
well as (iv) the linewidth of the QP ∆E (exploited already in Sec. 3.9).

In the low doping limit, we estimate m∗xy ∼ 0.7me from the ARPES data. In the high density
limit, the effective mass is further enhanced in the vicinity of E = h̄ω0 (see e.g. Fig. 3.13) and
we extract an effective QP mass of about (1.2± 0.2)me close to kF for n = 1020 cm−3.

Unfortunately, the small band dispersion along the c∗ axis as well as the technical difficulties
involved in a E vs kz measurement make an estimation of kfz and therefore a value for the out
of plane effective mass m∗z from the data in Fig. 3.5 or Fig. 3.11 unreliable. However, we can
estimate kfz to be in between 2π/3c and π/c from Fig. 3.5. From h̄2k2

fz/2m
∗
z ∼ 40 meV, we

estimate m∗z ∼ 4.7-10.7me. The un-renormalized DFT mass obtained in Refs. 107 and 132 is
in between mz ∼ 2.4me and 4.05me. Assuming isotropic e-ph coupling we so can compare to
m∗z ∼ 1.7× (2.4...4.05)me ∼ (4.1...6.9)me.

From the Luttinger theorem, we can estimate the charge carrier density by dividing the volume of
the electron pocket 4/3πk3

f by the total volume of the BZ (2π/a)2(2π/c) and taking into account
in total 2 electrons per state per unit cell. Of course this estimation would be more accurate taking
into account the elongation of the pocket along kz . Due to the experimental difficulties explained
above however, this cannot be done in a reliable way.

We further can estimate the in plane Fermi velocity vF ∼ h̄kF /m∗xy.
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From ∆kF we can directly estimate the mean free path of the QP l ∼ 1/∆kF which relates
directly relates to the scattering rate τ ∼ l/vF via Drude theory. We consequently yield values of
the carrier mobility µ = eτ/m∗xy, the conductivity σ ∼ ne2τ/m∗xy and the resistivity ρ ∼ 1/σ.

Independently, we can obtain the scattering rate τ = h̄/∆E from the linewidth of the QP ∆E,
which relates directly to the mean free path l ∼ τvF . We consequently in a different way
again yield the mobility µ = eτ/m∗xy = eh̄/∆Em∗xy, the conductivity σ = nµe and resistivity
ρ = σ−1.

For the samples discussed in 3.9 we obtain ∆E ∼ 50 meV to 150 meV in the temperature range
20-300 K and find a mobility reduction from µ ∼33 cm2/Vs at 20 K to µ ∼11 cm2/Vs at room
temperature. The resistivity and conductivity change is summarized in Tab. 3.1.

n (1019cm−3) σ (S/cm) ρ (10−3 Ωcm)
0.5 26.5-8.8 40-110
3 160-53 6-19
35 1850-620 0.5-1.6

Table 3.1: Conductivity and resistivity estimates for m∗xy = 0.7me in the temperature range
0-300 K. For comparison, typical conductivities are 6.3× 105 S/cm for copper and up to 10 S/cm
for GaAs.

Estimates for different charge carrier concentrations at low temperature (T ∼ 20 K) are given in
Tab. 3.2.4 The estimates obtained from ∆kF compare very nicely to the ones obtained from ∆E

in the low and high doping regimes. In the intermediate doping regime, where the QP is not as
well defined and m∗xy cannot be determined properly, we have slight discrepancies. Nevertheless,
we get a good impression of the electric properties of the conductive channel, in good agreement
with the transport experiments of Refs. 79, 105 and 109. Interestingly, the conductivity that can
be achieved by x-ray beam doping is three orders of magnitude higher than in the pristine case
(n ∼ 1017 cm−3, compare Fig. 3.2).

From the dielectric constants ε∞ = 5.82 and ε0 = 45.1 obtained in Ref. 110, we can further
estimate the plasma frequencies in the low ω−p =

√
ne2/ε0m∗xy and high density limit ω+

p =
√
ne2/ε∞m∗xy [26]. The plasma frequency in the high doping case serves as an indicator

for the validity of the Thomas-Fermi approximation exploited in Sec. 3.10.5. At low doping,
h̄ωp ∼ 18−38 meV< h̄ω0 ∼ 108 meV is comparatively low with respect to the phonon frequency
indicating that the phonons cannot follow the electrons motion. In the frame of the phonons, the
electronic potential can therefore be considered static. In the high doping limit, phonon frequency
and plasma frequency become comparable (h̄ωp ∼ 49− 135 meV∼ h̄ω0 ∼ 108 meV). This is a

4Please note that the extraction of the QP linewidth ∆E can only be done for low doping samples. Therefore we
used an approximate Gaussian fit for the lineshape at k = kF to obtain the trend. Obviously, the numbers obtained are
much larger than the ones of Sec. 3.9 since they do not take into account the experimental broadening, nor the Fermi
cutoff.
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3.11. Some quantitative estimates

PO2 (mbar) 5× 10−8 1× 10−8 5× 10−9 1× 10−9 5× 10−10

kF (Å
−1

) 0.05 0.08 0.10 0.13 0.14
∆kF (Å

−1
) 0.14 0.17 0.18 0.17 0.14

∆E (eV) 0.08 0.08 0.10 0.14 0.12
m∗xy/me 0.7 0.7 ? ? ? 1.2

10−3e/uc 0.6 2.3 4.6 10 12
n (1019cm−3) 0.42 1.7 3.4 7.4 9.3
vF (103m/s) 83 132 165 125 135

derived from MDC

l (Å) 7.1 5.9 5.6 5.9 7.1
τ (10−15s) 8.6 4.4 3.4 4.7 5.3
µ (cm2/Vs) 21.7 11.2 8.4 6.9 7.8
ρ (Ωcm) 0.068 0.030 0.020 0.010 0.009
σ (Si/cm) 14.7 30.9 45.7 81.7 115

derived from EDC
τ (10−15s) 8.2 8.2 6.6 4.7 5.5
l (Å) 6.8 10.9 10.9 5.9 7.4

µ (cm2/Vs) 20.6 20.7 16.5 6.9 8.0
ρ (Ωcm) 0.072 0.017 0.011 0.012 0.008
σ (Si/cm) 14.0 57.3 89.5 81.9 119.4

derived from dielectric properties
h̄ω−p (meV) 14 27 38 43 49
h̄ω+

p (meV) 38 77 107 121 135

Table 3.2: Some quantitative estimates for the electrical and dielectrical properties of beam-doped
anatase TiO2.
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sign that screening now will gain importance, but not total control over the QP’s renormalization.

3.11.2 Electron phonon coupling

Let us now estimate the electron phonon coupling strength. We can rewrite Eq. 3.8 in terms of
the dimensionless e-ph. coupling strength α:

M2
0 =

4παh̄(h̄ω0)3/2

√
2m

(3.25)

where α is defined as

α =
e2

h̄

√
m

2h̄ω0

(
1

ε∞
− 1

ε0

)
. (3.26)

With m ∼ 0.42me, h̄ω0 ∼ 108.7 meV and using the in plane values ε∞ = 5.82 and ε∞ = 45.1

tabulated for the dielectric constants [110], we find α ∼ 1.1 and M0 ∼ 0.165 meV/Å. This value
is clearly very low compared to our phenomenological expectation that the number α should give
approximately the number of phonon emission lines in our ARPES spectra, i.e. value around
∼ 2− 3. We find the origin of this mismatch in the approximations done within the derivation
of the Fröhlich Hamiltonian, i.e. that the polarization is proportional to the ionic displacement.
More realistically however, the dielectric response is resonantly enhanced close to frequencies of
h̄ω0, resulting in a stronger effect [111].

Fitting the experimental lineshape to the model obtained in Sec. 3.10 yields an unreasonable
value of α ∼ 8, for reasons that have not been identified yet.

We thus compare this estimate with a value obtained from the weak coupling limit

m∗/m =
1

1− α/6 (3.27)

which known to work well up to α ≤ 2 [112], and find α ∼ 2.4.
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3.11. Some quantitative estimates

In an analogous way, we use the strong coupling limit [113]

m∗/m = α4/48 (3.28)

and find α = 3. These two values give un upper and a lower boundary for the electron phonon
coupling to expect in anatase. For more precision, we compare to Diagrammatic Monte Carlo
Calculations as discussed in the paper of Sec. 3.5 and obtain a value α ∼ 2.5 [112].
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4 Anatase TiO2 – a polaronic semicon-
ductor investigated by RIXS

4.1 Summary

In this section, we study the role of the electron-lattice coupling in oxygen vacant anatase TiO2

by high resolution resonant inelastic x-ray scattering at the Ti L3-edge. The spectral signatures of
phonon modes of A1g and B1g symmetry as well as a fluorescence peak appear for excitation
energies corresponding to transitions to delocalized intermediate states. These resonances remain
suppressed for intermediate states of excitonic character. We further discuss a progressive
emission of well-defined 95 meV Franck-Condon-like loss features indicating intermediate
electron-phonon coupling. Phonon frequency and e-ph coupling, both directly probed by RIXS,
show low doping sensitivity. We further observed a similar resonance at the O K-edge.

4.2 Motivation

Electron-phonon (e-ph) coupling is a key interaction that determines many properties of solids. It
is especially important in conventional superconductors, where it mediates the electron pairing
[114–116]. In polar semiconductors, e-ph coupling plays a major role in determining the
lifetime and effective mass of doped in charge carriers, typically exploited in applications. As
discussed in Ch. 3, a benchmark system is anatase TiO2 where intermediate range (α ∼ 2.5)
e-ph coupling is believed to be responsible for the formation and dispersion of so called “large
polaron” quasiparticles (QPs), i.e. electrons dressed with their self-induced lattice distortion.

The anisotropic nature of anatase further suggests electrons propagating along different crystal
directions to be affected differently by their phonons [78, 92, 110, 117–119]. Indeed, such
a scenario of anisotropic e-ph coupling has been already identified theoretically [120] and
experimentally in the cuprates, where selective excitations of optical phonons competing with
magnons [230] can lead to anisotropic e–ph coupling [122–124]. In 1D cuprates, it has been
shown that the coupling strength remains essentially doping independent, which demonstrates
an ineffective screening mechanism [125]. In other low dimensional systems like CeTe3 and
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Chapter 4. Anatase TiO2 – a polaronic semiconductor investigated by RIXS

VO2, the anisotropic coupling has been attributed to the formation of collective modes induced
by electronic phase transitions [126]. In Ca or K intercalated graphene, anisotropic e-ph coupling
was attributed to the nesting condition for intervalley scattering, and showed strong doping
dependence [127, 128]. In CdS nanowires, geometrical aspects seem to determine the anisotropy
of e-ph coupling [129].

In anatase, the scenario could in principle again be quite different. The dielectric environment of
TiO2 could lead to a polaronic screening mechanism [130,131] which moderates the effective cou-
pling between an electron and one phonon branch in a directional way. The QP re-normalization
would then depend very sensitively on this anisotropy and the in- and out of plane carrier mass
ratio m∗z/m

∗
xy could therefore differ significantly from the un-renormalized ratio mz/mxy.1

Besides the fundamental interest, such a behavior would be of tremendous importance for
applications relying on the mobility of carriers typically exploited in applications [134, 135].
Especially if they are based on nanowires which need to transport current essentially along one
distinct crystal axis.

To address these questions, high resolution resonant inelastic x-ray scattering (RIXS) measured
across the Ti L3 absorption threshold is a powerful experimental probe. RIXS is known to be
very site sensitive and therefore responds to the local symmetry of the absorbing atom. Further,
RIXS as a bulk sensitive technique involves the full photon momentum and therefore allows for a
study of excitations along all different directions in reciprocal space. Most importantly however,
RIXS also can yield - as similar to ARPES - the e-ph coupling strength [136]. For reasonable
coupling, we expect the “one phonon line” to be followed by a progression of vibronic satellites.
The energy separation of these peaks corresponds to the characteristic phonon energy h̄ω0, in
direct analogy to a generalized Franck-Condon picture in molecules [137]. The relative intensity
of these satellites reflect the e-ph coupling strength.2 RIXS therefore is able to probe the e-ph
coupling along different directions of reciprocal space.

4.3 Methods

High-quality single crystals of oxygen vacant anatase (ne ∼ 1018 cm−3) TiO2 were grown
by the transport technique described in Ch. 3, section 3.3. This time, single crystals naturally
exposed (001) surfaces which were annealed in 10−8 mBar of O2 at 500 K for several hours. This
treatment typically results in a well ordered 2× 1 reconstructed (001) surfaces as independently
confirmed by LEED shown in Fig. 3.4.

1As we saw from Sec. 3.11, ARPES confines the ratio to m∗z/m∗xy ∼ 6.7-15.3. Polarized infrared spectroscopy
measurements find an anisotropy of the optical effective mass m∗z/m∗xy ∼ 3-6 [132, 133]. Density functional
theory (DFT) in the generalized gradient approximation (GGA) obtain un un-renormalized mass ratio mz/mxy ∼
4.05/0.42 ∼ 9.6 [107].

2Unlike in ARPES, the RIXS amplitude of the “one phonon line” remains always dominant, even in the case of
very strong e-ph coupling.
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4.4. Excitation energy dependence

RIXS data were taken with the HORNET spectrometer at beam line BL07LSU of the Spring 8
synchrotron, Japan, where an energy resolution of ∼ 100 meV was obtained using a combination
of focusing elements and high-precision optical gratings [138]. The base pressure of the high-
vacuum chamber and the spectrometer was 10−9 mBar. Sample temperature was kept below 40 K
to suppress the low energetic acoustic phonon background. Total electron yield x-ray absorption
(XAS) spectra were taken prior to experiment to calibrate the monochromator. The scattering
angle was kept 90◦, while the sample was rotated around the x-axis to change α and thus the
momentum transfer q (see Fig. 4.2).

Reference spectra to calibrate emission energy, energy resolution and symmetry of the RIXS
lineshape were taken before each measurement with photons polarized perpendicular to the
horizontal scattering plane (σ-polarization). Spectra shown in this work are summed from several
partial measurements, each accumulated for a maximum of 30 min and aligned with respect to
the elastic line to minimize possible energy drifts.

4.4 Excitation energy dependence
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Figure 4.1: (left) XAS at the Ti L3-edge (red) compared to MCMS calculations (black). MCMS
results are further plotted without taking into account the lifetime broadening of the core hole
(black dashed), revealing the excitonic character of peaks A1, A2 and A3 as opposed to the
delocalized nature of B1 and B2. (right) RIXS data obtained at different photon energies are
marked by black triangles. Across XAS peak B1, a fluorescence (black dashed line) as well as a
low energy resonance (filled spectra) become visible.

Fig. 4.1 presents an overview of the resonance behavior of TiO2 anatase throughout the Ti L3

absorption threshold. The left part shows our XAS data (red) compared to state of the art multi
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channel multiple scattering calculations (MCMS) by Krüger [139]. The total MCMS spectrum
is shown with (black solid) and without (black dashed) taking into account the finite core-hole
lifetime of the XAS final state. The black dashed spectrum additionally is convoluted by a
Gaussian of 0.1 eV FWHM for better visibility of the sharp features.

Whereas the mostly “t2g” derived absorption peaks A1, A2 and A3 exhibit a linewidth solely
determined by this artificial broadening, the “eg” - derived peaks B1 and B2 exhibit a finite
bandwidth, even without taking into account lifetime broadening.3 This inherent difference
underlines the strong excitonic character (core exciton) of features A1, A2 and A3 where the
excited electron remains strongly bound to the core hole. This is in contrast to the delocalization
of final state carriers probed at peaks B1 and B2, where the width of the features mainly reflects
the bandwidth of the conduction band – or in other words the unoccupied density of states
(DOS) [140, 141].

The right part of Fig. 4.1 shows energy loss RIXS data obtained for the photon energies hν
indicated by black markers. For photon energies hν probing the XAS features A1, A2 and A3,
the RIXS spectra exhibit an essentially symmetric elastic lineshape. At XAS peak B1 by contrast,
a pronounced feature appears at ∼ 1.2 eV energy loss, linearly moving towards higher energy
loss as hν increases (black dashed line) – i.e. a typical fluorescence as we will show in the
following. Simultaneously to this fluorescence, the elastic peak develops an asymmetric lineshape
with a pronounced tail towards the low energy side (filled spectra). This selective appearance of
fluorescence and asymmetry, indicates their close relation to the orbital nature of XAS peak B1.

Lets start again from a local Kramers–Heisenberg picture discussed in Ch. 2, where the RIXS

amplitude is described as F (hν, hν ′) =
∑

f

∣∣∣
∑

i
〈f |T̂ 2|i〉〈i|T̂ 1|g〉
Ei−Eg−hν−iΓi

∣∣∣
2
δ(hν − hν ′ + Eg − Ef ) [51].

T̂ 1,2 is the dipole operator, |g〉, |i〉 and |f〉 are the ground, the intermediate and the final state
in the RIXS process and Eg, Ei and Ef their corresponding energies. In Ti L-edge RIXS, a 2p

core electron is first excited into the XAS final state |i〉, defined by XAS(i) = |〈i|T̂ |g〉|2δ(Ei −
Eg − hν). Like absorption, the RIXS intensity F recording the overlaps of ground, intermediate
and final state will be most pronounced if Ei = Eg + hν – which accentuates the intermediate
state selectivity of RIXS – and if absorption as well as emission processes are dipole allowed
(compare to Ch. 2).

4.5 The fluorescence

As already mentioned, MCMS calculations (and atomic multiplet theory [141]) identify the
orbital character of peak B1 – location of the low energy resonance and fluorescence – to be
predominantly “eg”-derived. Formally, anatase TiO2 is a d0 system and dd electronic transitions
towards “t2g” orbitals in the RIXS final state are not possible. As we saw however, the bottom of

3Although the Ti is coordinated tetrahedrally by oxygen, and therefore the proper basisfunctions are the irreducible
representations of D4h – A1g(dz2), B1g(dx2−y2), B2g(dxy) and Eg(dxz/dyz) we will here use the notation of the
octahedral pointgroup t2g(dxy, dxz/dyz) and eg(dx2−y2/dz2) for easier comparison to the literature.
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4.6. RIXS symmetry selection in anatase

the conduction band in oxygen vacant anatase is populated by electrons, which in principle allows
for dd excitations. For energy losses much smaller than the crystal field, dd electronic transitions
can be safely excluded and we expect no significant electronic-spectator contributions to the
RIXS final state. At energy loss energies comparable to the crystal field however, dd derived
spectator processes can become visible where the excitation process is into the “eg” manifold
but the de-excitation originates from “t2g” derived states [142, 143]. In our spectra, this process
appears as marked fluorescence, which extrapolated to zero energy loss closely relates to the
main XAS peak A3 (black dashed line), i.e. the “bottom of the conduction band”. We will show
in a later section that this fluorescence can be completely suppressed by oxidation of Ti3+ to Ti4+

– or in other words by depletion of the “t2g” states.

4.6 RIXS symmetry selection in anatase

The low energy loss part of the RIXS spectra contains primarily the vibrational excitations of
anatase. Thereof, only modes of A1g, B1g and Eg symmetry are Raman active [144, 145].

At photon energies featuring absorption peaks A1-A3, the nature of the intermediate state
according to MCMS is highly excitonic and the excited electron will remain localized close to
the core hole. The electron thus efficiently screens the core hole potential and the effective on site
charge remains constant. Close to absorption peaks B1 and B2 however, the excited intermediate
state electron delocalizes, resulting in an unscreened core hole charge which locally distorts the
lattice. In the subsequent de-excitation process, an electron refills the Ti 2p core hole, leaving the
lattice in a vibrating state and yielding a progression of phonon emission lines, which form the
asymmetry of the elastic peak in RIXS.

In order to get some feeling for the nature of the observed phonon excitations, we start from simple
symmetry considerations, as discussed in detail in Ch. 2. Anatase has point group symmetry D4h,
and formally a completely empty conduction band d0. The symmetry of the ground state wave
function is thus spherical A1g. In an experimental geometry with π-polarized light, the dipole
operator T π is parallel to the scattering plane yz (compare to Fig. 4.5) and is thus contained in the
irreducible representations Eu and A2u of D4h. Given the weak spin orbit coupling of the Ti 3d
carriers and the absence of electronic excitations in the “quasi elastic” response 4 of the low energy
loss features, it is safe to assume conservation of polarization in the de-excitation process.5 The
dipole allowed final states are thus contained inA1g⊗(Eu⊕A2u)2 = A1g⊕A2g⊕B1g⊕B2g⊕Eg.
After the RIXS process, the system so can either return into its original ground stateA1g (resonant
elastic scattering) or into some excited state of A1g, A2g, B1g, B2g or Eg symmetry [56, 146].
We thus can expect all Raman allowed phonon branches A1g, B1g and Eg in this experimental
configuration. In contrast to π-polarization, σ-polarized light T σ is only contained in the Eu

4The term “quasi elastic” means that the electronic quantum numbers are conserved for the low energy excitations.
We further neglect electron-hole excitations of the doped in carriers, which is justified by the symmetric lineshape of
the elastic peak close to A1, A2 and A3.

5This argument is rigorously shown to hold in Ch. 2.
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irreducible representation of D4h and the dipole allowed final states do thus not contain the Eg
modes anymore.

A detailed polarization study compared to the model introduced in Ch. 2 is thus absolute prereq-
uisite for a proper identification of the phonon modes observed.

RIXS angular dependence in σ-polarization

Figure 4.2: RIXS experimental configuration with scattering angle τ = 90◦ in σ-polarization
(ξ = 0).

We start with an angular dependence study in σ polarization (compare to Fig. 4.2), where we
only expect phonon modes A1g and B1g to contribute to the low energy RIXS spectral weight
– independently of the incident photon angle α as discussed in Ch. 2. Fig. 4.3 (a) shows RIXS
spectra taken at several angles α between grazing incidence and grazing emission. The data was
normalized to integration time and photon flux. For direct comparison, we also plot the Ti L-edge
absorption spectrum (pink dashed). Clearly, signal is dominated by elastic Thomson scattering,
resulting in the large elastic peak maximizing in specular reflection α = 45◦. A close up of
the same data in panel 4.3 (b) reveals a p5d1 charge transfer (CT) excitation structure and the
fluorescence (F) feature in detail. Except for the data at α = 5◦, the charge transfer structure is
essentially α independent.

The XAS spectrum indicates that absorption of the RIXS spectra in the charge transfer energy
region (hν ∼ 450-455 eV) is very small and self absorption only affects angles close to grazing
emission (compare to Fig. 2.7), as we indeed see in this measurement. In contrast, the fluorescence
(here at hν ∼ 458 eV) is subject to strong absorption and the intensity therefore suppressed
almost linearly from grazing incidence towards grazing emission.
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Figure 4.3: RIXS angular dependence in σ-polarization. The pink dashed line indicates the XAS
spectrum. (a) Data normalized to flux and acquisition time. (b) Close up of low intensity part of
(a). (c) Close up of the low energy loss part of (a). (d) Self absorption corrected close up of the
low energy loss part. (e) Phonon part obtained by subtracting a Voigt profile from the data of (d).

The same accounts for the low energy excitations close to the zero energy loss. A close up of the
low energy loss part is shown in panel 4.3 (c). Clearly, the low energy shoulder – as is the elastic
peak – is subject to significant intensity variation with α. Making use of eq. 2.31, we apply a
self-absorption correction (SA) and redraw the data in panel 4.3 (d).

The behavior of the elastic line is difficult to analyze quantitatively since resonant processes
cooperate with non resonant Thomson scattering. However we see a clear rise of intensity from
α = 0 to 45◦ and a reduction of intensity towards 85◦. As shown in Fig. 4.4 (a), elastic intensity
is distributed asymmetrically around the specular configuration α = 45◦.6 The shoulder intensity
however is distributed rather symmetrically around the specular angle α = 45◦. To separate out
the phonon contributions and to obtain more quantitative information on the phonons’ angular
dependence, we fit a Voigt profile to the elastic line, subtract it from the data and show the
residual in Fig. 4.3 (e). From 25◦ to 65◦, the phonon spectra overlap. This is in agreement with
our polarization model of Ch. 2, which suggests spectral weight of Raman allowed phonon modes
of A1g and B1g to be α independent.

However, we recognize significant deviations of the phonon intensity at grazing incidence
α = 85◦ as well as grazing emission α = 5◦. Overall, this can be explained by the large error
introduced by subtracting the intense elastic line. At grazing emission, the variation might
additionally be due to low statistics and to a large error in the self absorption correction induced

6which might just indicate a miscalibration of α = 0
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Figure 4.4: Relative angular dependence of RIXS spectral weight associated to elastic and
phonon contributions for (a) σ- (ξ = 0◦) and (b) π-polarization (ξ = 90◦).

by the uncertainty of α (compare to Fig. 2.7). The deviation at grazing incidence however can be
explained by significant aberration effects due to the elongated beamspot on the surface.

RIXS angular dependence in π-polarization

We now turn our attention to the π-polarized configuration (Fig. 4.5), where according to Ch. 2 all
Raman active phonon modes – including Eg – should be allowed in the RIXS process. Fig. 4.6 (a)
shows RIXS spectra taken at several angles α between grazing incidence and grazing emission.
Again, data was normalized to integration time and photon flux.

With respect to the σ-polarized spectra, Thomson scattering diminished considerably and the
overall signal is dominated by resonant processes. As before, the charge transfer excitations are
largely α independent, with the two exceptions of grazing incidence and emission. At grazing
emission, we assume the self absorption effect again to be the dominant source of suppression
whereas abberation effects modify the spectral weight at grazing incidence.

At emission energy hν ′ ∼ 458 eV we observe a clear self absorption effect of the fluorescence
feature. A similar but less systematic self absorption effect is repeated close to the elastic line.
Panel 4.6 (b) presents a close up of self absorption corrected RIXS data. From grazing incidence,
elastic as well as inelastic features show a clear intensity rise towards a maximum at the specular
angle α = 45◦. From here, intensity again diminishes towards grazing emission. Like in σ
polarization, phonon spectral weight is distributed rather symmetrically around the specular angle
α = 45◦ whereas the elastic scattering strength is distributed slightly asymmetrically. Panel 4.6 (c)
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Figure 4.5: RIXS experimental configuration with scattering angle τ = 90◦ in π-polarization
(ξ = 90◦).
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Figure 4.6: RIXS angular dependence in π polarization. (a) Data normalized to flux and
acquisition time. (b) Close up of the self absorption corrected low energy loss part of the data of
(a). (c) Phonon part obtained by subtracting a Voigt profile from the data of (b). (d-f) An absolute
comparison of the self absorption corrected data in σ and π polarization shows a good match of
the CT peaks. (f-i) The same comparison of the low loss energy part shows the phonon cross
section for RIXS to be larger in σ polarization.

103



Chapter 4. Anatase TiO2 – a polaronic semiconductor investigated by RIXS

shows the data subtracted by a Voigt profile in order to isolate the phonon excitations. In contrast
to data in σ-polarization, the intensity of the phonon background now shows a symmetric rise and
fall around α = 45◦ as summarized in Fig. 4.4. We therefore once more independently assign the
phonon modes to A1g or B1g symmetry final states, which according to Fig. 2.5 indeed behave as
∝ cos2 α sin2(α) in π-polarization.

σ vs π-polarization

We now compare the absolute intensity of the RIXS spectra – normalized by acquisition time
and photon flux and self absorption corrected – in Fig. 4.6 (d-i). For three angles, α = 25◦, 45◦

and 65◦, we clearly see that the charge transfer excitations in both polarizations exhibit about the
same spectral weight. Same accounts for the fluorescence, which is a good sign for the validity of
the self absorption correction. However, the overall spectral weight for the phonon contributions
is about a factor 4 lower in π with respect to σ-polarization. At 25◦ and 65◦, this factor is even
higher as we indeed expect from the polarization model of Ch. 2.

We conclude that despite its simplicity, the local model introduced in Ch. 2 can give an “educated
guess” of which final states to expect in which experimental geometry. This model therefore may
be useful for the experimentalist investigating an a priori unknown system with a known ground
state symmetry.

4.7 Doping dependence of the elastic contributions

We now turn to the doping dependence of the phonon resonance. Fig. 4.7 summarizes spectra
measured at the resonance hν = 459.6 eV (B1) and in π polarization. We chose two different
experimental configurations, with (α = 68◦) and without (α = 45◦) a momentum transfer
component q‖ within the 001 plane as outlined in Fig. 4.8. In both configurations, spectra were
measured with (blue) and without (red) exposure to a small oxygen partial pressure. An overview
of the normalized and self absorption corrected data is shown in panel 4.7 (a).

Clearly, exposure to O2 enhances the elastic line while it suppresses the fluorescence. Never-
theless, the fluorescence peaks in α = 45 and 68◦ configuration are nicely aligned, respectively,
demonstrating again the validity of the self absorption correction. A close up of the zero energy
loss region is shown in Fig. 4.7 (b). All spectra exhibit a clear shoulder to the high energy side of
the elastic scattering peak. As expected, the relative elastic contribution is significantly enhanced
for samples in α = 45◦ specular geometry.

The observed oxygen pressure dependence is a direct consequence of the surface and subsurface
stoichiometry: as demonstrated in the ARPES study of Ch. 3, soft x-rays of sufficient flux create
oxygen vacancies and populate the bottom of the conduction band. If simultaneously exposed
to oxygen, a dynamic equilibrium between defect creation and re-oxidation can reduce the free
charge carrier concentration from∼ 1020 cm−3 to∼ 1018 cm−3. This net decrease of free charge
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Figure 4.7: RIXS data taken with hν = 459.6 eV and π-polarized light with (blue) and without
(red) an oxygen partial pressure. Spectra were acquired in two scattering geometries with
(α = 68◦) and without (α = 45◦) a component of the in plane momentum transfer q‖. (a)
Samples treated with oxygen develop a larger elastic line but a lower fluorescence. (b) Close up
of the data in (a). The elastic line is strongly O2 pressure dependent, the phonon lines are not. (c)
Analysis of the data at α = 68◦. The phonon contributions are equivalent with and without O2.
(d) Analysis of the data at α = 45◦. The phonon contributions are equivalent with and without
O2. (e) Absolute comparison of the phonon lineshape.
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Figure 4.8: RIXS experimental configuration with scattering angle τ = 90◦ in π-polarization
(ξ = 90◦). The blue lines show the projections of the 3D BZ of anatase onto the ky = 0 plane
(a) α = 68◦ contains a small in plane component q‖ of the momentum transfer. (b) α = 45◦

contains no plane component of the momentum transfer and q‖ = 0.

is marginal with respect to the gross number of electrons in the system. Non-resonant Thomson
scattering – probing mostly the total charge density and typically enhanced by defects – so is not
at the origin of the elastic line modulation.

However, the elastic peak is affected by resonant scattering processes which are sensitive to the
number of inelastic decay channels from the intermediate state |i〉 [147]. An increasing amount
of oxygen defects – corresponding to an increasing number of free conduction band carriers –
will thus reduce the elastic scattering intensity in favor of alternative processes like Coster-Kronig
decay from the lower conduction band, which is expressed in the increase of fluorescence. The
fluorescence If – described by a transition |2p〉 → |k〉 followed by |dxy〉 → |2p〉, where |k〉 is
an occupied 3d t2g-band state above EF – will rise with the number of dxy electrons, i.e. the
number of oxygen defects. Furthermore, the elastic scattering intensity is reduced in favor of
an elastic resonant photoemission channel which will be shown in a further publication [148].
Interestingly, such an oxygen pressure dependence is absent at the O K-edge, which is discussed
in section 4.10.

4.8 Doping dependence and nature of the phonons

We focus now solely on the low energy excitations, i.e. the phonon contributions. The top part of
Fig. 4.7 (c-d) repeat the spectra of samples exposed to oxygen from panel 4.7 (b). Additionally,
we plot the difference spectra obtained by subtracting a Voigt profile from the data - the net
phonon contribution. The middle part of the graphs plot the corresponding spectra without oxygen
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exposure. In the bottom part, an absolute comparison of the phonon contribution for spectra
with and without oxygen is shown. Apart from slight deviations resulting from the Voigt fits –
especially what concerns the α = 68◦ configuration – the phonon contributions are strikingly
similar. Analogous to a generalized Franck-Condon picture in molecules [137], the “one phonon”
line I1 at h̄ω0 ∼ 95 meV is followed by two vibronic satellites I2 and I3, successively separated
by the energy of one phonon mode h̄ω0.

As shown in detail in Ref. 136 and mentioned in the introduction, the relative intensity of the
“two phonon” line I2/I1 gives a direct measure of the e-ph coupling constant. Unlike in ARPES
however, the RIXS amplitude of I1 would remain dominant even in the case of very strong e-ph
coupling.

Indeed, first principle calculations have obtained a phonon branch of A1g, B1g and Eg symmetry
in between h̄ω = 65 and 85 meV [145, 149]. These modes were further confirmed by Raman
experiments to be h̄ωB1g = 64.3 meV, h̄ωA1g = 63.6 meV and h̄ωEg = 79.2 meV [110]. These
values are significantly lower than the ones observed by RIXS, a fact that we do not completely
understand to this point. RIXS is probing the phonon far away from the BZ center. Thus one
could speculate that the phonon dispersion leads to this deviation. More importantly, the parity is
not well defined at k-points away from Γ and odd phonon modes could contribute significantly to
the signal. One has to bear in mind however that RIXS most likely probes also a sum over much
lower energy phonons, which certainly contribute to the observed lineshape.

Fig. 4.7 (e) summarizes all phonon modes and compares their absolute spectral weight. Despite
the matrixelement suppression at 68◦ discussed in Ch. 2, the spectral lineshapes are very similar.
Within the accuracy of the experiment we therefore neither resolve a directionality nor a real
doping dependence of the e-ph coupling strength.

4.9 A generalized Franck Condon model

The spectra can be reproduced by a simple model described in detail in Ref. 136 by Ament et al.
Starting from the Fröhlich Hamiltonian of one longitudinal optical Einstein phonon mode h̄ω0

H =
∑

R

Md†RdR(b†R + bR) +
∑

R

ω0b
†
RbR , (4.1)

an analytic solution for the RIXS amplitude in the Kramer Heisenberg picture was found to be

AEinstein =
∑ Bmax(n,n′),min(n′,n)(g)Bn,0(g)

z + (g − n)ω0
, (4.2)
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where g = M2/ω2
0 encrypts the e-ph coupling strength and z = ωdet + iΓ covers core hole

lifetime Γ and the detuning energy from the L-edge resonance ωdet. Bm,n(g) are Franck Condon
overlap factors expressed as

Bm,n = (−1)m
√
e−gm!n!

n∑

l=0

(−g)l
√
gm−n

(n− l)!l!(m− n+ l)!
. (4.3)
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I3

Figure 4.9: Representative phonon lineshapes obtained in σ (red) and π-polarization (blue).
For completeness we also plot the self absorption corrected RIXS data (blue/red dashed). The
phonon lines are fit by the model obtained by L. Ament et al. (black dashed) for h̄ω0 = 95 meV
and Γ = 0.75 eV [136]

Fig. 4.9 shows representative phonon spectra in π- and σ-polarization. The fact that these spectra
are exhibiting essentially identical lineshapes once more justifies the assignment to A1g and B1g,
since Eg components – potentially allowed in π-polarization – do not contribute significantly to
the lineshape.

We further superpose a fit of |A|2 calculated with parameters Γ = 375 meV, ω0 = 95 meV,
ωdet = 0 andM = 130 meV.7 This result ofM is in nice agreement with the value ofM0 obtained
by ARPES and demonstrates the validity of the local model. In an independent approximation,
M can be estimated from the height ratio of the “two” to the “one-phonon line”: A2/A1 = M/z2.
With I2/I1 = (A2/A1)2 ∼ 0.78...0.94 extracted from the data, we find M ∼ 125...136 meV, in
good agreement with above value. One always has to keep in mind however that these values are
very sensitive to the self absorption correction and the Voigt fit procedure isolating the phonon
modes.

7Γ = 375 meV was obtained from a Gaussian fit of the XPS data in Fig. 3.8.
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4.10 Phonons at the oxygen K-edge
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Figure 4.10: RIXS data at obtained at the oxygen K-edge. The spectrum is dominated by an
intense fluorescence. (a) RIXS data at peaks C1 and C2 of the (inset) absorption spectrum. (b)
The low loss energy part is largely excitation energy independent. (c) While the fluorescence
dominates in π polarization, the elastic line dominates in σ polarization (d).

Having shown the clear presence of multi phonon excitations at the Ti L-edge, we finally will
turn to the resonance behavior at the oxygen K-edge.

Fig. 4.10 (a) shows RIXS data acquired at 530.9 eV and 533.4 eV photon energy, corresponding
to peaks C1 and C2 of the related XAS (inset). The data was acquired in π-polarized light and
α = 68◦, normalized to flux and acquisition time and further self absorption corrected. We
identify a very intense feature centered at hν ′ ∼ 524 eV. Its energy position is clearly independent
of the excitation energy and it consequently can be attributed to a strong fluorescence related to
the dominating charge transfer processes at the oxygen K-edge. Panel 4.10 (b) shows a closeup of
the elastic feature, which exhibits an asymmetric lineshape. In contrast to RIXS at the Ti L-edge,
this asymmetry seems largely excitation energy independent.

The reason for this energy independence is found in the fundamental difference of the underlying
absorption process [150, 151]. The ground state configuration is 1s22s22p6 and the 1s → 2p

channel is formally closed. The O 2p-states therefore are only visible as result of the covalent
bonding of O 2p with Ti 3d states. Due to negligible Coulomb interaction between core hole
and excited electron, multiplet effects are rather weak and the XAS spectrum to a large extent
represents the unoccupied density of states of the Ti 3d manifold with core hole [78,91]. The first
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two peaks C1 and C2 correspond respectively the empty “t2g” and “eg” states of the 3d conduction
band, whereas the higher energy structures are related to the titanium 4s- and 4p-bands. The
delocalization effect throughout the entire intermediate regime will thus allow vibronic excitations
throughout the absorption threshold, as discussed in detail for the Ti L-edge in section 4.6.

Formally, the absorption process needs to consider an O 1s to O 2p transition and in symmetry
terms, there is an approximately equal amount of oxygen 2p character in the “t2g” band as in the
“eg” band. Thus – similar to the Ti L-edge, no strict intermediate state selection rule applies. We
thus expect all Raman allowed phonon branches A1g, B1g and Eg in π polarization, whereas the
Eg mode is suppressed in σ polarization.

Fig. 4.10 (c) shows two spectra measured with α = 68◦ at XAS peak C2, comparing σ and
π polarizations. As we discussed at the Ti L-edge, σ polarization results in a stronger elastic
line, whereas its fluorescence seems to be largely suppressed. As shown in the close up of
panel 4.10 (d), the phonon tail however seems – despite the influence of the elastic line – of equal
spectral weight.
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Figure 4.11: Doping dependence of self absorption corrected RIXS data at the oxygen K-edge
measured at C2. Both the fluorescence (a) and the elastic feature (b) are only slightly affected
geometry and oxygen exposure. (c) The fluorescence is essentially α independent whereas
inelastic peak (d) and phonons (e) vary according to the expectations for A1g and B1g final states.

Fig. 4.11 (a-b) show the oxygen vacancy doping dependence. Exposure to oxygen here only has
a slight effect on the intensity of the elastic peak and the fluorescence, respectively. The angular
dependence of panel 4.11 (c) shows the fluorescence to be quite independent of α, whereas
a continuous suppression of phonons and elastic line towards grazing incidence is noticed in
panel 4.11 (d). The isolated phonon part in panel 4.11 (e) shows the same suppression, as
expected for the A1g and B1g modes in π polarization.

With respect to spectra taken at the Ti L-edge, the oxygen K-edge data is rather featureless.
Besides, spectra are independent on the oxygen partial pressure as well as on the experimental
geometry. We conclude that several oxygen derived phonon modes build up the RIXS spec-
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tral weight. Their insensitivity to the formation of oxygen vacancies suggests a dominating
contribution of the centro-symmetric oxygen breathing modes [144].
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5 T-CuO – a 2D edge-sharing cuprate
investigated by ARPES

5.1 Summary

In this chapter, we introduce a new cuprate – tetragonal CuO – and reveal its electronic band
structure by means of in situ ARPES. Data interpretation in the framework of the extended t-J
model reveals the Zhang Rice Singlet nature of the first ionization state. These findings constitute
the first observation of the ZRS on a model 2D edge-sharing cuprate system. Based on our
observation, a prediction on the electronic structure in the doped system is given.

5.2 Motivation

Since the discovery of the high temperature superconducting cuprates (HTSC), there has been an
ongoing quest to understand the underlying physics and to synthesize new materials with higher
and higher transition temperature [152–156]. Soon it was realized that the correlated electron
physics in the two dimensional CuO2 planes was probably responsible for the unusual properties
of these new materials. Binary CuO therefore was studied as a prototypical insulating parent
compound in view of its simpler stoichiometry.

However, CuO only crystallizes in a monoclinic crystal structure called tenorite which – in
contrast to the cuprates – does not contain the archetypical CuO2 plane with perfect Cu-O-Cu
bond angle of 180◦. Due to the low symmetry, CuO strongly deviates from the physical trends
extrapolated from the lower group transition metal monoxides.

In 2009, Siemons et al. have shown that a higher-symmetry tetragonal phase of CuO (T-CuO)
can be obtained as thin films epitaxially grown on top of SrTiO3 (001) substrates by means of
PLD with a crystallographic structure much closer to the one of the cuprates [157, 158]. Most
importantly, an extremely stable Néel ground state with transition temperatures up to 800 K
has been predicted in Refs. 159 and 160 and TN ∼ 600 K has been claimed experimentally in
Ref. 161.
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These findings identify T-CuO as new cuprate with presumably peculiar electronic properties
in the insulating phase. In the doped compound, this might even lead to new phases of high
temperature superconductivity.

5.3 Methods

Sample growth and ARPES experiments were performed at the electronic structure factory
endstation at beamline 7 of the Advanced Light Source, Lawrence Berkeley National Laboratory.
T-CuO was grown as in Refs. [157] and [158] by PLD on a 0.5% Nb-doped (001) SrTiO3 (STO)
substrate. During the deposition, the substrate was kept at 550◦C in 1.3 × 10−3 mBar 93.4 %
O2 / 6.6 % O3 atmosphere. The epitaxial film growth was monitored by in situ reflection high
energy electron diffraction (RHEED). After deposition, the sample was cooled down to room
temperature in the same ozone atmosphere. Fig. 5.1 shows the RHEED images measured before
(a) and after the film growth (b). T-CuO clearly adopts the lateral lattice constant of STO (001)
a = 3.905 Å. Moreover, the RHEED image does not show any superstucture corresponding to a
possible surface reconstruction. Samples were then transferred in UHV (p < 10−10 mbar) to the
ARPES chamber, where they were cooled down to 60 K before the measurements. Due to the
thinness of the insulating films, no charging effects were observed.

Figure 5.1: RHEED image of (a) clean STO(001), and (b) a thin film of T-CuO.

5.4 Film characterization

The lattice parameters of the T-CuO thin films were determined in situ by x-ray photoelectron
diffraction (XPD) and ex situ by x-ray diffraction (XRD) measurements. XPD data at the O 1s

threshold was taken with 980 eV, data at the Cu 3p3/2 threshold with 530 eV photon energy. The
measurements show excellent agreement with multiple scattering calculations for c = 5.3 Å from
Ref. 157 (Fig. 5.2). Besides the fourfold symmetry, the data reproduce the detailed interference
structure predicted by theory.
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Figure 5.2: In situ XPD of T-CuO (a) for the O 1s and (b) the Cu 2p3/2 levels. The regions
outside the rectangular inlays reproduce the calculated patterns from Ref. 157.

The XRD measurements were performed after the sample had been exposed for several weeks
to atmosphere. A θ − 2θ scan (Fig. 5.3 (a)) yielded a lattice constant c = 5.340 ± 0.002 Å.
Fig. 5.3 (b) is a close-up of the CuO (004) peak, which is ∼ 10× less intense than the (002) peak,
as expected for a bct2 lattice. A film thickness of 6 unit cells was estimated from the RHEED
oscillations, as well as from low-angle reflectometry1 and from a line shape analysis of the (002)
XRD peak.2

5.5 From tenorite to T-CuO

Placing copper and oxygen atoms alternating on the vertices of a cubic lattice would – by
symmetry – result in degenerate eg(dx2−y2 , dz2) bands. Since the electron valency is 3d9 these
bands would be 3/4 occupied. Due to the strong Coulomb repulsion however, such an occupancy
is energetically unfavorable and Jahn Teller distortion forces the lattice towards lower symmetry,
lifting the orbital degeneracy and reducing the total energy [159, 160, 162]. In contrast to most
members of the transition metal monoxide family, this tendency to leave the cubic phase is very
pronounced, and CuO naturally is found in the highly asymmetric monoclinic phase tenorite
of C2/c symmetry with lattice parameters, a = 4.6837 Å, b = 3.4226 Å, c = 5.1288 Å,
β = 99.54◦ and bond lengths dCu−Cu = 2.9 Å, dCu−O = 1.95 Å and dO−O = 2.62 Å. Though
still a “classic” ‘charge transfer insulator, the Cu-O-Cu bond angle of 146◦ strongly deviates
from 180◦. According to Fig. 5.4 this reduces the exchange interaction parameter J and causes

1 The low angle reflection signal obtained in XRD can be fitted by the Parratt model (e.g. program bocfit) and
allows for an independent determination of thickness and roughness of the thin films. We yield a film thickness
d ∼ 27±3 Å ∼ (5.1±0.6) c and a surface roughness of about ∼ 0.5 Å which may explain why RHEED oscillations
were particularly weak.

2The FWHM of the diffraction peak can be used to estimate the approximate film thickness via the Scherrer
equation d = Kλhν/FWHM cos θ, where K is the shape factor, λhν is the x-ray wavelength, and θ is the Bragg
angle. Assuming a typical shape factor of K ∼ 1.1 ± 0.3, we extract d ∼ 38 ± 11 Å ∼ (7.1 ± 2.1) c.
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Figure 5.3: (a) Ex situ XRD on T-CuO. The absence of the (001) and (003) peaks indicate a bct2
crystal structure. The lattice constant c can be determined from analysis of the (002) and (004)
peaks in (b). The resulting crystal structure is shown in (c).

Figure 5.4: (left) Superexchange interaction J as a function of the Cu-O-Cu bond angle for
various low-dimensional cuprates. The experimentally extracted data are compared to calculations.
This figure was taken from Rocquefelte et al. [167] (right) Overview of TN for transition metal
monoxides with a rocksalt structure. Monoclinic CuO does not follow the exponential trend. This
figure was taken with slight alteration from Siemons et al. [157].
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a deviation from some physical trends extrapolated from MnO, FeO, CoO and NiO, e.g. by a
relatively low Néel temperature of 230 K [157, 163–171].

It is instructive to imagine how the atoms have to be rearranged such that a more symmetric
tetragonal structure can be recovered from this strongly deformed system.

i. We start from the monoclinic unit cell (unit cell: black, lattice points: yellow) with 4 copper
(red) and 4 oxygen atoms (blue). The atomic coordinates (x, y, z) within the cell are [172]:

Atom x y z Atoms/cell
Cu1 1/4 1/4 0 1/2 + 1/2

Cu2 3/4 3/4 0 1/2 + 1/2

Cu3 1/4 3/4 1/2 1
Cu4 3/4 1/4 1/2 1
O1 0 0.41840 1/4 1/2 + 1/2

O2 1/2 0.91840 1/4 1
O3 0 0.58160 3/4 1/2 + 1/2

O4 1/2 0.08160 3/4 1

ii. Now we bend β to 90◦ and stretch all lattice parameters such that a = b = c. We arrive in a
simple cubic crystal structure
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iii. Within this cube, we now we shift oxygen atoms O3 and O4 and obtain

Atom x y z Atoms/cell
Cu1 1/4 1/4 0 1/2+1/2

Cu2 3/4 3/4 0 1/2+1/2

Cu3 1/4 3/4 1/2 1
Cu4 3/4 1/4 1/2 1
O1 0 0.41840 1/4 1/2+1/2

O2 1/2 0.91840 1/4 1
O3 0 0.91840 3/4 1/2+1/2

O4 1/2 0.41840 3/4 1

iv. This structure now is more appropriately represented by a face centered cubic fcc struc-
ture with additional Bravais lattice points at (1/2, 1/2, 0), (0, 1/2, 1/2) and (1/2, 0, 1/2)

(yellow). The atomic coordinates within this fcc lattice are now:

Atom x y z Atoms/cell
Cu 1/4 1/4 0 4× 1/2 + 2× 1

O 1/2 0.41840 1/4 4× 1/2 + 2× 1
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v. We shift these atoms within its fcc unit cell and obtain

Atom x y z Atoms/cell
Cu 0 0 0 8× 1/8 + 6× 1/2

O 1/2 0 0 4× 1/2 + 2× 1

vi. Now, we stretch the lattice parameters to a = 3.905 Å and c = 5.240 Å and yield the
elongated fcc structure of (a = 3.905 Å, c = 5.340 Å, c/a = 1.37, V = 79.90 Å

3
)

displayed in Fig 5.3 (c), which is more properly represented by an elongated bcc structure,
in other words a body centered tetragonal bct2 Bravais lattice (a = 2.7613 Å, c = 5.340 Å,
V = 40.72 Å

3
, c/a = 1.93). Clearly, tenorite CuO can be continuously transformed to

T-CuO and the topology of both systems is equivalent.
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5.6 The electronic structure of cuprates

The important structural unit in the high-temperature cuprate superconductors is the ubiquitous
two dimensional CuO2 plane, with Cu 3dx2−y2 and O 2px,y orbitals forming the backbone of its
low energy electronic structure [173–175]. The surrounding matrix in this respect is believed to
only serve as a charge carrier reservoir, tuning the system away from half filling.

In the cuprates, the copper has a nominal valence of Cu2+ and formally a 3d9 electron config-
uration. As a consequence of the tetrahedral crystal field, the single hole mostly occupies the
dx2−y2 orbitals of copper but to some extent also the ligand oxygen p orbitals, resulting in a
groundstate c1d

9 + c2d
10L.3 Given the large Hubbard U ∼ 9 eV of the 3d orbitals, placing a

second hole on the Cu site – e.g via chemical doping – would require a large amount of energy,
which leads to a preferential occupation of the ligand O 2p orbital resulting in d9L [173, 175].
Remaining strongly coupled via exchange interaction, these two holes gain energy by forming a
quasi bound state of singlet character and 1A1 symmetry – which energetically is preferred to
the 3B1 Hund’s rule ground state and propagates as an effective one particle entity – the Zhang
Rice Singlet (ZRS) [176]. This state is formally constructed from the d9 hole occupying the Cu
B1g(dx2−y2) orbital and the ligand hole L on a linear combination of the four surrounding oxygen
px/y-orbitals with equivalently B1g symmetry [175]. In D4h, this results in a total symmetry of
the ZRS wavefunction B1 ⊗B1 = A1.

Figure 5.5: Corner-sharing CuO plane (left) vs edge-sharing CuO plane (right). Red balls
indicate copper atoms, blue balls oxygen. The primitive 2D unit cells are marked by a square.
The red square (right) at the same time outlines one CuO4 plaquette, which shares its edges with
the neighboring plaquettes.

However, there are two main structural differences of the CuO2 plane in the HTSC and T-CuO.
First, T-CuO has a three dimensional crystal structure. As can be inferred by the 3D structure
of Fig. 5.3 (c), the CuO planes are electronically interconnected by Cu dxz , dyz, dz2 and O
pz orbitals. Due to a pronounced elongation along the c-axis however, tetrahedral crystal field
splitting can be expected to energetically separate these orbitals from the important dx2−y2 and

3L implies the hole sitting on the Ligand O p orbitals. c1 and c2 are constants.
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5.7. Core level spectra

px,y states.

Second, the in-plane structure of T-CuO is different, i.e. the CuO plaquettes are coordinated in
an edge-sharing geometry. As shown in Fig. 5.5 the CuO plane of T-CuO has one additional Cu
atom with respect to the corner sharing CuO2 plane in the HTSC and consequently a smaller unit
cell.4 It is due to these structural differences, that we start from a careful comparison of the basic
electronic structure of T-CuO with respect to typical cuprate systems.

5.7 Core level spectra

Due to its already mentioned relevance as a proxy structure for the HTSCs, monoclinic CuO has
been thoroughly studied by photoemission techniques in the past. Spin resolved photoemission
experiments on tenorite even provided direct prove of the ZRS in this compound [177]. Core
level spectroscopy is a useful tool to identify CuO as a charge transfer insulator and to extract
critical parameters like the charge transfer energy ∆ = E(d10L)− E(d9) and transfer integral
T = 〈d9|H|d10L〉.

A spectrum of the Cu 2p level of T-CuO measured at 1010 eV photon energy is shown in Fig. 5.6.
Due to the core hole spin orbit interaction, the spectrum splits in two pairs belonging to the
Cu 2p1/2 and Cu 2p3/2 final states. For each of these hole final states, the valence hole can
either remain on the copper site, giving rise to 2p53d9, or can move to the ligand site resulting in
2p53d10L. The energy separation of these configurations consequently will be determined by the
charge transfer energy ∆, by the hybridization energy T and by the core-hole 3d interaction.

Following a method by Ghijsen et al. [174], we extract ∆ and T from the weighted distance
(7.81 eV) and the integrated intensity ratio (0.61) of the 2p5

3/23d9 and 2p5
3/23d10L peaks. We

obtain a charge transfer energy ∆ ∼ 3.6 eV and a transfer integral T ∼ 2.8 eV, respectively.
These values, somewhat larger than in monoclinic CuO (∆ ∼ 2.75 eV, T ∼ 2.5 eV), reflect a
larger band gap of T-CuO and indicate that the ZRS in T-CuO can be stabilized [173,175,179,180].

A local multiplet calculation (software CTM4XAS [178]) is put side by side with our data. The
model assumes that the final state in the photoemission process can be properly described by a
linear combination of p5d9 and p5d10L states in a tetrahedral crystal field, affected by Coulomb
interaction with the core hole. The only valence orbitals taken into account are consequently
O 2p and Cu 3d states and the important geometry is the CuO4 plaquette shown in Fig. 5.7.
The one hole groundstates are defined by the B1g(dx2−y2), A1g(dz2), B2g(dxy) and Eg(dxz,yz)
components of the square planar symmetry group D4h.

This model – described in detail in Ref. 141 – is too simplistic to correctly reproduce the
intensity ratio of the peaks but can still give some rough estimates. We use a typical crystal field

4The term “corner/edge sharing” applies to CuO4 plaquette. If two neighboring plaquettes share only one oxygen
atoms, we refer to a corner sharing geometry. If two neighboring plaquettes share two oxgyen atoms, we refer to edge
sharing.
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Figure 5.6: The Cu 2p spectrum of T-CuO (hν = 1010 eV) is compared with that of monoclinic
CuO (hν = 1486 eV) from Ref. 174. Additionally we plot the results of a multiplet calculation
[178]

splitting of 10Dq = 0.3 eV and the charge transfer energy ∆ = 3.6 eV obtained above [141].
For the 3d-3d-correlation we use Udd = 8.8 eV, slightly larger than the core-hole potential
Upd = −6 eV [179].

Via Slater-Koster theory, the effective hopping terms can be estimated from the hybridization
strength V of the atomic orbitals as Tpp = V σ

pp − V π
pp, Tpd(B1g) =

√
3V σ

pd, Tpd(A1g) =

V σ
pd, Tpd(B2g) = 2V π

pd and Tpd(Eg) =
√

2V π
pd [175]. For a “good correspondence” to the

XPS data, we use typical values of Tpp ∼ 1.3, Tpd(B1g) ∼ 3.8 eV, Tpd(A1g) ∼ 2.2 eV,
Tpd(B2g) ∼ −1.5 eV and, Tpd(Eg) ∼ −1 eV which yields reasonable values of V σ

pd ∼ 2.2 eV
and V π

pd ∼ −0.7 eV.

From the effective hopping terms, we can further estimate the energy difference in between the
ZRS and the band of itinerant oxygen states (the band β described in detail in Sec. 5.12), i.e. the
ground state hybridization energy δ = (∆−Tpp)/2−

√
Tpd(B1g)2 + (∆− Tpp)2/4 = −2.1 eV,

which is a good indicator that the ZRS indeed is stable in T-CuO [179]. Further, we obtain a
rough estimate of the gap energy ∼ ∆− Tpp ∼ 2.3 eV.

As shown later, these rough estimates are in good agreement with our ARPES data despite the
simplicity of this model. The basic message of this exercise is however that the values obtained
for T-CuO are consistent with the values of typical cuprate compounds and T-CuO belongs to the
class of the charge transfer insulators.
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5.8. Valence band spectra
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Figure 5.7: (left) The CuO4 plaquette. The most important orbitals Cu dx2−y2 and O px, py are
shown and the effective hopping terms defined. (right) Copper and oxygen basis functions on
the square planar CuO4 plaquette. E.g. px1 labels a px orbital centered at point 1.

5.8 Valence band spectra

Analogous to chemical doping, the photoemission process can remove an electron from the d9

valence band. It is therefore a useful probe to investigate the possible two-hole states in this
material.

Fig. 5.8 shows angle integrated photoemission spectra of T-CuO, acquired accross the Cu L3

(2p→ 3d) absorption edge, from 929 to 932 eV photon energy. The photoemission cross section
ratio O 2p/Cu 3d is ∼ 0.03 at 930 eV, which implies a high sensitivity for states of predominantly
copper character [181]. Analogous to a study on tenorite CuO, final states of mainly d8 character,
at 10-15 eV binding energy, are strongly enhanced by the d9 → p5d10 → d8 resonance [182].
These states form the lower Hubbard band. The low cross section of oxygen states implies that
states of d10L character will have only a weak signature. Moreover, they do not resonate due to
the closed d shell.5

The right part of Fig. 5.8 shows similar spectra acquired at the Cu M2,3 (3p→ 3d) edge, from 72

to 78 eV photon energy. This time, the cross section ratio O 2p/Cu 3d is ∼ 0.27 at 74 eV [181].
Again, the d8 states, (10-15 eV binding energy, peaks 1-3), are enhanced by the resonance. Due
to the higher cross section of oxygen states, we now also identify the (mainly) d9L band at 2-8
eV binding energy (peaks 4-6). From 74 to 78 eV spectral weight is transferred from peak 4
to peak 5, revealing a larger d8 component in peak 5. Besides, we see a first indicator of the

5Above the resonance, an L3V V Auger peak contributes to the photoemission signal, seemingly shifting the main
peak towards higher energies. [182]
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Figure 5.8: (left) Integrated photoemission spectra measured at the Cu L3 resonance at 931 eV.
(right) Integrated photoemission spectra measured at the Cu M2,3 resonance at 74 eV, and off-
resonance at 98 eV. The data is compared to Cu 3d spectral weight obtained from a CuO4 cluster
calculation by Eskes et al [179]. The parameters used in the calculation were similar to the ones
determined for T-CuO in Sec. 5.7.

ZRS band – which is the main object of this study – as a tiny shoulder to the low binding energy
shoulder of peak 6.

Off resonance at 98 eV photon energy (green curve), the cross section ratio O 2p/Cu 3d diminishes
slightly to ∼ 0.16 and the spectrum contains more Cu 3d weight [181]. Peak 6 – which
corresponds to the band labeled β discussed in Sec. 5.12 – is now more pronounced. The intensity
of peak 4 on the other hand is significantly suppressed, which underlines its strong oxygen
character. The spectral weight of peak 5 remains largely unaffected, which points towards a
balanced contribution of copper and oxygen states.

Additionally, we show a cluster calculation on the CuO4 plaquette shown in Fig. 5.7 by Eskes
et al. [179]. The simple model identifies the first excitation state as 1A1, which is composed of
one Cu dx2−y2 hole and a second hole on a linear combination of px/py orbitals with x2 − y2

symmetry as defined in Fig. 5.7. The higher energy states are triplets of 3B1g and 3Eg symmetry,
i.e. with one hole on the Cu dx2−y2 orbital and the second hole on a linear combination of oxygen
p-orbitals with respectively A1(dz2) and E(dxz/dyz) symmetry.
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5.9. X-ray absorption
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Figure 5.9: (a) Cu L2,3 XAS of T-CuO. Panel (b) shows the polarization dependence of the Cu
L2 white line.

5.9 X-ray absorption

Fig. 5.9 (a) shows the Cu L2,3 x-ray absorption (XAS) spectrum of T-CuO. The two (2p→ 3d)
peaks (“white lines”) are separated by the large 2p spin-orbit splitting. Fig. 5.10 (b) shows the
dependence of the L2 peak on the angle between the polarization vector of the (linearly polarized)
x-rays and the CuO plane. The observed polarization dependence confirms that the Cu 3d hole
has predominantly in-plane character.6

In summary, the core level data obtained from CuO is consistent with data obtained from
monoclinic CuO and the corner sharing cuprates. Integrated photoemission hints towards the
existence of the ZRS, which is confirmed in the following paper [183].

6The reason why we did not use the L3 line with much higher intensity is simple: the experiment at the time was
not intended to show a dichroism effect.
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We investigate by angle resolved photoemission (ARPES) the electronic structure of in-situ grown tetragonal
CuO, a synthetic quasi two-dimensional edge-sharing cuprate. We show that, in spite of the very different nature
of the copper oxide layers, with twice as many Cu in the CuO layers of tetragonal CuO as compared to the CuO2

layers of the high-Tc cuprates, the low-energy electronic excitations are surprisingly similar, with a Zhang-
Rice singlet dispersing on weakly-coupled cuprate-like sublattices. This system should thus be considered as
a member of the high-Tc cuprate family, with however interesting differences due to the intra-layer coupling
between the cuprate-like sublattices.

The physics of cuprates is remarkably rich, ranging from
high-temperature superconductors (HTS) [1, 2] to spin lad-
ders [3, 4]. Their properties derive from the structure of the
copper oxide layers, which evolves from CuO2 in HTS to
Cu2O3 in spin ladders by fitting more and more coppers into
the layers, as in the family Srn−1Cun+1O2n (n = 3, 5, ...) [5].
Synthesizing systems with pure two-dimensional (2D) CuO
layers would be fascinating, but this goal has remained elu-
sive. Interestingly, CuO – which has been studied as a model
parent compound for the HTS cuprates due to its simple sto-
ichiometry [6, 7] – does not contain copper oxide layers.
Its low-symmetry monoclinic tenorite structure consists of
crossed ribbons of edge-sharing CuO4 plaquettes [8], and its
magnetic excitations have 1D character (spinons) [9, 10].

A tetragonal (elongated rocksalt) structure, much closer to
that of the HTS cuprates, can be stabilized up to a thickness
of several unit cells [12, 13] when CuO is grown epitaxially
on a SrTiO3 (001) substrate [11]. In tetragonal CuO (T-CuO),
the Cu ions are at the center of edge-sharing elongated CuO6

octahedra, which form infinite CuO planes stacked along the
c axis. The ratio of the apical- to in-plane Cu-O distances is
large (1.37), which reduces the inter-plane coupling. The inset
of Fig. 1 (a) illustrates the structure of a CuO plane, paved by
edge-sharing CuO4 plaquettes. The red square, which outlines
one plaquette, is also the 2D unit cell, and a is the side of the
3D tetragonal unit cell. In this structure, copper atoms form a
square lattice, but the oxygens are not between nearest neigh-
bour (NN) coppers, as in the CuO2 layers of the cuprates,
but between next-NNs. As a consequence, the hopping and
exchange parameters are expected to be quite small between
NN coppers. Indeed, the Srn−1Cun+1O2n family consists of
essentially decoupled spin ladders because the exchange cou-
pling between NNs located in edge-sharing CuO4 plaquettes
is very small [3, 4]. To which extent the electronic proper-
ties of the CuO layers are related to those of the CuO2 lay-
ers of the cuprate parent compounds is one of the important

questions addressed by the present work. Some basic infor-
mation about the electronic structure of T-CuO has been ob-
tained by first-principles density functional [14, 15] and by
LDA+U calculations [16], but the band structure has not been
discussed or measured yet. The interest in this new material
also stems from its predicted magnetic properties. An extrap-
olation from the behavior of other 3d transition metal monox-
ides, from MnO to NiO, suggests that the Néel temperature
TN of T-CuO could be as high as 700 − 800 K [12]. A very
recent experiment finds TN = 600 K [17]. Such enhanced
AFM coupling would open the way to new practical applica-
tions, but would also be quite interesting for scenarios of HTS
based on magnetic fluctuations [18].

Figure 1 gives an overview of the ARPES results on a thin
film (6 unit cells) T-CuO sample. Fig. 1(a) is a composite
kx vs. ky ARPES constant energy map measured at the top of
the valence band EV . The ARPES features in an energy win-
dow of at least 1 eV below EV do not disperse as a function
of the perpendicular wave vector kz [11], i.e. they have nearly
2D character. The map shows four strong intensity maxima,
offset by 90◦, in the 1st Brillouin zone (BZ), outlined by the
red square in Fig. 1(a), corresponding to the crystallographic
surface unit cell. The fourfold pattern can be recognized in
all adjacent BZs, outlined by dashed red squares, even if in-
tensities are modulated by ARPES matrix elements. Namely,
the signal is suppressed along the lines kx = ±ky , crossing
at (0, 0), reflecting the scattering geometry and the symmetry
of the Cu dx2−y2 orbitals [11]. A closer inspection however
reveals weaker replicas of this pattern in both the kx and ky
directions, leading to an overall periodicity which is that of
a two times smaller Wigner-Seitz cell in reciprocal space, ro-
tated by 45◦ and shown in black. It is the BZ of a c(2 × 2)
unit cell (shown in black in the inset) containing two Cu ions.
It would be the relevant BZ if the layer were divided into two
non-interacting sublattices, since it would correspond to the
primitive unit cell of each sublattice. This is the first exper-
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FIG. 1. (Color online) (a) Constant energy map at EV , measured at
hν = 120.5 eV and T = 90 K. It is a composite of two data sets,
one centered at kx = −4π/a , the other at kx = 0 (ΓM = 2π/
a = 1.61 Å−1, ΓX =

√
2π/a = 1.14 Å−1). The red and black

squares are the BZs corresponding to the unit cells defined in the
inset. (inset) The structure of a CuO plane: Cu (O) ions are indicated
in red (blue). The red square is the 2D unit cell, which coincides with
a CuO4 plaquette; ‘a’ is the length of the side of the 3D tetragonal
unit cell. The black square is the non-primitive c(2×2) unit cell. (b)
and (c) show the E vs. k dispersion along lines (b) and (c) in panel
(a).

imental indication that the coupling between the two sublat-
tices through the interaction between NN copper atoms must
be small.

The band dispersion is illustrated in Figs. 1 (b) and (c). To
avoid complications due to the intensity suppression along the
diagonals kx = ±ky , here and in the following we will discuss
data collected from the BZ centered at (−4π, 0). In addition to
the usual Γ, X and M points, it will prove useful to define the
mid-pointX ′ between Γ andM (theX point of the small BZ),
and pairs of points A,A′, and B,B′, symmetric with respect
to theXX ′ line. If the two sublattices were completely decou-
pled, the pairs of points (Γ,M), (A,A′) and (B,B′) would
be equivalent. Fig. 1 (b,c) presents two E vs. k‖ cuts along the
lines marked (b) and (c) in Fig. 1 (a). Cut (b) shows a band
with maxima at E = −2.35 eV at the A points of the BZ,
in correspondence of the intensity maxima of Fig. 1(a). This
sets a lower limit to the band gap of T-CuO, which is therefore
larger than in bulk CuO (1.35 eV [19]). The secondary max-
ima atE = −2.5 eV at theA′ points, coincide with the replica
features. The dispersion outlines the momentum dependence
of the first ionization state of an edge-sharing CuO plane. As
further discussed below, this is the Zhang-Rice singlet (ZRS)
band [20], typical of the 2D corner-sharing cuprates, i.e. a
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FIG. 2. (Color online) (a) ARPES dispersion along a triangular con-
tour equivalent to that of Fig. 1 (a), in the BZ centered at (−4π, 0).
The data have been normalized to the same integrated intensity for all
k values, after subtraction of an integral (Shirley) background. Filled
(blue) symbols outline the experimental dispersion of the ZRS band.
Empty circles (diamonds) mark the peak positions calculated by an
extended t-J model, whose parameters are defined in panels (b-c).
The CuO plane is seen as the superposition of two corner-sharing
sublattices (I) and (II). (d) Dispersions of the lower Hubbard band
from Ref. 21 (black line), and illustration of the degeneracy lifting
induced by a finite hopping td = −0.03 eV between the two sublat-
tices.

band with 1A1 symmetry, mainly d9L character, with both
holes in wave-functions with b1g symmetry (one in the dx2−y2
orbital of Cu, the other one in an appropriate linear combina-
tion of p orbitals of neighbouring oxygens). It merges around
−3 eV with a more intense band (labelled β) with a maxi-
mum at the X point. By analogy with the 2D corner-sharing
cuprates, we assign the latter to a manifold of d9L states of
different orbital symmetries [7].

Figure 2 (a) illustrates the experimental band structure mea-
sured along a ΓMXΓ contour, equivalent to the triangular
contour of Fig. 1(a), in the BZ centered at (−4π, 0). For the
ZRS band, blue circles outline the dispersion of the ARPES
peak. Along the A′XA path the broad line shape (see below)
prevents a reliable determination of the peak position. The
emergent symmetry suggested by the intensity map is still
partially reflected in these data, but not fully since the pairs
(Γ,M), (A,A′) and (B,B′) are not strictly equivalent. As a
first step to interpret the experimental data, we have plotted in

5.10. ARPES overview
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Fig. 2 (d) the dispersion for the lower Hubbard band:

E(k) = −4t′[cos(kxa) · cos(kya)]

− 2t′′[cos(2kxa) + cos(2kya)] − J [cos(kxa) + cos(kya)]2 ,

with t′ = −0.12 eV, t′′ = 0.08 eV and J = 0.125 eV used to
fit the ARPES data for a single hole in the AFM background of
the corner-sharing insulating cuprate Ca2CuOCl2 [21]. This
dispersion should be a good starting point if the CuO plane is
seen as the superposition of the two interpenetrating corner-
sharing sublattices (I) and (II) of Fig. 2 (b), as long as they
are weakly coupled. It qualitatively captures the main fea-
tures of the experimental dispersion, namely the location of
the band maxima and minima, but of course cannot quan-
titatively reproduce the energy difference between the pairs
(A,A′), (B,B′), and (Γ,M). Adding a “diagonal” hopping
td between the two lattices, the dispersion becomes:

E′(k) = E(k) − 4td [cos(kxa/2) · cos(kya/2)] ,

which yields the red line in Fig. 2 (d). The symmetry of
the original lattice, corresponding to the larger (red) BZ in
Fig. 1 (a), is qualitatively recovered. The A,A′, B,B′, and
Γ,M pairs of points are no longer equivalent, and the de-
generacies are lifted, in qualitative agreement with the exper-
iment, where E(Γ) − E(M) = 180 meV, E(A) − E(A′) =
140 meV and E(B) − E(B′) = 60 meV.

The model of Fig. 2 (d), which consists in just adding a di-
agonal hopping to the dispersion of the excitations on the un-
derlying sublattices, has mainly a pedagogical value, and can-
not fully describe the complex dynamics of a strongly corre-
lated hole propagating in the AFM background of the edge-
sharing CuO plane. As a further step, we consider a general-
ized t-J model [22, 23]:

H̃tJ = J
∑

i,j

~Si · ~Sj − t
∑

i,j,σ

ĉ†i,σ ĉj,σ − t′
∑

i,j′,σ

ĉ†i,σ ĉj′,σ

− t′′
∑

i,j′′,σ

ĉ†i,σ ĉj′′,σ + Jd
∑

i,m

~Si · ~Sm − td
∑

i,m,σ

ĉ†i,σ ĉm,σ .

Unprimed, primed and double-primed indices refer to first-,
second- and third- NNs on the same sublattice; m indicates
NNs on the whole lattice.

Since the local geometry of the corresponding bonds is very
similar to that of cuprates, we have adopted for t, t′, t′′ and J
typical values for cuprate superconductors taken from Ref. 24.
The diagonal hopping and exchange terms have been deter-
mined from a Cu2O6 cluster along the lines of Ref. 25. The
coupling terms td and Jd reflect the Cu(I)dx2−y2 -O(I)px,y-
O(II)px,y-Cu(II)dx2−y2 orbitals overlap. We found a small
but non-negligible td ∼ −t/4 = −100 meV and a very weak
antiferromagnetic (AFM) exchange: Jd = 6 meV. We then
performed an exact diagonalization of H̃tJ on a 32 site cluster
to calculate the hole spectral function A(~k, ~ω) (Fig. 3, right
column). For our 32-site cluster, A(~k, ~ω) is only defined at
a small number of k-points. The corresponding spectra are
shown in the left column of Fig. 3, normalized to the same

-3.5 -3.0 -2.5 -2.0

Energy (eV)

â

â

â

â

-3.5 -3.0 -2.5 -2.0

Energy (eV)

â

â

A

X/M'

A'

M

B'

X'

B

Ã

Experiment Theory

FIG. 3. (Color online) (Left) ARPES spectra extracted from Fig. 2
(a). Red tags mark the energy of a prominent ARPES dispersing
feature (blue circles in Fig. 2 (a)) and do not always coincide with
the energy of the excitations. (Right) Calculated spectral function of
our cluster model with and without a 500 meV broadening.

total integrated intensity. For each k-point the lowest-energy
peak represents the coherent spectral weight. Those at higher
energies belong to the incoherent spectral weight, which re-
flects dressing by electronic and magnetic excitations. The
incoherent weight varies strongly from point to point. It is
never small, and even becomes dominant at the M and X
points, reflecting strong and k-dependent correlations. To en-
able a comparison with the ARPES spectra shown in the left
column, a 500 meV gaussian broadening was applied to the
calculated spectra. This is much larger than the experimental
energy resolution (30 meV), but typical of ARPES data from
insulating cuprates [21]. The peak energies of the broadened
spectra are shown as empty circles in Fig. 2 (a). For the M
and X points the peak energies are clearly not representative
of the energy of the excitations, which are then separately in-
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FIG. 4. (Color online) (a) The experimental dispersion of the first
ionization state in T-CuO (full symbols) is compared with that of
the ZRS band in Sr2CuO2Cl2 (empty symbols) [28], along the same
triangular contour as in Fig. 2. (Bottom) Calculated Fermi surface of
T-CuO for various hole dopings n: (b) n = 0.07 ; (n) n = 0.37 ; (d)
n = 0.80 holes/Cu ion. Details of the calculations are in Ref. 11.

dicated by empty diamonds. The theory describes the overall
ZRS dispersion very well, and captures the inequivalence of
the pairs of points (A,A′), (B,B′), and (Γ,M). The finite
size of the cluster leads to a discretization and an underesti-
mation of the incoherent spectral weight. Nevertheless, the
experimental spectra are well reproduced, namely the double
peak structures at Γ and M , and especially the suppression of
the coherent spectral weight aroundX . Let us emphasize that,
on the basis of the present data and calculation, a determina-
tion through fitting of all hopping parameters is not possible.
This is why we have adopted parameters typical of cuprates
for t, t′, t′′. However, the experimental results seriously con-
strain the value of the intra-layer coupling td between the sub-
lattices. In particular, the splitting between the peaks at A and
A’ is proportional to td with a coefficient that depends only
weakly on the other parameters, and the experimental split-
ting of 140 meV imposes a value of td ∼ −100 meV to a
good accuracy.

We can now compare the electronic structure of edge-
sharing T-CuO with that of a representative corner-sharing
cuprate. Figure 4 (a) shows the first ionization state of T-CuO,
and the ZRS band of Sr2CuO2Cl2 [28]. The energies of the
two bands have been aligned at the A’ point maximum. The
two dispersions are quite similar, notwithstanding the already
discussed asymmetry of the conjugated points in T-CuO. This
conclusively supports the assignment of the topmost band
in CuO to the ZRS. The observation of a sharp kink in the
momentum-dependent spectral weight distribution [11] rein-
forces the similarity with the electronic structure of the HTS
parent compounds.

Our ARPES data indicate that the CuO layers of T-CuO are
best understood as weakly coupled cuprate-like sublattices.
Accordingly, the electronic and magnetic properties can be

expected to be very similar. However, as we will now briefly
discuss, the weak coupling between the cuprate-like sublat-
tices can induce qualitative differences for some properties.
At half filling, which is the case of the samples available so
far, the system is a charge-transfer insulator, and in the limit
of an infinite stack, it is expected to develop AFM order, with
potentially a very high Néel temperature due to the stronger
interlayer coupling than in high Tc cuprates, an expectation
very recently confirmed [17]. This is not the whole story
however. Since each layer consists of two weakly coupled
copies of the AF Heisenberg model on a square lattice, the
ordering can take place with wave-vector (0, π) or (π, 0) in
the plane, leading to an additional Ising order parameter [29–
31]. According to a recent study [32], there are two scenar-
ios for the phase transition. If the interlayer coupling is large
the system will either undergo a first-order transition to a low-
temperature phase where both the Ising and the Néel order pa-
rameter acquire a finite value, while for small interlayer cou-
pling there should be a sequence of two phase transitions first
to a phase with Ising order (fluctuations choose between (0, π)
or (π, 0)), then to a phase with 3D AFM order. Although the
results of Ref. 17 point to a single transition, further experi-
mental investigations of the ordering process are necessary to
fully clarify its nature.

Doping T-CuO away from half filling cannot be achieved
chemically without introducing disorder in the CuO layers,
but it may be realized in principle by a field effect approach
employing ionic liquids [33]. This is a real challenge, and
we will only briefly discuss this possibility here. By anal-
ogy to e.g. Na-doped Ca2CuO2Cl2 [26, 27], the system can
be expected to develop superconductivity upon doping. The
two-sublattice structure has an interesting consequence how-
ever. As shown in Fig. 4, when the Fermi surface changes
from hole-like to electron-like, two types of electron pockets
with different numbers of carriers would appear before an-
other change of topology takes place that leads to a single
type of electron pocket. This should be contrasted to the case
of the high-Tc cuprates where there is always only one type
of pocket for both electron and hole-like Fermi surface. The
consequences on superconductivity are left for future investi-
gation.
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5.11. c-axis dispersion

5.11 c-axis dispersion

To show the quasi two dimensional nature of the first excitation ZRS state in T-CuO, we mapped
the high symmetry directions as a function of photon energy. The photon energies were chosen in
the interval {84.6 -160} eV and in such a way as to maintain a constant stepsize ∆kz = ∂kz

∂hν∆hν,
where kz = 1

h̄

√
2m(Ekin cos2(θ) + V0) and Ekin = hν − Φ − |Eb| with the binding energy

|Eb|. For simplicity, the measurement was done in an experimental configuration θ = 0. This
implies the intensity suppression of the ZRS band along the kx = ±ky diagonal as discussed in
Sec. 5.13.

For each photon energy hν, a complete {kx,ky,Ekin} data set was acquired in the entire 1st BZ.
The 4D {hν,kx,ky,Ekin} data set was then converted to {kz,kx,ky,Eb} with an inner potential
V0 = 15.3 eV, determined self consistently by adjusting the kz dispersion of band β to the 4π/c

periodicity of the 3D BZ.

Two {k‖,kz} cuts for Eb = 2.5 eV and Eb = 3.5 eV, along the high symmetry path ΓMXΓ, are
shown in Fig. 5.13. The traces of the ZRS (Eb = 2.5 eV; Fig. 5.10 (a)) are vertical straight lines,
consistent with a nearly two dimensional character of that band. Due to the suppression of the
ZRS spectral weight along the kx = ±ky diagonal, the intensity is unequally distributed around
momenta A and A’ as well as B and B’. By contrast, band β (Eb = 3.5 eV; Fig. 5.13 (b)) shows a
clear kz dispersion, suggesting a mixed Cu dx2−y2 and O pz character.

5.12 Angle resolved photoemission - beyond the ZRS

In the discussion of the paper in Sec. 5.10., we focussed mainly on the dispersion of the ZRS
and its propagation on and in between corner sharing sublattices. However, we did not scratch
the physics of the higher binding energy bands building the backbone of the non-bonding d9L

manifold.

Although the ZRS band is mostly split off the higher binding energy states β, there are still some
k-points of slight overlap between the ZRS and β as e.g. close to X’ and X. At these points, β
masks the incoherent spectral weight of the ZRS.

Fig. 5.11 presents an ARPES intensity map over a large binding energy window along ΓMXΓ.
Three band features are visible. Towards low binding energy, the ZRS state appears faintly.
It is dominated by two more intense bands. The first one – labeled β – has a maximum at
around 3.25 eV binding energy and a band width of approximately 500 meV. These are the
states building up peak 6 in the integrated photoemission spectra of Fig. 5.8 and have been
claimed to be of mostly 3B1 symmetry (one hole on the Cu B1g(dx2−y2) orbital, one on a linear
combination of O p orbitals with A1g(dz2) symmetry: B1g ⊗ A1g = B1g) [175, 179]. Likely
to be influenced by apical oxygen states, band β shows enhanced kz dependence (i.e. photon
energy dependence) of the ARPES signal at higher binding energies (compare to Sec. 5.11).
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Figure 5.10: (a) kxkz CE map of the ZRS at 2.5 eV binding energy. The out of plane dispersion
of this state is negligible and only subject to intensity modulation due to matrix element effects.
(b) same for band β at 3.5 eV binding energy. The kz dispersion is not negligible anymore,
suggesting significant intermixing of out of plane orbitals.
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Figure 5.11: The dispersion of band β measured with 120 eV photonenergy. This state is
extremely pronounced with respect to the ZRS (blue balls) and can be modeled by a simple tight
binding dispersion with effective hopping terms t = 90 meV and t′ = 25 meV (blue dashed). A
third band γ of low dispersion appears at about -4.2 eV.
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5.13. Matrixelements in T-CuO

At fixed photon energy hν = 120 eV, we can fit band β to a 2D tight binding dispersion
εk ∼ −2t[cos(akx) + cos(aky)] − 4t′ cos(akx) cos(aky) − 3.4 eV with t = 90 meV and
t′ = 25 meV.

States β are followed by a hardly dispersing but broad band γ at around 4.2 eV binding energy
corresponding to peak 5 in Fig. 5.8 and mostly of unhybridized oxygen 2p character.

5.13 Matrixelements in T-CuO

Figure 5.12: Experimental geometry at BL07 of the ALS. The sample can be rotated around x, y
and z axis by angles θ, β and φ. The polarization is fixed in the scattering plane ξ = π/2. So is
the orientation of the analyzer slit φk = π/2 (blue bow).

In our experimental geometry (Fig. 5.12), the scattering plane yz is fixed and contains the
polarization vector ε as well as the analyzer slits (φk = π/2). The angle between the incident
light and the spectrometer’s axis (z-axis) is α = 60◦. Photoelectrons are collected within an
angular range −15◦ < θk < 15◦. Mapping of k-space is performed by rotating the sample by
angles θ, β and φ around the x-, y- and z-axis, respectively. At normal emission, θ = β = φ = 0

and the sample normal coincides with the z axis. The rotation is described by the rotation matrix
R(θ, φ, β). In the kxky ARPES measurement, β is changed, while θ and φ remain constant.

As discussed above, the lowest energy two-hole state in CuO is a ZRS of 1A1 symmetry. This
state is constructed from one hole occupying the Cu B1g(dx2−y2) orbital and another hole on
an linear combination of the four surrounding oxygen px/y-orbitals with equally B1g(x

2 − y2)

symmetry. The basis functions are defined in Fig. 5.7 [175]. In D4h, this results in a total final
state symmetry of B1 ⊗B1 = A1.
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The one-hole ground state of CuO is well described By a linear combination c1d
9 + c2d

10L,
where c1/c2 ∼ O(1). The photoemission signal building the ZRS spectral weight consequently
results from an emitting orbital of x2 − y2 symmetry, either from Cu 3dx2−y2 or from the linear
combination 1/

√
4(px1 − py2 − px3 + py4) of oxygen orbitals as defined in Fig. 5.7.

The angular part of the Cu 3dx2−y2 orbital can be written as

|dx2−y2〉 =
1√
2

(|2, 2〉+ |2,−2〉) . (5.1)

According to Eq. 1.45 the matrix element so becomes

Mdx2−y2 (kf , θ, φ, β) ∝ 1√
2

2∑

m′=−2

(
D2
m′,2(θ, φ, β)M2m′(kf ) +D2

m′,−2(θ, φ, β)M2m′(kf )
)

=
1√
2

2∑

m′=−2

M2m′(kf )
(
D2
m′,2(θ, φ, β) +D2

m′,−2(θ, β, φ)
)
. (5.2)

The matrix element of the B1 oxygen state is a little more complex as it involves a linear
combination

∑
n cnφ(r−Rn) of off-centered orbitals. According to Eq. 1.32 the matrix element

of the px2−y2 := 1/
√

4(px1 − py2 − px3 + py4) orbital becomes

Mpx2−y2 (kf ) =
1√
4

[
e−iakfx/2Mpx − e−iakfy/2Mpy − eiakfx/2Mpxf + eiakfy/2Mpy

]

=
2i√

4

[
sin(akfx/2)Mpx − sin(akfy/2)Mpy

]

=
i√
2

sin(akfx/2)[M11 −M1−1]− 1√
2

sin(akfy/2)[M11 +M1−1]

=
1√
2

(
[i sin(akfx/2)− sin(akfy/2)]M11

−[i sin(akfx/2) + sin(akfy/2)]M1−1
)
. (5.3)

Rotating the orbitals now involves an additional transformation of the phasefactor k′f = Rkf
and we obtain as a final result
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Mpx2−y2 (kf , θ, φ, β) =
1√
2

1∑

m′=−1

M1m′ ([i sin(ak′fx/2)− sin(ak′fy/2)]D1
m′,1(θ, φ, β)

−[i sin(ak′fx/2) + sin(ak′fy/2)]D1
m′,−1(θ, φ, β)

)
. (5.4)

To simulate the spectral function of the ZRS, we use a phenomenological SDW dispersion
εk = −4t′ cos(akx) cos(aky) − 2t′′(cos(2akx) + cos(2aky)) − J(cos(akx) + cos(aky))

2 −
4td cos(akx/2) cos(aky/2) with t′ = −40 meV, t′′ = 12 meV, J = 120 meV and td = −40 meV
which fits our QP dispersion well. We further approximate the spectral function of Eq. 1.13 as a
Gaussian function

A(k, E) ∝ 1√
2πσ

e−
(E−εk)2

2σ2 . (5.5)

with broadening σ ∼ 1 eV.

Fig. 5.13 illustrates the effect of the matrix elements on the ZRS band and can be compared
directly to Fig. 1 (a) of the paper in Sec. 5.10. Figs. 5.13 (a1) and (b1) show two calculated
kxky intensity maps, around kx = 0 Å−1 (θ = 0◦) and kx = −3 Å−1 (θ = 36◦), respectively.
They reproduce the spectral function of Eq. 5.5, without matrix elements. The same intensity
maps, multiplied by the angle-dependent matrix elements of the Cudx2−y2 orbital, are shown in
Figs. 5.13 (a2) and (b2). One observes a general reduction of intensity around normal emission
(kx = 0; ky = 0). Intensity is also suppressed along the diagonals kx = ky – but not along
the diagonals of a generic BZ – consistent with the experimental observations. Figs. 5.13 (a3)
and (b3) take into account the matrix elements of the linear combination of O p states Mpx2−y2 .
Clearly, spectral weight is again suppressed towards normal emission. The suppression along the
diagonal however remains obsolete. We thus conclude our observation to stem mostly from Cu
dx2−y2 states, which in view of a cross section ratio O 2p/Cu 3d ∼ 0.16 is not surprising.

Notice that since the left and right parts of the composite map of Fig. 1 (a) of the paper in
Sec. 5.10. were collected in different scattering geometries θ, intensities do not connect smoothly
at their boundary.

5.14 The generalized t-J model

Following the method of Eskes and Sawatzky [179], Mila and Yang have performed a Cu2O6

cluster calculation to estimate the effective hopping td and exchange parameter Jd of the gen-
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Figure 5.13: Simulated ARPES constant energy maps at 120 eV photon energy. Column
(1) shows the simulated spectral function. Column (2) takes into account matrix elements
of the Cudx2−y2 orbital. Column (3) takes into account matrix elements of the oxygen state
1/
√

4(px1 − py2 − px3 + py4). Panels (a1/2/3) are calculated for θ = 0, panels (b1/2/3) for
θ = 36◦. These configurations correspond to the β-scans taken in Fig. 1 of the paper in Sec. 5.10.
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5.14. The generalized t-J model

eralized t-J model. The values for the Cu-O and O-O hybridization strengths V σ
pd = 1.5 eV,

V π
pd = −0.7 eV, V σ

pp = −1.0 eV and V π
pp = 0.3 eV, as well as for the on-site correlation parame-

ters Udd = 8.8 eV and Upd = −6 eV, were adopted from [179]. For the charge transfer energy,
the experimental estimate ∆ = 3.6 eV of Sec. 5.7 was used.

To estimate the diagonal coupling terms between two corner-sharing sublattices, the three-band
Hubbard model on Cu2O6 (shown in Fig. 5.14) with two and three hole configurations was
diagonalized exactly, and the lowest energy states were mapped onto the corresponding states of
the t-J model. This yields a diagonal hopping td ∼ −0.1 eV, and a very small diagonal exchange
coupling Jd = 0.006 eV. The diagonal coupling terms originate mostly from hopping between
oxygen pxpy orbitals and have little dependence on the Cu-O hybridization strengths V σ

pd or
V π
pd. These terms also change very little when repulsion and exchange terms between Cu and O

atoms are added to the model. Inside corner-sharing sublattices, typical parameters for cuprates
t = 0.42 eV, t′ = −0.14 eV, t′′ = 0.06 eV and U = 3.34 eV were adopted from Ref. 184. The
exchange term J = 0.21 eV is then estimated from 4t2/U .

Figure 5.14: Cu2O6 cluster.

We then consider an extended t-J model defined as:

H̃tJ = J
∑

i,j

Si · Sj − t
∑

i,j,σ

ĉ†i,σ ĉj,σ − t′
∑

i,j′,σ

ĉ†i,σ ĉj′,σ

− t′′
∑

i,j′′,σ

ĉ†i,σ ĉj′′,σ + Jd
∑

i,m

Si · Sm − td
∑

i,m,σ

ĉ†i,σ ĉm,σ .
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The t-J model has proven to provide an accurate description of the low energy physics of the
corner sharing CuO2 plane when taking into account the higher order hopping terms t′ and
t′′. The additional Cu atom at the center of the edge-sharing CuO plaquette (compare Fig. 5.5)
now gives rise to the hopping term td ∼ −t/4 which mainly governs the energy separation of
quasi-equivalent k-points shown in Fig. 3 of the paper in Sec. 5.10.

H̃tJ was exactly diagonalized on a 32 site cluster to calculate the hole spectral function A(k, h̄ω),
which is proportional to the ARPES electron-removal spectrum:

A(k, ω) =
∑

f

|〈ΨN−1
f |ĉk,σ|ΨN

0 〉|2δ(h̄ω − EN0 + EN−1
n (k)). (5.6)

ΨN
0 is the N-particle many-body ground state, with energy EN0 , and ΨN−1

n are the (N − 1)-
particle eigenstates, with energies EN−1

n . For our 32-site cluster, A(k, ω) is only defined at a
small number of k-points.

The wavefunction ΨN
0 was initially calculated for half filling by the Lanczos algorithm. Applying

the fermion destruction operator onto ΨN
0 , yields a one hole state that is appropriate to initialize

the Lanczos algorithm a second time. After 350 Lanczos cycles we calculated the spectral
function with the standard continued fraction technique. To mimic the typically broad line shapes
of our ARPES data, the results were convoluted by a gaussian of FWHM= 500 meV.

5.15 Speculations about the doped system

Various attempts to dope T-CuO by chemical means during the PLD growth process failed so far,
indicating that it is hard for this highly strained system to incorporate substitutional or interstitial
impurities.7 Nevertheless it is instructive to get a feeling of how the electronic structure could
look like in the doped system.

As a “first guess”, one can assume that the Fermi surface of doped T-CuO – as typically the case
for the doped corner sharing cuprates – is well approximated by the tight binding dispersion

εk = −4td [cos(akx/2) cos(aky/2)]− 2t [cos(akx) + cos(aky)]

−4t′ [cos(kxa) cos(kya)]− 2t′′[cos(2kxa) + cos(2kya)] . (5.7)

Both the corresponding unit cell and the Brillouin zone are marked by red squares in Fig. 1 (a) of
the paper in Sec. 5.10. For a given hole concentration n = #holes/Cu, the Fermi energy EF is

7Substitutional doping attempts by Ni and Zn led to a collapse of the tetragonal structure. Surface doping by alkali
metals such as Na and Li did not show any effect on the electronic structure.
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obtained by solving the equation

1

2
(1− n) =

1

4π2

∫

BZ

Θ(EF − εk) d3k , (5.8)

where Θ(E) is the Heaviside step function.

The tight binding dispersion εk using the values obtained in our cluster calculation t′/t = −0.327,
td/t = −0.237 and t′′/t = 0.154 is plotted in Fig. 5.15. Additionally, the dispersion is cut
at energies corresponding to solutions of Eq. 5.8 for three different hole doping levels of (a)
n = 0.07, (b) n = 0.37 and (c) n = 0.80. The topology of the corresponding Fermi surfaces
obviously changes by varying the doping level away from half filling, i.e. there are two types of
pockets when the Fermi surface becomes electron-like as discussed in Fig. 4 (b-d) of the paper in
Sec. 5.10.

Figure 5.15: Tight binding dispersion (top left) and Fermi sea for hole doping levels n = 0.07
(top right), n = 0.37 (bottom left) and n = 0.80 (bottom right).
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6 T-CuO – a 2D edge-sharing cuprate
investigated by RIXS

6.1 Summary

In the last chapter we will give some perspectives on the magnetic ground state and the spin
excitations in T-CuO. A peculiar signature of ARPES spectral weight in T-CuO and other cuprates
suggests particle scattering with bosonic spin excitations. RIXS data at the Cu L3 edge however
are at surprising variance to what is known from the corner-sharing cuprates which leaves T-CuO
an open field for future investigations.

6.2 Motivation
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Figure 6.1: ARPES dispersion for (a) Ca2CuO2Cl2 (from Ref. 185) and (b) for T-CuO. The
arrow marks the position of the characteristic kink in the dispersion.

One typical aspect of the ARPES data in the corner-sharing cuprates is the sharp steepening
of the ARPES band dispersion between Γ and A, that occurs roughly 0.5 eV below the top
of the valence band. Fig. 6.1 (a) shows a typical example of such a high-energy anomaly for
insulating Ca2CuO2Cl2 [185]. The apparent sudden change of the band velocity is due to a
transfer of spectral weight from the coherent to the incoherent part of the spectral function.
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Fig. 6.1 (b) shows a remarkably similar anomaly for T-CuO. Even if the nature of this “waterfall”-
structure is still matter of debate [186–199], the effect is suggestive of coupling of the particles
to a bosonic collective mode with an energy close to the energy of zone-boundary magnons
(0.3− 0.4 eV) [52, 122, 200, 201].

Figure 6.2: (left) RIXS spectra at (−π/a, 0) and (−π/2a,−π/2a) measured with σ polarization.
The single magnon contribution M is followed by a bimagnon peak 2M and a multimagnon tail.
This figure was taken from Ref. 52 and slightly altered. (right) Experimental data from Ref. 202
(solid line) and theoretical line shape for two-magnon absorption from Ref. 203 (dashed line)
in Sr2CuO2Cl2. The dashed dotted line peaked at ∼ 350 meV is the contribution to the line
shape from the bimagnon at (π/a, 0). The tail towards higher energies indicates contributions of
multimagnon features. This figure was taken from Ref. 203.

Indeed, there is some theoretical research on the one- and three band Hubbard model which
claims the incoherent contributions of the ZRS to identify with so called string excitations
[192, 204, 205]. The idea behind these models is based on the assumption that holes propagating
within an antiferromagnetic background leave a trace of local spin frustration (compare Fig. 6.3).
Naively estimated, each frustrated spin increases the total energy of the system by ∼ O(2J).
Consequently, the total energy caused by the frustration will increase the further the hole moves.
This potential consequently reduces the mobility of the hole and leads to the formation of a
so called “spin polaron particle” [206]. However, adjacent frustrated spins can regain their
antiferromagnetic coordination by simply exchanging position, thus releasing an energy on the
order of ∼ O(4J).

It is interesting to note that the energy scale of the kink-structure (500 meV) coincides well with
typical multimagnon excitations as observed by means of RIXS and RAMAN spectroscopy in
some cuprates and depicted in Fig. 6.2 [52, 207, 208]. Further, optical reflectivity data identified
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(a) (b) (c) (d)

Figure 6.3: Concept of a spin polaron: (a) Creation of a hole in an antiferromagnetic spin
background. (b) The hole exchanges place with a neighboring spin, causing a trace (green) of
local frustration (red dashed). (c) A second exchange of place results in adjacent frustrated spin
pairs ↑↑↓↓. (d) Position exchange of two spins results in a relaxed configuration ↑↑↓↓→↑↓↑↓.

the existence of the so called Lorenzana Sawatzky mechanism [202, 203, 209], which allows for
the emission of multimagnon excitations supported by phonons. Based on these speculations,
one can estimate the exchange interaction in T-CuO. J ∼ 180 meV from the Hubbard [210–214],
and J ∼ 146 meV from the Heisenberg model [215, 216]. These values compare reasonably well
to a theoretical estimate of 160 meV as obtained by density functional theory [160] and to typical
cuprate values [184].

One way to test the validity of these speculations is to search for spin excitations in T-CuO and
compare them to the ARPES results. Due to the small film thickness, T-CuO is probably out of
reach for inelastic neutron scattering experiments. Resonant inelastic x-ray scattering on the other
hand has been successful in probing spin waves in various cuprates and thanks to its resonant
enhancement very sensitive to small probing volumes [52, 53, 201, 215, 217, 230, 231].

6.3 Methods

RIXS data were taken at the SAXES spectrometer of the ADRESS beam line, Swiss Light Source,
Switzerland, where an energy resolution of ∼ 100 meV was obtained using a combination of
focusing elements and high-precision optical gratings [219]. The base pressure of the high-
vacuum chamber and the spectrometer was below 10−9 mBar. Sample temperature was kept
below 20 K. Total electron yield x-ray absorption (XAS) spectra were taken prior to experiment
to calibrate the monochromator. According to Fig. 6.4, the scattering angle was kept at τ = 130◦,
while the sample was rotated around α. The momentum transfer as a function of α was calculated
from Eq. 2.13.

If not otherwise indicated, RIXS spectra were measured with light linearly polarized perpendicular
to the scattering plane (σ-polarization) to be less sensitive to dichroism in absorption. Reference
spectra to calibrate emission energy, energy resolution and symmetry of the RIXS lineshape
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Chapter 6. T-CuO – a 2D edge-sharing cuprate investigated by RIXS

Figure 6.4: RIXS setup of SAXES at the SLS. The sample is represented by its natural coordinate
system. The scattering angle τ = 130◦ is kept fixed while the momentum transfer direction is
varied by changing α. If not otherwise indicated, σ-polarized (ξ = 0) light was used.

were taken for every sample prior to measurement. Spectra shown in this work are summed
from several partial measurements, each accumulated for a maximum of 10 min and aligned with
respect to the elastic line to minimize possible energy drifts.

6.4 RIXS along ΓX

Fig. 6.5 summarizes RIXS data obtained along the ΓX direction of T-CuO in σ-polarization.
Panel 6.5 (a) shows the data normalized to acquisition time and photon flux. We observe three
major contributions to the RIXS signal. A pronounced elastic feature at zero energy loss is
followed by a structureless dd excitation peak at−1.5 eV and a broad featureless plateau between
−2 and −8 eV attributed to charge transfer (CT) excitations [220–222]. Clearly, the RIXS signal
is subject to large intensity suppression away from grazing incidence (α = 90◦).

In panel 6.5 (b), we plot the absolute intensity of the elastic as well as the dd excitation peak.
Towards grazing incidence, both features clearly exhibit a similar rise whereas towards grazing
emission, the signal saturates at low intensity. The only exception to this trend is presented
by the sharp signal rise of the elastic feature close to the specular reflection at α = 25◦. This
trend is indicative of a typical self absorption effect in thin films as discussed in Fig. 2.8, which
is determined by the normalized film thickness d × µ(hν) rather than the absorption ratio
µ(hν ′)/µ(hν) of out and ingoing beam. The data was therefore normalized to the intensity of
the dd excitation peak and plotted in panel 6.5 (c).
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Figure 6.5: RIXS of T-CuO along ΓX measured with σ-polarized light. (a) Normalized data.
(b) Angular distribution of elastic and dd-excitation peak. (c) Data normalized to dd-excitation
peak. (d) Close up of the low energy loss region. (e) Data subtracted by a Voigt profile exposes
the low energy excitations.

In panel 6.5 (d) we show a close up of the low energy loss region and see a the elastic peak to be
accompanied by a distinct shoulder.1 In order to isolate the inelastic contributions, we subtract
a Voigt profile to account for the elastic peak and show the residual in panel 6.5 (e). Starting
from grazing incidence α = 90◦, the remaining feature disperses towards higher energy loss,
with a maximum at α ∼ 70◦. From here this feature disperses again towards zero energy loss,
loses spectral weight and disappears in the dominant inelastic peak. A reliable detection is again
possible at α = 5◦, where self absorption however reduces signal statistics.

6.5 RIXS along ΓX ′

RIXS measurements along the ΓX ′ direction are summarized in Fig. 6.6 (a). Whereas the CT
structure remains unchanged, we now observe a pronounced double peak structure dd1/dd2 in the
dd excitation regime. dd1 is located at ∼ −1.5 eV and can be identified with the dd excitation
observed along ΓX , where dd2 was not observed.

The intensity ratio of peaks dd1 and dd2 varies as a function of α. Panel 6.6 (b) plots the absolute
intensity of the dd- and the elastic peak. The discrepancy of dd1 and dd2 becomes most obvious
close to gracing incidence, where both dd1 and the elastic peak seem to be equally enhanced in
comparison to dd2. Thus, we again use dd1 to normalize our data.

1Due to the dominance of Thomson scattering, the curves measured at α = 30 and 25◦ are not shown here.
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Figure 6.6: RIXS of T-CuO along ΓX ′. (a) Normalized data. (b) Angular distribution of elastic
and dd-excitation peaks. A peculiar resonance at α = 45◦ is observed. (c) Self absorption
corrected data. (d) Close up of the low energy loss region. We resolve no distinct inelastic
excitation.
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6.6. σ vs π-polarization

The relative intensity variation along ΓX ′ is very similar to what has been observed for La2CuO4

and Sr2CuO2Cl2, where dd1 was attributed to excitations of dxy-, dd2 to excitations of dxz/dyz
electrons [222]. The large suppression of dd2 along ΓX however is at surprising variance to
theses cuprates.

The angular dependence of the elastic peak exhibits an interesting feature. In specular configura-
tion α = 25◦, we find the expected intensity maximum of non-resonant Thomson scattering. Ad-
ditionally, we observe a second, much weaker local maximum at α ∼ (45◦±3◦. The in plane mo-
mentum transfer corresponding to this angle is q‖ ∼ (0.29±0.04) Å−1 ∼ (0.36±0.05) π/a. In-
terestingly, a similar peak has been observed before in the underdoped cuprates at q‖ ∼ 0.31 π/a

and interpreted as resonant scattering of a charge density wave instability, believed to compete
with high temperature superconductivity [223–225].

Panel 6.6 (c) plots the data normalized to the intensity of dd1 and panel 6.6 (d) shows a close
up of the low energy part. With respect to the ΓX direction, spectral weight of low energy
excitations is now clearly suppressed, and a line shape analysis insignificant.

6.6 σ vs π-polarization
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Figure 6.7: Polarization study of RIXS spectral weight measured in σ and π polarization.

In order to make sure certain excitations did not escape through a geometry imposed selection
rule, we show spectra along ΓX over a wide range of α for σ and π polarized light in Fig. 6.7.
Even though nonresonant Thomson scattering can largely be suppressed in the π polarized
configuration, the inelastic spectral weight stays largely the same. In π-polarization, we observe
a slight broadening of the dd excitation peak. This is due to the additional z component of the
polarization vector causing additional transitions in the RIXS process. The data shown so far
thus indeed is representative of RIXS on T-CuO.
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6.7 Comparison to the antiferromagnetic cuprates
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Figure 6.8: (left) Magnon energies from Sr2CuO2Cl2 taken from Ref. 52 compared to our RIXS
data of T-CuO along the X ′ΓX high symmetry path. Sr2CuO2Cl2 shows the typical signature
of a magnon, compatible with a NN Heisenberg model with J = 130 meV (gray dashed) a
NN Hubbard model fit for t = 0.261 eV (red dashed) and U = 1.59 eV and a further-neighbor
Hubbard model (blue solid). RIXS data from T-CuO (red dots) shows a detectable excitation of
much lower energy along the ΓX direction, with a dispersion ∼ sin2 k‖. (right) BZ of T-CuO
and definition of high symmetry path. For better orientation, we plot also the ARPES data of
Ch. 5

As we saw, RIXS on T-CuO shows a distinct low energy inelastic feature along ΓX which is
significantly suppressed along ΓX ′. In Fig. 6.8, we compare the dispersion along ΓX extracted
from the data of Fig. 6.5 (e) with magnon excitation spectra in Sr2CuO2Cl2 from Ref. [52]. The
in plane momentum transfer of q‖ was calculated according to Eq. 2.13.

Clearly, the magnon energy in Sr2CuO2Cl2 is on the order of O(2J), as predicted by both the
Hubbard and Heisenberg model. Despite the fact that there is no reliable sign of a dispersion
along ΓX ′, the representative excitation energy along the ΓX direction of T-CuO is about 30%

smaller than in Sr2CuO2Cl2, but still much larger than expected for typical vibrational excitations.
Phenomenologically, the dispersion can be described by a sin2 function with an amplitude of
∼ 150 meV, a value which is in surprising agreement with neutron diffraction experiments on
the 1D spinon system tenorite (147 meV) [232]. We can therefore assume that the observed
excitations are of magnetic origin.

6.8 What’s next

In the last section we found no marked sign of spectral weight in the ∼ 500 meV regime which
would relate to multimagnon excitations. The interpretation of the “high energy anomaly” in the
framework of electron-multimagnon scattering can therefore not be confirmed so far. To some
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extent, this discrepancy however could have been expected:

In contrast to the antiferromagnetic corner sharing cuprates, T-CuO involves a small additional
exchange coupling term Jd. Such a term is known to spontaneously break the fourfold symmetry
as the system undergoes an Ising transition at finite temperature through the order by disorder
effect discussed in Ch. 5 [226–228]. From this point of view, it is questionable if the spin
excitation spectra should still be analogous to the ones observed in the corner sharing cuprates.
The system should be rather approximated by the J1-J2 Heisenberg Model, where the standard
linear spin-wave theory predicts the dispersion relation to be [227, 229]

h̄ω ∼ 2J

√(
1 +

Jd
2J

cos kx

)2

− cos2 ky

(
cos kx +

Jd
2J

)
. (6.1)

This dispersion relation again yields magnon energies on the order of O(2J) ∼ 0.3-0.4 eV along
ΓX and ΓX ′, in clear discrepancy to our RIXS results on T-CuO.

In summary, our preliminary RIXS investigation of T-CuO by RIXS yields low energy excitations
of presumably magnetic origin of an energy scale comparable to what was observed in tenorite.
The data is further incompatible with the typical magnon dispersion of the cuprates. We further
observe a peculiar resonant scattering feature which might point towards charge ordering but
might as well be an artefact.

These exciting observations leave T-CuO a playground for further studies. Its magnetic excitations
and their interplay with the elastic resonance must be studied by further experiments – but
beamtime for a detailed RIXS measurement has already been granted...
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A Iridates – spin-orbit induced Mott
insulators investigated by ARPES

Crossing the periodic system from low to high periods, spin-orbit coupling increases as electron-
electron correlation effects decrease. Whereas the interplay of band filling and correlation can
lead to complex electronic groundstates in the 3d perovskite compounds, the 4d systems are
typically weakly correlated metals governed by Hund’s rule coupling [234].

In the 5d systems, where spin-orbit- and Hubbard energy are of the same order, the situation can
change radically. A cooperation of spin orbit coupling and orbital polarization due to crystal
field splitting (1-3 eV) can reorder the t2g-bands into a four-fold degenerate and mostly filled
jeff = 3/2 and a narrow two-fold degenerate and nearly half-filled jeff = 1/2 band close
to the Fermi energy. The band-width of the latter is small enough to lift its degeneracy in the
presence of correlation (∼ O(500) meV) and to open a gap. This type of transition metal oxides
can be classified as a spin-orbit induced Mott insulators with typically antiferromagnetic (AF)
ground [235, 236].

The most prominent example of a SOI-MI is the perovskite iridate Sr2IrO4, a layered compound
with a structure similar to the one of the cuprates, where IrO6 octahedra form quasi two dimen-
sional corner sharing planes, well separated from each other by the strontium atoms [235,236]. To
maintain the favorable Ir-O bond length within this crystal structure, the octahedra are canted with
respect to the c-axis, which lowers the symmetry and mixes dxy with dx2−y2 orbitals. The result
is an antiferromagnetic SOI-MI with residual in-plane ferromagnetic moment at temperatures
below 100 K.

A.1 Monolayer perovskite iridate Ba2IrO4

Within the scope of this thesis work, a sister compound of Sr2IrO4, the system Ba2IrO4 was
investigated. The canting effect and subsequent orbital polarization is absent in this compound
due to the larger barium radius [233]. As shown in the following publication, the magnetic as well
as electronic properties are however quite insensitive to these structural differences [237].
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Abstract
We report angle-resolved photoemission (ARPES) measurements, density
functional and model tight-binding calculations on Ba2IrO4 (Ba-214), an
antiferromagnetic (TN = 230 K) insulator. Ba-214 does not exhibit the rotational
distortion of the IrO6 octahedra that is present in its sister compound Sr2IrO4

(Sr-214), and is therefore an attractive reference material to study the electronic
structure of layered iridates. We find that the band structures of Ba-214 and Sr-
214 are qualitatively similar, hinting at the predominant role of the spin–orbit
interaction in these materials. Temperature-dependent ARPES data show that
the energy gap persists well above TN, and favor a Mott over a Slater scenario for
this compound.
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1. Introduction

The iridates are a new family of strongly correlated materials, with fascinating physical
properties [1–12]. Unlike 3d transition metal oxides (TMOs), dominated by the Coulomb
interaction, or 4d TMOs, where Hund’s rule coupling plays a major role [13], the electronic
structure of the 5d iridates reflects the coexistence of similar Coulomb, crystal-field (CEF) and
spin–orbit (SO) coupling energy scales. As a result, Mott physics and local magnetic moments
can emerge in the iridates for values of the Coulomb interaction that are one order of magnitude
smaller than in the 3d series.

The layered perovskite Sr2IrO4 (Sr-214) has attracted considerable attention because of
intriguing similarities with the cuprate parent compound La2CuO4 (LCO). Structurally, it
exhibits weakly coupled IrO2 square-lattice planes built from corner-sharing IrO4 plaquettes,
analogous to the characteristic CuO4 building blocks of the cuprates [4, 5, 14–16]. The
electronic structure is shaped by strong SO coupling, which splits the Ir 5d t5

2g manifold, so
that the highest occupied state is a narrow, half-filled jeff = 1/2 band. The Ir spins order into an
antiferromagnetic (AFM) state below TN = 230–240 K. According to the leading scenario, Sr-
214 is an insulator because a Mott gap 1 ∼ 0.06 eV opens within this band, but the actual origin
of the gap is still being debated. An alternative Slater picture, coupling the onset of magnetic
order with the opening of a gap [17, 18], has been advocated by susceptibility, time-resolved
optical conductivity and scanning tunneling spectroscopy data [19, 20, 23, 24].

One may speculate that Sr-214 could be turned into a superconductor by doping, similarly
to LCO. However, superconductivity is hindered by weak in-plane ferromagnetism, attributed
to the Dzyaloshinsky–Moriya interaction, which arises from a rotational distortion of the IrO6

octahedra (figure 1(a)). Recently, the sister compound Ba2IrO4 (Ba-214), with similar physical
properties (table 1), was synthesized using high pressure methods [20] (figure 2(b)). Due
to the larger Ba radius, Ba-214 does not exhibit the rotational distortion, and is therefore a
more promising parent compound for possible iridate superconductors. Ba-214 also offers the
possibility of studying the electronic structure of an undistorted IrO2 square lattice.

We present here an investigation of Ba-214 by angle-resolved photoelectron spectroscopy
(ARPES). We analyze the experimental data with the help of first-principles density functional
theory (DFT) and model tight-binding (TB) band structure calculations. We find that the band
structure of Ba-214 is quite similar to that of Sr-214, and is therefore rather insensitive to
the presence of the rotational distortion. We also observe a backfolding of the band structure
corresponding to a larger c(2 × 2) in-plane unit cell, that coincides with the AFM unit cell.
ARPES data collected over a broad temperature range do not give evidence for a temperature-
dependent gap, and therefore are more consistent with a Mott than with a Slater scenario.

2. Methods

Samples of Ba-214 were grown as in [20] in the form of dense, black polycrystalline pellets.
The pellets were broken into clusters of ∼1 mm3 size, and then dipped in 1% hydrofluoric
acid for 1 min. After rinsing in deionized water, single crystals of ∼400 µm lateral size could
be extracted. Crystals naturally exposing the (001) surface were selected under an optical
microscope and mounted on ceramic pins.

The ARPES measurements were performed at the electronic structure factory end station
of beam line 7 of the Advanced Light Source, Lawrence Berkeley National Laboratory. The

2
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Table 1. Comparison of structural, magnetic and electronic properties in Ba2IrO4 and
Sr2IrO4. db and dap are the in-plane and apical Ir–O distances.

db (Å) dap (Å) θtilt TN (K) µ (µB) Ea (meV) Ref.

Ba2IrO4 2.01 2.15 0◦ 230 0.34 70 [20]
Sr2IrO4 1.98 2.06 11◦ 230–240 0.33 60 [2, 14, 16]

(a) (b)

Figure 1. (a) Sr2IrO4 structure, projected on the ab plane (red = O; green = Sr; and
yellow = Ir). Apical oxygen atoms are not shown. Each IrO6 octahedron is rotated by
11◦ around the perpendicular c-axis with respect to the ideal K2NiF4 structure, yielding
a larger c(2 × 2) unit cell. The distortion is absent in Ba2IrO4 (b) (green = Ba). The
arrows illustrate the Ir spin arrangement in the AFM phase. Blue and green squares are
the primitive and magnetic unit cell [21, 22].

combined energy resolution of the monochromator and of the Scienta R4000 hemispherical
analyzer was ∼30 meV. Samples were cleaved at T ∼ 100 K at a pressure <10−10 mbar. The
Fermi level reference was measured on polycrystalline copper in good electrical equilibrium
with the sample. Sample charging hindered measurements below ∼80 K. All data presented
here were collected at T > 120 K, where the effect was smaller and under control. The data were
subsequently corrected for the residual energy shift, which was estimated from a comparison
with data measured in a low-filling mode of the storage ring, with a photon intensity reduced by
almost two orders of magnitude.

3. Angle-resolved photoemission results

3.1. Band structure

Figure 2(a) presents an ARPES constant energy (CE) map of Ba-214, measured at E = −0.1 eV,
near the top of the valence band. The map is extracted from a dataset measured at photon energy
hν = 155 eV, and T = 130 K. The blue square is the surface Brillouin zone (BZ) corresponding
to the crystallographic unit cell of figure 1(b) [20]. The map shows intense round features
(α features in the following) at the M points, the corners of the BZ. A second set of features
(β features), with fourfold symmetry, is observed at the X points. Both α and β features are
repeated in all BZs of the map. A closer inspection reveals also a weaker, round contour (α∗)
at all 0 points. It will be clear in the following that α∗ is a signature of band folding into the
smaller c(2 × 2) BZ (green square).

Figures 2(b)–(d) show the experimental E versus k‖ dispersion along high-symmetry lines
marked (b), (c) and (d) in figure 2(a). Along M0M , figure 2(b) shows a prominent band with
a maximum at the M point, where it gives rise to the α contour. As discussed below, this

3
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Figure 2. (a) ARPES kx versus ky CE map of Ba-214, measured at E = −0.1 eV
with hν = 155 eV at T = 130 K. It shows intense features centered at the M and
X points of the surface BZ (blue square), and a weaker replica of the former
at 0. The green square is the c(2 × 2) BZ. (b)–(d) E versus k‖ cuts along the
high symmetry directions indicated as (b), (c) and (d) in panel (a). Blue and
green vertical lines indicate the boundaries of the (1 × 1) and of the c(2 × 2) BZs.
(e) ARPES kx versus kz CE map at E = −0.4 eV and ky = π/a, extracted from a photon
energy scan between 95 and 162 eV, assuming an inner potential V0 = 10 eV. It shows
negligible dispersion along the c-axis. 0X = π/a = 0.78 Å−1; 0Z = π/c = 0.24 Å−1.
In all panels, the darkest features correspond to the largest intensity.

band corresponds primarily to Ir states of jeff = 3/2 character. It merges around −2 eV with
a manifold of O 2p-derived states. The same band is seen to disperse downwards along the
M X M direction in figure 2(c). A second band, with a maximum at the X point, generates the β

contour. In the Mott scenario, it is assigned to the Ir-derived lower-Hubbard band of jeff = 1/2
character. The maxima of this band are more visible along the X0X direction in figure 2(d),
which also shows a dispersive feature with a maximum at 0, associated with the α∗ contour.
Figure 2(e) shows a kx versus kz CE map for E = −0.4 eV and ky = π/a. It is extracted from
ARPES measurements with photon energies in the range hν = 95–162 eV, assuming an inner
potential V0 = 10 eV. Apart from slight intensity variations with photon energy, the data are
essentially independent of kz. Namely, the absence of wiggling contours indicates that the kz

dispersion at the top of the valence band (VB), and the interplane coupling for these states, are
quite small.

Representative spectra for the 0, M and X points of the BZ are shown in figure 3.
They exhibit rather broad peaks, with maxima at −0.37 eV (at 0), −0.26 eV (at M), and
−0.21 eV (at X ), which places the VB maximum at the X point. The peak energy at the
VB maximum should yield a lower limit for the energy gap, the actual value depending on
the separation between the Fermi level and the conduction band minimum, which cannot be
accessed by ARPES. However, the peak binding energy at X (0.21 eV) is already larger than
the gap value 1g ' 2Ea ∼ 140 meV, estimated from the activation energy Ea = 70 meV of
the electrical resistivity [20]. This discrepancy, and the broad line shapes, suggest unresolved
overlapping features in the spectra of figure 3. This hypothesis is supported by the first-
principles calculations of section 4.1. It also explains the different peak energies measured at
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Figure 3. ARPES spectra of Ba-214, measured at three high symmetry points of the BZ.
The corresponding peak positions are indicated by vertical lines.

the top of the band at the M point, and at its backfolded replica at 0, since the underlying
components can be differently modulated by matrix elements.

We now compare the electronic structure of Ba-214 and Sr-214. Figure 4(a) reproduces
ARPES data on Sr-214 from [4]. The spectra are measured along the 0M ′ X ′ contour in the
c(2 × 2) BZ, indicated by a yellow triangle in the top panel. Our results for Ba-214, extracted
from the dataset of figure 2, are shown for the same triangular contour in figure 4(b). Data
measured along the same triangular contour in the adjacent c(2 × 2) BZ are also shown in
figure 4(c). Two conclusions can be drawn from the figure. Firstly, there is a good overall
correspondence between the band structure of the two compounds. Secondly, while the relative
intensities of the Ba-214 jeff = 3/2 and 1/2 bands in figures 4(b) and (c) are different, their
dispersions are identical. The triangular contours in figures 4(b) and (c) are equivalent for the
c(2 × 2) BZ, but clearly not for the structural BZ (blue square). This shows that—similarly to
the case of Sr-214 [4]—the band structure of Ba-214 is folded into the smaller BZ. The smaller
intensity of the α∗ manifold in figure 4(b), compared with that of the α manifold in figure 4(c),
is consistent with band folding from a superlattice potential that is substantially weaker than the
primary lattice potential [25]. The different intensities in the two contours can be exploited to
disentangle the two bands. We find that in Ba-214 the width of the jeff = 1/2 band (∼0.8 eV)
is somewhat larger than in Sr-214 (∼0.5 eV) [4], and is considerably smaller than the width of
the jeff = 3/2 band (∼2.5 eV). The maxima of the jeff = 1/2 band at X (−0.21 eV) and of the
jeff = 3/2 band at M (−0.26 eV) in Ba-214 are shallower than those (−0.25 eV and, respectively
−0.45 eV) of the corresponding bands in Sr-214. Their energy separation is also smaller (0.05
versus 0.2 eV) in Ba-214.

3.2. Temperature evolution

We now address the issue, raised in the introduction, of the persistence of the energy gap
above TN ∼ 240 K. Previous theoretical and experimental studies [18, 23, 24] have claimed
significant Slater-type contributions to the stability of the gap, which should then collapse in
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Figure 4. (a) ARPES spectra of Sr-214, measured along the 0M ′ X ′ contour (yellow
triangle) in the c(2 × 2) BZ (green square), from [4]. Data for Ba-214, extracted from
figure 2, are shown along the same contour in (b), and for an equivalent contour in an
adjacent c(2 × 2) BZ in (c). Spectra corresponding to the high-symmetry points are in
red. Matrix elements enhance the signal from jeff = 1/2 states in (b), and from jeff = 3/2
states in (c). Thick red (b) and blue (c) curves outline their dispersion.

the paramagnetic phase. We collected data over a broad temperature range, from well below
(120 K) to well above (300 K) TN. Figure 5 displays temperature-dependent ARPES spectra
measured at the 0 and M points of the BZ. The leading edge of the spectra exhibits a trivial
thermal broadening, but no indications that the gap closes at TN. The energy gap appears to be
robust even in the absence of long-range magnetic order. Therefore, the ARPES data do not
support a Slater picture, at least in its simplest form.

4. Electronic structure calculations

4.1. First-principles calculations

We performed a local density approximation (LDA) calculation including the on-site Coulomb
and SO interactions (LDA + U + SO) [29]. For this purpose, the linear muffin-tin orbital
approach in the atomic sphere approximation (Stuttgart LMTO47 code) [30] was used, with
crystal structure data taken from [20]. We include Ba(6s,6p,5d), Ir(6s,6p,5d) and O(2s,2p) states
in the orbital basis set. Both the ferromagnetic (FM) and AFM configurations were simulated
for different sets of on-site Ir 5d Coulomb repulsion U and intra-atomic exchange interaction
JH. The FM configuration is calculated with one Ir atom per unit cell. In order to reproduce
the AFM order observed in Ba2IrO4, we have used a supercell containing four Ir atoms. The
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Figure 5. Temperature-dependent ARPES spectra of Ba-214 from T = 120 to 300 K,
measured at (a) the 0, and (b) the M points of the BZ.

primitive lattice vectors in units of a = 4.03 Å are (0, 2, 0), (2, 0, 0) and (0.5, 0.5, −1.65). In
the AFM configuration, U = 3 eV and JH = 0.4 eV produced the correct energy gap value of
140 meV. The same values were recently used in [12].

The calculated band structure is illustrated in figure 6(a), superimposed on the ARPES data.
Overall, DFT yields many more states than ARPES can individually resolve, which probably
explains the absence of sharp quasiparticle features in the spectra. The partial densities of states
of figure 6(b) show that Ir 5d and 2p in-plane oxygen states are strongly hybridized at the top of
the valence band, while the bottom of the conduction band is mainly formed by Ir 5d electrons.
The 2p states of the apical oxygen atoms are confined between −1 and −2 eV, due to a limited
overlap with the Ir 5d orbitals. These states have a non-negligible dispersion along the c-axis.
The band observed in ARPES around −3 eV corresponds to in-plane 2p oxygen states.

We now briefly discuss the implications of the DFT results for the magnetic properties of
Ba-214. Firstly, we emphasize that the occupied states close to the gap at the 0 and M points
strongly depend on the specific magnetic configuration. For instance, in the FM state the top
of the valence band is found at E ' −0.7 eV (not shown). Moreover, a FM insulating ground
state with the correct energy gap could only be obtained for unreasonably large values of U and
JH. Therefore, the inter-site exchange interaction plays a decisive role in determining the band
structure close to the Fermi level.

Within the LDA + U + SO approximation [29] the electronic Hamiltonian matrix and
the corresponding occupation matrix of the system can be defined in the {LS} basis (the
eigenfunctions of both spin and orbital moment operators) or { jm j } basis (the total moment
operator eigenfunctions). They correspond to LS (Russell–Saunders) or j j coupling schemes.
The basis choice becomes important when one calculates the expectation value of the magnetic
moment to compare it with experimental data. In this case, either the LS coupling scheme or the
j j coupling scheme should be chosen, depending on the strength of the SO coupling. However,
when the SO coupling and the intra-atomic exchange interaction are comparable, neither the
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Figure 6. (a) The LDA + U + SO band structure is superimposed on an ARPES intensity
map, where an integral Shirley background has been subtracted. The bands were
calculated for the AFM configuration with U = 3 eV and JH = 0.4 eV. Apical oxygen
states between −1 and −2 eV are not resolved in the experiment. (b) Partial densities of
states. Red, dark and light blue lines correspond to Ir 5d, in-plane oxygen 2p and apical
oxygen 2p states, respectively.

LS nor the j j scheme are valid, and an intermediate coupling theory should be developed [29].
Practically, it means that the occupation matrix is neither diagonal in the {LS} nor in { jm j }
orbital basis. Such a situation is realized in Ba-214, where the SO strength λ ∼ 0.48 eV and
JH ∼ 0.4 eV.

Within an {LS} eigenstates basis we obtain for the spin and orbital magnetic moments
MS = 0.12 µB and ML = 0.33 µB, respectively. The resulting total magnetic moment is therefore
ML S = (2MS + ML) = 0.57 µB, in reasonable agreement with the value M = 0.36 µB from
magnetic susceptibility measurements [20]. The total magnetic moment calculated within a
{ jm j } basis is equal to MJ = 0.43 µB, in better agreement with the experimental value.
However, one should note that in both basis sets there are large non-diagonal elements of
the occupation matrix that do not contribute to the expectation value of the magnetic moment.
Therefore, an intermediate coupling scheme should be used to correctly describe the magnetism
of Ba-214. We leave such a consideration for a future investigation.

The performed first-principles calculations have demonstrated a complicated band
structure depending on the metal–ligand hybridization, on-site Coulomb interaction, SO
coupling, intra- and inter-atomic exchange interactions. The agreement between all-electron
LDA + U + SO and experimental ARPES spectra is not enough to determine the exact
microscopic mechanisms that are responsible for forming the electronic structure of Ba2IrO4.
To solve this problem below we propose a tight-binding model with a minimal set of orbitals.
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Figure 7. Effective hopping terms for the Ir t2g states used in the TB model: (a) dxy
orbitals and (b) dxz/yz orbitals. Empty circles represent oxygen ions.

4.2. Tight binding approach

In order to gain more direct insight in the interplay of orbital ordering, SOC and correlation
effects, we also performed a model TB calculation, along the lines of [27, 28]. We included
the whole Ir 5d t2g and eg manifolds, and a set of effective hopping terms describing the
hybridization between the Ir 5d and O 2p electrons, as illustrated in figure 7. The tight binding
Hamiltonian is

H = H0 + HSO. (1)

H0 includes the kinetic term T = 6k,ν εν(k)c†
kνckν , where c†

k and ck are the fermion creation and
annihilation operators and ν spans the Ir 5d manifold, and an octahedral CEF parameterized
by 10Dq = E(eg) − E(t2g). Since we are primarily interested in the occupied states for
a comparison with ARPES, we focus on the t2g levels. The relevant hopping terms are
schematically illustrated in figure 7. The form of the εν’s is dictated by the symmetry of
the system [27]:

εxy = − 2t1(cos kx + cos ky) − 2t2 cos kxcos ky − 2t3(cos 2kx + cos 2ky),

εxz = − 2t4 cos kx − 2t5 cos ky, (2)

εyz = − 2t5 cos kx − 2t4 cos ky.

The SO coupling term for the 5d orbitals is: HSO = λ5d EL · ES. We introduce electron correlations
in the model in a phenomenological way, by imposing AFM order. This is achieved by an
additional Zeeman term with an in-plane staggered magnetic field

HAFM = B
∑
i,ν

ei EQ· Eri

(
c†

iν↑
ciν↓ + c†

iν↓
ciν↑

)
, (3)

where EQ = (π, π) is the AFM ordering vector, and the sum is over the Ir sites i and the three
t2g orbitals. The effect of HAF is to fold all bands into the smaller c(2 × 2) BZ, and to open gaps
at the AFM zone boundaries.

The band structures produced by the various terms of the hamiltonian are plotted in
figure 8(a)–(c), along the same 0X ′M ′0 contour of figures 4(a) and (b). The parameters of the
model are summarized in table 2. Figures 8(a′)–(c′) schematically illustrate the local electronic
structure at the Ir site. Figure 8(a) shows the band dispersion in the presence of the octahedral
CEF. The empty eg and the partially filled t2g manifolds are well separated by 10Dq , and the
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Figure 8. The calculated TB band structure is shown in (a) in the presence of an
octahedral CEF. In (b) the addition of SO coupling rearranges the bands into jeff = 3/2
(blue) and jeff = 1/2 (red) states. A staggered magnetic field splits all states in (c),
namely within the half-filled jeff = 1/2 band, simulating the opening of the Mott gap.
Panels (a′–c′) are corresponding schematic pictures of the local electronic structure at
the Ir sites.

Table 2. The set of parameters (in eV) of the TB model used for the calculated band
structure of figures 8 and 9.

λ5d t1 t2 t3 t4 t5 B

0.7 0.5 0.1 0.03 0.27 0.01 0.1

system is metallic. Adding the SO interaction, in figures 8(b) and (b′), mixes the CEF states.
The t2g states are split into a four-fold degenerate, fully occupied jeff = 3/2 (blue), and a doubly
degenerate, half-filled, jeff = 1/2 manifold (red), but the system remains metallic. Figures 8(c)
and (c′) illustrate the further band splitting induced by HAFM, namely of the jeff = 1/2 band
into m j = −1/2 and 1/2 subbands, which effectively simulates the opening of a correlation gap
between an occupied lower Hubbard band and an empty upper Hubbard band.

The calculated TB band structure is compared with the ARPES data in figure 9 for the
set of parameters of table 2. Although the TB parameters, namely the external magnetic field,
should not be taken too literally, they do provide a useful description of the electronic structure.
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Figure 9. The calculated TB band structure is superimposed on the experimental
ARPES data, along two equivalent contours in the first (a) and in an adjacent (b) c(2 × 2)
BZ, as in figure 4(b), (c). Folded bands are indicated by dashed lines. The color code
is the same as in figure 8. Panels (c), (d) show the experimental (c) and calculated (d)
CE maps for E = −0.35 eV. The corresponding CE maps for E = −0.7 eV are shown
in (e), (f).

Figures 9(a) and (b) show data along equivalent contours in the first and in the adjacent c(2 × 2)

BZs, as in figures 4(b) and (c). Folded bands are indicated by dashed lines. The good agreement
with the data substantiates the description of the bands given in section 3, namely the assignment
of the top of the valence band to states of jeff = 1/2 character. The good agreement of the TB
model with the experiment is confirmed by a comparison of the experimental and calculated
CE maps shown in figures 9(c) and (d) and figures 9(e) and (f), for E = −0.35 eV (c, d) and
E = −0.7 eV (e, f). The experimental α (α∗) and β features are well reproduced. Of course, the
TB model does not yield any information on the spectral weight, and therefore all c(2 × 2) BZs
are equivalent.
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5. Summary

We have measured the electronic structure of the perovskite iridate Ba2IrO4 (Ba-214) by
ARPES on high-quality single crystal samples grown under high pressure. A comparison of
spectra measured at non-equivalent locations of reciprocal space allows us to unambiguously
identify the jeff = 3/2 and 1/2 subbands into which the Ir 5d t2g manifold is split by the SO
interaction. The experimental data are well reproduced by an LDA + U + SO calculation for
an AFM configuration. A satisfactory agreement is also achieved by a simple empirical tight-
binding model. The overall band dispersion is similar to that of the sister compound Sr-214.
The electronic structure is therefore rather insensitive to the rotational distortion of the IrO6

octahedra, which is present in Sr-214 but not in Ba-214. This observation contrasts with the
behavior of 3d TM perovskites, such as the rare earth nickelates RNiO3, where the tilting of
the octahedra, which affects the orbital overlap, strongly influences the band dispersion, as well
as transport and magnetic properties [31]. This lends support to a proposed scenario for the
iridates, where the effective hopping parameters are less sensitive to the distortion due to the
strong mixing of dxy , dxz and dyz orbital characters induced by the SO interaction [26].

We have also found that the bands measured by ARPES are folded, with reduced intensity,
into a smaller c(2 × 2) BZ, producing a characteristic checkerboard intensity distribution. Band
folding has also been observed in Sr-214 [4], and attributed to the effect of the structural
distortion. Very sensitive x-ray diffraction measurements with synchrotron radiation rule out
a structural distortion in the bulk of Ba-214 [32]. Our results are consistent with the periodicity
of the AFM structure, and could indicate scattering of the quasiparticles by the corresponding
superlattice potential. However, we cannot exclude that a structural distortion develops at the
surface, which has indeed been suggested by low-energy electron diffraction measurements
on thin film samples [33]. Accurate surface x-ray diffraction experiments are necessary to
determine the surface structure of Ba-214, and resolve this issue.

Finally, we have studied the evolution with temperature of the energy gap, and found
no notable variations, namely around the magnetic ordering temperature TN = 230 K. The gap
remains open well into the paramagnetic phase. The ARPES data are therefore more consistent
with a Mott than with a Slater scenario, even if our calculations indicate a clear influence of
magnetic order on the size of the gap.
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A.2 Bilayer perovskite iridate Sr3Ir2O7

Another type of SOI-MI that was studied within the scope of this thesis is the bilayer version
of Sr2IrO4, i.e. Sr3Ir2O7. Like the atoms in a hydrogen molecule, the electronic states resulting
from each of the layers hybridize and effectively increase the bandwidth of the nearly half-
filled jeff = 1/2 band close to the Fermi energy. The following ARPES study shows that this
considerably reduces, but not completely closes, the spin orbit induced Mott gap [238].
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The influence of dimensionality on the electronic properties of layered perovskite materials remains an
outstanding issue. We address it here for Sr3Ir2O7, the bilayer compound of the iridate Srn+1IrnO3n+1 series. By
angle-resolved photoemission spectroscopy we show that in this material the interlayer coupling is large and
that the intercell coupling is, conversely, negligible. From a detailed mapping of the bilayer splitting, and from
the intensity modulation of the bonding and antibonding bands with photon energy, we establish differences and
similarities with the prominent case of the bilayer superconducting cuprates.
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Iridium oxides are generating increasing attention
[1–13]. In these materials, the entanglement of the spin and
orbital degrees of freedom induces a reorganization of the
electronic energy levels, described by an effective total angular
momentum Jeff . This is different from the case of 3d and 4d

oxides, governed by Coulomb interactions and, respectively,
Hund’s coupling [14]. The interaction between such composite
moments strongly depends on the symmetry of the Ir-O
covalent bonds [10,15]. In spite of such differences, iridates
built from corner sharing IrO6 octahedra, such as Sr2IrO4,
show surprising analogies with the isostructural cuprate
compounds, namely, a single band at the Fermi level [2] and a
similar magnetic structure [1,4,6]. This motivates a search for
connections between iridates and cuprates and, quite naturally,
most studies have been performed on the Ruddlesden-Popper
series Srn+1IrnO3n+1, which shows a close similarity with the
layered cuprates housing high-temperature superconductivity.

Experimental efforts have been so far oriented to the
stoichiometric “parent compounds”, and to the role of struc-
tural distortions and of dimensionality in determining both
the electronic and the magnetic properties. Insight into the
former is gained by substituting Sr with, e.g., Ba, which
enhances the tetragonal distortion and prevents the rotation
of the IrO6 octahedra [16]. The effect of dimensionality
can be assessed by comparing the compounds of the series
from n=1, the two-dimensional (2D) limit, to n → ∞, the
three-dimensional (3D) one. Early optical data showed an
evolution from a Mott insulator (Sr2IrO4) to a correlated
metal (SrIrO3), which was attributed to interlayer coupling
and a consequent increase of the bandwidth W [3]. A similar
evolution is observed in cuprates where, e.g., La2CuO4 is
a charge transfer insulator [17], whereas LaCuO3 is a poor
metal [18,19].

In between these two extremes, Sr3Ir2O7 is notable, as
a small electronic gap seems to indicate that it lies very

*lmoreschini@lbl.gov

close to the critical point marking the metal-to-insulator
transition. Its band structure has been mapped for the first time
with laser-based angle-resolved photoemission spectroscopy
(ARPES) [20], and refined more recently [21,22]. Refer-
ence [21] suggests a polaronic ground state with a vanishing
quasiparticle pole close to the Fermi level, another possible
similarity to the cuprates [23]. Alternatively, Ref. [22] ascribes
the reduced gap to the intercell coupling, which would cause
a sizable dispersion in the direction perpendicular to the IrO
layers and mark a departure from the 2D physics already for
n = 2. Our results suggest a different scenario. We measure
a bilayer splitting between bonding and antibonding bands
as large as 0.2 eV, which indicates that the interlayer coupling
cannot be treated simply as a perturbative term to the electronic
structure of the monolayer counterpart. From the intensity
modulation of these states with photon energy, we infer the
reflection symmetry properties of the corresponding wave
functions. We find that the lowest energy state is antisymmet-
ric, opposite to the much studied case of the bilayer cuprates.

Single crystals of Sr3Ir2O7 were grown using the self-flux
technique, as described elsewhere [24], and characterized by
magnetization measurements, x-ray diffraction, x-ray resonant
magnetic scattering, and resonant inelastic scattering. All the
ARPES data were measured at beamline 7.0.1 of the Advanced
Light Source with a Scienta analyzer, and the momentum and
energy resolution were 0.1◦ and 30 meV at hν = 100 eV,
respectively. The light was linearly polarized in the horizontal
plane containing the kx axis of the sample and the analyzer
slits (p scattering geometry), and the angular scans were
obtained by rotating the sample about kx , in steps of ky . The
measurements were performed at T = 30 K and no charging
effects were observed at this temperature.

Figure 1 shows an overview of the band topology of
Sr3Ir2O7. The crystal structure has recently been refined from
tetragonal to orthorhombic [25] but, as common practice in
these layered iridates, we discuss the data with reference to
a square surface Brillouin zone (BZ), as shown in Fig. 1(a).
As we will show later, this choice is certainly justified for
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FIG. 1. (Color online) (a) ARPES constant energy cut taken at
E = −180 meV, near the top of the Jeff = 3/2 states. The square
indicates the surface BZ, determined by the in-plane rotation of
the IrO6 octahedra and the G-type antiferromagnetic ordering. The
characteristic contours of the distinct Jeff bands are indicated by
arrows. (b) and (c) show the band dispersion along the two high-
symmetry directions through �. Note in (b) the intensity modulation
due to the folding potential generated by the structural distortion. The
dashed curves outline the dispersion along the same directions for the
monolayer compound Sr2IrO4, as reported in Ref. [2]. The relevant

dimensions are �M = 0.78 Å
−1

and �X = 0.55 Å
−1

.

our bilayer compound. The dispersion shown in Figs. 1(b)
and 1(c) is in general agreement with previous reports [20–22].
The intensity in the first eV below the Fermi level is due to
two manifolds of holelike bands. The lowest energy state has
maximum at −90 meV, i.e., 90 meV below the Fermi level EF ,
at the M point. A second manifold has maximum at the � point
at −0.23 eV. The experimental band dispersion shows marked
similarities with that of Sr2IrO4, where the states are assigned
to Jeff = 1/2 and Jeff = 3/2 character as indicated by the
arrows in Fig. 1(a), but each band is further split into a bonding
and an antibonding branch. While significant hybridization
between these two manifolds is expected here, we keep the
same labeling for simplicity. Such assignment of the bands to
a specific Jeff character remains accurate near the � and M

high-symmetry points, where hybridization is negligible [26].
The dashed curves in Figs. 1(b) and 1(c) indicate the measured
dispersion of the Jeff = 3/2 band in Sr2IrO4 [2]. As noted in
a recent comparative ARPES study [22], the monolayer bands
are clearly not in the center of the split states of the bilayer,
as expected if the interaction between states on the two Ir-O
planes were small with respect to the other relevant energy
scales.

It was argued [22] that this energy shift could be ascribed
to the interaction between two adjacent unit cells along the z

FIG. 2. (Color online) (a) The crystal structure of Sr3Ir2O7,
where the IrO6 octahedra are colored and the large spheres indicate
Sr atoms; a and c are the lattice constants parallel and normal to
the Ir-O layers, respectively, and d is the bilayer spacing. (b) and (c)
show stacks of spectra measured for varying photon energy at � and
M , where the intensity is normalized to the lowest binding energy
peak, at −0.23 and −0.09 eV, respectively. The slight irregularity in

the measured intensity around kz = 6 Å
−1

is due to the Sr 3d doublet
generated by second order radiation from the monochromator. The kz

values are calculated assuming an inner potential V0 = 10 eV. Note
that due to the lack of a measurable kz periodicity a precise extraction
of V0 is not possible. However, it can be approximately set to 10 eV
through analysis of the photoemission intensity modulation (see text).

axis, and therefore to the increased dimensionality from the
almost ideal 2D case of Sr2IrO4. In Figs. 2(b) and 2(c) we show
the evolution of the spectra with photon energy, which probes
the c-axis dispersion, at the � and M points, respectively. The
spectra are normalized by the lowest energy peak intensity.
The lattice constant in the direction perpendicular to the Ir-
O layers, c in Fig. 2(a), is ∼20.9 Å. For a tetragonal unit

cell, the expected kz periodicity is 4π/c � 0.6 Å
−1

. The range
shown in Figs. 2(b) and 2(c) covers almost three BZs, with no
detectable dispersion comparable with an 80 meV shift of the
leading edge at the M point, reported in Ref. [22].

A possible explanation for these seemingly contradictory
results is offered by the analysis of Fig. 3(a), which shows as a
color plot the kz dependence of the ARPES signal at the � point
as in Fig. 2(b), but this time without any normalization, except
for that by the photon flux. The spectral weight of the bonding
and antibonding bands in a bilayer system is expected to have a
markedly different, and in fact nearly opposite, dependence on
the excitation energy, due to the opposite reflection symmetry
of the states with respect to the intermediate plane between the
two layers. We use a simple model, accounting only for the
phase difference between the wave functions and considering
a free electron final state. For a multilayer system of transverse
periodicity d, the kz dependence of the matrix elements
essentially follows a sine wave of period 2π/d, dampened
with increasing energy [27]. This behavior has been observed
for surface states [28], quantum well states [29], and, more
recently, for multilayer graphene [30]. The observed intensity
modulation of Fig. 3(a) indeed shows good agreement with the
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FIG. 3. (Color online) (a) The spectra of Fig. 2(b) are shown as an image plot and with no intensity normalization. The dashed line is a
sine wave of period 10π/c. The intervals defined above the panel indicate the approximate ranges where the intensity of either the bonding (B)
or antibonding (AB) branch of the Jeff = 3/2 states is dominant. (b) Energy distribution curve measured at � and hν = 96 eV, in the second
BZ. (c)–(e) Band dispersion along a �M� line at ky = π/a, measured at hν = 85, 96, and 113 eV, respectively, corresponding to the arrows
in (a); the corresponding constant energy cuts at E = −90 meV are shown in (f)–(h). In reference to the intervals in (a), (c), (f): B; (d), (g):
B + AB; (e), (h): AB. (i) Pictorial representations of the initial state bonding wave functions for Bi-2212 and for Sr3Ir2O7.

predictions of this simple approach. In Sr3Ir2O7 d � c/5, and
a sine wave of period k = 2π/(c/5) = 10π/c (dashed curve)
convincingly tracks the transfer of spectral weight between the
two branches of the bilayer dispersion.

By choosing the photon energy so that either one or the other
of the states are suppressed, the bonding and antibonding bands
can almost be mapped separately. Figures 3(c)–3(e) illustrate
the dispersion along �M� at ky = π/a [dashed lines in panels
(f)–(h)], measured for the three photon energies corresponding
to the arrows in Fig. 3(a). At the � point, the three panels show
for the Jeff = 3/2 states mainly the bonding band (c), both
bands with comparable intensity (d), or only the antibonding
band (e). The spectrum measured at � and hν = 96 eV, shown
in panel (b), clearly shows two peaks, separated by 0.18 eV,
corresponding to the bonding and antibonding bands. The
distinction is less clear for the Jeff = 1/2 bands close to M ,
but signatures of the splitting are visible in panels (f)–(h),
which present constant energy cuts at E = −90 meV, at the
top of the valence band. The corresponding intensity patterns
are different, as they map in fact different states. Namely,
the rectangular contours at the M points are elongated along
different directions in (f) and (h), and are nearly square in (g).
Notice that the transfer of spectral weight between the two
bands could be misinterpreted as an energy dispersion, which
may be the origin of the report of transverse dispersion of
Ref. [22].

A further analysis of the intensity modulation of Fig. 3(a)
reveals an interesting difference with the related case of the
bilayer cuprates. The intensity of the bonding and antibonding
bands evolves exactly in antiphase with respect to the case
of Bi2Sr2CaCu2O8+δ (Bi-2212) [27,31]. This is the result of
a crucial difference in the structure of the two compounds

along the c axis. Namely, a bridging oxygen is present
within the bilayer between two Ir ions in Sr3Ir2O7 , but
not in Bi-2212. As a consequence, the wave function of the
(bonding) lowest energy state is symmetric in Bi-2212, but
antisymmetric in Sr3Ir2O7, as shown in the cartoon of Fig. 3(i).
In pictorial terms, the oxygen-mediated bond between Ir atoms
favors a configuration with an increased 5d charge density
outside of the bilayer. Since V0 is evaluated by matching
the smooth variation of the photoemission intensity with the
expected matrix element modulation, it has a considerable
uncertainty which we estimate to be ∼5 eV. However, this
does not translate into any ambiguity in the assignment of
the phase of the wave functions. At these photon energies,
an unphysical value of V0 > 30 eV would be needed to
translate the data by half a period of the sine wave of
Fig. 3(a).

We notice in passing an interesting link between these
conclusions and the band structure of SrIrO3, the n → ∞
limit (3D) compound of the series, which remains unavail-
able. Sr3Ir2O7 provides indeed an n = 2 sampling of the
band structure of SrIrO3. Given the cubic or nearly cubic
structure of SrIrO3 the bands are expected to show a similar,
holelike, dispersion along the c axis, as they do in the plane.
Therefore, the top of the Jeff = 3/2 manifold is expected
at the � point, where the (totally symmetric) wave function
has the same phase on adjacent layers, and the bottom
at Z, where the phase is reversed on each adjacent layer.
This is consistent with the previous considerations about the
relative energy of the symmetric and antisymmetric states in
Sr3Ir2O7.

Figure 4(a) presents the measured band dispersion in
the second BZ, where the Jeff = 3/2 intensity is higher, for
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FIG. 4. (Color online) (a) Band dispersion along a �XM� path
in the second BZ. (b) The peak energies extracted from the
experimental data are superposed to the calculated bands of a TB
model. The calculation follows Ref. [26], but neglects for simplicity
the in-plane octahedra rotation. Colors represent the projected weights
of each band on a fourfold bilayer basis set. Intermediate colors
indicate mixed character.

hν = 96 eV, as in Figs. 3(d) and 3(g). Since the line shapes
are rather broad, as typical for insulators, for the quantitative
analysis of the splitting we used the curvature method, which
is known to accurately yield the peak positions [32]. The latter
are superimposed in Fig. 4(b) to the result of a tight-binding
(TB) model. The calculation is structured as in Ref. [26]
and, with respect to our previous work on Ba2IrO4 [33], it
includes additional interlayer hopping terms, which produce
a k-dependent splitting of all bands. The parameters have
been slightly adjusted in order to suppress the k offset
between the Jeff = 1/2 band maximum and the M point [26],
consistent with the experimental data. More details are
available in Ref. [34]. The projected weights of each band on a
fourfold bilayer basis set [symmetric (S), antisymmetric (AS);
Jeff = 1/2,3/2] is encoded in the color scale. For simplicity,

we do not consider the staggered tilting of the octahedra
and neglect electronic correlations, which are essential to
capture hybridization and avoided crossings, and therefore
to reproduce the observed energy gap. As a consequence,
the results, namely, for the Jeff = 1/2 manifold, should
be considered with caution in the vicinity of the Fermi
level. Nevertheless the agreement is excellent further away
from EF .

A comparison of the experimental peak positions with
the calculated bands in Fig. 4(b) confirms that the bilayer
splitting of the Jeff = 3/2 states is as large as ∼0.2 eV.
As a term of comparison, the separation between bonding
and antibonding states is only ∼0.09 eV in Bi-2212 [27,31].
There, the bilayer splitting is directly related to a relevant
interlayer hopping term t⊥, and the energy splitting �E is
simply 2t⊥, at least in a TB approach [35]. In Sr3Ir2O7 the
t2g states are not orbitally ordered, so that the measured
ARPES intensity does not exhibit the dramatic matrix element
suppression characteristic of the cuprates. On the other hand,
the presence of two interacting states and of comparable energy
scales makes the link to the perpendicular hopping term less
straightforward [26,36]. What is more important, in Sr3Ir2O7

the interlayer hopping is comparable to all other other relevant
energy scales, i.e., the in-plane hopping terms [26] and the
magnetic exchange terms [5]. Therefore, it cannot be treated
as a simple perturbative term to the electronic structure of the
monolayer counterpart Sr2IrO4.

In summary, a thorough ARPES k-space survey of the
electronic structure of the bilayer iridate Sr3Ir2O7 reveals a
very large splitting of the bonding and antibonding states
of mainly Jeff = 3/2 character. Moreover, the kz-dependent
transfer of spectral weight between these two bands shows
that the bonding state has antisymmetric character, opposite to
the much studied case of Bi-2212, a typical bilayer cuprate.
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