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Abstract

N
OWADAYS, urbanization has become a universal trend resulting in growing cities

and congested transportation networks all around the world. For congestion alle-

viation, constructing new infrastructures is not a sustainable solution since urban

development and transportation infrastructures compete for the same space resource. Alter-

natively, the development of Intelligent Transportation Systems (ITS) technologies with new

monitoring paradigms and computational tools enables to estimate traffic states in real-time

and implement traffic-responsive control schemes.

However efficient management/control of transportation systems remains a big challenge,

due to the complexity and extent of transportation networks and unpredictability of travelers

choices (in terms of route, departure time, and mode of transport). This dissertation proposes

novel methods to ameliorate traffic congestion in large-scale urban transportation networks

with focus on improvement of performance of existing transportation infrastructure.

Part I of the thesis investigates novel urban traffic state estimation methods utilizing probe

vehicle data. Analysis and monitoring of operating conditions on signalized arterials and

networks requires estimates of performance measures that is beneficial for both system op-

erators and travelers. The development of new sensing hardware and integration of global

positioning system (GPS) technology within the ITS framework promise a new paradigm in

traffic surveillance: probe vehicles, which compared to fixed traffic sensors, e.g. loop detectors,

offer richer data, e.g. vehicle trajectories. Based on probe vehicle data, Chapter 2 proposes a

method to integrate the collective effect of dispersed probe data with traffic kinematic wave

theory and data mining techniques to model the spatial and temporal dynamics of queue

formation and dissipation in arterials. The queue estimation method captures interdependen-

cies in queue evolutions of successive intersections, and moreover, the method is applicable

in oversaturated conditions and includes a queue spillover statistical inference procedure.

Chapter 3 develops a travel time reliability model to estimate arterial route travel times distribu-

tion (TTD) considering spatial and temporal correlations between traffic states in consecutive

links. The arterial route TTD contains more information regarding arterial performance mea-

surements and travel time variability. The model uses link-level travel time data and a heuristic

grid clustering method to estimate the state structure and transition probabilities of a Markov

chain. By applying the Markov chain procedure, the correlation between states of successive

links is integrated and the route-level TTD is estimated. The methods in Part I are tested

with various probe vehicle penetration rates on case studies with field measurements and

simulated data. The methods are straightforward in implementation and have demonstrated
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promising performance and accuracy through numerous experiments.

Part II studies network-level modeling and control of large-scale urban networks. Over

decades, control strategies based on disaggregated traffic flow models have been proposed for

isolated intersections or coordinated intersections in arterials. However, microscopic mod-

eling of traffic flow dynamics and centralized control schemes for a large-scale network are

computationally intractable and unstable. On the other hand, network traffic models, e.g. the

macroscopic fundamental diagram (MFD), aim at simplifying the micro-modeling of urban

networks in which the collective traffic flow dynamics of subnetworks capture the main char-

acteristics of traffic congestion. Recent analysis of empirical data from cities showed that MFD

provides for homogenous urban regions a unimodal low-scatter relationship between network

vehicle density and network space-mean flow. Chapter 4 is the pioneer that introduces the

urban perimeter control for two-region urban cities as an elegant control strategy to improve

mobility and decrease delays in large urban networks. Perimeter controllers operate on the

border between the two regions, and manipulate the percentages of transfer flows between

the two regions, such that the number of trips reaching their destinations is maximized. The

optimal perimeter control problem is solved by the model predictive control (MPC) scheme,

where the prediction model and the plant (reality) are formulated by MFDs.

Chapter 5 extends the perimeter control strategy and MFD modeling to mixed urban-freeway

networks to provide a holistic approach for large-scale integrated corridor management (ICM).

The network consists of two urban regions, each one with a well-defined MFD, and a freeway,

modeled by the asymmetric cell transmission model, that is an alternative commuting route

which has one on-ramp and one off-ramp within each urban region. Perimeter controllers

on the border of the urban regions operating to manipulate the interflow between the two

regions, and controllers at the on-ramps for ramp metering are considered to control the flow

distribution in the mixed network. The optimal traffic control problem is solved by the MPC

approach to minimize total delay in the entire network considering several control policies

with different levels of urban-freeway control coordination.

Chapter 6 integrates traffic heterogeneity dynamics in large-scale urban modeling and control

to develop a hierarchical control strategy for heterogeneously congested cities. Two aggregated

models, region- and subregion-based MFDs, are introduced to study the effect of link density

heterogeneity on the scatter and hysteresis of MFD. A hierarchical perimeter flow control

problem is proposed to minimize the network delay and to homogenize the distribution of

congestion. The first level of the hierarchical control problem is solved by the MPC approach,

where the prediction model is the aggregated parsimonious region-based MFD and the plant

is the subregion-based MFD, which is a more detailed model. At the lower level, a feedback

controller tries to maximize the network outflow, by increasing regional homogeneity.

Keywords: Cooperative decentralized control, Coordinated urban-freeway control, Heterogene-

ity modeling, Hierarchical control, Integrated corridor management, Macroscopic fundamental

diagram, Model predictive control, Perimeter control, Probe vehicle data, Queue profile estima-

tion, Spillover identification, Traffic hysteresis, Travel time distribution, Travel time variability
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Résumé

L
E phénomène d’urbanisation observé actuellement à l’échelle mondiale a pour consé-

quences des villes toujours plus grandes et des réseaux de transports toujours plus

encombrés. La construction de nouvelles infrastructures pour soulager celles exis-

tantes n’est pas une solution viable à long terme car l’espace urbain est limité. Cependant, le

développement des Systèmes de Transports Intelligents (STI) ainsi que de nouveaux outils de

surveillance et de calcul permettent d’estimer en temps réel l’état du trafic et de mettre en

place des stratégies de contrôle adaptatives.

Malgré ces avancées, la gestion des systèmes de transports pose toujours de nombreux défis,

du fait du caractère imprévisible des usagers (en termes d’itinéraire, d’horaire et de mode de

transport) et de la complexité et de l’étendue des réseaux. Cette thèse propose de nouveaux

outils pour réduire la congestion dans les grands réseaux de transports urbains et met l’accent

sur une meilleure utilisation des infrastructures existantes.

La première partie de cette thèse est consacrée à des méthodes innovantes d’estimation du tra-

fic basées sur des données provenant de véhicules en mouvement. L’analyse et la surveillance

des conditions routières nécessitent l’estimation de diverses mesures de performance, à la fois

du point de vue de l’opérateur du réseau et du point de vue des usagers. Le développement

de nouveaux capteurs mobiles et l’intégration des outils de localisation par satellite (GPS)

dans le cadre des STI ont un immense potentiel. Par rapport à des capteurs conventionnels

(par exemple des boucles dans le sol), ces capteurs fournissent des donnés bien plus riches,

nous informant sur la trajectoire complète des véhicules. En utilisant ces techniques, le Cha-

pitre 2 propose une méthode basée sur la théorie de propagation du trafic et la fouille de

données pour agréger l’ensemble des informations provenant des véhicules dispersés dans

le réseau et modéliser les dynamiques spatiales et temporelles de formation des queues et

de leur dissipation dans les artères urbaines. La méthode d’estimation des queues identifie

les interdépendances dans les évolutions des queues à des intersections successives et reste

applicable dans des conditions de sursaturation, grâce à une modélisation statistique des

débordements de queues.

Dans le Chapitre 3, un modèle est proposé permettant d’estimer la distribution des temps

de parcours dans les artères urbaines. La distribution de ces temps de parcours est parti-

culièrement utile pour estimer la performance de ces artères ainsi que la variabilité de ces

performances. Le modèle a été obtenu en considérant les corrélations spatiales et temporelles

entre les états de liens consécutifs. Il utilise les temps de parcours de chaque lien et une

méthode heuristique d’agrégation pour obtenir une structure d’états. Les corrélations entre
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les états de liens successifs sont estimées via une chaîne de Markov, permettant ainsi d’obtenir

la distribution des temps de parcours. Les méthodes de cette première partie sont testées avec

différents taux de pénétration des véhicules sondes, à la fois dans des études de cas basées sur

des données réelles et avec des simulations. Ces méthodes peuvent être aisément mises en

place et ont obtenu d’excellents résultats dans de multiples expériences.

La deuxième partie de cette thèse est consacrée à la modélisation des réseaux dans leur en-

semble et au contrôle à grande échelle des réseaux urbains. Au cours des dernières décennies,

des stratégies de contrôle basées sur des modèles désagrégés du trafic ont été proposées

pour les intersections isolées et pour la coordination des intersections d’artères urbaines.

Cependant, la modélisation microscopique du trafic et les stratégies de contrôle qui lui sont

associées deviennent extrêmement instables et incommodes à grande échelle du fait leur com-

plexité. En revanche, des modèles spécifiques ont été développés pour les réseaux, comme le

Diagramme Macroscopique Fondamental (MFD). Le but de ces modèles est de résumer l’état

de l’ensemble du réseau par certaines grandeurs caractéristiques. Des analyses récentes de

données empiriques provenant de différentes villes ont montré que le MFD permet d’obtenir

une relation bien définie entre la densité de véhicules dans le réseau et la moyenne spatiale

du flux de véhicules. Le Chapitre 4 présente une stratégie nouvelle et élégante de contrôle du

périmètre urbain pour une ville séparée en deux régions, destinée à fluidifier la circulation et

à réduire les délais. Les contrôleurs opèrent aux frontières de ces régions et régulent les flux

d’échange entre ces régions, de manière à maximiser le nombre d’usagers servis. Ce problème

d’optimisation est résolu à l’aide de la technique de commande prédictive, utilisant comme

image du monde réel un MFD et comme outil de prédiction un MFD similaire mais simplifié.

Le Chapitre 5 étend cette stratégie de contrôle du périmètre à un réseau mixte, constitué

de deux régions urbaines et d’une autoroute, qui représente un itinéraire alternatif entre les

régions. Les régions urbaines sont modélisées à l’aide de MFDs tandis que l’autoroute est

modélisée par un modèle de transmission asymétrique de cellule à cellule. Aux contrôleurs

situés à l’interface entre les régions s’ajoutent ici des contrôleurs sur les rampes d’accès à

l’autoroute. La technique de commande prédictive est utilisée afin de minimiser la somme

des délais occasionnés dans le réseau et différents niveaux de coopération entre les régions et

l’autoroute sont envisagés.

Le Chapitre 6 intègre l’évolution de l’hétérogénéité dans la modélisation et le contrôle à grande

échelle et développe une stratégie de contrôle hiérarchique pour les villes où la congestion

est hétérogène. Deux types de MFDs -au niveau régional et au niveau infrarégional- sont

présentés pour étudier l’effet de liens avec différents niveaux de congestion sur la dispersion

des données et le phénomène d’hystérésis dans le MFD. Une stratégie de contrôle du périmètre

hiérarchique est proposée pour minimiser la somme des délais et homogénéiser la distribution

de la congestion. Le premier niveau de ce problème est résolu par la technique de commande

prédictive tandis qu’un contrôleur à rétroaction est utilisé au niveau inférieur afin de maximise

le flux total dans le réseau, en le rendant plus homogène.

Mots-clés : Contrôle coopératif décentralisé, Contrôle coordonné mixte urbain/autoroutier,

Modélisation de l’hétérogénéité, Contrôle hiérarchique, Gestion intégrée des couloirs routiers,

Diagramme Macroscopique Fondamental, Commande Prédictive, Contrôle de périmètre, Vé-
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hicules sondes, Estimation des profils de queues, Identification des débordements de queues,

Hystérésis du trafic, Distribution des temps de parcours, Variabilité des temps de parcours.
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1 Introduction

T
RAFFIC congestion is a prevalent phenomenon in cities that has bidirectional cause

and effect relation with human beings’ daily social behaviour. With growing trans-

portation demand and urbanization trend, severe traffic congestion is imminent in

metropolitan areas that requires thorough and effective investigations for congestion allevia-

tion. To this end, numerous traffic management policies and technologies have been devised

and implemented to improve traffic mobility and accessibility. This dissertation proposes

and develops new methods based on aggregated traffic models for traffic state estimation and

control in large-scale urban networks.

Recently, cities are becoming smarter in ways that enable us to monitor, analyze, and plan

to improve the quality of life. This requires a fundamental consideration in modeling the

transport network and its connection with the social behaviour of travelers through a multidis-

ciplinary combination of applied physics, engineering, and data mining researches. Moreover,

recent advances in user-based data collection systems, i.e. crowdsourcing, and emergence of

“big data” in transport networks offer an opportunity to advance the mobility of cities through

the integration of big data, understanding of mobility patterns interactions, and coordination

and optimization of urban traffic systems.

In this introductory chapter, Section 1.1 explains the thesis motivation and briefly introduces

the research background in the current literature, while a corresponding detailed state-of-the-

art literature review is provided later at each chapter. Section 1.2 overviews the objectives

that the thesis follows to achieve. Section 1.3 elaborates the main contributions of our study

corresponding to each chapter. And finally, Section 1.4 outlines the structure of the thesis.

1.1 Research motivation and background

Traffic congestion becomes apparent on road networks when the transport demand exceeds

the infrastructure supply capacity, which is characterized by high vehicle density on roads,

low traffic flows, and long trip travel times. Traffic congestion imposes several adverse effects
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on urban communities, such as unproductive wasted time, air and sound pollution, stressful

environment, etc. Due to the significant functionality of transportation networks in modern

societies, the economical aspects of transport are of great importance for local and federal

governments. For instance, the Texas transportation institute estimated that the cost of

congestion in US was more than $120 billion in 2011 [83]. Furthermore, congestion annually

costs Europe about 1% of its gross domestic product (GDP) that is projected to increase by

about 50% to nearly e200 billion by 2050 [23]. Hence, the significance of transportation

systems in the framework of sustainable and smart cities cannot be overestimated.

To alleviate traffic congestion, numerous potential resolutions have been taken into consider-

ation. The following provides a few instances of such policies. (i) Increasing and modifying

the usage of the road infrastructure, e.g. high occupancy vehicle (HOV) lanes [122, 114] and

dynamic intermittent public transit lanes [39, 27]; (ii) traffic supply and demand manage-

ment, e.g. congestion pricing [197, 174, 205], car sharing [24, 15], and parking management

[167, 173]; and (iii) traffic control strategies such as coordinated signal control [124, 72], ramp

metering [136, 57], route guidance [64], etc. For a detailed overview of road traffic control

strategies see [135].

However due to the complexity and extent of transportation networks, efficient management

and control of transportation systems remains a big challenge. Moreover, the current traffic

control schemes are fragmented because (i) there are multiple jurisdictions responsible for

different parts of the network and (ii) the modeling of fully centralized control systems is

complex and computationally intractable. Hence, the aim of the thesis is to develop a holistic

approach for large-scale urban traffic estimation and control based on three interconnected

foundations: (i) understanding interactions of mobility (modeling), (ii) monitoring traffic

states and measuring traffic data (estimation), and (iii) optimizing the transportation system

(control). The thesis proposes traffic state estimation methods (Chapters 2 and 3) along

with a hierarchical control structure (Chapters 4, 5, and 6) to address the complexity and

extent of urban networks. Note that in the following, a brief research background related

to the objectives of the thesis is presented, while a detailed state-of-the-art literature review

specifically for every research problem is presented at each chapter.

The scope of Chapters 2 and 3 is traffic state estimation in urban networks. The basic ingredient

for the new wave of smart cities that has emerged during the last decade is massive data sets

concerning human mobility, fostered by the widespread distribution of sensors, such as Global

Positioning System (GPS) devices in many modes of transport and smart phones. These tools

allow for sensing and collecting substantial spatiotemporal data, such as the trajectories of

many vehicles from navigation devices, which represent proxies for human mobility patterns.

This “big mobility data” provides a unique social observatory that can help us understand

how congestion develops and evolves, and discover hidden patterns and identify models

that can contribute to efficient traffic management systems to improve cities’ mobility and

accessibility.
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Transportation data can be collected in real-time from various types of sensors, e.g. fixed

loop detectors [169, 56, 194], video sensors [82], and automatic vehicle location (AVL) mobile

sensors, which are in abundance in taxi and transit fleets [80]. To obtain precise traffic mea-

surements and state estimations, various methodologies have been exploited, e.g. (Extended,

Unscented) Kalman filter from estimation theory [186] and classification and clustering meth-

ods from data mining field [8, 9]. Recently, the emergence and steady increase of public

deployment of user-based data collection systems, e.g. GPS-equipped vehicles [79, 14, 88] and

vehicle re-identification using cellphones or wireless magnetic sensors [105], provide a great

potential for probe vehicles in intelligent transportation systems (ITS) applications. However,

utilizing probe vehicles for traffic observation and estimation raises challenges because of (i)

errors in raw measurements and post-processing algorithms, e.g. map-matching [146], and

(ii) the fact that the probe data are inherent samples of the true traffic state. Thus, probe data

cannot be readily applied to well-established traffic estimation methods.

A crucial feature of traffic flow in urban networks is vehicle queues at intersections. An accurate

and practical queue estimation method (i) should provide a better understanding of urban

flow dynamics, (ii) can be utilized for traffic state estimation, and (iii) can be integrated in

a traffic signal control framework. Literature of queue estimation can be categorized to two

modeling classes: (i) models based on the cumulative traffic input-output [188, 6, 40, 183], with

the limitation that these models are insufficient to provide the spatial distribution of queue

dynamics [123] and suffer from measurement errors and bias [182], and (ii) models based on

kinematic shockwave theory [169, 10, 193], which provide the temporal-spatial dynamics of

the queuing process with input data from loop detectors or probe vehicles. Further, many of

aforementioned works and pivotal studies of queue and delay estimation in transportation

research [128, 34, 127, 121] are based (fully or partially) on rather limiting assumptions. These

assumptions can be summarized as: (i) known signal settings, (ii) known initial queue size at

the start of the cycle, (iii) known arrival pattern (e.g. uniform, Poisson), and (iv) undersaturated

conditions that expected value of arrivals do not (constantly) exceed the signal capacity [36].

The motivation of the thesis with respect to the traffic estimation is to propose a queue shock-

wave estimation method that is based on probe data as the single source of information while

relaxing the aforementioned common limiting assumptions in the literature. By estimating

the queue shockwave profile for each cycle, one can derive performance measures including

queue length, position of back and front of the queue, and delays per vehicle (average and

distribution) that can be further used to estimate travel time distributions as a travel time

reliability index [151].

Furthermore for traffic state estimation, another research direction of the thesis is toward the

trip travel time distribution estimation. Travel time is a crucial index in assessing the opera-

tional efficiency of traffic networks. It establishes a common perception among the travelers

and practitioners, while it can be an indicator of congestion level of transport network once

compared to the free flow travel time. However, a single-value estimator of travel time does

not convey the full picture of travel time characteristics. Thus, the aim of the dissertation is to
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develop methods for travel time distribution estimation to capture the travel time variability

in signalized arterials.

With respect to monitoring, reliable and efficient estimation of travel time is still not a wide

spread accomplishment on arterials, since it requires extensive sensor infrastructure, normally

found only on freeway networks. The issue is not only that the existing monitoring infrastruc-

ture in arterials is less dense than in freeways but also that arterial network traffic dynamics

are inherently different than these of freeways and fixed sensors cannot always provide the re-

quired level of data. The main reasons are randomness in supply and demand of the dynamic

urban network [38], the signaling effect (alternation of green and red phases in short time

intervals), and the characteristics of route choice (vehicles in arterials can randomly turn at

intersections and either begin or finish their trips along the street itself, which is not the case

in freeways). Meanwhile, speed of vehicles at a given time in the network is not a deterministic

quantity over space because of drivers’ behaviors (conservative vs. aggressive drivers), the

spatial effect of signals (near the stop line vs. further upstream) and temporal-spatial pockets,

where average speed is temporarily different than the widespread average.

Moreover, reduction in travel time variability is at least as desirable as reduction in mean

travel time for travelers [87], since it decreases commuting stress and uncertainty of mode-

and route-choice decision making. Travel time variability designates the variation of various

trip travel times over a specific path. Travel time variability can be investigated from several

point of views [130]: vehicle-to-vehicle variability which corresponds to different vehicles

traveling the same route at the same time, period-to-period variability corresponding to

vehicles traveling the same route at different periods within a day, and day-to-day variability

addressing the travel time variations of vehicles crossing the same route at the same period of

time on different days. Different indexes of travel time stochasticity-reliability are presented in

[93]. This dissertation progresses a further step in modeling the vehicle-to-vehicle travel time

variability and analyzes the probability distribution of travel time for arterial routes (expressed

as series of links). It is worth mentioning that, the thesis explicitly addresses the spatial and

temporal correlations between traffic states of links, which has a significant impact on the

estimation performance.

The scope of Chapters 4, 5, and 6 is large-scale traffic modeling and control. Traffic flow

modeling mainly is developed in analogy to physical laws inspired from fluid mechanics

[110, 163] and many-particle systems (e.g. Gas-kinetic models) [144, 76]. However, the key

difference is that in vehicular traffic systems humans show different driving behaviours and

make different choices in terms of routes, mode, etc. that create additional complexity. The

common feature of traffic models is the fundamental diagram (FD) [62] that relates the traffic

flow to traffic speed and density in a link. A short list of main traffic models is presented

in the following. Car-following models that are based on the dynamics of single vehicles

and their interactions with other vehicles [142, 48, 95, 190]. Later, cellular-automata models

[26, 126] are developed to decrease the computational burden of car-following models by

discretizing the space, where the road is divided into cells that a cell could be occupied by
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a vehicle or not. The cellular-automata models comprise a set of rules to determine the

movement of vehicles from upstream cells to downstream ones. The two mentioned model

are regarded as microscopic models as they deal with individual vehicles. On other hand,

macroscopic models aim at describing the traffic as a continuum by relating aggregated

traffic state variables such as average traffic flow and density. First-order flow models such

as LWR model [110, 163] are based on a partial differential equation representing the mass

conservation law and the FD relation. The examples of discretized and multi-class versions

of LWR model are respectively, [29, 106] and [31, 192]. To cover also velocity dynamics for

non-steady state conditions along with the mass conservation law, higher-order models are

proposed, e.g. see [141, 107] for second-order models and [94] for the three-phase traffic

theory. All these models are suitable for link traffic flow, however, the literature on network

flow modeling is limited. A comprehensive review of traffic flow models can be found in [180].

For network-level traffic modeling, recently [55] observed from empirical data in Yokohama,

that by spatial and temporal aggregation of individual scattered link FDs, i.e. traffic flow vs.

traffic density (see Fig. 1.1(a)), a well-defined low-scatter macroscopic fundamental diagram

(MFD) exists (see Fig. 1.1(b)). The MFD provides a relation between network space-mean flow

and density as opposed to link state variables. Figure 1.1(a) illustrates the scattered FD for two

loop detectors while Fig. 1.1(b) shows the Yokohama region low-scatter MFD. The idea of an

MFD with an optimum accumulation belongs to Godfrey [60] and similar approaches were

introduced later in [78, 116, 28]. The empirical verification of MFD existence with dynamic

features is recent [55], while there, it is demonstrated that (i) homogenous urban regions

approximately exhibit an MFD relating region vehicle accumulation to flow (or space-mean

speed), (ii) an almost linear relation between the region average flow and its outflow (i.e.

the trip completion rate, the rate vehicles reach their destinations) exists, which means an

almost time-invariant value for the region average trip length, see Fig. 1.1(c), and (iii) the

well-defined MFD is a property of the network topology and control and is not very sensitive

to the time-dependent demand.

These findings provide new opportunities for traffic network analysis. Property (i) offers a

large-scale model to describe the congestion level of cities as details of individual links are not

needed. Property (ii) is important as the region flow can be readily observed with different

types of sensors, e.g. loop detectors, contrary to the region outflow, which is cumbersome to

observe yet essential for control purposes as it designates the output rate of the system. In

this thesis, we demonstrate that network average trip length might experience variability with

change of congestion level, if the network is not homogenously congested. Further, property

(iii) ensures that a detailed knowledge of origin-destination demand is not needed to develop

efficient traffic control schemes. Overall, the MFD concept can be utilized to introduce elegant

control strategies to improve mobility in cities, e.g. [28, 97, 98], where the core logic of the

strategies is to decrease the traffic inflow to regions once the region is congested (represented

by the decreasing part of the MFD).

Despite the findings related to the existence of low-scatter MFDs, a well-defined MFD is not
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(a) (b)

(c)

Figure 1.1: (a) Loop detector flow vs. occupancy data for two single detectors across a day, (b) region
average flow vs. region average occupancy (density) from all the detectors across two different days,
and (c) time series of ratio of region average flow and outflow. (taken from [55])

universal. In particular, [58, 120, 32] have identified that the spatial distribution of congestion

in the network is a key factor related to the shape and scatter of the MFD. Briefly speaking,

it is demonstrated that for the same network density, the network average flow is higher

when link density variance is lower, meaning that a homogenously congested network is

more desirable than the heterogenous network with the same number of vehicles. A solution

for heterogeneous networks is to partition the network to form a number of homogeneous

regions with smaller variances of link densities [90]. Figure 1.2 shows an application of

such partitioning algorithms for a microscopic simulation of a real study site, San Francisco,

with time dependent traffic conditions. Figure 1.2(a) illustrates a snapshot of link densities

(the darker the more congested links), while Fig. 1.2(b) shows the result of the partitioning

algorithm that results in 3 regions. Figure 1.2(c) depicts the MFD of the three regions. Notably,

the time each of the regions reaches the congested regime is different. The partitioning

outcome of [90] is the basis for the proposed control strategies in this thesis as the MFD can be

applied to heterogeneously congested cities once they are partitioned to homogeneous regions.

The proposed control strategy offers elegant tools to integrate smart traffic management

schemes for large-scale congested networks. Nevertheless, significant effort is needed to apply

these control concepts in field implementations.
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(a) (b) (c)

Figure 1.2: The effect of spatial heterogeneity of link density on the MFD. (a) A snapshot of the San
Francisco network during the peak hour (dark colors mean congested links), (b) partitioned network
into 3 regions, and (c) MFDs for the 3 regions. (taken from [90])

Furthermore, transportation systems consist of multiple interacting modes including pedes-

trians, non-motorized vehicles, cars, taxis, and more productive modes, such as buses or

trams. Despite the different features of motorized modes in terms of passenger occupancy,

driving behavior, duration of travel, and scheduled vs. non-scheduled service, their common

characteristic is that they all cause delays to the transportation system as a whole. Morover,

metropolitan transportation networks are a mixture of urban roads and freeways that are

inherently interconnected. Nevertheless, the traffic management of urban-freeway corridors

is challenging due to dissimilar urban and freeway traffic dynamics and the diversity in char-

acteristics of urban traffic controllers, i.e. traffic signals; and freeway controllers, i.e. variable

speed limits and ramp metering. Although integrated mixed control policy could enhance the

network performance, lack of coordination among the urban and freeway network jurisdic-

tions and/or limited means of traffic monitoring and data communication impede such goal.

Recently, a large effort for the development of integrated corridor management (ICM) has been

promoted, with many case studies around metropolitan areas. Most of the implementations

and case studies mainly perform scenario analysis and considers alternative routes under

extreme events, e.g. accidents, while it is expected that a more formal optimization approach

could lead to a better system performance. This thesis also contributes toward this direction

by (i) integrating MFD modeling with a freeway model, (ii) incorporating the novel perimeter

flow controller with conventional ramp metering controllers to formulate the control problem

of large-scale urban-freeway networks, and (iii) proposing cooperative decentralized control

structures as an alternative to tackle possible untractable centralized control problems.

The MFD aims at simplifying the micro-modeling task of the urban network, where the

collective traffic flow dynamics of subnetworks capture the main characteristics of traffic

congestion, such as the evolution of space-mean flows and densities in different regions of
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the city. Nevertheless, if the MFD is applied in a non-careful way, e.g. ignoring the effect of

congestion heterogeneity, it can hide critical patterns of congestion and results in inefficient

control methods. Hence, the thesis further investigates the relation between the heterogeneity

and the MFD by scrutinizing the dynamics of heterogeneity and how it can affect accuracy

and scatter of the MFD. While there is some work regarding how heterogeneity influences the

shape of the MFD [120, 58, 46, 118, 101], there is no theoretical work to investigate how an

asymmetric demand pattern can affect the distribution of congestion over time and space. In

the current body of the literature, existing MFD-based models are hysteresis-free and as a result

the developed control frameworks based on such models are not efficient when hysteresis

appears. To fill the gap in the literature, the thesis integrates the dynamics of heterogeneity

in the optimization framework and develops perimeter control strategies that can decrease

congestion heterogeneity and consequently increase the system performance. This is a crucial

step for efficient control strategies, where strong hysteresis loop in the MFD appears. Such

an advanced model also allows to develop a two-level hierarchical control framework that

decreases system delays and hysteresis loops, which are directly related to the capacity loss

at the network level. The hierarchical structure is of great importance to practitioners and

city managers to unveil practical, transparent, and robust control schemes for optimizing the

network capacity and serving the maximum number of travelers.

1.2 Thesis objectives

The goal of the thesis is to develop real-time monitoring and control strategies for large-

scale congested transportation networks to improve the travelers mobility and the network

performance. To this end, the research approach deals with 3 interacting key research ar-

eas, large-scale modeling, estimation, and (hierarchical) control of the transport system, i.e.

modeling the dynamics of urban traffic at the network level, estimating performance mea-

sures for signalized arterials, and developing coordinated control strategies for large-scale

heterogeneously congested networks.

In the light of the aforementioned research background and motivation, the specific objectives

of this thesis are categorized to two distinct groups, (i) to develop novel traffic state (travel

times and queue shockwaves) estimation methods for congested arterials and (ii) to propose

a network-level control strategy as the cornerstone of the hierarchical urban traffic control

scheme. The detailed objectives of the thesis according to the structure of the chapters are

listed as follows:

• Part I: Traffic state estimation

– The main objective of Chapter 2 is to study a method to estimate queue characteristics

in signalized arterials. The method should be based on probe data to exploit the mas-

sive data of crowdsourcing and floating sensors new era. The method should provide

accurate estimations with sparse probe data and be robust to measurement noise and
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data processing errors. The proposed method should be consistent with the physics

of traffic, easy to implement, transparent, and above all, applicable to oversaturated

traffic conditions when spillovers are apparent. As the estimation problem scope is ar-

terials, the method should relax the literature common assumption of uniform arrival

flow because of synchronization among the traffic signals. Furthermore, the method

should be able to produce accurate estimates even when signal settings information is

missing because obtaining signal settings is not cost-effective and feasible in case of

actuated and adaptive signal control strategies at the network scale.

– The key objective of Chapter 3 is to construct a travel time estimation method based

on probe vehicle data for arterial routes. It is essential that the spatial domain of the

estimation is arterial routes, because commuting trips consist of several links and

not only a single link. Moreover, the purpose of estimation method is travel time

distribution that offers full information of travel time variability instead of only a

single mean or variance indexes. Further, the method should capture the correlations

between traffic states of successive links to fill the gap in the research literature and

shed light on the effect of traffic state correlation on the network performance.

• Part II: Network-level traffic modeling and control

– Chapter 4 main objective is to develop a novel network-level control strategy to de-

crease the network total delay. The modeling basis of the method should be consistent

with MFD aggregated traffic dynamics. To this end, the network should be assumed to

be partitioned to two regions designating city center and suburb parts of the network.

Ultimately, the method should be elegant, scalable, and tractable to fit as the upper-

level controller of the hierarchical urban traffic control framework. The modeling

framework should also be expandable to cities with R-regions (see Chapter 6).

– The chief objective of Chapter 5 is to integrate the developed urban traffic control

strategy in Chapter 4, i.e. perimeter flow control, with the ramp metering strategy

for traffic control of large-scale mixed urban-freeway networks. The freeway and

the urban network are inherently coupled in metropolitan transportation networks,

yet they have dissimilar traffic flow dynamics which challenges the traffic control of

mixed networks of two interconnected (urban and freeway) traffic control entities.

To this end, the aggregated MFD urban model should be integrated with a freeway

model plus a proper route choice procedure to develop the mixed urban-freeway

traffic model. As the state and control variables of the problem becomes large, to keep

the control problem tractable, a coordinated decentralized control structure should

be investigated. This provides insights regarding the impact of data communication

manner and level of cooperation between urban and freeway control entities. The

analysis should also highlight how restrictions in full coordination can influence the

overall mobility objectives.

– The main objective of Chapter 6 is to further extend the perimeter flow control strategy

developed in Chapter 4, to handle heterogenous congested networks. First, the effect of

9
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link density heterogeneity and time-varying average trip length on the MFD modeling

should be explored. Then, a lower-level controller should be proposed and augmented

with the perimeter controller to decrease the network total delay by homogenizing

congestion in the network. This modeling approach brings the opportunity to in-

vestigate more rigorously several assumptions in the MFD literature that have been

empirically observed, e.g. trip length in a region is about constant, if and how route

choice, perimeter control, and O-D affect the heterogeneity and the distribution of

congestion. In addition, the perimeter control strategy in Chapter 4 is solved by the

model predictive control (MPC) approach, while the optimization model and the plant

are inherently the same models. The second objective of this chapter is to introduce

two models with different levels of granularity aggregation to utilize them in the MPC

framework.

The following section introduces contributions of each chapter according to the aforemen-

tioned objectives.

1.3 Thesis contributions

Considering the thesis motivation and objectives, the contributions of the thesis at each

chapter are as follows.

• Chapter 2: Queue profile estimation in congested urban networks with probe data

A queue shockwave profile estimation method is proposed to estimate a comprehensive

set of urban network performance measures. The list includes delay, queue size, position

of back of queue, etc. The queue shockwave profiles designate the queue formation and

dissipation that capture the most dominant traffic flow dynamic in the urban networks. The

estimation method utilizes probe vehicle data that are a useful and growing monitoring data

source because of network-wide coverage and the rapid increase in deployment of floating

sensors such as vehicle-based GPS devices and cell phones. The method incorporates the

data within an integrated framework of LWR traffic theory and data mining techniques,

while there are specific considerations for physics of traffic, longitudinal kinematics, and

traffic state interdependencies between adjacent links. The method relaxes the literature

common assumption of uniform arrival flow and does not need the explicit knowledge

of signal settings for estimation. The method is based on an optimization program that

is formulated as a least squares problem, with various constraints related to the physical

properties of the LWR model, to provide numerical robustness to noisy measurements.

Notably, the significance of the proposed method is that it is applicable to oversaturated

conditions and it contains a probabilistic procedure for spillover occurrence inference. The

method can be integrated to decompose the travel time between samples of probe data to

link travel times, which are utilized in Chapter 3 for route travel time estimation.

• Chapter 3: Estimation of arterial route travel time distribution with Markov chains

10
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A travel time distribution (TTD) estimation method based on probe data is developed. The

estimation spatial scope is arterials with signalized intersections because a trip in urban

networks consists of several consecutive links instead of only one link. Furthermore, a

distribution is desirable for travel time estimation since each vehicle encounters a random

delay due to the stochasticity of traffic flow and control. The novelty of estimation approach

is to address spatial and temporal traffic state correlations in signalized arterials. The

approach is to define the traffic states based on the condition of vehicles travel time in a link

instead of aggregated traffic density or flow states. This is in line with the intrinsic property

of probe vehicle data. Consequently, the method captures the correlation of vehicles travel

time states in successive links by incorporating a Markov chain procedure to account for

traffic progression and state correlation. A diagram based on the probe data is introduced

to represent the joint distributions of successive link travel times that in combination with

a heuristic grid clustering algorithm provides state definitions, and initial and transition

probabilities of the Markov chain procedure. The method utilizes probe vehicle link travel

times to infer the arterial route TTD. The route TTD provides the big picture of travel time

variability in arterials that could be utilized for travel time reliability measures. The proposed

method demonstrates a sound performance capturing the fundamental characteristics of

travel time variability even with sparse probe data.

• Chapter 4: Model predictive perimeter control for two urban regions with MFDs

The chapter proposes a novel large-scale control strategy for urban networks named as

perimeter flow control. The network is assumed to be partitioned to two regions designating

the city center and suburb areas while the control strategy identifies the inter-transfer

flows between the two regions of the network to maximize the whole network output. The

perimeter flow control can be realized with the traffic signals at the border of the regions.

The underlying traffic modeling is consistent with the MFD aggregated model that provides

a relation between region accumulation and outflow, which leads to the 2-region MFD

model that is formulated based on the vehicle mass conservation principle. The control

problem is tackled by the MPC scheme, where the open-loop optimal control problem is

solved using the direct sequential (or control vector parameterization (CVP)) method that

converts the optimal control problem into a finite-dimensional nonlinear problem through

discretization of the control variables with piecewise constant controls, while the ODEs

are embedded in the nonlinear problem. In addition, we investigate two methods based

on augmenting a constraint into the optimization problem and a penalty term into the

objective function to smooth the control inputs for field implementation considerations.

• Chapter 5: Cooperative traffic control of a mixed network with two urban regions and a

freeway

The control problem of a large-scale mixed traffic network, comprising two urban regions

and one freeway route is formulated. The perimeter control on the boundary of regions

manipulates the inter-transfer flows among regions, while two on-ramp controllers control

the traffic flow from urban regions to the freeway. The urban region traffic modeling is based

on the MFD (similar to Chapter 4 modeling) and the freeway traffic dynamics are based

11
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on the asymmetric cell transmission model (ACTM). The two different models along with

a simple (“current best”) route choice procedure are integrated to form the mixed traffic

network dynamics. We solve the traffic control problem using the MPC scheme. Since

the size of state variables and control inputs becomes large, several control policies with

different controller structures and levels of urban-freeway coordination are introduced and

investigated. This shed light on the characteristics of decentralized control schemes as an

alternative of the centralized control strategy in case of limited data communication or

coordination between urban and freeway jurisdictions. A cooperative decentralized MPC

approach is proposed that provides promising results. Moreover, the system optimum (SO)

route choice is incorporated within the centralized MPC framework that leads to increase in

the network performance compared to the user equilibrium condition. This work highlights

the significance of coordination (and communication) between the urban and the freeway

networks under oversaturated conditions. This study is among the first scientific efforts that

provides a rigorous proof-of-concept toward the use of system of systems approach for ICM

in network management framework.

• Chapter 6: Dynamics of heterogeneity in urban networks, aggregated traffic modeling

and hierarchical control

This chapter moves a further step toward the development of the hierarchical control frame-

work for network-level urban traffic control. The hierarchical structure is of great importance

because of the spatial extent and complexity of the urban network. The modeling is an

extension of the MFD modeling in Chapter 4, while the network is partitioned to few regions

(R-region model instead of 2-region) where each region consists of several subregions. We

assume that a well-defined (without hysteresis loop and low-scatter) MFD exists for each

subregion. However the superposition of well-defined subregion MFDs does not guarantee

a well-defined region MFD as heterogeneity among subregions can create hysteresis. This

approach, i.e. modeling the traffic dynamics in two different levels of spatial aggregation

(regional and subregional), offers the opportunity to investigate more rigorously the effect of

link density heterogeneity on the MFD. Moreover, the characteristics of average trip length,

and effect of route choice and perimeter control on the heterogeneity and the distribution

of congestion can be further explored. These are challenging research questions that have

been raised by many researchers and it is not clear yet under what network conditions MFD

provides an accurate representation of network performance. Further based on an analysis

of a field dataset, a functional form is developed to model the effect of heterogeneity on

subregion and region MFDs. Afterwards, the upper-level control of the hierarchical control

structure is solved by the MPC scheme, while the subregion- and region-based models are

respectively the plant (reality) and the optimization model in the MPC scheme. This is also

an important control contribution. The lower-level of the hierarchical control structure

consists of a feedback controller that manipulates the perimeter control inputs for each

subregion in the region boundary to actively control the spatial distribution of traffic density

in regions. In addition, the subregional receiving boundary capacity is augmented in the

subregional MFD traffic model. The significance of heterogeneity modeling and the feed-

back homogeneity controller in control applications is demonstrated with comprehensive
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tests while the importance of efficient control strategies to decrease the magnitude of the

hysteresis loop in the MFD is highlighted.

1.4 Thesis outline

This thesis consists of 7 chapters that are briefly described in the following paragraphs. The

main 5 chapters (excluding Chapter 1, Introduction, and Chapter 7, Conclusion and future

research) are organized into 2 parts. Part I includes Chapters 2 and 3 that propose two novel

traffic state estimation methods, respectively, a queue shockwave profile estimation method

and a travel time distribution estimation method. The methods are based on probe vehicle

data and are applicable to congested arterials. Part II comprises Chapters 4, 5, and 6 that covers

the research toward the development of a hierarchical control strategy for large-scale transport

networks, which also includes large-scale urban traffic models based on the MFD. Note that

each chapter is a complete stand-alone research article including an abstract, introduction,

methodology, results, and conclusions with its own (mathematical) notations.

Chapter 2 proposes a novel method to estimate queue shockwave profiles at signalized arteri-

als. The queue shockwaves offer comprehensive dynamics of traffic in the arterial and can be

used to estimate numerous traffic states such as link travel time and queue size. The estimation

process utilizes the probe vehicle data without need of signal settings or any assumption on

arrival traffic flow. The method significance is that it contains a statistical Bayesian inference

procedure to identify the probability of spillover occurrence. Thus, the method can be applied

in oversaturated regimes while the estimations are accurate even with sparse probe data. The

preliminary results of this chapter are presented in:

• M. Ramezani and N. Geroliminis,“Queue profile estimation in signalized arterials by utilizing

probe vehicle data,” 13th Swiss Transportation Research Conference, Ascona, Switzerland,

April 2013, [156].

• M. Ramezani and N. Geroliminis, “Exploiting probe data to estimate the queue profile in

urban networks,” 16th International IEEE Conference on Intelligent Transportation Systems,

The Hague, The Netherlands, October 2013, [152].

• M. Ramezani and N. Geroliminis, “Queue profile estimation with probe vehicle data for

urban arterials,” 93rd Annual Meeting of the Transportation Research Board, Washington

D.C., January 2014, [153].

Chapter 2 is a self stand-alone article published as:

• M. Ramezani and N. Geroliminis, “Queue profile estimation in congested urban networks

with probe data,” Computer-Aided Civil and Infrastructure Engineering, DOI: 10.1111/mice.12095,

2014, [157].

13



Traffic modeling, estimation and control for large-scale congested urban networks

Chapter 3 presents a TTD estimation method based on probe data to model travel time

reliability. The TTD provides traffic operators and travelers a performance measurement

regarding urban network travel time variability. The probe vehicles provide the link travel

times to the estimation method that utilizes the data to infer the arterial route TTD. The

method captures the correlation of vehicles travel times in successive links that is crucial to

improve the estimation performance, which is verified by extensive analyses. The preliminary

results of the method are presented in:

• M. Ramezani and N. Geroliminis, “Arterial route travel time distribution estimation with a

Markov chain procedure,” 11th Swiss Transportation Research Conference, Ascona, Switzer-

land, May 2011, [155].

• M. Ramezani and N. Geroliminis, “Markov chain procedure for arterial route travel time

distribution estimation,” 2nd international conference on Models and Technologies for Intel-

ligent Transportation Systems, Leuven, Belgium, June 2011, [149].

• M. Ramezani and N. Geroliminis, “Estimation of arterial route travel time distribution with

Markov chains,” 91st Annual Meeting of the Transportation Research Board, Washington

D.C., January 2012, [150].

Chapter 3 is organized as a self stand-alone article published as:

• M. Ramezani and N. Geroliminis, “On the estimation of arterial route travel time distribution

with Markov chains,” Transportation Research Part B, vol. 46, no. 10, pp. 1576-1590, 2012,

[151].

Chapter 4 is the pioneer to propose the perimeter flow control strategy as a large-scale traffic

control method for urban networks based on the MFD modeling. The network is assumed that

is partitioned to two regions, e.g. according to topological attributes (city center and suburb),

while the perimeter flow controllers are on the boundary between the regions to manipulate

the inter-transfer flows between the regions to maximize the trip completion rate for the

whole network. The perimeter flow control strategy can be readily realized by traffic signals

on the border of regions. The control problem is tackled with the MPC approach. Chapter 4

preliminary results are presented in:

• J. Haddad, M. Ramezani, and N. Geroliminis, “Model predictive perimeter-control for two-

region urban cities,” 91st Annual Meeting of the Transportation Research Board, Washington

D.C., January 2012, [67].

• J. Haddad, M. Ramezani, and N. Geroliminis, “Model predictive perimeter control for urban

areas with macroscopic fundamental diagrams,” proceedings of IEEE 2012 American Control

Conference, Montreal, Canada, pp. 5757-5762, [68].
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Chapter 4 is structured as a self stand-alone article published as:

• N. Geroliminis, J. Haddad, and M. Ramezani, “Optimal perimeter control for two urban

regions with macroscopic fundamental diagrams: A model predictive approach,” IEEE

Transactions on Intelligent Transportation Systems, vol. 14, no. 1, pp. 348-359, 2013, [49].

Chapter 5 extends the perimeter control method in Chapter 4 to large-scale mixed urban-

freeway networks by incorporating the ramp metering control strategy with the perimeter

control. The mixed network is modeled based on the MFD and ACTM, respectively represent-

ing urban regions and the freeway. A centralized controller is achieved by the MPC scheme,

while a cooperative decentralized control structure is developed to overcome the possible lack

of data communication and coordination between urban and freeway management entities.

Further, the study includes a SO routing within the proposed mixed urban-freeway control

framework. Chapter 5 preliminary results are presented in:

• M. Ramezani, J. Haddad, and N. Geroliminis, “Macroscopic traffic control of a mixed urban

and freeway network,” 12th Swiss Transportation Research Conference, Ascona, Switzerland,

May 2012, [158].

• M. Ramezani, J. Haddad, and N. Geroliminis, “Macroscopic traffic control of a mixed urban

and freeway network,” 13th IFAC Symposium on Control in Transportation Systems, Sofia,

Bulgaria, September 2012, [159].

• M. Ramezani, J. Haddad, and N. Geroliminis, “Cooperative traffic management policies for

mixed freeway and urban networks,” 92nd Annual Meeting of the Transportation Research

Board, Washington D.C., January 2013, [160].

Chapter 5 is a self stand-alone article published as:

• J. Haddad, M. Ramezani, and N. Geroliminis, “Cooperative traffic control of a mixed network

with two urban regions and a freeway,” Transportation Research Part B, vol. 54, pp. 17-36,

2013, [69].

Chapter 6 proposes a hierarchical and large-scale urban control framework based on the MFD

modeling and the perimeter control strategy. The control structure comprises a upper-level

(MPC-based) controller that based on regional traffic states identifies the inter-transfer flows

between the (multiple) regions of the network, and a lower-level (feedback) controller aiming

at homogenizing the congestion spatial distribution inside the regions by locally tuning the

control actions. The modeling significance of the study is to investigate the effect of density

heterogeneity on the MFD and also to introduce two traffic models with different levels of

granularity and utilize them as the optimization model and the plant in the MPC scheme. The

preliminary results of this chapter are presented in:
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• M. Ramezani, J. Haddad, and N. Geroliminis, “Integrating the dynamics of heterogeneity

in aggregated network modeling and control,” 93rd Annual Meeting of the Transportation

Research Board, Washington D.C., January 2014, [162].

• M. Ramezani, J. Haddad, and N. Geroliminis, “Integrating heterogeneity dynamics in aggre-

gated urban network modeling and control,” 14th Swiss Transportation Research Confer-

ence, Ascona, Switzerland, May 2014, [161].

Chapter 6 is organized as a self stand-alone article submitted for publication as:

• M. Ramezani, J. Haddad, and N. Geroliminis, “Dynamics of heterogeneity in urban net-

works: aggregated traffic modeling and hierarchical control,” under 2nd round of review in

Transportation Research Part B, [154].

Finally, Chapter 7 concludes the dissertation by summarizing the main contributions of each

chapter, discussing the potential field applications of the proposed estimation and control

methods, and presenting the future research directions.
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2 Queue profile estimation in congested
urban networks with probe data

Q
UEUES at signalized intersections are the main cause of traffic delays and travel

time variability in urban networks. In this chapter, we propose a method to esti-

mate queue profiles that are traffic shockwave polygons in the time-space plane

describing the spatiotemporal formation and dissipation of queues. The method integrates

the collective effect of dispersed probe vehicle data with traffic flow shockwave analysis and

data mining techniques. The proposed queue profile estimation method requires position

and velocity data of probe vehicles; however, any explicit information of signal settings and

arrival distribution is indispensable. Moreover, the method captures interdependencies in

queue evolutions of successive intersections. The significance of the proposed method is

that it is applicable in oversaturated conditions and includes queue spillover identification.

Numerical results of simulation experiments and tests on NGSIM field data, with various

penetration rates and sampling intervals, reveal the promising and robust performance of the

proposed method compared with a uniform arrival queue estimation procedure. The method

provides a thorough understanding of urban traffic flow dynamics and has direct applications

for delay analysis, queue length estimation, signal settings estimation, and vehicle trajectory

reconstruction.

2.1 Introduction

Vehicle queues at intersections are the crucial cause of variability in drivers’ experienced travel

time in urban networks. Hence, an accurate and practical queue estimation method is of great

importance for intelligent transportation systems (ITS) (i) to provide a better understanding

of urban flow dynamics, (ii) to be utilized for traffic state estimation, and (iii) to be integrated

in a traffic signal control framework. In this chapter, we aim at estimating the evolution of

queues by utilizing probe data. We introduce the concept of queue profile that describes the

formation and dissipation of queues in the time-space (x-t) plane. Queue profile is a polygon

in the x-t plane that its edges designate traffic shockwave boundaries (see Fig. 2.1), based

on kinematic LWR theory [110, 163]. By estimating the queue profile for each cycle, one can

derive performance measures including queue length, position of back and front of the queue,
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and delays per vehicle (average and distribution) that can be further used to estimate travel

time distributions as a travel time reliability index [151]. In addition, given the queue profile

vehicle trajectories can be reconstructed (see for example [171]), which are fundamental for

fuel consumption and emission estimation [170] and travel time decomposition [77].

Literature of queue estimation can be categorized to two modeling classes: (i) models based

on the cumulative traffic input-output [188, 6, 40, 183], with the limitation that these models

are insufficient to provide the spatial distribution of queue dynamics [123] and suffer from

measurement errors, and (ii) models based on LWR shockwave theory [169, 10, 193], which

provide the temporal-spatial dynamics of the queuing process with input data from loop

detectors or probe vehicles. Further, many pivotal studies of queue and delay estimation

in transportation research [128, 34, 127, 121] are based (fully or partially) on rather limiting

assumptions to result in closed-form theoretical solutions. These assumptions can be sum-

marized as: (i) known signal settings, (ii) known initial queue size at the start of the cycle,

(iii) known arrival pattern (e.g. uniform, Poisson), and (iv) undersaturated conditions that

expected value of arrivals do not (constantly) exceed the signal capacity [36].

The main contribution of this chapter is to introduce a queue profile estimation method

that relaxes the aforementioned assumptions. Because signal settings, i.e. cycle length and

splits, might not be readily available specifically from actuated traffic signals and network-

wide systems [70]. Note that signal settings are crucial for capturing queue spatiotemporal

characteristics, as the spatial extent of queue should be estimated at the correct time instance.

For example, if the exact queue length is estimated with a time lag the estimation error would

be significant. Whereas in the analyses of maximum queue length estimation (or studies

with assumption of known signal settings), temporal term of estimation error is zero. In

addition, a known arrival traffic flow distribution might be considered valid in case of an

isolated intersection; whereas such an assumption is not valid in arterials, as it neglects the

impact of upstream intersections that alter the arrival pattern further downstream [151]. The

other significance of the proposed queue estimation method is to cope with oversaturated

conditions and identify the occurrence of spillovers in arterials with probabilistic inference.

The basic ingredient for the new wave of smart cities that has emerged during the last decade

is massive data sets concerning human mobility, fostered by the widespread distribution of

sensors, such as Global Positioning System (GPS) devices in many modes of transport, smart

phones, and traffic fixed sensors (e.g. loop detectors). These network infrastructures allow

for sensing and collecting substantial spatiotemporal data, such as the trajectories of many

vehicles from navigation devices, which represent proxies for human mobility patterns. This

“big mobility data” provides a unique social observatory that can help us understand how

congestion develops and evolves, and discover hidden patterns and identify models that can

contribute to efficient traffic management systems to improve cities’ mobility and accessibility.

Prevailing queue estimation methods employ several monitoring technologies, e.g. loop detec-

tors [169, 56, 194] and event-based signal and vehicle data [195]. It has been reported in many
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publications that input-output diagrams have strong difficulties in estimating queue lengths

accurately under congested conditions. The main reason is that detector errors (even unbi-

ased) accumulate over time (see for example [182]). Furthermore, in case of detectors in the

beginning and end of a link, stop-and-go traffic and non-smooth flow due to upstream depar-

tures creates strong disturbances in the estimation. For mid-block detectors when queues are

overpassing the detector, the accuracy of estimation degrades. The emergence and a steadily

increase of public deployment of user-based data collection systems, e.g. GPS-equipped vehi-

cles [79, 14, 88] and vehicle re-identification using cellphones or wireless magnetic sensors

[105], provides a great potential for probe vehicles in ITS applications.

We introduce a method that is based on probe data as the single source of information.

Utilizing probe vehicles for traffic observation and estimation raises challenges because of (i)

errors in raw measurements and post-processing algorithms, e.g. map-matching, and (ii) the

fact that the probe data are inherent samples of a true traffic state. Thus, probe data cannot be

readily applied to well-established traffic estimation methods. In this study, the position and

instantaneous speed of probe vehicles are the input to the queue profile estimation method

and the robustness of the method to measurement errors is investigated.

[105] and [81] are of the few efforts to estimate performance measures without the need for

signal settings information. The former requires wide deployment of sensors and the latter

proposes a probabilistic framework for arterial traffic state estimation using sparse probe data

that infer the average signal settings and arrival rates from historical data. Utilizing probe data,

[151] develop a method based on the link travel times of probe vehicles to estimate the arterial

travel time distribution by considering spatiotemporal nonlinear correlations. [22] provide an

analytical model for queue length estimation of an isolated intersection with the assumption

of Poisson arrival distribution and examined the effect of probe vehicles penetration rate.

In addition, [84] and [19] study a queue estimation method based on the identification of

shockwaves from probe vehicle trajectories. Although queue estimation is straightforward

given trajectory of probe vehicles with large penetration rates, for realistic cases with low

penetration rates and high sampling intervals, an approach that combines data mining,

optimization techniques, and physical properties of traffic flow is needed (e.g. see [70, 81];

also see [184] for incident duration modeling, [59] for delay and queue length estimation at

freeway work zones, and [92] for traffic flow forecasting). A brief description of the developed

method without considerations for spillovers, capturing the interdependencies of queuing

dynamics of adjacent links and less robust optimization framework to noisy measurements is

presented in [152].

The remainder of the chapter is organized as follows. Section 2.2 presents the preliminaries

of the traffic flow modeling utilized for the queue profile estimation. Next, we introduce

the proposed method and elaborate on its details in Section 2.3. Section 2.4 presents the

results for two case studies based on field and simulation data, comparisons with a queue

estimation procedure based on the uniform arrival assumption, and the effect of probe data

penetration rates, sampling intervals, and measurement errors on the performance of the
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proposed method. The spillover probabilistic inference method is introduced in Section 2.5.

Finally, Section 2.6 draws the conclusions.

2.2 Background

This chapter aims at estimating the queue shockwave profile that is a polygon in the x-t plane

such that its every edge designates a traffic shockwave. The shockwaves model the formation

and dissipation of the queue during signal cycles. Based on LWR theory, shockwaves are

boundaries determining flow-density discontinuities in the traffic stream, i.e. points on the

border between two different traffic states. Thus, crossing traffic shockwaves, the slope of

vehicle trajectory in the x-t plane (i.e. speed of the vehicle) changes abruptly. In this study, for

each urban network link we assume a triangular fundamental diagram (FD) characterized

by, the maximum flow (capacity), qm, the free flow speed, vff, and the jam density, kj, see Fig.

2.1. While LWR theory can integrate more complicated shapes of FDs, we choose the widely

used triangular FD as it can represent well the development and dissipation of shockwaves in

arterials and allows for elegant data mining techniques consistent with the physics of traffic.

In this case, the platoon dispersion effect cannot be estimated. We refer to [123] or [168] for

non-triangular FDs for arterial estimation.

Figure 2.1: The fundamental diagram and a queue profile at a signalized intersection.

Figure 2.1 also depicts a queue profile at a signalized intersection. The queue discharging

shockwave represents the front of queue and a 3-segment piecewise linear shockwave repre-

sents the back of queue. It is apparent that the queue discharging shockwave separates the

traffic state at capacity (m) from the jammed state (j). Likewise, the 3-segment shockwave

of the back of queue separates the jammed state from 3 different traffic states (qi , ki ), in the

flow-density plane with i ∈ {a,b,c}. Note that traffic state (d) may represent a different state

than state (b). The slope of the shockwave between traffic states s and s′ and the slope of the

queue-discharging shockwave (w) are, respectively:

vss′ = qs −qs′

ks −ks′
, w = qm

qm

vff
−kj

. (2.1)

It is straightforward to estimate the queue shockwave profile (the extent and slope of shock-

waves) given the arrival traffic flow and the signal settings (which both impose measurement

difficulties). However, the proposed queue profile estimation method does not require either
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arrival traffic distribution or signal settings. Note that one application of queue profile is that

by reverse modeling, one can estimate the attributes of shockwaves, and consequently the

characteristics of arrival traffic state can be determined. In addition, the estimated queue

profiles approximate the signal setting, i.e. the start and end time of signal phases. A recent

study [70], estimates signal settings utilizing vehicle travel time observations from upstream

and downstream of an intersection.

In this chapter, we try to estimate the queue profile polygon from probe vehicles. Probe

vehicles provide samples of their individual traffic state and we aim at leveraging the collective

information of temporally and spatially dispersed probe data. As we stated earlier, traffic

shockwaves designate the points in the x-t diagram associated with the sudden change of

vehicles speeds. In urban networks and particularly at signalized intersections, this associates

with how probe vehicles join and leave the queue, which has to be estimated. The proposed

method utilizes kinematic analysis to approximate the time and the position that a probe

vehicle joins and leaves the queue (joining and leaving points) from its reported data by

assuming constant acceleration, aacc, and deceleration, adec. This assumption is not expected

to influence the accuracy of the model [168].

2.3 Methodology

In this section, first a brief overview of the proposed queue profile estimation method is given,

and then the principal steps of the method are elaborated in detail. Let us assume that probe

vehicle i reports its position (the distance from upstream of the link), xk
i , and velocity, vk

i ,

along with the time stamp, t k
i , at time step k. In the sequel, the link index is omitted for

simplicity, and we assume periodic reporting of the above information with sampling interval

T (s). However the method can be easily applied with non-periodic probe data collected

from various types of probe vehicles, e.g. taxis, transit fleet, and cars. Note that the queue

profile estimation is a link-wise procedure and in case of possible spillovers (or spillbacks), the

queue profile should be estimated from downstream to upstream links to be able to capture

the spillover development and propagation. Note that the occurrence of spillbacks is not

considered in this section while in Section 2.5, we relax this assumption and develop a spillover

identification procedure based on Bayesian inference.

An example of the queue profile estimation with T = 30 (s) and penetration rate (φ) of 40%

is depicted in Fig. 2.2, where ground truth and estimated queue profiles are respectively

denoted by black and red polygons. Even if this penetration rate is not realistic, it is chosen

for the explanation of the method. Later, smaller values of φ are analyzed. Note that probe

data points are the input to the method and trajectories in Fig. 2.2 are shown for illustration

purposes of the queue dynamics. The details shown in Fig. 2.2 will be fully elaborated in the

following subsections. In addition, effects of measurements or map-matching errors on the

performance of the proposed estimation method are scrutinized in Section 2.4.

A conceptualization of the queue profile estimation method is as follows. Since signal settings
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are assumed to be unavailable, we need to identify stopped data points and assign them to

various groups that each group represents a cycle. Therefore in subsection 2.3.1, we introduce

a classifier based on the velocity attribute to classify all probe data to two groups, stopped

and moving. In Fig. 2.2, red squares denote the stopped data points while black diamonds

denote the moving data points. Afterwards in subsection 2.3.2, we cluster the stopped data

points into different signal cycles based on the projection profile algorithm. Subsequently in

subsection 2.3.3, the moving data is assigned to different cycles. The magenta lines provide

linear boundaries that group the moving data in cycles. Fig. 2.2 depicts the cycle number of

each stopped and moving data point. As queued vehicles discharge at the capacity flow, based

on LWR theory, the queue discharging shockwave is a line with slope w in the x-t plane. In

addition, the leaving points of vehicles from the queue (filled blue points in Fig. 2.2) are on

the queue discharging shockwave. Hence, the estimation of front of queue for each cycle can

be formulated as a constrained least squares problem, which is presented in subsection 2.3.4.

The proposed method does not require the knowledge of arrival patterns to estimate queue

profiles. Thus to model the back of queue, we consider a piecewise linear function that fits the

joining points of vehicles to the queue (filled green, cyan, and yellow points in Fig. 2.2). In

subsection 2.3.5, a curve-fitting nonlinear optimization method is introduced to identify the

number and attributes of the piecewise linear function [63].

2.3.1 Classification of probe data to moving and stopped classes

The first step of the procedure is to classify the probe data into two classes of moving and

stopped vehicles {m,s}. This can be done with a simple threshold-based classifier:

ck
i =

m if vk
i > vth

s if vk
i ≤ vth

(2.2)

where vth (m/s) is a predefined threshold parameter to designate the vehicles with velocity

close to zero as stopped.

The correct classification rate of the proposed classifier is 100% in case of exact measurements.

Though errors in velocity measurements degrade the classifier performance, measurement

errors do not significantly affect the method (The robustness of method to measurement

errors is examined later in Section 2.4). However, a more precise velocity measurement, e.g.

utilizing differential GPS or fusion of GPS speed data with vehicle speedometer seems essential,

given also that signal settings are considered unknown. The classification of probe data points

to stopped (red square) and moving (black diamond) is illustrated in Fig. 2.2.

2.3.2 Clustering the stopped vehicles to cycles

Our motivation in this study is to relax the assumption of known signal settings. With no

information of signal settings, the number and duration of cycles are unknown, especially for
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Figure 2.2: An illustrative example of the queue profile estimation method. The black diamonds and
red squares respectively show input probe data classified to moving and stopped points (subsection
2.3.1). Their associated numbers are the corresponding cycle index (subsections 2.3.2 and 2.3.3), where
magenta lines group the moving points to cycles. The filled blue circles are the queue leaving points
of probe vehicles that designate the front of the queue profile (subsection 3.4). The front of queue
shockwave determines the estimated start of green phase, t g (subsection 2.3.4). The filled green, yellow,
and cyan circles are different types of queue joining points of probe vehicles that designate the back
of queue (subsection 2.3.5). t c denotes the time that the queue clears. The bottom plot shows the
corresponding accumulator projection vector (subsection 2.3.2) depicting four groups of stopped data
associated with four cycles. All the details are elaborated in corresponding subsections.

actuated signals. As queues are associated with cycles, in the second step of the procedure a

clustering technique is needed to cluster the stopped data into various groups that represent

cycles (of the same or different duration). By considering the temporal and spatial distribution

of stopped data in the x-t plane, the stopped data of two consecutive cycles can be linearly

separated with a straight line with slope w that lies properly between the two cycles. Therefore,

we propose a clustering technique based on the projection profile method [86] to cluster the

stopped data into cycles. The purpose of projection profile method is to extract a scalar feature

from the (2D) dispersed data of stopped vehicles in the x-t plane. Accordingly, we introduce

a projection function, P , which projects every stopped point along a line with slope w into

an accumulator projection vector over the line x = 0 (the upstream of link). At this location,

time is divided to equal intervals (bins) such that each bin is associated with the number of
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projected points lying inside the bin, see Fig. 2.2.

if ck
i = s ⇒P (t k

i , xk
i ) = t k

i − xk
i

w
. (2.3)

It is expected that the projection profile method with projection function P results in an

accumulator vector that contains (i) clusters of adjacent bins with positive values, representing

the red interval of a cycle, and (ii) clusters of adjacent bins with zero values, representing

the green duration of a cycle (see values of the accumulator projection vector in Fig. 2.2).

Consequently, the stopped data associated with every cluster of stopped bins (adjacent bins

with positive value) correspond to a common cycle. It is remarkable that no prior information

on number of clusters, i.e. number of cycles, is needed for the clustering procedure. This

property is important for actuated traffic signals and for spillback identification.

The accuracy of projection profile algorithm depends on the bin size (s). To determine the

size of each bin, one should consider that large values cannot discriminate between cycles;

while small values may decrease the chance that stopped data points of the same cycle are

projected into adjacent bins. (Note: In case of small-sized bins, the number of bins with zero

value during the red interval increases. This might create group(s) of zero-valued bins during

the red interval. So, the clustering procedure should disregard small number of zero-valued

bins inside a cluster of stopped bins; see for example cycle 2 in Fig. 2.2.) We test the sensitivity

of the projection profile algorithm to various bin sizes and values between 4 and 10 (s) show

satisfactory outcomes. In this study, we set the bin size equal to 5 (s). Result of this step is

apparent in Fig. 2.2, where the cycle number of each stopped data point is depicted. Note that

this method is still valid in case of active spillovers that block departures during green times of

upstream intersections. An enhancement to the clustering procedure concerning occurrence

of spillovers will be discussed in Section . In case of very low penetration rates (< 5%) this

method can be improved by also considering the moving points during green durations, which

can be considered as a future work.

2.3.3 Associating the moving vehicles to cycles

The previous step identifies the number of cycles (not signal settings) and assigns stopped

data to their corresponding cycle. Likewise, the proposed queue profile estimation method

needs the moving data (ck
i = m) to be associated to cycles to formulate the estimation problem

of the front and back of queue. Let S j denotes the set of stopped data assigned to cycle j . One

can fit a line with slope w to every data point that belongs to S j . The line with the maximum

intercept (traffic progresses in direction of x-axis) can be regarded as a lower envelope of

the“true” discharging shockwave, see magenta lines in Fig. 2.2. This line can be considered

as a linear boundary to distinguish between moving data of every cycle. In other words,

the moving data of cycle j are on the left side of this line for cycle j , and right side of the

corresponding line for cycle j −1. We denote the set of moving data associated with cycle j as

M j . Fig. 2.2 depicts the number of the cycle that each moving point is assigned to. Note that
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the error between the magenta lines and the“true” discharging shockwaves only influences

assigning cycles to moving points and does not intervene on cycle identification, signal setting

estimation, and queue profile estimation.

2.3.4 Estimation of the front of queue

The queuing process can be divided to two distinct fundamental processes, the formation and

dissipation of queues, which in urban networks is associated with the traffic signal alternation.

This step of the queue profile estimation is to determine the queue dissipation for every cycle

( j ). Based on LWR theory, the queued vehicles discharging at the capacity flow result in a

shockwave designated by a line with slope w in the x-t diagram. Hence, there is only one

parameter to estimate the front of queue shockwave (discharging line), i.e. the line intercept.

Initially, we need to estimate the leaving point of probe vehicles, i.e. at which time and position

probe vehicles leave the queue. The estimation of leaving points of probe vehicles is important

since these points are ideally supposed to be on the discharging shockwave line. From the

formulas of kinematics on one dimension and based on two consecutive data points of the

same probe vehicle, where the first one is stopped and the other one is moving (i.e. ck
i = s,

ck+1
i = m, (t k

i , xk
i ) ∈ S j ), the time that probe vehicle i leaves the queue can be estimated as

τl
i =


t k+1

i − vk+1
i

2aacc
− xk+1

i −xk
i

vk+1
i

if vk+1
i > η · vff (2.4a)

t k+1
i − 2(xk+1

i −xk
i )

vk+1
i

if vk+1
i ≤ η · vff. (2.4b)

Equation (2.4a) corresponds to a vehicle that reaches its desired speed, which is in a vicinity

of the free flow speed, specified by η ∈ (0,1). η is the parameter to designate whether a probe

vehicle is in acceleration (or deceleration) mode or it has reached to the free flow speed.

Likewise, (2.4b) corresponds to a vehicle that its instantaneous speed at time step k +1 is not

its desired speed, since the vehicle is still accelerating. Note that, there is another possibility

that the vehicle has a speed below its desired speed (vk+1
i ≤ η · vff) and be in the deceleration

stage. In this case, (2.4b) gives a value less than t k
i which is incorrect because, τl

i ∈ (t k
i , t k+1

i ).

Therefore, we need to modify (2.4b) in order to correctly estimate the leaving time of probe

vehicle i that has a speed below the desired speed and is in the deceleration stage. So, if

vk+1
i ≤ η · vff and τl

i computed by (2.4b) is smaller than t k
i , the time that probe vehicle i leaves

the queue is

τl
i = t k+1

i − vff

2aacc
− xk+1

i −xk
i

vff
− (vk+1

i − vff)
2

2vff ·adec
. (2.5)

Equation (2.5) implies that the vehicle accelerates with acceleration aacc, reaches its desired

speed which is equal to vff, and then decelerates with deceleration adec to its speed at time
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step k +1, vk+1
i .

Ultimately, the leaving point is estimated as (t̂i , x̂i ) = (τl
i , xk

i ). In Fig. 2.2, filled blue points

represent leaving points. While time spent in acceleration and deceleration mode is a minor

component of the delay under congested conditions and can be ignored, it is a necessary step

in our approach to classify the different types of vehicles (joining or leaving the queue).

The discharging line has slope w such that all the moving data points of the next cycle,

M j+1, and stopped data points of the corresponding cycle, S j , are on its right and left side,

respectively. Hence, the estimation of front of queue is formulated as a constrained least

squares problem:

min
B j

NL∑
l=1

(x̂l −w t̂l −B j )2 (2.6)

subject to

x −w t −B j ≤ ε1 ∀(t , x) ∈ S j

x −w t −B j ≥ ε1 ∀(t , x) ∈ M j+1

(2.7)

where NL denotes the total number of estimated leaving points and B j is the intercept of the

discharging line shockwave of cycle j . Because problem (2.6) is convex, the solution is global

although not necessarily unique. Note that given B j , the start time of the current cycle green

phase, denoted by t g
j can be estimated as:

t g
j =

xmax −B j

w
(2.8)

where xmax is the position of intersection stop line from the entrance (upstream) of the link.

The objective of (2.6) is to minimize the sum of squared errors between the leaving points

and the estimated discharging shockwave line. Regarding constraints (2.7), introduction of ε1

provides a tuning parameter to regulate the extent of hardness of the constraints, e.g. ε1 = 0

represents hard-constraints that obliges the solution of (2.6) to fully separate data points of S j

and M j+1, whereas a positive value of ε1 relaxes the constraints, which is necessary in case of

noisy input data, because there might be no line with slope w that fully separates noisy data of

S j and M j+1. It is worth mentioning that, there is no restriction that two consecutive stopped

and moving data points (ck
i = s and ck+1

i = m) are on the same link, i.e. the moving point can

belong to the downstream link. Nevertheless, the chance of finding two such data points in the

most downstream link is less compared to the other links. Thus, in case there is no estimated

leaving point (see the first cycle in Fig. 2.2), the discharging shockwave line is estimated based

on the best generalization concept which provides the maximum margin from both stopped

(S j ) and moving vehicles (M j+1). In other words, the discharging line should have an equal

distance from the nearest data points of both S j and M j+1. This concept is widely utilized in
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support vector machine (SVM) in computer science literature [25] and reads:

B j =
maxS j B +minM j+1 B

2
(2.9)

where maxS j B(minM j+1 B) denotes the maximum (minimum) intercept of lines with slope w

that are fitted to the data points of set S j (M j+1).

2.3.5 Estimation of the back of queue

The goal of this step is to estimate the queue formation for each cycle ( j ). The back of queue in

the x-t diagram can be modeled by a piecewise linear function of several segments so that each

one represents a shockwave. Without any explicit information of arrival patterns, the back

of queue estimation procedure should determine the number and extent of segments of the

piecewise linear function. Initially, similar to the previous step, we need to estimate the joining

point of probe vehicles, i.e. at which time and position probe vehicles join the queue, because

the joining points ideally belong to the piecewise linear shockwave. We consider the following

types of two consecutive data points for probe vehicle i that contribute to determining the

joining points:

(Type 1) the first point is moving and the other one is stopped, i.e. (t k−1
i , xk−1

i ) ∈ M j and

(t k
i , xk

i ) ∈ S j , (filled green points in Fig. 2.2)

(Type 2) both points are stopped, i.e. (t k−1
i , xk−1

i ) ∈ S j−1 and (t k
i , xk

i ) ∈ S j , (filled yellow points

in Fig. 2.2)

(Type 3) both points are moving, i.e. (t k−1
i , xk−1

i ) ∈ M j and (t k
i , xk

i ) ∈ {M j+1 ∪N D}, (filled cyan

points in Fig. 2.2)

(Type 4) first point is stopped and the second one is moving, i.e. (t k−1
i , xk−1

i ) ∈ S j−1 and

(t k
i , xk

i ) ∈ {M j+1 ∪N D}.

N D denotes the set of moving points in the downstream link that are not delayed, i.e. the

points that do not belong to the queue discharged traffic state (state m in Fig. 2.1). Note that

since the queue profile estimation method starts from the downstream link, N D is already

available. By considering moving points of N D, the methodology implicitly correlates the

queuing state of successive links. For types 3 and 4, first we should assess if probe vehicle i

encounters any significant delay between the two consecutive observations. This is straight-

forward by comparing the average speed between two successive observations and the free

flow speed. Afterwards, if the probe vehicle is delayed (as it joins and leaves a queue), the data

at time step k belonging to M j+1 or N D can be converted to a queue leaving point according

to (2.4a), (2.4b), and (2.5), since the discharging line of the cycle j is already estimated in the

fourth step. Therefore, data points of type 3 and 4 can be readily converted to type 1 and 2,

respectively.
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For type 1, the time that probe vehicle i joins the queue can be calculated as

τ
j
i =


t k−1

i − vk−1
i

2adec
− xk

i −xk−1
i

vk−1
i

if vk−1
i > η · vff (2.10a)

t k−1
i − 2(xk

i −xk−1
i )

vk−1
i

if vk−1
i ≤ η · vff. (2.10b)

Equations (2.10a, 2.10b) have the same logic as (2.4a, 2.4b), so that equation (2.10a) corre-

sponds to a vehicle that reaches to its desired speed in the vicinity of free flow speed, and

(2.10b) corresponds to a vehicle that its instantaneous speed at time step k−1 is not its desired

speed, since the vehicle is decelerating. Similarly, the third possibility is that the vehicle has

a speed below its desired speed (vk−1
i ≤ η · vff) and is in the acceleration stage. In this case,

(2.10b) gives a value greater than t k
i which is incorrect because, τj

i ∈ (t k−1
i , t k

i ). Therefore, we

need to modify (2.10b) in order to correctly estimate the joining time of probe vehicle i . So, if

vk−1
i ≤ η · vff and τj

i computed by (2.10b) is greater than t k
i , the time that probe vehicle i joins

the queue is

τ
j
i = t k−1

i − vff

2adec
− xk

i −xk−1
i

vff
− (vk−1

i − vff)
2

2vff ·aacc
. (2.11)

Equation (2.11) implies that the vehicle with speed vk−1
i accelerates with acceleration aacc,

reaches its desired speed which is equal to vff, and then decelerates with deceleration adec to

the stopping state. Ultimately, the joining point is estimated as (ťi , x̌i ) = (τj
i , xk

i ).

Note that for data type 2, the leaving point of probe vehicle i at cycle j −1 can be estimated by

utilizing the stopped data point (t k−1
i , xk−1

i ) and the discharging shockwave of the previous

cycle, j −1. (The discharging shockwave of the previous cycle is already known, because queue

profile estimation advances cycle by cycle in time.) Thus with the estimated leaving point

that is certainly at the acceleration stage and by applying (2.11) the corresponding joining

point can be estimated. Remarkably, because the data point at time step k −1 of type 2 is

discharging from the queue of the previous cycle, it arrives at capacity state to the queue of

the current cycle. Hence, the slope of the corresponding segment of back of queue shockwave

should be w .

Given the estimated joining points, J j , the back of queue piecewise linear shockwave, fb(x),

should be estimated according to the following objectives: (i) to be as close as possible to

the joining points, and (ii) to separate all the moving data points associated with cycle j , M j ,

and stopped ones of cycle j , S j , on its left and right side, respectively (see the definition of

function F ). Further, based on LWR theory, the slope of each segment of the piecewise linear

function should be between zero and w (see 2.15). Note that, if a leaving point of type 2 or 4 is

associated with a segment of fb(x), the segment slope should be equal to w . To incorporate all

the aforementioned physical properties, the estimation of the back of queue by an N-segment
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piecewise linear function is formulated as the following nonlinear program:

min
α1,...,αN−1,β1,··· ,βN+1

∑NJ

l=1(D〈 fb(.), (ťl , x̌l )〉)2

NJ
+λN +C

[∑
S j

F (t , x)+∑
M j

F (t , x)
]

(2.12)

fb(x) =



β1 + x−xmax

α1−xmax (β2 −β1) α1 < x ≤ xmax

...
...

βn + x−αn−1
αn−αn−1

(βn+1 −βn) αn < x ≤αn−1

...
...

βN + x−αN−1

xmin
j −αN−1

(βN+1 −βN ) xmin
j ≤ x ≤αN−1

(2.13)


xmin

j
∆= min

x
(S j , J j ) <αN−1 < ·· · <α1 < xmax (2.14a)

t g
j−1 <β1 < ·· · <βN+1 ≤ t c

j =
xmin

j −B j

w
(2.14b)

βn+1 −βn

αn −αn−1
≤ 1

w
; n = 1, · · · , N (2.15)

F (t , x) =
D〈 fb(.), (t , x)〉 if (t , x) ∈ S j ∧ fb(x)− t > 0

D〈 fb(.), (t , x)〉 if (t , x) ∈ M j ∧ fb(x)− t < 0
(2.16)

where NJ denotes the total number of estimated joining points, and function D determines the

distance of a point from a piecewise line. Hence, the first term of the objective function (2.12) is

to minimize the sum of squared distance between the joining points and the desired piecewise

linear function. Given that fb(x) comprises N segments, (2.12) optimizes 2N parameters

defining slope and extent of segments, i.e. α1, . . . ,αN−1 that are associated with the spatial

extent of segments and β1, · · · ,βN+1 that are associated with the temporal extent of segments,

see Fig. 2.3. It is apparent that as N increases, fb(x) becomes more complex and can attain

better optimization results as oppose to higher chance of overfitting. To prevent overfitting,

we need to balance the number of parameters, as an indicator of complexity, and the value

of the objective function. To this end, we add a complexity penalty term to the objective

function, λN , where λ is the regularization parameter. In addition, function F calculates the

distance of misclassified moving data of M j and stopped data of S j and penalizes them with a

relatively large constant, C . Finally to find the optimum solution of (2.12), we restrict N ≤√
Nj

and execute the optimization algorithm for several random initial points in order to prevent

reaching local optima.

Furthermore, constraints (2.14a) and (2.14b) ensure that fb(x) has to be connected and to be

in proper intervals, i.e. xmin
j ≤ x ≤ xmax and t g

j−1 < t ≤ t c
j . In other words, 2.14a ensures that
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the spatial extent of the back of queue shockwave is between the position of intersection stop

line, xmax, and the position of the furthest queued vehicle from the intersection for cycle j ,

xmin
j . To estimatexmin

j , we consider the furthest position of available probe information, as

the most conservative estimator. Thus, xmin
j is the minimum between the furthest position

from stop line among stopped data S j (see cycles 1 and 3 in Fig. 2.2), and the furthest position

among the estimated joining points J j (see cycles 2 and 4 in Fig. 2.2). Note that, xmin
j is the

position where the estimated discharging shockwave and the piecewise shockwave of back of

queue are connected to each other with a horizontal line (slope equals to zero) to connect the

queue profile polygon (see Figures 2.2 and 2.3). Also (2.14b) implies that the estimation of the

start time of red phase of current cycle, β1, should be after the start time of green phase of the

previous cycle denoted by t g
j−1. (If there is any information regarding a minimum duration of

red phases, this can be easily incorporated in the optimization framework.) In addition, the

back of queue piecewise shockwave should be always (with respect to time) before the front

of queue discharging shockwave in the x-t plane, i.e. the utmost time extent of the piecewise

shockwave, βN+1, must be less than the estimated time of queue full clearance, which is

denoted by, t c
j .

Figure 2.3: A schematic of N -segment piecewise linear back of queue at cycle j , annotated with
parameters of optimization (2.12).

In case there is no estimated joining point, the piecewise back of queue shockwave can be

estimated similarly based on the best generalization concept which has the maximum margin

from both stopped (S j ) and moving vehicles (M j ). In other words, the discharging piecewise

shockwave should have the maximum distance from the nearest data points of both S j and

M j+1. This reads:

max
α1,...,αN−1
β1,··· ,βN+1

(
min

S j

D〈 fb(.), (t , x)〉+min
M j

D〈 fb(.), (t , x)〉−λN −C
[∑

S j

F (t , x)+∑
M j

F (t , x)
])
(2.17)
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where minS j D〈 fb(.), (t , x)〉 or (minM j D〈 fb(.), (t , x)〉) denotes the distance of the nearest data

point of S j or (M j ) to fb. To solve the nonlinear problem (2.17), the conditions (2.13)-(2.16)

should be also satisfied.

2.4 Results

In this section, we test and discuss the proposed queue profile estimation method using (i)

NGSIM field data and (ii) a more congested micro-simulated arterial with four signalized

intersections. We also investigate the effect of probe data sampling interval, penetration rates,

and measurement noise on the performance of method. Moreover, for further comparison

the proposed method is compared with a uniform arrival queue estimation procedure, which

requires signal settings data and aggregated data of an upstream (entrance) loop detector. For

uncongested conditions, the uniform arrival assumption leads to a triangular queue profile

for each cycle (see Fig. 2.4(a)), such that the red interval is the one edge, the second edge is the

discharging shockwave starting at the end of red phase with slope w , and the third edge starts

from the beginning of red phase with a slope based on (2.1), where s′ is the jammed traffic

state and state s is:

qs =
count j

C j
,ks = qs

vff
. (2.18)

C j denotes the duration of cycle j and count j is number of vehicles that enter the link and

with the free flow speed would reach to the intersection stop line during cycle j . In case of

oversaturated conditions and residual queues at the end of the green time, the queue profile

has a trapezoidal form (see for example [169]). An approach where the uniform arrival is

applied without considering residual queues (i.e. a triangular queue profile) would result in

much worse performance.

The method is tested on NGSIM data set. NGSIM program [129] was managed by the Federal

Highway Administration to provide a data set of vehicle trajectories for traffic behavioral

analyses. The data set contains comprehensive individual vehicle information such as instan-

taneous position and velocity along with the time, link, and direction stamps at the resolution

of 0.1 second. We use NGSIM dataset of the through lane of southbound link between 11th

Street and 10th Street on Peachtree Street, Atlanta, from 16:00 to 16:15. This link is approxi-

mately 130 (m) long and the speed limit is 56 (km/h). The FD parameters are set to vff = 15.65

(m/s), qm = 2100 (veh/h), and w =−3.7 (m/s), and the parameters of the proposed method

are chosen as: vth = 1 (m/s), η= 0.8, aacc = 2 (m/s2), adec =−3.5 (m/s2), ε1 = 0, C = 104, and

λ= 1.

Figure 2.4(a) illustrates the estimated queue profiles for 10 cycles based on the proposed

method (red polygons, (φ = 30%,T = 10s)) and the uniform arrival assumption procedure

(blue polygons) along with the ground truth queue profiles (black polygons). Given the

estimated queue profiles, signal settings, queue length, average delay, etc. can be readily
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Figure 2.4: The NGSIM ground truth (black) and estimated (φ= 30%,T = 10s) queue profiles based on
the proposed method (red) and based on the uniform arrival assumption (blue). The probe input data
consist of time, position, and velocity of probe vehicles (a). The estimated and ground truth queue
length (b). The MAE between the ground truth and estimated queue length with different penetration
rates and sampling intervals (c).
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estimated. For quantitative comparison, the queue size is derived based on the estimated

queue profiles and depicted in Fig. 2.4(b). Furthermore, Fig. 2.4(c) shows the mean absolute

error (MAE) between the ground truth queue size and the estimated queue size averaged over

10 runs for various penetration rates (φ= 20,30,40,50%) and sampling intervals (T = 10,20s).

Note that during the data collection interval, there are only 80 vehicles crossing the link. Hence

with a low penetration rate, the number of probe vehicles and consequently probe data would

be insufficient to have an accurate estimation. It is apparent in Fig. 2.4(a) where the first

two cycles are missed with the proposed method. Likewise, sampling intervals greater than

20s yields inadequate number of probe data since the link free flow travel time is below 10s.

However, it is apparent in Fig. 2.4(c) that the proposed queue profile estimation method

without any information of arrival distribution and signal settings is more accurate than

the uniform arrival estimation procedure. Evidently with higher penetration rates or lower

sampling intervals of probe vehicles, the outcomes of the proposed queue profile estimation

method would be more precise.

A fundamental property of probe data is that as congestion increases, which is the case when

the traffic estimation and control are crucial, the number of probe data increases (consider

that congestion increases the total vehicle hours traveled by all vehicles, which is directly

related to the number of available measurements). Hence in case of congestion, the proposed

method performance is significantly better compared to light conditions. The NGSIM data

does not include oversaturated conditions (note maximum queue size is 8 vehicles in Fig.

2.4(b)). The results are not surprising as at undersaturated conditions, simple and elegant

methods can provide decent quality of results. Travel time estimation methods have reached

similar conclusions about the accuracy of a simple model of uniform arrivals. Nevertheless,

these models fail when congestion and long queues is present (see for example [169]).

To test the developed methodological framework on more challenging scenarios, we analyze a

micro-simulated case study with relatively high traffic volumes and long queues that do not

exist in the NGSIM data. This also enables us to investigate the effect of low penetration rates,

high sampling intervals, and measurement noise. The simulated case study is an arterial with

four signalized intersections where length of links are respectively 350, 500, 400, and 450 (m),

with time-varying demand for 20 minutes. The signals are traffic-actuated each with different

cycle length. Note that no spillovers occur in this case study, while in the following section an

extension of the proposed methodology handling spillovers is presented.

Figure 2.5(a) illustrates the estimated (φ= 20%,T = 20s) and ground truth queue profiles for

all intersections and demonstrates that the performance of proposed queue profile estimation

method is promising and can capture the fundamental characteristics of queue profiles

without any information of arrival distribution and signal settings. Further, to scrutinize the

proposed method robustness to measurement noise and map-matching errors, we add an

error term to position and velocity measurements. The position and velocity error terms are

assumed as a normal random variable with zero mean and standard deviations equal to 2.5 (m)

and 1 (m/s), respectively. (These values are relatively pessimistic considering technological
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Figure 2.5: The ground truth (black) and estimated (φ= 20%,T = 20s) queue profiles for all 4 intersec-
tions based on the proposed method (red) and based on the uniform arrival assumption (blue) (a).
The MAE between the ground truth and estimated queue length with different penetration rates and
sampling intervals in case of no noise (b). The MAE between the ground truth and estimated queue
length with different penetration rates and sampling intervals in case of noisy measurements (c).
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advancements and developments of filtering, estimation and fusion algorithms, see [196] and

[191].) Figures 2.5(b) and 2.5(c) depict the MAE between the ground truth queue size and the

estimated queue size averaged over 10 runs for penetration rates, φ= 5,10,20,30,40,50%, and

sampling intervals, T = 10,20,30,40s for two cases without and with measurement errors. It is

apparent in Fig. 2.5(b) that even in case of sparse probe data the proposed method results are

more accurate than the uniform arrival estimation (with the integration of residual queues

modeling of [169]). It is also clear that higher penetration rates and lower sampling intervals

are not necessary as the error is close to one vehicle for T = 10s and φ= 30%. Moreover, Fig.

2.5(c) reveals that the proposed method is robust to measurement errors. We also assess

robustness of the proposed method to measurement errors closer to the state-of-the-art with

standard deviations equal to 1 (m), and 0.2 (m/s) and the outcomes are statistically similar

to no error case. Note that the proposed method parameters are similar in both case studies,

which demonstrates the method is insensitive to a sensible range of parameters.

To scrutinize the method performance with very sparse probe data (e.g. 5% penetration rate),

Fig. 2.6 shows the percentage of identified cycles, as the number of identified cycles in step

2 of the method divided by total number of cycles (a similar performance measure is also

discussed in [10]). For T = 20s and φ= 20%, the percentage of correctly identified cycles is

above 90%, while evidently cycles with lower queue size and associated with less congested

traffic states have higher probability to be missed in case of very sparse probe data (see 5

missed cycles in Fig. 2.5(a)). In this example, the maximum queue size is 29 (veh) and the

mean queue size is 7.9 (veh) (that is the MAE of a zero queue estimation, equivalent to no

estimated queue profile or missed cycles). In case prior signal setting information is available

(e.g. lower and upper bounds of red and green phases), the performance of the method can

be improved. In Section 2.6, a method based on historical data is discussed to tackle missed

cycles.

2.5 Spillover Bayesian Inference

In this section, we explore the effect of spillovers on the proposed queue profile estimation

method, subsequently introduce an elegant probabilistic spillover identification procedure

based on Bayesian inference and probe data observations, and finally incorporate the spillover

identification within the queue profile estimation method.

2.5.1 Spillover inference

Spillovers occur during oversaturated conditions when exceeding queue at the downstream

link impedes the arrivals from the upstream link, while the signal phase is green. This creates a

de facto red phase that decreases the outflow of the link and consequently the network outflow.

Recent studies have addressed the problem of spillover identification using conventional loop

detectors ([56, 195]) and control strategies to avoid spillovers ([20]). However, the literature of

methods identifying queue spillovers in urban networks with probe data is limited.
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Figure 2.6: The percentage of identified cycles in step 2 of the method with different penetration rates
and sampling intervals.

Given that in this chapter signal settings are unknown, occurrence of spillovers (and hence

the de facto red) causes difficulties for step 2 of the proposed method (Section 2.3.2). In step

2, the stopped data points are clustered to cycles based on the projection profile method,

while due to randomness of probe data, the clustering procedure disregards small number

of zero-valued bins inside a cluster of positive-valued bins. Note that zero-valued bins of the

accumulator vector represent intervals (the time between two stripes in x-t plane with slope

w) without any stopped data points. So, if the de facto red occurs, step 2 might consider this

red as a part of the nearest signal red phase (see Fig. 2.7(a)), or even as a whole with both

adjacent red phases (see Fig. 2.7(b)) depending on the de facto red spatiotemporal extent.

However in both cases, step 2 results in a longer red phase with a long interval (inside the long

red phase) without any stopped data point observation, and also a systematic error in the

estimation of leaving and joining points. The key idea of the proposed spillover identification

method is to integrate these two indications from the upstream link along with the length of

the queue into a probabilistic inference system to identify the occurrence of spillovers.

Bayesian inference method provides a probabilistic framework to update the prior proba-

bility, i.e. pr(H), of a set of hypotheses, {H1, H2, . . . , Hh}, while further evidence regarding the

hypotheses is acquired. Bayesian inference method estimates the posterior probability of the
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hypotheses given the evidences, i.e. pr(H |E), as

pr(Hi |E) = pr(E |Hi )∑
h pr(E |Hh)pr(Hh)

pr(Hi ) (2.19)

where for a set of independent and identically distributed evidences, {e1,e2, . . . ,ek },

pr(E |Hi ) =∏
k

pr(ek |Hi ). (2.20)
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Figure 2.7: The ground truth (black) and estimated (φ = 10%,T = 20s) queue profiles based on the
proposed method (red). The adverse effect of spillover and de facto red results in longer than usual
red phases, Rr j , with long Zr j , and also a systematic error in leaving and joining point estimation (a).
The adverse effect of the de facto red when it combines with two adjacent red phases (b). The two
modifications of the spillover inference module on xmin

j and r j (c). The adjustments of the spillover

inference module when the de facto red combines with two adjacent red phases (d). Note that blue
lines are vehicle trajectories and are depicted for illustration purposes.

To infer the probability of a spillover occurrence at cycle j of the downstream link, we need

to pre-process steps 1 and 2 for the upstream link to identify corresponding red phases.

Note that by definition, spillovers occur during green phases, whereas this duration will be
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accounted as a (de facto) red phase in the proposed queue profile estimation method. So,

if queue profile j spills over, it must reach to the upstream intersection during a de facto

red phase, r j . As mentioned above, duration of r j , Rr j , is longer than other (normal) red

phases. Likewise, the maximum interval (the time between two stripes in x-t plane with slope

w) within r j without any stopped point, Zr j , is also longer than the corresponding value of

other red phases. Therefore, the magnitude that Rr j and Zr j are outliers and greater than the

rest of samples in their corresponding set (respectively R and Z values for red phases of the

upstream link) can be regarded as evidences for spillover occurrence. An intuitive equation to

designate the extent of being outlier is as follows:

Qa = a − Ā

σ(A )
, a ∈A (2.21)

where a is the sample and A denotes the set with mean and range (difference between the

largest and smallest values), respectively as Ā and σ(A ).

Lastly, we consider the evidences in Bayesian inference as, e1: the position of the furthest

queued vehicle from the intersection, xmin
j ; e2: QRr j

; e3: QZr j
. The two complementary possi-

ble hypotheses are H1: occurrence of spillover and H2: no occurrence of spillover. Furthermore,

the likelihood functions, pr(ek |Hi ); i = 1,2;k = 1,2,3, are

pr(e1|H1) = 1−e−(
xmax−xmin

j
xmax )

1−e−1 (2.22)

pr(e2|H1) = max(δ,QRr j
) (2.23)

pr(e3|H1) = max(δ,QZr j
) (2.24)

pr(ek |H2) = 1−pr(ek |H1) (2.25)

where δ is a small predefined positive value near zero to avoid negative and zero values. More

sophisticated inference methods or optimizing the likelihood functions are a future research

direction.

2.5.2 Integration of spillover identification into queue profile estimation

The Bayesian spillover inference is an intermediate step between steps 2 and 3 of the queue

profile estimation method that assigns a spillover probability to each queue profile. With this

inference method, queue profiles are grouped into two distinct sets, ones with spillover

probability close to zero and ones close to 1, see Fig. 2.8. Thus, a prescribed threshold

distinguishes the two sets. Two modifications should be applied to queue profile j that

is labeled as spillover, i.e. its associated spillover probability is higher than the predefined

threshold. First, xmin
j should be set equal to the position of the link upstream (instead of

(2.14a)). Second, r j should be divided into the de facto red and the normal signal red phase

during Step 2 for the upstream link. The division should be placed at the interval corresponding
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to Zr j . Figure 2.7(c) illustrates the two modifications that have been applied to the example

in Fig. 2.7(a). In case the de facto red was considered with the two adjacent red phases (e.g.

Fig. 2.7(b)), r j should be split into two intervals accordingly. A simple procedure is to check

if the second largest interval without a stopped point observation is close enough to Zr j .

Figure 2.7(d) illustrates the same example in Fig. 2.7(b) with modification on xmin
j and dividing

r j into two signal red phases and a de facto red. The spillover inference procedure acquires

the correlation of queue spatiotemporal extent between two successive links and can identify

the spillbacks that propagate to more than one upstream link.
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Figure 2.8: The ground truth (black) and estimated (φ= 10%, T = 20s) queue profiles for all 4 intersec-
tions based on the proposed method (red), and based on the uniform arrival assumption (blue). The
values (in %) are the spillover probability associated for each queue profile.

Figure 2.8 illustrates the queue profiles of a case study with the same topology but higher

demand with oversaturated conditions and spillovers. It is apparent that the proposed queue

profile estimation method with sparse probe data captures the evolution and fundamental

attributes of queues and spillovers in the signalized arterial. Furthermore, Fig. 2.9 shows

the MAE between the ground truth queue size and the estimated queue size averaged over 5

runs for various penetration rates and sampling intervals. It is clear that the outcome of the

proposed method is more precise than the estimation of uniform arrival procedure. Even if

the effect of oversaturated condition has been integrated in the uniform arrival estimation

(see for example the blue trapezium in Fig. 2.8), the developed method is superior even with

5% penetration rates. If oversaturated conditions are not embedded in the uniform arrival

estimation and only triangular queue profiles are applied, the errors would be much larger.
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Figure 2.9: The MAE between the ground truth and estimated queue length with different penetration
rates and sampling intervals in case of spillovers.

2.6 Summary

This chapter has presented a method to estimate queue shockwave profiles at signalized

intersections in urban networks, based on LWR traffic theory and dispersed data of position

and velocity from probe vehicles. The significance of the proposed method is the estimation of

shockwaves without any explicit information of signal settings and arrival traffic flow patterns.

The method incorporates the physics of traffic, longitudinal kinematics, and interdependen-

cies between adjacent links into an optimization framework. The outcome of the proposed

method for two case studies with field and simulated data seems promising, especially for

congested conditions. The method is robust to noisy measurements and more accurate once

compared to a uniform arrival queue profile estimation procedure. The effect of penetration

rates and sampling interval of probe data on the performance of the method is also investi-

gated. In addition, the method is applicable to oversaturated conditions and with integration

of Bayesian inference; the method infers the probability of spillover occurrence.

The queue profile estimation method also provides signal settings, i.e. phase durations, at

each intersection. However, the method cannot identify a cycle without any probe data. So

the proposed method needs to be further explored to tackle missing cycles, which might occur

in case of low penetration rates and high sampling intervals. To this end, prior assumptions

on minimum or maximum phase duration can enhance the method regarding missing cycles,

while the remainder of the methodology remains the same. Also, given the estimated queue

shockwaves, one can calculate a historical value for phase durations based on the average

length of red and green intervals (except the outliers). Then long (outlier) green intervals

can be detected, which probably include missed cycles, and be decomposed to several green

and red phases, based on the historical phase durations. This provides a proxy for number
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of missed cycles and, assuming uniform arrival rate, an estimator of back of queue length.

However, this is not accurate for queue length estimation as biased information of signal

settings (e.g. several seconds lag) leads to significant queue measurement error.

The unique feature of queue shockwave profile estimation is that it provides the compre-

hensive dynamics of the urban traffic flow, which can be further applied for performance

measurement and control applications. For instance, the estimated queue shockwave profile

can be readily utilized for delay analysis (mean and distribution) and queue length estimation.

Moreover taking into account that the arrival traffic flow distribution can be estimated from

the estimated queue profile, a noteworthy application of the proposed method is vehicle tra-

jectory reconstruction, which is not limited to probe vehicles and particularly can be applied

for all vehicles. In other words, the proposed method estimates trajectories of all vehicles

given sample data of only sensor-equipped probe vehicles. Estimation of detailed trajectory of

vehicles can be further applied for (rough) emission or fuel consumption estimation models.

Estimation of vehicles trajectories also enables the method to tackle the travel time decompo-

sition problem [77], which is about how to decompose the travel time between two successive

probe data with high sampling interval (e.g. 3 min) to individual link travel time. Although the

proposed method requires a sampling interval that produces enough probe data to estimate

the queue profiles, notably it can provide the link travel time for all the vehicles and not only

for probe vehicles. Chapter 3 will introduce a method to estimate arterial route travel time

distribution based on the link travel times of probe vehicles. Consequently, the estimated link

travel times from the proposed queue shockwave estimation method provides the input to

the route travel time distribution estimation method in Chapter 3. Link and route travel time

distribution is a crucial performance index for travel time reliability models.
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3 Estimation of arterial route travel
time distribution with Markov chains

R
ECENT advances in the probe vehicle deployment offer an innovative prospect for

research in arterial travel time estimation. Specifically, our focus is on the estimation

of probability distribution of arterial route travel time, which contains more infor-

mation regarding arterial performance measurements and travel time reliability. One of the

fundamental contributions of this chapter is the integration of travel time correlation of route’s

successive links within the methodology. In the proposed technique, given probe vehicles

travel times of the traversing links, a two-dimensional (2D) diagram is established with data

points representing travel times of a probe vehicle crossing two consecutive links. A heuristic

grid clustering method is developed to cluster each 2D diagram to rectangular sub spaces

(states) with regard to travel time homogeneity. By applying a Markov chain procedure, we

integrate the correlation between states of 2D diagrams for successive links. We then compute

the transition probabilities and link partial travel time distributions to obtain the arterial route

travel time distribution. The procedure with various probe vehicle sample sizes is tested on

two study sites with time dependent conditions, with field measurements and simulated data.

The results are very close to the Markov chain procedure and more accurate once compared

to the convolution of links travel time distributions for different levels of congestion, even for

small penetration rates of probe vehicles.

3.1 Introduction

Nowadays, traffic congestion is a widespread time-consuming phenomenon in urban areas

and the primary step for improving conditions is traffic observation and data collection. Hence,

network monitoring is a crucial component in management of transportation systems for

traffic control and guidance purposes. The introduction of Intelligent Transportation System

(ITS) technologies and new sensing hardware promise significant progress in reducing the

congestion level in cities. The integration of Global Positioning System (GPS) technology

within the ITS framework introduces a new paradigm in traffic surveillance: probe vehicles.

Compared to fixed traffic sensors (e.g. inductive loop detectors), probe vehicles offer further

data like vehicle trajectory in a more convenient manner. In principle, a steadily incremental
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public deployment rate, low maintenance cost, and inherent distributed characteristics lead

to tackling GPS-equipped vehicle challenges in traffic monitoring research. Nevertheless, the

estimation methodology should not be constrained to GPS information from cars, but may be

applied to any type of Automatic Vehicle Location (AVL) mobile sensors found in abundance

in the form of commercial fleets like UPS, FedEx, taxis and transit vehicles, given the broad

existence of filters which distinguish between actual congestion and a stopping delay (see for

example [12] for transit vehicles as probes or [55, 79] for other vehicles). The chief struggle

with utilizing probe data is that travel time of a probe vehicle is principally a sample of a

random variable, i.e. travel time. This raises inquiries about the probe vehicles penetration

rate required to have a proper sample set for travel time estimation.

Travel time is a crucial index in assessing the operational efficiency of traffic networks. It

establishes a common perception among all the perspectives of individual travelers and prac-

titioners. In addition, it can be an indicator of congestion level of transport network once

compared to the free flow travel time. With respect to monitoring, reliable and efficient estima-

tion of travel time and other performance measures is still not a wide spread accomplishment

on arterials, since it requires extensive sensor infrastructure, normally found only on freeway

networks. The issue is not only that the existing monitoring infrastructure in arterials is less

dense than in freeways but also that arterial network traffic dynamics are inherently different

than these of freeways and fixed sensors cannot always provide the required level of data. The

main reasons are randomness in supply and demand of the dynamic urban network (see for

example [38]), the signaling effect (alternation of green and red phases in short time intervals),

and the characteristics of route choice (vehicles in arterials can randomly turn at intersections

and either begin or finish their trips along the street itself, which is not the case in freeways).

Meanwhile, speed of vehicles at a given time in the network is not a deterministic quantity over

space because of drivers’ behaviors (conservative vs. aggressive drivers), the spatial effect of

signals (near the stop line vs. further upstream) and temporal-spatial pockets, where average

speed is temporarily different than the widespread average, e.g. point bottleneck in a freeway

system. To simplify matters, if we track a vehicle on a freeway for 15secs we can estimate with

high level of confidence the mobility level in the time-space proximity of the vehicle. Instead,

this is not the case in arterials as there are variations in travel times even for vehicles traveling

in the same link during the same cycle length.

Reduction in travel time variability is at least as desirable as reduction in mean travel time

[87], since it decreases commuting stress and uncertainty of mode- and route-choice decision

making. Travel time variability designates the variation of various trip travel times over a

specific path. Travel time variability can be investigated from several point of views [130]:

vehicle-to-vehicle variability which corresponds to different vehicles traveling the same route

at the same time, period-to-period variability corresponding to vehicles traveling the same

route at different periods within a day, and day-to-day variability addressing the travel time

variations of vehicles crossing the same route at the same period of time on different days.

Different indexes of travel time stochasticity-reliability are presented in [93]. In this chapter,

we model the vehicle-to-vehicle variability and analyze the probability distribution of travel
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time for arterial routes (expressed as series of links). The input to the proposed model is probe

vehicles travel times of all links that are traversed and belong to the route; and the output

is the Travel Time Distribution (TTD) over the study time horizon. The developed model is

based on Markov chain to address both the traffic progression and correlation between links.

Note that the urban TTD should not be estimated for periods less than one cycle, because this

might over- or under-estimate travel times depending on the period of observation (red or

green period). Also the analysis of the travel time characteristics for a short period, e.g. 2 or 3

times the cycle length, can significantly be influenced by the size of study period. For example,

choosing the start or end of the study period at the beginning or end of the cycle could cause

drastic changes in the results [204]. However, by analysing longer study periods; we can

smooth out the traffic variations caused by time-dependent signal capacity. Nevertheless, we

stress that the period of analysis should not be too large, as in this case the spatial correlations

between links may be influenced by variant traffic regimes. In the latter case, classifying the

period of analysis to traffic regimes is required.

This chapter is organized as follows. Section 3.2 provides the state of the art of travel time

estimation. In Section 3.3, we briefly discuss the Markov chain procedure, its application in

traffic engineering, and we illustrate our motivation via an example. Then, we introduce our

proposed method in Section 3.4. The study site, data, and simulation details are presented in

Section 3.5, while results and discussion are described in Section 3.6. Finally in Section 3.7,

conclusions are drawn.

3.2 State-of-the-art of travel time estimation

There is a vast literature addressing different travel time estimation approaches for diverse ap-

plications and terms. Initial approaches for travel time estimation on signalized links include

point delay models [188, 7], speed vs. volume to capacity ratio relations, and procedures based

on the Highway Capacity Manual [71]. The latter calculates average travel time as the sum of

the running time and the intersection delay, based on a deterministic point delay model plus

some stochastic components. Such approaches are not well-suited for real-time applications,

especially for time-dependent congested conditions. The results from the application of

several conventional approaches on two arterial sites indicate that these methods produce

large differences against field measured and predicted travel times [176]. The same reference

presents a detailed review of arterial travel time models.

Recently, an analytical model was developed to estimate the travel times on arterial streets

based on 15-30 seconds flow and occupancy data provided by loop detectors and the signal

settings at each traffic signal [168]. The model considers the spatial and temporal queuing

characteristics at the traffic signals and the signal coordination to estimate travel time in

arterials. Several extensions and enhancements to the analytical model were developed and

implemented by the same authors which explicitly address the issues of long queues and

spillovers that frequently occur on arterials in urban areas [169, 56]. The model has also been
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integrated into a pilot arterial performance measurement system in California (APemS). A

similar model was also developed in [112], which utilizes the exact times that the vehicles

cross the upstream detector (from individual vehicle detector actuations).

The aforementioned approaches require precise signal phase times and instrumentation at

each intersection, which might be expensive or non-existing. Also, these studies focused on

estimation of average travel time of vehicles travelling in one cycle time. Although statistical

scalar indexes (e.g. mean, variance, percentiles, etc.) might characterize distributions to

some extent, they are not fully enlightening about travel time variability, once compared to

TTD. An alternative to characterize the TTD could be to introduce an appropriate number

of percentiles and approximate the TTD, by choosing these percentiles when sharp changes

occur in the slope of cumulative probability distribution. In this chapter, we utilize the full

TTD approach.

To address the uncertainty issue, a new trend is seen in recent travel time research. Kwong et

al. [105] developed a methodology for vehicle re-identification using wireless magnetic sensors

in arterial routes, without the need of signal settings. The high accuracy of matching vehicle

signatures between different locations provided accurate estimates of empirical travel times

(mean and distribution) for different locations. In [65], a multi-state model is employed to fit

a mixture of Gaussian distributions into travel time observations of an expressway corridor.

Each normal distribution is associated with an underlying traffic state providing quantitative

uncertainty evaluation. The multi-state mixture model results in better fitting, revealing that

TTD usually has more than one mode which is entirely dependent on time horizon of study,

demand, topology, etc. A recent work of the same group [140] tries to quantify the impact

of traffic incidents on TTD using multi-state (3 states) models demonstrating that incidents

increase the travel time variability. The results indicate that the state corresponding to the

congested regime become more dominant, yet there is no need to add a new component

to the multi-state model. A similar approach is investigated, utilizing mixtures of normal

distributions to estimate mean travel times for arterial routes with Next Generation Simulation

(NGSIM) [129] data [41].

Uno et al. [177] discuss route travel time variability using bus probe data. In pre-processing

stage of their method, a map matching procedure and a data filtering for dwell time elimina-

tion are performed. Afterwards, they decompose a route to sections with lognormal TTD to

estimate the bus route TTD. In [42] a statistical evaluation is investigated, which tries to assess

the feasibility of probe vehicles employment for collecting traffic information. The authors

provide analytical solutions about data sampling, reporting rates, and probe vehicles penetra-

tion level in a single road link without any validation. They assume a binomial distribution

for number of probe vehicles and a Poisson distribution for reporting rate, deriving formulas

for mean and variance of reports number and speed estimation, and confident reporting

intervals. Delay at signalized intersections is the main source of uncertainty in urban TTD

which is tackled in [204]. The authors propose an analytical method for estimation of an

urban link delay distribution. The results indicate a correlation between arrival time and link
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travel time under different degree of congestion. Their model demonstrates evolutions of

delay distribution as well, so that both average and variance of delay increase cycle by cycle.

Non-recurrent and peculiar events, such as incidents, lane closures, and sport events can also

cause significant deviations from recurrent conditions [104].

Sparse probe vehicles is discussed in [80] for arterial traffic estimation and short term predic-

tion of travel time. The authors propose a statistical modeling framework that captures the

evolution of traffic flow as a Coupled Hidden Markov Model (CHMM). The authors assume

that each link in the network has one state evolving over time based on a time-invariant

state transition matrix. Given the states of the spatial neighbors of the link, independence of

state transitions from all other current and past link states is assumed. They also consider

a time-invariant travel time distribution (Gaussian) for each state of each link, representing

independence of link travel time from other traffic variables, given the link state. This work also

decomposes path travel times from probe data to individual link travel times. The evaluation

is done using dataset from a taxis fleet in San Francisco, CA, as a part of Mobile Millennium

project. To model the correlation and dependency in transport networks, Rakha et al. [148]

have tried to estimate the variance of freeway route travel time by modeling correlation be-

tween segment travel time variances. Geroliminis and Skabardonis [50] also estimated the

variance of urban route travel time by assuming linear correlations between successive links

travel times. To the best of our knowledge, correlation between travel times in urban links has

not been explicitly addressed in the recent literature.

3.3 Motivation

Given all individual link TTDs, the simplest model for route TTD estimation is to aggregate

those independently. Assume a route consisted of K links with signalized intersections. The

route TTD is then computed according to:

T T DK = T T D1 ∗T T D2 ∗·· ·∗T T Dk (3.1)

(T T Di ∗T T D j )(t )
∆=

∫ ∞

−∞
T T Di (τ)T T D j (t −τ)dτ, (3.2)

where the (∗) mathematical operator expresses convolution [99] and the left term in 3.2 is

the probability density over time t for two links (i , j = 1,2, · · · ,k) given both TTDs a priori.

Evidently, the above method considers independence between link TTDs, and consequently,

any spatiotemporal correlation information is neglected.

To show the impact of correlation in estimation of TTD, we demonstrate a hypothetical “toy

example” in which there is a strong correlation between travel time data. Imagine a route,

which consists of two serial signalized links. Figure 3.1a depicts a 2D diagram in order that

each point denotes links 1 and 2 travel times of one probe vehicle. In this case, we can infer

there are 4 types of vehicles; fast in both links (left-lower part), fast in link 1 and slow in link

2 (left-upper part), slow in link 1 and fast in link 2 (right-lower part), and slow in both links
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(right-upper part). Given the link TTDs in Fig. 3.1b, the outcome of the convolution method

(convolved route TTD) is far from the real TTD.

To capture correlation patterns between link travel times, one can cluster travel times of one

link to different states, e.g. in this example two states (slow and fast) are defined for each link.

The initial probability, π, of each of the states in link 1 and the transition probabilities, P ,

between states of link 1 and states of link 2 as traffic progresses are: (numbers represent the

toy example)

π=
[
πfast

πslow

]
=

[
N (1)+N (2)

N (1)+N (2)+N (3)+N (4)
N (3)+N (4)

N (1)+N (2)+N (3)+N (4)

]
=

[
0.58

0.42

]
, (3.3)

P =
[

Pfast,fast Pfast,slow

Pslow,fast Pslow,slow

]
=

[
N (1)

N (1)+N (2)
N (2)

N (1)+N (2)
N (3)

N (3)+N (4)
N (4)

N (3)+N (4)

]
=

[
0.84 0.16

0.29 0.71

]
, (3.4)

where N (i ), i = 1, · · · ,4 is the number of points inside each cluster (as shown in Fig. 3.1a),

πa , a ∈ {slow,fast} is the initial probability of vehicles being slow or fast in link 1, and Pa,b , a,b ∈
{slow,fast} is the corresponding probability of being slow and/or fast in links 1 and 2, respec-

tively. Given 2 states for each link, there are 4 combinations of states, hereafter named as

Markov paths. Every one of 4 Markov paths has a probability of occurrence and a correspond-

ing TTD. The TTD of each Markov path refers to the convolution of partial TTD of link states

where the TTD of a Markov path is conditioned on the states of the links in the corresponding

Markov path. The partial TTD of link states is the TTD of a link conditioned on the state of that

link (The complete definition of partial TTD is given in Section 3.4.1). For the sake of brevity,

only the TTDs for Markov paths of fast-fast and slow-slow states are depicted in Fig. 3.1c

and 3.1d, respectively. At the end of procedure, the TTD of a Markov path is multiplied by the

path initial and occurrence probabilities and the mixture is calculated to find the route TTD.

The final result of estimation method is closely matched with the real TTD as it is apparent in

Fig. 3.1e.

Note that in the above example, the structure of correlation is known a priori which makes the

state definition straightforward. Nevertheless, improper state definition (erroneous clusters)

will degrade the significance of the results. Further, travel times of consecutive links in reality

might not be well-ordered as in Fig. 3.1a. Instead, they are more similar to Fig. 3.2 which makes

the state boundaries less clear and the privilege effect of partitioning less straightforward. This

contamination of data leads to a grid clustering problem, yet the whole concept remains the

same. The above example can be applied to several links using Markov chain procedure which

is briefly reviewed in next subsection. The complete version of the method is presented in

Section 3.4.

3.3.1 Markov chain procedure

Markov chain is a technique for statistical modeling of a random process in which the state of

system changes through progression. A Markov chain is entirely demonstrated with the set of
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Figure 3.1: Explanatory example about motivation of Markov chain integration into TTD estimation:
(a) 2D diagram representing four groups of vehicles, (b) convolution of mapping of all vehicles link 1
travel time and mapping of all vehicles link 2 travel time, (c) convolution of fast vehicles link 1 and 2
travel time distributions, (d) convolution of slow vehicles link 1 and 2 travel time distributions, and (e)
mixture of TTD of all groups of vehicles.
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state definition, initial probabilities and transition probabilities. The transition probabilities

are associated with the manner of state progression during the system evolution. A system

which has the Markov property satisfies the following: the conditional probability of the

system being at the next state, st+1, given the current state, st , depends only on the current

state and not on the previous states of the system.

pr{st+1 = s′|st , st−1, · · · , s1} = pr{st+1 = s′|st }. (3.5)

The Markov property empowers Markov chain to capture both probabilistic nature of travel

time and the fundamental correlated feature of successive links travel times. In other words,

traffic spatial progression in arterials is similar to a Markov chain where the current link travel

time of a vehicle depends only on the travel time of immediate upstream link, equivalent to

the right term in 3.5, which is well-matched with physics of traffic. Note that, the traffic spatial

progression designates how the moving vehicles in the arterials encounter travel time states

while traveling along links; and this definition is different from the evolution of link congestion

levels (congestion propagation).

Markov chain is utilized in vast fields of transportation research. Discrete time Markov chain

for estimation of expected freeway travel time is investigated in [198] where states correspond

to congestion level of links. The authors find the average travel time of each link both in

non-congested and congested states using field data and with consideration of transition

probabilities between different states, the route mean travel time is estimated. In [37] a

Markov chain is developed to model the effect of freeway flow breakdown and recovery in

travel time reliability. Geroliminis and Skabardonis [168] also proposed an analytical model

using Markov chain for prediction of platoon arrival profiles and queue length considering

platoon dispersion in arterials. The CHMM have been also applied in [80] for traffic estimation

and prediction.

3.4 Methodology

In the proposed model, the raw measurements are experienced individual link travel times

traversed by a set of probe vehicles. A probe vehicle path may consist of one to as many

links as the study route has, which makes the number of link travel times reported by every

probe vehicle different. With high resolution GPS data (position and time stamp), finding the

trajectory of a moving vehicle and link travel times is not a complicated task. Note that errors in

trajectories, map matching, or low resolution data are not addressed in this work. Afterwards,

travel times of all probe vehicles crossing two successive links during data collection period

are used to construct a 2D diagram. The 2D diagram is a graphical representation of vehicles

travel times joint distributions. Given a route consisting of K links, K −1 2D diagrams are

established in order to identify the Markov chain, i.e. defining its states and determining the

initial and transition probabilities. Figures 3.2(a) and 3.2(b) illustrate such a diagram for links

1-2 and links 3-4 of a study site that will be described later. Each dot represents the travel
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time of one probe vehicle in each of the two links. Figure 3.2(a) depicts a significant fraction

of vehicles crosses link 1 or 2 without any delay, but also a large variation of travel times.

Note that there is some correlation between travel times in successive links, which cannot be

expressed in a linear way (linear correlation is almost zero).
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Figure 3.2: 2D diagrams showing joint distributions of successive link travel times. (a) links 1-2, and (b)
links 3-4.

3.4.1 Markov chain identification

As 2D diagrams are constructed, states, transition probabilities, and initial state probabilities

of Markov chain should be identified. We define a state of a link as travel times in a certain

interval between two values. Let Xl = {x l
1, · · · , x l

ml−1} and Yl = {y l
1, · · · , y l

nl−1} denote sets of

boundaries in 2D diagram l (correspond to links l and l +1) producing ml and nl states for

link l and l +1, respectively. In this manner, the first state of link l indicates travel times in

[minτl , x l
1) and the last state represents travel times within [x l

ml−1,maxτl ], where τl denotes

the set of probe vehicles travel time measurements in link l . This kind of state definition

yields to rectangular clusters in 2D diagrams which is used to define initial state and transition

probabilities. A possible clustering of a 2D diagram is depicted in Fig. 3.2(b) where there are

2 states in link 1 and 4 states in link 2. The clustering procedure will be more elaborated in

Section 3.4.2.

Initial state probabilities in Markov chain are the probabilities of link 1 states which are as

follows:

π=


π1
...

πm1

=


N (1)∑m1

i=1 N (i )
...

N (m1)∑m1
i=1 N (i )

 , (3.6)

where N (i ) denotes number of data in state i of link 1 (i.e. link 1 travel times in [x1
i−1, x1

i )). To
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identify transition matrix between two successive links, transition probabilities should be

defined. The generic transition matrix between each pair of successive links is as following:

P =


p1,1 · · · p1,nl

...
. . .

...

pml ,1 · · · pml ,nl

=


N (1,1)∑n1

i=1 N (1,i )
· · · N (1,nl )∑n1

i=1 N (1,i )
...

. . .
...

N (ml ,1)∑n1
i=1 N (ml ,i )

· · · N (ml ,nl )∑n1
i=1 N (ml ,i )

 , (3.7)

pi , j = pr{Sl+1 = j |Sl = i }, (3.8)

where Sl indicates the state of travel time in link l , and N (i , j ) is the number of data points

within each rectangular cluster confined by state i in link l and state j in link l +1.

By definition of 2D diagrams, travel time observation of each link (except the first and the

last links) are used in two 2D diagrams, one as upstream link in x-axis and the other as

downstream link in y-axis. If the states for link l are identical in both 2D diagrams (l −1)

and l , i.e. Yl−1 = Xl and ml = nl , l = 1, · · · ,k, there will be Q = ∏k
l=1 ml state combinations

from origin to the destination of the route and each one of them is named as a Markov path

(violation of this condition is discussed in Section 3.4.2). For a given Markov path, all of the

transition probabilities between states of all links are multiplied to compute Markov path

occurrence probability (note that Markov property makes joint probability of each cluster of

2D diagrams independent),

pr{S1 = i1,S2 = i2, · · · ,Sk = ik } =πi1 ·pi1,i2 ·pi2,i3 · · ·pik−1,ik . (3.9)

Then we obtain a Markov path TTD using convolution of partial TTD of each link state,

assuming a conditional independence between partial TTDs (hence state definition is of great

importance to gain the conditional independence),

T T D{S1 = i1,S2 = i2, · · · ,Sk = ik } = T T D(i1)∗T T D(i2)∗·· ·T T Dik . (3.10)

T T D(il ), partial TTD of link l , is the empirical distribution (histogram) of data points con-

ditioned on the state of links l − 1, l , and l + 1, i.e. il−1, il , and il+1. In the same way, for

the first and last links this conditioning is only valid for the following and preceding links,

respectively. Finally, the route TTD is computed as a mixture of distributions such that each

primary distribution component is the TTD of a Markov path (Eq. 3.10) and the corresponding

weight of each distribution component is the path occurrence probability (Eq. 3.9),

T T DK =
Q∑

q=1
pr(Markovpathq ) ·T T D(Markovpathq ). (3.11)
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3.4.2 Clustering

The chief challenge in our method is to identify rectangular clusters properly (i.e. Xl and

Yl ) so states exhibit homogenous travel time characteristics. In other words, any type of

correlation or non-random pattern within a cluster is undesirable. Intuitive thumb rules

like travel time of free flow, near capacity, and oversaturated conditions may be utilized to

address the state identification problem. Furthermore, a heuristic grid clustering method

is introduced to determine boundaries based on the structure of 2D diagrams in order to

have more homogenous states. Although the rectangular clusters do not have the maximum

flexibility to capture the entire correlation patterns in a 2D diagram, their introduction is a

matter of traffic physics such that link states are expressed as time intervals. For example with

this approach, the probability of a driver to be fast in the next link, given that its current link

speed is slow can be directly estimated. This approach makes the proposed method to be

direct and intuitively applicable, even for transportation practitioners. Note that, utilizing

alternative methods to define the states of the Markov chain or different models for traffic

progression, e.g. Hidden Markov Models (see [125, 80]) can also be considered.

Traffic engineering guidelines

Intuitive traffic engineering rules to estimate travel time for conditions with different level of

congestion are employed to define state boundaries. For instance in uncongested regime, we

consider free flow travel time boundary (T Tff) as:

T Tff =
linklength

Vff
(1+ε) (3.12)

where Vff denotes free flow speed and ε is a coefficient, to account for the variability of drivers’

behavior (e.g. ε = 0.1). Furthermore, the second boundary which estimates the maximum

travel time in near capacity regime is R+T Tff, where R is the red interval for through movement.

The next boundary for oversaturated conditions where vehicles are delayed for more than one

cycle time can be set as C +T Tff, where C is the cycle time [169]. The major drawback of these

guidelines is that they are practical when all of the route intersections are controlled by traffic

signals. They also ignore the effect of offsets and the fact that within these boundaries some

correlation might be present. It might also be difficult to be estimated in case of actuated

traffic signals. Offsets and turning movements create sharp functions of arrival profiles and

travel time characteristics and thus lead to different boundaries in the 2D diagrams. Note that

in this case, the numbers of states are the same for all the links which makes the number of

Markov paths (Q) equal to
∏k

l=1 ml ,ml = 2,3,4.

Grid clustering

Due to the implication of travel time states as time intervals, grid clustering seems a reason-

able clustering approach. The chief trait of grid clustering method is that it uses a multi-
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dimensional imaginary grid structure which partitions the data space to hyperrectangles

(rectangles in 2D space) in order to find hidden patterns in data. Then as the next step, the hy-

perrectangles are grouped with respect to a topological-neighboring criterion and the problem

attributes to produce clusters. The grid clustering has shown to be very effective for analyzing

enormous datasets and demonstrates superior performance over fuzzy k-means and Radial

Basis Function (RBF) methods [201].

In the proposed model, we discretize the time space and draw a 1 sec × 1 sec 2D Cartesian

grid over each 2D diagram and our goal is to find a subset of boundaries in both axes to have

homogenous rectangular clusters. In other words, our objective is to identify clusters with

negligible correlation between successive links travel times, where convolution is a proper

estimator of sum of distributions. We introduce a metric to measure the discrepancy between

data of two consecutive columns (or rows) of Cartesian grid as follows (link index is omitted

for simplicity):

αc =
nr∑

u=1

∣∣∣ N (c,u)−N (c +1,u)

N (c,u)+N (c +1,u)

∣∣∣ (3.13)

where nr (or nc ) is the number of rows (or columns) of the Cartesian grid over 2D diagram l ,

which represents the range of travel time (maximum minus minimum value). Metric αc is the

measured discrepancy between columns c and c +1; N (c,u) and N (c +1,u) are the number

of data points in small squares in column c and c +1. A similar procedure should be done

for the rows of 2D diagram (αr instead of αc ). The discrepancy metric αc represents how

data in two successive columns of grid (travel time of c and c +1 for a link) are similar. The

less αc means that the distributions of travel times at columns c and c +1 of the 2D diagram

projected on the other axis (next link) is more similar. Thus, points with high αc value are

more likely to represent a drastic change in the distribution of travel time, which can be used

as an identification mark for a state boundary. Thus according to discrepancy values (αr and

αc ), we should choose a few high peak value points as state boundaries. Figure 3.3 illustrates

the discrepancy values for columns and rows of 2D diagram of Fig. 3.2(a).

The objective of the heuristic grid clustering algorithm is to generate (i) a few numbers of states

in order to have reasonable computational complexity, (ii) large enough states that can char-

acterize a traffic condition (uncongested, semi-congested, etc.), and (iii) negligible correlation

of any type within each cluster. We introduce two mechanisms to control these settings. First,

two threshold levels are defined so that the selected points (boundaries) should have a discrep-

ancy value greater than that; one static and one dynamic. The former is a multiplication of a

static factor (µ> 1) by the average discrepancy value of columns (rows), i.e. ᾱ=∑nc
u=1αu/nc .

This static threshold ensures that the selected point is a peak that is greater than a factor of

the average value, ᾱ. The latter is the product of an increasing parameter (λ< 1) by the latest

selected α value, where λ is initiated near zero and increases at each iteration. This dynamic

threshold guarantees that the boundary point candidate has a sensible discrepancy differ-

ence with previous selected boundary point. Hence using both thresholds, a large number of
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(a) (b)

Figure 3.3: Discrepancy values for (a) columns and (b) rows. The red circles show the selected data
points as boundaries and the green circles show peaks with high discrepancy values that are rejected as
boundaries (see explanation in the text).

boundaries is avoided. For example, point 90sec in Fig. 3.3(b) is rejected because its α value

is less then µᾱ. Second, the discrepancy values of β data points within the neighborhood

area are forced to zero to prevent a small size state whenever a new boundary is selected. For

example, point 21sec in Fig. 3.3(b) is rejected since it is in the vicinity of already chosen point

25sec. In addition, a few initial and final data points should be forced to zero to avoid small

states at the beginning and end of travel time interval. For instance, point 15sec in Fig. 3.3(b)

is rejected since it would create a small size state in the beginning. Note that in Fig. 3.3(a), only

one boundary is selected, as the discrepancy values do not have any further peak greater than

µᾱ after point 10sec. In this manner the procedure achieves the predefined three objectives.

We have also noticed that the effectiveness of two aforementioned mechanisms is robust to

random fluctuations of α and not very sensitive to parameter calibration. Values of the param-

eters after a fine-tuning procedure are selected as µ= 1.6 and β= 5sec. The proposed heuristic

algorithm for grid clustering performs iteratively and independently for columns and rows

to identify the state boundaries set. The pseudo code of the heuristic algorithm is as follows:

1. Compute the discrepancy values (α)

2. Loop for n = 1,2, · · ·
3. Select the highest α, i.e. αn

max

4. If (αn
max >αn−1

max ·λ) and αn
max >µᾱ) then

(a) Append the corresponding number of αn
max to the boundaries set

(b) Make α of β neighbors αn
max equal to zero

(c) Increase λ

5. Else end

6. Return

Since grid clustering algorithm operates based on each 2D diagram structural data, it is

apparent that the states of link l in the 2D diagrams l − 1 and l might not be consistent,
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i.e. Yl−1 6= Xl . Therefore some modifications of the Markov chain formulations, i.e. (3.6)–

(3.11), are needed. We consider a new Markov chain with intermediate stages such that at

the beginning of Markov chain there are link 1 states (from 2D diagram 1) then link l states

(l = 2,3, · · · ,k −1) (as downstream link from 2D diagram of links l −1 and l ), and again link l

states (as upstream link from 2D diagram of links l and l +1), and finally link k states (from

2D diagram k −1). In this manner, computing the initial state probabilities and the transition

probabilities between link l and l +1 remain the same as in (3.6)–(3.8). Note that there is

no concern about the first and the last links since they only belong in one 2D diagram. The

concern is about the intermediate links (2nd to (k−1)th), which have two different sets of states.

Let us denote them Yl−1 and Xl for link l , where Yl−1 = {y l−1
1 , · · · , y l−1

nl−1−1},Xl = {x l
1, · · · , x l

ml−1}

and τl is the set of all link l reported travel times. Figure 3.4 illustrates such intermediate stage.

Figure 3.4: Schematic of the Markov chain intermediate stage for link l .

Computing the intermediate transition probabilities for link l is modified as: (similar to

interlink transition probabilities (3.7)–(3.8))

Ṕl =


ṕ1,1 · · · ṕ1,ml

...
. . .

...

ṕnl−1,1 · · · ṕnl−1,ml

 (3.14)

ṕi , j = pr{t tl ∈ [x l
j−1, x l

j )|t tl ∈ [y l−1
i−1 , y l−1

i )} =
N

(
{t tl ∈ [x l

j−1, x l
j )∩ [y l−1

i−1 , y l−1
i )}

)
N

(
{t tl ∈ [y l−1

i−1 , y l−1
i )}

) ;

i = 1, · · · ,nl−1; j = 1, · · · ,ml ; l = 2, · · · ,k −1 (3.15)

Consequently, there will be Q =∏k−1
l=1 ml ·n1 Markov paths. For a given Markov path, the path

occurrence probability is computed similarly to (3.9):

pr{S1 = i1,S2 = i2, Ś2 = í2,S3 = i3, · · · , Śk−1 = ík−1,Sk = ik } =πi1 pi1,i2 ṕi2,í2
p í2,i3

· · ·p ík−1,ik
.

(3.16)
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And the Markov path TTD is computed similarly to (3.10):

T T D{S1 = i1,S2 = i2, Ś2 = í2, · · · , Śk−1 = ík−1,Sk = ik } = T T D(i1)∗T T D(i2 ∩ í2)∗·· ·∗T T D(ik ).

(3.17)

Finally, equation 3.11 remains valid to compute the route TTD. In the following sections, the

study sites are presented and the results are elaborated.

3.5 Study sites

3.5.1 Peachtree Street

The first selected site is Peachtree Street, an arterial in Atlanta, approximately 640 meters in

length, with five intersections, six links and two to three through lanes in each direction. The

intersections are signalized except the most north one. The speed limit on this north-south

arterial is 35 (mph) and we only study the southbound direction of traffic, which is the most

congested. The Peachtree Street dataset is a part of NGSIM program [129] which managed by

Federal Highway Administration, intended to provide a dataset of arterial vehicle trajectories

for traffic behavioral analyses. Detailed traffic data (vehicle trajectories) were collected using

video camera between 12:45 p.m. and 1:00 p.m. at a resolution of 10 frames per second on

November 8, 2006. The dataset contained comprehensive individual vehicle trajectories with

time, link, and direction stamps, from which the link travel times of vehicles are calculated.

Figure 3.5(a) shows the study area schematic.

3.5.2 Lincoln Boulevard

This study site is 1.1 (km) long stretch of a major urban arterial with speed limit of 35 (mph),

north of the Los Angeles International Airport, between Fiji Way and Maxella Ave. in the cities

of Los Angeles and Santa Monica. The study section includes five signalized intersections with

link lengths varying from 150 to 300 meters. The number of lanes for through traffic per link is

three and additional lanes for turning movements are provided at intersection approaches.

Traffic signals are all multiphase operating as coordinated under traffic responsive control as

part of the Los Angeles central traffic control system. Loop detectors are located on each lane

approximately 90 meters upstream of the intersection stop line. Detectors are also placed on

the major cross street approaches.

A field study was undertaken to obtain a comprehensive database (loop detector data, manual

turning movement counts, probe vehicles, etc.) of operating conditions. The study period

enabled us to attain data for a wide range of traffic conditions: from low volume off-peak

conditions, peak period conditions, and post-peak mid-day flow conditions. Traffic demand

is high especially during the peak hour and heavily directional with the higher through and

turning volumes in the northbound direction. For a more detailed analysis of the study
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network the reader can refer to [169]. The vehicle data (demand and turning movements every

15min) and signal timing data were incorporated into the AIMSUN microscopic simulator.

The proposed model was then applied to estimate the TTD on northbound travel direction in

a 4 hours simulation. The data sampling rate from probe vehicles is every one second and the

travel time of each vehicle at each link is recorded and treated as GPS data. The simulation

output was first compared with field data (delays and travel times) to verify that the model

reasonably replicates field conditions at the test sites. Figure 3.5(b) shows a snapshot of the

study site.

(a) (b)

Figure 3.5: Study sites, (a) Peachtree Street schematic and (b) Lincoln Blvd. snapshot.
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3.6 Results and discussion

We evaluate the proposed methodology for the through movement of both study sites. Results

for Peachtree Street are shown in Fig. 3.6. It is evident that the results of proposed method

are promising and can capture the fundamental and the most details of TTD profile. Note

that since there is no traffic signal at the first intersection, it is not possible to utilize traffic

guidelines as Section 3.4.2. For more comprehensive comparison, the Mean Absolute Error

(MAE) between the ground truth TTD and the estimated TTD is calculated:

M AE =
∑max(T T D)

u=min(T T D) |est i matedu − r ealu |
Rang e

, (3.18)

where Rang e is the longest TTDs time range (for ground truth and all estimated TTDs, max

minus min value). (It should be noted that, in this article all the calculations are discretized

with the accuracy of 1 sec. Thus, division by Range means to normalize the absolute error

between the true TTD probability mass function and the different estimated TTD probability

mass functions with various range of travel time. With different accuracy of discretization,

different definition of Range is needed. Also note that, the largest possible value of MAE is

2/Rang e.) The MAE of grid clustering TTD estimation is 13.59 ·10−4 whereas the MAE of

convolution method is 29.32 ·10−4 which shows a significant (54%) improvement. Note that

the real TTD is too spiky and the results (only of the real TTD) have been smoothed in the

graphs with a moving average of 9secs every 1sec. Another issue about TTD being spiky is that

convolution operator has the disadvantage that generally tends to produce smooth output

[43] contrary to our method which can create sharp results.

Figure 3.6: Estimation and ground truth of TTD for Peachtree Street.
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The ground truth TTD for Lincoln Blvd. case study, convolved estimation and result of our

methodology with grid clustering approach are depicted in Fig. 3.7(a). The outputs of the

proposed method using traffic guidelines with 2 and 3 states in each link are also illustrated

in Fig. 3.7(b). It is apparent that TTD is very close to the outcomes of proposed methodology

and more accurate once compared to the convolution estimation. It is worth mentioning that

the period of analysis should not be too large as it might contain variant traffic conditions. In

this case, the spatial correlations between links may be diminished by different characteristics

of traffic regimes, i.e. the grid clustering might result in different boundaries (states) for

congested and uncongested conditions. This can be inferred by comparing Fig. 3.6 and 3.7.

The superiority of grid clustering over convolution is more significant in Peachtree Street than

Lincoln Blvd., because Peachtree street data covers only 15 min of mostly invariant traffic

regime while the 4hr data of Lincoln Blvd. includes more variations.
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Figure 3.7: Estimation of TTD, (a) convolution and grid clustering methods and (b) traffic guidelines
with 2 and 3 states.

Furthermore, in reality not all vehicles are equipped with GPS devices and only a subset of

information might be available. To evaluate the robustness of the methodology, different

deployment rates of probe vehicles are studied and the results are given in Tables 3.1–3.3. The

values in parentheses in the rightmost column show the average number of states in grid

clustering method. Hence, grid clustering results to a better estimation than traffic guidelines

even with less number of states (less computation burden and complexity). Note that grid

clustering algorithm detects the states deterministically based on the spatial structure of 2D

diagrams. So for different sample sizes, different number of states is selected for every link

(usually less than 3 states). The effect of probe vehicles penetration rates on evolution of

TTD profile is shown in Fig. 3.8(a). The TTD estimation with 2% data are also depicted in

Fig. 3.8(b) demonstrating that our proposed algorithm still performs very well under sparse

probe vehicles condition and low number of states.

The same experiments are also done with less demand (75% and 60%) to investigate the effect

of demand level on outcome of TTD estimation. In all cases, the proposed methodology
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Table 3.1: MAE (×10−4) of described methods for 100% demand level in Lincoln study site, Range: 440
sec (value in parenthesis of grid clustering indicates the average number of clusters).

Probe Vehicles Convolution 2 States 3 States Grid clustering
Sample Size Markov chain Markov chain

100% 3.27 3.34 3.09 2.67 (2.875)
50% 3.32 3.45 3.18 3.00 (2.75)
20% 3.48 3.75 3.31 3.12 (2.625)
10% 3.53 3.72 3.40 2.98 (2.625)
5% 3.75 3.95 3.47 3.01 (2.875)
2% 4.09 4.89 4.44 3.63 (2.625)
1% 4.49 4.49 - 3.95 (3.125)

Table 3.2: MAE (×10−4) of described methods for 75% demand level in Lincoln study site, Range: 310
sec (value in parenthesis of grid clustering indicates the average number of clusters).

Probe Vehicles Convolution 2 States 3 States Grid clustering
Sample Size Markov chain Markov chain

100% 6.90 6.48 6.47 5.23 (2.5)
50% 7.06 6.55 6.60 5.22 (2.25)
20% 7.11 6.76 6.76 5.30 (2.375)
10% 6.90 6.82 6.78 5.88 (2.125)
5% 7.32 6.82 6.75 5.65 (2.75)
2% 7.89 7.35 - 8.05 (3)
1% 9.65 8.98 - 8.61 (2.875)

Table 3.3: MAE (×10−4) of described methods for 60% demand level in Lincoln study site, Range: 305
sec (value in parenthesis of grid clustering indicates the average number of clusters).

Probe Vehicles Convolution 2 States 3 States Grid clustering
Sample Size Markov chain Markov chain

100% 9.36 7.61 7.35 6.09 (2.5)
50% 9.36 7.84 7.60 7.22 (2.25)
20% 10.24 7.68 - 7.00 (2.625)
10% 9.39 8.06 - 7.88 (2.75)
5% 10.54 8.30 - 7.52 (2.625)
2% 10.55 10.78 - 9.54 (2.375)
1% 11.78 12.64 - 11.48 (3.5)
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Figure 3.8: TTD Estimation with, (a) different probe vehicles penetration rates and (b) 2% probe
vehicles penetration rate.

utilizing only 5% of the data, gives a better estimation than convolution (neglecting the

correlation between links) with 100% data. By comparing results of 2- and 3-states Markov

chain in Tables 3.2 and 3.3, we notice less good outcomes for 3-states compare to 2-states

contrary to results in Table 3.1. The reason is that less demand makes less congestion and

thus introducing the third state regarding to the near capacity condition is not sensible and

causes difficulties for the procedure. In addition being in the free flow regime, the third

state boundary may be higher than the maximum travel time, which makes the procedure

to fail (see last rows of Table 3.3). The results in Tables 3.1–3.3 also reveal that, with very

low penetration rates the performances of proposed grid clustering and convolution are

declining. It can be justified such that with very low penetration rate the sample size is too

small such that to identify the correlation within the data is not sensible and assuming the

total independence (convolution method) seems reasonable. In cases with so low penetration

rate, a proper (Bayesian) fusion of a priori knowledge based on the historical data and online

information based on the real-time data is a crucial future work. The ground truth, convolved,

and estimated TTD of 75% and 60% demands are depicted in Fig. 3.9(a) and 3.9(b), respectively.

It is evident that convolution method always overestimates the probability of fast and very

slow moving vehicles by producing a high peak at the beginning and a long tail.

To further investigate the proposed method and given literature attempts to approximate

the TTD with common single-state and multi-state continuous probability distributions,

the TTD of both case studies are fitted with Normal, Gamma, Log-normal, and Gaussian

Mixture Models (GMM) (with 2 components; 5 degrees of freedom) and the MAEs of these

approximations are given in Table 3.4. The advantage of proposed grid clustering estimation

over the fitting methods seems promising, given that the grid clustering utilizes the link-

level data to estimate the unknown route-level information, while the fitting methods try to

approximate the route-level TTD, which is considered known. (In addition, the results verify

the visual inspections that Lincoln Blvd. TTD resembles more the unimodal distributions
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Figure 3.9: Estimation of TTD with, (a) 75% demand and (b) 60% demand.

whereas Peachtree TTD is a multi-modal distribution.)

Table 3.4: MAE (×10−4) of estimation and fitting methods for both case studies.

Study Site Convolution Grid clustering Gamma Log normal Normal GMM
Lincoln 3.27 2.67 2.79 3.11 4.15 2.88

Peachtree 29.32 13.59 32.04 45.32 29.57 14.14

To provide more comprehensive comparisons, we do additional statistical investigation such

that the link travel time data set is split to two parts, one for estimation methods and the other

one for computing the ground truth TTD and subsequently the error metric. In this manner,

the data used for the estimation is entirely different from the base ground truth. The Lincoln

case study with 100% demand is selected and for various fractions of data we run the grid

clustering and convolution estimation methods and compare those with the TTD computed

from remaining part of data set. The average results for 5 runs are presented in Table 3.5

validating the statistical superiority of the proposed grid clustering. Considering all the facts,

incorporation of Markov chain into TTD estimation in a synergy produces promising results

which can capture the fundamental characteristic of field TTD.

Table 3.5: MAE (×10−4) of statistical tests for Lincoln case study .

Fraction of data for estimation Convolution Grid Clustering
50% 3.52 3.08
20% 3.56 3.29
10% 3.47 3.17
5% 3.79 3.29
2% 4.35 3.67
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3.7 Summary

In this chapter, we introduce an approach to address traffic progression and correlation in

arterials for travel time distribution estimation. In this method, probe vehicles provide travel

time of links of the arterial route. For each pair of consecutive links, a 2D diagram is established

to graphically represent the joint distributions of successive link travel times. Then, using these

2D diagrams, we incorporate a Markov chain procedure into the model and identify its initial

and transition probabilities from the observed data. For Markov chain state identification,

a heuristic grid clustering algorithm is also developed. The procedure is tested with various

deployment rates of probe vehicles to tackle the problem of probe vehicles sample size. Our

proposed method shows a coherent performance capturing the fundamental characteristics of

field measurements even under condition of sparse probe vehicles. The inputs to the proposed

procedure are link travel times and since they are not directly reported by probe vehicles, the

estimation of link travel times from GPS data is of interest to integrate with our method. The

method presented in Chapter 2 provides the link travel time estimations.
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4 Model predictive perimeter control
for two urban regions with MFDs

R
ECENT analysis of empirical data from cities showed that the macroscopic funda-

mental diagram (MFD) of urban traffic provides for homogenous network regions

a unimodal, low-scatter relationship between network vehicle density and network

space-mean flow. In this chapter, the optimal perimeter control for two-region urban cities

is formulated with the tool of MFDs. The controllers operate on the border between the two

regions, and manipulate the percentages of flows that transfer between the two regions, such

that the number of trips reaching their destinations is maximized. The optimal perimeter

control problem is solved by model predictive control, where the prediction model and the

plant (reality) are formulated by MFDs. Examples are presented for different levels of con-

gestion in the regions of the city and the robustness of the controller is tested for different

sizes of error in the MFDs and different levels of noise in the traffic demand. Moreover, two

methods for smoothing the control sequences are presented. Comparison results show that

the performances of the model predictive control are significantly better than a “greedy"

feedback control. The results of this chapter can be extended to develop efficient hierarchical

control strategies for heterogeneously congested cities.

4.1 Introduction

Efficient monitoring and traffic management of large-scale urban networks still remain a

challenge both for traffic researchers and practitioners. A large urban network consists mainly

of two elements, urban links and signalized intersections. Modeling the traffic flow dynamics

of each element in a large urban network with large number of links and intersections is a

complex task. One has to model the evolution of queues at each signalized intersection, and

to account for the queue dynamic interactions between adjacent intersections, i.e. capturing

the dynamics of propagation and spillback of queues due to high demand. Even if this task

is completed, a centralized control approach would be a very challenging task, not only

because of the computational complexity, but also because users might change their travel

patterns (e.g. time of departure, route choice, mode choice, etc). Hence, instead of this

micromodeling approach, the macroscopic fundamental diagram (MFD) aims at simplifying
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the micromodeling task of the urban network where the collective traffic flow dynamics of

subnetworks capture the main characteristics of traffic congestion, such as the evolution of

space-mean flows and densities in different regions of the city. The MFD can be utilized to

introduce elegant control strategies to improve mobility and decrease delays in large urban

networks, that local ones are unable to succeed.

The MFD provides for different network regions a unimodal, low-scatter relationship between

network vehicle density (veh/km) and network space-mean flow or outflow (veh/h) if conges-

tion is roughly homogeneous in the region. Alternatively, the MFD links accumulation defined

as the number of vehicles in the region and trip completion flow defined as the output flow of

the region. Network flow or trip completion flow increases with density or accumulation up

to a critical point, while additional vehicles in the network cause strong reductions in flow.

The first theoretical proposition of such a physical model was developed by [60], while similar

approaches were also initiated by [78] and [28]. The physical model of MFD was observed

with dynamic features in congested urban networks in Yokohama by [55]. This work showed

two important properties of MFD that can be utilized for management and control purposes:

(i) some urban regions approximately exhibit an MFD, (ii) the shape of the MFD is not very

sensitive to different demand patterns. Property (i) is important for monitoring purposes

as flow can be easily observed with different types of sensors while outflow is more difficult.

Property (ii) is important for control purposes as efficient active traffic management schemes

can be developed without a detailed knowledge of origin–destination (OD) tables. Other

investigations of MFD using empirical or simulated data can be found in [16], [89], [164], [120]

and others, while routing strategies based on the MFD can be found in [100].

Recent studies [51], [120], [32] have shown that networks with heterogeneous distribution

of density exhibit network flows smaller than those that approximately meet homogeneity

conditions (low spatial variance of link density), especially for high network densities. More-

over, networks with small variance of link densities have a well-defined MFD, i.e. low scatter

of flows for the same densities. A possible solution for heterogeneous networks is that they

might be partitioned to a number of more homogeneous regions with small variances of link

densities as each region will have a well-defined MFD. For more information regarding net-

work partitioning, the reader can refer to [90]. Studies [51] and [164] showed strong hysteresis

phenomena in freeways that might not disappear after partitioning. Nevertheless, the work

of [90] showed that urban networks can be partitioned in a way to decrease the degree of

heterogeneity within clusters. Partitions should not have very small size because the law of

large numbers will not apply and high scatter might exist in the MFDs. In addition, a large

number of partitions will not allow the development of simple control strategies, because

control might change the route choices and detailed ODs might be needed.

Management and control of multi-region MFDs systems can improve urban mobility, prevent

overcrowding, and relieve congestion in cities. The optimal control policy was derived for a

single MFD system in [28]. The main logic of the strategies is that they aim to decrease inflows

in regions with high densities of destinations and points in the decreased part of an MFD, and
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manage the accumulation to maintain the flow in the city on its maximum. However, in case

of multi-region cities with multiple centers of congestion and/or attraction, control policies

are more complicated and not well-understood. For stability analysis of controlling two urban

regions see [66].

Due to the scatter in the MFD, mainly in the congested regime, errors are expected between

the MFD model and the plant (reality). Therefore, an optimal open-loop control for the multi-

region MFDs system would be a sub-optimal solution compared with optimal closed-loop

control. The closed-loop control takes into account the errors between the model and the

plant by utilizing a feedback monitored-information. Furthermore, the closed-loop control

can tackle disturbances that the model was not designed for, e.g. noises in the traffic demand.

The optimal closed-loop control is obtained by implementing the model predictive control

(MPC) framework. A historical survey for industrial applications of MPC can be found in [145],

while theoretical issues of MPC can be found in [44], [17], [18], [119], [115].

The model predictive control is a receding horizon scheme, where at each time step an optimal

open-loop of the problem with finite horizon is optimized, then only the first controller is

applied to the plant and the procedure is carried out again. A receding horizon framework

has been used for optimization in different traffic control problems, e.g. ramp metering of

freeway networks in [11], [139], variable speed limits and route guidance for freeway networks

in [74], [73], signal control for large-scale urban networks in [45], [3], [111], and mixed urban

and freeway networks in [178]. The open-loop optimization in the traffic MPC models of e.g.

[74], [73] uses direct simultaneous method to transcript it into a finite-dimensional nonlinear

programming through discretization of both control and state variables, while in [139], [3] a

feasible direction method is utilized to solve the open-loop optimization problem. Overviews

of different control applications in transportation problems can be found for example in [35],

[185].

In this chapter, the optimal perimeter control problem for two-region urban cities is formu-

lated where the dynamic equations are modeled according to their MFDs. Moreover, the

optimal control solution is obtained by applying the MPC framework. The open-loop optimal

control problem is solved using direct sequential method that discretizes only the control

variables with piecewise constant controls, while the state variables are “continuous" and

integrated using the state-of-the-art methods for ODE solvers.

This chapter is organized as follows: the control problem for two-region MFDs system is

presented in Section 4.2. Then in Section 4.3, the model predictive control is formulated, the

parameters are tuned, and the control laws of a greedy controller are presented. Compari-

son results of case study examples are presented in Section 4.4 showing the performances

difference between the model predictive control and the greedy control. Finally, two dif-

ferent methods are introduced to smooth the control sequences in Section 4.5. Section 4.6

summarizes the chapter.
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4.2 Two-region MFDs system

In this chapter, a heterogeneous traffic network that can be partitioned in two homogeneous

regions is considered. A traffic network for two-region system is schematically shown in

Fig. 4.1. There are two regions Ri , i = 1,2, where each region has a well-defined MFD, the

u12(t)

q12(t)

q22(t)

q11(t)

R1

q21(t) u21(t)

R2

Figure 4.1: Two-region MFDs system: two regions R1 and R2 with four traffic demand q11(t), q12(t),
q21(t ), q22(t ) and two perimeter controllers u12(t ) and u21(t ).

periphery of the center R1 and the city center R2. Note that the geographical relative position

of these regions does not affect the dynamics of the problem, e.g. it can be two neighbors next

to each other. An endogenous traffic demand is defined as a flow that its origin and destination

are the same region, while the origin and destination of an exogenous traffic demand are

not the same. For the two-region system, there are two endogenous traffic demand in R1,

denoted by q11(t) (veh/s), and in R2, denoted by q22(t) (veh/s), and two exogenous traffic

demand generated in R1 and R2 with destination to R2 and R1 denoted by q12(t) and q21(t)

(veh/s), respectively. Corresponding to the endogenous and exogenous traffic demand, four

accumulation states are used to model the dynamic equations: ni j (t )(veh), i , j = 1,2, where

ni j (t ) is the total number of vehicles in Ri with destination to R j at time t . Let us denote ni (t )

(veh) as the accumulation or the total number of vehicles in Ri at time t , i.e. ni (t ) =∑
j ni j (t ).

The MFD is defined by Gi (ni (t)) (veh/s) which is the trip completion flow for region i at

ni (t ). The trip completion flow for region i is the sum of transfer flows, i.e. trips from i with

destination j , i 6= j , plus the internal flow, i.e. trips from i with destination i . The transfer flow

from i with destination to j is calculated corresponding to the ratio between accumulations,

i.e. Mi j = (ni j /ni ) ·Gi (ni (t)), i 6= j , while the internal flow from i with destination to i is

calculated by Mi i = (ni i /ni ) ·Gi (ni (t )). These relationships assume that trip length for all trips

within a region (internal or external) are similar, i.e. the distance traveled per vehicle inside a

region is independent of the origin and destination of the trip. For a description of different

cases the reader can refer to [52], which will not alter the methodology. Simulation and
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empirical results [55], show that the shape of MFD can be approximated by a non-symmetric

unimodal curve skewed to the right, i.e. critical density that maximizes network flow is smaller

than half the jammed density. Thus, we utilize a 3rd-order function of ni (t), e.g. Gi (ni (t)) =
ai ·n3

i +bi ·n2
i + ci ·ni , where ai , bi , ci are estimated parameters.

In our formulated problem, the perimeter controllers denoted by u12(t) and u21(t) (-) are

introduced on the border between the two regions as shown in Fig. 4.1, where the purpose is

to control the transfer flows between the two regions such that the total number of vehicles

that complete their trips and reach their destinations in the two-region MFDs system is

maximized. Since the perimeter controllers exist only on the border between the two regions,

the internal flows cannot be controlled or restricted, while the transfer flows are controlled

by the controllers such that only a ratio transfers at time t . The perimeter controllers u12(t)

and u21(t), where 0 ≤ u12(t) ≤ 1 and 0 ≤ u21(t) ≤ 1, control are the ratio of the transfer flow

that transfers from R1 to R2 and R2 to R1 at time t , respectively. It is also assumed that these

controllers will not change the shape of the MFDs. Implementations of the controllers in real

networks are discussed in the summary Section.

The criterion is to maximize the output of the traffic network, i.e. the number of vehicles that

complete their trips and reach their destinations. Therefore, the two-region MFDs control

problem with four state variables is formulated as follows (similarly to [68]):

J = max
u12(t ),u21(t )

∫ tf

t0

[
M11(t )+M22(t )

]
dt (4.1)

subject to

dn11(t )

dt
= q11(t )+u21(t ) ·M21(t )−M11(t ) (4.2)

dn12(t )

dt
= q12(t )−u12(t ) ·M12(t ) (4.3)

dn21(t )

dt
= q21(t )−u21(t ) ·M21(t ) (4.4)

dn22(t )

dt
= q22(t )+u12(t ) ·M12(t )−M22(t ) (4.5)

0 ≤ n11(t )+n12(t ) (4.6)

0 ≤ n21(t )+n22(t ) (4.7)

n11(t )+n12(t ) ≤ n1,jam (4.8)

n21(t )+n22(t ) ≤ n2,jam (4.9)

umin ≤ u12(t ) ≤ umax (4.10)

umin ≤ u21(t ) ≤ umax (4.11)

n11(t0) = n11,0 ; n12(t0) = n12,0

n21(t0) = n21,0 ; n22(t0) = n22,0
(4.12)
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where tf (s) is the final time, ni j ,0, i , j = 1,2 are the initial accumulations at t0, n1,jam and n2,jam

(veh) are the accumulations at the jammed density in R1 and R2, respectively, umin and umax are

the lower and upper bounds for u12(t ), u21(t ), respectively. Recall that Mi j = (ni j /ni )·Gi (ni (t )),

i , j = 1,2. The equations (4.2)–(4.5) are the conservation of mass equations for ni j (t), while

the equations (4.6), (4.7), (4.8), and (4.9) are the lower and upper bound constraints on

accumulations in R1, R2, respectively.

4.3 Model Predictive Control for two-region MFDs problem

The two-region MFDs problem (4.1)–(4.12) aims at findng the perimeter controllers, i.e. ratios

of transfer flows of R1 and R2, that maximize the number of vehicles completing their trips

(reach their destinations). This problem is an optimal control problem with a nonlinear

objective function (4.1) and dynamic equations (4.2)–(4.5), inequality state constraints (4.6)–

(4.9), and control constraints (4.10)–(4.11). Moreover, errors are expected in the modeling

due to the scatter in the MFDs, mainly in the congested regime and of the demand profile.

Therefore, the optimal control problem is solved by applying the model predictive control

(MPC) approach which has the ability to handle the state and control constraints, and the

errors in the MFDs modeling. Furthermore, the MPC is a real-time implementable solution

that can be utilized for real-time urban traffic applications.

The MPC is a form of rolling horizon control in which the current control variables are obtained

by solving a finite horizon open-loop optimal control problem at each time step with a

feedback current state from the plant as the initial state of the model, see Fig. 4.2. The

open-loop optimization problem yields a sequence of optimal control variables after several

iterations of solving nonlinear programming, and the first control in this sequence is applied

to the plant, then the procedure is carried out again. This scheme of feedback control, i.e. the

feedback loop of states from the plant to the model as initial states for the optimization, can

handle the errors between the prediction model and the plant.

4.3.1 Two-region MFDs prediction model and optimization problem

The MPC controller obtains the optimal control sequence for the current horizon by solving

an optimization problem formulated with prediction model, see bottom of Fig. 4.2.

The prediction model used in the MPC scheme is formulated with equations (4.2)–(4.5). The

dynamic equations predict the evolution of accumulations for the two regions with MFDs

given the initial accumulations and future values of perimeter controllers and demand.

In this chapter, we follow the direct methods to solve the optimization problem (other solution

methods include dynamic programming and indirect methods). The direct methods are most

commonly used methods due to their applicability and robustness, where their basic principle

is “first discretize and then optimize”. These methods can handle inequality constraints and
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G̃2(n2)G̃1(n1)

dñ(t)
dt = f̃ (ñ(t), u(k), q̃(t), ε(k))

ε(kc)

G2(n2)G1(n1)

dn(t)
dt = f (n(t), u(k), q(t))

Two-region MFDs prediction model

Maximizing the number of trips ended

u∗(kc) ñ(tkc )

Two-region MFDs plant

MPC controller
kc = kc + 1

n(tkc−1) = ñ(tkc−1)
tk−1 ≤ t ≤ tk , k = kc , · · · , kc + Np − 1

tkc−1 ≤ t ≤ tkc

u(kc )
u(kc + 1)

u(kc + Np − 1)

...

(Open-loop optimization problem)

q(t)

q̃(t)

Figure 4.2: Model predictive control scheme for two-region MFDs system.

use the state-of-the-art methods for nonlinear problem solvers.

The open-loop optimal control problem is solved using the direct sequential method, also

referred to as single-shooting or control vector parameterization (CVP) in the literature, e.g.

[172], [13]. The direct sequential method transcripts the open-loop optimal control problem

into a finite-dimensional nonlinear problem through discretization of the control variables

only with piecewise constant controls, while the ODEs are embedded in the nonlinear problem,

i.e. numerical integration is used between the time steps. A schematic description of the

direct sequential method is shown in Fig. 4.3. Note the continuous dynamics of the state

variables ni j (t), i , j = 1,2. Let Np (-) be the finite-dimensional horizon which starts from

the current control step kc . At each discrete time step k, kc ≤ k ≤ kc +Np −1, there are two

perimeter control variables: u12(k) and u21(k) which are assumed to be constant during

the time period tk−1 ≤ t ≤ tk . For online computational complexity, the number of control

variables that should be optimized are reduced to a horizon smaller than Np, called the

control horizon Nc where Nc ≤ Np. The rest of the control variables, i.e. u12(k) and u21(k) for

kc +Nc ≤ k ≤ kc +Np −1 are assumed to be equal to the control variables at the end of the

control horizon.

Following the direct sequential method, the control vector is discretized and the two-region

MFDs optimal control problem (4.1)–(4.12) is approximated by a finite-dimensional nonlinear

programming problem in the piecewise constants controls variables. First, the equations
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tkc−1 tkc+Nc−1

u12(k)

u21(k)

u12(kc + Nc − 1)
u21(kc + Nc − 1)

tkc+Np−2

kc k
tkc+Np−1

kc + Nc − 1
kc k kc + Nc − 1 kc + Np − 1

tkc tk−1 tk

n12(tkc−1)
n21(tkc−1)
n22(tkc−1)

n11(tkc−1) n12(t)

Time

n11(t)n21(t)
n22(t)

Control horizon
Prediction horizon

u12(kc)
u21(kc)

Accumulations

Figure 4.3: Direct sequential method for solving the open-loop optimization problem.

of the prediction model (4.2)–(4.5) are re-written in a compact form with discrete control

variables, at time step kc with finite-dimensional Np as follows:

dn(t )

dt
= f (n(t ),u(k),q(t )) (4.13)

tk−1 ≤ t ≤ tk , k = kc ,kc +1, · · · ,kc +Np −1

where n(t ) = [n11(t ),n12(t ),n21(t ),n22(t )]T, q(t ) = [q11(t ), q12(t ), q21(t ), q22(t )]T,

u(k) = [u12(k),u21(k)]T. Then, the Lagrange form (4.1) is transferred into Mayer form by

introducing an additional state variable z(t ), and an additional differential equation dz(t )/dt .

Moreover, the path constraints (4.6), (4.7), (4.8), and (4.9) must hold for all t (continuous

variable) where t0 ≤ t ≤ t f , hence the number of constraints would be infinite. However,

several methods are efficient to deal with path constraints in the sequential method, e.g.

transcription as integral constraints. The optimization problem is now formulated as follows:

min
u(kc ),u(kc+1),··· ,u(kc+Np−1)

−z(tkc+Np−1) (4.14)

subject to

dn(t )

dt
= f (n(t ),u(k),q(t )), (4.15)

dz(t )

dt
= M11(t )+M22(t ), (4.16)

umin ≤ u(k) ≤ umax, (4.17)

where tk−1 ≤ t ≤ tk , k = kc ,kc +1, · · · ,kc +Np −1,

u(k) = u(kc +Nc −1) k = kc +Nc , · · · ,kc +Np −1, (4.18)

76



Chapter 4. Model predictive perimeter control for two urban regions with MFDs

kc+Np−1∑
k=kc

∫ tk

tk−1

max
{

0;−n11(t )−n12(t )
}2

dt ≤ ε, (4.19)

kc+Np−1∑
k=kc

∫ tk

tk−1

max
{

0;−n21(t )−n22(t )
}2

dt ≤ ε, (4.20)

kc+Np−1∑
k=kc

∫ tk

tk−1

max
{

0;n11(t )+n12(t )−n1,jam

}2
dt ≤ ε, (4.21)

kc+Np−1∑
k=kc

∫ tk

tk−1

max
{

0;n21(t )+n22(t )−n2,jam

}2
dt ≤ ε, (4.22)

where umin = [umin,umin]T, and umax = [umax,umax]T. Note that the path constraints (4.6),

(4.7), (4.8), and (4.9) are reformulated as integral constraints (4.19), (4.20), (4.21), and (4.22),

respectively, with relaxation where ε> 0 a small nonnegative constant.

4.3.2 Two-region MFDs plant

The dynamic equations of the two-region MFDs plant differ from the prediction model (4.2)–

(4.5) as they include errors in the MFDs for both regions and noises in the traffic demand; see

top of Fig. 4.2 for an illustration. Hence, the evolutions of the accumulations over time are

not the same for the prediction model and the plant, which are considered to have different

magnitudes and profile (biased and unbiased). Thus, the plant and the model accumulation,

MFD and demand can significantly differ.

Errors in MFDs

Let us denote the macroscopic fundamental diagrams with errors for R1 and R2 by G̃1 and G̃2,

respectively. The errors in the MFDs result errors in accumulations of the plant which are de-

noted by ñi j (t ), i , j = 1,2 to distinguish them from the accumulations of the prediction model

ni j (t ). Note that ñi (t ) =∑
j ñi j (t ). The variance of the MFD increases with the accumulations

in the region, as described in [58], see top of Fig. 4.2. Reasons for this variance are asymmetric

O-D and route choices, which increase the heterogeneity in the distribution of congestion

within a region. It is assumed that the variance of the macroscopic fundamental diagram is

uniformly distributed where the error at step k is calculated at the time instant tk−1

ε(ñ1(tk−1)) ∼U
(−α1 · ñ1(tk−1), α1 · ñ1(tk−1)

)
(4.23)

ε(ñ2(tk−1)) ∼U
(−α2 · ñ2(tk−1), α2 · ñ2(tk−1)

)
(4.24)

where α1 and α2 (1/s) are given parameters. It is assumed that the errors ε(ñ1(tk−1)) and

ε(ñ2(tk−1)) are constant during the time step tk−1 ≤ t ≤ tk , therefore the MFDs of the plant G̃1
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and G̃2 for tk−1 ≤ t ≤ tk are:

G̃1(ñ1(t )) =G1(ñ1(t ))+ε(ñ1(tk−1)) (4.25)

G̃2(ñ2(t )) =G2(ñ2(t ))+ε(ñ2(tk−1)) (4.26)

Unbiased and biased noises in demand

Two different types of noise in demand are considered: (i) unbiased noise with Gaussian distri-

bution, and (ii) biased noise with a sudden jump in the demand profile for a time period. In

both cases, let us denote the traffic demand q(t ) with noises as q̃(t ) = [q̃11(t ), q̃12(t ), q̃21(t ), q̃22(t )]T.

Unbiased demand noises represent random and recurrent variation of demand from day to day,

because travel patterns, while biassed demand noises might represent cases of non-recurrent

events (special events, accidents, etc).

The unbiased noises in demand are assumed to have Gaussian distribution as follows:

q̃i j (t ) = max
(
qi j (t )+N (0,σ2

i j ),0
)

(4.27)

where i , j = 1,2 and σ2
i j (veh/s)2 is the variance for the traffic demand qi j (t ).

Substituting the MFDs with errors (4.25) and (4.26) and the demand with noises q̃(t) in the

dynamic equations (4.2), (4.3), (4.4), and (4.5), one gets the two-region MFDs plant in a

compact form, see also Fig. 4.2,

dñ(t )

dt
= f̃ (ñ(t ),u(k), q̃(t ),ε(k)) (4.28)

where ε(k) = [ε(ñ1(tk−1)),ε(ñ2(tk−1))]T.

4.3.3 “Greedy” control

In order to investigate and estimate the performance of the MPC controller, comparison

results are done with a “greedy” control (GC) for different level and type of errors. The greedy

control is a state feedback control that its policy is determined by the current accumulations

n1(t) and n2(t). Let n1,cr and n2,cr (veh) be the accumulations that maximize G1 and G2,

respectively. The greedy control is designed according to the following policy: if both regions

are uncongested, i.e. n1(t) ≤ n1,cr and n2(t) ≤ n2,cr, then both controllers should maximize

the transfer flows, therefore [u12(t ),u21(t )] = [umax,umax]. If one region is congested and the

other one is uncongested, i.e. n1(t ) ≤ n1,cr and n2(t ) > n2,cr, or, n1(t ) > n1,cr and n2(t ) ≤ n2,cr,

then the controllers should minimize the transfer flow to the congested region and maximize

the transfer flow to the uncongested region. If both regions are congested, i.e. n1(t) > n1,cr

and n2(t ) > n2,cr, then controllers should minimize the transfer flow to the “more congested”

region, and maximize the transfer flow to the “less congested" region, e.g. if n1(t)/n1,jam >
n2(t )/n2,jam, then R1 is more congested than R2, therefore [u12(t ),u21(t )] = [umax,umin]. The
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greedy control law is summarized in Table 4.1.

Table 4.1: Greedy controllers u12(t ) and u21(t ) policy.

[u12(t ),u21(t )] n1(t ) ≤ n1,cr n1(t ) > n1,cr

n2(t ) ≤ n2,cr [umax,umax] [umax,umin]

n2(t ) > n2,cr [umin,umax]
[umax,umin] if n1(t )

n1,jam
> n2(t )

n2,jam

[umin,umax] otherwise

4.3.4 Tuning the prediction and control horizons parameters

The performance of the MPC controller is affected by the prediction horizon Np and the

control horizon Nc. The prediction horizon Np should be large enough such that the model

can accurately predict the accumulations of the plant corresponding to the control variables.

Increasing the prediction horizon improves the performances of the MPC controller, however,

large Np increases the optimization computing time which may add some barriers for online

implementation, i.e. the control actions cannot be implemented in the current step if the

computing time corresponding to large Np is larger than the time duration of the control time

step. Similar considerations regarding the tradeoff between computation complexity and

results accurately should be done for the control horizon Nc.

The perimeter controllers can be actuated by signalized intersections placed in the border

between the two regions of the urban network, i.e. the perimeter control sequences can be

applied by choosing appropriate timing plans for the signalized intersections. The effect of

perimeter control to the rest of the network and its MFDs are discussed later. Let us assume

that the signalized intersections have a fixed common cycle length, e.g. equals to 60 (s). Then

the time duration of the time step kc is set to be equal to the length of the cycle, i.e. tk−tk−1 = 60.

This duration is much larger than the time-consuming for solving the open-loop optimization

problem (a few seconds).

Tuning the MPC parameters Nc and Np is done for several examples and similar results have

been obtained. In the following, the tuning analysis is presented only for one of the case study

examples as shown in Fig. 4.4. More information for the case study examples is presented in

the next section.

The MPC parameters Np and Nc are tuned according to the relative improvement of the

trip completed corresponding to MPC controller compared with the greedy controller, i.e.

improvement (%) = (JMPC − JGC)/JGC, where J is computed according to (4.1). As shown in

Fig. 4.4, the improvement of the results is decreasing as the prediction horizon Np increases,

however for Np ≥ 20 only minor improvement is achieved. The MPC controller is less sensitive

to the control horizon Nc, where Nc ≥ 2 yields similar results for trip completion. It is shown

that Nc = 1 yields to a low MPC performance since the open-loop optimization problem is

more constrained. Therefore, the parameters are set as Np = 20 and Nc = 2 for all subsequent
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Figure 4.4: Tuning parameters Np and Nc for MPC controller.

case study examples. Note that for small prediction horizon Np < 6 the MPC controller does

not perform well compared with the greedy controller.

4.4 Case study examples

In this section, results of several case study examples are presented to explore the features of

the MPC controller under different conditions. The examples aim at examining the efficiency

of MPC controller in congested and uncongested regimes which may vary with time because of

variations in demand and the MFDs. Hence, examples with different levels of demand and sizes

of MFDs are presented. Furthermore, the robustness of the MPC and greedy controllers are

also examined by introducing different uncertainties, i.e. different levels of error in MFD, and

noises in demand. For all examples presented in this chapter, the selected MPC parameters are

Np = 20 and Nc = 2, the lower bound umin = 0.1, and the upper bound umax = 0.9. In examples

1−4, the MFDs for both regions are the same where Gi (ni (t )) = (1.4877·10−7 ·n3
i −2.9815·10−3 ·

n2
i +15.0912 ·ni )/3600, i = 1,2, n1,cr = n2,cr = 3400 (veh), G1(n1,cr) = G2(n2,cr) = 6.3 (veh/s),

n1,jam = n2,jam = 10000 (veh). This shape is consistent with the MFD observed in Yokohama,

see [55]. Note that the shape of the MFD is not predetermined in the problem formulation. In

example 5, the MFD of region R1 is increased by 25% as shown in Fig. 4.8(d) to test the control

problem with two different MFDs.

In example 1, both regions R1 and R2 are initially congested, i.e. the initial accumulations

n1(t0) = 5400 and n2(t0) = 4000 are in the decreasing part of the MFD, where n2(t0) is 18%

larger than ncr,2, while n1(t0) is 59% larger than ncr,1, which means that region R2 operates

close to capacity conditions. The time varying demands shown in Fig. 4.5(d) simulate a

morning peak hour with high demand q12(t ) for trips from R1 to R2, i.e. from the periphery to

the city center. The evolution of accumulations over time ni j (t ), 0 ≤ t ≤ 3600, corresponding to

the MPC controller are presented in Fig. 4.5(a), while the evolutions presented in Fig. 4.5(b) are

corresponding to the greedy controller, see Table (4.1). Note that at the beginning of the control

process, both MPC and greedy controllers decrease the total accumulation in R1, n1(t ), and

keep the total accumulation in R2, n2(t ), unchanged. Afterwards, the MPC controller tries to
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decrease n2(t ) by changing u21(t ) from 0.1 to 0.55 to let more vehicles enter to R1. In contrast,

the greedy controller brings the two accumulations equal, i.e. n1(590) = n2(590) = 4125 (veh),

and after that instance, both region accumulations increase together while the chattering

behavior occurs as a result of switching control between umin and umax according to Table (4.1);

note the saw lines of accumulations after t = 600 (s).

The cumulative trip completion corresponding to MPC and greedy controllers are shown in

Fig. 4.5(c), while the control sequences u12(t) and u21(t) are shown in Fig. 4.5(e). The third

polynomial MFDs G1(n1) and G2(n2) are coincided as shown in Fig. 4.5(f), while the circle

points are the calculated G̃1 and G̃2, see (4.25) and (4.26). In Fig. 4.5(f), it is assumed that there

are no errors in both MFDs where α1 =α2 = 0, see (4.23) and (4.24).
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Figure 4.5: Example 1: regions R1 and R2 are initially congested (without errors in MFDs). (a) Region
accumulations with MPC, (b) Region accumulation with GC, (c) Cumulative trip completion for MPC
and GC, (d) time-varying demand, (e) MPC and GC control actions, and (f) MFD with MPC.

The MPC performances for small (α1 =α2 = 0.2) and large (α1 =α2 = 1) errors in the MFDs are

shown in Fig. 4.6(a) and Fig. 4.6(b), respectively. Comparison between the three levels of error,

i.e. without errors in Fig. 4.5(e), small and large errors in Fig. 4.6, shows that the controller

u21(t) becomes less smoother when the errors in the MFD of the plant (reality) increase.

Note that the performance of the MPC is not significantly affected when large errors in the

MFD occur. Even if the macroscopic traffic congestion modeling is a rough approximation

of urban networks this methodology can still improve traffic conditions. Nevertheless, non

smooth controllers might be difficult to apply in reality and might create heterogeneities in

the boundary and scatter in the MFDs. We discuss smoothing issues in Section 4.5.
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(a) Example 1: small errors in MFD
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(b) Example 1: large errors in MFD

Figure 4.6: Example 1 control actions and MFDs. (a) small errors in MFD (α1 =α2 = 0.2) and (b) large
errors in MFDs (α1 =α2 = 1).

In example 1 the demand is high such that at the end of the control process both regions

are congested (with greedy controller regions move forward to face gridlock). The effect of

demand on the MPC controller is scrutinized by examples 2 and 3. These examples have the

same initial accumulations of example 1, however, the demands qi j (t ) for examples 2 and 3

are proportionally decreased by 16% and 32%, respectively, compared with the demand for

example 1 in Fig. 4.5(d). The performance of GC and MPC for different errors in demand and

MFDs are summarized in Table 4.2. The results shown in the table are an average over 10 runs

for small and large errors, and low and high noises. We show the cumulative trip completion

by the end of the simulation and the difference in the total delays (veh·s) as this is expressed

by the the area between the MPC and GC cumulative trip completion curves in the figures,

e.g. Fig. 4.5(c). In example 1 there are 22−24% savings in total, which represent on average

5.5 (min) savings per traveler trip.

Table 4.2: The trip completion corresponding to MPC and GC, and the total delay difference.

Example 1
without errors (α1 =α2 = 0) small errors (α1 =α2 = 0.2) large errors (α1 =α2 = 1)

MPC GC MPC-GC MPC GC MPC-GC MPC GC MPC-GC

(veh ·103) (veh ·103) (veh · s ·103)
without noises 23.55 17.07 7791.6 (22.5%) 23.63 17.11 7883.5 (22.7%) 24.04 17.21 8370.0 (24.1%)

low noises 23.37 16.78 7864.3 (22.9%) 23.48 16.82 7997.3 (23.3%) 23.93 17.00 8379.5 (24.3%)
high noises 22.80 16.07 7892.6 (23.5%) 23.02 16.35 7931.9 (23.4%) 23.34 15.84 9146.5 (27.6%)

Example 2
without errors (α1 =α2 = 0) small errors (α1 =α2 = 0.2) large errors (α1 =α2 = 1)

MPC GC MPC-GC MPC GC MPC-GC MPC GC MPC-GC
without noises 24.11 20.49 6536.8 (17.3%) 24.12 20.51 6548.8 (17.3%) 24.13 20.56 6664.4 (17.6%)

low noises 24.15 20.43 6654.2 (17.7%) 24.15 20.47 6666.2 (17.7%) 24.17 20.56 6741.1 (17.9%)
high noises 24.29 20.28 6885.2 (18.4%) 24.30 20.34 6899.7 (18.4%) 24.33 20.45 6966.9 (18.6%)

Example 3
without errors (α1 =α2 = 0) small errors (α1 =α2 = 0.2) large errors (α1 =α2 = 1)

MPC GC MPC-GC MPC GC MPC-GC MPC GC MPC-GC
without noises 21.70 21.63 1789.3 (4.4%) 21.70 21.64 1736.1 (4.2%) 21.70 21.64 1836.7 (4.5%)

low noises 21.78 21.69 1923.3 (4.7%) 21.78 21.69 1985.8 (4.9%) 21.78 21.70 2051.6 (5.0%)
high noises 22.11 21.94 2466.7 (6.1%) 22.11 21.94 2490.4 (6.1%) 22.11 21.95 2578.9 (6.4%)

Example 4
without errors (α1 =α2 = 0) small errors (α1 =α2 = 0.2) large errors (α1 =α2 = 1)

MPC GC MPC-GC MPC GC MPC-GC MPC GC MPC-GC
without noises 24.40 22.72 1143.7 (2.6%) 24.40 22.78 1135.4 (2.6%) 24.43 22.96 1120.4 (2.5%)

low noises 24.35 22.61 1200.0 (2.7%) 24.36 22.66 1204.5 (2.7%) 24.39 22.85 1192.8 (2.7%)
high noises 24.25 22.26 1439.3 (3.3%) 24.29 22.31 1435.9 (3.3%) 24.28 21.85 2032.9 (4.7%)

Example 5
without errors (α1 =α2 = 0) small errors (α1 =α2 = 0.2) large errors (α1 =α2 = 1)

MPC GC MPC-GC MPC GC MPC-GC MPC GC MPC-GC
without noises 27.37 21.77 9596.6 (23.3%) 27.37 21.82 9576.3 (23.2%) 27.38 21.93 9615.9 (23.2%)

low noises 27.40 21.60 9784.1 (23.8%) 27.37 21.67 9739.1 (23.7%) 27.38 21.85 9705.4 (23.5%)
high noises 27.37 21.09 10249.1 (25.3%) 27.38 21.12 10282.5 (25.4%) 27.41 21.31 10284.0 (25.3%)

Comparing examples 1, 2, and 3, see Fig. 4.5(c) and Table 4.2, we notice the advantage of

MPC controller compared to greedy controller according to the total delay (veh·s) that would

be obtained if the greedy controller is used instead of the MPC controller. The differences
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between the total delays are proportional to the congestion level, i.e. in uncongested situation

(the current accumulations are below the jam accumulations and the future demand is not

going to change them) the performance of the greedy controller is almost the same as the

MPC controller, and the total delay difference is almost zero.

In example 4, in contrast to other examples, both regions R1 and R2 are initially uncongested,

i.e. the initial accumulations are in the increasing part of the MFD, while at the end of the

control process both regions are congested as shown in Fig. 4.7 because of high level of time-

varying demand. The accumulation profiles for both MPC and greedy controllers show the

same trend in uncongested regime. Whereas, once the system reaches to the critical switching

point, a significant difference is seen between MPC and greedy controllers. It can inferred that

when the regions become more congested the difference between MPC and greedy controllers

is more apparent.
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Figure 4.7: Example 4: regions R1 and R2 are initially uncongested and finally congested. (a) Region
accumulations with MPC, (b) Region accumulations with GC, and (c) MPC and GC control actions.

In example 5 the region R1 MFD and its corresponding internal demand q11(t), as shown

in 4.5(d), are increased by 25%. The MFDs for this example are depicted in Fig. 4.8(d), while

the MFDs for examples 2, 3, and 4 are shown in Fig. 4.8(a), (b), and (c), respectively.
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Figure 4.8: The MFDs for both regions without errors in the MFDs or noises in the demands for (a)
example 2, (b) example 3, (c) example 4, and (d) example 5.
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In addition, the performance of MPC controller encountering unbiased and biased noises in

demand is investigated. Example 1 with high unbiased noises in demand (σi j = 0.5, i , j = 1,2,

see (4.27)) is illustrated in Fig. 4.9. The overall results of MPC remain similar, however, the

corresponding applied MPC shows more fluctuations than the base example 1. The differences

between the trip completion corresponding to MPC and greedy control without errors, with

small (α1 =α2 = 0.2), and large errors (α1 =α2 = 1) in the plant MFDs and without noises, low

(σi j = 0.25, i , j = 1,2) and high (σi j = 0.5, i , j = 1,2) unbiased noises in demand profile are

also summarized in Table 4.2.
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Figure 4.9: Example 1: high unbiased noise in demand. (a) Region accumulations with MPC, (b)
Demand with noise, (c) Cumulative trip completion for MPC and GC, and (d) MPC and GC control
actions.

In Fig. 4.10, a biased noise in demand which occurs at time instant 1200 (s) for duration of

600 (s) is added to the base setup of example 1, see Fig. 4.10(b). The MPC controller does not

receive the information of the sharp change in demand. As Fig. 4.2 shows, the input to the MPC

controller is the demand without any noises, which can be estimated with traditional methods.

Nevertheless, it results in a similar performance, whereas greedy controller makes both regions

to gridlock (it can be inferred from almost horizontal ending part of greedy controller trip

completion profile, see Fig. 4.10(c)). Note that the MPC profile in Fig. 4.10(d) is identical to

Fig. 4.5(e) for times before 1200 (s) and after that with decreasing u12(t ) from umax, the MPC

can handle the unbiased sudden augmentation in demand which has a great impact on n2(t )

accumulation, see Fig. 4.10(a). The results also show that the trip completion corresponding

to MPC are similar comparing between unbiased noise (23.49 (veh ·103)) and without noise in

demand (23.55 (veh ·103), see Table 4.2) for no errors in MFDs case. However, large differences

are obtained for GC as the trip completion decreased from 17.07 to 13.97 (veh · 103), and

the total delay difference increased from 7791.6 (veh · s ·103) (22.5%) to 10684.3 (veh · s ·103)

(33.2%).

The results shown in this section imply that the MPC controller is superior for all examples

with different levels of error in MFD and noise in demand, biased or unbiased.
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Figure 4.10: Example 1: biased noise in demand. (a) Region accumulations with MPC, (b) Demand
with noise, (c) Cumulative trip completion for MPC and GC, and (d) MPC and GC control actions.

4.5 Smoothing control

In the previous section, the results of various examples have shown that the control values of

two successive steps may significantly vary, e.g. see Fig. 4.9(d), especially in cases of demand

variations which are more realistic. These large jumps make the implementation of control

policies difficult for real cases, they might jeopardize safety and might increase the hetero-

geneity of congestion distribution, which can also result in highly-scattered MFDs. Thus, one

would like to limit the change (jump) in the control values and smooth the control sequences

over the control process. In this section, two different methods are introduced to smooth the

control sequences: (i) imposing control constraints and (ii) modifying the objective function.

4.5.1 Constraints for smoothing control

One method to smooth the control sequences resulting from MPC is to impose smoothing

control constraints to the optimal open-loop problem (4.14)–(4.22) over the control horizon

Nc. The imposed smoothing control constraints that limit jumps in the control sequence up

to ujump (−) are as follows:

|u12(k)−u12(k −1)| ≤ ujump (4.29)

|u21(k)−u21(k −1)| ≤ ujump (4.30)

for k = kc ,kc+1, . . . ,kc+Nc−1, where ujump is a given parameter, and u12(kc−1) and u21(kc−1)

are the applied controls in the previous horizon.

In Section 4.4, we note that MPC for example 1 with high noise in demand profile is very

jumpy. To smooth the control sequences of MPC, we utilize the MPC formulation with the

confining constraints on control (4.29) and (4.30). The results of two values ujump = 0.1 and

ujump = 0.2 are shown in Fig. 4.11(a) and (b), respectively. Both of them yield similar results to

the unsmoothed example 1, see Fig. 4.9(a), however, control profiles are smoother and show

an identical trend. This test also revels that the MPC formulation is robust to selection of ujump

value. It is not only a theoretical tool, but it can also have direct applications in the field.
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Figure 4.11: Smoothing control by imposing constraints with: (a) ujump = 0.1, and (b) ujump = 0.2.

4.5.2 Modified objective function

The second method to smooth the control sequences is done by introducing a tradeoff between

the objective function, i.e. the maximum number of vehicles that complete their trips, and

the sum of the square absolute difference between each two control sequences, see e.g. [1].

Therefore, the objective function (4.14) in the optimal open-loop problem (4.14)–(4.22) is

modified as follows:

min
u(kc ),··· ,u(kc+Np−1)

{
− z(tkc+Np−1)+β

kc+Nc−1∑
k=kc

(
|u12(k)−u12(k −1)|2 +|u21(k)−u21(k −1)|2

)}
(4.31)

where β is the weight on control sequence changes.

The role ofβ in (4.31) and ujump in (4.29) and (4.30) are similar in the sense of making a balance
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between desired smoothness and trip completion. Nevertheless, calibration of ujump is easier

than β since it represents a physical measure.

Similarly, the same example is chosen for smoothing via modifying the objective function.

Figure 4.12 shows the results where each column corresponds to β = 1,10,50,and 200. It

is apparent that the higher the β the smoother is control profile and the less is objective

value. For this specific example β= 10 produces the best trade-off between smoothness and

optimality. Nevertheless, the value of β does not have a direct physical meaning (as ujump

does) and it might require additional calibration in the field. We tried to apply this approach

in the other examples, and the appropriate value of β to obtain smooth control and efficient

condition was varying. The first approach gave more robust results.
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Figure 4.12: Smoothing control by modified objective function (4.31) with: (a) β = 1, (b) β = 10, (c)
β= 50, and (d) β= 200.

4.6 Summary

The optimal perimeter control for two urban regions with MFD representation was formulated

and solved by implementing a model predictive control scheme. Comparison results between

87



Traffic modeling, estimation and control for large-scale congested urban networks

the model predictive control and a greedy control show that the model predictive control is

superior for all numerical examples presented. These results can be of great importance to

practitioners and city managers to unveil simple and robust signal timing planning in such a

way that maximize the network capacity and serve the maximum number of people under high

demand conditions. The results of this chapter can be utilized to develop efficient hierarchical

control strategies for heterogeneously congested cities. A network can be partitioned in

homogeneous regions and optimal control methodologies can identify the inter-transfers

between regions of a city to maximize the system output, by utilizing the MPC developed in

this chapter.

While there are vast contributions in traffic control problems for freeways through ramp me-

tering, the area of control for large urban regions or mixed networks still remains a challenge.

Recent findings (e.g. [164], [51]) have shown that MFDs might not be a realistic representation

for freeway systems, so in case of mixed arterial-freeway networks, an MFD formulation for

the arterial can be combined with a mesoscopic model for the freeway (e.g. a 1st or 2nd

order traffic flow model) to describe the dynamics of the system and propose coordinated

optimization schemes with ramp metering and perimeter control. Our research provides tools

to shed some light toward this direction and Chapter 5 investigates this research problem.

In addition, the effect of density heterogeneity on the MFD is an essential modeling extension,

since traffic congestion propagates dynamically over time and space and homogenous con-

ditions might not be valid. To this end, Chapter 6 introduces a functional form to model the

effect of heterogeneity on the MFD based on a field data set analysis. Further in Chapter 6, the

heterogeneity effect is incorporated into the MFD modeling and perimeter control while two

models with different levels of aggregation are used as the optimization model and the plant

in the MPC scheme.

A network with multiple homogenous regions (more than two regions) not only requires

more state variables to model the dynamics, but also a route choice model is needed to be

integrated in the model as vehicles can travel from one region to other with different routes.

The route choice strategy can be realized as user equilibrium conditions within the MFD

modeling [199]. When the number of homogeneous regions in the network gets larger, the

computational complexity and time for solving the MPC problem increase, which might

affect the real-time implementation of the proposed methodology. Note that the real-time

implementation feasibility is not an issue for the two regions problem presented in this chapter

as the computational time was significantly smaller than real time.
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5 Cooperative traffic control of a mixed
network with two urban regions and
a freeway

C
URRENTLY most optimization methods for urban transport networks (i) are suited for

networks with simplified dynamics that are far from real-sized networks or (ii) apply

decentralized control, which is not appropriate for heterogeneously loaded networks

or (iii) investigate good-quality solutions through micro-simulation models and scenario

analysis, which make the problem intractable in real time. In principle, traffic management

decisions for different sub-systems of a transport network (urban, freeway) are controlled

by operational rules that are network specific and independent from one traffic authority

to another. In this chapter, the macroscopic traffic modeling and control of a large-scale

mixed transportation network consisting of a freeway and an urban network is tackled. The

urban network is partitioned into two regions, each one with a well-defined Macroscopic

Fundamental Diagram (MFD), i.e. a unimodal and low-scatter relationship between region

density and outflow. The freeway is regarded as one alternative commuting route which

has one on-ramp and one off-ramp within each urban region. The urban and freeway flow

dynamics are formulated with the tool of MFD and asymmetric cell transmission model,

respectively. Perimeter controllers on the border of the urban regions operating to manipulate

the perimeter interflow between the two regions, and controllers at the on-ramps for ramp

metering are considered to control the flow distribution in the mixed network. The optimal

traffic control problem is solved by the Model Predictive Control (MPC) approach to minimize

total delay in the entire network. Several control policies with different levels of urban-freeway

control coordination are introduced and tested to scrutinize the characteristics of the proposed

controllers. Numerical results demonstrate how different levels of coordination improve the

performance once compared with independent control for freeway and urban network. The

approach presented in this chapter can be extended to implement efficient real-world control

strategies for large-scale mixed traffic networks.

5.1 Introduction

Metropolitan transportation networks have a hierarchical structure which essentially consists

of freeways and urban roads providing the interrelated infrastructure for mobility and accessi-
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bility. The freeway and the urban network are inherently coupled, but they have dissimilar

traffic flow dynamics which challenge the traffic control of mixed networks of two intercon-

nected (urban and freeway) traffic control entities. Although integrating the two entities

through an effective mixed control policy could enhance the network performances during

heavy congestion conditions, lack of coordination among the urban and freeway network ju-

risdictions and/or limited means of traffic monitoring and data communication might impede

such mixed traffic network ideal goal. To overcome such deficiency, cooperative decentralized

or if possible centralized control schemes can be developed as potential solutions, which

oblige us to inquire into the traffic dynamics and control of the freeway and urban network to

model the mixed traffic network.

Currently most optimization methods for urban transport networks (i) are suited for “toy”

networks with simplified dynamics that are far from real-sized networks or (ii) apply decentral-

ized control, which is not appropriate for heterogeneously loaded networks with short links

and spillbacks or (iii) investigate good-quality solutions through detailed micro-simulation

models and scenario analysis, which due to computational complexity make the problem

intractable in real time. In principle, traffic management decisions for different sub-systems

of a transport network (urban, freeway) are controlled by operational rules that are network

specific and independent from one traffic authority to another. In some cases, the operational

decisions of two sub-systems turn out to be competitive. For example, a ramp metering strat-

egy to retain high flows of the freeway sub-system can create long queues in the access ramps

that propagate and block the center of the city. In this paper, several control structures with

different levels of coordination between the freeway and the urban network control entities

are introduced and elaborated for traffic control of the mixed urban-freeway network. Our

objective is to investigate how restrictions in coordination among different controllers (e.g.

lack of communication or data) can affect the mobility levels of a city. Nevertheless, optimizing

in real time all controllers of a city (traffic lights, changeable message signs, on-ramps, etc.)

in a coordinated way is an infeasible solution due to the computational burden of a very

complex model, needed to represent traffic dynamics. Our objective is to integrate realistic

aggregated models of urban and freeway traffic with efficient control approaches that will

allow for coordinated traffic management.

Recently, a large effort for the development of Integrated Corridor Management (ICM) has been

promoted by Federal Highway Administration, with many case studies around US metropoli-

tan areas. Most of the implementations and case studies mainly perform scenario analysis

and considers alternative routes under extreme events, e.g. accidents, while it is expected that

a more formal optimization approach could lead to a better system performance.

In freeways, ramp metering is the most commonly used controller to manipulate the flow en-

tering the freeway from its urban surrounding roads. Local and coordinated control strategies

were proposed and implemented for ramp metering. In local control strategies, the control law

for an on-ramp is determined according to the traffic conditions downstream and upstream

of the on-ramp (e.g. ALINEA controller in [134]). In coordinated strategies, the control law for
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multiple on-ramps are determined based on the traffic conditions in multiple areas including

several on-ramps and sections in the freeway. The coordinated ramp metering is in fact a

multi-regulator controller as all ramp meterings attempt to regulate the freeway traffic condi-

tions near the desired densities. Overviews of local and coordinated ramp metering controllers

are presented in [137, 133, 57]. The ramp metering approach (even in the coordinated case)

might not efficiently operate in case of downstream bottleneck restrictions, e.g. a high demand

off-ramp queue spillbacks in the freeway which blocks mainline lanes. Also, in case a freeway

ends inside a congested city center, ramp metering might not be able to increase the outflow.

In these cases, the freeway and urban network should be controlled in an integrated manner.

For urban networks, the Macroscopic Fundamental Diagram (MFD) aims at simplifying the

urban traffic micro-modeling, where the collective traffic flow behaviors of subnetworks

capture the main characteristics of traffic dynamics, such as the evolution of space-mean

flows and densities in different regions of the network. The MFD provides a unimodal, low-

scatter relationship between network vehicle density (veh/km) and network space-mean flow

or outflow (veh/hr) for different network regions, if congestion is roughly homogeneous in

the region. Alternatively, the MFD links accumulation, defined as the number of vehicles

in the region, and trip completion flow, defined as the output flow of the region. Urban

region flow or trip completion flow increases with accumulation up to a critical point, while

additional vehicles in the network cause strong reductions in the flow. The physical model

of MFD was initially proposed by [60] and observed with dynamic features in congested

urban network in Yokohama by [55], and investigated using empirical or simulated data

by [16, 89, 120, 32, 46, 202] and others. Earlier works had looked for MFD patterns in data from

lightly congested real-world networks or in data from simulations with artificial routing rules

and static demands (e.g. [116, 131] and others), but did not demonstrate that an invariant

MFD with dynamic features can arise. Control strategies utilizing the concept of the MFD have

been introduced for single-region cities in [28] and later a linear control approach applied for a

micro-simulation environment by [97]. These strategies provide some useful insights towards

system coordination, but might not operate in an efficient manner and might be far from

optimal if congestion is heterogeneously distributed or if many trips have destinations outside

the area of analysis, which is the case in many congested cities. Moreover, route guidance

strategies with the utilization of MFD have been studied in [102] for grid networks.

In case of link density heterogeneity in an urban network, a possible solution to have a

well-defined MFD is to partition the heterogenous network into a number of homogeneous

smaller regions with small variance of link densities, see [90]. Chapter 4 introduced an elegant

perimeter control approach to improve traffic conditions in an urban network which has been

partitioned into two regions with well-defined MFDs (for stability analysis of the perimeter

control see [66]). These results encourage us to utilize the MFD and the perimeter control

approach for the mixed urban and freeway network.

All of the above approaches provide a first proof of concept that coordinated real-time control

strategies with parsimonious models can create a new generation of smarter cities and improve
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their mobility. But, still congestion governance in large-scale systems is currently fragmented

and uncoordinated with respect to optimising the goals of travel efficiency and equity for

multiple entities. Understanding these interactions for complex and congested cities is a big

challenge, which will allow revisiting, redesigning, and integrating smarter traffic management

approaches to generate cities more livable and sustainable. In this chapter, we follow the

approach of “system of systems” (SoS), see e.g. [166], that aims to model and control a system

consists of several independent heterogeneous systems. The mixed network is aligned with an

SoS as it consists of an urban network and a freeway systems. First, the perimeter controllers

are integrated with the ramp metering controllers to respectively manipulate the flow transfer

between urban regions and the inflows from the urban network to the freeway.

Recent studies with empirical data, [51, 164], have shown that a freeway system might not be

well-described with an MFD because of strong hysteresis phenomena. Thus, the traffic dy-

namics of the freeway are modeled in a more detailed approach according to the Asymmetric

Cell Transmission Model (ACTM) in [61], which is a simplified version of the cell transmission

model in [30]. Afterwards, the urban and freeway traffic dynamics are extended and integrated

to formulate the traffic control problem of the mixed network. A Model Predictive Control

(MPC) approach is proposed to minimize the total delay in the whole network. Our opti-

mization findings highlight the importance of coordination of the freeway and urban control

entities of a city when congestion is present.

In this chapter, there are two main contributions related to traffic modeling and control. In

the modeling part, we present a new model that integrates the traffic dynamics of urban

network and a freeway which is not a trivial task or straightforward. The integration of MFD

model with the ACTM arises several unique challenges related to the mixed network as queue

spillbacks from the on-ramps to the urban network, the allocation of off-ramp flows, and the

route choice behavior as drivers can choose between the urban network and the freeway to

travel. Note that utilizing the new macroscopic modeling eases the integration task, which

is novel. In addition, this chapter contributes to the control area by addressing the traffic

control problem for the mixed freeway and urban network following the control concept

of SoS. This work is considered as one step forward and a rigorous contribution towards

achieving SoS for transportation infrastructure and networks. In this chapter, it is also shown

through a numerical example the importance of cooperation between different traffic control

jurisdictions.

This chapter tackles an SoS with two interconnected urban regions and a freeway crossing

with a couple of ramps in each region. More complex systems can be addressed with similar

modeling and optimization principles if combined with efficient algorithms for partitioning

the urban part in homogeneous regions with low scatter MFDs. Traffic control policies that

minimize delays of the mixed network can affect the route choice of vehicles, which is the

flow distribution between the urban network and the freeway, since for example vehicles can

travel from the periphery to the city center by traveling either through the freeway or the

urban network. This effect should not be ignored as restricting access to one region, might
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transfer demand to another region of a city and change the distribution of congestion (e.g. very

aggressive ramp metering might force people to utilize the urban network and vice versa). The

route choice models can be classified into two types according to the behavioral supposition of

drivers [187]: the User Equilibrium (UE) when users choose the best route with minimum cost

and no user has an incentive to change his route; and the System Optimum (SO) when users

cooperate with one another to minimize the total cost for the entire network. In uncongested

networks, the UE route choice flow tends to the SO [143], though to reach the SO in congested

networks, it is essential to manage the users’ traveling behaviors, such as departure time,

mode or route choice. In the mixed traffic network model, we first propose a dynamic simple

route choice, which considers that travelers make choices with respect to the sequence of

regions (and not a detailed sequence of links) that they will travel to reach their destination.

Further we integrate the proposed MPC controller with an SO route choice model to explore

the effect of route choice on the overall performance of the mixed network.

The outline of the chapter is as follows. In Sections 5.2 and 5.3, the mixed urban and free-

way network modeling and the control problem formulation are introduced, respectively.

Afterwards, various control policies for traffic control of the mixed network are elaborated in

Section 5.4 and results of the control policies are presented in Section 5.5. The comparison

between the dynamic simple route choice and SO route choice models is investigated in

Section 5.6. Finally in the last section, conclusions are drawn and future work is summarized.

5.2 Traffic modeling of a mixed urban and freeway network

Consider a mixed urban and freeway network as schematically shown in Fig. 5.1, where it is

assumed that the urban network is partitioned into two homogeneous urban regions, denoted

by 1 and 2, having their own MFDs. In addition, there is a freeway, denoted by 3, as an

alternative commuting route that passes through both urban regions having one on-ramp and

one off-ramp within each region. The freeway also carries demand which is generated and

finishes outside the two urban regions. Thus, a 3×3 time-dependent origin destination matrix

is associated with the network demand.

To keep the traffic dynamic formulations elegant, the following assumptions are made regard-

ing the trip routes in the mixed network: (A1) the freeway can be used at most once during

the trip (exit and re-enter is not allowed), (A2) there is at most one urban region transfer

during the trip, e.g. traveling from 1 to 2 then to 1 is not allowed. Under these assumptions,

an origin-destination trip might have at most two trip routes since the traveler can choose

between using the urban network or the freeway, or using both the urban network and the

freeway (if this option exists), e.g. there are two trip routes from 1 to 1: 1 → 1 traveling from 1 to

1 using the urban region 1, and 1 → 3 → 1 traveling within region 1 to the on-ramp 1, entering

and travelling through the freeway, and then exiting from the off-ramp 1 and complete the

trip in region 1. All origin-destination trip routes in the mixed network are summarized in

Table 5.1. Note that from region 2 to 2 there is only one route through the urban region, as the
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u12(k)

u21(k)

uon,1(k)

uon,2(k)

On-ramp

On-ramp

Off-ramp

Off-ramp

Freeway (3)
Region (1)

Region (2)

Freeway (3)

Figure 5.1: A mixed urban and freeway network: two regions 1 and 2 with two perimeter control inputs
u12(k) and u21(k), and a freeway with two on-ramps and two off-ramps, and two on-ramp metering
control inputs uon,1(k) and uon,2(k).

off-ramp in region 2 is assumed to be prior to its on-ramp, as shown in Fig. 5.1. Alternations of

the aforementioned assumptions can be integrated in the methodology, but the formulation

might be more tedious. Corresponding to the aforementioned O-D matrix, let Qi j (k) (veh/s)

be a priori known demand generated in origin i to destination j at time step k, i , j = 1,2,3,

k = 0,1, . . . ,K −1, which is distributed between two choices for the same origin-destination:

qi j (k) (veh/s) denotes a generated demand in origin i with direct destination j at time step

k that belongs to the trip route i → j , while qi m j (k) (veh/s), m 6= i , j , denotes a generated

demand in origin i with destination j at time step k that belongs to the trip route i → m → j .

All origin-destination demands are also summarized in Table 5.1. These choices depend on

the development and propagation of congestion at different parts of the network. Errors in

Qi j (k) are discussed later.

Table 5.1: Trip routes and demands in the mixed network.

O\ D 1 2 3

1
q11 : 1 → 1 q12 : 1 → 2 q13 : 1 → 3
q131 : 1 → 3 → 1 q132 : 1 → 3 → 2 q123 : 1 → 2 → 3

2
q21 : 2 → 1

q22 : 2 → 2
q23 : 2 → 3

q231 : 2 → 3 → 1 q213 : 2 → 1 → 3

3
q31 : 3 → 1 q32 : 3 → 2

q33 : 3 → 3
q321 : 3 → 2 → 1 q312 : 3 → 1 → 2

In the following subsections, the traffic dynamics of the mixed freeway and urban network are

elaborated. First, the traffic dynamics of the urban regions and the freeway are respectively

introduced and modified according to the ACTM and MFD. A challenge is to integrate the two

models (meso and macro), as there are transfer flows at the boundaries of freeway and urban

network that depend on traffic conditions in both regions. Details of the dynamic route choice

modeling between the freeway and the urban network are also discussed. Later, the entire

mixed network traffic control problem will be presented in Section 5.3.
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5.2.1 The urban traffic modeling

Corresponding to the aforementioned traffic demands, see Table 5.1, six accumulation states

are introduced to model the dynamic equations of the urban network: ni j (k) (veh), i = 1,2; j =
1,2,3, where ni j (k) is the total number of vehicles in region i with next destination j at

time step k. Let us denote ni (k) (veh) as the accumulation or the total number of vehicles

in region i at time step k, i.e. ni (k) = ∑3
j=1 ni j (k). The output of MFD, Gi (ni (k)) (veh/s),

represents the trip completion flow of region i for ni (k) which is the sum of transfer flows,

i.e. external flows as trips from i with destination j , i 6= j , plus the internal flow as trips

from i with destination i . The transfer flow from i to j is calculated corresponding to the

proportion between accumulations, i.e. the external flow is Mi j (k) = ni j (k)/ni (k) ·Gi (ni (k)),

i 6= j , while the internal flow from i to i is calculated by Mi i (k) = ni i (k)/ni (k)·Gi (ni (k)). These

relationships assume that trip length of regional trips (internal or external) are similar. For

a description of different cases (which will not alter the methodology) the reader can refer

to [52].

Simulation and empirical results in [55] show that the shape of MFD can be approximated

by a non-symmetric unimodal curve skewed to the right, i.e. critical density that maximizes

network flow is smaller than half of the jam density. Thus, we utilize a 3rd-order function

of ni (k), e.g. Gi (ni (k)) = ai ·n3
i +bi ·n2

i + ci ·ni , where ai , bi , ci can be estimated from real

data. Analytical ways to estimate MFDs as a function of topology and signal setting have been

presented in [33, 75, 53]. The laws of mass conservation for the six urban state variables of the

mixed network are derived in Section 5.3, see (5.18)–(5.23).

5.2.2 The freeway modeling

Given that an MFD cannot consistently describe the dynamics in a freeway, we consider

the traffic dynamics of the freeway in the mixed network based on the ACTM. The mass

conservation equations of the on-ramps are adjusted to fit the mixed network problem, as

the input demands of the on-ramps are the output of the MFDs. Traditionally, the off-ramp

flows are considered independent of the applied control and defined a priori. Given the

interactions between the freeway and urban system, the freeway off-ramp flows are the input

demand for the urban network, therefore, new equations are derived to split the off-ramp

flows to different urban accumulation states. In the sequel, a brief description of the ACTM is

presented, followed by mixed network modeling adjustments. The reader can refer to [61, 30]

for a full description of ACTM. Note that the CTM (and consequently ACTM) does not reflect

the capacity drop phenomenon during congestion. This issue can be addressed by integrating

inverse λ fundamental diagrams in the CTM or by employing a higher order freeway model

that can capture the capacity drop. Moreover, ACTM simplifies the CTM modeling of merging

behavior by assuming independence between the on-ramp and mainline flows during merging,

which is not fully consistent with the physics of traffic. While this simplification is applied

to derive linear on-ramp control in [61], still with proper parameter calibration of ACTM
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(parameter ξl ) an accurate enough behavior of merging in both the mainline and the on-

ramps can be observed, especially under congested conditions.

In the ACTM, the freeway is divided to L cells, where each cell l of the freeway contains at most

one on- or one off-ramp. Five cells of the freeway are schematically shown in Fig. 5.2 as cell l

has an on-ramp belonging to urban region i , and cell l +2 has an off-ramp. The number of

vehicles in cell l at time step k, k = 0,1, . . . ,K −1, is denoted by xl (k) (veh), while fl (k) (veh)

is the number of vehicles moving from cell l to l +1 during time step k. The on-ramp is fed

from Mi 3(k) (veh/s), the maximum output that can flow from region i of the urban network

with destination to the freeway at time step k and calculated using the MFD. Let non,i (k)

(veh) be the queue length of the on-ramp in region i at time step k, and non,i ,max (veh) be

the maximum queue length of the on-ramp in region i . It is assumed that each cell l has a

triangular fundamental diagram with the following parameters: wl ∈ [0,1] is the normalized

congestion wave speed, vl ∈ [0,1] is the normalized free-flow speed, xl ,max (veh/lane) is the

jam accumulation, and f̄l (veh/hr/lane) is the mainline capacity.

l l + 1l − 1

n o
n,
i(
k)

n o
n,
i,m

ax

fl(k)fl−1(k)fl−2(k) fl+1(k)

Mi3(k)
MFD i output

uon,i(k) · fon,l(k)
l + 2 l + 3

fl+2(k) fl+3(k)

foff,l+2(k)

Figure 5.2: Representative freeway cells in the ACTM. Cell l has an on-ramp belonging to region i , while
cell l+2 has an off-ramp. The on-ramp is fed from a demand generated in urban region i and calculated
from the MFD, and flows exit at the off-ramp continuing their trip to reach their final destinations.

The freeway is integrated with the urban network through its on- and off-ramps. In the

following, we first determine the on-ramp freeway flow taking into account the MFD output,

and afterwards the off-ramp flows are split as inputs to different urban accumulations.

The unmetered on-ramp flow fon,l (k) (veh) is the number of vehicles that can enter cell l from

its on-ramp during time step k. It is calculated as follows

fon,l (k) = min
[
non,i (k)+Mi 3(k) ·Tk , ξl · (xl ,max −xl (k)), son,i ·Tk

]
, (5.1)

where i is the region that the on-ramp belongs to, Tk (s) is the time step size, son,i (veh/s) is

the maximum number of vehicles that can enter the freeway from the on-ramp belonging to

region i , and ξl (−) ∈ [0,1] is the on-ramp flow allocation parameter, see [61]. The on-ramp

metering control inputs, denoted by uon,i (k) (−), i = 1,2, are introduced on the entrance of the

freeway to control the flow entering from the region i to the freeway, see Fig. 5.1. The queue

dynamic for the on-ramp belonging to region i with ramp metering control input, uon,i (k),

96



Chapter 5. Traffic control of a mixed network with two urban regions and a freeway

taking into the account the on-ramp maximum queue length, is as follows

non,i (k +1) = min
(
non,i (k)+Mi 3(k) ·Tk −uon,i (k) · fon,l (k), non,i ,max

)
. (5.2)

The mainline flow in the freeway is calculated as follows

fl (k) = min
[
(1−βl (k)) · vl · (xl (k)+γ ·uon,i (k) · fon,l (k)),Fl (k),

wl+1 · (x̄l+1 −xl+1(k)−γ ·uon,i (k) · fon,l+1(k))
]
,

(5.3)

where βl (k) (−) is the split ratio for the off-ramp (if exists) in cell l , γ (−) ∈ [0,1] is the on-

ramp (if exists) flow blending coefficient, and Fl (k),min
{

f̄l , (1−βl (k))/βl (k) · f̄off,l
}
, where

f̄off,l (veh) is the off-ramp capacity. The exit flow of the off-ramp in cell l , foff,l (k) (veh), is

determined as follows

foff,l (k) = βl (k)

1−βl (k)
· fl (k). (5.4)

Finally, the mainline mass conservation is

xl (k +1) = xl (k)+ fl−1(k)+uon,i (k) · fon,l (k)− fl (k)− foff,l (k), (5.5)

for l = 1,2, . . . ,L, and k = 0,1, . . . ,K −1, where fon,l (k) = 0 and/or foff,l (k) = 0 if cell l does not

contain an on-ramp and/or an off-ramp, respectively.

The ACTM does not keep track of the origin and the destination of vehicles as off-ramps

are usually the final destinations of the trip. However, in the mixed network vehicles exiting

from the off-ramps can have various destinations, e.g. finishing their trip in the urban region

connected to the off-ramp or continuing their trip to the other urban region. To calculate the

off-ramp flow distribution, we assume that the split ratios are similar to the instantaneous

corresponding O-D demands, i.e. the off-ramp exit flows denoted by “hat” variables are

calculated as follows

[q̂31(k), q̂312(k), q̂231(k)] = foff,1(k) · [q31(k)+q131(k), q312(k), q231(k)]

q31(k)+q131(k)+q312(k)+q231(k)
, (5.6)

[q̂32(k), q̂321(k), q̂132(k)] = foff,2(k) · [q32(k), q321(k), q132(k)]

q32(k)+q321(k)+q132(k)
. (5.7)

The above “hat” demands will be further integrated in the dynamic equations of the mixed

network in Section 5.3.1. A more accurate estimation would require that in each cell we

keep track of the final destination of each vehicle. Moreover, (5.6) and (5.7) are precise when

O-D patterns are not varying rapidly. If O-D patterns change significantly the off-ramp flow

distribution can be derived according to the experienced corresponding O-D demands, i.e.

the current split ratios at time step k can be associated with the O-D demands of time step

k minus mean of O-D experienced travel time. However, both enhancements would make

ACTM dynamics more tedious. These can be a future direction of research.
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5.2.3 The route choice modeling

Real-time control can affect the route choices of users. To be able to integrate the modeling

framework in a real-time control environment, a parsimonious model of route choice has to

be developed. Instead of considering a detailed route choice, a path choice is modeled as a

sequence of regions during a trip, as expressed in Table 5.1. Nevertheless, given that MFD (or

ACTM) modeling assumes that all vehicles traveling at a region (or cell) at time step k have

equal speeds, we decide to add stochasticity in the urban region’s trip length to make the

model more realistic (otherwise all or nothing choices will be made). By assuming that all

origins and destinations are homogeneously distributed in each of the urban regions and that

the space is continuous, the Trip Length Distributions (TLDs) within each urban region for

different trips can be estimated either in an analytical or experimental way. The TLD between

x and y is the distribution of the distance between a random point in x and a random point

in y . The possible pairs of (x, y) according to the trip routes of Table 5.1 are: (I) (i , i ) two

random points inside urban region i , (II) (i ,∂(i j )) a random point inside urban region i and

the nearest point on the border between regions i and j , (III) (i ,oni ) a random point inside

urban region i and the on-ramp of urban region i , (IV) (∂(i j ),on j ) the border between urban

regions i and j and the on-ramp of region j , and (V) (offi ,∂(i j )) the off-ramp of urban region i

and the nearest point on the border between regions i and j . If GPS data are available for a

fraction of the vehicles these TLDs can be estimated more accurately. Let us denote T T Du
x,y (k)

the Travel Time Distribution (TTD) in the urban region for pairs (x, y) at step k (the continuous

time t is divided to K time steps, as each time step k has the time duration of Tk (s)). Then,

the TTDs are estimated as follows

T T Du
x,y (k) =

T LDu
x,y

Vi (k)
, (5.8)

where Vi (k) (m/s) is the average speed in urban region i at k, which is calculated according to

the MFD of region i as follows

Vi (k) = Gi (ni (k)) · l̄i

ni (k)
, (5.9)

where Gi (ni (k)) is the MFD value of region i at time step k, ni (k) is the accumulation of

region i at time step k, and l̄i (m) is the average region trip length (which can be estimated

from real data, see [55]). Note that trip length within a region li , is considered constant,

but as a regional route choice is embedded in the model, trip length between origin i and

destination j varies with the traffic conditions.

Let T T f
ls,le

(k) (s) be the instantaneous travel time along the freeway at time step k from cell

ls to cell le (note that both cells take values between 1 and L, and that the mainline freeway

cell associated with on- or off-ramp i is denoted as oni or offi for simplicity), and T T r
oni

(k) (or

T T r
offi

(k)) (s) be the travel time in on-ramp i (or off-ramp i ) at time step k. Then, T T r
oni

(k) is
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approximated by

T T r
oni

(k) = non,i (k) ·Tk

uon,i (k) · fon,l (k)
, (5.10)

where non,i (k) (veh) is the queue length of on-ramp i at time step k, uon,i (k) (−) is the ramp

metering control value (0 ≤ uon,i (k) ≤ 1) at k that constraints fon,l (k) (veh), i.e. the unmetered

outflow of on-ramp i at k that enters to its connected freeway cell l , see (5.3) and Fig. 5.2.

Further, the travel time of off-ramp i at k, T T r
offi

(k) (s), is assumed to be equal to the free

flow travel time (note that if this assumption is relaxed then one needs to keep track of the

destination of vehicles in order to model the traffic state of the off-ramps, which is not the case

in ACTM. Keeping track of the origin and the destination of vehicles hinders the macroscopic

modeling of freeways).

To have a dynamic route choice modeling, one should split the a priori known Qi j (k) O-D

demand between possible alternative trip routes. Let θi j (k) (−) be the route choice proportion

for direct trip between origin i and destination j , θi j (k) ∈ [0,1], where qi j (k) = θi j (k) ·Qi j (k)

and qi m j (k) = (1−θi j (k)) ·Qi j (k) if qi m j (k) exists, otherwise qi j (k) = Qi j (k). e.g. q11(k) =
θ11(k) ·Q11(k), and q131(k) = (1−θ11(k)) ·Q11(k), while q22(k) = Q22(k). The value of θi j (k)

is calculated dynamically according to the traffic conditions in the urban regions and the

freeway, based on the estimation of the trip route travel times at time step k. Note that there

is no need for route choice calculations of 2 → 2 and 3 → 3 O-D pairs, since they only have a

single trip route choice.

Now let us consider an O-D from i to j with trip routes i → j and i → m → j . Recall that

T T Du
x,y denotes the travel time distributions in the urban regions between x and y , T T f

ls ,le

denotes the total travel time along the freeway from cell ls to cell le , and T T r
oni

(or T T r
offi

)

denotes the travel time in on-ramp i (or off-ramp i ). Note that the travel time variability is

only considered in the urban regions. The two trip route Travel Time Distributions T T Di j and

T T Di m j at time step k are calculated as follows

T T Di i (k) = T T Du
i ,i (k) i = 1 (5.11)

T T Di j (k) =


T T Du

i ,∂(i j )(k)+T T Du
∂(i j ), j (k) if i j ∈ {12,21},

T T Du
i ,oni

(k)+T T r
oni

(k)+T T f
oni ,L(k) if i j ∈ {13,23},

T T f
1,off j

(k)+T T r
off j

(k) if i j ∈ {31,32},

(5.12)

T T Di m j (k) =



T T Du
i ,oni

(k)+T T r
oni

(k)+T T f
oni ,off j

(k)+T T r
off j

(k)

if i m j ∈ {131,132,231},

T T Du
i ,∂(i m)(k)+T T Du

∂(i m),onm
(k)+T T r

onm
(k)+T T f

onm ,L(k)

if i m j ∈ {123,213},

T T f
1,offm

(k)+T T r
offm

(k)+T T Du
offm ,∂(m j )(k)+T T Du

∂(m j ), j (k)

if i m j ∈ {321,312}.

(5.13)
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Ultimately, given the distributions of travel time of both alternative trip routes, one can

calculate θi j (k) as follows:

θi j (k) = Pr(T T Di j (k)−T T Di m j (k) < 0). (5.14)

Equation (5.14) determines θi j as the proportion of vehicles of O-D from i to j , whose travel

time of trip route i → j is less than trip route i → m → j . Equation (5.14) requires first, to

reflect the T T Di m j (k) about vertical axis with zero travel time because of the negative sign,

then convolve it with T T Di j (k). This procedure reads

(
T T Di j (k)−T T Di m j (k)

)
(τ) =

∫ ∞

−∞
(T T Di j (k))(ω) · (T T Di m j (k))(−τ+ω)dω (5.15)

θi j (k) =
∫ 0

−∞
(
T T Di j (k)−T T Di m j (k)

)
(τ)dτ. (5.16)

Finally, the probability of (T T Di j (k)−T T Di m j (k)) < 0 is the θi j . The above equations assume

independence between the values of the two distributions, which can be relaxed if real data

is available for TLD estimation. An example of such procedure is shown in Fig. 5.3(b) for

O-D from region 1 to 1 at k = 0. This dynamic simple route choice model assumes that

drivers (users) have the real-time information to select their trip route, though this real-time

information is based on the current condition of the network, see (5.8)–(5.16). It is worth to

mention that more detailed dynamic traffic assignment strategies can also be proposed in

a way to keep the control problem tractable from an optimization point of view. Following

up (5.16) the trip length between origin i and destination j (given that there are two possible

routes for every pair) can be estimated as l̄i j = θi j (k)·E {T LDi j (k)}+(1−θi j (k))·E {T LDi m j (k)}.
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Figure 5.3: An example of route choice procedure for origin 1 to destination 1: (a) the TTD of both trip
routes at k = 0, (b) the probability distribution function of (T T D11(0)−T T D131(0)). The hatched area
is θ11(0) = 0.35.
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5.3 The mixed network control problem

5.3.1 Problem formulation

Given the traffic dynamics of the previous section, we can now formulate the optimization

problem. In the mixed network control problem, there are two types of controllers to minimize

the network total delay: the perimeter controllers for the urban regions and the on-ramp

meterings for the freeway. The perimeter control inputs denoted by u12(k) and u21(k) (−) are

on the border between the two urban regions as shown in Fig. 5.1, to control the urban external

transfer flows. Since the perimeter controllers exist only on the border of the two regions,

the internal flows cannot be controlled or restricted, while the external transfer flows are

controlled such that, only a proportion of inter-region demand flows can pass the perimeter

at time step k. i.e. u12(k) and u21(k), where 0 ≤ u12(k), u21(k) ≤ 1, are the proportion of

the transfer flows that goes from region 1 to 2 and region 2 to 1 at time step k, respectively.

Likewise, the on-ramp metering control inputs, uon,i (k), i = 1,2, are on the entrance of the

freeway to control the flow entering the freeway, such that a proportion of demand input from

the urban region can enter into the freeway, i.e. 0 ≤ uon,i (k) ≤ 1, i = 1,2.

In the traffic dynamics of the mixed network, there are several types of state variables enumer-

ated as: six state variables describing the dynamics of the urban regions, two state variables

describing the queue dynamics of the freeway on-ramps, and L state variables describing

accumulation of the freeway cells. Therefore, the mixed traffic network control problem is

formulated as follows:

J = min
u12(k),u21(k),

uon,1(k),uon,2(k);

fork = 0, . . . ,K −1

Tk ·
[K−1∑

k=0

(
n1(k)+n2(k)

)+[K−1∑
k=0

L∑
l=1

xl (k)+
K−1∑
k=0

2∑
i=1

non,i (k)
]]

(5.17)

subject to

n11(k +1) = n11(k)+Tk ·
[ q̂321(k)+q21(k)

q̂321(k)+q213(k)+q21(k)
·u21(k) ·M21(k)+q11(k)

+ q̂231(k)+ q̂31(k)−M11(k)
] (5.18)

n12(k +1) = n12(k)+Tk ·
[

q12(k)+q123(k)+ q̂312(k)−u12(k) ·M12(k)
]

(5.19)

n13(k +1) = n13(k)+Tk ·
[ q213(k)

q̂321(k)+q213(k)+q21(k)
·u21(k) ·M21(k)+q13(k)

+q131(k)+q132(k)−min(M13(k),Con,1(k))
] (5.20)
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n21(k +1) = n21(k)+Tk ·
[

q21(k)+q213(k)+ q̂321(k)−u21(k) ·M21(k)
]

(5.21)

n22(k +1) = n22(k)+Tk ·
[ q12(k)+ q̂312(k)

q12(k)+q123(k)+ q̂312(k)
·u12(k) ·M12(k)+q22(k)

+ q̂132(k)+ q̂32(k)−M22(k)
] (5.22)

n23(k +1) = n23(k)+Tk ·
[ q123(k)

q12(k)+q123(k)+ q̂321(k)
·u12(k) ·M12(k)+q23(k)

+q231(k)−min(M23(k),Con,2(k))
] (5.23)

0 ≤
3∑

j=1
ni j (k) ≤ ni ,jam i = 1,2 (5.24)

umin ≤ ui j (k) ≤ umax i = 1,2; j = 3− i (5.25)

umin ≤ uon,i (k) ≤ umax i = 1,2 (5.26)

ni j (0) = ni j ,0 i = 1,2; j = 1,2,3 (5.27)

xl(0) = xl,0 l = 1,2, . . . ,L (5.28)

non,i (0) = non,i ,0 i = 1,2 (5.29)

and(5.1)− (5.16)

for k = 0,1,2, . . .K −1, where ni j ,0, non,i ,0, and xl ,0 are the initial accumulations of the urban

states, on-ramps, and freeway cells at k = 0; ni ,jam (veh) is the jam accumulation of regions i ;

umin and umax are the lower and upper bounds for perimeter and ramp metering controllers;

and Con,i (k) (veh/s) is the available flow storage capacity in the on-ramp queue, i.e. Con,i (k) =
(non,i ,max −non,i (k))/Tk .

The term min(Mi 3(k),Con,i (k)), i = 1,2, in (5.20) and (5.23) represents the flow of vehicles that

leaves the urban region to enter the freeway, which is the minimum of outgoing flow and

the available flow capacity in on-ramp i . Moreover, the term ui j (k) · Mi j (k), i = 1,2; j =
3 − i , expresses the outflow from region i to region j , which comprises of two parts; (i)

the part that is from origin i to destination j , and (ii) the other part that is from origin i

to destination 3 through region j . Thus to distinguish between these two parts, the ur-

ban inter-flow, ui j (k) · Mi j (k), are divided accordingly to the ratio of demand flow. e.g.

(q12(k)+ q̂312(k))/(q12(k)+q123(k)+ q̂312(k)) ·u12(k) ·M12(k) and q123(k)/(q12(k)+ q123(k)+
q̂321(k)) ·u12(k) ·M12(k) respectively represent the outflow from origin 1 to destination 2 and

outflow from origin 1 to destination 3 through region 2. Note that, equations (5.18)–(5.23) are

the conservation of mass laws for urban accumulations, ni j (k), while (5.24) is the lower and up-

per bound constraints on region i accumulation. Recall that Mi j (k) = ni j (k)/ni (k) ·Gi (ni (k)),

i = 1,2; j = 1,2,3, the equations (5.8)–(5.16) derive the qi j (k) and qi m j (k) based on the pro-

posed dynamic route choice modeling, and (5.1)–(5.7) describe the freeway dynamics. If one

compares (5.18)–(5.23) for MFD dynamics with (5.1)–(5.3) for ACTM dynamics it might observe

some inconsistency in the mass conservation, as the MFD equations do not directly consider

downstream restrictions (while ACTM does), but apply an exit function. One could add one
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more term, the boundary capacity, which is a function of the receiving region accumulation.

Nevertheless, this constraint can be ignored during the optimization process. The physical

reasoning besides this assumption is that (i) boundary capacity decreases for accumulations

much larger than the critical accumulation (see [54]), and (ii) the control inputs will not allow

the system to get close to gridlock.

5.3.2 Solution approach – an MPC controller

The optimal control problem for the mixed network is solved by the MPC approach. The MPC

obtains optimal solutions with feedback control for dynamic systems. It can tackle errors

between the model and the plant (reality) by utilizing a feedback monitored-information. In

our problem, this is a crucial issue due to the scatter in the MFD, mainly in the congested

regime, as errors are expected between the MFD model and the plant. In addition, noise in

the traffic demand is expected between predicted and actual demand.

The MPC has been used for optimization in different traffic control problems, e.g. ramp

metering of freeway networks in [11], variable speed limits and route guidance for freeway

networks in [103], [74], [73], signal control for large-scale urban networks in [45], [3], [111],

and mixed urban and freeway networks in [178]. A historical survey for industrial applications

(other than traffic control) of MPC can be found in [145], while theoretical issues of MPC can

be found in [44], [18], [119].

For the sake of brevity, the full description of the solution method is not presented here,

however, the reader can refer to Chapter 4 and [49] for further information. In the following,

we present the outlines of the mixed network MPC through the block diagrams presented in

Fig. 5.4.

On the top of Fig. 5.4, the “mixed urban-freeway plant” block presents the dynamic evolution

of the mixed network in reality. This block can be implemented in several ways: (I) real

field implementations, e.g. one can apply the proposed scheme on Yokohama network that

experiences a well-defined MFD (as was found in [55]) or [16], (II) simulation-based plant, e.g.

using micro-simulations of the San-Francisco business district center presented in [54, 89]

or [97], and (III) model-based plant, e.g. [49, 28]. In this chapter, we follow the later to present

the reality of mixed networks as the model (5.8)–(5.29) is utilized but with integrating noise in

demand and errors in MFDs, similar to equations (23)–(27) in [49], such that the dynamics

evolutions of the plant and the model are not the same. Demand noise is considered fully

random, while errors in the MFD have some heteroscedastic behavior, i.e. the error is expected

to be larger when accumulation grows.

One of the main features of the MPC framework is the “rolling time horizon” (or receding

horizon), see right of Fig. 5.4. The optimization technique is applied to finite time duration,

called prediction horizon, which is much smaller than the total control process time. The

control process time is covered by overlapping several time horizons, where at each time step
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Figure 5.4: Model predictive control scheme for mixed urban-freeway networks.
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the open-loop problem of the mixed urban-freeway model is optimized. Then, only the first

control sequence is applied to the plant and the same procedure is carried out again till the

final time of the problem.

The “MPC controller” (bottom of the figure) contains: (I) the mixed urban-freeway model (5.8)–

(5.29) which is used to predict the dynamics of the mixed network, and (II) the optimization

technique that minimizes the total delays of the network according to (5.17). The mixed

urban-freeway model integrates the ACTM of the freeway and the two-region MFDs model

of the urban network through the traffic flows (green arrows in the figure) according to (5.2),

(5.6), and (5.7).

The MPC controller obtains the optimal control sequences for the current horizon by solving

an optimization problem using the direct sequential method, also referred to single-shooting

or control vector parametrization (CVP) in the literature, see [49]. Note that several “control

policie”, see left-bottom of the figure, which will be introduced in Section 5.4, determine

the level of coordination between the two control entities, and the control structure, e.g.

centralized or decentralized.

The predicted O-D is given in advance, however, route choice demands are determined

corresponding to the chosen strategy of route choice, i.e. a simple route choice (5.8)–(5.16) or

system optimum as described in Section 5.6.

5.3.3 Test study example

In this subsection, we present a case study example to investigate the characteristics of the

proposed MPC controller. This MPC controller is fully centralized and the comparison with

other control policies such as decentralized and cooperative decentralized will be discussed

later in Section 5.5. Note that the simple route choice model is integrated in the mixed

network dynamics, while an SO route choice model will be integrated later in Section 5.6.

In this example, the time varying demand is simulating one hour of morning peak followed

by half an hour of low demand. Furthermore, the O-D demands, which are assumed to

have trapezoidal shapes, are perturbed by a normal random component (see perturbed

demand lines in Fig. 5.5(a)), in order to investigate the robustness of the MPC controller to the

accuracy of demand prediction. The MPC controller tries to find the optimal control sequences

assuming that the demands are without error (trapezoidal shapes) in the optimization model,

while the demands are applied to the plant, i.e. the mixed traffic network in reality, with errors

(perturbed lines). Without loss of generality, we assume both regions have the same MFD

consistent with the MFD observed in Yokohama, see Fig. 2 in [55]. While the MPC assumes

the MFD as aforementioned 3rd-order function (see the two coincide lines in Fig. 5.5(b)), the

MFDs of the MPC plant are perturbed by a random component (see red and blue points in

Fig. 5.5(b)), in order to both capture the scatter behavior of MFD and test the robustness of

the proposed MPC controller to the modeling error of MFD.
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Figure 5.5: The results of case study example for fully coordinated: (a) O-D demands, (b) urban region
MFDs, (c) urban accumulations, (d) MPC control sequences, (e) freeway density contour, and (f)
evolution of route choice parameters.

The selected MPC controller parameters are: the prediction horizon Np = 20, the control hori-

zon Nc = 2, the control lower bound umin = 0.1, and the upper bound umax = 0.9. Furthermore,

the freeway consists of 17 cells each has length of 0.5 (km) except the first cell which is long

enough to accommodate all the vehicles in the entrance queue of the network. The param-

eters of the triangular fundamental diagram of the freeway cells are: the jam accumulation

xl ,max = 125 (veh/km/lane), the mainline capacity f̄l = 2200 (veh/hr/lane), and the free flow

speed equals to 88.5 (km/hr). Other setups of the simulation are: the split ratios of off-ramps,

β1 = 0.15 and β2 = 0.25 (−), the maximum queue length of on-ramps, non,i ,max = 300 (veh),

and the on-ramps capacity flow, son,i = 6000 (veh/hr). The values of the last two parameters

might be considered high for a single on-ramp. Indeed, they represent a hyper-ramp per

urban region (i.e. all ramps are grouped in one, by considering similar characteristics and
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queue lengths). Coordinated ramp metering strategies, e.g. [138, 57], can be utilized to equally

distribute the queues among the ramps. The reasoning behind this is that if multiple ramps are

considered within each region, then a ramp choice model should be added to the developed

formulation. More complex city structures with more urban regions and ramps is a future

research priority.

In this numerical example, regions 1 and 2 are initially congested and uncongested, respec-

tively, i.e. the initial accumulations are n1(0) = 5600 (veh) and n2(0) = 2600 (veh), and region 2

as the central business district attracts most of the trips. The evolution of accumulations

ni j (k) over 1.5 hours of simulation are presented in Fig. 5.5(c). Note that at the beginning of

the control process, the MPC controller decreases the total accumulation in region 1, n1(k), by

choosing u21(k) = 0.65 to restrict the flow from region 2 to region 1. Afterwards, the MPC con-

troller tries to keep the both accumulations uncongested by changing u21 to umax at t = 2000

(s) (see Fig. 5.5(d)) to let more vehicles enter region 1.

The effect of on-ramp controllers on the condition of freeway is more comprehensible with

the help of Fig. 5.5(e), where the density contour of freeway is illustrated. The main points of

interest are cells with on-ramps (3 and 11), where actuating umax for the MPC on-ramp con-

trollers, uon,1(k) and uon,2(k), let more vehicles enter the freeway to avoid on-ramp spillbacks

to the urban regions. Consequently, there are fewer vehicles in the urban regions and more

vehicles queuing in the freeway, which seems sensible for mixed traffic network controller to

keep the vehicles in the freeway instead of urban network during the rush hour. At t = 4800 (s),

uon,2(k) switches to umin for 400 (s) leading to a sudden decrement in the density of cell 11

(on-ramp) and its former cells. Note that the critical density of the cells is 99.4 (veh/km) and

cells 7 and 15 have off-ramps.

In Fig. 5.5(f), the time series of route choice parameters θ11, θ12, θ13, θ21, and θ31 are depicted.

The enduring low value of urban travel time between regions 1 and 2 leads θ12 and θ21 to

have almost constant values near to the maximum value. In contrast, θ11, θ13, and θ31 follow

different trends. At the beginning of simulation as region 1 is congested, its speed is very low,

thus about 65% of vehicles of the O-D demand from 1 to 1 prefer to choose the alternative trip

route through the freeway (1 → 3 → 1). As the time passes, region 1 accumulation decreases

and hence, the speed increases and more vehicles are in favor of choosing trip route 1 → 1

instead of 1 → 3 → 1. The same logic is apparent for the case of θ13 and θ31. The θ23 and θ32

are not depicted since they are constantly equal to 1 for all the examples, which is clear as

e.g. traveling through trip route 2 → 3 is always faster than trip route 2 → 1 → 3. Overall, the

outcome of the MPC controller demonstrates that the traffic can be efficiently managed and

accommodated in the mixed traffic network with the centralized MPC control scheme.

5.4 Control policies for the mixed network

In this section, several control policies are introduced and elaborated for the decentralized

traffic control of the mixed urban-freeway network. The policies have different control struc-
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tures and different levels of coordination between the freeway and the urban network control

entities. Our objective is to investigate how coordination among different controllers can

improve the mobility patterns of a city. In the following, seven control policies (CPs) are

introduced from fully decentralized with no communication between urban and freeway

entities to fully coordinated, with a comprehensive description for each policy: (CP1) ALINEA

control for freeway and umax for urban network (ALINEA + urban umax), (CP2) ALINEA control

with queue constraint for freeway and umax for urban network (ALINEA Q + urban umax), (CP3)

ALINEA control for freeway and MPC for urban network (ALINEA + urban MPC), (CP4) ALINEA

control with queue constraint for freeway and MPC for urban network (ALINEA Q + urban

MPC), (CP5) Decentralized MPC (D-MPC), (CP6) Cooperative Decentralized MPC (CD-MPC),

and (CP7) Centralized mixed network MPC (MPC).

In CP1, the ALINEA control law [134] is applied for the two on-ramps of the freeway, while the

perimeter control inputs are set to their upper bounds in order to minimize the restriction

for vehicle flows, i.e. u12(k) = u21(k) = umax. The ALINEA policy for the on-ramp metering

controllers determines the number of vehicles entering the freeway, fon,l (k+1), corresponding

to the difference between the current accumulation of cell l and its desired accumulation, i.e.

xl (k)−xref, and a preset regulation parameter κ (−),

fon,l (k +1) = fon,l (k)+κ · (xl (k)−xref). (5.30)

CP2 is similar to CP1, except that there are queue constraints on the on-ramps because of the

limitation of queue space at the on-ramps. This policy can be considered the simplest step

towards coordination as it tries to avoid spillbacks in the urban regions, but without analyzing

the direct effect in system delays and outflow. Therefore, the ALINEA control law is modified

to tackle the queue constraint as follows [11]

fon,l (k +1) =
 fon,l (k)+κ · (xl (k)−xref) if non,i (k) ≤ η ·non,i ,max,

son,i ·Tk otherwise,
(5.31)

where η ∈ [0,1]. In this manner, the ALINEA controller with queue constraint tries to keep the

length of on-ramp queue below a predefined ratio η of the maximum queue length non,i ,max,

which can effectively hinder the freeway spillbacks to the urban regions.

In CP3, the ramp metering controllers follow the ALINEA control law in (5.30), while the

optimal perimeter control values are obtained from solving the mixed control problem using

the MPC approach. This means that the MPC solver optimizes the total delay function in (5.17)

only for u12(k), u21(k) while values of uon,1(k) and uon,2(k) fork = 0, . . . ,K −1 are determined

separately according to (5.30).

CP4 is similar to CP3, except that the ramp metering controllers follow the ALINEA with queue

constraints (control law in (5.31)). In this control policy, the optimal perimeter control is

obtained from solving the mixed control problem using the MPC approach, as in CP3 but
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values for uon,1(k), uon,2(k) are determined separately according to (5.31).

CP5 is the Decentralized MPC (D-MPC) policy that considers the freeway and urban net-

work controllers as two separate entities without coordination between them, i.e. the D-MPC

policy applies two parallel and separate MPC problems for the freeway and the urban net-

work. The D-MPC splits the optimal control problem of the mixed network to two smaller-

sized optimization problems: (i) freeway total delay minimization by manipulating only

the ramp metering controllers, and (ii) urban total delay minimization by manipulating

only the perimeter controllers. In this manner, the objective function (5.17) is divided to

two terms; the urban total delay term, i.e. Tk · [∑K−1
k=0 [n1(k)+n2(k)]

]
, which is optimized

solely for the perimeter controllers, u12(k) and u21(k), and the freeway total delay term, i.e.

Tk ·[
∑K−1

k=0

∑L
l=1 xl (k)+∑K−1

k=0

∑2
i=1 non,i (k)], which is minimized solely for the on-ramp metering

control inputs uon,1(k) and uon,2(k). Under this policy the two different objectives might be

conflicting.

In order to improve the performance of the D-MPC policy, we propose a modification to

establish a cooperation between the D-MPC control entities in CP6. The modification is such

that each of the two freeway and urban controllers tries to minimize the whole network total

delay as formulated in (5.17). Meaning that, the urban controller minimizes (5.17) for the

current urban optimization horizon only by manipulating the perimeter controllers, u12(k)

and u21(k), as the ramp metering controllers, uon,1(k) and uon,2(k), are assumed to be known

and constant from the previous step of freeway optimization. Likewise, the freeway controller

minimizes (5.17) for the current freeway optimization horizon only by manipulating the on-

ramp meterings, uon,1(k) and uon,2(k), as the perimeter controllers, u12(k) and u21(k), are

assumed to be known and constant from the previous step of urban optimization. This policy

is named Cooperative Decentralize MPC (CD-MPC) because the two control entities are not

centralized and fully coordinated, yet they communicate with partial information in a way

to achieve the mixed network optimal performance. The CD-MPC policy is crucial in case of

limited traffic monitoring or data communication.

CP7 is a fully centralized MPC controller for the whole mixed network consistent with the

formulated problem (5.1)–(5.29).

5.5 Comparison of control policies

We test all the previous control policies for further investigation on the same example setup, as

described in Section 5.3.3. The total delay of all policies for the two urban regions, the freeway,

and the on-ramps are summarized in Table 5.2. The primary control policy to inspect is the

integration of ALINEA freeway ramp metering and umax for the urban perimeter controllers.

The corresponding evolution of urban accumulations over time is depicted in Fig. 5.6(a),

revealing that region 1 encounters the gridlock condition. The ALINEA control sequences

are illustrated in Fig. 5.6(b) demonstrating a jumpy non-smooth trend as a result of density

alternation of corresponding on-ramp cells, i.e. cells 3 and 11. Figure 5.6(c) shows the density
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contour of freeway cells. The cell 3 density is over the desired value from t = 0 to t = 3800 (s),

which forces the ALINEA controller uon,1 be equal to umin. As the time passes on, the cell 3

density decreases because of the reduction in the demands, which results in uon,1 increasing

jumps to regulate the density of cell 3 at the desired value. The same reasoning is valid for

on-ramp 2 while the density of cell 11 is always around its preset desired value, which makes

the uon,2 going up and down to finely regulate the cell 11 density. It is apparent that the freeway

is under-utilized because of local control scope of ALINEA, that prevents the vehicle to use the

freeway and keeps them in the urban regions, which increases the chance of urban gridlock

occurrence.

Table 5.2: Total delay [veh · s ·105]

ALINEA ALINEA Q ALINEA ALINEA Q
+ + + + D-MPC CD-MPC MPC

Urban umax Urban umax Urban MPC Urban MPC
Region 1 524 438 504 262 537 254 196
Region 2 121 97.2 162 160 279 133 143
Freeway 129 172 129 189 124 217 218
On-Ramp 1 13.2 12.8 12.6 14.8 16.0 6.55 7.84
On-Ramp 2 16.0 16.0 15.8 16.2 16.3 16.1 15.7
Network 803 736 823 642 972 626 581

The on-ramp queues for both ALINEA and ALINEA with queue constraint freeway controllers

are depicted in Fig. 5.6(d). It is apparent that using ALINEA ramp metering law, both the

on-ramp queues reach the maximum possible queue length, however, integrating queue

constraint within ALINEA forces the queues to be less than the maximum value and be equal

to the predefined queue length threshold. For on-ramp 1 this phenomenon is obvious, but

for on-ramp 2, since its input demand is so high that even with uon,2 = umax this constraint

cannot be met during the rush hour. After t = 4300 (s) with reduction in the demand, the on-

ramp 2 queue decreases to the predefined queue length and below. The corresponding urban

accumulations and control sequences of ALINEA freeway controller with queue constraint

and umax urban perimeter controller are shown in Fig. 5.7(a) and 5.7(b), respectively. The

freeway density contour, Fig. 5.7(c), demonstrates that the activation of queue constraint

permits more vehicles to enter the freeway, which increases the freeway accumulation and

consequently, less chance of urban gridlock and less total delay for the whole network.

The two aforementioned control policies with the urban perimeter fixed control lead the urban

network to gridlock. Thus, we propose to replace the fixed controllers with the MPC controllers

such that the new control policy consists of ALINEA controller for freeway and MPC for urban

perimeter control (CP3). The corresponding evolution of urban accumulations is depicted

in Fig. 5.8(a) and once compared with Fig. 5.6(a) reveals that the time that region 1 reaches

gridlock is slightly increased, which is not beneficial. The control sequences are illustrated

in Fig. 5.8(b) showing the same jumpy non-smooth trend similar to combination of ALINEA

with umax urban perimeter control. The same trend of on-ramp queues and freeway density

is also seen which indicates that the integration of freeway ALINEA and urban MPC is not

110



Chapter 5. Traffic control of a mixed network with two urban regions and a freeway

0 1000 2000 3000 4000 5000
0

2000

4000

6000

8000

10000

Time [s]

A
cc

um
ul

at
io

n 
[v

eh
]

 

 
n

11
n

12
n

13
n

21
n

22
n

23
n

1
n

2

(a)

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

Time [s]

u 
[−

]

 

 

u
12

u
21

u
on,1

u
on,2

(b)

(c)

0 1000 2000 3000 4000 5000
0

100

200

300

Time [s]
O

n−
ra

m
p 

qu
eu

e 
[v

eh
]

 

 

ALINEA n
on,1

ALINEA n
on,2

ALINEA+Q n
on,1

ALINEA+Q n
on,2

(d)

Figure 5.6: The results of case study example for CP1 (ALINEA ramp metering and umax urban perime-
ter control): (a) urban accumulations, (b) control sequences, (c) freeway density contour, and (d)
comparison of on-ramp queues for CP1 and CP2 (ALINEA with queue constraint ramp metering).
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Figure 5.7: The results of case study example for CP2 (ALINEA with queue constraint ramp metering
and umax urban perimeter control): (a) urban accumulations, (b) control sequences, and (c) freeway
density contour.
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fruitful for the mixed network traffic control and higher coordination level is needed between

the two entities.
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Figure 5.8: The results of case study example for CP3 (ALINEA ramp metering and MPC urban perimeter
control): (a) urban accumulations and (b) control sequences.

In contrast, the performance of integration of urban MPC approach and ALINEA freeway ramp

metering with queue constraint (CP4) demonstrates an advantageous control policy. The

urban accumulations are depicted in Fig. 5.9(a) in which both regions end at the uncongested

regime implying the effectiveness of the traffic control policy. To investigate more, control

sequences are shown in Fig. 5.9(d) and once compared to Fig. 5.7(b), the MPC urban perimeter

controllers are different while ALINEA controllers are to some extent the same, still manifests

lack of cooperation between urban and freeway controllers. The u21 starts with the value

of 0.5 for one control step then switches to umin during which the accumulation of region 1

decreases and the accumulation of region 2 increases. Note the accumulations between t = 0

and t = 600 (s) in Fig. 5.9(a) and 5.7(a). This not very significant alternation in the urban

perimeter control values makes region 1 accumulation decreases from the edge of gridlock

to a more stable regime, which yields to stability of both regions during the peak hour. In

addition, by inspecting the freeway density contour, Fig. 5.9(g), we observe more vehicles

traveling along the freeway which is the reason that the urban regions could operate at the

uncongested regime.

To improve the performance of the above control policies, the D-MPC controller which consists

of one urban and one freeway control entities is introduced and tested on the same case study

example. Each of the urban and freeway controllers tries to minimize the total delay only in

their subnetwork of interest, hence, the freeway MPC controller forces both the ramp metering

controllers, i.e. uon,1 and uon,2, to be equal to umin as shown in Fig. 5.9(e). This prevents the

vehicles to use the freeway for commuting, causes the freeway to be underutilized (Fig. 5.9(h))

and consequently increases the accumulation in the urban regions rapidly which leads to

urban gridlock (Fig. 5.9(b)). To avoid the competitiveness between the D-MPC control entities,

we add an additional level of coordination that adjusts the objective function of MPC entities

to modify them into CD-MPC configuration. The results in Fig. 5.9(c), 5.9(f), and 5.9(i) show

that the CD-MPC can control the traffic demand very efficiently compared to D-MPC. Table 5.2
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summarizes the numerical results of all control policies averaged over 10 runs demonstrating

that the best policy is the centralized MPC. Yet for cases with larger number of state variables,

e.g. cases with more urban regions and/or more freeway cells, the MPC optimization module

is not tractable. In this case or when the centralized MPC controller is not applicable because

of technical limitations, the proposed CD-MPC controller, which consists of two smaller sized

control entities seems promising with insignificant performance loss (less than 7%).
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Figure 5.9: The results of case study example for (i) CP4 (ALINEA with queue constraint ramp metering
and MPC urban perimeter control): (a) urban accumulations, (d) control sequences, (g) freeway density
contour; (ii) CP5 (decentralized MPC control (D-MPC)): (b) urban accumulations, (e) control sequences,
(h) freeway density contour; and (iii) CP6 (cooperative decentralized MPC control (CD-MPC)): (c) urban
accumulations, (f) control sequences, (i) freeway density contour.

Note that the performances of CPs (percentage of improvement) are fully dependent on the

level of congestion, e.g. if urban regions are uncongested the marginal improvement of CP6

(CD-MPC) or CP7 is not significant. This statement was verified as we have run the same

example with 10% less demand of O-Ds 1 → 2 and 2 → 2. The results show that with less

demand still the CP1, CP3, and CP5 cannot handle the traffic load and lead the urban regions

to high congestion. The improvements of CP6 (CD-MPC) and CP7 (MPC) over the CP2 (ALINEA

Q + urban umax) are about 3% and 4%, respectively, meaning that the simple cooperative CP2

is good enough to control this scenario. Though in the base scenario, the corresponding

improvements are 15% and 21%, respectively.
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5.6 System optimum route choice in the mixed network

The introduced simple route choice modeling in Section 5.2.3 is based on the user equilibrium

(UE) assumption, indicating that the drivers (users) choose the route with the smallest travel

time (cost) among their route choice set. We model the estimation of route travel time based

on the current condition of the mixed network, while alternative estimation models (e.g.

integrating prediction to capture future evolution of the network) have also great potential

for future investigation. Independently of route travel time estimation modeling, the UE

assumption still holds as a sound description of non-cooperative route choice behavior of

drivers. It is evident that from the stand point of the system, i.e. mixed transport network,

the simple route choice cannot provide the optimal solution. Nevertheless, the proposed

MPC framework provides the opportunity to integrate the system optimum (SO) route choice

in the mixed network traffic control problem. Though, the real-world implementation of

SO traffic control policy is not fully operational, because of inherent unpredictability of

human behavior [85], theoretically, we assume that it is possible to fully control (guide) the

vehicles to a specific route to commute their origin-destination trip. Even if this is not fully

implementable with traffic management schemes (variable message signs, pricing, etc.), it

provides a comparison of what can be the most efficient way to control a transport network

with a given demand and infrastructure.

In the following, we implement an SO route choice model only for the CP7–Centralized mixed

network MPC (and not for all control policies presented in Section 5.4), since it provides

the upper bound of total improvement. We consider the same example setup to test the

implementation of SO route choice model. In this model, the route choice proportions, i.e. θi j

for various origin destinations, are regarded as the output of the MPC optimization module,

contrary to the simple route choice model where route choice proportions are the input to

the optimization module. Thus, adjustments of mixed traffic dynamic equations are confined

to omission of (5.8)–(5.16) and instead addition of all the θi j as optimization variables in

the objective function (5.17). The results of the mixed network control with SO route choice

model, averaged over 10 runs and presented in Table 5.3, indicating 12% improvement over

the simple route choice model, in terms of decreasing the network total delay. Fig. 5.10(a),

5.10(b), and 5.10(c) depict the urban accumulations, the control sequences, and the freeway

density contour of the augmented MPC controller with SO route choice model, respectively.

Table 5.3: Total delay for MPC with system optimum route choice [veh · s ·105]

Region 1 Region 2 Freeway On-Ramp 1 On-Ramp 2 Network
167 118 209 10.5 7.60 512

The θ11, θ12, θ13, θ21, and θ31 corresponding to both SO and the simple route choice models

are illustrated in the Fig. 5.10(d), 5.10(e), 5.10(f), 5.10(g), and 5.10(h), respectively. It is evident

that most of the time the SO route choice model forces the vehicles to use their first trip route

choice, which is the direct one without any region to region or region to freeway transfer.
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Figure 5.10: The results for the augmented MPC controller with system optimum route choice model:
(a) urban accumulations, (b) control sequences, (c) freeway density contour, and the route choice
results corresponding to the system optimum (SO) and the simple route choice model (SRC) for: (d)
θ11, (e) θ12, (f ) θ13, (g) θ21, (h) θ31.
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5.7 Summary

The control problem of a large-scale mixed traffic network, consisting of two urban regions

with MFD representation, and one alternative freeway route modeled with the asymmetric cell

transmission model is formulated. For traffic control purposes, we consider two controllers on

the perimeter of regions to manipulate the urban inter-transfer flows; in addition, two on-ramp

controllers to control the traffic flow from urban regions to the freeway. The optimal traffic

control problem is solved by an MPC scheme. Several control policies with different controller

structures and levels of urban-freeway coordination are introduced and scrutinized. The

results demonstrate the advantage of centralized control over combination of a simple freeway

ramp metering with urban MPC controller, and also the great importance of cooperation in

decentralized MPC approach in cases with lack of full data communication and coordination

between urban and freeway control entities, i.e. when the centralized MPC is not tractable. In

addition, the system optimum route choice is integrated within the centralized MPC, which

leads to increase the network performance by 12%.

These results can be beneficial for municipal administrators to develop efficient hierarchical

control strategies for metropolitan mixed traffic networks. This work contributes one step

forward towards achieving SoS approach for transportation infrastructure and networks. The

outcome of this optimization does not provide the exact phase settings for traffic signals in

the boundary between the two regions. Nevertheless, recent work for single [97] and multiple

regions [4] provide the necessary tools to dynamically change the signal settings to meet the

controllers’ inputs u12 and u21 from the aggregated optimization. In case that local queues are

developed in the proximity of the controllers (ramps and boundaries between urban regions),

analysis of [53] can identify signal parameters in the individual regions of a city in such a way

to move traffic smoothly at the desired flows, without concentrating a large number of vehicles

at the boundaries of the regions. Traffic control problem of networks with more complex

structure and dynamic traffic assignment is ongoing research. Ongoing work also involves the

development of efficient control strategies for networks with a larger number of urban regions,

on- and off-ramps. In this case, the size of regions might change over time due to congestion

propagation, which will require a dynamic partitioning of the city in different parts. This is a

challenging problem, both from an optimization (higher computational effort) and modeling

(more complex dynamics).
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6 Dynamics of heterogeneity in urban
networks: aggregated traffic modeling
and hierarchical control

R
EAL traffic data and simulation analyses reveal that for some urban networks a well-

defined Macroscopic Fundamental Diagram (MFD) exists, which provides a unimodal

and low-scatter relationship between the network vehicle density and outflow. Recent

studies demonstrate that link density heterogeneity plays a significant role in the shape and

scatter level of MFD and can cause hysteresis loops that influence the system performance.

Evidently, a more homogeneous network in terms of link density can result in higher network

outflow, which implies a network performance improvement. In this chapter, we introduce

two aggregated models, region- and subregion-based MFDs, to study the dynamics of het-

erogeneity and how they can affect the accuracy scatter and hysteresis of a multi-subregion

MFD model. We also introduce a hierarchical perimeter flow control problem by integrating

the MFD heterogeneous modeling. The perimeter controllers operate on the border between

urban regions, and manipulate the percentages of flows that transfer between the regions such

that the network delay is minimized and the distribution of congestion is more homogeneous.

The first level of the hierarchical control problem can be solved by a model predictive control

approach, where the prediction model is the aggregated parsimonious region-based MFD and

the plant (reality) is formulated by the subregion-based MFDs, which is a more detailed model.

At the lower level, a feedback controller of the hierarchical structure, tries to maximize the

outflow of critical regions, by increasing their homogeneity. With inputs that can be observed

with existing monitoring techniques and without the need for detailed traffic state information,

the proposed framework succeeds to increase network flows and decrease the hysteresis loop

of the MFD. Comparison with existing perimeter controllers without considering the more

advanced MFD modeling of heterogeneity highlights the importance of such approach for

traffic modeling and control.

6.1 Introduction

Efficient traffic control and management of large-scale transportation networks still remain

a challenge both for traffic researchers and practitioners. Unlike microscopic approaches

that usually utilize disaggregate traffic flow models, as behavior of each vehicle is modeled in
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detail, e.g. car following and lane changing models, in this chapter, we follow the macroscopic

(network level) approach utilizing the macroscopic fundamental diagram (MFD). The MFD

aims at simplifying the micro-modeling task of the urban network, where the collective traffic

flow dynamics of subnetworks capture the main characteristics of traffic congestion, such as

the evolution of space-mean flows and densities in different regions of a city. Nevertheless, it is

not a universal law for all network structures and demands and if it is applied in a non-careful

way it can hide critical patterns of congestion and result in inefficient control methodologies.

The MFD provides a unimodal, low-scatter relation between network vehicle density (veh/km)

and network space-mean flow or outflow (trip completion rate) (veh/hr) for different network

regions, if congestion is roughly homogeneous in the region. Recently, the macroscopic

(network) traffic modeling has intensively attracted the traffic flow community. The physical

model of MFD was initially proposed by [60] and observed with dynamic features in congested

urban network in Yokohama by [55], and investigated using empirical or simulated data

by [16, 89, 120, 203] and others. Earlier works had looked for MFD patterns in data from lightly

congested real-world networks or in data from simulations with artificial routing rules and

static demands (e.g. [116, 131] and others), but didn’t demonstrate that an invariant MFD with

dynamic features can arise. The observability of the MFD with different sensing techniques

have been studied by [108, 132].

Studies [120, 58, 46, 118, 101] have shown that networks with heterogeneous distribution

of density exhibit network flows smaller than those that approximately meet homogeneity

conditions (low spatial variance of link density), especially for high network densities. Net-

works with small variance of link densities have a well-defined MFD, i.e. low scatter of flows

for the same densities. Heterogeneously congested networks might exhibit points below the

upper envelope of an MFD or strong hysteresis loops (see for example freeway networks in

[51, 165]). Recently, in agreement with previous publications in heterogeneity, [118] proposed

and calibrated with simulated data an MFD where the effect of heterogeneity decreases the

MFD output with a functional relationship. Following these findings, the concept of an MFD

can be applied for heterogeneously loaded cities with multiple pockets of congestion, if these

cities can be partitioned in a small number of homogeneous clusters. Recent work [90] created

clustering algorithms for heterogeneous transportation networks with an objective to obtain

small variance of link densities within a cluster. Understanding and modeling the dynamics

of heterogeneity is a crucial and challenging question that can shed some light on how to

develop smarter hierarchical traffic control schemes for large-scale urban networks. This

chapter moves towards this direction.

The MFD can be utilized to introduce elegant real-time control strategies to improve mobility

and decrease delays in large urban networks, that local ones are unable to succeed, see pioneer

works in [28, 66, 49]. Perimeter control strategies, i.e. manipulating the transfer flows at the

perimeter border of the urban region, utilizing the concept of the MFD have been introduced

for single-region cities in [28, 97], and for multi-region cities in [66, 49, 5]. Moreover, route

guidance strategies with the utilization of MFD have been studied in [102] for grid networks
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without traffic lights. [47, 109] also studied simple routing strategies for two-bin or two-route

network abstractions.

In [69] different control strategies with different levels of coordination have been introduced

for metropolitan transportation networks that have a hierarchical structure that consists of

freeways and urban roads. Previous works [33, 53, 203] have shown that traffic-responsive

signal control strategies and different signal settings can change the shape of the MFD and

the critical accumulations. While Chapters 4 and 5 do not explicitly model the effect of link

heterogeneity, in this chapter we aim at studying the effect of heterogeneity by introducing

a new model that considers MFD of both regions and smaller subregions. This chapter also

models a simple route choice process between paths through subregions, and considers the

effect of subregion flow receiving capacity.

The control problems in previous chapters, i.e. Chapters 4 and 5, have been solved by the

model predictive control (MPC) approach. It was shown that this control approach can

handle different levels of error in traffic demand and noise in MFDs shape. Nevertheless, the

optimization model and the plant in the MPC framework were inherently similar, except the

errors in demand and the MFD distinguish between the two. A stronger level of dissimilarity

between the model and the plant can provide more convincing evidence for the applicability

of such approaches in more realistic and complex networks.

The objectives of this chapter are two-fold, in modeling and control aspects. First, we would

like to further investigate the relation between the heterogeneity and the MFD. With respect

to modeling, we investigate the dynamics of heterogeneity and how it can affect accuracy and

scatter of a multi-region MFD model, which consists of variables that can be obtained with

existing sensor technology. While there is some work regarding how heterogeneity influences

the shape of the MFD, there is no theoretical work to investigate how an asymmetric demand

pattern can affect the distribution of congestion over time and space and its dynamic behavior.

Existing MFD dynamic models as expressed in various publications are hysteresis-free and

as a result the developed control frameworks based on such models cannot be trusted when

hysteresis appears. With respect to control, our objective is to integrate the dynamics of

heterogeneity in the optimization framework and design perimeter control strategies that can

decrease congestion heterogeneity and increase system performance. As our analysis shows,

this is a crucial step for efficient control strategies, where strong hysteresis loops appear. Also

we will demonstrate that considering an MFD without hysteresis and ignoring the dynamics of

heterogeneity can result in situations where perimeter control is not beneficial for the system.

Such an advanced model also allows to develop a two-level hierarchical control framework

that decreases system delays and hysteresis loops, which are directly related with capacity loss

at the network level.

The remainder of the chapter is organized as follows: in Section 6.2 we describe the dynamics

of the region-based model which integrates the effect of heterogeneity in the MFD. A more

detailed model of sub-regions, which can describe the dynamics of heterogeneity, is developed.
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In Section 6.3, a closed form expression of MFD as a function of mean and variance of link

accumulation is obtained based on real data, while in Section 6.4 a hierarchical control

framework based on the MPC tries to optimize system performance according to the developed

models. Decreasing the level of heterogeneity with control has a positive effect in the system

delays and the avoidance of large hysteresis loops. Results of a case study and future work

conclude the chapter.

6.2 Modeling the dynamics of spatial density heterogeneity in ur-

ban regions with perimeter control

In this chapter, we introduce two aggregated models with an objective to integrate the dynam-

ics of heterogeneity in a network: (i) a region-based model considers networks partitioned into

a small number of regions that might be split by perimeter controllers, and (ii) a subregion-

based model, where each region of the above model is partitioned into subregions, see Fig. 6.1.

Existing region-based dynamic models for single or multi-region networks (e.g. [28, 49, 97])

consider an MFD without hysteresis. Hysteresis creates multivalueness in the network flow

for the same value of network accumulations. Given that these values are strongly influenced

by the distribution of congestion, such a hysteresis cannot be an external input to the model

(e.g. as a functional form), but it has to be integrated within the model and be influenced

by the dynamics of heterogeneity. This is a challenging methodological step that requires

the interconnection of a region-based and a subregion-based model. At the region-based

model the heterogeneity dynamics are integrated in the regional MFDs in two directions: (i)

variant regional trip lengths and (ii) an MFD depending on regional accumulation and the

heterogeneity in the spatial distribution of congestion. To integrate the dynamics of hetero-

geneity in the region-based model, a subregion-based model is needed that (a) describes

the evolution of subregion accumulations, (b) integrates the heterogeneity dynamics in the

subregion MFDs, (c) integrates a route choice model, and (d) models the effect of receiving (or

boundary) capacity of the destination subregion.

The constraint of receiving (or boundary) capacity has not been considered during the op-

timization process in previous control oriented publications (see [97, 49, 4]). The physical

reasoning behind this assumption is that (i) boundary capacity decreases for accumulations

much larger than the critical accumulation (see [54]), and (ii) the control inputs will not allow

the system to get close to gridlock. Nevertheless, perimeter controllers are acting only in the

boundaries between regions and not all subregions are integrated in a perimeter control logic.

Thus, such a constraint cannot be fully ignored now. Figure 6.1(a) and (b) depict a schematic

urban network with (part of) internal and transfer flows for region I and subregions i , j , r

in the (i) region- and (ii) subregion-based models, respectively. All the related variables are

introduced later in details.
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Figure 6.1: A schematic urban network with (part of) internal and transfer flows for region I and
subregions i , j , r in the (a) region- and (b) subregion-based models, respectively. (c) A case study
network consists of two regions - Region 1 (the periphery) and Region 2 (city center) partitioned
respectively into 12 and 7 subregions.

6.2.1 Region-based model

Let us assume that an urban network is partitioned into R regions, R = {1,2, · · · ,R}. Let QI J (t )

(veh/s) be the traffic demand flow generated in region I with destination to region J , NI J (t)

(veh) be the accumulation in region I with region destination J ; I , J ∈R, and NI (t) (veh) be

the total accumulation in region I .

The total production PI
(
NI (t ),σ(NI (t ))

)
(veh ·distance travelled per unit time) in region I is
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a function of the regional accumulation NI (t) and its variance across all links in the region,

σ(NI (t )), as has been reported in [120, 118, 58, 101]. The trip completion flow for region I is

the sum of transfer flows, i.e. trips from I with direct destination J , J ∈H I , where H I is the

set of regions that are directly reachable from (adjacent to) region I , plus the internal flow, i.e.

trips from I with direct destination I . The transfer flow from I with destination to J is denoted

by MI J (t) (veh/s), while MI I (t) denotes the internal flow from I with destination to I . They

are calculated corresponding to the ratio between accumulations as follows

MI I (t ) = NI I (t )

NI
· PI

(
NI (t ),σ(NI (t ))

)
L I I (t )

, (6.1a)

MI J (t ) = NI J (t )

NI
· PI

(
NI (t ),σ(NI (t ))

)
L I J (t )

, (6.1b)

where PI (·) (veh/s ·m) is the MFD production for region I at NI (t ) with heterogeneity variance

σ(NI (t )), L I I (t ) (m) is the average trip length (space mean) for trips in region I , and L I J (t ) (m)

is the average trip length for trips from region I to J . Note that the variable σ(NI (t )) captures

the link density spatial heterogeneity for an urban region (see later equation (6.12), where

function PI
(
NI (t),σ(NI (t))

)
is described). Note that for flows QI J (t) where I and J are not

adjacent, a sequence of regions should be known to develop the transfer flows between I and

J .

One of the main objectives of this chapter is to integrate the developed modeling in a con-

trol framework and investigate strategies that will decrease heterogeneity and network flow

hysteresis loops. To this end, a semi-analytical approximative model of σ(NI (t )) is required.

To model σ(NI (t)), we need first to develop an analytical model for subregion link density

heterogeneity then aggregate the subregional heterogeneity into the regional one. Thus, in

Section 6.3 we investigate the heterogeneity dynamics for a subregion based on a field dataset

and introduce a method to aggregate and scale up the subregional heterogeneities to present

link heterogeneity in regions.

Perimeter controllers, UI J (t) and UJ I (t) (-) , and 0 ≤UI J (t) ,UJ I (t) ≤ 1, might exist between

each two regions I and J , J ∈H I , that can constrain the transfer flows from I to J and from J to

I , respectively. The mass conservation equations of an R-region MFDs system are as follows:

dNI I (t )

dt
=QI I (t )−MI I (t )+ ∑

J∈H I

UJ I (t ) ·M J I (t ) , (6.2)

dNI J (t )

dt
=QI J (t )− ∑

J∈H I

UI J (t ) ·MI J (t ) , (6.3)

for I = 1,2, . . . ,R and ∀J ∈ H I . Note that NI (t) = NI I (t)+∑
J∈H I

NI J (t). These equations

are a generalized (R regions instead of two) equations presented in [49] with integrated

heterogeneity. Note that route choice modeling is not integrated in the region-based dynamic

equations and this model is not aware that travellers make route choice decisions when

conditions change. This is done on purpose, since traveller behavior might be difficult to be
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predicted in real-time. It is also assumed that drivers are not allowed to cross a boundary more

than once, e.g. a trip from region I to I by crossing region J is not considered. This will change

the dynamic equations (6.2) and (6.3) and more complicated accumulation states have to be

developed, which is beyond the scope of this chapter (e.g. number of vehicles in region I with

destination I that will cross to region J and return in region I ). Nevertheless, the hierarchical

control framework that is developed later is not influenced by such constraint.

6.2.2 Subregion-based model

The subregion-based model is a more detailed model since the urban region is considered as

a collection of several smaller urban areas, called subregions, which still contain a significant

number of links to be described by a low-scatter MFD. Each subregion accumulation evolves

differently in time which allows to integrate the heterogeneity of the spatial distribution of

congestion in the the urban region (see terms related to MFD heterogeneity in (6.1a) and

(6.1b)). This modeling approach will give us the opportunity to investigate more rigorously

several assumptions in the MFD literature that have been empirically observed, e.g. trip

length in a region is about constant, if and how route choice, perimeter control, and O-D

affect the heterogeneity and the distribution of congestion. These are challenging research

questions that have been raised by many researchers and it is not clear yet under what network

conditions an MFD provides a decent representation of network performance. The purpose

of the following formulation is to express in a consistent manner the variables in (6.1a)-(6.3),

which represent region-based MFDs, accumulations and trip lengths as a function of a more

detailed model at the subregional level. While microscopic simulation might be an alternative

instead of the described model, this thesis chooses a more methodological path, which allows

to create further insights of the dynamics of heterogeneity and the hierarchical control.

Let us consider region I ∈ R which is heterogeneous in space link density and consists of

subregions, as schematically shown in Fig. 6.1(b). We use capital letters for variables related

to regions and lower case letters for variables related to subregions. We denote S R as the

set of all subregions in the urban network, while S R I is the set of subregions that belongs to

region I . Let qi j (t ) (veh/s) be the demand from subregion i to subregion j , ni j (t ) (veh) be the

accumulation in subregion i with final subregion destination j , {i , j } ∈S R, and ni (t) (veh)

be the total accumulation in subregion i , i.e. ni (t ) =∑
j∈S R ni j (t ). The MFD production for

subregion i , denoted by pi (t) (veh/s ·m), is the total distance traveled for subregion i by all

vehicles ni (t ), which is equal to the sum of the transfer and internal flows multiplied by the

average trip length in subregion i , li (t ) (m).

Let mh
i j (t) (veh/s) be the transfer flow from subregion i with final subregion destination j ,

i 6= j , through the immediate next subregion h ∈H i , where H i is the set of subregions that are

directly reachable from subregion i . The transfer flow is related to the ratio between subregion

accumulations and corresponding trip length, i.e. mh
i j (t ) = θh

i j (t ) ·ni j (t )/ni (t ) ·pi (ni (t ))/li (t ),

where θh
i j (t ) (-) is the flow percentage of the total transfer flows from subregion i to destination
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j that passes immediately through subregion h, thus
∑

h∈H i
θh

i j (t) = 1. Note that a simple

route choice model is integrated in the subregion-based model, where θh
i j (t ) are calculated by

a logit model according to the travel times from i to j through the k (current best) shortest

paths (sequence of subregions), which are calculated using Dijkstra’s algorithm. The travel

time for each path is calculated by summing travel times through subregions, where each

subregion travel time is calculated as the fraction between the distance travelled inside the

subregion (through its center) and its average speed vi (t ) (m/s) calculated from the subregion

MFD at the beginning of the trip, i.e. vi (t) = pi (ni (t))/ni (t). Trip length within subregion i

is assumed to be independent of origin, destination, and route choice, which is consistent

with the field data in [55] and the assumptions made for the region-based models of previous

Chapters 4 and 5.

The internal flow from subregion i with destination to subregion i , denoted by mi i (t ) (veh/s),

is calculated by mi i (t ) = ni i (t )/ni (t ) ·pi (ni (t ))/li (t ). For instance, Fig. 6.1(b) illustrates part of

the transfer and internal flows for a network considering only three subregions i , j , and r . The

transfer flows between subregions j and r are mr
j i , mr

j r , m j
r j , m j

r i , and mi
j i , m j

i j , m j
i r , mi

j r

are the transfer flows between subregions j and i , while the internal flows for subregions i , j ,

r are mi i , m j j , mr r , respectively. Note that the region-based model implicitly assumes that

the internal regional trips never leave the region and also external trips cross the boundary

between the regions only once. The route choice of subregion-based model meets these

assumptions.

The subregion-based model also integrates the effect of flow receiving capacity of the destina-

tion subregion. In other words, flow transferring into a subregion might be restricted since

accumulation at subregion destination is such high that there is not enough space to fully

receive the incoming transfer flows. Receiving capacity is not integrated in the region-based

model as the controllers at the boundary are expected to avoid these situations. Equation

(6.4) expresses the transfer flow as the minimum of two terms, (i) the sending flow upstream

of the boundary (from region i ) which depends on the accumulations of region i and the

(ii) receiving flow which depends on the accumulation of region h. Such an approach has

been integrated in mass conservation equations for 1st and 2nd order models of traffic flow,

e.g. the Cell Transmission Model [30]. The difference is that the 2nd term is an analogy of

the remaining storage capacity of the receiving region. Therefore, we introduce a receiving

capacity term into the transfer flow dynamic equations as follow

m̂h
i j (t ) = min

(
mh

i j (t ),
mh

i j (t )∑
k mh

i k (t )
· ri h(nh(t ))

)
, (6.4)

where k ∈S R,k 6= i , and ri h(·) (veh/s) is the receiving flow capacity of subregion h, h ∈H i ,

from subregion i . We consider that the receiving capacity is a piecewise function of nh(t ) with
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two pieces, a constant value and a decreasing function, as follows

ri h(nh(t )) =
r max

i h if 0 ≤ nh(t ) <α ·njam
h ,

− r max
i h

(1−α)·njam
h

·nh(t )+ r max
i h

1−α if α ·njam
h ≤ nh(t ) ≤ njam

h ,
(6.5)

where r max
i h (veh/s) is the maximum value of the receiving capacity and boundary capacity,

njam
h (veh) is the jammed accumulation of subregion h, and 0 < α < 1 is a parameter that

defines the critical accumulation when the receiving capacity starts to decrease and can be

estimated if real data from sensors are readily available.

The transfer flows might be controlled by subregion perimeter controllers on the border

between subregions, e.g. 0 ≤ ui h(t)(−) ≤ 1 denotes the perimeter control input between

subregions i and h. The mass conservation equations for the subregions are as follows

dni i (t )

dt
= qi i (t )−mi i (t )+ ∑

h∈H i

uhi (t ) ·m̂i
hi (t ) , (6.6)

dni j (t )

dt
= qi j (t )− ∑

h∈H i

ui h(t ) ·m̂h
i j (t )+ ∑

h∈H i ;h 6= j
uhi (t ) ·m̂i

h j (t ) ∀ j ∈H i , (6.7)

dni r (t )

dt
= qi r (t )− ∑

h∈H i

ui h(t ) ·m̂h
i r (t )+ ∑

h∈H i

uhi (t ) ·m̂i
hr (t ) i 6= r ; ∀r ∉H i . (6.8)

Equations (6.6)–(6.8) assume that perimeter controllers exist between each neighbour subre-

gions, however, they still hold if the assumption is relaxed by setting the control inputs to be

equal to 1. Note that our intension is not to control inter transfers between any two subregions,

but only in the boundaries of the region-based model, see Fig. 6.1(c). In this way we will keep

the computational effort small and we will not rely on information which is difficult to be

obtained with real data, e.g. ni j for each subregion. Nevertheless, as stated before the more

detailed model will shed light on the dynamics of heterogeneity and how it can affect the

performance of an MFD region-based model, which consists of variables that can be obtained

with existing sensors more accurately.

Finally, the region internal and external average trip lengths described in (6.1a) and (6.1b), L I I

and L I J , respectively, are estimated as follows (considering a steady state law as the ratio of

travel production over outflow)

L I I (t ) =
∑

i∈S R I

∑
j∈S R I

ni j (t )∑
i∈S R I

ni (t )
·
∑

i∈S R I
pi (ni (t ))∑

i∈S R I
mi i (t )

, (6.9a)

L I J (t ) =
∑

i∈S R I

∑
j∈S R J

ni j (t )∑
i∈S R I

ni (t )
·

∑
i∈S R I

pi (ni (t ))∑
i∈S R I

∑
h∈S R J

mh
i j (t )

. (6.9b)

The estimation of L I I and L I J is based on the assumption that the region- and subregion-based

models should be consistent and have the same internal and external region outflows in case

of perfect information. Thus, (6.9a) and (6.9b) have respectively similar logic to (6.1a) and
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(6.1b), while the right hand sides are expressed in terms of detailed variables of subregion-

based model. I.e., the internal outflow MI I in the region-based model is equivalent to the sum

of all mi i , i ∈S R I , and the external outflow MI J in the region-based model is equivalent to

the sum of all mh
i j (t ), i ∈S R I and h ∈S R J .

6.3 A functional form of the effect of heterogeneity on MFDs: Field

data analysis

The region-based MFD dynamic model of (6.1a) and (6.1b) requires a functional form of the

regional production depending on accumulation of the region and standard deviation of the

spatial distribution of link accumulation. While various studies have investigated the effect

of heterogeneity in the MFD [51, 120, 101, 118], a functional form is necessary as these MFD

dynamics have to be integrated in a control framework. While [118] provides a functional form

based on simulated data, in this section we investigate such a relation with real data. More

specifically, we re-scrutinize the Yokohama field data, investigated in [55, 58], to obtain further

insights into the dynamics of link occupancy heterogeneity and its effect on the MFD. Our

objective is to propose an analytical distribution that models the first two statistical moments

of individual link occupancy distribution. This approach is motivated by previous publications

towards this direction, which are described in more detail in Section 6.1.

The developed models of this work in Section 6.2 can also be implemented for different

functional forms and the reader can skip this section without loss of continuity. Nevertheless,

this analysis provides useful empirical analysis for heterogeneity. An interesting finding is that

the spatial distribution of congestion has similar functional form with other physical systems

that experience spatial correlation.

The data consist of the occupancy of 540 links every 5 minutes from early morning to the end of

the day. We are interested in mean and standard deviation (STD) of link occupancy, since mean

occupancy is an indicator of network congestion level and STD of link occupancies can be

regarded as the heterogeneity indicator of the network. Analyses demonstrate that the negative

binomial (NB) distribution can provide accurate estimations for mean and STD of occupancies

for the Yokohama network data. NB distributions can describe well the spread of different

phenomena with spatial correlations, such as infectious diseases [113], tree growth [21], and

others. Note that [58] have derived a semi-analytical model of estimating this distribution

based on spatial correlations between links, which might be difficult to be integrated in

a control scheme. We choose to utilize the NB distribution, due to the ease of numerical

calculations. NB is a discrete probability distribution of the number of successes in a sequence

of binomial trials with probability of success, p, before a pre-specified number of failures,

r , occurs. NB distribution is useful in modeling count data similar to Poisson distribution,

however, NB is more general and accurate to capture dispersion with spatial correlations than

Poisson distribution because its variance is greater than its mean. The NB probability mass
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function is

Pr(X = x) = N B(x,r, p) =
(

x + r −1

x

)
(1−p)r px . (6.10)

Note that r can be interpreted as the number of congested links (failures), while p can be

related to the occupancy that indicates congested state (probability of success or failure, if

occupancy is normalized between zero and one).

Fig. 6.2 depicts the field data and the best NB fit (in maximum likelihood sense) representing

link occupancy distribution at four different times during a day covering a wide range of traffic

conditions from early uncongested to mid-day congested and evening mild-congested. The

four cases have different mean, STD, and distribution of occupancies, while the NB estimation

accurately models the link occupancy distribution. Moreover, it has been observed in [58]

that there is a well-defined relationship between the average network occupancy and the STD

of individual detector occupancy for Yokohama data. The NB estimation can reproduce a

well-defined MFD similar to the MFD based on the field data even if link FD has significant

scatter.
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Figure 6.2: Field data and the best NB estimated link occupancy distribution at four different times.

6.3.1 Effect of link occupancy heterogeneity on subregion MFD

Aforementioned observations confirm that the NB distribution can be regarded as a proper

estimator of link occupancy distribution in a homogeneous subregion. Nevertheless, given
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the low scatter MFD of Yokohama, it is not possible to investigate the effect of heterogeneity

for a large range of STD for a given subregion mean occupancy. To succeed this objective,

we draw NB distributions with a range of sensible STD, ostd, for various average subregion

occupancies, i.e. ou ∈ [5%−75%], and then estimate the subregion average flow with a low

scatter link FD. The outcomes for ou = [5,10,15, . . . ,75%] are depicted in Fig. 6.3. To obtain

a closed-form expression relating subregion average flow, qu, to mean occupancy, ou, and

occupancy STD, ostd, we fit an exponential function to the data, i.e.

qu(ou,ostd) = (d3 ·o3
u +d2 ·o2

u +d1 ·ou) · (a ·eb·ostd + c), (6.11)

where a,b,c,d1,d2, and d3 are estimated parameters. The results reveal the function that is

product of a 3-degree polynomial, representative of a low-scatter MFD, and a exponential

function, representative of heterogeneity effect, models accurately the MFD. Hence, the same

decomposition of MFD function to two terms (i) an upper bound (low-scatter) MFD and (ii)

the heterogeneity degradation is used in modeling the effect of link heterogeneity on region

MFD, as we describe in next subsection. The results show that in case of light conditions
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Figure 6.3: Subregion average flow for different mean and STD occupancies.

that the average subregion occupancy is low, increase in STD, i.e. the subregion becomes

more heterogeneous, decreases the subregion average flow. As the subregion occupancy

increases, the degrading effect of heterogeneity on the subregion average flow becomes less

severe. About the subregion occupancy 50%, the best fit becomes almost a line with slope zero

revealing that the subregion average flow is independent of the link occupancy heterogeneity.

Note that the validity of theses observations is based on the Yokohama field data which

does not comprise very congested situations or particular cases which are unlikely in reality,

e.g. a case with low network occupancy and high STD. This limitation prevents us to make

a general statement, however with more field data specifically for congested situations a

128



Chapter 6. Dynamics of heterogeneity in aggregated traffic modeling and hierarchical control

better understanding of heterogeneity effect on the MFD can be concluded. For example for

cases close to gridlock, simulations from [120] showed that the distribution of congestion is

bimodal with a fraction of links being around jam occupancy and another fraction close to

zero occupancy, which might not be described well by an NB distribution.

6.3.2 Effect of link occupancy heterogeneity on region MFD

To obtain link density heterogeneity for urban region I , we assume that a well-defined relation-

ship between the mean occupancy and the STD of link occupancies for each subregion i exists,

i ∈S R I , where S R I denotes the set of subregions in region I . Thus, the STD of link occupan-

cies for every subregion i , i ∈S R I , and consequently, the link occupancy distribution, based

on the NB distribution assumption, can be estimated given the mean occupancy of subregion

i . Afterwards, NB distributions for all i ∈ S R I are summed to capture the link occupancy

distribution in region I and the STD of summation of NB distributions is an approximation of

σ(NI (t )). In a direct analogy with Eq. (6.11), the MFD production of region I considering the

link heterogeneity in region I is

PI (NI (t ),σ(NI (t ))) =|S R I | ·
(
D3 · (

NI (t )

|S R I |
)3 +D2 · (

NI (t )

|S R I |
)2 +D1 · (

NI (t )

|S R I |
)
)×(

A ·eB ·(σ(NI (t ))−σh) + (1− A)
)
,

(6.12)

where |S R I | denotes the number of subregions in region I , σh is the STD of summation

of |S R I | NB distributions with mean occupancy NI (t )/|S R I |, and A,B ,D1,D2, and D3 are

the estimated parameters that regulate the extent of link density heterogeneity effect on the

region production. Note that (6.12) assumes that the region I production can be regarded

as the product of two terms, the exponential term considering the heterogeneity and the

production term which assumes homogeneous conditions corresponding to the upper bound

(low-scatter) MFD. Figure 6.4 illustrates the exponential term (blue curves) for different region

mean occupancies, where red bars depict the range.

It is clear that such a functional form can approximate well the heterogeneity in the spatial

distribution of congestion and it can be integrated in the remaining of the study to develop

more advanced perimeter control strategies that can treat explicitly this effect.

6.4 Hierarchical control for heterogeneous networks

The previous section has provided, based on real-data analysis, some findings related to the

effect of heterogeneity on MFDs, which result in integrating heterogeneity dynamics in urban

network modeling. This section aims at utilizing the integration of heterogeneity dynamics for

control purposes.

The optimal perimeter control problem formulation and solution have been introduced for

homogeneous networks, showing that applying a perimeter control strategy can improve the

129



Traffic modeling, estimation and control for large-scale congested urban networks

15 20 25 30

0.6

0.8

1

STD Occupancy [%]

A
ve

ra
ge

 F
lo

w
 / 

M
ax

im
um

 F
lo

w

Occupancy = 10
 

 

15 20 25 30

0.6

0.8

1

STD Occupancy [%]

A
ve

ra
ge

 F
lo

w
 / 

M
ax

im
um

 F
lo

w

Occupancy = 20

15 20 25 30

0.6

0.8

1

STD Occupancy [%]

A
ve

ra
ge

 F
lo

w
 / 

M
ax

im
um

 F
lo

w

Occupancy = 30

15 20 25 30

0.6

0.8

1

STD Occupancy [%]

A
ve

ra
ge

 F
lo

w
 / 

M
ax

im
um

 F
lo

w

Occupancy = 40

15 20 25 30

0.6

0.8

1

STD Occupancy [%]

A
ve

ra
ge

 F
lo

w
 / 

M
ax

im
um

 F
lo

w

Occupancy = 50

15 20 25 30

0.6

0.8

1

STD Occupancy [%]

A
ve

ra
ge

 F
lo

w
 / 

M
ax

im
um

 F
lo

w

Occupancy = 60

Figure 6.4: The exponential term (blue curves) for different region mean occupancies, where red bars
depict the range. Maximum flow is the flow associated with the homogeneous condition, where the
heterogeneity exponential term is equal to 1.

network performance of urban regions. Physically speaking a perimeter control strategy that

assumes that all sub-regions in the one or the other boundary of the control have equal accu-

mulations, it might move to erroneous interpretations if this is not the case. Applying similar

control restrictions (e.g. same amount of transfer flows) in sub-regions with significantly dif-

ferent levels of congestion, might further increase congestion in some of them. Thus, ignoring

the effect of heterogeneity in the development of control might lead in non-optimal results

as we will show later. In Chapters 4 and 5, an MPC approach solution has been applied to

minimize the total network delay, without considering the effect of the regions heterogeneity.

While this might be successful when congestion is uniformly distributed, not all cities have

such a property. Clustering algorithms have been proved efficient in decreasing the spatial

heterogeneity, but in principle this is a feature of mobility that cannot totally disappear due to

complex demand characteristics. Similar to homogeneous networks, in the current study the

aim of perimeter control for heterogeneous networks is also to minimize the total network

delay. However, giving the negative effect of heterogeneity in the network flow, one can

introduce a new control scheme that is crafted for heterogeneous networks. In the following,

we introduce a hierarchical perimeter control framework for heterogeneous networks, having

two levels of control: a high-level controller aims at minimizing total delay with the help

of MPC approach, and a low-level (feedback) controller that aims at minimizing the region

accumulation heterogeneity.
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6.4.1 The high-level (MPC) controller

The aim of optimal perimeter control for heterogeneous networks is to minimize the network

delay, defined as the integral of the network accumulation with respect to time, by manipu-

lating the perimeter controllers. We utilize the MPC approach to solve the optimal control

problem. Nevertheless, in the previous Chapters 4 and 5 the model and the plant were very

similar with the only difference being some unknown stochastic term in demand. Develop-

ing an MPC framework with a very different model than plant is challenging and will shed

more light in the possible application of such approaches in real life, where many network

characteristics are unknown (e.g. route choice and sub-regional O-D tables).

While microscopic simulation might be an alternative choice for the plant, this chapter chooses

the direction of two different types of aggregation (sub-regional and regional model), which

allows to create further insights of the dynamics of heterogeneity and the methodological

framework of traffic flow analysis. Other works (see for example, [97, 4]) have shown in a

microsimulation environment that perimeter control strategies can significantly decrease

network delays.

Both models, the subregion- and region-based models, are utilized in the MPC framework.

The subregion-based model describes the traffic flow dynamics in detail (MPC-plant), while

the region-based model is utilized to calculate the optimal control inputs in the optimization

loop (MPC-model). Recall that the subregion-based model describes in more detail the mass

conservation dynamics based on subregional MFDs that also integrates the constraints on the

transfer flows by the receiving capacity, while the region-based model is the MPC model that

is suitable for performing tractable optimization. Note that the region-based model considers

the effect of link heterogeneity, while this information is provided by the subregion-based

model. Some of the variables of the sub-regional model might require significant estimation

efforts and high density of sensors, which make the real-time implementation challenging.

Nevertheless, the regional model, which is utilized in the optimization framework, is based on

information that can be estimated readily with standard monitoring and sensing techniques.

The MPC controller determines the optimal control inputs in a receding horizon manner,

meaning that at each time step an objective function is optimized over a prediction horizon of

Kp steps and a sequence of optimal control inputs are derived. Then the first sample of the

control inputs is applied to the system and the procedure is carried out again with a shifted

horizon. The closed-loop optimal control scheme in the MPC framework takes into account

not only the errors between the plant and the model, but also the disturbances, e.g. variations

in the expected demands, that might affect the system.

The optimal control problem is directly formulated as an MPC problem. Let kc (−) and Tc (s) be

the control time step and the control sample time, respectively. Then, the overall optimization
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problem is formulated as follows:

min
ŨI J (kc),ŨJ I (kc)

Tc ·
∑

I∈R,J∈H I

Kp−1∑
0

NI I (kc)+NI J (kc) (6.13)

subject to

NI I (kc +1) = NI I (kc)+Tc ·
(
QI I (kc)−MI I (kc)+ ∑

J∈H I

UJ I (kc) ·M J I (kc)
)

, (6.14)

NI J (kc +1) = NI J (kc)+Tc ·
(
QI J (kc)− ∑

J∈H I

UI J (kc) ·MI J (kc)
)

, (6.15)

UI J ,min ≤UI J (kc) ≤UI J ,max , (6.16)

for I = 1,2, . . . ,R and ∀J ∈H I .

The problem (6.13)–(6.16) is a nonlinear optimization problem and it can be solved using

nonlinear optimization algorithms. UI J ,min and UI J ,max (−) are respectively the lower and

upper bounds for the perimeter control inputs between regions I and J . The optimization

variables defined over the prediction horizon Kp are ŨI J (kc) = [UI J (kc), . . . ,UI J (kc +Kp −1)]T,

where UI J (kc + l ) for l = 0, . . . ,Kp −1 are the perimeter control inputs obtained by the MPC

framework at every control time step kc. The following subsection further elaborates the

low-level feedback controller, which utilizes the high-level control inputs such that the regions

become more homogeneous.

6.4.2 The low-level feedback homogeneity controller (FHC)

The goal of the high-level (MPC) controller of the hierarchical control framework is to minimize

the total network delay. However, there is no explicit consideration of regional accumulation

heterogeneity in the high-level control. We also aim at minimizing the regional heterogeneity,

and to achieve this goal, a low-level feedback homogeneity controller (FHC) is introduced,

where the high-level MPC controller defines the set values for the control inputs such that

the MPC control inputs, i.e. the regional transfer flow percentage UI J , are forwarded to the

FHC. The FHC determines the subregional perimeter controls, ui j , to control the subregional

accumulations and minimize the accumulation heterogeneity. Note that subregions, which

are not attached to the boundary between the regions cannot be directly controlled, e.g.

subregion 19 in Fig. 6.1(c). While ni j variables might be more difficult to estimate, sub-

regional accumulations without information for the final destination, i.e. ni are easier.

The high- and low-level controllers are not conflicting, but are complementary. The FHC will

try to homogenize the region so that circulating flow increases for trips within the region,

independently if the MPC controller increases or decreases the transfer flow. This hierarchical

scheme can have significant benefits in real-life applications, where the perimeter controller

might create strong local heterogeneities and spillbacks for the intersections in the proximity

of the border. More homogeneous networks can improve both the average travel time (because

of higher network outflow), but also the travel time reliability, as shown by [117].
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The FHC is a state feedback controller that its control law is based on the feeded subregional

accumulations ni . The FHC aims at manipulating the subregional controllers ui j to bring sub-

regional accumulations as close as possible to desired accumulations. Defining appropriate

desired accumulations should achieve our control goal to homogenize the whole region. It is

clear that defining desired accumulations is not a trivial task, since they are not a priori known

and may change over time. However, utilizing information from the high-level controller helps

us in this task. Given that the high-level controller at each time step kc predicts the regional

accumulation states for Kp step ahead, these predicted accumulations can be considered,

after dividing them by the number of subregions within the region, as the subregional accumu-

lation set points for the FHC. The FHC control law for ui j should consider both subregional

accumulations ni and n j , because ui j affects both subregional accumulations. Hence, the

following control law, which is a multivariable integral discrete controller, is proposed:

ui j (kc) = ui j (kc −1)+K1 ·
( NJ (kc +Kp −1)

|S R J |
−n j (kc)

)
−K2 ·

( NI (kc +Kp −1)

|S R I |
−ni (kc)

)
,

(6.17)

where K1 and K2 are positive designed parameters. Note that NI (kc +Kp − 1)/|S R I | and

NJ (kc +Kp − 1)/|S R J | are the controller set points that change over time. Following the

regulating problem, the control gains K1 and K2 are designed in this chapter assuming that the

set points are known constant. When we apply the designed controller, it might be unstable

as the set points change over the time, but in this problem since the regional accumulations

change smoothly with time (as we see later in the results section) and do not experience strong

fluctuations, this allows the controller to be effective in tracking the time-varying set points.

The MPC output, UI J , can be applied in two different options: (i) where each ui j , i ∈ I and

j ∈ J , is equal (or be very close) to UI J without considering that each sub-region can be treated

differently, and (ii) where the collective effect of ui j , i ∈ I and j ∈ J , is almost equal to UI J , i.e.

∣∣∣∑i∈I , j∈J ui j

|uI J |
−UI J

∣∣∣< δ , (6.18)

where |uI J | denotes the number of subregional controllers between region I and J , and δ is a

prescribed positive value, e.g. 0.2. The second option empowers the controller to manipulate

each ui j differently and individually in order to minimize the regional heterogeneity. We

utilize the second option in the hierarchical framework and compare numerical results, in

the following section, with and without considering the low-level controller to highlight

its importance. It is known that feedback regulators of type (6.17) cannot handle directly

constraints in the optimization. The FHC first determines the ui j s based on (6.17), and then

truncates the control outputs to satisfy (6.16) and then if necessary add or subtract a value

from all ui j s to also satisfy (6.18).

133



Traffic modeling, estimation and control for large-scale congested urban networks

Region I

Region J

Subregion i

Subregion r

Su
bre

gio
nj

Minimizing network delay

Feedback information

Ne
xtt

ime
ste

p

Control inputs

Low-level (FHC) High-level (MPC) controller
controller

Accumulation set points

Subregion control inputs

Region-based prediction model

Demand
Subregion-based plant

(measurement errors)State estimation

Estimated states

Figure 6.5: The hierarchical perimeter control framework.

6.5 Comparison of control strategies

In this section, we present a case study example to explore the characteristics of the pro-

posed region-based and subregion-based models along with the hierarchical control scheme.

Moreover, we investigate the effect of heterogeneity controller, the low-level FHC, on the

control strategy performances. Note that the main modeling contribution of this chapter is

developing two different models with different scales of aggregation and utilize them in the

MPC framework as the prediction model and the plant, in contrast to Chapters 4 and 5 in

which the dynamics of model and plant in the MPC frameworks were inherently similar, but

the demand prediction errors and the MFD noisy scatter distinguish between them. With
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respect to control, we highlight the importance of the hierarchical multi-layer control structure

enhanced with advanced traffic modeling. This section emphasizes that if some parts of the

modeling and/or the control are not fully implemented, the network traffic states are worse,

especially under congested scenarios.

The case study network consists of two regions, designating the periphery and city center

of an urban network, each comprises of 12 and 7 subregions, respectively, as schematically

shown in Fig. 6.1(c). Without loss of generality, we assume every subregion has the same MFD

(production) consistent with the MFD (production) observed in Yokohama, and consequently,

the well-defined relationship between mean and STD of subregion link occupancy exists, and

the subregional average trip length is constant. Note that the region average trip lengths are

varying as the model evolves, see equations (6.9a) and (6.9b).

In all numerical runs, every subregion accumulation is initially identical and uncongested

that results in initial regional accumulations as N1(0) = 29000(veh) (71% of N crit
1 ) and N2(0) =

19000(veh) (80% of N crit
2 ), where N crit

I denotes the region I accumulation that maximizes the

production MFD, PI . To model the observation errors, a normal random component is added

to the measurements from the plant (subregion-based model), i.e. the errors are introduced

in NI I (t ), NI J (t ), L I I (t ), and L I J (t ), see Fig. 6.5. Also, a uniform random component is added

to the perimeter control sequence to model the flow stochasticity of supply and demand at

the boundary of regions, see the small fluctuations in Fig. 6.10(a)–6.10(d).

The exogenous time varying demand, shown in Fig. 6.6(a), simulates one hour of morning

peak followed by two and half hours of low demand to fully clear the network, while region 1

generates most of the demand towards region 2 that as the central business district attracts

trips. Moreover, we consider medium and high demands, where in the high demand the

exogenous demand from region 1 to region 2 is 10% higher than the medium demand shown

in Fig. 6.6(a). The selected MPC controller parameters are as follows: the prediction horizon

Kp = 20, the control lower bound Umin = 0.1, and the upper bound Umax = 0.9.

We compare five control strategies that are essential to investigate the importance of proper

heterogeneity modeling and hierarchical control: (i) no control where there is no restriction on

the perimeter transfer flows, (ii) MPC, only the high-level control, ignoring the modeling of het-

erogeneity and assuming an MFD without any hysteresis (similar to [49]), (iii) MPC+HET, only

the high-level control that utilizes the heterogeneity modeling of Section 6.2, (iv) MPC+FHC,

that is the hierarchical control ignoring the heterogeneity modeling by assuming an MFD with

no hysteresis, and (v) MPC+HET+FHC, that is the hierarchical control structure that applies

MPC at the upper level and FHC at the lower level considering the heterogeneity modeling.

These extensive tests enables to highlight the importance of heterogeneity modeling and

control on the performance of proposed traffic control for heterogeneous urban networks.

Figure 6.6(b)–6.6(f) depict the evolution of subregional accumulations ni (t) over the sim-

ulation duration for the five control strategies in case of medium demand. The gridlock is

apparent for no control case as shown in Fig. 6.6(b), while the rest of strategies manage to
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Figure 6.6: The case study example with medium demand: (a) the time-varying demand profile,
and subregional accumulations with (b) no control, (c) MPC, (d) MPC+HET, (e) MPC+FHC, and (f)
MPC+HET+FHC. Note that (b)–(f) have similar legends.
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clear the network, see Fig. 6.6(c)–6.6(f). Figure 6.6(b) also demonstrates that the accumulation

of each subregion cannot exceed the jam accumulation, i.e. 10000(veh), which is captured

by considering the receiving capacity of subregions in the subregion-based model. A more

careful investigation is necessary to compare the different control strategies. Table 6.1 lists

the total network delay (averaged over 5 runs) for the control strategies with the two different

levels of demand where the values in parenthesis designate the improvement over the MPC

strategy without heterogeneity modeling and without lower level control. It is apparent that

utilizing the heterogeneity modeling without integrating the FHC controller to decrease the

level of heterogeneity, will improve the system delays, but obviously is worse than the two-level

hierarchical control. In addition, the hierarchical control without heterogeneity modeling

(i.e. MPC+FHC) provides similar performance with MPC+HET. Thus a careful consideration

of heterogeneity in the modeling and control frameworks is essential to decrease the total

network delay.

Table 6.1: Total network delay (veh · sec ·106).

Demand No Control MPC MPC+HET MPC+FHC MPC+HET+FHC
Medium 1069.4 573.8 546.2 541.9 518.0

(-) (4.8%) (5.6%) (9.7%)
High 1204.4 930.5 881.5 851.0 636.8

(-) (5.3%) (8.5%) (31.6%)

To understand why the strategies provide different performance, we initially investigate the

MPC strategy. The MPC control strategy ignores the heterogeneity effect in the regional MFD,

i.e. the exponential term in (6.12) is equal to 1. Figure 6.7 depicts the control sequences and

MFD for medium demand with the MPC control strategy, where strong hysteresis loops are

apparent and notably the model MFD is identical in the loading and unloading phases. The Ta-

ble 6.1 results indicate 10% and 30% increase in control performance with the MPC+HET+FHC

strategy over the MPC strategy respectively in case of medium and high demand. Moreover,

assuming the lower envelop of MFD as the optimization model, i.e. the exponential term

in (6.12) is equal to its maximum value, results in worse outcomes. Note that [97, 98] are able

to keep accumulation at the critical values but cannot avoid hysteresis loops in the MFD with

control. Avoiding hysteresis loops can be very beneficial for the overall network performance

as we see in the analysis.

Figures 6.8, 6.9, and 6.10 highlight in detail the importance of the proposed hierarchical

control scheme. Note that the following illustrative comparisons are between the MPC+HET

control strategy and the two-level hierarchical control strategy (MPC+HET+FHC). MPC+HET

is superior to the MPC strategy which has been shown to be superior to standard simple

control strategies, such as the “bang bang” control approach [49], thus this is a strict test.

Figure 6.8 presents time-series of accumulations, Fig. 6.9 shows the corresponding MFDs, and

Fig. 6.10 demonstrates the control actions. This is described in more detail in the following

paragraphs.
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Figure 6.7: The case study example for medium demand with the MPC control strategy (without
heterogeneity consideration in modeling): (a) control inputs and (b) MFD productions.

The corresponding regional accumulations are illustrated in Fig. 6.8 for region 1 (center) and

region 2 (periphery), while the lines above (or below) of the accumulation curve represent plus

(or minus) one STD of the accumulation, a heterogeneity index. The accumulation results

obtained with the MPC+HET and MPC+HET+FHC control strategies for the medium demand

are depicted in Fig. 6.8(a) and 6.8(b), while the results for the high demand are depicted

in Fig. 6.8(c) and 6.8(d), respectively. Accumulations look almost identical in the onset of

congestion when heterogeneity index is small (remember that initial conditions have small

spatial heterogeneity), however the mean accumulation and the accumulation heterogeneity

are different in the offset of congestion. For region 2, the duration of congestion period is

shorter and this influences also region 1 in the offset of congestion. Note that region 2 attracts

more trips than region 1, even if it has smaller size. In case of high demand scenario with

MPC+HET strategy, some subregions face gridlock and the network is not fully cleared, note

the residual accumulation at the end of simulation. As MPC+HET+FHC can avoid high level of

congestion in subregions, the improvement over MPC+HET is 28%. If initial conditions are

also more heterogeneous an even better performance is expected for the advanced controller.

While accumulations do not provide a full picture on how the hierarchical control framework

improves the mobility levels, this is clear once MFDs are described for the regions.

The production MFDs obtained with the MPC+HET and MPC+HET+FHC strategies for the

medium demand are shown in Fig. 6.9(a) and 6.9(b), and for the high demand in Fig. 6.9(c)

and 6.9(d), respectively. Note that the figures show the MFDs obtained by the subregion model

(noted as P1 and P2) and the MFDs of the region model (noted as P1 model and P2 model)

as estimated by (6.12). It is clear that (6.12) can capture well the effect of heterogeneity in

the production MFD of the regions. Evidently, FHC improves the performance of the urban

network by minimizing the extent of the hysteresis in both region MFDs during the unloading

of the network, as shown in Fig. 6.9. Hysteresis can be considered as a strong inefficiency

of the system as for the same level of vehicles in the network, the performance is worse and
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Figure 6.8: Accumulation results obtained with MPC+HET control strategy and MPC+HET+FHC for
the medium demand in (a) and (b), and for the high demand in (c) and (d), respectively.

vehicles have to spend in the system longer times. Note that while the controller tries to

protect region 2, it also succeeds to improve the production (and also the trip completion) for

region 1, by decreasing the level of hysteresis to small values. This is succeeded by distributing

accumulations in a more uniform pattern by controlling the subregional inter-transfers. This

is an important finding as many previous investigations in the shape of the MFD with real

data and simulations observed hysteresis loops in many cases that result in a decrease in

the network performance. It is worth to mention that, the production and outflow MFDs are

related with the time-varying region average trip length. This variable affects the dynamics

of MFDs, notably the hysteresis loop shape, i.e. clockwise vs. counterclockwise. Average

trip length has a significant role in our understanding of urban traffic dynamics and reveals

substantial information on the human mobility pattern in urban areas. Further research on

this direction could shed more light on properties of urban average trip length distribution.

Figure 6.10 depicts the control sequences of MPC+HET and MPC+HET+FHC strategies at

the regional level (i.e. U12 and U21) for medium (a and b) and high demand (c and d). Each

figure contains the estimated values of U12 and U21 by the optimization model (6.13)–(6.16),

while U12 applied and U21 applied show the ones implemented utilizing the FHC (6.17)–(6.18).

Fig. 6.10(a) and 6.10(c) do not contain the FHC control thus the two lines are almost identical

(except some small random error during implementation). Nevertheless, in the FHC case

(Fig. 6.10(b) and 6.10(d)) differences are substantial as the FHC tries to equalize subregion

accumulations and it is allowed to deviate by the factor δ (see (6.18)) from the estimated

values. The control sequences show similar trends. For instance, at the very beginning of
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Figure 6.9: Production MFD for MPC+HET and MPC+HET+FHC for the medium demand in (a) and
(b), and for the high demand in (c) and (d), respectively.

the control process, the controllers do not restrict inter flow transfers since both regions

are uncongested. While afterwards, as region 2 becomes more congested and attracts more

trips, the controllers attempt to control region 2 accumulation by changing U12 from Umax

to Umin in a smooth manner, since without any restriction region 2 will face gridlock, see

the subregional accumulation with no control in Fig. 6.6(b). The overall situation remains

invariant till the end of morning demand t = 3600(s), then because of decrease in the demand

(unloading phase), regions shift towards the uncongested state. Thus, the controllers gradually

permit more vehicles to enter to the city center, region 2, by altering U12 to Umax. Though the

similar trend, the MPC+HET+FHC applied control sequence (dashed lines in Fig. 6.10(b) and

6.10(d)) deviate around the MPC control value, see (6.18). The FHC modifies the MPC control

sequence to manipulate transfer flows between subregions. This offers a flexible framework to

directly control the heterogeneity. The dashed lines are the applied perimeter control inputs

that achieve the two-fold objectives of the hierarchical (MPC+HET+FHC) control strategy, to

minimize the total network delay by simultaneously maximizing the network outflow and

minimizing the regional accumulation heterogeneity. We test the same experiment study with

δ equal to infinity, see (6.18), which means no restriction on FHC to follow the MPC control

values. This results in less heterogeneity in regions however the total network delay is worse

than the case with δ= 0.2. The outcome demonstrates that selecting the goal of the controller

solely to make regions more uncongested in a network and ignore other aspects (e.g. overall

network state, future prediction of traffic state, etc.) is not beneficial.

While results in Fig. 6.8–6.10 focus on the regional characteristics of the system, to further
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Figure 6.10: Control input results obtained with MPC+HET and MPC+HET+FHC for the medium
demand in (a) and (b), and for the high demand in (c) and (d), respectively.

investigate the effect of FHC, the accumulation of subregions in region 2 for high demand

case with MPC+HET+FHC (left column) and MPC+HET (right column) are shown in Fig. 6.11.

Apparently, MPC+HET+FHC brings the accumulation of all subregions to zeros by the end

of the experiment whereas without FHC, subregion 13 goes to gridlock. To investigate the

dynamics of subregion 13, Fig. 6.11(c) and 6.11(d) depict subregion 10, 11, 12 (the neighbours

of subregion 13 in region 1) accumulations and Fig. 6.11(e) and 6.11(f) depict control inputs

between subregion 13 and subregion 10, 11, 12, respectively for MPC+HET with and without

FHC. As expected, control inputs between region 1 and region 2, i.e. u10,13,u11,13,u12,13, are

identical in case of MPC without FHC (similarly for control inputs between region 2 and

region 1). However, FHC provides a traffic-responsive perimeter control strategy that is

based on subregion traffic states to distribute the traffic congestion more efficiently among

subregions. Consequently, FHC homogenizes region 2 accumulation and stabilizes subregion

13 accumulation by manipulating control inputs (see Fig. 6.11(e)), such that the dispersion

of subregion accumulations over time is smaller compared to Fig. 6.11(b). It is evident that

subregion 19 accumulation is less consistent with other subregions as it is uncontrollable

with perimeter controllers. Note that in Fig. 6.11(e) and 6.11(f) the noise in control input is

eliminated for illustration purposes.
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Figure 6.11: The case study example with high demand: (a) subregion accumulations in region 2 with
FHC, (b) subregion accumulations in region 2 without FHC, (c) subregion 10, 11, 12 accumulations
with FHC, (d) subregion 10, 11, 12 accumulations without FHC, (e) control inputs between subregion
13 and 10, 11, 12 with FHC, and (f) control inputs between subregion 13 and 10, 11, 12 without FHC.
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6.6 Summary

This chapter has presented two urban traffic models based on the MFD at different levels

of spatial aggregations to model the dynamics of density heterogeneity. A heterogeneous

urban region can be partitioned into homogeneous subregions as the detailed model aims at

modeling the accumulation dynamics of subregions, while the dynamics of urban regions are

modeled in an aggregated manner.

We utilize the subregion- and region-based model as the plant and the optimization model

in the MPC framework to formulate the optimal perimeter control for urban regions. We

integrate variable perimeter control inputs for each subregion in the region boundary to

actively control the density heterogeneity. The results in this chapter can be utilized to develop

efficient hierarchical control strategies for heterogeneously congested cities. A challenging

modeling direction is how to describe the aggregated modeling dynamics of regions, i.e. (6.2)

and (6.3), when routes pass through the same regions more than once (e.g. a trip sequence of

subregions in Fig. 6.1).
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7 Conclusions and future research

T
HIS dissertation thoroughly studied traffic state estimation methods based on probe

vehicle data in Part I (Chapters 2 and 3) and investigated a hierarchical control strategy

for heterogenous large-scale urban networks in Part II (Chapters 4, 5, and 6). This final

chapter briefly summarizes the findings and main contributions of each part, elaborates the

potential field applications, and outlines the directions for the future research. The detailed

conclusions and contributions are also provided at the end of each chapter.

7.1 Part I: Traffic state estimation

7.1.1 Queue profile estimation with probe data

Chapter 2 main contributions are as follows:

• A queue shockwave profile estimation method is proposed.

• The estimation method utilizes probe vehicle data within an integrated framework of LWR

traffic theory and data mining techniques.

• The method relaxes the assumption of uniform arrival flow and explicit knowledge of signal

settings.

• The method is based on an optimization formulation that incorporates the physics of traffic,

longitudinal kinematics, and traffic state interdependencies between adjacent links.

• The optimization part of the proposed method is formulated as a least squares problem that

is inherently robust to noisy measurements.

• The proposed method is applicable to oversaturated conditions containing a probabilistic

procedure of spillover occurrence inference.

The proposed traffic estimation method provides comprehensive dynamics of the urban traffic

flow that can be utilized for delay analysis (mean and distribution) and estimation of queue
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length, arrival flow distribution, and signal setting. The proposed method can be also used for

vehicle trajectory reconstruction that is not limited only to probe vehicles but particularly can

be applied to all vehicles. Estimation of detailed trajectory of vehicles further provides (rough)

inputs to emission or fuel consumption estimation models. Nevertheless, further research

is needed to investigate and improve the accuracy of these models. Estimation of vehicles

trajectories also enables to tackle the travel time decomposition problem [77], which is about

how to decompose the travel time between two successive probe data with high sampling

interval (e.g. 3 min) to individual link travel time. This is another future direction of research.

A future research priority is to extend the queue profile estimation model to consider multilane

roads, where in case of lanes with different channelization characteristic (e.g. left turn), the

queue development and dissipation varies among different lanes. The challenge is that while

the input data of the proposed method includes location and velocity of probe vehicles, the

state-of-practice technology is immature to provide accurate enough lane specific measure-

ments. Further research can attempt to infer the lane features of probe vehicles based on their

path characteristics [147] or possible data fusion with loop detector data that are able to pro-

vide lane information. In addition, for queue shockwave estimation in multimodal networks,

vehicle classifications based on loop detector data [189] or probe data is an intermediate step.

Even though the method does not require arrival traffic flow distribution, outflow measure-

ments from upstream input links can provide significant information for queue estimation

in case of limited probe data. Data fusion of sparse probe data with loop detector data (e.g.

see [175, 179]) can also facilitate the developed method in case of small penetration rates (e.g.

less than 5%) and improve the accuracy of the model. Integration of the proposed method

in real time traffic control is a tall order, but a feasible solution given the new era of data for

vehicle positioning and crowdsourcing. Existing traffic control strategies that require queue

size information (e.g. see [181, 2]) can utilize this method.

7.1.2 Route travel time distribution estimation

The main contributions of Chapter 3 are summarized as:

• A travel time distribution (TTD) estimation method is proposed.

• The estimation approach is to address spatial and temporal traffic state correlations in

signalized arterials.

• The method utilizes probe vehicle link travel times to infer the arterial route TTD.

• A Markov chain procedure is incorporated into the method to consider traffic progression

and correlation in consecutive links.

• A graphical tool is introduced to represent the joint distributions of successive link travel

times that in combination with a heuristic grid clustering algorithm provides state defini-

tions, and initial and transition probabilities of the Markov chain procedure.
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• The proposed method demonstrates a sound performance capturing the fundamental

characteristics of travel time variability even with sparse probe data.

The TTD estimation method provides a thorough travel time reliability performance measure

of traffic conditions on signalized arterials. The estimated TTD can be integrated in traffic

state monitoring tools for both traffic system managers to evaluate the transport network and

provide travelers with routing information. The method is straightforward in implementation

and has demonstrated promising performance and accuracy through numerous experiments.

The next crucial step for future studies is to investigate under what traffic conditions and route

structures the proposed method significantly outperforms convolution estimation, i.e. when

correlation plays a main role in TTD estimation. For instance, in case of very long links because

of platoon dispersion and different driver characteristics, correlation might be negligible. More

empirical experiments with real data are needed to examine the influence of different traffic

regimes. Moreover, the method would be helpful to inspect how the signal timing, offset, site

topology, etc., affect the travel time variability. Another major future research is, as GPS data

become available in real sites, to determine travel time reliability in urban networks in case of

limited data coverage, i.e. investigating adequate area coverage and integration of historical

and real-time data.

The proposed method can be integrated in a real-time implementation of TTD estimation.

In this case, by utilizing historical data and partitioning the data set for different times of

days and level of congestion, one can apply the method for each temporal partition and

estimate a priori TTD offline. In the online part of the real-time implementation, as more data

become available, a learning procedure should be developed (e.g. based on Bayesian update),

which will update the parameters of the model (states and initial and transition probabilities)

to improve the estimation accuracy. Moreover, studying the effect of TTD information on

drivers’ behavior in the route and departure time choice frameworks will shed light to the

implementation of TTD estimation for route guidance purposes.

7.2 Part II: Network-level traffic modeling and control

7.2.1 Model predictive Perimeter control for two urban regions

Chapter 4 main contributions are listed as follows:

• A novel large-scale control strategy for urban networks is proposed, where the control

strategy identifies the inter-transfer flows between regions of the network to maximize the

network output.

• The control problem is tackled by the model predictive control (MPC) scheme.

• The open-loop optimal control problem is solved using the direct sequential (or control

vector parameterization (CVP)) method that converts the optimal control problem into a
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finite-dimensional nonlinear problem through discretization of the control variables with

piecewise constant controls, while the ODEs are embedded in the nonlinear problem.

• The modeling of the optimization model and plant (reality) are based on the macroscopic

fundamental diagram (MFD).

• Two methods based on augmenting a constraint into the optimization problem and a

penalty term into the objective function are investigated to smooth the control inputs.

The perimeter control strategy is the cornerstone of the hierarchical urban traffic control

scheme to tackle traffic congestion in heterogeneously congested cities. The perimeter control

strategy provides the upper-level control considering the network-level traffic states to change

the spatial distribution of congestion in such a way that the network outflow increases. Thus,

it is of great importance to practitioners and city managers to unveil simple and robust signal

timing plans to maximize the network capacity and serve the maximum number of people

under congested conditions.

Improving the real-time implementation feasibility for networks with multiple regions is a

research priority. In addition, further analysis is needed to identify individual signal timing

plans in each region of the city to move traffic smoothly at the desired flow rates, without

concentrating a large number of vehicles at the boundaries of the regions and avoiding local

spillbacks in the proximity of the perimeter [96]. This is a challenging task that requires

knowledge on how the network flow for a region of a city changes as a function of topology,

control, and level of congestion.

By restricting access to congested cities, one can significantly improve system output, high-

lighting the importance of a reliable estimator of subnetwork/route capacity. Towards this

direction, the work [53] investigates the effect that have in the MFD, different degrees of

variability in link lengths and signal characteristics for different city topologies and signal

structures. Nevertheless, the effect of perimeter control in the heterogeneity of density in

each region (and the boundaries) cannot be investigated with the developed macroscopic

plant. An application of these strategies in the field or in a micro-simulation environment can

provide more insights towards this direction and identify the necessary local control schemes

to succeed smooth boundary conditions. This is a research priority.

7.2.2 Cooperative large-scale traffic control of a network with two urban regions
and a freeway

The main contributions of Chapter 5 are as following:

• The control problem of a large-scale mixed traffic network, consisting of two urban re-

gions and one alternative freeway route is formulated. The perimeter controller on the

boundary of regions manipulates the inter-transfer flows among regions, while two on-ramp

controllers control the traffic flow from urban regions to the freeway.

148



Chapter 7. Conclusions and future research

• The urban region traffic modeling is based on the MFD and the freeway traffic dynamics are

based on the asymmetric cell transmission model. The two different models are integrated

to form the mixed traffic network dynamics.

• The optimal traffic control problem is solved by the MPC scheme.

• Several control policies with different controller structures and levels of urban-freeway

coordination are introduced and investigated.

• The cooperative decentralized MPC approach seems promising as an alternative of the

centralized MPC in case of lack of full data communication and coordination between

urban and freeway control entities.

• The system optimum route choice is incorporated within the centralized MPC framework

that leads to increase the network performance compared to the user equilibrium condition.

This study contributes one step forward toward the system of systems approach in trans-

portation modeling and control framework. The developed decentralized and centralized

controllers in this chapter are fitted in the hierarchical traffic control structure to tackle large-

scale mixed urban-freeway networks. The findings offre coordinated decentralized control

strategies for city traffic managers as an alternative resolution when the centralized approach

is intractable because of lack of coordination between urban and freeway jurisdictions.

A future research direction is to investigate traffic control problem of networks with more

complex structure and dynamic traffic assignment procedure. Further, the continuation of

this research involves the development of control strategies for networks with a larger number

of urban regions, on- and off-ramps. In this case, the size of regions might change over time

due to congestion propagation that requires a dynamic partitioning of the city. Also a more

detailed route choice (specifically ramp choice) procedure is required. This is a challenging

problem, both from an optimization (higher computational needs) and modeling (more

complex dynamics) points of view.

In this study, the controller outcomes do not provide the exact phase plan settings for traffic

signals on the boundary of the regions. Nevertheless, recent works for single [97] and multiple

regions [4] address the tools to dynamically modify the signal settings to meet the controllers’

input actions. In case, the controller produces local queues in the proximity of the control

locations (ramps and boundaries between urban regions), analysis of [53] can identify signal

parameters in each region of the city to manage traffic smoothly at the desired flows, without

concentrating a large number of vehicles at the boundaries of the regions. However, thorough

investigations in integration of local queue equalization strategies within the proposed control

method is essential.

In addition, a field implementation and/or detailed micro-simulation of proposed control

policies are also important to identify the effect of the control and the heterogeneity of spatial

distribution of congestion on the shape of the MFD and the efficiency of the control method.
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Another research direction is related to the traffic monitoring with the objective to process

real-time data from multiple sensors to estimate the necessary state variables (accumulations,

travel times, etc.) involved in the control problem.

7.2.3 Aggregated traffic modeling and hierarchical control in heterogenous ur-
ban networks

The list below summarizes the main contributions of Chapter 6.

• Two urban traffic models are introduced based on the MFD at different levels of spatial

aggregations (regional and subregional) to model the dynamics of density heterogeneity

and average trip length.

• The subregional receiving boundary capacity is augmented in the vehicle conservation

model.

• A functional form is developed to model the effect of heterogeneity on subregion and region

MFDs based on real data analysis.

• A hierarchical control framework based on the perimeter control strategy is proposed for

congestion management in heterogeneously congested cities.

• The upper-level of the hierarchical control structure is solved by the MPC scheme, while the

subregion- and region-based models are respectively the plant (reality) and the optimization

model in the MPC framework.

• The lower-level of the hierarchical control system consists of a feedback controller that

manipulates the perimeter control inputs for each subregion in the region boundary to

actively control the spatial distribution of traffic density in regions.

• The significance of heterogeneity modeling and the feedback homogeneity controller in

control applications is demonstrated.

• It is demonstrated that efficient control strategies could decrease the magnitude of hysteresis

loop in the MFD.

The introduced control strategy is a complementary segment of the hierarchical control

framework that tackles vehicle density heterogeneity in congested cities. The results also

stressed the importance of density heterogeneity considerations for filed implementations.

A challenging modeling extension is to relax the assumption in the aggregated region modeling

that O-D routes cannot pass through the boundary between the regions more than once, i.e.

to allow drivers to cross the regions of the city without any limitation [200]. Another research

direction is to augment the “current best” route choice strategy with the experienced travel

time estimation. In addition, considering user equilibrium conditions in MFD modeling
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and the interaction between the adaptive perimeter control and the equilibrium state are

important issues to be addressed in future works. These problems could be overcome in

a day-to-day assignment framework, where drivers adapt to unexpected traffic conditions

(created by the new control strategy) by taking different route choice decisions over days.

Moreover, a route guidance advisory control system can be integrated within the proposed

control strategy to further improve congestion homogeneity and network performance. This

involves the effect of regional route choice in the MFD modeling and further explores implica-

tions of drivers’ route choice behaviour in performance of the control strategy.

All the efforts related to control and MFD modeling for multi-region networks assume a

stationary partitioning boundary in time and space. With dynamic congestion propagation

in different regions of a city (see e.g. [91]), a dynamic partitioning associated with a dynamic

boundary adjustment framework should be studied to improve the controllability of the

proposed control method. A control strategy with dynamic boundary adjustment is expected

to further handle congestion heterogeneity in cities. This is a research priority. Furthermore, a

field test would provide more insights about the applicability and implications of the proposed

hierarchical traffic control strategy.
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