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Abstract
This thesis focuses on the development of some fixed-order controller design methods in

the gain-scheduling/Linear Parameter Varying (LPV) framework. Gain-scheduled controllers

designed using frequency-domain Single Input Single Output (SISO) models are considered

first, followed by LPV controller design in the SISO transfer function setting and, finally, by

Multiple Input Multiple Output (MIMO) LPV controller design in the state-space setting. In

addition to the guarantee of closed-loop stability, each of the methods optimizes some classical

performance measure, such as the H∞ or H2 performance metrics. In the LPV state-space

setting, the practical assumption of bounded scheduling parameter variations is taken into

account in order to allow a higher performance level to be achieved.

The fixed-order gain-scheduled controller design method is based on frequency-domain

models dependent on the scheduling parameters. Based on the linearly parameterized gain-

scheduled controllers and desired open-loop transfer functions, the H∞ performance of the

weighted closed-loop transfer functions is presented in the Nyquist diagram as a set of convex

constraints. No a posteriori interpolation is needed, so the stability and performance level

are guaranteed for all values of scheduling parameters considered in the design. Controllers

designed with this method are successfully applied to the international benchmark in adap-

tive regulation. These low-order controllers ensure good rejection of the multisinusoidal

disturbance with time-varying frequencies on the active suspension testbed.

One issue related to the gain-scheduled controller design using the frequency response model

is the computational burden due to the constraint sampling in the frequency domain. The

other is a guarantee of stability and performance for all the values of scheduling parameters,

not just those treated in design. To overcome these issues, a method for the design of fixed-

order LPV controllers with the transfer function representation is proposed. The LPV controller

parameterization considered in this approach leads to design variables in both the numerator

and denominator of the controller. Stability and H∞ performance conditions for all fixed

values of scheduling parameters are presented in terms of Linear Matrix Inequalities (LMIs).

With a problem of rejection of a multisinusoidal disturbance with time-varying frequencies in

mind, LPV controller is designed for an LTI plant with a transfer function model.

The extension of these methods from SISO to MIMO systems is far from trivial. The state-

space setting is used for this reason, as there the transition from SISO to MIMO systems is

natural. A method for fixed-order output-feedback LPV controller design for continuous-time

state-space LPV plants with affine dependence on scheduling parameters is proposed. Bounds

on the scheduling parameters and their variation rates are exploited in design through the
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use of affine Parameter Dependent Lyapunov Functions (PDLFs). The exponential decay rate,

induced L2-norm and H2 performance constraints are expressed through a set of LMIs. The

proposed method is applied to the 2DOF gyroscope experimental setup.

In practice control is performed using digital computers, so some effort needs to be put into

the LPV controller discretization. If the discrete-time LPV model of the system is available,

one may design the discrete-time controller directly. Hence, the MIMO LPV controller design

method is proposed for the class of discrete-time LPV state-space plants affine in the schedul-

ing parameters. A controller structure fixed by the user is preserved, since the controller

parameters appear directly as decision variables in the convex optimization program. Limited

scheduling parameter variations are treated through the use of PDLFs. Uncertainty in the

scheduling parameter vector due to the sensor measurement error can be considered in the

design. The iterative convex optimization procedure improves the upper bounds on the H2 or

induced l2-norm performance of the closed-loop system. The effectiveness of the method is

illustrated via numerical comparison with a similar approach.

Key words: gain-scheduling; linear parameter varying; fixed-order controller design; pa-

rameter dependent Lyapunov functions; convex optimization; multisinusoidal disturbance

rejection.
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Résumé
Cette thèse concerne le développement de plusieurs méthodes pour la synthèse de régulateurs

gain-scheduling/Linéaire à Paramètres Variants (LPV) d’ordre fixe. Dans un premier temps

des régulateurs du type gain-scheduling conçus avec des modèles SISO fréquentiels sont

considérés, suivi par la synthèse de régulateurs LPV dans le contexte de fonctions de transfert

SISO. Finalement, la synthèse de régulateurs MIMO LPV avec des modèles d’état est abordée.

En plus de la garantie de stabilité en boucle fermée, chaque méthode optimise une des mesures

de performance classiques, telle que les jauges de performance H∞ ou H2. Dans le contexte

LPV avec modèle d’état, l’hypothèse réaliste que les variations du paramètre du scheduling

sont bornées permet d’obtenir une meilleure performance.

La méthode de synthèse pour les régulateurs du type gain-scheduling d’ordre fixe est basé sur

des modèles fréquentiels dépendant du scheduling parameters. En tenant compte des fonc-

tions de transferts souhaitées en boucle fermée et des régulateurs du type gain-scheduling à

paramètres linéaires, la performance H∞ de la somme pondérée des fonctions de transfert en

boucle fermée est formulée comme un ensemble de contraintes convexes dans le diagramme

de Nyquist. Aucune interpolation postérieur est nécessaire, donc la stabilité et le niveau de

performance sont assurés pour toute valeur du paramètre du scheduling prise en compte

dans la synthèse. Des régulateurs conçus avec cette méthode sont appliquées avec succès au

Benchmark international pour la régulation adaptive. Ces régulateurs de degré bas rejettent

très bien la perturbation multi-sinusoïdale à fréquences variables sur le système de test pour

suspension active.

La puissance computationnelle requise dû à l’échantillonnage de la contrainte dans le do-

maine fréquentielle est une des difficultés liées à la synthèse d’un régulateur du type gain-

scheduling utilisant une réponse fréquentielle. L’autre désavantage est que la stabilité et la

performance ne sont pas garanties pour les valeurs du paramètre de scheduling qui ne sont

pas pris en compte dans la synthèse. Une méthode de synthèse de régulateur de degré fixe,

basée sur la fonction de transfert, est proposée afin de résoudre ces deux difficultés. Dans

cette approche, la parametrisation du régulateur LPV comporte des variables libres dans le

numérateur et le dénominateur. Des conditions de stabilité, ainsi que de performance H∞,

pour toutes valeurs constantes des paramètre de scheduling sont présentées sous forme de

LMIs. Motivé par le problème de rejection de perturbation multi-sinusoïdale, le régulateur

LPV est adapté/appliqué à un système LTI avec un modèle en forme de fonction de transfert.

L’extension de ces méthodes au cas MIMO n’est pas évidente. Pour cette raison une représen-

tation par modèle d’état est utilisé, car dans ce format la transition entre systèmes SISO et
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MIMO devient naturel. Une méthode pour la synthèse de régulateurs LPV de degré fixe est

proposée pour des systèmes représentés par un modèle d’état LPV, avec dépendance affine

sur les scheduling parameters. Des bornes sur les valeurs et la vitesse de variation des schedu-

ling parameters permettent l’utilisation de PDFLs pour la synthèse. Le taux de décroissance

exponentielle, la norme L2, et l’indice de performance H2 sont exprimés à travers des LMIs.

La méthode est appliquée à un gyroscope 2DOF expérimental.

Dans la pratique le régulateur est implémenté dans un ordinateur numérique, ce qui nécessite

la discrétisation du régulateur LPV. Si un modèle discret du système LPV est disponible, la

synthèse du régulateur discret se fait directement. Donc la méthode de synthèse de régulateur

MIMO LPV est proposée pour l’ensemble de systèmes représentés par un modèle d’état

discret à dépendance affine dans les paramètres de scheduling. La structure du régulateur

spécifié par l’utilisateur est respectée, car les paramètres du régulateur apparaissent comme

variables de décision dans le problème d’optimisation convexe. Des variations bornées du

paramètre de scheduling sont traitées au travers des PDLFs. L’incertitude dans le paramètre

de scheduling due à des erreurs de mesure peut être prise en compte dans la synthèse. La

procédure d’optimisation itérative améliore la borne supérieure sur l’indice de performance

H2 ou l2 du système en boucle fermée. L’efficacité de cette approche est illustrée par une

comparaison en simulation avec une méthode similaire.

Mots clefs : gain-scheduling ; linéaire à paramètres variants ; synthèse de régulateurs d’ordre

fixe ; parameter dependent Lyapunov functions ; optimisation convexe ; rejection de perturba-

tion multi-sinusoïdale.
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1 Introduction

1.1 Motivation

The field of automatic control has come a long way since the application of the centrifugal

governor in the 18th century to the problem of regulation of steam engine speed (James Watt,

among others), and James Clark Maxwell’s analysis of dynamics of governors [1]. With the

seminal publications of Lyapunov [2], Nyquist [3] and Bode [4], a strong basis for the analysis

of the stability of dynamical systems has been laid out. From the developed stability analysis

methods, many different frameworks for the control of dynamical systems have gradually

arisen in the past 50 years. This has led to advanced control mechanisms such as adaptive,

robust or model predictive control, or nonlinear control principles such as feedback lineariza-

tion, sliding mode control or backstepping. These advances have allowed the expansion of

the applicability of automatic control theory from electromechanical systems (ranging from

temperature control of a refrigerator to wind turbines and robotic arms), over aerospace

engineering and the process industry, to different emerging applications such as the control of

insulin injection or stock trading. More details on the history and development of the field of

automatic control and classical and emerging applications can be found in a very informative

and recent review paper [5].

However, the majority of practical applications of control theory still lies in the field of control

of electromechanical systems. Control theory is widely applied in modern embedded systems,

appearing as cheap, massively produced consumer electronics, in household appliances, in the

automotive industry and in medical applications. The common characteristic of many of these

applications is the scarcity of available resources in terms of memory and available processing

power or time. Dynamical models used for the control law design are often of a high order, as

simplification of the model could lead to an unreliable control law. If the controller design

method cannot decouple the choice of the controller order from the model order, a controller

with high implementation complexity is usually obtained. This clearly motivates the demand

for the fixed-order controller design methods, as this class of control laws is very low-cost for

real-time implementation in terms of both memory and processing power. Another advantage

1



Chapter 1. Introduction

of simpler control laws is that it is easier to ensure their numerical reliability and perform

verification. The other important motivation for fixed-order controller design comes from the

still ruling dominance of the Proportional-Integral/Proportional-Integral-Derivative (PI/PID)

controller structure in industry. Many currently operating industrial processes are controlled

by this simple, yet powerful and easily comprehensible, controller structure. Replacing them

by the much more complex control strategy is often hard to enforce, as it would demand

reallocation of resources and a lot of testing to verify all the safety aspects. These operations

are time-consuming and expensive, and hence almost unacceptable by industrial practice

standards in many such applications. It is important to mention here that the choice of

controller order is not a trivial task in general. If the order is chosen too low, the obtained

performance may be deemed unsatisfactory. In this case, a controller order has to be increased

by the user until a satisfactory performance is obtained.

Another important issue related to the control solutions applied in industry is the controller

structure. Restrictions on the controller structure may come from different sources. One

simple restriction is a need for the presence of certain dynamics in the controller. Such a need

comes from the well-known Internal Model Principle [6], which states that the dynamics of the

persistently exciting reference or disturbance have to be replicated in the controller in order

to achieve asymptotic tracking or disturbance rejection. The other, more complex, demands

are related to a need for the decentralized or distributed structure of the controller. Namely,

in the presence of a large number of sensors and actuators that are spatially distributed,

communication may become very complicated or even impossible between some parts of

the system. This leads to the desire for a control configuration in which the stability and good

level of performance of the overall control system is guaranteed, in spite of a limited set of

communication links. A method that can directly design low-order controllers with structural

constraints respected can hence be very useful in practice.

In reality, many systems operate in such work regimes that a single Linear Time-Invariant

(LTI) model cannot describe the behavior of the system sufficiently well. This is true for any

system with nonlinear dynamics and a sufficiently large continuous space of operating points.

However, this type of systems can often be described sufficiently well through a set of local

LTI models for different operating points. In this case the gain-scheduling control paradigm

can be applied successfully. The idea behind gain-scheduling is that a family of local linear

controllers designed for these operating points performs well when the operating point varies

slowly. Intuitively, it is expected that under this condition the local linear models capture the

underlying nonlinear dynamics well enough. One merit of the gain-scheduling paradigm is its

simplicity, thereby making it easy for engineers to understand and use. The other important

feature is that the high level of performance achievable by the use of an LTI controller can be

preserved by a gain-scheduled controller if the assumption of slow variation of the scheduling

parameter is satisfied.

In the case that the operating point varies more abruptly the control system performance

can, however, degrade drastically, and even the stability of the overall control system may
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be jeopardized. The other issue that may appear is the inappropriate interpolation of the

designed LTI controllers, as it can lead to the loss of performance, or even stability, even for the

operating points included in the design set. This motivates the use of a more representative

class of models. LPV models are characterized by dynamics similar to that of linear systems,

but with model parameters depending on the time-varying scheduling parameters. These may

just be a function of an operating point, or could depend on some external signal. The main

merit of the LPV modeling and control paradigm is that it enables the use of linear systems

theory tools for a wide class of nonlinear systems.

Different types of plant models are used for controller design in the gain-scheduling/LPV

framework. Frequency-domain models are often considered in practice, for the reason that

they can be obtained in a simple manner, without making any structural assumptions. In

the case that scheduling parameters do not vary “too quickly”, frequency-domain models

dependent on scheduling parameters may be very useful as many practical performance

specifications are stated in the frequency domain. If this assumption is not satisfied, the LPV

paradigm provides a safer solution. Since some systems may be too complex to be modeled in

acceptable time using underlying physical principles, input-output identification routines are

usually employed when this is the case. Some available LPV model identification methods

lead to input-output models in the polynomial setting. On the other hand, for some systems

first principles modeling may be feasible, leading to LPV models with a state-space structure.

The advantage of state-space LPV models is that the transition from SISO to MIMO systems is

simpler than in the polynomial setting.

1.2 State of the Art

A review of gain-scheduling and LPV fixed-order controller design methods is now presented,

with particular focus placed on multi-sinusoidal disturbance rejection as this presents an

important contribution of this thesis.

1.2.1 Multi-sinusoidal disturbance rejection

The problem of periodic disturbance rejection appears in many engineering applications.

These periodic disturbances often possess few dominant harmonics, and so they can be

expressed as a combination of a few sinusoidal signals. Some of the practical applications in

which periodic disturbances appear are hard disk [7] and optical disk drives [8], active noise

control systems [9] and helicopter rotor blades [10].

In the case that the disturbance frequency is known, certain approaches, such as internal

model control and repetitive control techniques, can be applied. If an unknown frequency

can be measured directly or indirectly, which happens, for example, in some active noise

control applications, adaptive feedforward control can be used to reject the disturbance. In

[11], it is shown that the standard adaptive feedforward control algorithm is equivalent to
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the internal model control law. A survey of different methods for the both the known and

unknown disturbance frequency cases can be found in [12].

In practice it is not always possible to measure the disturbance frequency with a sensor, either

because it is physically impossible to place the sensor at an appropriate place for measuring

disturbance, or because the additional cost is too high. This motivates the use of parameter

estimation methods to estimate the parameters of the disturbance model. Therefore, almost

all unknown-frequency disturbance rejection algorithms generally lead to a direct or indirect

adaptive implementation, which can be referred to as “adaptive regulation” since the controller

parameters are adapted with respect to variations of parameters of the disturbance model. In

[13], two such approaches are compared for an active suspension system. The first approach

is a direct adaptive control scheme with the Youla-Kučera parameterization of the controller,

so the disturbance is rejected by adjusting the parameters of the Youla-Kučera polynomial.

The second approach is an indirect adaptive control scheme because the disturbance model is

estimated first and then, based on the internal model principle, a new controller is calculated

to reject the disturbance.

A benchmark on adaptive regulation, performed on the problem of multi-sinusoidal distur-

bance rejection for an active suspension setup, is presented in [14]. The main performance

criteria are defined with regard to the closed-loop transfer operator between the output dis-

turbance and measured output, as a good attenuation level in the frequency region of the

disturbance and low amplification outside of this region. Different solutions are proposed,

with all but one [15] using the Youla-Kučera parameterization as the basis for controller design

[15, 16, 17, 18, 19, 20, 21]. Although these all lead to good performance, they come at the

cost of having high controller order equal to that of the augmented plant. Additionally, even

though the majority of the performance specifications is defined in the frequency domain,

these methods need a reliable parametric model for the controller design.

In the case that the internal model principle solution is applied, the dynamics of the controller

are scheduled by parameters which change as a function of the disturbance frequencies.

This motivates the LPV controller design method for the rejection of sinusoidal disturbances

described in [22]. In this approach, an LPV controller is designed with a guaranteed level of

H∞ performance based on the method proposed in [23, 24]. A single quadratic Lyapunov

function is used for all values of the measured frequency. Hence, stability and performance

are guaranteed even in the presence of infinitely fast disturbance frequency variations.

Discrete-time state-space state-feedback and full-order output-feedback LPV controller de-

sign methods for multi-sinusoidal disturbance rejection are proposed in [25, 26]. The state-

feedback method [25] is based on the use of a single Lyapunov matrix, which, in the discrete-

time case, is not necessary even for unlimited variations of the disturbance frequencies.

The full-order output-feedback method [26] is implemented in two ways: using the Linear

Fractional Transformation (LFT) framework for representing the influence of scheduling pa-

rameters on the plant and controller dynamics, and using the polytopic LPV description and
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a Lyapunov function independent of the scheduling parameters. The order of the obtained

LPV controller in both cases is equal to that of the augmented plant. All of these methods

provide good performance in presented active noise cancellation and active vibration control

experiments.

1.2.2 From the gain-scheduling to the LPV paradigm

The original gain-scheduled controller design methods are based on the use of local LTI

models for a set of operating points of the underlying nonlinear plant. Namely, for each of

these local models an LTI controller providing good performance is designed. In the second

step, an interpolated gain-scheduled controller is obtained based on these local controllers,

such that it covers the whole continuum of operating points defined by those used for design.

As summarized in [27], the main requirements that have to be satisfied by the gain-scheduled

controller are: (a) stability and performance for all operating points, and not just for those used

for design, and (b) the parameters of the interpolated controller being smooth and continuous

functions of the operating point to avoid discontinuous controller states and output signals.

Many different approaches for the interpolation of local controllers to a gain-scheduled

controller are discussed in the literature. Some of the strategies are direct interpolation

between transfer functions or interpolations of zeros, poles and gains of controllers. Stability

of some such schemes and propositions for more advanced interpolation techniques can also

be found in the literature [28, 27, 29, 30, 31].

The main issue with interpolation of LTI controllers to a gain-scheduled controller is that

the obtained gain-scheduled controller often does not guarantee stability and performance

even for the operating points considered in design. To avoid the issue of interpolation and to

prevent degradation of control system when the operating point changes considerably during

operation, the transition from the gain-scheduling to LPV framework is proposed in [32, 33].

LPV systems can be thought of as a weighted combination of linear models, each valid at a

specific operating point. The weightings for most of the systems may be considered smooth

and continuous functions of the scheduling parameters that in turn depend on the operating

point. These parameters can either be exogenous or endogenous signals, with the system

states or outputs being an example of the latter. As a result, the dynamics become a function

of time according to the trajectories of these signals.

The class of LPV controllers can be defined in a similar manner, with the modeling and control

of LPV systems having become an important area of research in the past two decades [34],

[35]. The motivation for this development is the use of linear systems theory tools for stability

analysis and controller synthesis for a wide class of nonlinear systems [33]. Over the years,

the theory of LPV systems has been successfully applied to modeling and control in different

practical applications, such as for wind turbine control [36, 37], turbofan engines [38, 39],

wafer stage [40], missile autopilot design [41, 42, 43, 44], semi-active suspension design [45]

and active braking control [46]. More on applications of LPV framework can be found in recent
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books [47, 48].

There are different methods for obtaining an LPV model of a system. One approach is the use

of a nonlinear model derived from first principles and its LPV approximation in the operating

range of interest. For some systems first-principles modeling may be too complex, or even

impossible, which motivates the use of identification routines. As the LPV models produced

by identification procedures are usually in discrete time [49, 50, 51, 52], both continuous- and

discrete-time LPV controller design methods may be required.

Some methods for fixed-order LPV controller design in the transfer function setting are pre-

sented in [38, 53]. The method in [38] presents an extension of a robust controller design

method [54], with a set of LMI constraints for H∞ performance being obtained by the use

of a central polynomial. In [53] a direct data-driven LPV controller design is proposed to

avoid possible errors that may appear during modeling. According to [52], the use of transfer

function models is very well aligned with industrial practice and the modeling paradigm in

the SISO case. However, the extension to the MIMO case can be significantly more complex

than in the state-space setting.

1.2.3 LPV MIMO controller design in the state-space setting

Some important results for stability analysis of uncertain and LPV polytopic continuous-time

and discrete-time systems are presented in [55, 56, 57, 58]. It is important to emphasize here

that even though uncertain and LPV systems share some common characteristics, the essential

difference is the time-invariant nature of uncertain systems that is opposed to time-varying

behavior of LPV systems. Hence, even though many analysis and synthesis tools for uncertain

and LPV systems are based on similar premises, the important difference in their characters

has to be kept in mind. One of the characteristics of listed LPV analysis methods is a polytopic

or affine dependence of plant matrices on the scheduling parameters. The other important

feature is a shift from the use of Lyapunov matrices independent of the scheduling parameters

to the use of PDLFs. In practice scheduling parameters rarely vary infinitely fast, hence this

shift improves the analysis of LPV systems with bounded scheduling parameter variations.

The addition of slack matrix variables to the analysis conditions for stability and performance

of LPV systems has a beneficial influence as well.

Ideas related to the LPV system analysis lead to further development of LPV controller synthesis

methods. Some continuous-time LPV controller design strategies for LPV systems with a state-

space description are presented in [59, 60, 61, 62]. A few recent publications cover the case

of controller synthesis for discrete-time LPV systems affected by scheduling parameters with

limited variations [63, 64, 65]. An observer-based controller design for LPV systems with

uncertainty in the measurement of the scheduling parameter is considered in [66].

An important aspect of any LPV control approach is the manner in which the scheduling

parameters are handled in the design process. In some of the approaches [67, 68], the LFT
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framework is used to isolate the scheduling parameters. This allows the small-gain theorem

to be used for the analysis of system stability, but with some conservatism introduced for

the manner in which the LPV model is represented through the nominal LTI model and

scheduling parameter matrix. Additionally, a single Lyapunov function is used for ensuring

the closed-loop stability, which guarantees that the system remain stable even for infinitely

fast variations of scheduling parameters, but which is often unnecessary and superfluous

in practice. Considering a bound on the variation rate of scheduling parameters relaxes

the controller synthesis problem by increasing the stabilizing controller space and possible

performance gain. It should be emphasized that stability of some systems cannot even be

analyzed using a single quadratic Lyapunov function [59], and that the bounds on the variation

rate are often known.

PDLFs are applied to the problem of controller synthesis for uncertain and LPV systems in

[59, 60, 69]. In [59] both state-feedback and full-order output feedback LPV controller design

methods are treated, and in [60] a different full-order output-feedback controller design

approach is proposed. Both of these lead to controller matrices that depend on derivatives

of scheduling parameters, which are not measurable in the general case. In [60], this can be

avoided by fixing a part of the structured Lyapunov matrix and using a scaling matrix to reduce

the conservatism of the approach. The approach in [61] extends the method presented in [60]

via the addition of a scalar optimization variable that guarantees at least the same performance

as obtained by the original method. However, this possible performance improvement comes

at the cost of increased computation time, as a line search over the added variable has to be

performed and for each examined value of the added variable a Semidefinite Programming

(SDP) problem has to be solved.

All of the aforementioned methods result in a controller in either state-feedback or full-order

output-feedback form. For online reconstruction of the full-order controller, time-consuming

linear algebraic operations need to be carried out. Moreover, the order of the controller may

be too high since it depends on the augmented plant model order. Some methods for LPV

controller reduction are available [70], but there is no guarantee of preserving stability or

performance of the original LPV system with the reduced-order controller. On the other

hand, a state-feedback LPV controller demands state estimation, which is a non-trivial task

for LPV systems. Often, the users may have a preference for a certain controller structure.

Decentralized [71] or distributed [72] controller structures may be essential in order to achieve

low complexity of the overall control system. However, for both state-feedback and full-

order output-feedback controller design methods the controller is recovered by applying a

nonlinear transformation to the solution of the optimization problem. This means that the

user-requested controller structure cannot be preserved. Finally, the resources available for

control are highly limited in most practical applications, even if this is improving in newer

applications. As well, lower complexity leads to easier verification of numerical reliability of

the applied control law. All of these motivate the need for development of methods for the

direct design of low-order fixed-structure output-feedback LPV controllers, which are easier

and cheaper to implement, have lower execution times and are simpler for verification.
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In [73], the authors develop a fixed-structure state-space discrete-time LPV controller design

method with guaranteed induced l2-norm performance. Performance analysis conditions

from [74] are convexified around the slack variable matrix, and its value is updated based on

its relation with the Lyapunov matrix. An appropriate two-step iterative optimization scheme

is used to improve induced l2-norm performance. Direct optimization over the controller

variables in one of the steps allows the user to tune the controller order and structure. As this

method is founded on a premise similar to that of some of the other methods proposed in this

thesis, it is reasonable to use it as a basis for comparison.

1.3 Contributions and Organization of the Thesis

This thesis describes the development of some fixed-order gain-scheduled and LPV controller

design methods. The contributions are summarized as follows:

• A fixed-order gain-scheduled controller design method based on frequency-domain

models dependent on the scheduling parameters is proposed. The shaping of the

weighted closed-loop transfer functions is performed in the Nyquist diagram through

the use of convex optimization tools, and through the use of linearly parameterized gain-

scheduled controllers and desired open-loop transfer function. A benefit of the method

is that no a posteriori interpolation over the scheduling parameter space is needed, as

the gain-scheduled controller is a direct output of the optimization procedure. The

method is applied to the international benchmark problem of multi-sinusoidal distur-

bance rejection. Even though it is the only low-order solution to the benchmark problem,

a comparable level of performance for the rejection of multi-sinusoidal disturbance

with time-varying frequencies on the active suspension testbed is achieved.

• A method for the fixed-order LPV controller design in the polynomial setting is proposed

to overcome the issues of sampling constraints in the frequency domain and scheduling

parameter space, and to guarantee stability and performance level for all the values of

scheduling parameters. Additionally, the considered LPV controller parameterization

allows treating both the numerator and denominator of the controller as design variables.

Stability and H∞ performance conditions are exploited to cast the design problem as a

convex SDP problem. As the motivating application is the rejection of multi-sinusoidal

disturbance with time-varying frequencies, the design of an LPV controller for an LTI

plant is considered.

• To enable a natural transition from SISO to MIMO systems, a method for fixed-order

output-feedback LPV controller design for continuous-time state-space LPV plants

with affine dependence on scheduling parameters is proposed. PDLFs are used in

order to exploit bounds on the scheduling parameters and their variation rates in the

design. Three different algorithms based on iterative convex optimization schemes are

proposed for the design. Different performance measures — namely, the exponential
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decay rate, the induced L2-norm, and H2 performance — can be optimized. To test

the controller design method, real-time experiments are performed on a 2-Degrees-Of-

Freedom (2DOF) gyroscope setup.

• A discrete-time state-space LPV controller design method is proposed for the class of

discrete-time LPV state-space plants affine in the scheduling parameters to avoid the

issues related to the LPV controller discretization. As the controller parameters appear

as decision variables in the convex optimization program, the controller structure speci-

fied by the user is preserved. Bounded scheduling parameter variations and scheduling

parameter uncertainty coming from the sensor measurement error are treated in the

design. H2 or induced l2-norm performance can be optimized using an iterative con-

vex optimization algorithm. A numerical comparison with an approach founded on

similar premises is performed and a simpler controller with better value of l2-norm

performance is obtained.

The remainder of the thesis is organized as follows. Chapter 2 presents a method for the

fixed-order gain-scheduled controller design based on the frequency-domain models and

its application to the benchmark on adaptive regulation. Chapter 3 describes a method for

the design of fixed-order H∞ LPV controllers for LTI plants in the polynomial setting with

a polytopic representation of the scheduling parameter space. A new fixed-order output-

feedback LPV controller design method for continuous-time state-space LPV plant models

with affine dependence on the scheduling parameter vector is presented in Chapter 4. In

Chapter 5 a fixed-structure LPV controller design method for the class of discrete-time LPV

state-space plants, affine in the scheduling parameter vector, is considered. Finally, Chapter 6

concludes the thesis and provides some perspectives for future work.
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2 Fixed-order Gain-Scheduled
Controller Design in
Frequency Domain
2.1 Introduction

In [75], a fixed-order H∞ controller design method for spectral models is proposed. In

this chapter, the idea is extended to design of gain-scheduled H∞ controllers. As already

discussed, LPV controllers can guarantee the closed-loop stability for fast variation of the

scheduling parameters. However, this may come with a detriment of performance because

of the conservatism of existing LPV controller design methods. The method proposed in

this chapter guarantees the stability and performance for frozen and slowly time-varying

scheduling parameters.

The method is applied to the benchmark on adaptive regulation, which is performed on the

active suspension experimental setup [76]. The goal of the benchmark is to reject the output

disturbance which consists of multiple harmonics with time-varying frequencies. This leads

to a primary control goal of strong attenuation of the closed-loop system in the frequency

range of disturbance. It is important as well to minimize the transient effects and to ensure

low amplification outside of the frequency range of interest, in order to avoid amplifying the

measurement noise. Designed controller is scheduled in real time based on the disturbance

model estimate, which is dependent on the disturbance frequency. Even though stability

and good performance is guaranteed only for frozen values of the scheduling parameters,

this application illustrates that both are preserved even for fast variations of scheduling

parameters.

As no parametric model is needed for this controller design method, the approach can also

be used for systems with pure time delay. Moreover, there is no under-modeling coming

from the structural mismatch. Another positive feature of this method is that computation of

the controller parameters and their interpolation are performed by one convex optimization.

In this manner, the stability and performance are guaranteed for all the gridded scheduling

parameter values, which may not be the case if an a posteriori interpolation is performed.
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2.2 Preliminaries

First, the class of models that can be considered using the proposed approach is described.

Next, the class of controllers treated by the approach is defined.

2.2.1 Class of models

The class of causal discrete-time SISO models with bounded infinity-norm is considered. It

is assumed that the spectral model of the system G(e− jω,θ) is available as a function of the

scheduling parameter vector θ = [θ1, . . . ,θnθ
]T . The scheduling parameter vector θ is assumed

to belong to a bounded setΘ ∈Rnθ . For example,Θ can be a hyperrectangle, which signifies

that

θi ∈ [θi ,θi ], i = 1, . . . ,nθ. (2.1)

However, other types of bounded sets can be considered as well. The bounded infinity norm

condition can be relaxed in order to consider systems with poles on the unit circle. Since only

the frequency-domain data are used in the design method, the extension to continuous-time

systems is straightforward.

2.2.2 Class of controllers

Linearly parameterized discrete-time gain-scheduled controllers are treated:

K (z−1,ρ(θ)) =ρT (θ)φ(z−1), (2.2)

where

φT (z−1) = [φ1(z−1),φ2(z−1), . . . ,φn(z−1)] (2.3)

represents the vector of n stable transfer functions, namely basis functions vector. It may be

chosen from a set of generalized orthonormal basis functions, e.g. Laguerre basis [77]. Vector

ρT (θ) = [ρ1(θ),ρ2(θ), . . . ,ρn(θ)] (2.4)

represents the vector of controller parameters. Dependence of the controller parameters ρi

on θ is given by

ρi (θ) = ρi ,0hi ,0(θ)+
nθ∑
j=1

ρi , j hi , j (θ), hi ,0(θ) = 1. (2.5)

In the case of affine dependency of ρ on θ functions hi , j (θ) take values hi , j (θ) = θ j for

i = 1, . . . ,n and j = 1, . . . ,nθ.
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2.3 Gain-scheduled HHH ∞ controller design

For simplicity, a single H∞ constraint on the weighted sensitivity function is considered. The

extension to the case of H∞ constraints on several sensitivity functions is straightforward.

The main reason to use a linearly parameterized controller is that every point on the Nyquist

diagram of the open-loop transfer function becomes a linear function of the vector of controller

parameters ρ(θ):

L(e− jω,ρ(θ)) = K (e− jω,ρ(θ))G(e− jω,θ) =ρT (θ)φ(e− jω)G(e− jω,θ). (2.6)

This representation enables obtaining a parameterization of an inner convex approximation

of the set of fixed-order gain-scheduled H∞ controllers.

2.3.1 Design specifications

The nominal performance can be defined by [78]

‖W1(z−1)S(z−1,ρ(θ))‖∞ < 1, ∀θ ∈Θ, (2.7)

where S(z−1,ρ(θ)) = [1+L(z−1,ρ(θ))]−1 is the sensitivity function and W1(z−1) represents

the performance weighting filter. A fixed-order controller design method for systems with

multiplicative and multimodel uncertainty is proposed in [75]. It is based on the linearization

of this constraint around a known desired open-loop transfer function Ld (z−1). The main

benefit of this linearization is that it gives not only sufficient conditions for the nominal

performance, but as well the conditions on Ld (z−1) that guarantee the stability of the closed-

loop system. The linearized constraints are given by [75]:

|W1(e− jω)[1+Ld (e− jω)]|−Re{[1+Ld (e jω)][1+L(e− jω,ρ)]} < 0,∀ω ∈ [0,ωN ], (2.8)

where Re{·} denotes the real part of the complex number, and ωN represents the Nyquist

frequency of the system.

These results are extended here to the case of gain-scheduled controller design. First, notice

that the desired open-loop transfer function can be a function of θ for the gain-scheduled

controller design. This leads to the following constraints for the gain-scheduled controller

design:

|W1(e− jω)[1+Ld (e− jω,θ)]|−Re{[1+Ld (e jω,θ)][1+L(e− jω,ρ(θ))]} < 0,∀ω ∈ [0,ωN ],∀θ ∈Θ.

(2.9)

It has to be proven that the inequality in (2.7) is met if the above inequality is satisfied. Knowing

that the real part of a complex number is always smaller than or equal to its absolute value,
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from (2.9) can be concluded that

|W1(e− jω)[1+Ld (e− jω,θ)]|−|1+Ld (e jω,θ)||1+L(e− jω,ρ(θ))| < 0,∀ω ∈ [0,ωN ],∀θ ∈Θ. (2.10)

If Ld (z−1,θ) is chosen so that it satisfies the Nyquist criterion for∀θ ∈Θ, then |1+Ld (e− jω,θ)| =
|1+Ld (e jω,θ)| > 0. Hence (2.10) is equivalent to

|W1(e− jω)| < |1+L(e− jω,ρ(θ))|, ∀ω ∈ [0,ωN ],∀θ ∈Θ, (2.11)

which is equivalent to (2.7). Next, it can be shown that the number of encirclements of the

critical point by L(θ) and Ld (θ) is equal. This is essential as it proves stability of the closed-loop

system for frozen values of scheduling parameters.

Theorem 2.1 Suppose that the following inequality

|W1(e− jω)[1+Ld (e− jω,θ)]|−Re{[1+Ld (e jω,θ)][1+L(e− jω,ρ(θ))]} < 0 (2.12)

is satisfied for ∀ω ∈ [0,ωN ],∀θ ∈ Θ. If Ld (e− jω,θ) is such a transfer function that it satisfies

Nyquist criterion for ∀θ ∈Θ, then transfer function L(e− jω,θ) is stable for ∀θ ∈Θ.

Proof. The lines of the proof in [75] are followed. Observe the inequality (2.12) for some θ1 ∈Θ.

It trivially implies:

Re{[1+Ld (e jω,θ1)][1+L(e− jω,ρ(θ1))]} > 0, ∀ω ∈ [0,ωN ]. (2.13)

If wno denotes the winding number around the origin of a transfer function, then the last

inequality can equivalently be rewritten as

wno{[1+Ld (e jω,θ1)][1+L(e− jω,ρ(θ1))]} = 0. (2.14)

The transfer functions Ld (z−1,θ1) and L(z−1,ρ(θ1)) are assumed to be causal. This implies

that Ld (e jω,θ1) and L(e− jω,ρ(θ1)) are constant or zero on the part of Nyquist contour with

infinite radius. Hence the wno depends only on the variations caused by the imaginary axis.

Therefore

wno{1+Ld (e− jω,θ1)} = wno{1+L(e− jω,ρ(θ1))}. (2.15)

If Ld (e− jω,θ1) is chosen so that it satisfies the Nyquist criterion, L(e− jω,θ1) will satisfy it as

well. This applies to ∀θ1 ∈Θ. �

The closed-loop stability is ensured in the case that Ld (θ) satisfies the Nyquist criterion for

all values of θ (e.g. for stable plant models this means that Ld (θ) should not turn around −1).

On the other hand, if the plant model or the controller have unbounded infinity-norm (i.e.

the poles on the unit circle), these poles should be included in Ld (θ) (see [75]) to ensure the

satisfaction of Nyquist criterion for L(θ).
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2.3. Gain-scheduled H∞ controller design

Figure 2.1 – Graphical interpretation of the performance condition (2.9)

The graphical interpretation of this method is given in Fig.2.1. It is well known that the H∞
performance condition in (2.7) is satisfied if and only if there is no intersection between

L(e− jω,ρ(θ)) and a circle centered at -1 with radius |W1(e jω)| [78]. It is clear that this condition

is satisfied if L(e− jω,ρ(θ)) lies at the side of d that excludes -1 for all ω and θ, where d is

tangent to the circle and orthogonal to the line connecting -1 to Ld (e− jω,θ). The conservatism

of the proposed approach depends on the choice of Ld [75]. It is clear that if Ld = L there

is no conservatism. Therefore, choosing Ld as close as possible to L reduces significantly

this conservatism. In the case that ‖W1(z−1)S(z−1,ρ(θ))‖∞ is minimized as a performance

criterion, an iterative approach can be used for the choice of L to reduce the conservatism.

The idea is that at each iteration L of the previous iteration is used as Ld . This kind of iterative

algorithm ensures that performance cost decreases over successive iterations, as the controller

at the i th iteration also belongs to the new convex solution set generated by Ld = L(i ).

2.3.2 Optimization problem

It can be proven that proposed iterative algorithm actually converges to the point satisfying

the first-order necessary conditions of optimality. As the cost is decreasing, in practice this

means that a local minimum or a saddle point is reached. The proof is based on the fact

that the given algorithm can be considered as a particular instance of the Convex-Concave

Optimization Program (CCOP) for which results on convergence exist in the literature. First, a

short introduction to the convex-concave optimization paradigm is given.
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Chapter 2. Fixed-order Gain-Scheduled Controller Design in Frequency Domain

In [79] the optimization program with cost equal to the difference of two convex functions and

linear constraints is studied. It is proven that the local minimum can be found performing the

successive convex approximations around the solution from the last iteration. This result is

extended in [80], where except the cost function the constraints are as well considered to be

equal to difference of some convex functions.

Lemma 2.1 [80] Assume that the following optimization problem is to be solved:

minimize
x

f0(x)− g0(x)

subject to fi (x)− gi (x) ≤ 0, i = 1, . . . ,m,
(2.16)

where all functions fi (x) and gi (x) , f or i = 0, . . . ,m, are convex in x . The following algorithm

can be applied to solve the given optimization problem:

Step 1: set k = 0 and choose initial point x (0);

Step 2: form ĝi (x ; x (k)) = gi (x (k))+ [∇gi (x (k))
]T

(x −x (k)) for i = 0, . . . ,m;

solve for x (k+1) the following convex optimization problem:

minimize
x (k+1)

f0(x)− ĝ0(x ; x (k))

subject to fi (x)− ĝi (x ; x (k)) ≤ 0, i = 1, . . . ,m;
(2.17)

Step 3: if stopping criterion is satisfied exit; otherwise set k = k +1 and jump to Step 2.

The stopping criterion can for example be the lack of progress in the cost, i.e.

( f0(x (k))− g0(x (k)))− ( f0(x (k+1))− g0(x (k+1))) ≤ εstop. (2.18)

If such an algorithm is applied, it is guaranteed that the solution x∗ corresponds to the local

optimum, or saddle point, of the initial optimization problem.

This lemma directly leads to the proof of the convergence of the applied design algorithm.

Theorem 2.2 Assume that the following optimization problem is given:

minimize
γ,ρ

γ

subject to ‖W1(e− jω)S(e− jω,ρ(θ))‖∞ < γ, ∀ω ∈ [0,ωN ],∀θ ∈Θ.
(2.19)

Let it be solved using the following optimization algorithm:

Step 1: set k = 0 and choose Ld (e− jω,ρ(θ)) satisfying the same assumptions as in Theorem 2.1;

choose small εstop > 0;
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2.3. Gain-scheduled H∞ controller design

Step 2: if k = 0 use the initial Ld (e− jω,θ); otherwise set

Ld (e− jω,θ) = (ρ(k))T (θ)φ(e− jω)G(e− jω,θ);

solve for (γinv,ρ) the following convex optimization problem:

minimize
γinv,ρ

−γinv
subject to γinv|W1(e− jω)[1+Ld (e− jω,θ)]|

−Re{[1+Ld (e jω,θ)][1+L(e− jω,ρ(θ))]} < 0,∀ω ∈ [0,ωN ],∀θ ∈Θ;

(2.20)

set γ(k+1) = γ−1
inv and ρ(k+1) =ρ;

Step 3: if γ(k) −γ(k+1) < εstop exit with ρ∗ =ρ(k+1) and γ∗ = γ(k+1); otherwise set k = k +1 and

jump to Step 2.

Then, this algorithm converges to the point (γ∗,ρ∗) at which the first-order necessary conditions

of optimality are satisfied.

Proof. Observe that γinv is a shorthand for γ−1. The cost is a linear function of optimization

variable vector xT = [γinv, ρT ]T , so it satisfies assumptions of the described algorithm. Next,

observe for ∀ω ∈ [0,ωN ] and ∀θ ∈Θ functions

f (ω,θ, x) = γinv|W1(e− jω)| and g (ω,θ, x) = |1+L(e− jω,ρ(θ))|. (2.21)

These two functions are convex. Next, as

γinv|W1(e− jω)|− |1+L(e− jω,ρ(θ))| < 0 ⇔‖W1(e− jω)S(e− jω,ρ(θ))‖∞ < γ (2.22)

for ∀ω ∈ [0,ωN ] and ∀θ ∈Θ, the inequality f (ω,θ, x)− g (ω,θ, x) < 0 is equivalent to the con-

straint of the original optimization problem.

The partial derivative of g (ω,θ, x) over ρi , j for i = 1, . . . ,n and j = 0, . . . ,nθ at ρ = ρ̂ is given by

∂g (ω,θ)

ρi , j

∣∣∣∣
ρ=ρ̂

=2
[
1+Re{L(e− jω, ρ̂(θ))}

]
Re{hi , j (θ)φ(e− jω)G(e− jω,θ)}

2
√[

1+Re{L(e− jω, ρ̂(θ))}
]2 + [

Im{L(e− jω, ρ̂(θ))}
]2

+

+ 2Im{L(e− jω, ρ̂(θ))} Im{hi , j (θ)φ(e− jω)G(e− jω,θ)}

2
√[

1+Re{L(e− jω, ρ̂(θ))}
]2 + [

Im{L(e− jω, ρ̂(θ))}
]2

.

(2.23)

Next, let Ld (z−1,θ) = L(z−1,ρ(k)(θ)). Also, let Ld denote Ld (e− jω,θ) and L denote L(e− jω,ρ(θ))
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Chapter 2. Fixed-order Gain-Scheduled Controller Design in Frequency Domain

in the following equation. Using expressions (2.23) it can be proven that

g (x (k))+
[
∇g (x (k))

]T
(x −x (k)) =

= [1+Re{Ld }] [Re{L}−Re{Ld }]+ Im{Ld } [Im{L}− Im{Ld }]+|1+Ld |2
|1+Ld |

.
(2.24)

After some simple manipulations with real and imaginary parts of L and Ld it can be proven

that the linearized version of the constraint f (ω,θ, x)− g (ω,θ, x) < 0 is given by

γinv|W1(e− jω)|− Re{[1+Ld (e jω,θ)][1+L(e− jω,ρ(θ))]}

|1+Ld (e− jω,θ)| < 0, (2.25)

or equivalently

γinv|W1(e− jω)[1+Ld (e− jω,θ)]|−Re{[1+Ld (e jω,θ)][1+L(e− jω,ρ(θ))]} < 0. (2.26)

So, performing the linearization of constraints of the original optimization problem around

the current solution x (k) leads to constraints in algorithm proposed in the Theorem definition.

However, this implies that the algorithm from the Theorem definition belongs to the class of

algorithms described in Lemma 2.1. Hence the conclusion on convergence of the solution to

the local minimum or saddle point is valid by Lemma 2.1. �

Remark 2.1 Algorithm from Lemma 2.1 is initialized using some initial point x (0). Here it

would mean that stabilizing initial controller with parameter vector ρ and appropriate value

of γ(0) have to be known. This is, however, not always the case in practice. Instead, algorithm in

Theorem 2.2 is initialized using some reasonable choice of desired open-loop transfer function

Ld (z−1,θ). Based on it in the first iteration a feasible controller and appropriate performance

cost may be obtained, and starting from the next iteration the algorithm exactly matches the

structure from Lemma 2.1.

Remark 2.2 The constraints in (2.9) should be satisfied for ∀ω ∈ [0,ωN ] and for ∀θ ∈Θ. This

leads to an infinite number of constraints that is numerically intractable. A practical approach

is to choose finite grids for ω and the scheduling parameter θ and find a feasible solution for the

grid points. This leads to a large number of linear constraints that can be handled efficiently by

linear programming solvers. By increasing the number of scheduling parameters, the number

of constraints will drastically increase, which will in turn elevate the optimization time. In

this case a scenario approach can be used to guarantee feasibility of the optimization problem

with a predefined probability level when only constraints for a finite number of randomly

chosen scheduling parameters [81] are satisfied. Some of the effects of gridding in frequency and

additional constraints that can be imposed for ensuring good behavior between the grid points

are described in [82].
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2.4. Active Suspension Benchmark

Figure 2.2 – Block diagram of the active suspension system

2.4 Active Suspension Benchmark

The objective of the benchmark is to design a controller for the rejection of unknown/time-

varying multiple narrow band disturbances located in a given frequency region. The proposed

controllers are applied to the active suspension system of the Control Systems Department in

Grenoble (GIPSA - lab) [76]. The block diagram of the active suspension system together with

the proposed gain scheduled controller is shown in Fig. 2.2.

The system is excited by a sinusoidal disturbance v1(t ) generated using a computer-controlled

shaker. Disturbance v1(t) can be represented as a white noise signal e(t) filtered through

the disturbance model H . The transfer function G1 between the disturbance input and the

residual force in open-loop, yp (t), is called the primary path. The signal y(t) is a measured

voltage that represents the residual force, affected by the measurement noise. The secondary

path is the transfer function G2 between the output of the controller u(t ) and the residual force

in open-loop. The control input drives an inertial actuator through a power amplifier. The

sampling frequency for both identification and control is 800Hz, as chosen by the benchmark

organizers. The magnitude Bode diagram of the primary and the secondary path models

sampled at 800Hz are shown in Fig. 2.3. It can be noticed that several high resonance modes

are present in the system.

The disturbance is supposed to consist of one to three sinusoids. This leads to three different

levels of benchmark, depending on the number of sinusoids in the disturbance. Disturbance
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Figure 2.3 – Frequency response of the primary (red) and the secondary path (blue)

frequencies are unknown in advance, but known lie in an interval from 50 to 95Hz. The con-

troller should reject the disturbance as fast as possible. The control structure and the design

method are explained in detail for Level 1. The extension to the other levels is straightforward.

2.4.1 Controller design for benchmark Level 1

An H∞ gain-scheduled controller, based on the internal model principle to ensure the asymp-

totic disturbance rejection, is considered. The following structure is proposed:

K (z−1,θ) = [K0(z−1)+θK1(z−1)]M(z−1,θ) (2.27)

where K0 and K1 are FIR filters of order n and

H(z−1,θ) = 1

1+θz−1 + z−2 (2.28)

is the disturbance model of a sinusoidal disturbance with frequency f1 = cos−1(−θ/2)/2π. The

transient response can be improved by the minimization of the infinity norm of the transfer

function HG1S between the disturbance and the output. However, it is often difficult to obtain

a good model of the disturbance path in reality, so the primary path model G1 cannot be used

in the controller design. To overcome this, in the optimization it is replaced by a constant gain.

This approximation is actually very reasonable as in the disturbance frequency range gain

of G1 is almost constant, as it can be observed in Figure 2.3. On the other hand, in order to

increase the robustness and prevent the activity of the command input at frequencies where

the gain of the secondary path is low, the infinity norm of the input sensitivity function ‖K S‖∞
should be kept low. A constraint on the maximum of the modulus of the sensitivity function
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2.4. Active Suspension Benchmark

‖S‖∞ < 2 (6dB) is considered according to the benchmark requirements in order to prevent

the amplification of the noise.

A gain-scheduled controller is designed using the following steps:

1. A very fine frequency grid of a resolution 0.5 rad/s (i.e. 5027 frequency points) is consid-

ered due to high resonance modes in the secondary path model.

2. The interval of the disturbance frequencies is divided in 46 points (a resolution of 1Hz).

This corresponds to 46 points in the interval [−1.8478, −1.4686] to which the scheduling

parameter θ belongs.

3. The following optimization problem is solved:

minγ

γ−1
[
|H(e− jωk ,θi )|+ |K (e− jωk ,ρ(θi ))|

]
×|1+Ld (e− jωk ,θi )|−

−Re {[1+Ld (e jωk ,θi )][1+L(e− jωk ,ρ(θi ))]} < 0,

0.5|1+Ld (e− jωk ,θi )|−Re {[1+Ld (e jωk ,θi )][1+L(e− jωk ,ρ(θi ))]} < 0,

for k = 1, . . . ,5027, i = 1, . . . ,46.

(2.29)

The first constraint represents the convexification of ‖|HS| + |K S|‖∞ < γ, while the

second one that of ‖S‖∞ < 2. This is a convex optimization problem for fixed γ and can

be solved by an iterative bisection algorithm.

Remarks:

• The controller order (the order of the FIR models for K0 and K1 in (2.27)) is chosen equal

to 10 (the controller order is increased gradually to obtain acceptable results). Note that

it is much less than the order of the plant model, which is equal to 26.

• The desired open-loop transfer functions are chosen as Ld (θi ) = Ki ni (θi )G2, where

Ki ni (θi ) are stabilizing controllers computed by the pole placement technique.

• For convenience, the internal model is considered as a part of the plant model, i.e.

G(θ) = H(θ)G2, and after the controller design, it is returned to the controller.

• After 7 iterations for the bisection algorithm γmin = 1.68 is obtained. The total computa-

tion time is about 11 minutes on a personal computer (16GB of DDR3 RAM memory at

1600MHz and processor Intel Core i7 running at 3.4GHz).
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Figure 2.4 – Magnitude plot of the output sensitivity functions S
for disturbance frequencies from 50Hz to 95Hz

The parameters of the final designed gain-scheduled controller with structure (2.27) are:

K0(z−1) = 3.669−2.311z−1 −0.7776z−2 +0.7171z−3 +3.424z−4 −5.402z−5

+5.077z−6 −5.143z−7 +4.637z−8 −2.01z−9 +0.5125z−10,

K1(z−1) = 2.241−1.293z−1 −0.7633z−2 +0.4309z−3 +2.673z−4 −3.921z−5

+3.117z−6 −2.638z−7 +2.476z−8 −1.15z−9 +0.3444z−10.

This gain-scheduled controller gives very good transient performance and satisfies the con-

straint on the maximum modulus of the sensitivity function for all values of the scheduling

parameter. Figure 2.4 and Fig. 2.5 show the magnitude of the output sensitivity function S

and the input sensitivity function K S, respectively, for 46 gridded values of the disturbance

frequency. One can observe very good attenuation at the disturbance frequencies and the

satisfaction of the modulus margin of at least 6dB for all disturbance frequencies.
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Figure 2.5 – Magnitude plot of the input sensitivity functions K S
for disturbance frequencies from 50Hz to 95Hz

2.4.2 Controller design for benchmark Level 2

In this level of the benchmark, two sinusoidal disturbances should be rejected. The structure

of the gain scheduled controller is given by (z−1 is omitted):

K (θ1,θ2) = (K0 +θ1K1 +θ2K2)H(θ1,θ2) (2.30)

where K0,K1 and K2 are the 8th order FIR filters and

H(θ1,θ2) = 1

1+θ1z−1 +θ2z−2 +θ1z−3 + z−4 . (2.31)

By considering a hard constraint on the magnitude of the sensitivity function ‖(1+K (θ1,θ2)G2)−1‖∞ <
2.24 (7dB) the optimization becomes infeasible. Therefore, the following soft constraint is

considered for optimization:

|H(θ1,θ2)(1+K (θ1,θ2)G2)−1|+ |(1+K (θ1,θ2)G2)−1| < γ, ∀ω,∀θ1,∀θ2, (2.32)

and γ is minimized. The first term on the left hand side represents the approximation of

the disturbance path impulse response (approximating the unknown transfer function G1 by

gain of 1). By minimizing its ∞-norm the transient time is indirectly reduced, with a tradeoff

between fast response and robustness, coming from the second term.
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As there are two scheduling parameters at this level of benchmark, a resolution of 1Hz for

each sinusoidal disturbance leads to 462/2 = 1058 grid points. This increases the number

of constraints by a factor of 23 with respect to that of Level 1. Moreover, the resolution of

the frequency grid step is reduced from 0.5 rad/s to 0.2 rad/s, which further increases the

number of constraints. The number of variables is also increased, so instead of 22 from level

1 now there are in total 27 variables (the coefficients of three FIR filters of order 8). In order

to obtain a faster optimization problem, the scenario approach is used. From the set of 1058

frequency pairs, 50 samples are chosen randomly and the constraints are considered just

for these frequencies. The stability of the closed-loop system is verified a posteriori for all

1058 frequency pairs. This makes the probability of stability constraint violation (between

the grid points) very low. The computed controller, however, destabilizes the real system

for disturbance frequency pair (50-70)Hz. The main reason for this is the modeling error

for the secondary path model around 50Hz. Therefore, a new model for the secondary path

provided by the benchmark organizers with smaller modeling error around 50Hz is used for the

controller design. A new controller is designed using the scenario approach and γmin = 10.62

is achieved after 11 iterations, with a total computation time of about 15 minutes.

The controller parameters are:

K0(z−1) =−4.835+43.93z−1 −98.74z−2 +96.2z−3

−0.3158z−4 −100.8z−5 +117.5z−6 −64.79z−7 +16.35z−8,

K1(z−1) =−24.02+122.4z−1 −226.7z−2 +204.9z−3

−52.21z−4 −71.05z−5 +80.54z−6 −36.53z−7 +8.671z−8,

K2(z−1) =−16.05+77.44z−1 −139.6z−2 +124.7z−3

−37.19z−4 −28.47z−5 +31.64z−6 −11.83z−7 +2.561z−8.

Figures 2.6 and 2.7 show the magnitude of the output and input sensitivity functions, respec-

tively, for known disturbance frequencies taken from the following set:

F = {(50,70), (55,75), (60,80), (65,85), (70,90)}

The attenuation of at least 40 dB is obtained for all frequencies but the maximum of the output

sensitivity function is greater than 7 dB in some frequencies.

2.4.3 Controller design for benchmark Level 3

Although good performance can be obtained for linear controller design for every triplet of

disturbance frequencies, a simple gain-scheduled controller that satisfies all constraints could
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Figure 2.6 – Magnitude of the output sensitivity function for disturbance frequencies in F
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Figure 2.7 – Magnitude of the input sensitivity function for disturbance frequencies in F
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not be obtained by the proposed approach. In fact the optimization problem becomes infeasi-

ble for affine dependence of the controller parameters on the scheduling parameters. If the

constraints are relaxed, the resulting stabilizing controller does not lead to good performance

even for known disturbance frequencies.

It is important to emphasize that there is no theoretical limitation for having three or even

more disturbance frequencies. However, increasing the number of frequencies increases the

complexity of the optimization problem. This problem could be fixed by designing better initial

controllers for each fixed disturbance frequency and use of these controllers for computing Ld .

In addition, the basis functions can be altered to produce the desired effect. The participation

was taken only in the first and the second level of the benchmark for the reason of approaching

benchmark deadline.

2.4.4 Estimator design

The scheduling parameter θ used in the internal model of disturbance in (2.28) is estimated

using a parameter adaptation algorithm. To estimate the parameters of the disturbance model,

the disturbance signal p(t ) has to be known (see Fig. 2.2). If p(t ) is modeled as the output of

an ARMA model with white noise as input, then

Dp (q−1)p(t ) = Np (q−1)e(t ), (2.33)

where e(t ) is a zero mean white noise with unknown variance. Estimation of the parameters

of Np and Dp could be performed by the standard Recursive Extended Least Squares method

[83]. Since p(t ) is not available, it is estimated using the measured signal y(t ) and the known

model of the secondary path. Fig. 2.2 leads to:

p(t ) = y(t )− q−d B(q−1)

A(q−1)
u(t )− v2(t ), (2.34)

where
q−d B(q−1)

A(q−1)
is the parametric model of the secondary path G2. Since v2(t) is a zero

mean noise signal, unbiased estimate of p(t ) is given as

p̄(t ) = y(t )+ [A(q−1)−1][y(t )− p̄(t )]−B(q−1)u(t −d).

For the asymptotic rejection of a sinusoidal disturbance, there is no need to identify the

whole model of the disturbance path, i.e. HG1 as shown in Figure 2.2. The information

needed for the controller scheduling is the frequency of the disturbance. So, by setting

Dp (q−1,θ) = 1−θq−1 +q−2 (for Level 1) and Np (q−1) = 1+c1q−1 +c2q−2, a simple parameter
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estimation algorithm can be developed. Let the following be defined:

z(t +1) = p̄(t +1)+ p̄(t −1) (2.35)

ψT (t ) = [−p̄(t ),ε(t ),ε(t −1)]T (2.36)

ΥT (t ) = [θ,c1,c2]T (2.37)

where ε(t) = z(t)− ẑ(t) is the a posteriori prediction error. Then the following recursive

adaptation algorithm can be used to estimate the scheduling parameter θ:

ε◦(t +1) = z(t +1)− Υ̂(t )ψ(t )

ε(t +1) = ε◦(t +1)

1+ψT
f (t )F (t )ψ f (t )

Υ̂(t +1) = Υ̂(t )+F (t )ψ f (t )ε(t +1) (2.38)

F (t +1) = 1

λ1(t )

F (t )−
F (t )ψT

f (t )ψ f (t )F (t )

λ1(t )

λ2(t )
+ψT

f (t )F (t )ψ f (t )



where ψ f (t) = 1
Np (q−1)ψ(t), ε◦(t) is the a priori prediction error and λ1(t) and λ2(t) define

the variation profile of the adaptation gain F (t). Filtered observation vector ψ f (t) is used

to ensure the stability and convergence properties of the adaptation algorithm [83]. The

other condition for the convergence, namely the richness of excitation, is satisfied as long as

disturbance is not zero. A constant trace algorithm [83] is used for the adaptation gain.

The same recursive adaptation algorithm is used for Level 2 of the benchmark with the

difference that the order of the disturbance model and consequently the number of the

scheduling parameters is increased (θ is replaced by a vector [θ1 , θ2]T ).

2.5 Simulation and experimental results

The simulation results are presented for three different tests of each benchmark level: simple

step test, step changes in frequencies test and chirp test, according to the benchmark require-

ments. Simulations are performed on the simulator provided by the benchmark organizers.

2.5.1 Simple step test

The simulation and experimental results for Level 1 are given in Table 2.1 and Table 2.2,

respectively. The first column gives the global attenuation in dB. It is the ratio of the energy

of the disturbance in open-loop to that in closed-loop computed in steady state (last three

seconds of the experiment). The second column shows the attenuation at the disturbance
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Figure 2.8 – Experimental time-domain responses for different Level 1 tests

frequency. The maximum amplification of the disturbance at other frequencies is computed

and shown in the third column together with the frequency at which it occurs. The two-norm

of the transient response of the residual force is given in the forth column and the two-norm

at the steady state (last three seconds) in the fifth column. The peak value of the transient

response is given in the 6th column, and a BSI index for transient duration in the 7th column

(100% means that the transient duration is less than 2s and 0% corresponds to more than 4s).

The results show good coherence between the simulation and experimental results. There is a

discrepancy between the simulation and experimental results for the disturbance frequency

of 50Hz probably, which may come from the modeling error around this frequency of the

secondary-path model used in the simulator of the benchmark.

The simulation results for simple step test of Level 2 are given in Table 2.3 and the experimental

results in Table 2.4. For Level 1 tests, apart from the disturbance at 50Hz, disturbances at other

frequencies are rejected. The global attenuation of more than 30 dB is met in simulation for
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Figure 2.9 – Experimental time-domain responses for different Level 2 tests

Frequency Global Dist. Atte. Max. Amp. Norm2 Trans. Norm2 Res. Max. Val. BSI
(Hz) (dB) (dB) (dB@Hz) (×10−3) (×10−3) (×10−3) (%)

50 30.0539 22.1214 9.6674@ 53.12 13.4803 6.0275 19.2347 100.00
55 33.0839 39.1389 5.7785@ 114.06 11.2054 4.2825 21.5834 100.00
60 32.9298 40.6649 5.2791@78.12 9.1452 4.3614 21.5092 100.00
65 33.1775 39.2777 5.4087@73.43 7.9451 4.3065 19.5405 100.00
70 33.5947 47.4173 4.6449@51.56 7.9827 4.1534 22.6636 100.00
75 34.2959 42.8627 3.6597@ 50.00 8.1354 3.9172 22.5296 100.00
80 34.8302 45.3628 3.8744@50.00 8.0156 3.6393 21.3056 100.00
85 34.5090 43.2440 4.0071@50.00 8.6001 3.6477 23.4386 100.00
90 32.3077 39.3682 4.4651@50.00 12.5930 3.8676 25.5074 100.00
95 23.9978 23.8150 4.9679@50.00 15.5999 4.4858 29.8633 100.00

Table 2.1 – Simple step test (Simulation) - Level 1
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Figure 2.10 – Power spectral density for the real-time simple step test
with disturbance frequency of 75Hz
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Figure 2.11 – Power spectral density for the Level 2 real-time simple step test
with disturbance frequencies of 60 and 80Hz
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Frequency Global Dist. Atte. Max. Amp. Norm2 Trans. Norm2 Res. Max. Val. BSI
(Hz) (dB) (dB) (dB@Hz) (×10−3) (×10−3) (×10−3) (%)

50 32.1963 26.0390 13.19@117.19 28.7275 9.8031 22.2959 83.88
55 32.9624 41.5091 11.66@125.00 13.7586 5.6248 18.5939 100.00
60 33.7955 41.3196 11.59@70.31 9.9979 5.1623 17.3711 97.99
65 32.5293 45.4435 9.54@134.37 9.8304 5.0178 19.3765 100.00
70 30.0156 42.6926 11.41@134.37 9.3400 5.5506 20.6127 95.06
75 30.9359 43.1902 9.74@137.50 7.7819 4.4682 15.7354 100.00
80 29.6325 44.9083 9.43@137.50 8.5284 5.0297 21.8171 100.00
85 28.3826 38.3824 7.63@118.75 8.0995 5.7268 20.5997 100.00
90 28.2388 37.0264 10.02@135.94 8.8059 5.0778 23.0987 100.00
95 28.8061 37.0992 7.36@114.06 8.5047 4.6892 22.2701 100.00

Table 2.2 – Simple step test (Experimental results) - Level 1

all frequencies. However, in real experiments the performance for the disturbance frequency

pair (50-70)Hz deteriorates comparing to the one in simulation. The main reason is that

the estimated parameters in the adaptation algorithm do not converge to the true values (a

linear controller with known disturbance frequencies performs very well in simulation as

well as in real experiments). For the other disturbance frequencies the transient behavior in

simulation and experimental results are close and mostly satisfy the specifications. In practice

there always exists a small bias that degrades the performance. This effect can be reduced by

adding a small damping to the internal model of the disturbance. This way, a small error in

the scheduling parameters will have less effect in the performance, but at a cost of having less

attenuation for the exact parameter estimates.

Although the maximum amplification of disturbance in simulation is close to that of linear

controller, higher values are obtained in real experiments. This probably comes from the

modeling error around 129-137 Hz.

The real-time response from the simple step test with disturbance frequency of 75Hz is shown

in the first plot of Figure 2.8. Similarly, in Figure 2.9 the first plot presents the simple step

test response for the Level 2 disturbance frequency combination of 60 and 80Hz. Figure 2.10

illustrates the comparison between the open-loop (dashed) and closed-loop power spectral

density for the real-time simple step test with single disturbance frequency of 75Hz. Strong

attenuation (around 45dB) at 75Hz and low (or no) amplification at other frequencies can be

observed. Similar conclusion can be drawn from Figure 2.11 for the simple step test of Level 2

with disturbance frequencies of 60 and 80Hz.
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Frequency Global Dist. Atte. Max. Amp. Norm2 Trans. Norm2 Res. Max. Val. BSI
(Hz) (dB) (dB)-(dB) (dB@Hz) (×10−3) (×10−3) (×10−3) (%)

50-70 35.5110 27.42 - 23.00 11.28@114.06 87.6744 6.4925 61.5624 100.00
55-75 38.6182 33.68 - 33.59 9.59@114.06 67.8341 4.6086 59.1878 100.00
60-80 39.8107 41.80 - 37.09 6.84@114.06 53.7933 3.9936 53.7369 100.00
65-85 39.9478 49.57 - 43.77 6.37@50.00 64.8855 3.8930 68.9495 100.00
70-90 38.4478 54.70 - 47.07 9.09@50.00 80.7946 4.2437 76.4654 100.00
75-95 35.1036 48.74 - 36.81 11.17@50.00 95.3054 4.7593 72.0523 100.00

Table 2.3 – Simple step test (Simulation) - Level 2

Frequency Global Dist. Atte. Max. Amp. Norm2 Trans. Norm2 Res. Max. Val. BSI
(Hz) (dB) (dB)-(dB) (dB@Hz) (×10−3) (×10−3) (×10−3) (%)

50-70 24.6660 20.58 - 17.49 18.06@131.25 144.4955 34.0463 50.7286 100.00
55-75 36.9297 34.20 - 30.54 18.88@129.69 174.1515 6.4665 86.2932 100.00
60-80 39.9376 44.32 - 37.43 18.00@134.37 64.0941 4.0669 55.8595 100.00
65-85 32.5931 37.85 - 32.34 14.65@ 135.94 47.4775 8.2762 54.6568 100.00
70-90 36.3403 55.54 - 47.05 14.41@ 137.50 52.3746 4.7614 63.1648 100.00
75-95 33.7952 43.26 - 36.27 13.07@ 137.50 116.2289 5.7348 86.3334 50.78

Table 2.4 – Simple step test (Experimental results) - Level 2

2.5.2 Step changes in frequencies test

For Level 1 of the benchmark, three sequences of step changes in the frequency of the distur-

bance are considered. These sequences are defined as follows:

Sequence 1 : 60 → 70 → 60 → 50 → 60

Sequence 2 : 75 → 85 → 75 → 65 → 75

Sequence 3 : 85 → 95 → 85 → 75 → 85

Similarly, for Level 2, two sequences of the step changes in the disturbance frequencies are

defined (see the first column of Table 2.5). The transient performance in simulation for Level 1

and Level 2 are given in Table 2.5 and the experimental results in Table 2.6. It can be observed

that good performance is obtained for all disturbance frequency pairs except for (50-70) in the

real experiment.

The second plot of Figures 2.8 and 2.9 presents the real-time response for the first disturbance

frequency sequence of the step changes in frequencies test for Levels 1 and 2, respectively.

2.5.3 Chirp test

For Level 1 of the benchmark a chirp signal that starts from 50Hz and goes to 95Hz and returns

to 50Hz with a variation rate of 10 Hz/s is applied as the disturbance signal. For Level 2 the

disturbance frequencies change from (50-70)Hz to (75-95)Hz with a variation rate of 5 Hz/s

and return to (50-70)Hz. The maximum value and the two-norm of the disturbance response in

simulation and in the real-time experiment are given in Table 2.7. The experimental results of

the chirp disturbance responses for Levels 1 and 2 are given in Figures 2.8 and 2.9, respectively.
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L
ev

el
1

SEQUENCE - 1
Frequency Norm2 Trans. Max. Val.

(Hz) (×10−3) (×10−3)
60→70 7.9407 20.7565
70→60 8.3077 16.5109
60→50 10.2125 13.4903
50→60 7.3136 15.6196

SEQUENCE - 2
Frequency Norm2 Trans. Max. Val.

(Hz) (×10−3) (×10−3)
75→85 7.2684 13.9343
85→75 8.7004 17.0025
75→65 7.6486 17.0491
65→75 7.8875 15.2766

SEQUENCE - 3
Frequency Norm2 Trans. Max. Val.

(Hz) (×10−3) (×10−3)
85→95 8.3668 20.2567
95→85 9.5780 18.5376
85→75 7.3373 17.1218
75→85 8.0514 17.4093

L
ev

el
2

SEQUENCE - 1
Frequency Norm2 Trans. Max. Val.

(Hz) (×10−3) (×10−3)
[55-75] → [60-80] 10.0628 22.8093
[60-80] → [55-75] 16.3247 21.5839
[55-75] → [50-70] 20.0613 18.7106
[50-70] → [55-75] 10.0798 17.8500

SEQUENCE - 2
Frequency Norm2 Trans. Max. Val.

(Hz) (×10−3) (×10−3)
[70-90] → [75-95] 11.5762 18.1048
[75-95] → [70-90] 13.9285 22.5232
[70-90] → [65-85] 12.0298 23.1736
[65-85] → [70-90] 10.8733 20.8162

Table 2.5 – Step changes in frequencies test (Simulation)
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L
ev

el
1

SEQUENCE - 1
Frequency Norm2 Trans. Max. Val.

(Hz) (×10−3) (×10−3)
60→70 9.8243 19.7289
70→60 9.8454 18.2445
60→50 22.6091 18.2210
50→60 13.8104 19.4511

SEQUENCE - 2
Frequency Norm2 Trans. Max. Val.

(Hz) (×10−3) (×10−3)
75→85 8.5829 15.7833
85→75 10.1036 17.3218
75→65 9.9323 19.7391
65→75 10.1643 19.72531

SEQUENCE - 3
Frequency Norm2 Trans. Max. Val.

(Hz) (×10−3) (×10−3)
85→95 8.5971 15.8359
95→85 9.8947 17.2523
85→75 9.1527 16.0698
75→85 9.1745 17.0129

L
ev

el
2

SEQUENCE - 1
Frequency Norm2 Trans. Max. Val.

(Hz) (×10−3) (×10−3)
[55-75] → [60-80] 13.7017 22.5980
[60-80] → [55-75] 18.0644 23.9297
[55-75] → [50-70] 51.0763 26.2669
[50-70] → [55-75] 14.2444 20.1445

SEQUENCE - 2
Frequency Norm2 Trans. Max. Val.

(Hz) (×10−3) (×10−3)
[70-90] → [75-95] 13.0523 18.9047
[75-95] → [70-90] 12.7703 21.6059
[70-90] → [65-85] 15.5371 20.3018
[65-85] → [70-90] 13.3272 18.9160

Table 2.6 – Step changes in frequencies test (Experimental results)

Error
Maximum Value Mean Square

(×10−3) Value (×10−6)
Level 1 - Simulation 6.40 3.5910
Level 1 - Experimental 7.54 4.5412
Level 2 - Simulation 10.12 10.5170
Level 2 - Experimental 11.56 11.8759

Table 2.7 – Chirp Changes
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2.6 Conclusions

A new method for fixed-order gain-scheduled H∞ controller design is proposed and applied

to the active suspension benchmark. It is shown that one or two unknown sinusoidal distur-

bances can be rejected using the gain-scheduled controller and an adaptation algorithm that

estimates the internal model of the disturbance. The proposed gain-scheduled controller

design method is able to satisfy all frequency-domain constraints. However, the results are

slightly deteriorated in simulation and real experiments. The main reasons are the followings:

• During the convergence of the scheduling parameter, the whole system becomes non-

linear and the desired performance is not necessarily achieved.

• Even at the steady state, there is always an estimation error in the scheduling parameter.

• The modeling error in the secondary-path model is not considered in the design.

As presented in [14], method described here leads to the least complex control strategy of

all the benchmark participants. The approach proposed here is the only of the benchmark

solutions not using the Youla-Kučera parameterization as the basis for the control strategy

[15, 16, 17, 18, 19, 20, 21]. The Youla-Kučera parameterization leads to the controller order

equal to that of the augmented plant, and here the order of the plant model is already high. In

[14] a comparison of the control algorithm execution times in the real-time experiments is

provided. It can be observed that the methods [17, 21] have comparable execution times to

this method, even though based on the Youla-Kučera parameterization. A reason is that an

important portion of the execution time is spent on calculations related to adaptation.

The fact that the proposed method uses frequency domain model for design is very reason-

able for this application, as the majority of the performance specifications are defined in the

frequency domain. Of course, a reliable parametric model is still necessary for the adaptation

loop. This method is as well the only one that ensures specification on the output sensitivity

transfer function in the design phase. A good attenuation of the disturbance and low amplifi-

cation of noise are achieved in the real-time experiments, with performance comparable to

other participants. In terms of the time-domain performance, i.e. transient duration, obtained

performance is excellent. However, the benchmark criterion altered after the controller design,

so this fact is not at all appreciated by the final benchmark performance indices.

Although the proposed method could consider the modeling error in the design, it has not

been taken to account for few reasons. First, it was supposed that the provided model for

the benchmark is very close to the real system and modeling error can be neglected. Second,

considering the unmodeled dynamics makes the optimization method more complicated

(number of constraints increases). Finally, robust controllers in general lead to conservative

solutions which impact negatively the control system performance.
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There are two main issues related to the gain-scheduled controller design using the frequency

response model, and they are somewhat related. The first issue is the computational burden

caused by the constraint sampling both in the frequency domain and the scheduling parameter

space. The other one is a lack of guarantee of stability and performance for all the values

of scheduling parameters, not just those treated in design. Evidently, denser sampling in

the scheduling parameter space approximately resolves the second issue, but at the high

computation cost. A method for the design of fixed-order LPV controllers with the transfer

function representation is proposed in the next chapter, where these issues are overcome

through the use of LMIs.
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3 Fixed-order LPV Controller Design
for Plants with Transfer Function
Description
3.1 Introduction

Gain-scheduled controller design method based on the frequency response models has an

advantage that no parametric model is needed. However, this leads to a disadvantage which

is the computational burden caused by gridding in the frequency domain. As optimization

constraints are sampled in the scheduling parameter space, the method guarantees stability

and performance just for scheduling parameter values treated in design. To overcome these

issues, a method for the design of fixed-order LPV controllers with the transfer function

representation is proposed. Unlike in the method presented in the previous chapter, the LPV

controller parameterization considered in this approach leads to design variables in both the

numerator and denominator of the controller. As the motivating application is the rejection of

the multi-sinusoidal disturbances with time-varying frequencies, the LPV controller design

is performed for LTI plants with a transfer function model. Closed-loop stability and H∞
performance are characterized using LMIs for all fixed values of scheduling parameters.

3.2 Preliminaries

In [84], plants with a polytopic uncertainty description are treated:

G =
(

q∑
i=1

λi Ni

)(
q∑

i=1
λi Mi

)−1

, (3.1)

where λi ≥ 0,
∑q

i=1λi = 1 and q is the number of the polytope’s vertices. Transfer functions

Ni and Mi are co-prime and belong to RH∞, the set of all proper stable rational transfer

functions with bounded infinity norm. Controller being designed can be parameterized as

K = X Y −1, with X ,Y ∈RH∞. The theory proposed there works for both discrete-time and

continuous-time systems, with some minor differences. This chapter is focused on discrete-

time systems, but the transition to the continuous-time is straightforward.
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As a basis for the characterization of designed controllers, the following theorem is used.

Theorem 3.1 [84] The set of all stabilizing controllers for the polytopic system defined in (3.1)

is given by{
K = X Y −1|Mi Y +Ni X ∈S , i = 1, . . . , q

}
, (3.2)

where S denotes the convex set of all Strictly Positive Real (SPR) transfer functions.

The main gain coming from the polytopic representation of the plant is the fact that ensuring

the stability and H∞ performance for every vertex of the polytope implies the same for every

model inside the polytope. This means that the infinite number of optimization constraints

for the whole polytope is replaced by a finite number of them.

In this chapter a SISO LTI plant G given by its rational transfer function representation is

considered:

G = N M−1, (3.3)

where co-prime transfer functions N and M belong to RH∞. It is assumed that the scheduling

parameter vector θ, coming for example from the time-varying disturbance model, belongs to

the polytope with vertices θ(i ), i = 1, . . . , q . Hence every allowable θ can be represented as

θ =
q∑

i=1
λiθ(i ). (3.4)

The class of LPV controllers that can be treated by this approach is characterized by the

polytopic representation

X (λ) =
q∑

i=1
λi Xi , Y (λ) =

q∑
i=1

λi Yi , (3.5)

where Xi = X (θ(i )) and Yi = Y (θ(i )) belong to RH∞. This representation covers a wide class

of dependencies of the controller on the scheduling parameters. The following theorem

parameterizes polytopic LPV controllers stabilizing the closed-loop system for every value of

scheduling parameter vector θ.

Theorem 3.2 The set of all stabilizing polytopic LPV controllers for the LTI plant G = N M−1 is

given by:

K :
{
K = Xi Y −1

i for i = 1, . . . , q |Fi ∈S
}

, (3.6)

where Fi = MYi +N Xi .
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Proof: The same line of thought is used as in [84] for the proof of Theorem 3.1.

Sufficiency: First, from Theorem 3.1 it can be concluded that the closed-loop system for

every vertex controller is stable. Then, the convex combination of the transfer functions Fi is

obtained as

F (λ) =
q∑

i=1
λi (MYi +N Xi ) = M

(
q∑

i=1
λi Yi

)
+N

(
q∑

i=1
λi Xi

)
= MY (λ)+N X (λ). (3.7)

The transfer function F (λ) is also SPR, since the sum of SPR transfer functions weighted by

nonnegative weights is SPR. Hence, the plant is stabilized by every controller from the polytope

K (λ) = X (λ)Y −1(λ).

Necessity: Assume that there exists a polytopic LPV controller stabilizing the plant G , given

by its vertices K ∗
i = X ∗

i (Y ∗
i )−1, and that for it Fi ∈ S is not satisfied. A polytope of stable

characteristic polynomials with vertices ci can be constructed from the plant G and the vertex

controllers K ∗
i . For such a polynomial polytope it is proven [85] that the phase difference

between its elements is less than π. So, according to Theorem 2.1 of [86] (for discrete-time

systems, for continuous-time systems Theorem 3.1 of the same paper) there always exists a

polynomial or transfer function d such that ci /d is SPR for i = 1, . . . , q . As a result, there exists

a transfer function

L = (MY ∗
i +N X ∗

i )−1ci /d (3.8)

such that (MY ∗
i +N X ∗

i )L is SPR for i = 1, . . . , q . Note that L does not depend on i because the

numerator of (MY ∗
i +N X ∗

i ) is equal to ci and cancels it out in the expression for L. Finally, the

polytopic LPV controller

K (λ) =
(

q∑
i=1

λi Xi

)(
q∑

i=1
λi Yi

)−1

(3.9)

belongs to K taking Xi = X ∗
i L and Yi = Y ∗

i L. �

3.3 Convex set of stabilizing LPV controllers

The first goal is to propose the parameterization of LPV controllers for which the stability

of the closed-loop system is guaranteed with every controller (3.5) corresponding to some

value of the scheduling parameter from the assumed polytope. To do so, a suitable controller

structure must be chosen. Using the fact that every controller in the polytope should depend

affinely on the scheduling parameter vector, vertex controllers can be presented in the form

Xi (θ(i ), z) = x(θ(i ))
Tφ(z), Yi (θ(i ), z) = y(θ(i ))

Tφ(z), (3.10)
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where x(θ(i )) and y(θ(i )) are vectors of the controller parameters, affine with respect to the

scheduling parameters. A good choice of basis function vectors φ are orthonormal basis

functions such as Kautz, Laguerre or generalized orthonormal functions [87].

The SPR condition in (3.6) can be represented as a set of infinitely many constraints in the

frequency domain:

Re{M(e− jω)Yi (e− jω)+N (e− jω)Xi (e− jω)} > 0, ∀ω ∈ [0,ωN ], for i = 1, . . . , q (3.11)

with Re{·} representing the real part of a complex number, and ωN the Nyquist frequency of

the system. To solve this problem numerically, frequency gridding is necessary. As a result,

constraint violation between the grid frequencies could occur.

To avoiding gridding constraints in the frequency domain, the SPR condition in (3.6) can

alternatively be presented using the Kalman-Yakubovich-Popov (KYP) lemma. For the discrete-

time systems, the KYP lemma states that the transfer function Fi (z) = Ci (zI − A)−1B +Di

belongs to S if and only if there exists a matrix Pi = P T
i > 0 such that[

AT Pi A−Pi AT Pi B −C T
i

B T Pi A−Ci B T Pi B − (Di +DT
i )

]
< 0. (3.12)

If (A,B ,Ci ,Di ) is chosen as a controllable canonical realization of Fi = MYi +N Xi , then the

controller and the plant parameters which are in the numerator of Fi appear only in Ci and

Di . Hence, the inequality (3.12) becomes an LMI with respect to Pi , Ci and Di . Matrices A

and B are the same for all the vertices because of the properties of controllable canonical form

and the fact that denominators of all transfer functions Fi are the same (where also the fact

that all the transfer functions Xi and Yi have the same poles is used). Unknown controller

parameter vectors x(θ(i )) and y(θ(i )), appearing in matrices Ci and Di , are found as a feasible

point of the LMI constraints. Note that these constraints lead to the guarantee of stability only

for frozen values of scheduling parameter.

Remark 3.1 The issue of the state-space realization of the LPV model given in the polynomial

setting is the reason why stability of the closed-loop system is discussed only for frozen values

of scheduling parameters. In [88] it is shown that if the theory of state-space realization of

LTI systems is applied directly to LPV models in polynomial setting, the issue of “dynamic

dependence” of the model on scheduling parameter arises. For the discrete-time LPV models in

polynomial setting this means that not only current values of the scheduling parameter, but some

previous values as well, enter the state-space matrices. Hence, the realization theory applied

here corresponds exactly only to the LTI case, i.e. to frozen values of scheduling parameters. In

practice this means that the stability guarantee obtained here is similar to the one in the previous

chapter, which applies only to slowly varying scheduling parameters. The main difference is

that there guarantee is given only for sampled values of scheduling parameters, while here it is

for all frozen values.
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3.4 H∞ performance constraints

The H∞ performance of the weighted closed-loop transfer functions is considered for fixed

values of the parameter λ. The motivation lies in the previously mentioned problem of

sinusoidal disturbance rejection. If, for example, it is supposed that the frequency of the

sinusoidal disturbance is fixed over some period, the goal during that time is to reject the

disturbance without amplifying the noise too much in other frequencies. To ensure this, the

controller is designed by shaping the frequency response of the output sensitivity function S

using the performance filter W1. The output sensitivity function S is defined as the transfer

function from the output disturbance to the output of the closed-loop system and is given by

the expression

S = (1+GK )−1 = MY (MY +N X )−1. (3.13)

The following should be ensured for S:

‖W1S‖∞ =
∥∥∥∥ W1MY

MY +N X

∥∥∥∥∞ < γ, (3.14)

where γ is a bound on the H∞ norm of the weighted output sensitivity function. As it can

be observed, the controller parameters appear both in the numerator and denominator

of the transfer function W1S. The application of Bounded Real Lemma on the state-space

representation of the weighted sensitivity function would result in a non-convex optimization

problem, because of the product of controller and Lyapunov function parameters. To convexify

this performance constraint, the relation between the Bounded Real Lemma and the Positive

Real Lemma can be employed [89, 90].

In [91] it is shown that Inequality (3.14) is satisfied if and only if the following stands:

H∞ = (MY +N X )−γ−1W1MY

(MY +N X )+γ−1W1MY
∈S . (3.15)

Therefore, the set of all controllers for which the inequality ‖W1S‖∞ < γ is satisfied is given by

Ks∞ : {K = X Y −1|H∞ ∈S }. (3.16)

To enable the calculation of the controller parameters, the set Ks∞ is represented via LMIs.

Let H∞ in (3.15) be defined as the ratio of two co-prime transfer functions

H∞ = Hn/Hd ,
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where Hn and Hd are given by

Hn = (MY +N X )−γ−1W1MY

Hd = (MY +N X )+γ−1W1MY . (3.17)

Then, the set of all stabilizing controllers that ensure inequality (3.14) is given by:

Ks∞ : {K = X Y −1|Hn and Hd are CL-SPR}, (3.18)

where CL-SPR stands for Common Lyapunov - SPR. Two transfer functions are said to be

CL-SPR if they satisfy the inequality of KYP lemma with the same Lyapunov matrix P [91].

Using the fact that transfer functions Hn and Hd have the same denominators, their control-

lable canonical realizations can be represented as (A,B ,Cn ,Dn) and (A,B ,Cd ,Dd ), respectively.

Then, the condition that the transfer functions Hn and Hd are CL-SPR is expressed using the

following set of matrix inequalities:

[
AT PA−P AT PB −C T

n

B T PA−Cn B T PB − (Dn +DT
n )

]
< 0, (3.19)

[
AT PA−P AT PB −C T

d

B T PA−Cd B T PB − (Dd +DT
d )

]
< 0. (3.20)

To allow design of controllers with a polytopic structure, the LMIs have to be adapted in a

similar manner to the stability constraints. First, for the controller representing the polytope

vertex i , the transfer functions Hni and Hdi are defined by

Hni = (MYi +N Xi )−γ−1W1MYi ,

Hdi = (MYi +N Xi )+γ−1W1MYi . (3.21)

Let controllable canonical representations of these two transfer functions be labeled as

(A,B ,Cni ,Dni ) and (A,B ,Cdi ,Ddi ), respectively, where A and B are the same for all the vertices

(similar reasoning as for the stability constraints in 3.12).

Writing inequalities (3.19) and (3.20) for every Hni and Hdi ensures that the H∞ performance

is guaranteed for the closed-loop system with every polytope vertex controller:[
AT Pi A−Pi AT Pi B −C T

ni

B T Pi A−Cni B T Pi B − (Dni +DT
ni

)

]
< 0, (3.22)
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[
AT Pi A−Pi AT Pi B −C T

di

B T Pi A−Cdi B T Pi B − (Ddi +DT
di

)

]
< 0. (3.23)

But, if this is satisfied, all the transfer functions Hni and Hdi are SPR. By taking the convex

combination of all the transfer functions Hni , a new SPR transfer function is obtained:

Hn(λ) =
q∑

i=1
λi Hni =

q∑
i=1

λi [(MYi +N Xi )−γ−1W1MYi ].

It can be rewritten as

Hn(λ) = M
q∑

i=1
λi Yi +N

q∑
i=1

λi Xi −γ−1W1M
q∑

i=1
λi Yi . (3.24)

This means that for any controller from the polytope K (λ) the transfer function Hn(λ) is SPR.

In a similar manner it can be concluded that, for the controller K (λ), the transfer function

Hd (λ) is SPR. Therefore for any controller belonging to the polytope (3.5), hence for every

value of the scheduling parameter, the H∞ constraint in (3.14) is satisfied.

Remark 3.2 The fact that the transfer functions Hni and Hdi are SPR leads to the conclusion

that the transfer function Hi = Hni +Hdi is SPR as well. But, using the expressions for Hni and

Hdi , it can be concluded that Hi = 2(MYi +N Xi ) is SPR. Then, according to Section 3.2, the

closed-loop system is stabilized for every controller from the polytope. In practice this means

that if LMIs (3.22) and (3.23) are set as a design constraints, no separate set of LMIs defined by

(3.12) for stability is needed.

Remark 3.3 The results can be extended to the case of an uncertain plant model with polytopic

uncertainty. Let the uncertain polytopic plant model be given by

G(η) = N (η)M−1(η),

where N (η) = ∑p
j=1η j N j , M(η) = ∑p

j=1η j M j , η j ≥ 0,
∑p

j=1η j = 1, and N j and M j belong to

RH∞. Assume that a stabilizing LPV controller, described by (3.5), needs to be designed for

such a system. Then the LMI (3.12) (or (3.22) and (3.23) for both stability and performance)

needs to be set as a design constraint for every possible combination of vertices of two polytopes,

i.e. the SPRness of

Fi , j = M j Yi +N j Xi

for i = 1, . . . , q and j = 1, . . . , p needs to be assured. It is easy to show, by taking convex combina-

tions of these pq LMIs, that the stability (and in a similar manner performance as well) of any

model from the plant uncertainty polytope is guaranteed by application of any controller from

the LPV controller polytope.

43



Chapter 3. Fixed-order LPV Controller Design for Plants with Transfer Function
Description

Figure 3.1 – Block diagram of the active suspension system

Remark 3.4 All of the results can easily be extended to the continuous-time case. The only

difference is that the LMIs of the KYP lemma should be expressed for continuous-time systems.

3.5 Simulation results

As a test system, a simple model of the active suspension system in the Control Systems

Department in Grenoble (GIPSA - lab) is used. A detailed description of the system is given

in [92]. The proposed method is used to design a controller capable of rejecting a sinusoidal

disturbance with a time-varying frequency. The disturbance frequency is known to lie in the

interval between 45 and 105Hz, and the sampling frequency for both data acquisition and

control is set to 800Hz. The block diagram of the active suspension system is shown in Figure

3.1. It is important to emphasize that the active suspension system described here is not the

same as the one in Chapter 2. The reason is that the original system got broken before the

tests for the Benchmark were performed. In this example the model of the original setup is

still used, unlike in Chapter 2.

The sinusoidal disturbance v1(t) can be represented as a white noise e filtered through the

disturbance model N . The transfer function Gd between the disturbance input and the open-

loop system output yp (t) is called the primary path. The measured output affected by the

measurement noise is denoted by y(t) and it is fed back to the controller. The secondary

path denotes the transfer function G between the output of controller u(t) and the system

output in the open loop. Both the primary (red line in Figure 3.2) and the secondary path (blue

line) contain several high-resonant modes in the disturbance frequency region, as it can be

observed on the amplitude Bode diagram of the identified test model.

By the application of the internal model principle, the controller is parameterized as a function

of the disturbance frequency. Note that the denominator of the discrete-time model (with Ts
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Figure 3.2 – Frequency response of the primary and secondary path

as the sampling period) of the sinusoidal disturbance with frequency ω (in rad/s) is given by

Ds(z,ω) = z2 −2cos(Tsω)z +1.

For a given disturbance frequency interval [ω1,ω2], this can be rewritten as a linear function

of one parameter θ ∈ [θ1,θ2], with θ1 =−2cos(Tsω1) and θ2 =−2cos(Tsω2). This means that

θ enters the denominator of the controller in an affine fashion. The controller for θ = θ1

is denoted by K1(z) = X1(z)Y −1
1 (z), and the one for θ = θ2 as K2(z) = X2(z)Y −1

2 (z), where

Yi (z) = Y f (z)(z2+θi z+1)). Then the stabilizing controller for any θ ∈ [θ1,θ2] that incorporates

z2 +θz +1 in the denominator is given by

K (z,λ) = [λX1(z)+ (1−λ)X2(z)][λY1(z)+ (1−λ)Y2(z)]−1, (3.25)

where λ= (θ2 −θ)(θ2 −θ1)−1.

Due to the “waterbed effect”, the amplification at other frequencies has to be allowed in order

to have strong attenuation at the disturbance frequency, and yet to preserve the stability of

the closed-loop system. To guarantee that the noise at other frequencies will not be strongly

amplified, the performance constraint ‖S‖∞ < 6dB is set using the performance filter W1 = 0.5.

The value of 6dB is a general practical recommendation [83]. For each of the polytope vertices

(for the limiting frequencies of 45 and 105Hz) two appropriate LMIs (3.22) and (3.23) are set to

ensure the performance. Yalmip [93] is used as a Matlab interface for defining the appropriate

convex optimization problem. The chosen SDP solver is SDPT3 [94].

For the sake of simplicity, the denominators of the transfer functions X1(z), X2(z), Y1(z) and
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Figure 3.3 – Joint sensitivity plot for a fine grid of θ

Y2(z) are set to have all poles at 0.2 (the sensitivity of the design approach to this choice is

not high). The numerators of these transfer functions, as well as two Lyapunov matrices P1

and P2, represent the optimization variables in this problem (bearing in mind that Y1(z) and

Y2(z) have a fixed part Ds(z,θ) for θ ∈ {θ1,θ2}). The exact problem to be solved is given as

‖W1(z)S(z,θ)‖∞ < γ, for θ ∈ {θ1,θ2} and fixed γ. The optimal γ is the minimal value for which

the problem can be solved. To find the optimal γ, the bisection algorithm is used. If it can be

solved for γ= 1 it means that the desired performance level can be obtained.

As a representative solution to the given problem a 10th order controller is chosen. The optimal

γ obtained is 1.03 (for the purpose of comparison, for the 6th order controller the optimal

γ equals 1.16, and for the 12th order one the optimal γ is 0.95). Solving the problem takes

around 5 seconds per iteration of the bisection algorithm. Figure 3.3 depicts superimposed

Bode amplitude plots of the transfer function S for a fine grid of disturbance frequencies θ

between 45 and 105Hz (a grid step of 0.5Hz was used). It can be observed in the upper part of

the graph that the performance constraint is satisfied. In the lower part asymptotic rejection

in the area of disturbance frequencies can be observed, which comes from the presence of the

disturbance model in the denominator of the LPV controller.

To illustrate the performance of the controller, simulations are performed on the plant model.

Since the objective of this method is controller design for the rejection of a sinusoidal distur-

bance with time-varying, but known, frequency, estimation of the disturbance frequency is

omitted in the simulation. For the purpose of simulation, the disturbance frequency is directly

fed to the controller. This corresponds to the situation when it is possible to measure the

disturbance (or a signal correlated to it) and directly obtain the disturbance frequency.

46



3.6. Conclusions

0 1 2 3 4 5 6 7 8 9 10

−0.4

−0.2

0

0.2

0.4

0.6

Simulation time [s]

R
e
s
id

u
a
l 
fo

rc
e

Open−loop

Figure 3.4 – Open-loop response to step changes in the disturbance frequency

The initial disturbance frequency is set to 45Hz, and every 2 seconds is altered via a step

change to 105Hz, 75Hz, 60Hz and 90Hz, respectively. In Figure 3.4, the open-loop simulation

response to such a disturbance is represented in red. The blue plot in Figure 3.5 depicts the

closed-loop response to the same disturbance. Both plots are shown on the same scale, so

the asymptotic rejection can easily be noticed. For a closer view of the transient after the

change of the disturbance frequency, the open-loop and closed-loop responses from 2.0 to

2.1 seconds are superimposed in Figure 3.6. The closed-loop transient after each frequency

change is rather short and the peak value is smaller than in the open-loop case.

3.6 Conclusions

A fixed-order LPV controller design method, with a primary focus on the problem of rejection of

a frequency-varying sinusoidal disturbance, is proposed in this chapter. Different sets of LMIs

for ensuring the closed-loop system stability for the fixed values of the scheduling parameter

and desired H∞ performance are proposed. Simulations results show that sensitivity function

shaping ensures good performance for fixed values of the scheduling parameter, and that

stability of the closed-loop system is preserved during the scheduling parameter variations.

However, the method cannot guarantee the closed-loop system stability during fast scheduling

parameter variations. The other issue is extension of the method to the MIMO systems. In the

next chapter a state-space LPV controller design method is proposed to resolve these issues.
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Figure 3.5 – Closed-loop response to step changes in the disturbance frequency
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Figure 3.6 – Comparison of the open-loop and closed-loop response
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4 Fixed-structure LPV Controller Design
for Continuous-time LPV Systems

4.1 Introduction

In the previous chapter, a method for designing fixed-order LPV controllers in the transfer

function setting is presented. Even though the transfer function structure is often used in

practice, the advantages are lost in case that controller design is performed for a MIMO system.

Also, dependency of the LPV transfer function on scheduling parameter vector can be much

more complex than in the state-space setting. For example, a simple affine dependence of the

state matrix could lead to an LPV transfer function with polynomial dependence on scheduling

parameter vector. Hence, the procedure for designing LPV controllers in the state-space setting

is proposed.

A fixed-order output-feedback LPV controller design method for continuous-time state-space

LPV plant models with an affine dependence on the scheduling parameter vector is presented

in this chapter. Bounds on the scheduling parameter vector and its variation rate are exploited

in design through the use of affine PDLFs. The exponential decay rate, H∞ and H2 perfor-

mance constraints are expressed through a set of LMIs. Controller design algorithms based

on these constraints are discussed. Simulation example and the application of the proposed

method to a 2DOF gyroscope experimental setup are described.

4.2 Problem Formulation

4.2.1 Plant model

A class of continuous-time LPV systems with the following model G(θ(t )) is considered:

ẋg (t ) = Ag (θ(t ))xg (t )+Bu(θ(t ))u(t )+Bw (θ(t ))w(t )

z(t ) =Cz (θ(t ))xg (t )+Dzu(θ(t ))u(t )+Dzw (θ(t ))w(t )

y(t ) =Cy xg (t )+D y w w(t ).

(4.1)
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The state vector belonging to Rn is denoted by xg (t ), u(t ) is the control input vector belonging

to Rnu , z(t) from Rnz is the vector of performance outputs, y(t) from Rny is the vector of

measured outputs and w(t ) from Rnw denotes the vector of external inputs, such as references

or disturbances. The vector θ(t) = [θ1(t), . . . ,θnθ
(t)]T represents the vector of scheduling

parameters. The plant model is taken to be strictly proper, which is a characteristic of all

physical systems. Proper models can easily be converted to strictly proper models by using a

high bandwidth filter for output sensors.

One important subclass of LPV systems, related to many practical problems, are LPV systems

with affine structure. They are characterized through the affine dependence of state-space

matrices on the scheduling parameter vector:

Ag (θ(t )) = Ag0 +
nθ∑

i=1
θi (t )Agi , (4.2)

similarly for other matrices dependent on θ(t ). To keep the affine dependence of the closed-

loop matrices on the scheduling parameter vector, only one of the matrices Bu or Cy can

be scheduling parameter dependent. For the same reason matrix D y w is assumed to be

independent of the scheduling parameter vector. Results are developed for Cy and D y w

independent of θ, but similar results can easily be presented for other combinations satisfying

given limitation.

In many applications, the scheduling parameter vector θ(t ) belongs to hyperrectangleΘ ∈Rnθ :

θi (t ) ∈ [θi ,θi ], i = 1, . . . ,nθ. (4.3)

The set of vertices ofΘ is denoted byΘv .

Remark 4.1 If the structure of the plant is such that the dependence of the closed-loop matrices

on the scheduling parameter vector is not affine, but for example a higher order polynomial,

the method should be extended to treat polynomial dependence of closed-loop matrices on the

scheduling parameter vector. The evident benefit of such an extension is a possibility of covering

the larger class of LPV plants. The other benefit would be a possibility to use PDLFs with higher

order polynomial dependence on the scheduling parameter vector. However, the price that

would be paid is elevated computation time, because the polynomial relaxation techniques

heavily increases the number of matrix constraints. This would increase the complexity of

presentation as well. For this reason, only affine dependence of plant and controller matrices

and PDLF on the scheduling parameter vector is considered.

4.2.2 Controller structure

The goal of this chapter is to provide a parameterization of a set of fixed-order LPV dynamic

output feedback controllers K (θ(t ), θ̇(t )) that stabilize the plant G(θ(t )). The structure of the
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LPV controller K (θ(t ), θ̇(t )) is given by

ẋc (t ) = Ac (θ(t ), θ̇(t ))xc (t )+Bc (θ(t ), θ̇(t ))y(t )

u(t ) =Cc xc (t )+Dc y(t ), (4.4)

where xc (t ) represents states of controller. Similar to θ(t ), it is supposed that θ̇(t ) belongs to a

hyperrectangle ∆ ∈Rnθ , i.e.

θ̇i (t ) ∈ [δi ,δi ], i = 1, . . . ,nθ. (4.5)

The set of vertices of ∆ is denoted by ∆v .

Dependence of the controller matrices on the scheduling parameter vector θ(t ) and its varia-

tion rate θ̇(t ) is affine, as for the plant, with matrix Ac (θ(t ), θ̇(t )) given by

Ac (θ(t ), θ̇(t )) = Ac0 +
nθ∑

i=1
θi (t )Aci +

nθ∑
i=1

θ̇i (t )Acdi , (4.6)

and accordingly for Bc (θ(t), θ̇(t)). Again, in order to to keep the affine dependence of the

closed-loop matrices on the scheduling parameter vector, matrices Cc and Dc are assumed to

be independent of the scheduling parameter. Other combinations are possible based on the

plant matrices.

Remark 4.2 It is important to emphasize at this stage that in practice θ̇(t ) is not always measur-

able. Some of the LPV controller design methods in literature are limited by this issue [59, 60, 62],

as LPV controllers designed using these methods inherently depend on θ̇(t ). For the approach

presented here this does not pose a problem, as it can be circumvented by setting to zero the

terms of K (θ(t ), θ̇(t )) related to θ̇(t ).

4.2.3 Closed-loop system structure

Merging the plant model and the controller structure leads to the following closed-loop system

representation:[
ẋg (t )

ẋc (t )

]
=

[
Ag (θ(t ))+Bu(θ(t ))DcCy Bu(θ(t ))Cc

Bc (θ(t ), θ̇(t ))Cy Ac (θ(t ), θ̇(t ))

][
xg (t )

xc (t )

]

+
[

Bw (θ(t ))+Bu(θ(t ))Dc D y w

Bc (θ(t ), θ̇(t ))D y w

]
w(t ) (4.7)

z(t ) =
[

Cz (θ(t ))+Dzu(θ(t ))DcCy Dzu(θ(t ))Cc

][
xg (t )

xc (t )

]
+

[
Dzw (θ(t ))+Dzu(θ(t ))Dc D y w

]
w(t )
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It can be noticed that the closed-loop matrices depend affinely on both θ(t) and θ̇(t). To

shorten the presentation, in the rest of the text the closed-loop matrices are denoted by

Acl (θ(t), θ̇(t)), Bcl (θ(t), θ̇(t)), Ccl (θ(t)) and Dcl (θ(t)), and the closed-loop state vector by

x = [xT
g (t ) xT

c (t )]T . Hence (4.7) can be rewriten as

ẋ(t ) = Acl (θ(t ), θ̇(t ))x(t )+Bcl (θ(t ), θ̇(t ))w(t ) (4.8)

z(t ) = Ccl (θ(t ))x(t )+Dcl (θ(t ))w(t ).

4.2.4 Stability conditions

A method for verifying the stability of a dynamical system is to search for the existence of an

appropriate Lyapunov function. In literature, the predominant choice of a Lyapunov function

candidate for an LPV system is a Lyapunov function that is quadratic in the state:

V (x(t )) = xT (t )P (t )x(t ). (4.9)

The matrix P (t) should be independent of the scheduling parameter vector θ(t) if θ(t) can

vary infinitely fast. However, this assumption is too restrictive for many practical systems.

Hence, it is reasonable to assume that certain bounds on θ̇(t ) can be defined in advance. In

this case, the use of scheduling parameter independent Lyapunov matrix P (t) = P could be

too conservative. Hence, a PDLF with affine dependence on the scheduling parameter vector

is considered:

V (x(t )) = xT (t )P (θ(t ))x(t ),P (θ(t )) = P0 +
nθ∑

i=1
θi (t )Pi , (4.10)

where P (θ(t )) > 0 for ∀θ(t ) ∈Θ.

Given that V (x(t )) is quadratic in x(t ) and P (θ(t )) is positive definite, it can be concluded that

V (x(t )) is strictly positive for all non-zero state vectors x(t ) and zero only for x(t ) = 0. Another

condition for V (x(t )) to be a Lyapunov function for the LPV system (4.7) is the negativeness of

its derivative for all non-zero x(t ) [95]:

V̇ (x(t )) = dV

d t

[
xT (t )P (θ(t ))x(t )

]
= ẋT (t )P (θ(t ))x(t )+xT (t )P (θ(t ))ẋ(t )+xT (t )Ṗ (θ(t ))x(t ) < 0. (4.11)

In combination with the dynamic equation of the unforced system ẋ(t) = Acl (θ(t), θ̇(t))x(t)

the following expression for V̇ (x(t )) is obtained:

V̇ (x(t )) = xT (t )[AT
cl (θ(t ), θ̇(t ))P (θ(t ))+P (θ(t ))Acl (θ(t ), θ̇(t ))+ Ṗ (θ(t ))]x(t ), (4.12)
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where

Ṗ (θ(t )) =
nθ∑

i=1
θ̇i (t )Pi = P (θ̇(t ))−P0.

Therefore, the sufficient condition for the LPV system stability using quadratic PDLF affine in

θ(t ) is given by the following matrix inequality:

AT
cl (θ(t ), θ̇(t ))P (θ(t ))+P (θ(t ))Acl (θ(t ), θ̇(t ))+ Ṗ (θ(t )) < 0,∀θ(t ) ∈Θ∧∀θ̇(t ) ∈∆. (4.13)

It can be observed that the left hand side of the inequality is polynomial in (θ(t), θ̇(t)). In

general, the infinite number of inequalities in (4.13) cannot be replaced by a finite inequality

set without loosing the full guarantee on stability or without introducing some conservatism.

On the other hand, the controller parameters in Acl (θ(t), θ̇(t)) are multiplied by Lyapunov

matrix parameters P (θ(t )) which makes the above inequality bilinear in optimization variables.

Hence, the goal of this chapter is to replace the given infinite set of bilinear matrix inequalities

with a finite set of linear matrix inequalities in which Acl (θ(t ), θ̇(t )) is decoupled from P (θ(t )).

In the rest of this chapter the dependence of θ(t ) and θ̇(t ) on time is implied.

4.3 Fixed-order LPV Controller Design

The goal is to give a parameterization of an inner convex approximation of the feasible set of the

stability condition (4.13) for affine LPV state-space plants by decoupling Acl (θ, θ̇) from P (θ). In

the transfer function setting the use of central polynomial enables decoupling [38, 96]. Similar

effect is achieved here by introducing two additional matrix parameters. The first parameter M

should enable decoupling of matrices Acl (θ, θ̇) and P (θ), through relating indirectly stability

of M to stability of Acl (θ, θ̇). The second parameter is the similarity transformation matrix T ,

which should provide an additional degree of freedom. A method for the robust controller

design for systems with polytopic uncertainty structure, which uses a similar idea to obtain an

inner convex approximation of the stabilizing controller set, is presented in [97].

To proceed, first some useful definitions and lemmas are presented. The KYP lemma, already

mentioned in Chapter 3, for continuous-time systems states that the transfer function H(s) =
C (sI − A)−1B +D is SPR if and only if there exists a matrix P = P T > 0 such that[

AT P +PA PB −C T

B T P −C −D −DT

]
< 0. (4.14)

The SPRness of the system implies stability in Lyapunov sense, as it ensures that AT P +PA

is negative definite. The following lemma relates the SPRness of a transfer function with the

SPRness of its inverse.

Lemma 4.1 These two statements are equivalent:
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1) H(s) =
[

A B

C I

]
is SPR.

2) H−1(s) =
[

A−BC B

−C I

]
is SPR.

Proof. According to the KYP lemma and using the Schur complement lemma [98], Statement 1

is equivalent to the existence of P = P T > 0 such that

AT P +PA+ 1

2
(PB −C T )(B T P −C ) < 0. (4.15)

This inequality can be rearranged to

(A−BC )T P +P (A−BC )+ 1

2
(PB +C T )(B T P +C ) < 0, (4.16)

which is equivalent to Statement 2. �

The following consequence of Lemma 4.1 is of great importance for the desired parameteriza-

tion of a fixed-order LPV controller set.

Lemma 4.2 The following matrix inequalities are equivalent:[
M T P +P M P −M T + (T −1 AT )T

P −M +T −1 AT −2I

]
< 0 ⇔ (4.17)[

AT PT +PT A PT − AT X +M T
T

PT −X A+MT −2X

]
< 0, (4.18)

where PT = T −T PT −1, MT = T −T MT −1 and X = T −T T −1.

Proof. Set A := T −1 AT , B := I and C := T −1 AT −M for the transfer function H (s) in Lemma 4.1.

Writing the KYP lemma in the matrix form for the transfer function H−1(s) provides exactly

(4.17). Next, writing the KYP lemma matrix inequality for H (s), which is equivalent to (4.17) by

Lemma 4.1, and pre- and post-multiplication of the left-hand side by block diagonal matrix

blkdiag(T −T ,T −T ) and its transpose lead to (4.18). As pre- an post-multiplication by a non-

singular matrix and its transpose do not change the sign definiteness of a matrix expression,

the equivalence is preserved. �

The next lemma enables the representation of the convex set of controllers through a finite

number of LMIs.

Lemma 4.3 Consider a symmetric matrix L which is affine in the parameter vector φ, i.e.

L(φ) = L0 +
nφ∑

i=1
φi Li , (4.19)
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where φ belongs to the polytope Φ, and the finite set of vertices of Φ is denoted by Φv =
{φv1 , . . . ,φvq }. Then the infinite set of matrix inequalities

L(φ) < 0,∀φ ∈Φ (4.20)

is equivalent to the finite set of matrix inequalities

L(φ) < 0,∀φ ∈Φv . (4.21)

The proof is easily derived using convex combinations of the vertices.

Based on these lemmas, the following fixed-order LPV controller parameterization is given.

Theorem 4.1 Suppose that the LPV plant model is given by (4.1) and (4.2) and that the schedul-

ing parameters and their variation rates belong to hyperrectangles Θ and ∆ (as in (4.3) and

(4.5)), withΘv and ∆v denoting the vertex sets ofΘ and ∆. Then, given matrices M and T , the

controller in (4.4) stabilizes the LPV model for any allowable scheduling parameter trajectory if[
M T P (θ)+P (θ)M +P (θ̇)−P (0) (∗)

P (θ)−M +T −1 Acl (θ, θ̇)T −2I

]
< 0, (4.22)

P (θ) > 0 , ∀θ ∈Θv ,∀θ̇ ∈∆v .

Symbol (∗) substitutes the terms which ensure the symmetry of the matrix.

Proof. First notice that the left-hand side of (4.22) can be represented as a symmetric matrix

expression affine in vector φT = [θT , θ̇
T

]. As φ belongs to the polytopeΦ given byΦ=Θ×∆,

based on Lemma 4.3, it can be concluded that the matrix inequality (4.22) is valid for all θ ∈Θ
and θ̇ ∈∆. Next, observe Lemma 4.2 and notice that the addition of a term P (θ̇)−P0 to the

upper left blocks of both matrices by Schur complement lemma does not spoil the equivalence.

Therefore, using the shorthands PT = T −T PT −1, MT = T −T MT −1 and X = T −T T −1, matrix

inequality (4.22) leads to[
AT

cl (θ, θ̇)PT (θ)+PT (θ)Acl (θ, θ̇)+PT (θ̇)−PT (0) (∗)

PT (θ)−X Acl (θ, θ̇)+MT −2X

]
< 0, (4.23)

PT (θ) > 0 , ∀θ ∈Θ,∀θ̇ ∈∆.

The application of the Schur complement lemma on (4.23) leads to

AT
cl (θ, θ̇)PT (θ)+PT (θ)Acl (θ, θ̇)+PT (θ̇)−PT (0) < 0 (4.24)

for ∀θ ∈ Θ and ∀θ̇ ∈ ∆. Hence, the system is stabilized for bounded scheduling parameter

variations. �
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Remark 4.3 As in (4.22) the controller and Lyapunov matrices appear affinely, it is a set of LMIs

as long as the matrix parameters M and T are fixed. A proposition for their choice is given in

the next subsection.

The set of LMIs in (4.22) guarantees stability of the closed-loop system for a bounded schedul-

ing parameter variation rate. A good exponential stability decay-rate for the closed-loop

system can be ensured as well.

Corollary 4.1 Using the same set of assumptions as in Theorem 4.1, the following finite set of

matrix inequalities[
M T P (θ)+P (θ)M +P (θ̇)−P (0)+σP (θ) (∗)

P (θ)−M +T −1 Acl (θ, θ̇)T −2I

]
< 0, (4.25)

P (θ) > 0 , ∀θ ∈Θv ,∀θ̇ ∈∆v ,

describes the convex set of LPV controllers stabilizing the LPV plant and ensuring the exponential

stability decay-rate α such that 0 <α<σ and

‖x(t )‖ ≤ c‖x(0)‖e−2αt (4.26)

for some c > 0. The value of σ> 0 can be maximized by the bisection algorithm.

Proof. Based on Theorem 4.10 from [95], if

AT
cl (θ, θ̇)PT (θ)+PT (θ)Acl (θ, θ̇)+PT (θ̇)−PT (0) ≤−kαI , (4.27)

and PT (θ) ≤ kI , then the inequality in (4.26) holds for any t > 0 and initial state x(0), with k > 0

and α> 0. Similarly to the proof to Theorem 4.1, it can be concluded that (4.25) is equivalent

to [
AT

cl (θ, θ̇)PT (θ)+PT (θ)Acl (θ, θ̇)+PT (θ̇)−PT (0)+σPT (θ) (∗)

PT (θ)−X Acl (θ, θ̇)+MT −2X

]
< 0, (4.28)

PT (θ) > 0 , ∀θ ∈Θ,∀θ̇ ∈∆.

This implies

AT
cl (θ, θ̇)PT (θ)+PT (θ)Acl (θ, θ̇)+PT (θ̇)−PT (0) ≤−σPT (θ). (4.29)

Since PT (θ) > 0, there always exists some k > 0 such that PT (θ) ≤ kI , which in turn implies

σPT (θ) ≤σkI and −σPT (θ) ≥−σkI . Therefore, it can be concluded that there exists α such

that 0 <α<σ and −σPT (θ) ≤−αkI . �

Remark 4.4 If in (4.25) the term σP (θ) is replaced by σI , the maximum of σ is a lower bound
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for the decay-rate α and it can be obtained without performing the bisection algorithm.

4.4 Algorithms for Fixed-order Controller Design

The matrix parameters M and T play a crucial role in this approach to a fixed-order LPV

controller design. Yet, there exists no evident manner in which their values can be assigned.

To resolve this issue, in the rest of this section three different algorithms for the fixed-order

controller design are proposed. They all use matrix inequalities presented in the previous

chapter as a basis for design. Another common feature is iterative convex optimization solving,

with initialization based on the design of some fixed-order LTI controllers.

4.4.1 Algorithm 1: “The gain-scheduling based algorithm”

This algorithm is inspired by the classical gain-scheduled controller design methods. Suppose

that for each θ ∈Θv a fixed-order LTI controller (“vertex controller”) is available such that it

stabilizes the LPV model for the frozen scheduling parameter vector value θ. These vertex

controllers may be computed using some of the existing LTI controller design approaches in

the form of Matlab® toolboxes such as hinfstruct [99], HIFOO [100] and FDRC [101]. In the

second phase, the classical gain-scheduling approaches would interpolate these controllers

over the whole scheduling parameter space. The next step is calculation of matrices MT and

X . Based on the initial controllers, the vertex closed-loop matrices A(0)
cl j

, j = 1, . . . ,2nθ can be

calculated. Then, the following semi-definite programming problem with 2nθ LMI constraints

can be proposed to find appropriate values of MT and X :[
(A(0)

cl j
)T PT j +PT j A(0)

cl j
(∗)

PT j +MT −X A(0)
cl j

−2X

]
< 0, j = 1, . . . ,2nθ . (4.30)

From matrix X the similarity transform matrix T can be reconstructed by Cholesky factor-

ization, and afterwards M is calculated as M = T T MT T . Next, a stabilizing fixed-order LPV

controller can be obtained from (4.22) using the values of M and T .

If a feasible solution is obtained for this convex optimization problem, design process is

finished. For some plants and choice of initial controllers the convex problem (4.30) may turn

out to be infeasible. In this case one of two following algorithms can be applied, where the

choice depends on the preference of the user.

4.4.2 Algorithm 2: “The decay-rate based algorithm”

The second algorithm is based on the idea of initialization through the use of the gain-

scheduled controller. It can be used in the case that the first algorithm fails, or in the case that

user wishes to optimize the exponential decay rate. The main idea is to increase the domain of

stability through the use of the exponential decay rate. If initially a stabilizing LPV controller
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cannot be obtained, then the design problem is relaxed through negative values of exponential

decay rate.

First, a set of controllers is designed for all vertices of the polytopeΘ, then appropriate vertex

closed-loop matrices A(0)
cl j

, j = 1, . . . ,2nθ are designed based on them. The following SDP

problem is solved next:[
(A(0)

cl j
)T PT j +PT j A(0)

cl j
+σPT j (∗)

PT j +MT −X A(0)
cl j

−2X

]
< 0. (4.31)

If this problem is feasible, considering MT , X , σ and P ( j )
T , for j = 1, . . . ,2nθ as optimization

variables, the values of MT and X are chosen so that the value of σ is maximized using the

bisection algorithm.

In the next step, a fixed-order LPV controller can be designed based on calculated values of M

and T from (4.25). In order to optimize the value of the decay-rate parameter σ, obtained LPV

controller can be used to calculate new values of MT and X . This leads to a new LPV controller.

This procedure is repeated until σ converges. The algorithm can be summarized as follows:

Step 1: choose small ε > 0; design the initial controllers K (0)
i , i = 1, . . . ,2nθ for θv ∈ Θv ; set

k = 1

Step 2: for ∀θv ∈Θv calculate Acl (θv ) using K (k−1); set (4.28) for ∀(θ,θ+) ∈Ωv using Acl (θ)

and find feasible X , MT and PT (θ) while maximizing σ by bisection; reconstruct T from

X = T −T T −1 and subsequently M = T T MT T ;

Step 3: set (4.25) for ∀(θ,θ+) ∈Ωv using M and T obtained in Step 2 and search for feasible

K (k), PT (θ) and maximal (by bisection) σ(k);

Step 4: if σ(k) −σ(k−1) > ε set k = k +1 and jump to Step 2; otherwise stop.

Equivalence of (4.25) and (4.28) ensures that as a worst case in Step 3 we obtain the same

controller and σ(k) as those applied in Step 2 are obtained. Therefore stability indicator

(and exponential decay parameter) σ(k) is monotonically non-increasing in this synthesis

procedure.

Remark 4.5 It is important to keep in mind that the Step 2 slightly differs for the first iteration

(k = 0) and other iterations (k > 0). This difference stems from the fact that in the first iteration

initial LTI controllers are used for calculation of Acl , and in the latter ones the LPV controller

from the previous iteration.

A negative value of σ can be obtained in the first iteration, if no stabilizing controller can be

found for given values of M and T . However, by further application of the proposed algorithm
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value of σ increases, hence it is reasonable to assume that after few iterations stability is

achieved. If this does not happen, and no other initial controllers are available, there is still an

option to use the third algorithm.

4.4.3 Algorithm 3: “The stretching algorithm”

Suppose that a single initial controller K (0) is available for the centre of hyperrectangleΘ, i.e.

θ = 0. Since this is a single LTI system, one of the above-mentioned fixed-order LTI controller

design methods can be used to design K (0). The next step is a choice of decoupling and

transformation matrices. Based on K (0) system matrix A(0)
cl can be calculated. By introducing

A(0)
cl into (4.23), feasible X , MT and PT are obtained. Note that for a single LTI system feasibility

is always guaranteed, as A(0)
cl is a system matrix of a stable closed-loop system. Values of matrix

parameters M and T are obtained from MT and X , so the controller design phase can be

performed. Since matrices M and T are obtained based only on a local information (i.e.

controller K (0)), it is possible that the LPV controller design based on them does not lead

directly to an LPV controller stabilizing the plant for all (θ, θ̇) ∈ Ω, where Ω = Θ×∆. To

overcome this, the idea is to calculate first a controller for the “scaled downΩ", i.e. to perform

the design for the setΩ(α) obtained by scaling the setΩ by factor α around the origin. If the

vertex set ofΩ(α) is denoted byΩv (α), the design constraint set is given by[
M T P (θ)+P (θ)M +P (θ̇)−P (0) (∗)

P (θ)−M +T −1 Acl (θ, θ̇)T −2I

]
< 0, P (θ) > 0, ∀(θ, θ̇) ∈Ωv (α). (4.32)

Since α appears linearly in all θ ∈Ωv (α), the maximum feasible α(1) can be obtained by the

bisection algorithm. If α(1) ≥ 1, designed LPV controller K (1) stabilizes the original LPV system,

and the design process is finished. In the case that α(1) < 1, the step of calculating new values

of M and T should be performed, this time using the controller K (1) onΩv (α(1)) set. Next, a

new controller design step is taken, which leads to new LPV controller K (2) stabilizingΩv (α(2)),

where α(2) >α(1). This iterative process should be performed until α(k) ≥ 1 is obtained, after

some k iterations.

The algorithm can be summarized with following 4 steps:

Step 1: choose small αtol > 0; set k = 1;

design the initial LTI controller K (0) corresponding to α(0) = 0

Step 2: for ∀(θ, θ̇) ∈Ωv (α(k−1)) calculate Acl (θ, θ̇) using K (k−1)(θ, θ̇);

set (4.23) for ∀(θ, θ̇) ∈Ωv (α(k−1)) using Acl (θ, θ̇) and find feasible X , MT and PT (θ);

reconstruct T from X = T −T T −1 and subsequently M = T T MT T .

Step 3: set αmi n =α(k−1) and αmax = 1.0;

while (αmax −αmi n >αtol ) do

(i) α(k) = (αmax +αmi n)/2;
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(ii) set (4.22) for ∀(θ, θ̇) ∈Ωv (α(i )) using M and T and search for feasible K (k)(θ, θ̇) and

PT (θ)

(ii) if no feasible point in (ii) set αmax =α(k); otherwise αmi n =α(k)

Step 4: if α(k) −α(k−1) >αtol set k = k +1 and jump to Step 2; otherwise stop.

4.5 Design of Fixed-Order LPV Controllers with

Induced L2-norm and H2 Performance Specifications

4.5.1 Induced L2-norm performance constraints

In the LPV literature, induced L2-norm performance is usually examined through the ex-

tension of Bounded Real Lemma to LPV systems. Based on [59], the induced L2-norm

performance level γ for the closed-loop system (4.8) is the minimum γ for which there exists a

Lyapunov function P (θ) such that AT
cl (θ, θ̇)P (θ)+P (θ)Acl (θ, θ̇)+P (θ̇)−P (0) P (θ)Bcl (θ, θ̇) C T

cl (θ)

B T
cl (θ, θ̇)P (θ) −γI DT

cl (θ)

Ccl (θ) Dcl (θ) −γI

< 0, (4.33)

is satisfied for ∀θ ∈Θ,∀θ̇ ∈∆.

Similar to the case of stabilizing controller design, the goal is to obtain matrix constraints

that decouple Acl (θ, θ̇) and PT (θ). In [102] LMI conditions are proposed for the analysis

of performance of polytopic uncertain systems. Based on these conditions, the following

theorem can be used for the fixed-order controller design with guaranteed level of induced

L2-norm performance.

Theorem 4.2 Suppose that the LPV plant model is given by (4.1) and (4.2) and that the schedul-

ing parameters and their variation rates belong to hyperrectangles Θ and ∆ (as in (4.3) and

(4.5)), with Θv and ∆v denoting the vertex sets of Θ and ∆. Then, given matrices M and X ,

the controller in (4.4) and (4.6) stabilizes the LPV plant and provides the level γ of induced

L2-norm performance for any allowable scheduling parameter trajectory if
−M T Acl (θ, θ̇)− AT

cl (θ, θ̇)M +P (θ̇)−P (0) (∗) (∗) (∗)

P (θ)+X T Acl (θ, θ̇)+M −X −X T (∗) (∗)

−B T
cl (θ, θ̇)M B T

cl (θ, θ̇)X −γI (∗)

Ccl (θ) 0 Dcl (θ) −γI

< 0, (4.34)

P (θ) > 0, ∀θ ∈Θv ,∀θ̇ ∈∆v .
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Proof. Observe the matrix

LT
∞(θ) =

 I AT
cl (θ, θ̇) 0 0

0 B T
cl (θ, θ̇) I 0

0 0 0 I

 . (4.35)

Note that the matrix L∞(θ) is of a full row rank, which implies that it is of a full rank. Hence,

the pre-multiplication of (4.34) by LT∞(θ) and post-multiplication by L∞(θ) preserves the

positive-definiteness of the resulting lower dimensional matrix. But, this resulting matrix is

exactly the one on the left-hand side of (4.33) [102]. This concludes the proof. �

To apply this theorem for the fixed-order controller design with guaranteed level of induced

L2-norm performance, an algorithm similar to one of those presented for the stabilizing

controller design can be used here. In the case that the stabilizing LPV controller is already

available, it can be used for the initialization of the algorithm. The important difference is

that instead of alternating between two different sets of LMIs, here a single LMI constraint set

(4.34) is used in both steps of the algorithm iterate. In one step controller variables would be

fixed, and optimization performed over the others (including M and X ), and in the other step

matrices M and X would be fixed. Notice as well that X it is not necessarily symmetric.

4.5.2 H2 performance constraints

Based on [103], the H2 performance for an LPV system can be examined in the following

manner. The H2 performance level η for the closed-loop system (4.8) is a minimum η for

which exists a Lyapunov function P (θ) and symmetric matrix W (θ) such that[
AT

cl (θ, θ̇)P (θ)+P (θ)Acl (θ, θ̇)+P (θ̇)−P (0) C T
cl (θ)

Ccl (θ) −I

]
< 0,

[
W (θ) B T

cl (θ, θ̇)P (θ)

P (θ)Bcl (θ, θ̇) P (θ)

]
> 0, (4.36)

trace(W (θ)) ≤ η2

is fulfilled for ∀θ ∈Θ,∀θ̇ ∈∆.

As for the fixed-order induced L2-norm performance controller design, for the H2 LPV fixed-

order controller design using the convex optimization tools the matrix conditions are needed

in which Acl (θ, θ̇) and PT (θ), and Bcl (θ, θ̇) and P (θ) as well, are decoupled. In [104], LMI

conditions are presented for the analysis of H2 performance of polytopic uncertain systems.

Motivated by these conditions, the following theorem is proposed for the fixed-order controller

design with guaranteed level of H2 performance.
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Theorem 4.3 Suppose the LPV plant model is given by (4.1) and (4.2) and that the scheduling

parameters and their variation rates belong to hyperrectanglesΘ and ∆ (as in (4.3) and (4.5)),

withΘv and∆v denoting the vertex sets ofΘ and∆. Then, given matrices M, X , MB and XB , the

controller in (4.4) and (4.6) stabilizes the LPV plant and provides the level η of H2 performance

for any allowable scheduling parameter trajectory if −AT
cl (θ, θ̇)M −M T Acl (θ, θ̇)+P (θ̇)−P (0)) (∗) (∗)

PT (θ)+X T Acl (θ, θ̇)+M −X −X T (∗)

Ccl (θ) 0 −I

< 0,

[
−W (θ)+B T

cl (θ, θ̇)MB +M T
B Bcl (θ, θ̇) −M T

B +B T
cl (θ, θ̇)X T

B

−MB +XB Bcl (θ, θ̇) P (θ)− (XB +X T
B )

]
< 0, (4.37)

trace(W (θ)) ≤ η2, P (θ) > 0, ∀θ ∈Θv ,∀θ̇ ∈∆v .

Proof. Application of the Schur complement lemma around the bottom right block of the first

inequality in (4.37) leads to

[
−AT

cl (θ, θ̇)M −M T Acl (θ, θ̇)+P (θ̇)−P (0))+C T
cl (θ)Ccl (θ) P (θ)+ AT

cl (θ, θ̇)X +M T

P (θ)+X T Acl (θ, θ̇)+M −X −X T

]
< 0.

(4.38)

Pre-multiplication of this inequality by
[
I − AT

cl (θ, θ̇)
]

and post-multiplication by its trans-

pose lead to

AT
cl (θ, θ̇)P (θ)+P (θ)Acl (θ, θ̇)+P (θ̇)−P (0)+C T

cl (θ)Ccl (θ) < 0, (4.39)

which is by Schur complement lemma equivalent to the first inequality in (4.36).

Next, consider pre- and post-multiplication of the second inequality in (4.37) by
[
I B T

cl (θ, θ̇)
]

and its transpose. This leads to

B T
cl (θ, θ̇)P (θ)Bcl (θ, θ̇)−W (θ) < 0, (4.40)

which is by Schur complement lemma equivalent to the second inequality in (4.36). This

concludes the proof. �

Based on this theorem, proposed design algorithms can be employed for fixed-order controller

design with guaranteed level of H2 performance. Stabilizing fixed-order LPV controller can be

used here for the initialization as well. Note that algorithms for the stabilizing fixed-order LPV

controller design have to be altered in order to be applied here. The reason is that 4, instead of

2, additional matrix parameters appear: M , X , MB and XB . This means that in the first phase

of Algorithm 1 (or Step 2 of Algorithms 2 and 3) the controller variables are fixed, while the
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optimization is performed over M , X , MB and XB (and the other optimization variables). In

the second phase of Algorithm 1 (Step 3 of Algorithms 2 and 3) matrices M , X , MB and XB are

fixed and optimization is performed to obtain new fixed-order LPV controller.

4.6 Applications

4.6.1 Simulation results

The efficiency of the proposed method is verified on the simulation example taken from [62].

The simulation plant represents a simple two-disc system with the following LPV model

ẋg =



0 0 1 0

0 0 0 1

θ1 − k0

m1

k0

m1

b0

m1
0

k0

m2
θ2 − k0

m2
0

b0

m2

xg +


0

0
0.1

m1
0

u (4.41)

y =
[

0 1 0 0
]

xg ,

with constants k0 = 200N /m, b0 = 1kg /s, m1 = 1kg and m2 = 0.5kg . The scheduling pa-

rameters θ1 and θ2 belong to the intervals [0,9] and [0,25], respectively. For bounds on the

scheduling parameter variation rate the reasonable values of [δ1,δ1] = [−30,30]
r ad

s2 and

[δ2,δ2] = [−50,50]
r ad

s2 are chosen. Analyzing the plant for frozen values of θ, it can be

observed that for [θ1,θ2] = [0,0] there is one pole at 0, and for the other 3 vertices of the

hyperrectangleΘ, the open-loop system is unstable. The aim is to compute a second-order

LPV controller that guarantees the exponential stability of the closed-loop system with a good

decay rate.

In order to optimize the closed-loop decay rate, the Algorithm 2 is employed for the controller

design. The first step is to design simple initial controllers for 4 vertices of Θ. As a tool, the

Frequency-domain Robust Controller Design Toolbox [105] is used. In order to show that

simple tuning of initial controllers gives good results some PID controllers are designed, as

this is still the first choice of control engineers in practice [106]. The controllers are designed

by an open-loop shaping method that guarantees a maximum of 4.5 for the magnitude of the
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sensitivity function. In this manner the following controllers are obtained:

K 0
1 (s) = −828.73

(s +0.3278)(s +5.32)

s(s +50)
for θ = [0, 0]T

K 0
2 (s) = −992.27

(s +0.5496)(s +17.19)

s(s +50)
for θ = [0, 25]T

K 0
3 (s) = −919.68

(s +0.7045)(s +15.4)

s(s +50)
for θ = [9, 0]T

K 0
4 (s) = −948.97

(s +0.1187)(s +24.58)

s(s +50)
for θ = [9, 25]T .

Obviously, if a unique Lyapunov matrix P for 4 closed-loop systems based on these 4 controllers

can be obtained, then any interpolation between these controllers would produce an LPV

controller stabilizing the LPV plant for any possible variation of θ. Hence, there would be no

need to continue with design if just a stabilizing LPV controller is needed. However, examining

the system of 4 LMIs in unknown matrix P gives no feasible solution. Therefore, it is reasonable

to design an LPV controller for given bounds on the scheduling parameter variation rate.

Using initial controllers, the decoupling matrix M is obtained from 4 LMIs in (4.30) related to

the 4 vertices ofΘ. The matrix T is chosen to be fixed and equal to I in all the simulations in

this subsection. The next step is to verify the existence of an affine LPV controller K (θ) and an

affine Lyapunov matrix P (θ) in (4.22). All controller state-space matrices, i.e. Ac ,Bc ,Cc and

Dc are chosen to depend affinely on θ. Note that since matrices Bg and Cg are independent of

θ, this choice still ensures that Acl is affine with respect to θ. The number of LMIs appearing

here is 16, representing the number of vertices of the polytopeΘ×∆. For solving the described

semidefinite programming problem, SDPT3 [94] can be used as a solver, with YALMIP [93] as

a Matlab environment for describing convex programming problems. The maximum value of

σ obtained by the bisection algorithm is 0.6789. The state-space description of the resulting

controller K1 is:

Ac (θ) =
[

−3.9959 −0.9679

−1.1207 −46.2523

]
+θ1

[
−0.0994 0.2436

−0.2160 −0.0359

]

+θ2

[
0.1112 0.0277

0.2213 −0.0066

]

Bc (θ) =
[

10.7943

177.6351

]
+θ1

[
−1.0236

0.0678

]
+θ2

[
−0.1847

−0.0736

]

C T
c (θ) =

[
12.2934

109.0334

]
+θ1

[
2.7138

−2.6864

]
+θ2

[
−1.0924

−0.2185

]
Dc (θ) = −639.2795+5.5746θ1 −3.5194θ2.

Remark 4.6 The results can be improved if a decoupling matrix M is chosen again, based on the
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Figure 4.1 – Step response for two different LPV controllers. Red line: using initial PID
controllers; Blue line: after 5 iterations.

LPV controller K1. For this purpose, A0
cl j

are computed based on K1 and the convex optimization

problem in (4.28) is solved. This way, a new decoupling matrix M1 is obtained that leads to a

new controller K2 with σ= 1.0769. If 4 more iterations of Algorithm 2 are run, the controller K6

with σ= 1.8034 is found. To see how an increased value of σ affects the response of the system,

simulations with a step signal as a reference for the closed-loop system with LPV controllers

K1 and K6 are performed. In both cases the step is applied at t = 1s, while θ1 and θ2 take the

following exponential trajectories:

θi =
{

θi , t < 1

θi e−(t−1)/τi , t ≥ 1
, i = 1,2.

which corresponds to moving exponentially from θ1 = 9 and θ2 = 25 to θ1 = 0 and θ2 = 0,

respectively. Taking the equation of parameter trajectories into account, it can be concluded

that the absolute value of the variation rate of θi is maximum for t = 1s where it reaches the

value θi /τi . So, to bring the system to the design limits τi = θi /δi is chosen, i.e. τ1 = 0.3s and

τ2 = 0.5s. Figure 4.1 illustrates the step response for K1 (red) and K6 (blue). The second one is

much less oscillatory (no undershoot and shorter settling time). Note that the open-loop model

is unstable and an overshoot of 100% with a second order controller is a reasonable response

very close to the limit of achievable performance.

Remark 4.7 As previously explained, this approach allows us to obtain controllers that depend

on both θ and θ̇, if variation rate measurements are also available. This provides some addi-

tional degrees of freedom that may lead to better decay-rate performance. For this example using

the same initial M a new controller K (θ, θ̇) can be designed with only a small improvement in

65



Chapter 4. Fixed-structure LPV Controller Design for Continuous-time LPV Systems

Figure 4.2 – Quanser gyroscope experimental platform [107].

σ(=0.7117), which does not significantly change the closed-loop performance.

Remark 4.8 In this approach, some of the poles of the controller can be fixed to a predefined

value. For example, to ensure the integral action of the LPV controllers to track the step for

frozen values of scheduling parameter, one column (or row) of the matrices Aki could simply be

constrained to be identically equal to zero.

4.6.2 Experimental results

In this section, the application of the proposed method to a 2DOF gyroscope experimental

setup is described. The focus is on the LPV modeling of the experimental setup, initial LTI

controller and desired LPV controller design, and experimental results obtained from the

application of LPV controller on the setup.

Experimental setup description

The gyroscope experimental setup used for performing control experiments described in this

section is presented in Figure 4.2. The system consists of three frames (red, blue and grey
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Figure 4.3 – Axis of the rotating coordinate frame.

one), and a brass disk. Figure 4.3 illustrates the reference frame x y z that rotates together with

the brass disk and the blue frame. The brass disk rotates around the axis x passing through

its center and perpendicular to the disk. Axis y represents the axis around which blue frame

rotates together with brass disk. Red frame rotates around the axis Z of the inertial reference

frame (not to be confused with axis z). In the experiment described here, the grey frame is

fixed.

The angular positions of the disk, blue and red frame are measured using quadrature encoders.

Three DC motors are used to actuate the disk, the blue and the red frame about the axis x, y

and Z , respectively. Data acquisition is performed using the National Instruments DAQ card

and Mac Pro computer. A power amplifier is used to convert the voltage output of the DAQ

card to current signals applied to the DC motors. A specific LabView virtual instrument is

designed for real-time communication and control. Its role is to acquire all the measurements

from the DAQ card and condition them properly, to serve as a user interface, and to calculate

control signals and store all the relevant data from the experiment.
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Experimental setup modeling

Nonlinear model and approximation. First-principle modeling of the 2DOF gyroscope is

explained in details in [108]. The model takes the following form:

Jy φ̈− J d
x υ̇ψ̇cosφ+ (Jz − Jx )ψ̇2 sinφcosφ= Mb (4.42)

(J r
Z + Jz cos2φ+ Jx sin2φ)ψ̈+ J d

x υ̇φ̇cosφ+2(Jx − Jz )ψ̇φ̇sinφcosφ= Mr .

Dependence of all the signals on time is implied.

Angle υ denotes the angular position of the disk around its axis of rotation x. Similarly, angle φ

represents the angular position of the blue frame about y , and ψ the angular position of the

red frame about Z . Axis z represents the third axis (aside from x and y) of the Cartesian system

that rotates together with the disk and the blue frame. Jx , Jy and Jz are the total moments

of inertia of disk and blue frame around the axis x, y and z, respectively. J r
Z is the moment

of inertia of the red frame around the axis Z , and J d
x that of the disk around the axis x. Total

external torque around the axis of rotation of the blue gimbal is denoted by Mb , and Mr is the

total external torque around the axis of rotation of the red gimbal. As the static friction can be

considered negligible, Mb and Mc represent the torques produced by appropriate motors.

The modeling goal is to build an LPV model scheduled by parameter θ = υ̇ around the set

point (φ0,ψ0). For this purpose the approximation of the nonlinear model (4.42) is performed.

Assume that the first-order Taylor approximation of (4.42) is obtained, with φ=φ0 +∆φ and

ψ =ψ0 +∆ψ. Taking into account φ̇0 = φ̈0 = 0 and ψ̇0 = ψ̈0 = 0, as well as sin∆φ ≈ ∆φ and

cos∆φ≈ 1, the following linearized model is obtained:

Jy (∆̈φ)− J d
x υ̇(∆̇ψ)cosφ0 + (Jz − Jx )(∆̇ψ)2 sinφ0 cosφ0 = Mb (4.43)

(J r
Z + Jz cos2φ0)∆̈ψ+ J d

x υ̇∆̇φcosφ0 +2(Jx − Jz )∆̇ψ∆̇φsinφ0 cosφ0 = Mr .

The manual of the gyroscope setup [107] states that Jx = 0.0074kg m2 and Jz = 0.0056kg m2.

Further, it is reasonable to assume that in the experiment
∣∣∆̇ψ∣∣ is of order of 1

r ad

s
. On the

other hand, J d
x = 0.0056kg m2, and the value of the angular speed υ̇ at which disk rotates in

the experiment is of order 150
r ad

s
. With all these values in mind, and the fact that

∣∣sinφ0
∣∣≤ 1,

it is reasonable to conclude that∣∣∣J d
x υ̇(∆̇φ)cosφ0

∣∣∣À ∣∣2(Jx − Jz )(∆̇ψ)(∆̇φ)sinφ0 cosφ0
∣∣ . (4.44)

This leads to the following simplified gyroscope model around the set point (φ0,ψ0):

Jy ∆̈φ− J d
x υ̇∆̇ψcosφ0 = Mb (4.45)

(J r
Z + Jz cos2φ0)∆̈ψ+ J d

x υ̇∆̇φcosφ0 = Mr .
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LPV model. The set point chosen for the experiment is (φ0,ψ0) = (0,0). Consequently, ∆ψ

and ∆φ in (4.45) can be replaced by ψ and φ, respectively. Denoting J 0
Z = J r

Z + Jz cos2φ0 =
J r

Z + Jz , with numerical value J 0
Z = 0.0342kg m2, leads to the following LPV model scheduled

in θ = υ̇:

Jy φ̈− J d
x θψ̇= Mb (4.46)

J 0
Z ψ̈+ J d

x θφ̇= Mr ,

where Jy = 0.0026kg m2.

Next, the torques Mb and Mc can be approximated by Mb = Kbub and Mr = Kr ur , ignoring

dynamics of the power amplifier and motors. Here, ub and ur are the control inputs in volts,

sent through the DAQ card to the power amplifier. Based on the manual values, it can be

concluded that Kb = Kr = 0.03985
N m

V
.

Finally, the following LPV model in form (4.1) is obtained:

ẋg (t ) =



0 1 0 0

0 0 0
J d

x

Jy
θ

0 0 0 1

0 − J d
x

J 0
Z

θ 0 0


xg (t )+



0 0
Kb

Jy
0

0 0

0
Kr

J 0
Z

u(t ) (4.47)

y(t ) =
[

1 0 0 0

0 0 1 0

]
xg (t ),

with xg (t ) = [φ(t ), φ̇(t ), ψ(t ), ψ̇(t )]T , u(t ) = [ub(t ), ur (t )]T and θ = υ̇.

Control System Design

Initial LTI controller design. The goal of the controller design is to ensure good tracking of

the angular positions of the blue and red frames to given step references. As the first step, a

second-order LTI controller is designed for the nominal value of the scheduling parameter

θ = 150
r ad

s
. Function hinfstruct of the Matlab® Robust Control Toolbox is used for the

fixed-order LTI controller design. The plant model (4.47) for the fixed value of scheduling

parameter θ = 150
r ad

s
is adapted into the classical LFT form for the use with hinfstruct.

Position references rb(t) and rr (t) are chosen as external inputs, control signals ub(t) and

ur (t ) as internal inputs, and position error signals eb(t ) = rb(t )−xg1 and er (t ) = rr (t )−xg3 as

measured outputs.

The first goal of a nominal LTI controller design is to obtain good tracking performance. For

this reason the error signals eb(t ) and er (t ) are chosen as the performance outputs. To obtain
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good tracking for step reference, these two performance outputs are weighted by performance

filter

W1 =

 1

s +10−5 0

0
1

s +10−5

 .

On the other hand, to ensure that the given controller can be applied on the real system,

magnitude of the control inputs has to be kept below the saturation levels. To ensure this, two

performance outputs corresponding to control inputs ub(t ) and ur (t ) are weighted by

W3 =
[

0.15 0

0 0.15

]
.

Such a specification leads to the following optimal second-order LTI controller for θ = 150
r ad

s
:

[
Ac Bc

Cc Dc

]
=


−0.4029 −94.43 37.3 39.1

65.54 −133.8 49.65 19.38

−5.392 −24.21 9.683 1.15

−23.18 17.85 5.834 5.138

 . (4.48)

LPV controller design. For the given experiment, the bounds on the scheduling parame-

ter and its derivative are chosen as Θ = [125
r ad

s
,175

r ad

s
] and ∆ = [−10

r ad

s2 ,10
r ad

s2 ]. The

Algorithm 3 is used for the fixed-order LPV controller design. It is initialised using the LTI

controller presented in the previous subsection. In one algorithm iteration the following LPV

controller Ac (θ),Bc (θ),Cc (θ),Dc (θ)) is obtained:

Ac (θ) =
[

−15.9183+0.1550θ −61.9083−0.3490θ

40.8114+0.2349θ −85.0970−0.4977θ

]

Bc (θ) =
[

26.3020+0.1483θ 39.8019−0.0009θ

35.6540+0.1785θ 14.8075+0.0301θ

]

Cc (θ) =
[

−5.8025+0.0136θ −15.9180−0.1083θ

−19.1979−0.0365θ 6.1528+0.0927θ

]

Dc (θ) =
[

8.6381+0.0305θ 4.4201−0.0249θ

8.8580−0.0249θ 9.7777−0.0243θ

]

As the given LPV controller has to be applied on the system using a digital computer, a

discretization has to be performed. The following approximations, based on the first-order

Taylor series, are used (some practical aspects of LPV controller discretization are considered
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in [109]):

Ad
c (θ) = e Ac (θ) ≈ I +Ts Ac (θ) = (I +Ts Ak0 )+θTs Ak1

B d
c (θ) = A−1

c (θ)(Ad
c (θ)− I )Bc (θ) ≈ TsBc (θ).

Sampling time is chosen as Ts = 1ms. This leads to a discretised LPV controller with preserved

linear dependence on the scheduling parameter θ.

Experimental results

The goal of experiment is to illustrate that designed LPV controller preserves good performance

in the presence of scheduling parameter variations. To test this assumption, the following

experiment is performed. Value of the angular velocity of the disk υ̇, i.e. scheduling parameter

θ, is made to track sinusoidal reference between 125
r ad

s
and 175

r ad

s
. Simple first-order

transfer function fitting provides the model between the voltage sent through the DAQ card

and angular speed of disk:

Gsl (s) = 6.052

s +0.0025
.

Movement of blue and red frames does not have a strong influence on the rotational speed of

the disk. Hence, a simple proportional controller Ksl = 0.3305 is used to ensure this tracking,

successfully as it can be observed on the first graph of Figure 4.4.

References for positions of the blue and red frame are given as rectangular functions with

period of 10s. Figure 4.4 illustrates comparison between the obtained response and the

reference for the blue and the red frame. Tracking performance is excellent for both frames.

4.7 Conclusions

This chapter presents a method for designing the continuous-time fixed-order LPV controllers

with state-space representations affine in the scheduling parameter vector. A set of LMI

constraints guaranteeing stability of an LPV system in the presence of bounded variations of

the scheduling parameters is proposed. An upper bound on the exponential stability decay-

rate is treated as a performance measure, as well as induced L2-norm and H2 performance.

The efficiency of the proposed method is illustrated by means of a simulation example from

the literature, as well as the application to the 2DOF gyroscope experimental setup. For

the application of the designed MIMO fixed-order LPV controller to the gyroscope setup,

discretization has to be performed with relatively high sampling frequency, to ensure that the

stability and performance are preserved. To relax this problem, a method for the direct design

of discrete-time fixed-order LPV controllers is proposed in the following chapter.
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Figure 4.4 – Disk speed, blue frame and red frame position
evolution during the experiment.
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5 Fixed-structure LPV Controller Design
for Discrete-time LPV Systems

5.1 Introduction

The LPV controller design method presented in the previous chapter is applicable to continuous-

time state-space LPV models with affine dependence on the scheduling parameter vector.

However, in practice a control law is usually implemented on a digital computer. This means

that a discretization of a continuous-time LPV controller has to be performed. To avoid poten-

tial problems caused by discretization error, the sampling frequency has to be high. Another

issue appearing in practice is that for many systems it may be too difficult to obtain the model

based on physical principles. In this case a model is obtained using identification methods,

which usually leads to a discrete-time LPV model. For these reasons, if the discrete-time LPV

model of the system is available, one may choose to design a discrete-time LPV controller.

In this chapter, an LPV controller design method for discrete-time LPV state-space plants

affine in the scheduling parameters is proposed. As the controller parameters appear as

decision variables in the convex optimization program, specific controller structure desired

by the engineer can be preserved. PDLFs are used to exploit known bounds on scheduling

parameter vector variations. The scheduling parameter vector uncertainty caused by the

sensor measurement error is accounted for in the design. An algorithm based on the iterative

convex optimization procedure can be used to optimize the H2 or induced l2-norm perfor-

mance of the closed-loop system. The effectiveness of the proposed method is illustrated

using simulation examples, including some numerical comparison with an approach based

on the similar premises.

73



Chapter 5. Fixed-structure LPV Controller Design for Discrete-time LPV Systems

5.2 Preliminaries

5.2.1 LPV plant and controller

The class of LPV discrete-time systems considered in this chapter can be represented by the

following model:

xg (k +1) = Ag (θ(k))xg (k)+Bu(θ(k))u(k)+Bw (θ(k))w(k)

z(k) =Cz (θ(k))xg (k)+Dzu(θ(k))u(k)+Dzw (θ(k))w(k)

y(k) =Cy xg (k)+D y w w(k).

(5.1)

Here xg (k) ∈ Rn represents the state vector, u(k) ∈ Rnu is the control input vector, z(k) ∈ Rnz

is the vector of controlled outputs and y(k) ∈ Rny is the vector of measured outputs. The

time-varying scheduling parameter vector θ(k) = [θ1(k), . . . ,θnθ
(k)]T is assumed to belong to a

hyperrectangleΘ ∈Rnθ , or equivalently

θi (k) ∈ [−θi ,θi ], i = 1, . . . ,nθ. (5.2)

Symmetric bounds around θi = 0 are assumed without loss of generality. Scheduling parame-

ters θi are assumed to be independent.

Strict properness of the plant model is a non-restrictive assumption, since in discrete-time

systems there is always a delay of at least one sampling period. Similar to the Chapter 4,

matrices Cy and D y w are assumed to be independent of the scheduling parameter vector.

However, similar results could be obtained for the case of Cy and D y w depending on θ, and

Bu and Dzu being independent.

Affine dependence on the scheduling parameter vector is assumed for all θ-dependent matri-

ces. This can be represented, for example for Ag , as

Ag (θ(k)) = Ag0 +
nθ∑

i=1
θi (k)Agi . (5.3)

The following fixed-order LPV dynamic output feedback controller structure is considered:

xc (k +1) = Ac (θ(k))xc (k)+Bc (θ(k))y(k)

u(k) =Cc xc (k)+Dc y(k),
(5.4)

where xc (k) ∈Rnc represents the controller state vector. The choice of controller order nc is

fully left to user.

Matrices Ac (θ(k)) and Bc (θ(k)) are supposed to have an affine dependency on the scheduling

parameter vector. This implies that the closed-loop matrices are as well affine in the scheduling
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parameters. Closed-loop system equations can be written as

x(k +1) = Acl (θ(k))x(k)+Bcl (θ(k))w(k)

y(k) =Ccl (θ(k))x(k)+Dcl (θ(k))w(k),
(5.5)

where x(k) = [xg (k) xc (k)]T and

Acl (θ) =
[

Ag (θ(k))+Bu(θ(k))DcCy Bu(θ(k))Cc

Bc (θ(k))Cy Ac (θ(k))

]

Bcl (θ(k)) =
[

Bw (θ(k))+Bu(θ(k))Dc D y w

Bc (θ(k))D y w

]
Ccl (θ(k)) =

[
Cz (θ(k))+Dzu(θ(k))DcCy Dzu(θ(k))Cc

]
Dcl (θ(k)) =

[
Dzw (θ(k))+Dzu(θ(k))Dc D y w

]
(5.6)

Remark 5.1 The closed-loop matrices in (5.6) are affine in θ(k) as some plant matrices are

limited to be independent of θ(k). If this was not the case, the problem could be treated using the

homogenous polynomials relaxations (e.g. as in [65]). However, for the simplicity of presentation

this assumption is used throughout this chapter.

5.2.2 Discrete-time LPV system stability conditions

Assessing the stability of a discrete-time LPV system through the use of a Lyapunov function

quadratic in the state is well treated in the literature (e.g. [55]). In the discrete-time case,

keeping the Lyapunov matrix P independent of θ(k) is too restrictive even if the scheduling

parameters can change from one extremal value to another over the course of one sampling

period [57]. Usually in practical applications the maximum possible variation of a scheduling

parameter is bounded as in

θ+i −θi ∈ [−δi ,δi ], 0 < δi < 2θi , i = 1, . . . ,nθ, (5.7)

where θ+ = θ(k +1). To exploit the bounds on the scheduling parameter variation, Lyapunov

matrix affine in the scheduling parameter vector is considered:

P (θ) = P0 +
nθ∑

i=1
θi Pi > 0, ∀θ ∈Θ. (5.8)

Using (5.8) well-known stability condition for a discrete-time LPV system can be written as

P (θ)− AT
cl (θ)P (θ+)Acl (θ) > 0. (5.9)

This condition has to be satisfied for all admissible values of (θ,θ+). The limits on scheduling

parameters (5.2) and their variations (5.7) imply that (θi ,θ+i ) belongs to a set presented by
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θi (k +1)

θi (k)−θi −θi +δi 0 θi −δi θi

−θi
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Figure 5.1 – Admissible (θi ,θ+i ) space (filled).

filled area on Fig. 5.1. The set of vertices of hexagon Ai Bi Di Ei Fi Hi will be denoted by Ωvi .

This means that the pair (θ,θ+) always belongs to the polytopeΩwhose vertex setΩv is given

byΩv =Ωv1 ×Ωv2 ×·· ·×Ωvnθ
. The logic behind Fig. 5.1 is rather intuitive. For example, point

Hi is defined by the fact that if θi = −θi , then θ+i ≤ −θi +δi , since δi is maximum possible

increase of θi over one sample. Points Bi , Di and Fi are defined in a similar manner.

Remark 5.2 There are two limit cases that are covered by this setup. First is the fixed scheduling

parameter case, which is defined by δi = 0. In this case the hexagon Ai Bi Di Ei Fi Hi collapses

into a line Ai Ei . In the case of maximum possible variations, defined by δi = 2θi , the filled

hexagon degenerates into a square Ai Ci Ei Gi . However, the primary focus in this chapter is on

the non-degenerate case.

Remark 5.3 The case of non-symmetric variation bounds could be treated straightforwardly.

Symmetric bounds are assumed for the simplicity of presentation.

Equivalent representation of (5.9) in the literature is [57][
P (θ) AT

cl (θ)P (θ+)

P (θ+)Acl (θ) P (θ+)

]
> 0. (5.10)

As controller variables appearing in Acl multiply unknown Lyapunov matrix P in (5.10), the

controller synthesis problem becomes a Bilinear Matrix Inequality (BMI) optimization pro-

gram. As it is a non-convex optimization problem, obtaining even (good) local solution is far

from trivial. Another issue is that multiplication of θ and θ+ produces the infinite number
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of constraints. This can be substituted by a finite number of constraints by application of

some relaxation technique [110]. The idea applied in this chapter is to substitute the given

infinite set of non-convex constraints on design variables by a finite number of linear matrix

inequalities in the controller and Lyapunov function parameters.

5.3 Stabilizing Fixed-structure Discrete-time

LPV Controller Synthesis

Over the last 15 years, stability of uncertain and LPV systems is treated using different “slack

matrix variable" approaches [55, 56, 57]. Similar conditions are developed in [111] and applied

to robust fixed-order controller design for uncertain polytopic systems. These results will be

extended to LPV systems.

The following lemma based on the theory from [111] represents a basis for this LPV fixed-

structure controller synthesis approach.

Lemma 5.1 An SPR transfer function H(z) = C (zI − A)−1B + I and H−1(z) = (−C )(zI − A +
BC )−1B + I satisfy discrete-time KYP lemma with a common Lyapunov matrix P.

Proof. KYP lemma inequality for the transfer function H(z) is given as[
AT PA−P AT PB −C T

B T PA−C B T PB −2I

]
< 0. (5.11)

Next, observe the following matrix:

LKYP =
[

I 0

−C I

]
. (5.12)

This matrix is non-singular. Hence the pre-multiplication of (5.11) by LT
KYP and post-multiplication

by LKYP does not affect the positive definiteness of inequality. But, this newly obtained in-

equality is[
(A−BC )T P (A−BC )−P (A−BC )T PB +C T

B T P (A−BC )+C B T PB −2I

]
< 0, (5.13)

which is exactly KYP lemma inequality for the transfer function H−1(z). �

Lemma 5.2 Matrix inequalities[
P −M T P M M T P −M T +T T AT

cl T −T

P M −M +T −1 Acl T 2I −P

]
> 0 (5.14)
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and [
PT − AT

cl PT Acl AT
cl PT − AT

cl X +M T
T

PT Acl −X Acl +MT 2X −P

]
> 0, (5.15)

with

PT = T −T PT −1, MT = T −T MT −1, X = T −T T −1,

are equivalent.

Proof. This lemma is a consequence of Lemma 5.1. Inequality (5.14) represents the KYP lemma

inequality (with the reversed sign) for

H(z) =
[

M I

M −T −1 Acl T I

]
(5.16)

Inequality (5.15) represents the KYP lemma inequality for

H−1(z) =
[

T −1 Acl T I

T −1 Acl T −M I

]
(5.17)

which is pre- and post-multiplied by block-diagonal matrix blkdiag(T −T ,T −T ) and its trans-

pose. �

Alternatively, the equivalence of (5.14) and (5.15) can be proven using the matrix

L =
[

T −1 0

MT −1 −T −1 Acl T −1

]
. (5.18)

Namely, (5.15) is obtained as (5.14) pre- and post-multiplied by LT and L. Since pre- and

post-multiplication of matrix by the invertible matrix and its transpose do not change its

positive definiteness, the matrix inequalities (5.14) and (5.15) are equivalent.

Remark 5.4 It can be noticed that Schur stability of both matrices A and M is implied through

the positive definiteness of the upper left blocks of given matrix inequalities.

5.3.1 Fixed-structure LPV Controller Design Conditions

Using Lemma 5.2, a sufficient condition for the fixed-structure LPV controller synthesis is

proposed.

Theorem 5.1 Assume that are given a discrete-time LPV plant affine in scheduling parameter

vector θ, bounds on the scheduling parameter vector and its variation as in Preliminaries.

Furthermore, assume an LPV controller structure (5.4). Given matrices M and T , there exists
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an LPV controller stabilizing the given LPV plant for all admissible scheduling parameter

trajectories if[
P (θ)−M T P (θ+)M (∗)

P (θ+)M −M +T −1 Acl (θ)T 2I −P (θ+)

]
> 0, (5.19)

P (θ) > 0 , ∀(θ,θ+) ∈Ωv ,

with (∗) representing the terms completing the symmetric matrix.

Proof. First it can be observed that the left-hand side of (5.19) is affine in pair (θ,θ+). This

means that its validity for∀(θ,θ+) ∈Ω can be proven using an appropriate convex combination

of vertex inequalities, as in Lemma 4.3.

Next, it has to be proven that validity of (5.19) implies stability condition for the closed-loop

system for ∀(θ,θ+) ∈Ω. Similarly to the alternative proof of Lemma 5.2, the following non-

singular matrix can be considered:

L(θ) =
[

T −1 0

MT −1 −T −1 Acl (θ) T −1

]
. (5.20)

Pre- and post-multiplication of (5.19) by LT (θ) and L(θ) imply[
PT (θ)− AT

cl (θ)PT (θ+)Acl (θ) (∗)

PT (θ+)Acl (θ)−X Acl (θ)+MT 2X −PT (θ+)

]
> 0 (5.21)

for ∀(θ,θ+) ∈Ω, with the same shorthands as in Lemma 5.2. The top left block of 5.21 rep-

resents the stability condition (5.9) for the closed-loop LPV system. Since its positivity for

∀(θ,θ+) ∈ Ω is guaranteed by the Schur complement lemma, stability of the closed-loop

system is guaranteed for all allowable scheduling parameter trajectories. �

Remark 5.5 The total number of constraints in the non-degenerate case corresponds to the

cardinality of the setΩv , which equals 6nθ . Considering that in realistic applications there are

rarely more than 3 scheduling parameters [59], this number of LMIs should be numerically

tractable in acceptable execution time.

5.3.2 Fixed-structure LPV Controller Synthesis Algorithm

All the algorithms developed for the continuous-time case presented in Chapter 4 can be

applied here as well. Some of the LTI controller design methods for discrete-time systems,

useful for the initialization of the algorithm, are systune of Matlab® and FDRC [101]. Since an

LTI controller is needed just to initialize the algorithm, one of these or similar methods should

suffice.
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For the completeness, matrix inequalities that are discrete-time counterparts of those used in

Algorithm 2 are given as[
σ2P (θ)−M T P (θ+)M (∗)

P (θ+)M −M +T −1 Acl (θ)T 2I −P (θ+)

]
> 0, (5.22)

[
σ2PT (θ)− AT

cl (θ)PT (θ+)Acl (θ) (∗)

PT (θ+)Acl (θ)−X Acl (θ)+MT 2X −PT (θ+)

]
> 0. (5.23)

Minimizing σ corresponds to the exponential decay rate minimization, and σ≤ 1 guarantees

stability of the closed-loop system.

The final value of σ depends on the choice of initial controllers. In the case that the final value

is not satisfactory, or that its value is above 1, another set of initial controllers should be used.

Similar re-initialization is proposed in both systune or HIFOO tools for LTI controller design.

5.3.3 Treatment of Scheduling Parameter Uncertainty

In reality, the exact value of the scheduling parameter θ is never available. Even if the schedul-

ing parameter is measured directly (i.e. not estimated), what will be available in the real-time

is the value affected by the measurement error of measurement device. Assume that the

maximum absolute error of the measurement device for the i th component of the scheduling

parameter vector is ∆ei > 0. If measured value of the scheduling parameter is denoted by θ̂

and the exact value by θ, this means that θ̂i −θi ∈ [−∆ei ,∆ei ], i = 1, . . . ,nθ.

Current values of the controller matrices are calculated online based on the available value

of the scheduling parameter, so what will be used to control the given system is a controller

(Ac (θ̂),Bc (θ̂),Cc ,Dc ). This means that the closed-loop system matrices are affected by both θ

and θ̂ in an affine fashion as following:

Acl (θ, θ̂) =
[

Ag (θ)+Bu(θ)DcCy Bu(θ)Cc

Bc (θ̂)Cy Ac (θ̂)

]

Bcl (θ, θ̂) =
[

Bw (θ)+Bu(θ)Dc D y w

Bc (θ̂)D y w

]
Ccl (θ) =

[
Cz (θ)+Dzu(θ)DcCy Dzu(θ)Cc

]
Dcl (θ) =

[
Dzw (θ)+Dzu(θ)Dc D y w

]
.

(5.24)

Assume again Lyapunov function quadratic in the state as V (k) = x(k)T P (θ(k))x(k). Taking

into account dynamics affected by the uncertainty as in (5.24), Lyapunov function difference
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over one sampling period is

V (k +1)−V (k) = xT (k +1)P (θ(k +1))x(k +1)−xT (k)P (θ(k))x(k) =
= xT (k)AT

cl (θ(k), θ̂(k))P (θ(k +1))AT
cl (θ(k), θ̂(k))x(k)−x(k)T P (θ(k))x(k) =

= xT (k)[AT
cl (θ(k), θ̂(k))P (θ(k +1))Acl (θ(k), θ̂(k))−P (θ(k))]x(k).

(5.25)

Consequently, the following condition has to be satisfied to guarantee the closed-loop stability:

P (θ(k))− AT
cl (θ(k), θ̂(k))P (θ(k +1))Acl (θ(k), θ̂(k)) > 0, ∀(θ(k), θ̂(k),θ(k +1)). (5.26)

Assume that for each index i the vertex set of an allowable space of (θi ,θ+i , θ̂i ) is denoted

byΩu
vi

. In Fig. 5.2 overbounding set of the allowable (θi ,θ+i , θ̂i −θi ) space is presented, as it

allows θ̂i to reach values outside of [−θi ,θi ]. So, it is certain that the triplet (θ,θ+, θ̂) always

belongs to the polytopeΩu whose vertex setΩu
v is given byΩu

v =Ωu
v1
×Ωu

v2
×·· ·×Ωu

vnθ
. But, as

Acl (θ(k), θ̂(k)) is affine in the couple (θ, θ̂), (5.22) and (5.23) can be replaced by[
σ2P (θ)−M T P (θ+)M (∗)

P (θ+)M −M +T −1 Acl (θ, θ̂) 2I −P (θ+)

]
> 0, (5.27)

P (θ) > 0 , ∀(θ,θ+, θ̂) ∈Ωu
v ,

and [
σ2PT (θ)− AT

cl (θ, θ̂)PT (θ+)AT
cl (θ, θ̂) (∗)

PT (θ+)Acl (θ, θ̂)−X Acl (θ, θ̂)+MT 2X −PT (θ+)

]
> 0, (5.28)

P (θ) > 0 , ∀(θ,θ+, θ̂) ∈Ωu
v .

So, in the presence of non-negligible uncertainty in the scheduling parameter vector, stabi-

lizing discrete-time LPV controller can be designed using similar algorithm as in Subsection

5.3.2, withΩu
v replacingΩv , (θ,θ+, θ̂) replacing (θ,θ+) and (5.27) and (5.28) replacing (5.22)

and (5.23), respectively.

5.4 Induced l2-Norm and H2 Performance Specifications

5.4.1 Induced l2-Norm Performance Controller Design

Induced l2-norm performance of an LTI system can be characterized through the well-known

Bounded Real Lemma. Its extension to the LPV system case can be found in the literature

(similar to e.g. [74]):
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(−θi ,−θi +δi ,−∆ei )

(−θi ,−θi +δi ,∆ei )

(−θi ,−θi ,−∆ei )

(−θi ,−θi ,∆ei )

(−θi +δi ,−θi ,−∆ei )

(−θi +δi ,−θi ,∆ei )

(θi ,θi −δi ,−∆ei )

(θi ,θi −δi ,∆ei )

(θi ,θi ,−∆ei )

(θi ,θi ,∆ei )

(θi −δi ,θi ,−∆ei )

(θi −δi ,θi ,∆ei )

Figure 5.2 – Admissible (θi ,θ+i , θ̂i −θi ) space is a polytope with 12 vertices.

Lemma 5.3 γ is an upper bound on the induced l2-norm of the LPV system (5.5) if

P − AT
cl P+Acl −γ−1C T

cl Ccl (5.29)

− (B T
cl P+Acl +γ−1DT

cl Ccl )T (
I −γ−1DT

cl Dcl −B T
cl P+Bcl

)−1
(B T

cl P+Acl +γ−1DT
cl Ccl ) > 0

is satisfied for ∀(θ,θ+) ∈Ω. The dependence of all matrices on θ is omitted, and P+ = P (θ+).

The goal is to propose a method for fixed-structure discrete-time LPV controller design,

guaranteeing good induced l2-norm performance for a given LPV system. Similarly to the

stabilizing LPV controller design problem, constraints (5.29) define a non-convex set in the

space of design variables. The following theorem proposes an inner convex approximation of

the non-convex solution set.

Theorem 5.2 Assume that are given a discrete-time LPV plant affine in the scheduling parame-

ter vector θ , bounds on the scheduling parameter vector and its variation as in Preliminaries.

Furthermore, suppose that the LPV controller structure is given by (5.4). Given decoupling

matrix M and state transformation matrix T , there exists an LPV controller stabilizing the given

LPV plant and ensuring the induced l2-norm performance to be at most γ for all admissible

scheduling parameter trajectories if
P (θ)−M T P (θ+)M (∗) (∗) (∗)

P (θ+)M −M +T −1 Acl (θ)T 2I −P (θ+) (∗) (∗)

0 B T
cl (θ)T −T I (∗)

Ccl (θ)T 0 Dcl (θ) γI

> 0, (5.30)

P (θ) > 0 , ∀(θ,θ+) ∈Ωv .
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Proof. As the expression (5.30) is affine in the pair (θ,θ+), it can be concluded that its validity

for ∀(θ,θ+) ∈Ωv ensures the validity for ∀(θ,θ+) ∈Ω as well. Next, it is proven that validity of

(5.30) for ∀(θ,θ+) ∈Ω implies the satisfaction of (5.29). Consider the full-rank matrix

L∞1 (θ) =
[

T −T T −T M T − AT
cl (θ)T −T 0 −γ−1C T

cl (θ)

0 B T
cl (θ)T −T −I γ−1DT

cl (θ)

]
. (5.31)

Pre- and post-multiplication of (5.30) by L∞1 (θ) and LT∞1
(θ), and then immediate application

of Schur complement lemma around the bottom-right block, produces exactly (5.29) with

PT = T −T PT −1 instead of P . This guarantees the upper bound γ on the induced l2-norm

performance for all possible scheduling parameter trajectories. �

To be able to choose M and T , a matrix inequality equivalent to (5.30) in which matrices M , T

and P are decoupled is proposed.

Lemma 5.4 The matrix inequality
PT (θ)− AT

cl (θ)PT (θ+)Acl (θ) (∗) (∗) (∗)

PT (θ+)Acl (θ)−X Acl (θ)+MT 2X −PT (θ+) (∗) (∗)

Bcl (θ)MT −Bcl (θ)X Acl (θ) B T
cl (θ)X I (∗)

Ccl (θ) 0 Dcl (θ) γI

> 0 (5.32)

is equivalent to (5.30) for ∀(θ,θ+) ∈Ω.

Proof. Observe the matrix

L∞2 (θ) =


T −T T −T M T − AT

cl (θ)T −T 0 0

0 T −T 0 0

0 0 I 0

0 0 0 I

 . (5.33)

Pre- and post-multiplication of (5.30) by L∞2 (θ) and LT∞2
(θ) gives exactly (5.32). Since the ma-

trix L∞2 (θ) is non-singular, these two matrix inequalities are equivalent by the same argument

of Lemma 5.2. �

Now similar algorithm to the one in Section 3 can be developed. Here the initialization can be

performed directly using the previously designed stabilizing LPV controller. The optimal cost

γi is monotonically non-increasing for the reason of equivalence of (5.32) and (5.30).

5.4.2 H2 Performance Controller Design

The following representation of the H2 performance guarantee condition can be found in the

literature (similarly to e.g. [112]):
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Lemma 5.5 η is the upper bound on the H2 performance of the LPV system (5.5) if there exist

P (θ) and W (θ) such that[
P (θ+)− Acl (θ)P (θ)AT

cl (θ) Bcl (θ)

B T
cl (θ) I

]
> 0,

 W (θ) Ccl (θ)P (θ) Dcl (θ)

P (θ)C T
cl (θ) P (θ) 0

DT
cl (θ) 0 I

> 0, (5.34)

trace(W (θ)) < η, P (θ) > 0, ∀(θ,θ+) ∈Ω

is satisfied for ∀(θ,θ+) ∈Ω.

Remark 5.6 To avoid technical problems, it is assumed here that Cz (θ) =Cz and Dzu = 0. This

leads to matrix Ccl not depending on θ nor the optimization variables. If these assumptions

are not met, but Bw (θ) = Bw and D y w = 0, the other form of (5.34) could be written in which

instead of Ccl the matrix Bcl multiplies P.

The following LPV controller design conditions based on (5.34) are proposed.

Theorem 5.3 Suppose that the discrete-time LPV plant, which is affine in the scheduling pa-

rameter vector θ, has bounds on the scheduling parameter vector and its variation as defined in

Preliminaries. Furthermore, suppose that the LPV controller structure is given by (5.4). Given

decoupling matrix M and state transformation matrix T , there exists an LPV controller stabiliz-

ing given LPV plant and ensuring the H2-norm to be at most η for all admissible scheduling

parameter trajectories if there exist such P (θ) and W (θ) that

 P (θ+)−MP (θ)M T (∗) (∗)

P (θ)M T −M T +T T AT
cl (θ)T −T 2I −P (θ) (∗)

B T
cl (θ)T −T 0 I

> 0,

 W (θ) Ccl T P (θ) Dcl (θ)

P (θ)T T C T
cl P (θ) 0

DT
cl (θ) 0 I

> 0, (5.35)

trace(W (θ)) < η, P (θ) > 0, ∀(θ,θ+) ∈Ωv .
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Proof. From the affineity of (5.35) in the pair (θ,θ+) and Lemma 4.3 it follows that (5.35) is

valid for ∀(θ,θ+) ∈Ω. Next, observe the matrix

L21 (θ) =
[

T T M − Acl (θ)T 0

0 0 I

]
. (5.36)

It is a full-rank matrix. From the pre- and post-multiplication of the first inequality in (5.35) by

L21 (θ) and LT
21

(θ) it follows that[
PT (θ+)− Acl (θ)PT (θ)AT

cl (θ) Bcl (θ)

B T
cl (θ) I

]
> 0, (5.37)

with PT = T PT T , is satisfied for ∀(θ,θ+) ∈Ω. Similarly the matrix L22 (θ) = diag(I ,T, I ) can be

defined. Pre- and post-multiplication of the second inequality in (5.35) by L22 (θ) and LT
22

(θ)

leads to W (θ) Ccl PT (θ) Dcl (θ)

PT (θ)C T
cl PT (θ) 0

DT
cl (θ) 0 I

> 0. (5.38)

Finally, the third inequality of (5.35) with (5.37) and (5.38) ensures that (5.34) is satisfied

∀(θ,θ+) ∈Ω. �

The following lemma can be used for the initial choice of M and T .

Lemma 5.6 The system of matrix inequalities PT (θ+)− Acl (θ)PT (θ)AT
cl (θ) (∗) (∗)

PT (θ)AT
cl (θ)−X AT

cl (θ)+M T
T 2X −PT (θ) (∗)

B T
cl (θ) 0 I

> 0,

 W (θ) Ccl PT (θ) Dcl (θ)

PT (θ)C T
cl PT (θ) 0

DT
cl (θ) 0 I

> 0, (5.39)

trace(W (θ)) < η,

P (θ) > 0 , ∀(θ,θ+) ∈Ωv ,

with PT = T PT T , MT = T MT T and X = T T T , is equivalent to (5.35).
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Proof. By the pre-multiplication of the first inequality in (5.35) by the non-singular

L23 (θ) =

 T T M − Acl (θ)T 0

0 T 0

0 0 I

 (5.40)

and post-multiplication by LT
23

(θ) exactly the first inequality in (5.39) is obtained. As already

mentioned, the second inequality of (5.39) can be obtained from the second inequality of

(5.35) using L22 (θ). Now, as both L22 (θ) and L23 (θ) are square and invertible, equivalence of

(5.39) and (5.35) is ensured. �

An algorithm similar to the one in Section 5.3 can be used for the iterative controller improve-

ment. It will ensure the monotonically non-increasing behavior of η.

5.5 Simulation results

5.5.1 Randomly generated discrete-time LPV plant

To illustrate the potential of the proposed method, an LPV controller is designed for a random

4th order discrete-time LPV system. Generated plant matrices are :

A(θ) =


0.5216 −0.1788 0.6895 −0.4840

0.4259+0.5412θ 0.4998 −0.8022 0.1666

−0.6085 0.8867 0.4388 −0.0190

0.4358 −0.1857 0.1947+0.1725θ 0.6140

 ,

B T
u =

[
−2.0259 −4.5084 1.9318 1.5011

]
,

B T
w =

[
0.1629 0.1812 0.0254 0.1827

]
,

Cy =Cz =
[

4.8299 0.5267 −0.9993 −3.0121
]

,

D y w = Dzw = 0.1897, D yu = Dzu = 0.

Bounds on the scheduling parameter and its variation are assumed as θ ∈ [−1,1] and δ ∈
[−1/3,1/3]. It is important to notice that the given system is unstable even for frozen values of

θ. The LPV controller order is chosen equal to 2, and all controller matrices are assumed to be

θ-dependent (this causes no problem as only Ag depends on θ).

First, random initial controllers of order 2 are designed for two vertices of the scheduling

parameter interval. Motivation for this comes from the initialization procedure in the HIFOO

toolbox [100]. For this purpose the function fminunc from the Matlab® Optimization Toolbox

is used. The cost function is chosen as the spectral radius of the closed-loop state matrix.

For each of 2 vertices, 50 runs of fminunc with different randomly chosen initial points are

performed. As a result, 4 stabilizing LTI controllers are found for the first vertex, and 11

stabilizing LTI controllers for the second one. Obtained closed-loop spectral radii all belong to
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the interval [0.9,1].

Next, a search for the stabilizing LPV controller of order 2 can be performed using the Algorithm

2 for the discrete-time LPV controller design. In total, 44 experiments are performed for each

possible combination of 4 initial controllers for the first vertex and 11 for the second one.

As a convex optimization solver, SDPT3 [94] is used. For any initial controller combination,

algorithm stalls after 15 to 25 iterations. In only one out of 44 cases the final controller is

not stabilizing (spectral radius of 1.0478). In 35 out of 44 cases the final spectral radius is in

[0.74,0.75], a great improvement from initial radius valid just for vertices. It is interesting to

notice that in the first few iterations of the algorithm, obtained LPV controllers do not stabilize

the system, spectral radius begin larger than 1. The execution time depends on the initial

controller and is in the interval [150, 250]s, but there may be a way to reduce this for one order

of magnitude by avoiding bisection over σ.

Finally, obtained stabilizing LPV controllers can be used as starting points for the induced

l2-norm performance controller design. The execution time here is much smaller (around 20

seconds) since no bisection algorithm is involved. For more than half of the controllers, the

final γ is between 63 and 64. The optimal γ is 63.7044, and the optimal controller:

Ak (θ) =
[

−1.8304 −1.2880

−3.1562 −0.9414

]
+θ

[
0.2477 0.2138

0.3821 −0.0529

]

Bk (θ) =
[

0.4548

0.6232

]
+θ

[
−0.1210

−0.1126

]

C T
k (θ) =

[
−0.3958

−0.2988

]
+θ

[
0.1101

0.0003

]
Dk (θ) = 0.0762−0.0380θ.

Finally, starting from the same stabilizing LPV controllers H2 performance of the system

can be optimized. Here the total number of optimization iterations varies with change of

initial stabilizing controller, and so does the calculation time. The obtained performance level

depends as well on the initial controller, with much larger variance than in the case of induced

l2-norm performance. Optimal value of η is 26.2512, obtained for the following controller:

Ak (θ) =
[

1.2773 −0.1865

3.8910 −1.9121

]
+θ

[
−0.4542 0.2430

−0.6284 0.3571

]

Bk (θ) =
[

0.1760

0.0887

]
+θ

[
0.0241

0.0742

]
Ck (θ) =

[
−0.7786 0.5359

]
+θ

[
0.0094 −0.0188

]
Dk (θ) = 0.0106−0.0246θ.
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5.5.2 Numerical comparison

To illustrate the potential of the proposed method and compare it with the method developed

in [73], simulation example from [73] is used. Plant matrices are given as following:

A(θ) =


0.7370 0.0777 0.0810 0.0732

0.2272 0.9030 0.0282 0.1804

−0.0490 0.0092 0.7111 −0.2322

−0.1726 −0.0931 0.1442 0.7744

+θ


0.0819 0.0086 0.0090 0.0081

0.0252 0.1003 0.0031 0.0200

−0.0055 0.0010 0.0790 −0.0258

−0.0192 −0.0103 0.0160 0.0860

 ,

Bw =


0.0953 0 0

0.0145 0 0

0.0862 0 0

−0.0011 0 0

 , Bu =


0.0045 0.0044

0.1001 0.0100

0.0003 −0.0136

−0.0051 0.0936

 ,

Cz =

 1 0 −1 0

0 0 0 0

0 0 0 0

 , Cy =
[

1 0 0 0

0 0 1 0

]
,

Dzu =

 0 0

1 0

0 1

 , D y w =
[

0 1 0

0 0 1

]
, Dzw =

 0 0 0

0 0 0

0 0 0

 .

Bounds on the scheduling parameter are given as θ ∈ [−1,1]. Analysis of the system for fixed

values of the scheduling parameter shows that the number of unstable poles changes over the

interval, as all the poles lie inside the unit circle for θ =−1, but one pole is outside of it for

θ = 1.

In [73], variation of the scheduling parameter is assumed to belong to the interval [−0.01,0.01].

Here, larger bounds δ ∈ [−1,1] are assumed, which means that the scheduling parameter can

move over the half of its bounding interval over one sampling period. Control goal defined

in [73] is to design a fourth order decentralized controller. It is shown that the goal can be

achieved after 46 iterations and that the final 4th order decentralized controller is obtained

with optimal γ equal to 4.78.

In this chapter, much simpler decentralized static output-feedback controller is designed

instead of the 4th order decentralized controller. Initial decentralized static output-feedback

controllers K 0
1 and K 0

2 for θ = −1 and θ = 1 are designed using hinfstruct. Obtained con-

trollers are

K 0
1 =

[
0.0101 0

0 0.03838

]
, K 0

2 =
[

1.26 0

0 0.4108

]
,

with corresponding H∞ performances of 0.0977 and 1.8392. Note that these values correspond

to the square root of the induced-l2 norm performance indicator γ used in [73] and here, so the

88



5.6. Conclusion

comparable value from [73] is
p

4.78 = 2.1863. Starting from the presented initial controllers,

in only two iterations presented algorithm converges to a decentralized static output-feedback

LPV controller

K (θ) =
[

0.7056 0

0 0.3549

]
+θ

[
0.5549 0

0 0.0559

]
.

The controller is designed using SDPT3 ([94]) as a convex optimization solver, and obtained

performance indicator is
p
γ= 1.8449.

This means that a better level of performance is reached with simpler controller than the

one obtained in [73], as well for larger possible variations of the scheduling parameter. Also,

obtained level of performance is just marginally worse than the one obtained with the LTI

decentralized static output-feedback for the second vertex (1.8392). To further illustrate

obtained level of performance and usefulness of fixed-structure controller design, for 51

values of θ from [−1,1] optimal full-order output-feedback LTI controllers are designed using

hinfsyn of Matlab®. The worst-case H∞ norm obtained for these controllers is 1.6214. Given

relatively low loss of performance for the gain of much simpler controller structure (full-order

output-feedback vs. decentralized static output-feedback), it may be concluded that given

method provides a good alternative control solution.

5.6 Conclusion

In this chapter a method for designing fixed-structure dynamic output-feedback LPV con-

trollers for discrete-time LPV systems with bounded scheduling parameter variations is pre-

sented. Proposed controller design scheme can iteratively improve induced l2-norm and H2

performance of the controlled system. Provided simulation result illustrate that good perfor-

mance can be achieved in a relatively low number of iterations, even for an LPV controller

with very limited order and structure.
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6 Conclusions

6.1 Summary

In this thesis, some methods for fixed-order gain-scheduled and LPV controller design are

proposed. Methods are developed for different classes of models available in practice, ranging

from the frequency-domain models dependent on the scheduling parameter, to state-space

continuous- and discrete-time LPV models with affine dependence on the scheduling pa-

rameter. Different performance measures, such as H∞, H2 and exponential decay rate, are

optimized with the different methods. LPV methods using the state-space models take into

account the realistic assumption on bounded scheduling parameter variations, as this can be

beneficial for obtaining good performance.

Chapter 2 presents a method for the fixed-order gain-scheduled controller design using

frequency-domain models dependent on the scheduling parameter vector. Using a linearly

parameterized gain-scheduled controller structure and a desired open-loop transfer function,

the H∞ performance of the weighted closed-loop transfer functions is presented in the

Nyquist diagram as a set of convex constraints. Hence, use of convex optimization tools

directly leads to the gain-scheduled controller guaranteeing stability and performance for

all values of the scheduling parameters considered in the design. Controllers designed using

this method are successfully applied to the benchmark in adaptive regulation for the active

suspension testbed.

Chapter 3 describes a method for the design of fixed-order LPV controllers for LTI plants with

guaranteed level of H∞ performance and stability for all values of the scheduling parameters

belonging to a polytopic set. The LPV controller parameterization considered in this approach

leads to design variables in both the numerator and denominator of the controller. Robust

stability conditions for all fixed values of the scheduling parameter vector are derived as a set

of LMIs. Additionally, the H∞ performance conditions for all fixed values of the scheduling

parameter vector are given in terms of LMIs. Special attention is given to the problem of

the rejection of a sinusoidal disturbance with a time-varying frequency, which is used as a

motivating application.
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A new fixed-order output-feedback LPV controller design method for continuous-time state-

space LPV plant models with affine dependence on the scheduling parameter vector is pre-

sented in Chapter 4. Bounds on the scheduling parameters and their variation rates are

exploited through the use of affine PDLFs. The decay rate related to the exponential stability

of the closed-loop system is considered as a performance measure. Next, LMI constraints

guaranteeing H∞ and H2 performance for the closed-loop control system are derived. A con-

troller design algorithm based on these constraints is discussed. Application of the proposed

method to the 2DOF gyroscope experimental setup is described in detail.

In Chapter 5 a class of discrete-time LPV state-space plants, affine in the scheduling parameter

vector, is considered. The user imposed controller structure is preserved since controller

parameters appear directly as decision variables in the convex optimization program. The

realistic case of limited scheduling parameter variations is treated through the use of PDLF

affine in the scheduling parameter vector. Uncertainty in the scheduling parameter vector

due to sensor measurement error can be considered in the design. The upper bound on the

H2 and induced l2-norm performance of a control system is enhanced through the use of an

iterative convex optimization procedure. An illustrative simulation example and a comparison

to a similar method are given.

These methods are tested on different simulation and experimental examples. One of the

applications in focus is multi-sinusoidal disturbance rejection. Gain-scheduled controllers are

designed for the international benchmark on adaptive regulation. The obtained controllers are

successfully applied to the real testbed, and are so far the only fixed-order control strategy that

has been applied to the benchmark problem. A continuous-time LPV controller is designed

for the MIMO position control of the 2DOF gyroscope experimental setup with time-varying

speed of the rotor disk. Good tracking of the step reference is obtained in the real-time

experiment using this controller.

6.2 Conclusions and Perspectives

Similar to most of the design methods in control, all LPV controller design methods presented

here have some advantages and disadvantages. The following few paragraphs give some

conclusions with regard to the proposed methods together with propositions for possible

improvements and extensions:

• The frequency-domain gain-scheduled controller design method can be quite useful in

practice, as can be seen from the benchmark application. One of its main advantages,

apart from the fact that no parametric model is needed, is the use of linear programming

as an underlying optimization tool. Linear programming as a numerical procedure is

relatively reliable, allowing for a large number of constraints to be considered without

introducing numerical issues. However, linear constraints also represent the weak point

of the gain-scheduled approach. As the sampling of constraints is performed in both
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the frequency domain and the scheduling parameter space, the number of constraints

grows polynomially with the number of scheduling parameters, even if usually the

number of scheduling parameters is not higher than 3 in practice [59].

Sampling the constraints using the scenario approach is proposed in Chapter 2. A

large number of constraints has to be considered to achieve a very low probability

of design failure and a low probability of constraint violation. However, the scenario

approach does not at all take into account the manner in which constraints depend

on the frequency and scheduling parameters. This information could potentially be

used to ensure finer sampling of the more important constraints, hence reducing the

calculation complexity. The other interesting issue is the choice of the desired open-loop

transfer function Ld . Simple choices work well in the case of LTI controller design [113].

However, for the case of gain-scheduled controllers this choice may have a significantly

greater influence on the final outcome of the design, as can be seen in the application of

the method to the benchmark problem.

• Tuning of the proposed LPV controller design method is relatively simple in the transfer

function setting, as only the poles of the plant and controller transfer functions have to

be chosen. While this task is not trivial in the general case, for a system of a reasonable

size a few trials usually lead to a good result. For a system of larger complexity this issue

may be more limiting, as the execution time would grow for each trial and the number

of trials may grow as well. Finally, the fact that the method in its current state treats only

LTI plant with LPV controllers limits the scope of its applicability.

An extension of this method to the class of LPV systems with polynomial dependence on

the scheduling parameter vector should be considered. This would also enable the use of

LPV controllers with the same type of dependence, and possibly the use of polynomial

parameter dependent Lyapunov functions. Another important issue is the internal

stability of a closed-loop system comprised of an LPV plant and a controller given in

transfer function form. This is not a trivial issue, and is often ignored in the literature.

Some results are available for observer-based controllers based on the Youla-Kučera

parameterization [114]. Extension of these results to the to the design of fixed-order

LPV controllers with a transfer-function representation could potentially enable the

inclusion of the scheduling parameter variation rate bounds in the design as well.

• The methods described in Chapters 4 and 5 use PDLF affine in scheduling parameters

for determining stability and performance. The use of affine PDLF is sufficient for many

LPV systems affine in scheduling parameters. However, in [115] it is shown that this is

not always the case with regard to stability analysis. The results obtained from some

simulation examples suggests that this problem can only worsen when performance is

examined.

Lyapunov functions and LPV plants and controllers that are polynomially dependent

on scheduling parameters could be considered in order to enlarge the applicability of

the methods presented in Chapters 4 and 5. To handle matrix inequalities polynomially
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dependent on scheduling parameters, different relaxation techniques (such as sum-

of-squares based relaxations [110]) can be applied. These techniques inevitably lead

to computationally demanding optimization problems, as there are no sharp bounds

on the complexity of the relaxation needed for a given problem. There is an inherent

tradeoff between the computation time and the quality of the obtained solution. It

should also be kept in mind that the exact performance improvement coming from the

increased computational complexity in the case of controller synthesis may be very

plant dependent.

• Some numerical issues are observed when the iterative convex optimization is per-

formed for the methods in Chapters 4 and 5. One issue arises when enforcing the strict

positive definiteness when the alternation is performed between two sets of LMIs, as

e.g. in Algorithm 2. These two sets of LMIs can have eigenvalues of different orders

of magnitude. However, as these orders of magnitude are not known in advance, the

strict feasibility of both LMI sets is enforced by making them “more negative definite”

than some −εI , where ε is small positive constant close to zero. This can lead to losing

feasibility between two steps of the same iteration of the algorithm, because the eigen-

values of one set of constraints may be smaller than −ε, while the eigenvalues of the

other set may be larger. One way to avoid this is to use the same set of LMIs for both

steps as proposed for the induced L2-norm performance, only fixing the values of the

different variable subsets in two phases. Another intriguing issue is related to finding

an appropriate value of γ for the induced L2-norm performance. For some plants and

controllers standard convex optimization solvers run into numerical problems when

the value of γ is minimized. However, if bisection over γ is performed instead, i.e., if

a feasibility problem is solved for some fixed values of γ, then this kind of problem

does not appear. This modification is usually undesirable, as the constraints are already

convex in γ and bisection increases the execution time by an order of the magnitude.

Numerical issues only get worse for large-scale problems, when the order of the system

and/or number of scheduling parameters grow significantly. Current state-of-the-art

solvers may easily fail to provide any solution to the underlying problem. There are

some signs that things may be changing, as there is a growing community working on

new algorithms for solving large scale convex optimization problems ([116] and papers

that extend this work).

• Another important issue is which class of optimization tools may lead to better fixed-

structure LPV controller design methods. For LTI systems a state-of-the-art H∞ fixed-

order LTI controller design tool is hinfstruct. It is based on the use of non-smooth

non-convex optimization theory. Based on the author’s experience, it is very fast and

numerically reliable. An important feature of hinfstruct is that it allows for direct

optimization over the controller parameters as optimization variables, hence giving the

user full control of the order and the structure of the controller. Allowing the algorithm to

start optimization from a few different initial points seems to lead to performance values

very close to the globally optimal one, even though there is no guarantee for this. These
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issues worsen with increased plant order. Still, for the magnitude of orders for which

the LMI based controller design tools can perform well, hinfstruct is a competitive

tool. However, the majority of the computational savings of hinfstruct come from

the choice of constraints and the absence of auxiliary variables. This is important

as introducing the Lyapunov matrix heavily increases the number of optimization

variables. If it would be possible to characterize the existence of the Lyapunov function

in the frequency domain, it would allow for the application of non-smooth non-convex

optimization to fixed-order LPV controller design. Even though this is certainly not

a simple problem, some preliminary work on the topic can be found in the literature

[117].

The other option is to continue using the Lyapunov function directly, as it enables the

extension of the stability or performance guarantees to the whole set of systems in the

case of robust or LPV controller design. One possible path to continue using these is

a development of more numerically stable convex optimization routines. This would

as well demand a further study of the convergence of the iterative convex optimization

schemes. For example, for the optimization scheme applied in Chapters 4 and 5 the only

thing that can be guaranteed is that the cost is monotonically non-increasing. However,

there is no guarantee that the point to which the scheme converges represents the local

minimum [118]. In the case that this guarantee cannot be obtained, it would at least

be useful to develop optimization algorithms capable of reaching the local minimum

starting from the feasible point (e.g. [119]).

A very different path for obtaining new fixed-structure controller design tools is the

development of custom BMI solvers for these kinds of problems. Namely, the current

state-of-the-art general-purpose BMI solvers [120] often fail to provide a reasonable

solution for the class of problems of interest. It is certainly very tempting to try to

develop another general purpose BMI solver as many different problems in control

(and not just in control) can be stated in terms of BMIs. However, a lot of research on it

has already been performed and it is hard to predict if some reasonable solution will

emerge any time soon. As such, it may be more reasonable to expect that some tool

exploiting the structural properties of a class of BMI problems will emerge. In order

for this to happen, a deeper understanding of some of the properties of the underlying

problems could help. One such property that is often observed, but not well studied

in the literature, is existence of many local sub-optimums for the H∞ (or induced L2-

norm) performance that have a performance close to the global optimum. This can be

observed in the first example of Chapter 5. This may be one of the implicit properties

that makes hinfstruct fast. Evidently, if these kinds of properties could be better

understood, it would aid in the initialization of the optimization problem and possibly

lead to convergence guarantees for the optimization scheme.
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A Appendix: Short Description of 2DOF
Gyroscope Virtual Instrument

A.1 2DOF Gyroscope Experimental Setup Description

The gyroscope setup used for performing control experiments described in Chapter 4 is pre-

sented in Figure A.1. A custom LabView virtual instrument is made to perform communication

with sensors and actuators, to calculate the control action, to enable the user to define the

experimental conditions and to store and visualize the data. All of these tasks should be done

in real-time at sufficiently high sampling rates.

In the experiment described in Chapter 4 the grey frame is fixed, so the appropriate sensor

and actuator are not treated in the virtual instrument. The angular positions of the disk, the

blue and the red frame are measured using quadrature encoders. Three DC motors are used

to actuate the disk, the blue and the red frame about their axis of rotation. Data acquisition

is performed using the National Instruments DAQ card and a Mac Pro computer. A power

amplifier converts the voltage outputs of the DAQ card to current signals applied to the DC

motors. In the following sections the functioning of the virtual instrument and elements of its

interface are described in detail.

A.2 Functioning of the Virtual Instrument

As previously explained, the role of the described virtual instrument is to perform the bidirec-

tional communication with the hardware and user, to perform the control-related calculations

and to store the important data to a hard drive. Some details of the the functionality imple-

mentation are given as follows:

• Initialization of all Input/Output (I/O) tasks, Graphical User Interface (GUI) controls

and indicators, internal variables and buffers is performed so that the smooth start of

the experimental system and virtual instrument is ensured. The LPV controller is loaded

from the text file in the initialization phase. The first line of the file should carry the

information on the controller order, number of plant outputs, number of plant inputs
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Figure A.1 – Quanser gyroscope experimental platform [107].

and number of scheduling parameters. Hence an LTI controller may be applied as well,

and the same module for controller loading may be reused on another setup.

• Communication with sensors and actuators is done at a different sampling rate than

the communication with the user through GUI. This is performed through the use of

two loops. The faster one, used for the communication with the hardware, runs at

a sampling frequency of 1kHz. High sampling frequency is used to ensure that the

simple discretization of the designed continuous-time LPV controller preserves the

good performance obtained in the simulation. The reliable operation of the fast loop

has to be ensured in order to have equidistant sampling and control signal calculation.

The other task performed in the fast loop is the control input calculation. The necessary

data are LPV controller matrices, loaded in the initialization phase, new values of ref-

erence and output signals, and the controller state buffer. It is a fast operation as only

several matrix multiplications and additions are performed.

• Communication with a user is not so time-critical, so a sampling frequency of 10Hz

is used. Another reason for much lower sampling frequency is the time necessary to

update the state of the GUI. This is very time-consuming operation, comprising of

checking the states of user controls, refreshing the values of indicators and refreshing

the graphs. The update of graphs is the most time-consuming operation, but according
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to the system dynamics 10Hz should be sufficient. More importantly, this is a speed at

which the slower loop does not jeopardize the functioning of the fast loop.

Another time-consuming task performed in the slow loop is writing the data into the

file on the hard drive. This is a very sensitive operation. In the first version of the virtual

instrument all the measurement and actuator signals were buffered into an array whose

size was increasing at each iteration of the slow loop. Writing into the file was performed

only at the very end of virtual instrument operation. The problem with this approach is

that LabView occasionally allocates a bigger chunk of the memory to be able to accept

the buffer of the increased size. But this operation has a higher priority than the fast

loop. Hence, at these moments the fast loop operation was interrupted, so some data

was lost and actuators were not properly controlled. All of this resulted in an unexpected

behavior of the control system.

In the described version of the virtual instrument saving the data is performed in a

different manner. On every run of the fast loop the new data is added to the queue, while

in every slow loop run the content of the queue is written into the file on hard drive. As

this transfer is done asynchronously and in a time well bellow the sampling time of the

slow loop, the operation of the fast loop is never jeopardized and data is properly saved.

A.3 Virtual Instrument Interface Description

The elements of the GUI of the designed virtual instrument can be classified in 6 different

groups:

1. General command and indicator group

2. Graph group

3. Disk actuator group

4. Blue and red frame actuator group

5. “Synchronize references” button

6. Grey frame group

As the grey frame of the gyroscope is fixed in the proposed experiment, appropriate function-

alities for the grey frame are not implemented. The graph group contains 6 different graphs

displaying disk position, disk speed, blue, red and grey frame positions, and all 4 control inputs

on the last graph. The role of the “synchronize references” button is explained together with

blue and red frame actuator group, as it is naturally linked to them.
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Figure A.2 – General command and indicator group

A.3.1 General command and indicator group

The following elements of the interface belong to this group (see Fig. A.2):

• “Sampling period [ms]” control - defines the sampling period (in milliseconds) of the

fast loop

• “Elapsed time [s]” indicator - displays the time elapsed since the start of the operation

(in seconds)

• “User interface sampling period” control - defines the sampling period (in milliseconds)

of the slow loop

• “Stop” button - shuts down the operation of the virtual instrument

• “Saving in progress” switch - if the switch is on (and indicator field is green) I/O data is

saved to the file indicated in the field “Filepath for saving the data”

• “Sample Rate” indicator - displays the sample rate of the fast loop

• “Disc position buffer length” control - the length of the buffer used for filtering the disk

encoder measurements in order to estimate more precisely the rotational speed of the

disk

• “error out” indicator - used to signalize if there is some error in the functioning of the

virtual instrument related to the proper communication with the hardware

A.3.2 Disk actuator group

The following elements of the interface are related to disk (see group denoted by 1 in Fig. A.3):

• “Disc motor enable” control - used to enable the disk actuator operation

• “Closed loop disc” control - used to enable operation of the disk in closed loop and to

define if the signal defined below is used as an excitation (in the open-loop operation)

or as a reference (in the closed-loop)
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Figure A.3 – Several interface groups: 1) disk actuator group, 2) blue and red frame actuator
group, 3) “synchronize references”

• “Reference type” list box - choice of reference type for the disk speed (manual value/si-

nusoidal/squares/step/PRBS)

• “Controller type” list box - proportional controller is the only choice at the moment

• “Kp disc” control - the value of the proportional gain

• “Manual reference” slider - used to define value of the manual reference for the disk

speed

• “Offset” control - used to set the offset value of the reference signal

• “Amplitude” control - used to set the amplitude of the reference signal

• “Frequency” control - used to set the frequency of the reference signal (for sinusoidal

and squares reference types)

• “Shift register length” control - the length of shift register for generating the PRBS signal
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• “Reference factor” - used to multiply the value of the manual reference (as slider provides

values only between -10 and 10)

A.3.3 Blue and red frame actuators group

Most elements of the blue and red frame actuators group (group 2 in Figure A.3) behave

analogous to those described in the disk actuator group. One additional control is “Phase shift

[s]” that is used for setting the value of the phase shift of the reference signal. The “MIMO

controller parameters” dialog is used for loading the LPV controller for the blue and red frame

position control. “MIMO controller enable [master]” is the master switch for closing the loop

with the LPV controller. The “Red gimbal position offset” control can be used to influence the

position of the red frame in a feedforward manner. Finally, the previously mentioned “syn-

chronize references” button (group 3 in Figure A.3) is used to start the experiment described

in Chapter 4. It as well ensures that the references for disk speed and blue and red frame

positions maintain the phase difference defined by the user in the “Phase Shift” controls.
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