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Abstract

Locating timely, useful information during crises and
mass emergencies is critical for those forced to make
potentially life-altering decisions. As the use of Twit-
ter to broadcast useful information during such situa-
tions becomes more widespread, the problem of find-
ing it becomes more difficult. We describe an approach
toward improving the recall in the sampling of Twit-
ter communications that can lead to greater situational
awareness during crisis situations. First, we create a lex-
icon of crisis-related terms that frequently appear in rel-
evant messages posted during different types of crisis
situations. Next, we demonstrate how we use the lexi-
con to automatically identify new terms that describe a
given crisis. Finally, we explain how to efficiently query
Twitter to extract crisis-related messages during emer-
gency events. In our experiments, using a crisis lexi-
con leads to substantial improvements in terms of recall
when added to a set of crisis-specific keywords man-
ually chosen by experts; it also helps to preserve the
original distribution of message types.

1 Introduction
The popular microblogging platform Twitter is a frequent
destination for affected populations during mass emergen-
cies. Twitter is a place to exchange information, ask ques-
tions, offer advice, and otherwise stay informed about the
event. Those affected require timely, relevant information;
recent research shows that information broadcast on Twit-
ter can lead to enhanced situational awareness, and help
those faced with an emergency to gain valuable informa-
tion (Vieweg 2012).

The velocity and volume of messages (tweets) in Twit-
ter during mass emergencies makes it difficult to locate sit-
uational awareness information, such as road closure loca-
tions, or where people need water. Users often employ con-
ventional markers known as hashtags to bring attention to
specific tweets. The idea is that those looking for emergency
information will search for specific hashtags, and tweets that
contain the hashtag will be located. In crisis, hashtags are
often adopted by an information propagation process (Star-
bird and Palen 2011), but in some cases, they are suggested
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by emergency response agencies or other authorities. Alas,
even with several dozen such hashtags, only a fraction of the
information broadcast on Twitter during mass emergencies
is covered (Bruns et al. 2012). Therefore, automatic meth-
ods are necessary to help humans cull through the masses of
Twitter data to find useful information.

Here, we tackle the problem of how to locate tweets that
contain crisis-relevant information during mass emergency
situations: our goal is to improve query methods, and re-
turn more relevant results than is possible using conventional
manually-edited keywords or location-based searches.
Problem definition. Given a crisis situation that occurs
within a geographical boundary, automatically determine a
query of up toK terms that can be used to sample a large set
of crisis-related messages from Twitter.
Our approach. Create a crisis lexicon consisting of crisis-
related terms that tend to frequently appear across various
crisis situations. This lexicon has two main applications:

1. Increase the recall in the sampling of crisis-related mes-
sages (particularly at the start of the event), without incur-
ring a significant loss in terms of precision.

2. Automatically identify the terms used to describe a crisis
by employing pseudo-relevance feedback mechanisms.

Our approach is presented with respect to crises, but it can
be applied to any domain. We describe a systematic method
to build the lexicon using existing data samples and crowd-
sourced labeling; the method is general and can be applied to
other tasks (e.g. to build a sports-related or a health-related
lexicon). The lexicon, along with the data and the code we
used to build it are available at http://crisislex.org/.

2 Related Work
Mining social media in crises. During crises, numerous
disaster-related messages are posted to microblogging sites,
which has led to research on understanding social media use
in disasters (Starbird and Palen 2010; Qu et al. 2011), and
extracting useful information (Imran et al. 2013).

The first challenge in using microblog data is to retrieve
comprehensive sets of disaster-related tweets (Bruns and
Liang 2012). This is due to Twitter’s public API limita-
tions (described in §3.1) that make this type of data col-
lection difficult. To the best of our knowledge, data collec-
tion during crises usually falls in two categories: keyword-



based and location-based, with the former being more com-
mon. In a keyword-based collection, a handful of terms
and/or hashtags are used to retrieve tweets containing those
terms (Hughes and Palen 2009) ignoring other posts (Bruns
and Liang 2012). While the resulting samples might have lit-
tle noise (Vieweg et al. 2010), they are typically constructed
around visible topical hashtags and might omit a significant
number of disaster-related tweets (Bruns et al. 2012). Fur-
thermore, keywords are only as responsive as the humans
curating them and this method may lose relevant tweets due
to latency. Location-based sampling, on the other hand, is
limited to tweets that are either geo-tagged or mention the
places affected by the disaster; both of these conditions oc-
cur in a small portion of tweets.

Once collected, it is necessary to process the data in a
meaningful way. Imran et al. (2013) automatically iden-
tify tweets contributing to situational awareness and clas-
sify them according to several types of information. Yin et
al. (2012) designed a system for leveraging microblog data
during disasters; their data capture module is close in scope
with our work, yet it makes no distinction between disasters
and other events. In turn, our lexicon could enhance their
burst detection mechanisms to better identify disasters.
Query generation and expansion. Our problem resem-
bles deep-web crawling, the process by which web crawlers
access public data (belonging to large online retailers, li-
braries, etc.) on the web that is not accessible by following
links, but only by filling in search forms. To this end, it per-
forms query generation: identify a set of keywords that are
entered in search forms to return such data (Wu et al. 2006;
Ntoulas, Pzerfos, and Cho 2005).

The goal of exhaustively retrieving documents hidden
behind web interfaces has been approached as a mini-
mum weighted dominating set and set-covering graph prob-
lem (Ntoulas, Pzerfos, and Cho 2005; Wu et al. 2006).
We reuse the idea of representing document or term co-
occurences as a graph, but we formalize our problem as find-
ing the maximum weighted independent set as we look for
discriminative queries that maximize only the volume of re-
trieved documents relevant to given topics (§4.1). In web
search, reformulating the initial query such that it returns
documents from the domain of interest is known as verti-
cal selection & aggregation (Arguello, Diaz, and Paiement
2010). Arguello et al. reuse past knowledge to predict mod-
els for new domains by focusing on portability and adapt-
ability. We use their idea of supervision and use knowledge
on past crises to generate queries for future ones.

The query generation step can be followed by query ex-
pansion that after searching with an initial query adds to
it new terms (Croft and Harper 1979). For this, pseudo-
relevance feedback (PRF) is typically used. It scores and
selects new terms according to their distribution in the feed-
back documents (i.e., those retrieved with the initial query),
or according to the comparison of their distribution in these
documents and the entire collection (Xu and Croft 2000).
Re-sampling PRF terms by combining PRF results from
several query sub-samples downturns the chance of adding
noisy terms to the query (Collins-Thompson and Callan
2007). Twitter API terms do not allow us to run similar

queries simultaneously; running them sequentially might
lead to data loss at the beginning of the crisis. Hence, we
cluster tweets based on which terms matched them, treating
each term as a different query (Xu and Croft 2000).
Adaptive information filtering. Unlike classic query gen-
eration and expansion on static collections, the data stream
relevant to crisis events evolves over time. Our query is
maintained over long periods, performs a binary selection
rather than compiling a ranked list of documents, and is lim-
ited in size – akin to information filtering over streams of
documents (Allan 1996; Lanquillon and Renz 1999).

In contrast to current approaches that exploit the time di-
mension of a static microblog collection (Metzler, Cai, and
Hovy 2012; Miyanishi, Seki, and Uehara 2013), we collect
data as it is produced, rather than searching in a historical
repository. Wang et al. (2013) expands a user-provided query
with new hashtags to retrieve more microblog data related to
given events. We automate the entire retrieval process by ex-
ploiting knowledge on past crises to generate a query, which
is then expanded with terms specific to new crises.
Lexicon building. We exploit the fact of having a single
domain by creating a lexicon that captures crisis-relevant
terms frequently used in crises tweets, which is then adapted
to a specific event (§4). Typically there are two design de-
cisions regarding lexicons: categorize terms in a number
of predefined categories (e.g., WordNet, VerbNet), and/or
weight terms across one or more dimensions (e.g., Senti-
WordNet). The former is adopted for building broad linguis-
tic resources with numerous dimensions. If the application
domain is more focused (e.g., sentiment extraction) the later
is used (Kaji and Kitsuregawa 2007), which we also adopt.

3 Datasets and Evaluation Framework
In this section we describe the input datasets we use, and
the evaluation method and metrics by which we compare
different alternatives.

3.1 API limits
Twitter’s API for accessing tweets in real-time (the stream-
ing API) has several limitations. The two that are most rele-
vant for our work are the following.

First, tweets can be queried by content or by geographical
location. Specifically, if both content and geographical cri-
teria are specified, the query is interpreted as a disjunction
(logical OR) of both. The content criterion is specified as the
disjunction of up to 400 terms, in which each term is a case-
insensitive conjunction of words without preserving order.
The location criterion is specified as the disjunction of a set
of up to 25 rectangles in coordinate space.

Second, independently of the method used to query, the
resulting set is limited to 1% of the stream data. If the query
matches more than 1% of the data, then the data is sub-
sampled uniformly at random. As a result, even if we use
a “blank” query (collect everything), we never obtain more
than a sample of 1% of tweets. As a query becomes broader
(i.e, by including more terms or a larger geographical re-
gion) at some point we start losing tweets because of this
limitation. This means that “collecting everything and then



Table 1: Summary statistics of the six disaters and the two data samples (keyword-based and location-based).
Name / Start / Keyword-based sampling # of Location-based sampling # of
Type Duration (# of terms): Examples of terms tweets Region(s) tweets

Sandy
Hurricane

2012-10-28
3 days

4: hurricane, hurricane sandy, frankenstorm, #sandy 2,775,812

NY City; Bergen, Ocean,
Union, Atlantic, Essex, Cape
May, Hudson, Middlesex &
Monmouth County, NJ, US

279,454

Boston
Bombings

2013-04-15
5 days

17: boston explosion, BostonMarathon, boston blast, boston terrorist,
boston bomb, boston tragedy, PrayForBoston, boston attack, boston tragic

3,375,076
Suffolk and Norfolk Counties,
Massachusetts, US

88,931

Oklahoma
Tornado

2013-05-20
11 days

36: oklahoma tornado, oklahoma storm, oklahoma relief, oklahoma volun-
teer, oklahoma disaster, #moore, moore relief, moore storm, #ok, #okc

2,742,588
long. ∈ [−98.25,−96.75]
∧ lat. ∈ [34.5, 35.75]

62,237

West Texas
Explosion

2013-04-17
11 days

9: #westexplosion, #westtx, west explosion, waco explosion, texas explo-
sion, tx explosion, texas fertilizer, #prayfortexas, #prayforwest

508,333
long. ∈ [−97.5,−96.5] ∧
lat. ∈ [31.5, 32]

16,033

Alberta
Floods

2013-06-21
11 days

13: alberta flood, #abflood, canada flood, alberta flooding, alberta floods,
canada flooding, canada floods, #yycflood, #yycfloods, #yycflooding

370,762 Alberta, Canada 166,012

Queensland
Floods

2013-01-27
6 days

4: #qldflood, #bigwet, queensland flood, australia flood 5,393 Queensland, Australia 27,000

post-filtering” is an ineffective sampling method: at least
part of the selection must be done at query time.

3.2 Datasets
We use data from 6 disasters between October 2012 and
July 2013, ocurring in English-speaking countries (USA,
Canada, and Australia) which affected up to several mil-
lion people. Crisis keywords were defined by two research
groups: Aron Culotta’s “Data Science for Social Good”
team (Ashktorab et al. 2014), and the NSF SoCS project
group at Kno.e.sis using the Twitris tool (Sheth et al. 2014),
who shared partial lists of tweet-ids with us. Location-based
data was partially collected using Topsy analytics. As de-
tailed in Table 1, for each disaster we use two sets of data
collected from Twitter: (1) a keyword-based sample1 and (2)
a location-based sample. We note that filtering by a conjunc-
tion of keywords and locations is not possible using Twitter’s
current streaming APIs. In addition, both of these conditions
occur in only a fraction of the relevant tweets (§3.3).

The keywords-based samples use keywords chosen by the
data providers following standard practices for this type of
data collection. This typically includes hashtags suggested
by news media and response agencies,2 terms that combine
proper names with the canonical name of the disaster (e.g.,
oklahoma tornado), or the proper names given to meteoro-
logical phenomena (e.g., typhoon pablo).

The location-based samples are obtained by collecting all
the postings containing geographical coordinates inside the
affected areas. Geographical coordinates are typically added
automatically by mobile devices that have a GPS sensor,
in which their users have allowed this information to be
attached to tweets. Location-based samples were obtained
through two data providers: GNIP,3 which allows to specify

1The West Texas explosion keyword-collection was obtained
from GNIP, which allows more expressive query formulation than
the Twitter API. We used an estimated query that approximates this
collection with a precision and recall higher than 98%.

2http://irevolution.net/2012/12/04/catch-22/
3http://www.gnip.com/

a region through a rectangle defined by geographical coor-
dinates, or Topsy, which additionally allows to indicate the
names of the places of interest (counties, states, etc.)

3.3 Evaluation Framework
Our filtering task can be seen as a binary classification task.
The positive class corresponds to messages that are related
to a crisis situation, while the negative class corresponds to
the remaining messages. This is a broader, more inclusive
definition than being informative (Imran et al. 2013), or en-
hancing situational awareness (Vieweg 2012).
Labeling crisis messages. The labeling of messages was
done through the crowdsourcing platform Crowdflower4.
For efficiency and to improve the quality of data we use to
train our models, we perform a pre-filtering step. We first
eliminate messages that contain less than 5 words as we
deem them too short for training our lexicon. Next, we elim-
inate messages that are unlikely to be in English by checking
that at least 66% of the words were in an English dictionary5.

The task is designed to encourage workers to be inclu-
sive, which is aligned with the goal of having high recall.
We present workers a tweet and ask if it is in English and
(A) directly related to a disaster, (B) indirectly related, (C)
not related, or (D) not in English or not understandable. For
purposes of our evaluation, the positive class is the union of
tweets found to be directly and indirectly related, and the
negative class is the set of tweets found to be not related.

For clarity, we include the type of disaster in the ques-
tion. Example instructions appear in Figure 1. We showed
15 tweets at a time; one tweet was labeled by the authors,
and used to control the quality of crowdworkers. Given the
subjectivity of the task, tweets used to control quality were
selected to be obvious cases.

From each crisis we labeled 10,050 tweets selected uni-
formly at random from the keyword-based sample (50% of
labels) and location-based sample (50% of the labels). On

4http://www.crowdflower.com/
5NLTK’s English dictionary and the English database WordNet



Categorize tweets posted during the 2013 Oklahoma Tornado:
Read carefully the tweets and categorize them as:
A. In English and directly related to the tornado.
– “The tornado in Oklahoma was at least a mile wide”
B. In English and indirectly related to the tornado.
– “The nature power is unimaginable. Praying for all those affected.”
C. In English and not related to the tornado.
– “Oklahoma played well soccer this night”
D. Not in English, too short, not readable, or other issues.
– “El tornado en Oklahoma ...”

“Seeing everyone support #Oklahoma makes my heart smile!#oklahomatornado”
This tweet is:
A. In English and directly related to the tornado.
B. In English and indirectly related to the tornado.
C. In English and not related to the tornado.
D. Not in English, too short, not readable, or other issues.

Figure 1: Example instructions (top) and example crowd-
sourcing task (bottom) used for labeling crisis messages.

average, about 100 workers participated in each crowd-task.
We asked for 3 labels per tweet and kept the majority label.
On average, 31.5% tweets were labeled as directly related,
22.2% as indirectly related, 45.8% as not-related, and 0.5%
as not in English, etc.
Measuring precision and recall. Evaluating precision is
straightforward, as it corresponds to the probability that a
message included in a sample belongs to the positive class.
Evaluating recall is more difficult as it requires a complete
collection containing all the crisis-related messages for each
disaster. Yet, such a collection may require to label up to
300K messages to cover a single minute of Twitter activity.6

Since our methods rely on selecting tweets based on key-
words, we evaluate them on the location-based sample. Ac-
cording to this definition, the recall of a keyword-based sam-
pling method is the probability that a positive element in the
location-based sample matches its keywords.

Table 2 evaluates the keyword-based and location-based
samples using the crowdworker labels. Both precision and
recall vary significantly across crises. In general, the pre-
cision of keyword-based sampling (66% to 98%) is higher
than that of location-based sampling (7% to 26%). We note
that the average recall of about 33% that we observe in the
keyword-based samples means that about two thirds of the
crisis-related messages in the location-based samples do not
contain the specified keywords – that is the main motivation
for the methods we describe in §4.
Further metrics. We regard the problem of collecting cri-
sis messages as a recall-oriented task. Our solution should
accept messages when in doubt, without accepting all mes-
sages which yields a trivial 100% recall.

There is a significant imbalance between the positive and
negative classes, as seen in Table 2. So we use the metric G-
mean – the geometric mean of the recall of the positive class
and the recall of the negative class – often used to assess
the classification performance on imbalanced data (Sun et
al. 2007). Further, we measure the F2 and F1 scores, where

6https://blog.twitter.com/2013/new-tweets-per-second
-record-and-how

Table 2: Precision and recall of keyword-based and location-
based sampling. The task is finding crisis-related messages.

Keyword-based Location-based
Disaster Prec. Recall Prec. Recall

West Texas Explosion 98.0% 29.0% 6.7% (100.0%)
Alberta Floods 96.0% 41.9% 8.0% (100.0%)
Boston Bombings 86.3% 25.3% 15.9% (100.0%)
Sandy Hurricane 92.1% 39.3% 26.1% (100.0%)
Queensland Floods 71.2% 17.9% 8.8% (100.0%)
Oklahoma Tornado 66.2% 45.4% 9.0% (100.0%)

Average 85.0% 33.1% 12.4% (100.0%)

Fk is (1+k2)PR
k2P+R with P and R being precision and recall,

with emphasis on the F2 score which weights the recall more
heavily for reasons we explained.

We also evaluate the proportion of different classes of
messages (e.g. related to donations, warnings) in each sam-
ple. We defer the explanation of that evaluation to §5.2.

4 Proposed Method
Our method is based on creating a generic crisis lexicon: a
list of terms to be used instead of a manual query to sample
crisis-related messages. This crisis lexicon can be expanded
with terms specific to a given crisis, either manually, or by
using a mechanism similar to pseudo-relevance feedback.

4.1 Building the Lexicon
Figure 2 depicts the steps we take to construct the lexicon.
We start by selecting the set of terms that discriminate crisis-
related messages (L0). Next, we refine this set by perform-
ing a series of curation steps filtering out both contextual and
general terms as decided by crowdworkers (L1...3). Finally,
we filter out terms that frequently co-occur to maximize re-
call for a limited sized lexicon (topdiv(·)).

Candidate Generation Step (L0) Term selection. Our
candidate terms are word unigrams and bigrams. We start
with tweets from the positive and negative classes described
in §3. We remove URLs and user mentions (@username).
After tokenizing, we discard tokens that are too short (2
characters or less), too long (16 characters or more, typi-
cally corresponding to joined strings of words), or that cor-
respond to punctuation, numbers, or stopwords. The remain-
ing words are stemmed using Porter’s stemmer.7 Word uni-
gram and bigrams are then extracted, and kept if they appear
in at least 0.5% of the tweets.
Term scoring. Each term is then scored by two well-known
statistical tests: chi-squared (χ2) and point-wise mutual in-
formation (PMI), used in the past for lexicon creation (Kaji
and Kitsuregawa 2007). Details are in Appendix A.

We refer to the result of a statistical test of discrimina-
tive value for a term t on a crisis c as its discriminative
score discr(c, t). We rank terms according to this score, di-
vide them in n-quantiles of one term each, and score each

7http://tartarus.org/∼martin/PorterStemmer/
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Figure 2: Steps in the lexicon construction (left), and in
the evaluation of the lexicon combination with pseudo-
relevance feedback and expert-provided keywords (right).
T (·) selects the highest-scoring terms: top(·), or the highest-
scoring terms ensuring diversity: topdiv(·)

term t belonging to the k-th quantile according to the quan-
tile probability ( kn ). We can use this score directly, or com-
bine it with the term’s frequency in the crisis-related tweets
(γ) by multiplying it with the probability of the quantile to
which t belongs when the ranking is done according to γ in-
stead of discr(c, t). We map scores to quantiles to give equal
weight to the term’s discr(c, t) and its frequency. The out-
come is a per-crisis score of a term s(c, t).

For our lexicon to be general, we look for terms that work
well across a variety of crises. We tested multiple aggrega-
tions of scores across crises including median, mean, and
harmonic mean. The best result was obtained when comput-
ing the mean crisis score of a term across crises, and then
multiplying it by a sigmoid function to favor terms that ap-
pear in (at least 0.5% of the tweets of) several crises:

sagg(t) =
1

1 + e−
|Ct|
2

1

|Ct|
∑
c∈Ct

s(c, t) (1)

WhereCt is the set of crises in which t appears. IfCt is large
enough the sigmoid function converges to 1 (> 0.9 when
|Ct| > 4), while when the term appears to be discriminative
in only one crisis, this factor is around 0.6.
Curation Steps (L1...3). After identifying and scoring the
set of candidate terms L0, we perform a series of curation
steps depicted in Figure 2 which yield increasingly filtered
sets L1 through L3.

Removal of names (L1). We remove terms that name
contextual elements unique to a crisis. Such terms mainly
fall within three categories: (a) the names of affected areas;
(b) the names of individuals involved in the disaster; and (c)
the names used to refer to a disaster. We ask evaluators if
a term contains such proper nouns, which filtered out about
25% of the terms. The task description is in Figure 3 (top).

Removal of non-crisis terms (L2 and L3). Next, we
filter out those words that are not specific to disasters. We
consider three levels of crisis relevance: (1) strongly crisis-

Indicate if the term is specific to a particular disaster: it contains the name of a
place, the name of a person, or the name of a disaster:
A. YES, it contains a place name or it refers to the name of a region, city, etc.
– “Jersey flood”; “California people”; “okc tornado”
B. YES, it contains a person name or it refers to the name of a politician, etc.
– “Obama”; “Kevin donate”; “John hurt”
C. YES, it contains a reference to the name given to a disaster
– “Sandy hurricane”; “abfloods”; “yycfloods”
D. NO.
– “tornado”; “hurricanes”; “help rebuild”; “firefighter”; “rise”; “flame”; “every”

Indicate if the term is more likely to appear in Twitter during hazards:
A. YES, it is likely to appear more often during hazards/disasters.
– “tornado”; “donate help”; “people killed”; “state emergency”
B. NO, but could appear frequently during hazards/disasters as well.
– “power”; “water”; “nursing”; “recover”
C. NO, it shouldn’t appear more often during hazards/disasters.
– “children”; “latest”; “south”; “voted”

Figure 3: Crowdtask for filtering name terms (top) and iden-
tifying strong and weak crisis-related terms (bottom).

specific: the term is likely to appear more often during dis-
asters; (2) weakly crisis-specific: the term could appear fre-
quently during disasters; and (3) not crisis-specific: the term
should not appear more often during disasters.

We ask evaluators to label each term with one of these
categories. This task is depicted in Figure 3 (bottom). Of the
terms that pass the previous filtering step (L1), around 50%
of them are filtered out by weak filtering (L2) and around
65% by strong filtering (L3).

Top-terms selection step. Twitter’s API allows us to track
up to K = 400 keywords, making this the maximum size
of our lexicon. To use this allocation effectively, we test two
strategies: top(·) and topdiv(·). The first strategy selects the
top terms according to their crisis score. The second also se-
lects the top terms according to crisis scores, but removes
terms with lower crisis scores that frequently co-occur with
higher score terms, as they match on a similar set of tweets.
To find such a subset of terms, we compute the independent
set on the term co-occurrence graph thresholded at a given
level8. Given a set of queries (keywords- and location-based)
and a collection of relevant tweets for each query, we build
a graph G in which nodes are terms weighted by their cri-
sis score, and between each pair of terms that co-occur in
more than 50% of the tweets, we draw an unweighted edge.
Then, we determine the maximum weighted independent set
(MWIS) of G, which represents a subset of terms with high
scores that rarely co-occur. Intuitively, this improves recall
(since the lexicon has a limited number of terms).

The maximum independent set problem is NP-complete
(Tarjan and Trojanowski 1977). We compared the approxi-
mation method in (Bar-Yehuda and Even 1985) with a sim-
ple greedy algorithm (GMWIS) that keeps the most discrim-
inative terms that rarely co-occur. Since the latter obtains
slightly higher recall scores, we present only those results
obtained with GMWIS.

8The idea of mapping terms co-occurrences on a graph is in-
spired by (Ntoulas, Pzerfos, and Cho 2005; Wu et al. 2006)



4.2 Applying the Lexicon
Pseudo-relevance feedback. We adapt the generic lexicon
with terms specific to the targeted crisis. To identify such
terms we employ pseudo-relevance feedback (PRF) mecha-
nisms with the following framework:
• Given a lexicon lex containing at most 400 terms, retrieve

crisis relevant tweets in the first ∆t hours of the event. We
refer to these tweets as pseudo-relevant.

• From these tweets, extract and sort the terms (unigrams
and bigrams) – which do not already belong to the lexicon
– by their PRF score (explained below). Return the top k
terms to be added to the lexicon.

Similar methodology has showed effectiveness in other
Twitter-related search tasks (Efron et al. 2012).
PRF term scoring. PRF terms are usually scored accord-
ing to their distribution in the feedback tweets, or according
to the comparison of the distribution in the feedback tweets
and the entire collection (Xu and Croft 2000). Due to hav-
ing only the extracted PRF tweets, the scoring strategies we
implement fall within the former category:
• Frequency-based scoring ranks PRF terms according to

their frequency in the feedback tweets: sprf (t) = fr(t).
• Label propagation-based scoring propagates the scores

from the query terms to PRF terms based on their co-
occurrance in the feedback tweets:
sprf (t) =

∑
q∈lex co(q,t)sagg(q)∑

q∈lex co(q,t)
, where co(q, t) is the num-

ber of co-occurrences between query term q and PRF term
t, and sagg(q) the crisis score of q as defined in Eq. 1.

PRF term selection. To select the top PRF terms we
test again the two strategies described in (§4.1): top(·) and
topdiv(·). For topdiv(·), we compute the MWIS based on
the co-occurrence graph formed by only PRF terms.
Terms sampling. Some of the selected terms might be
harmful (Cao et al. 2008). A workaround is to resample the
terms based on their co-occurrence with sub-samples of the
original query (Collins-Thompson and Callan 2007). The
main hypotheses are that feedback documents form clus-
ters according to the query terms that matched them, and
that good PRF terms occur in multiple such clusters (Xu
and Croft 2000). Yet, in contrast with Xu and Croft, we
cannot make assumptions about terms distribution in the
whole collection, since we only have the pseudo-relevant
tweets; given the short nature of tweets we do not attempt
to model their language. We use the sigmoid function to fa-
vor the PRF terms that co-occur with multiple query terms:

sprf (t)/(1 + e−
|Tprf (t)|

2 ), where Tprf (t) is the number of
terms co-occuring with term t and fr(t) is t’s frequency in
PRF documents.
Hashtags. Hashtags are topical markers for tweets (Tsur
and Rappoport 2012), used to learn about events and join
the conversation (Starbird and Palen 2011). During crises,
specific hashtags emerge from the start, with some quickly
fading away, while others are widely adopted (Potts et al.
2011). Kamath et al. 2013 found that hashtags can reach
their usage peak many hours after initial use. Thus, even if
they are scarce in the beginning, if widely adopted later on,
hashtags improve recall; on the other hand, if not adopted
they have little impact on the retrieved data. Therefore, we

lower the selection barrier for hahstags by employing a ded-
icated PRF-step: we add the top k hashtags (appearing in at
least 3 tweets) to the query according to their frequency in
the PRF documents, similar to Wang et al. 2013.

5 Experimental Evaluation
We compare against two standard practices: sampling using
a manually pre-selected set of keywords, and sampling using
a geographical region. The goal of the lexicon is to sample a
large set of crisis-related messages; this is what we evaluate
first (§5.1). Next, we see if our method introduces biases in
the collection compared to existing methods (§5.2).

In both cases, we perform cross-validation across disas-
ters: (1) leave one disaster dataset out; (2) build the crisis
lexicon (L0...3) using data from the remaining disasters; (3)
evaluate on the excluded disaster dataset; (4) repeat the pro-
cess for each of the 6 disasters, averaging the results.

5.1 Precision and Recall
We evaluate the precision and recall for sampling crisis-
related messages. We also incorporate other metrics, partic-
ularly those that emphasize recall, described in §3.3.
Lexicon generation. First, we identify the best versions of
our lexicon along the analyzed metrics. There are several
design choices that we exhaustively explore:
• The term scoring method (§4.1): χ2, PMI, χ2 + γ, PMI +
γ, and γ.

• The curation steps executed (§4.1): no curation (L0), re-
moving names (L1), keeping weak and strong crisis terms
(L2) and keeping strong crisis terms only (L3).

• Whether to select the top scoring terms: top(·), or the top
scoring terms removing co-occurring terms: topdiv(·).

This yields 40 configurations that we test along the two ex-
isting methods. Figure 4 highlights the skyline configura-
tions, i.e., those for which there is no other configuration
that simultaneously leads to higher recall and higher preci-
sion. Further, given that points with similar properties tend
to cluster along the skyline, we keep only the points with the
highest precision when they are within 5 percentage points
from each other in terms of both precision and recall.

We notice that different methods have different precision-
recall trade-offs. The term-scoring method appears to in-
fluence these trade-offs the most. Specifically, the scoring
methods that penalize more a term’s appearance in non-
crisis tweets lead to high precision at the cost of recall (e.g.,
PMI); those methods that put more weight on the absolute
frequency of terms in the crisis tweets lead to high recall at
the cost of precision (e.g. γ). χ2 and the combination of PMI
and χ2 with γ lead to better precision-recall trade-offs, i.e.,
higher Fk scores.

We do curation to improve precision (by removing terms
that are too general) and recall (by removing terms that are
too specific). Yet, curating the lexicon by removing proper
nouns (L1) lowers both the recall and precision. This effect
is less pronounced when we remove terms with lower crisis
scores that often co-occur with more discriminative terms
(topdiv(·)). The next curation steps (L2 and L3) also alle-
viate this effect leading to higher precision overall. How-
ever, keeping only strong crisis-related terms (L3) heavily
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- Location 11.8 100.0 0.0 20.5 37.6

1 PMI L0 top 57.8 33.7 57.6 42.0 36.5
2 PMI L2 top 50.9 37.5 60.5 41.1 38.6

3 PMI+γ L0 top 43.7 53.0 72.7 46.9 50.0
4 PMI+γ L0 topdiv 39.9 64.4 80.2 48.0 56.2

5 χ2 L0 top 30.4 72.3 85.0 41.6 55.0
6 χ2 + γ L0 topdiv 25.2 77.0 87.7 36.6 52.3

7 γ L0 top 16.4 86.4 93.0 26.5 43.6

Figure 4: Averaged performance of existing methods and our
lexicon. Among 40 tested (small dots), the table includes the
skyline configurations (large dots).

impacts recall (the points clustered around 40% recall and
precision in Figure 4).
Lexicon expansion. With the parameter combinations from
Figure 4 (7 options), we test the performance of our lex-
icon when employing various pseudo-relevance feedback
(PRF) mechanisms (§4.2). We explore the following design
choices:
• PRF term scoring (§4.2): frequency (Fr) and label prop-

agation (Lp).
• Whether to select the top scoring terms: top(·), or the top

scoring terms removing co-occurring terms: topdiv(·).
• Whether to favor terms that co-occur with more query

terms (§4.2): sp, or not: ¬ sp.
• Whether to use only a hashtag (#) dedicated PRF, com-

bine it with the PRF for terms (as defined by the previous
choices), or use the later alone (§4.2).

We also combine lexicons by first running PRF with Li, se-
lect the PRF terms, and then add them to Lj , where Li, Lj
are lexicons obtained with the skyline configurations of Fig-
ure 4; combination denoted (Li)Lj . This yields about 700
configurations to test. For these tests we set the number of
PRF terms to 30, and PRF interval to ∆t = 3 hours. We as-
sume the data collection, and the PRF, start simultaneously
with the keywords-based collection. Results are in Figure 5.

We notice that PRF boosts recall, but has little impact
on precision. Further, the lexicon combinations with the #-
dedicated PRF lead to better precision-recall trade-offs when
Li has high recall and Lj has high precision.

9For brevity, in the rest of the paper we refer to the lexicons
corresponding to these configurations by this code.
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p1 (4)1 - # - 59.7 48.8 69.6 53.2 50.4
p2 (5)2 - # - 53.9 51.2 70.9 50.6 50.6
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- 5 Fr # sp 21.7 87.9 93.7 33.2 51.0
- 7 Lp # sp 16.4 95.9 95.7 26.6 44.5

Figure 5: Averaged performance of existing methods and our
lexicon with PRF. From about 700 tested (small dots), the ta-
ble includes the skyline configurations (large dots). The gray
area marks the configurations with precision below 35% and
places the coresponding skyline points at the end of the ta-
ble. (Li)Lj means that we run PRF with Li and then add the
PRF terms to Lj , where Li is a lexicon code from Figure 4.

Expert-defined terms. To analyze how the expert-defined
crisis-specific terms and the lexicon complement each other,
we add the former to the queries coresponding to the top
skyline configurations depicted in Figure 5.

Such combinations generally lead to improvements over
both the keywords and the lexicon (e.g., up to 40 percent-
age points recall over the crisis-specific keywords). The only
metric we do not improve on is the precision of the keyword
collection, yet this is an upper bound for precision as the
expert-edited keywords are chosen to be specific only to a
given disaster. Further, though the precision decreases, the
combination leads to better precision-recall trade-offs, as it
improves over the F-score metrics. p2 leads to the highest
gains over the lexicon-based approach and over the F1-score
of the keyword-based approach; meaning that the samples
obtained with p2 and those obtain with the crisis-specific
keywords overlap the least.
Performance over time. Finally, to analyze the perfor-
mance variation over time, we test two design decisions:
running PRF only one time at the beginning of the crisis
(one-time PRF), or re-running PRF after every 24 hours (on-
line PRF). We measure the average performance’s variation
across the first three days from the start of the keyword-
collections.10 Figure 8 shows the performance of the lexicon

10We restrict this analysis to the first three days for two reasons:
all collections span across at least three days, and, typically, the
largest volumes of tweets happen in the first days of the event.



Table 3: Average performance of our lexicon when com-
bined with crisis-specific keywords. We also report (the im-
provement over such keywords/the improvement over the
method without these keywords) as percentage points.

Config. Prec. Rec. Gmean F1 F2

p1
60.8
(-24.4/1.1)

55.7
(23.1/6.9)

74.2
(18.2/4.5)

56.1
(11.7/4.1)

57.3
(19.5/5.6)

p2
56.9
(-28.3/3.1)

60.7
(28.4/8.4)

77.7
(21.7/6.0)

57.7
(12.2/6.8)

59.2
(22.7/7.8)

p3
47.7
(-37.4/1.6)

66.6
(34.1/3.7)

81.5
(25.5/2.2)

54.8
(9.3/2.7)

61.0
(24.5/3.3)

p4
42.3
(-42.8/1.0)

73.5
(41.0/3.5)

85.7
(29.6/1.8)

52.4
(6.9/2.3)

62.7
(26.2/2.7)

with both one-time PRF and online PRF in terms of recall
and F1-score relative to the crisis-specific keywords, which
is the reference values. We omit the corresponding precision
plots, but note that an increase in recall with no improvement
in F1-score indicates a loss in precision.

In our experiments, the lexicon based approaches do bet-
ter on average (in the range of 20 to 40 percentage points for
recall and 9 to 13 percentage points for F1-score) towards
the beginning of the crisis compared to the crisis specific
keywords. Then we see a drop in the performance relative to
the keywords which might be due to more users conforming
to keywords use as the event gets global coverage, followed
by an increase when the event loses coverage. Finally, al-
though employing online PRF leads to better recall values
later on in the crisis, it’s improvement in terms of F1-score
over one-time PRF is only marginal.

5.2 Distribution of message types
We measure changes in the distribution of tweets of different
types, as sampling by keywords may introduce biases that
favor one class of tweets at the expense of another. We eval-
uate by asking crowdworkers to categorize tweets, and then
measure the divergence between the distribution of tweets
into categories across the sampling methods. We repeat this
twice using three categorizations: informativeness, informa-
tion type and information source (details in Appendix B).

First we check if any sampling method biases the collec-
tion towards the tweets deemed informative by crowdwork-
ers. With one exception, we find only marginal differences
across crises; looking at crisis-relevant tweets, we find that
between the lexicon and the crisis-specific keywords there is
a difference of less than 10 percentage points regarding the
proportion of informative tweets. The (reference) location-
based samples have lower proportions of informative tweets
than the lexicon and keywords-based samples. The excep-
tion is Hurricane Sandy, for which the p2 configuration col-
lects more informative tweets (about 18 percentage points)
than the keywords sample.

Figures 6 and 7 depict the tweets distribution according to
the type and source of information. We also show the Bhat-
tacharyya coefficient (BC) which quantifies the overlap be-
tween the reference location-based collection and lexicon
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Figure 8: Relative performance over time of our lexicon with
one-time PRF and online PRF re: crisis-specific keywords.
The table contains the reference performance by the key-
words – represented by the (red) horizontal line.

and keyword-based samples in terms of information type
and source; high values indicate high similarity.

We notice large variations in tweet distributions according
to both the information type and source across crises; yet it
has little to no impact on the sampling methods’ ability to
preserve the distributions. Generally, high-precision meth-
ods diverge more from the reference sample, with the key-
words being the least representative, e.g., it collects more
tweets coming from news organizations and fewer eyewit-
ness reports (Figure 7). In contrast, our lexicon better pre-
serves the reference distribution, with a BC close to 1.

6 Conclusions
We have described a methodology for constructing an effec-
tive, general lexicon for monitoring crisis events. Our exper-
iments demonstrate a range of precision and recall operat-
ing points previously not well understood when using only
keyword or location-based sampling. This work provides re-
searchers an informed strategy for assembling a set of rele-
vant tweets. This is a fundamental technology for automatic
linguistic analysis tools such as temporal summarization.

The impact of these results goes beyond an algorithmic
understanding. We show that the amount of data that it is
currently mined represents only a fraction of the data posted
during disasters. We believe that such lexicons can support
others interested in increasing recall, but who may not have
the ability to finely tune their lexicons.

There are many directions in which to take this work.
First, users are often interested in classifications more finely
grained than ‘relevant’ or ‘nonrelevant’: e.g., emergency
responders may be interested in personal or property loss
tweets, each of which will admit its own lexicon. Second,
though our techniques are in principle language-independent
and domain-independent, we want to build lexicons which
demonstrate this. Third, when using a lexicon to collect data
through an API, if the API is more limited or less limited,
or limited on a different way, our results may have to be
adapted. Fourth, we would like to keep human effort to a
minimum –mostly because we may want to build a special-
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ized lexicon in a short time– and we are working on methods
to simplify the manual steps of the process.

Reproducibility. The crisis lexicon, the list of keywords,
geographical regions, etc. along with the labeled datasets as
sets of (tweet-ids, label, and metadata) are available for re-
search purposes at http://crisislex.org/.

Acknowledgments. Work done while Alexandra Olteanu
was doing an internship at QCRI. We are grateful to Topsy
for providing data corresponding to four geo-collections we
analyzed, and to Hemant Purohit and Aron Culotta for shar-
ing with us the tweet ids for the rest of the collections.

A Statistical tests for terms
For each term twe compute the following contingency table:

related not related
t n(t, rel) n(t,¬ rel)
¬ t n(¬ t, rel) n(¬ t,¬ rel)

where n(t, c) is the number of tweets belonging to class c
in which term t appears, n(¬ t, rel) the number of tweets in
which term t does not appear and c ∈ {rel,¬ rel}. Then,
similarly with (Kaji and Kitsuregawa 2007), we use two
popular statistical measures to estimate how strong the as-
sociation between a term and the crisis-related tweets is (the
discriminative score): Chi-square (χ2) and Pointwise Mu-
tual Information (PMI).
χ2-based crisis score. The statistical measure χ2 tests

whether a term t occurrence is independent of the tweet be-
ing about a disaster or not; and is defined as follows:

χ2 =
∑

x∈{t,¬ t}

∑
c∈{rel,¬ rel}

(n(x, c)− E[n(x, c)])2

E[n(x, c)]

where E[n(x, c)] is the expected value for n(x, c).
Although χ2 estimates the discriminative power of a term

t towards one of the classes, it does not indicate if t is dis-

criminative for the crisis-related tweets. So we ignore the χ2

when t appears more often in the non-crisis-related tweets
and define the crisis score as follows:

csχ2(t) =

{
χ2 if n(t, rel) > n(t,¬ rel)

0 otherwise
PMI-based crisis score. PMI measure the relatedness

between term t and a certain class c and it is defined
as (Church and Hanks 1990):

PMI(t, c) = log2

P (t, c)

P (t)P (c)
where P (t, c) is the joint probability of t and c, and P (t)
and P (c) are the marginal probability of t and c.

Even if PMI measures how strongly associated term t and
class c are, it does not account for how strongly associated
t and the other class are. So we compute the crisis score as
the difference between the association strength with crisis-
related tweets and the association strength with non-crisis-
related tweets (Kaji and Kitsuregawa 2007):

csPMI(t) = PMI(t, rel)− PMI(t,¬ rel) = log2

p(t | rel)

p(t |¬ rel)

where p(t | rel) and p(t |¬ rel) are the probabilities of t to ap-
pear in crisis-related, respectively non-crisis-related tweets:

p(t | rel) =
n(t, rel)

n(t, rel) + n(¬ t, rel)

p(t |¬ rel) =
n(t,¬ rel)

n(t,¬ rel) + n(¬ t,¬ rel)
This yields positive scores when t has a higher probability of
appearing in crisis tweets than in non-crisis tweets, and neg-
ative otherwise. Therefore, we consider only positive values.

B Message Types Categorization
We label crisis-relevant tweets distribution along two main
categorizations: information type, and information source.



For each, we present workers a tweet and ask them to label it
with the likeliest category (see Figure 9). For quality control,
one of every 10 tweets presented to a worker was labeled by
one of the authors and was chosen to be an obvious case.

Indicate if the tweet is informative for decision makers and emergency responders:
“RT @Boston Police: Despite various reports, there has not been an arrest ”
Choose the best one: The tweet is . . .
A. Informative about negative consequences of the bombings
B. Informative about donations or volunteering
C. Informative about advice, warnings and/or preparation
D. Other informative messages related to the bombings
E. Not informative: messages of gratitude, prayer, jokes, etc.
F. Not understandable because it is not readable, too short, etc.

Indicate the information source for tweets posted during a crisis situation:
“family & friends are bruised & slightly damaged but ALIVE. now i can rest..”
Choose the best one: This information seems to come from . . .
A. News organizations or journalists: TV, radio, news organizations, or journalists
B. Eyewitness: people directly witnessing the event
C. Government: local or national administration departments
D. Non-governmental organizations (not for profit)
E. Companies, business, or for-profit corporations (except news organizations)
F. Other sources: e.g, friends or relatives of eyewitnesses
G. Not sure

Figure 9: Crowd-tasks for categorizing tweets according to
informativeness and type (top), and source (bottom).
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