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Abstract
An important feature of the nervous system is its ability to adapt to new stimuli. This adapta-

tion allows for optimal encoding of the incoming information by dynamically changing the

coding strategy based upon the incoming inputs to the neuron. At the level of single cells, this

widespread phenomena is often referred to as spike-frequency adaptation, since it manifests

as a history-dependent modulation of the neurons firing frequency. In this thesis I focus on

how a neuron is able to adapt its activity to a specific input as well as on the function of such

adaptive mechanisms.

To study these adaptive processes different approaches have been used, from empirical ob-

servations of neural activities to detailed modeling of single cells. Here, I approach these

problems by using simplified threshold models. In particular, I introduced a new general-

ization of the integrate-and-fire model (GIF) along with a convex fitting method allowing for

efficient estimation of model parameters. Despite its relative simplicity I show that this neuron

model is able to reproduce neuron behaviors with a high degree of accuracy.

Moreover, using this method I was able to show that cortical neurons are equipped with two

distinct adaptation mechanisms. First, a spike-triggered current that captures the complex

influx of ions generated after the emission of a spike. While the second is a movement of the

firing threshold, which possibly reflects the slow inactivation of sodium channels induced by

the spiking activity. The precise dynamics of these adaptation processes is cell-type specific,

explaining the difference of firing activity reported in different neuron types. Consequently,

neuronal types can be classified based on model parameters. In Pyramidal neurons spike-

dependent adaptation lasts for seconds and follows a scale-free dynamics, which is optimally

tuned to encodes the natural inputs that pyramidal neurons receive in vivo.

Finally using an extended version of the GIF model, I show that adaptation is not only a

spike-dependent phenomenon, but also acts at the subthreshold level. In Pyramidal neurons

the dynamics of the firing threshold is influenced by the subthreshold membrane potential.

Spike-dependent and voltage-dependent adaptation interact in an activity-dependent way to

ultimately shape the filtering properties of the membrane on the input statistics. Equipped

with such a mechanism, Pyramidal neurons behave as integrators at low inputs and as a

coincidence detectors at high inputs, maintaining sensitivity to input fluctuations across all

regimes.

Keywords: Spiking Neuron Models - Fitting - Spike Frequency Adaptation - Threshold Dynam-

ics - Adaptation - Neural Coding
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Résumé
Le fonctionnement du cerveau dépend principalement de l’activité électrique de cellules

spécifiques appelées neurones. Ces cellules nerveuses communiquent entre elles à l’aide de

courtes impulsions électriques, et ce faisant régissent le comportement de notre système

nerveux dans son ensemble. Bien que de nombreux aspects de leur structure et des calculs

qu’elles effectuent soient connus, la façon dont ces cellules parviennent à transmettre et

encoder de l’information restent à ce jour une question ouverte.

Afin d’aborder cette question de nombreuses approches sont envisageables, de l’observation

empirique de leur activité, à l’examen minutieux de leur structure moléculaire. Pendant ma

thèse je me suis intéressé au fonctionnement de ces cellules nerveuses d’un point de vue

mathématique.

Avec un certain degré d’abstraction, il est concevable d’assumer que le travail effectué par un

neurone peut se résumer à son activité électrique. Il est alors possible de décrire cette activité à

l’aide d’équations mathématiques, construisant ainsi un modèle simple de neurone. Bien que

cette approche soit réductive et néglige de nombreux facteurs régulant le fonctionnement des

cellules nerveuses, elle permet une compréhension des mécanismes fondamentaux entrant

en jeu lors de fonctions neurales spécifiques.

Ces modèles peuvent êtres de différentes sortes, incorporant toutes les connaissances à

disposition et créant ainsi un modèle biophysique détaillé ou en laissant de coté la plupart,

afin de construire un modèle relativement simple, mais capable d’expliquer comment un

neurone peut communiquer et transmettre de l’information sous la forme d’impulsions

électriques.

Durant ma thèse, je me suis intéressé à un type de modèle mathématique relativement peu

détaillé mais permettant d’expliquer de façon précise l’activité d’un neurone. Cette classe de

modèle m’a permis de montrer par quels mécanismes un neurone est capable de s’adapter

aux stimulations qu’il reçoit pour en tirer un maximum d’information. Pour atteindre cet

objectif j’ai développé une méthode mathématique générique qui permet d’expliquer de

manière détaillée les mécanismes biologiques qui doivent être pris en compte pour effectuer

une fonction physiologique simple.

Mots-clés : Modèles de neurones à impulsions - Méthode d’estimation des paramètres -

Adaptation de la fréquence de tir - Dynamique du seuil de potentiel d’action - Adaptation -

Code neural
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1 Introduction: Dynamics of single
neurons

Neurons are the fundamental building blocks of the brain, making the dynamics of single

neurons a crucial aspect of computational neuroscience. To understand the neuronal dy-

namics it is essential to develop a relevant and compact mathematical description of their

activities. Such a compact model will enable to link the response of individual neurons to

higher order phenomena, such as learning and behavior. It will also provide insight into neural

computations and the biological mechanisms that underly such computations (Rieke et al.,

1999; Koch and Segev, 2000).

Currently, there are many projects aiming to model complex neural networks (Traub et al.,

2004; Markram, 2006; Lang et al., 2011; Koch and Reid, 2012; Waldrop, 2012; Kandel et al.,

2013). To achieve this goal it is crucial to develop single neuron models that are able to

reproduce the main features of neuronal activities at a relatively low computational cost.

Moreover, to study the dynamical properties of neural networks, the model of choice should

be analytically tractable. Such calculation will facilitate the analysis of the network activity,

thereby providing useful explanations for the computations performed by the network (Amit

and Brunel, 1997; Brunel, 2000; Naud and Gerstner, 2012). Neural circuits are composed of

different cell-types — such as inhibitory and excitatory neurons — with their own distinctive

properties (Bota et al., 2003; Markram et al., 2004; Bota and Swanson, 2007), and even in a given

cell-type, each neuron exhibits cell-to-cell variability that is known to influence the network

dynamics (Padmanabhan and Urban, 2010; Tripathy et al., 2013). Therefore, for realistic brain

simulations, a model should be flexible enough to capture cell-type and cell-to-cell variability.

Ideally, the single neuron model should allow for robust and fast parameter estimation as to

enable the development of comprehensive databases of neuron models.

The above mentioned constraints are not the only ones to consider when designing a single

neuron model. One of the major points to consider is the level of detail that has to be taken

1



Chapter 1. Introduction: Dynamics of single neurons

into account. Indeed, the level of description needed to capture neuron dynamics is not fixed

and depends highly on the specific phenomenon being explained (Herz et al., 2006; Gerstner

and Naud, 2009). Several mathematical models exist that capture different aspects of neuronal

computations and exhibit diverse degrees of complexity (see Figure 1.1), from simple point

neuron models (Stein, 1967; Abbott and van Vreeswijk, 1993; Gerstner, 1995b; Brette and

Gerstner, 2005) to more detailed biophysical models (Hodgkin and Huxley, 1952; Rall, 1962;

Mainen and Sejnowski, 1996; Hay et al., 2011, 2013). Each of these models captures some

aspects of the complex dynamics of neurons. While some focus on spike initiation, others

include spike-frequency adaptation, refractoriness or dendritic integration.

In this thesis, I focus on single compartment models of the threshold type. This choice was

motivated by results showing that these simplified models capture both the spiking activity

and the subthreshold response of single neurons (Keat et al., 2001; Paninski et al., 2005; Jolivet

et al., 2008; Kobayashi et al., 2009; Dong et al., 2013). Simplified models are sufficiently flexible

to reproduce most of the firing patterns observed in vitro (Markram et al., 2004; Naud et al.,

2008; Touboul and Brette, 2008; Mihalaş and Niebur, 2009), and can easily be extended with

new mechanisms if needed. Compared to detailed Hodgkin and Huxley models, simplified

threshold models have very few parameters which allows for fast and efficient parameter

estimation. Finally, the low computational complexity of these simplified models enables large

network simulations in realistic time (Brainscales; Izhikevich and Edelman, 2008; Gewaltig

and Diesmann, 2007).

Due to their simplicity, threshold models have some limitations. First, by containing a sin-

gle compartment, they neglect any non-linear dendritic computation (Häusser et al., 2000;

London and Häusser, 2005; Losonczy and Magee, 2006; Spruston, 2008; Larkum et al., 2009).

However it is possible to incorporate such complex dendritic computations, mediated by

NMDA spikes, dendritic Calcium spikes or others dendritic non-linearities, by the addition

of a few active compartments (Poirazi and Mel, 2001; Poirazi et al., 2003; Legenstein and

Maass, 2011; Schoen et al., 2012; Naud et al., 2013; Brunel et al., 2014). Second, in threshold

models, ion channel dynamics are approximated by simple effective currents, impairing direct

biological interpretations of model parameters. In other words, threshold models are loosely

related with the underlying biological machinery. Nevertheless, by means of approximations,

one can map model parameters onto interesting biological quantities.

Despite their simplicity, single compartment models have been proven useful in different

fields of computational neurosciences. Indeed, they have been successfully used to infer

neural receptive field from spiking activity (Pillow et al., 2005, 2008), recover network con-

nectivity from extracellular recordings (Okatan et al., 2005; Eldawlatly et al., 2009; Gerhard

et al., 2013), recover input stimuli from neural activities and design efficient decoding tools for

neuroprosthetics (Lawhern et al., 2010; Pillow et al., 2011; Shoham et al., 2005), study neural

network dynamics (Amit and Brunel, 1997; Brunel, 2000) and study learning and plasticity

(see Song et al. (2000); Van Rossum et al. (2000) and reference therein).

2



1.1. Simplified threshold models

In the following introduction I present the main classes of simplified neuron models, starting

from the standard leaky integrate-and-fire model (LIF) and moving towards more sophisticated

models of spiking activity. The functional properties and biological relevance of each model are

discussed. A particular focus is given to the generalized integrate-and-fire (GIF) model which

is extensively discussed in this thesis. As its name suggests, the GIF model is a generalization

of the classic IF model, that accounts for (i) spike-frequency adaptation, (ii) stochastic spike

emission and (iii) dynamical properties of the moving threshold.

The introduction is organized as follows: The first section introduces the notion of a threshold

model, mainly in the form of the LIF model. The second section discusses classical extensions

of the threshold model. Finally, the third section presents the GIF model, highlighting its

flexibility and linking it to other standard models, such as the Generalized Linear Model

(GLM).

1.1 Simplified threshold models

In the early 20th century, Lapicque introduced the first mathematical model that describes

the electrical activity of single neuron: the leaky integrate-and-fire (LIF) model (Lapicque,

1907). According to this model, a single neuron integrates its input current until a certain

threshold is reached, where an action potential is emitted. This simple but powerful model

led to the conclusion that single neurons encode information in the number of spikes emitted

in a given amount of time (Figure 1.1 E-G). The LIF model was later extended to account for

more realistic neuronal properties. Nowadays integrate-and-fire models refer to a family of

different models, that capture different aspect of neuron properties.

1.1.1 Leaky Integrate-and-Fire model

Mathematically, the LIF model (Lapicque, 1907; Hill, 1936; Stein, 1965; Knight, 1972; Tuckwell,

1988) is defined by the following differential equation of the membrane potential V :

C
dV

d t
= −gL(V (t )−EL)+ I (t ) (1.1)

where C is the total membrane capacitance, gL the leak conductance (R = g−1
L is the mem-

brane resistance) and EL the reversal potential. Equation 1.1 describes the dynamics of the

membrane potential V (t). Whenever V (t) reaches the fixed voltage threshold V ∗
T , a spike is

emitted and the voltage is reseted to ER :

if: V (t ) >V ∗
T =⇒

{
t̂ ← t

V (t ) ← ER
(1.2)
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Figure 1.1: Level of abstraction in single neuron models (A) Staining of a mouse biocytin-filled
L5 pyramidal neuron. Data is a courtesy of Olivier Hagens (LNMC, BMI, EPFL). (B) Reconstructed
morphology of the L5b pyramidal neuron adapted from the biophysical Hay model (Hay et al., 2011). In
this multi-compartmental model, the neural activities is described by more than hundred differential
equations and thousands of parameters. (C-D) Single compartment Hodgkin-Huxley model describes
the electrical properties of a piece of neuron membrane with a simple electrical circuit. (C) Schematic
representation of a piece of membrane depicting three different ion channels. The sodium channels
(red) and potassium channels (blue) mediate spike emissions, and a leak channel (black) models the
passive membrane properties. (D) Electrical diagram of the Hodgkin-Huxley model. The electrical
properties of the membrane is described by a parallel circuit including: C , the membrane capacitance,
and three voltage dependent resistors RN a , RK and RL in series with individual voltage sources EN a ,
EK and EL , maintaining an equilibrium potential around −70 mV. (E) Electrical diagram of the LIF
model, where the membrane is described as a parallel RC circuit that converts the input current I (t )
into the somatic voltage V (t ) (also note the presence of a battery, which maintains the resting potential
at EL). In this framework the membrane acts as a low-pass filter on the input current to produce the
somatic voltage. (F) Response of the LIF model to three step of currents (grey, top). If the voltage V (t )
(black, bottom) reaches the firing threshold V ∗

T (dashed line), a spike is emitted (red dots) and the
voltage is reset to ER . (G) In response to step of currents of different intensities the LIF model produces
different firing frequencies. This relationship between stimuli strength and firing frequency is called f-I
Curve and, as proposed by Lapicque (1907) provides a direct representation of an external stimuli in
the neuron activities.

Following a spike emission at time t̂ , the integration of Eq. 1.1 is stopped during an absolute

refractory period Tref and then restarted until the next spike is fired. In the LIF model, the
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1.1. Simplified threshold models

absolute refractory period replaces the spike shape. With this approximation, it is implicitly

assumed that the spike shape is stereotypical (i.e. it is always the same) and does not carry

information (Hille, 1992; Koch, 1999) (but see (Häusser et al., 2001; de Polavieja et al., 2005;

Juusola et al., 2007)).

The LIF model can be rewritten in its integral form1:

V (t ) = EL +
∫ ∞

0
κ(s)I (t − s)d s − ∑

t̂ j<t

ηR (t − t̂ ) (1.3)

κm(t ) = 1

C
exp

( −t

τM

)
(1.4)

ηR (t ) = (V ∗
T −ER )exp

( −t

τM

)
(1.5)

with τM = RC being the membrane timescale and ηR being a refractory kernel induced by the

voltage reset. The LIF model captures relative refractoriness in ηR and describes the passive

properties of the membrane with an exponential filter κm(t), which acts as a low-pass filter

on the input current. This simple filter has been shown to be a fairly good description of the

passive properties of a neuron membrane (Figure 1.1 E-G).

1.1.2 Limitations of the LIF model

Due to its simplicity the LIF model does not reproduce some important aspects of the neural

dynamics that have been experimentally observed:

1. Subthreshold resonance: at subthreshold voltages, different potassium channels medi-

ate particular currents that can in principle affect the single neuron behavior in different

ways (Mauro et al., 1970; Izhikevich, 2001, 2007). For example, in response to a subthresh-

old step of current, certain neurons exhibit damped oscillations in their membrane

potential (Figure 1.2 A). Subthreshold oscillatory behavior — also called resonance —

strongly affects the firing activity of the cell and plays an important role in the types of

computation performed by a neuron (Hutcheon and Yarom, 2000; Izhikevich et al., 2003).

For example, subthreshold resonance can induce bursts of action potentials (Lampl and

Yarom (1997), Figure 1.4 D) that are known to signal important events (Larkum (2013)

and references therein). Since the LIF membrane filter κm(t ) is strictly exponential, it

can not take into account this particular feature.

2. Spike-history effects: in response to a constant input, the firing rate of single neurons

decays over time (Figure 1.2 B). This phenomenon — known as spike-frequency adap-

tation (SFA) — is ubiquitous in the brain and has been shown to enhance information

1In its integral form, the LIF model is a special instance of the Spike Response Model, called SRM0 (Gerstner,
1995a)
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transfer between cells (Brenner et al., 2000; Wang et al., 2003). SFA can be induced by

different ion currents. For example, high-voltage activated, calcium-dependent and

sodium-dependent potassium channels create effective spike-triggered currents that

accumulate over subsequent spikes and reduce the output firing rate (Baldissera et al.,

1976; Madison and Nicoll, 1984; Schwindt et al., 1989; Sawczuk et al., 1997). Also, sodium

channel inactivation reduces the number of channels available for spike initiation, ef-

fectively increasing the voltage threshold (Fleidervish et al., 1996; Mickus et al., 1999;

Melnick et al., 2004; Zeng et al., 2005). Importantly, this second mechanism induces

SFA without affecting the membrane potential. In simplified models, the net effect of

sodium inactivation is modeled by including a spike-triggered movement of the firing

threshold. Since the LIF model does not account for the spike history, it can not account

for SFA.

3. Spike initiation mechanisms: From a biological point of view, spike emission is gov-

erned by the activation of specific sodium channels in the axon hillock that are activated

near the voltage threshold (Baranauskas et al., 2010; Debanne et al., 2011). The spike

onset is fast, typically in the sub-millisecond range (Naundorf et al., 2006; McCormick

et al., 2007) (Figure 1.2 C, black), but not instantaneous as it is assumed in the LIF model

(Figure 1.2 C, red). Theoretical studies have demonstrated that this feature has a major

impact on the spiking response of cortical neurons (Fourcaud-Trocme et al., 2003; Brette,

2013).

4. Spike-timing variability: when stimulated multiple times with the same input current,

spikes do not occur exactly at the same moments in time (Schneidman et al., 1998;

Mainen and Sejnowski, 1995), indicating that single neurons are stochastic (Figure 1.2

D). This is an important feature since it affects the reliability of signal transmission

(Shadlen and Newsome, 1994; Bair and Koch, 1996; Faisal et al., 2008). Whether intrinsic

noise is a bug or a feature remains an open question. Recent studies proposed that the

brain uses noise as a mechanism to internally represent uncertainty about the state of

the external world (Berkes et al., 2011). Since the LIF model is deterministic, it neglects

this important aspect.

All these features have been extensively studied in the past, and led to variants of the LIF model.

The most important among them will be presented in the next section and are summarized in

Table 1.1.

1.1.3 Subthreshold resonance

Certain neuron types exhibit subthreshold resonance. Such behavior has been shown to occur

via the activation of specific low-voltage activated potassium channels (Mauro et al., 1970).

Typically these channels exhibit nonlinear dynamics and interact with the passive properties

of the cell to create oscillations in the subthreshold regime. Phenomenologically, subthreshold

resonance can be modeled by extending the LIF model with a linear subthrehold current ω
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Mechanism Model References

Linearized subthreshold current Resonate-and-fire Izhikevich (2001)

AdEx Brette and Gerstner (2005)

Izhikevich model Izhikevich (2003)

GIF model Richardson et al. (2003)

SRM Gerstner and Kistler (2002)1

refractory-EIF Badel et al. (2008)

Spike-triggered current - Baldissera et al. (1976)

- Treves (1993)

- Gerstner et al. (1996)

- Liu and Wang (2001)

SRM Gerstner and Kistler (2002)2

Izhikevich model Izhikevich (2003)

unified SFA model Benda and Herz (2003)

GIF Paninski et al. (2004)

AdEx Brette and Gerstner (2005)

- Drew and Abbott (2006)

Spike-triggered threshold - Fuortes and Mantegazzini (1962)

- Geisler and Goldberg (1966)

- Holden (1976)

- Liu and Wang (2001)

- Chacron et al. (2003)

SRM Jolivet et al. (2006)

refractory-EIF Badel et al. (2008)

MAT Kobayashi et al. (2009)

GIF Mihalaş and Niebur (2009)

Smooth spike initiation NLIF Abbott and van Vreeswijk (1993)

θ-neuron Latham et al. (2000)

QIF Feng (2001)

QIF Hansel and Mato (2001)

Izhikevich model Izhikevich (2003)

EIF Fourcaud-Trocme et al. (2003)

AdEx Brette and Gerstner (2005)

refractory-EIF Badel et al. (2008)

Table 1.1: Extended IF-type models. This list is not exhaustive, but highlights the vast diversity of
simple IF-type model. 1Formally there is no linearized subthreshold current in the spike response
model, however depending on the shape of the linear filter κ(t ), SRM can be rewritten as a LIF model
upgraded with linearized subthreshold current. 2The SRM does not contains a spike-triggered current,
but a spike-triggered voltage describing directly the AHP.

(Izhikevich, 2001; Richardson et al., 2003),

C
dV

d t
= −gL(V −EL)+ I (t )−ω (1.6)

τω
dω

d t
= a(V −Eω)−ω (1.7)
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Figure 1.2: Electrical properties of single neurons. Four phenomenological features of single cells
that are not taken into account by the standard LIF model. (A) Subthreshold behavior of the squid giant
axon. When stimulated with subthreshold steps of current of different magnitudes, the squid axon
responds with a typical oscillatory behavior (adapted from Mauro et al. (1970)). This resonating behav-
ior is present in a vast variety of neurons among the brain (Gutfreund et al., 1995; Lampl and Yarom,
1997; Hutcheon et al., 1996; Hutcheon and Yarom, 2000). (B) When a rat hypoglossal motoneuron is
stimulated with a suprathreshold step of current, spike-frequency adaptation appears as a slowdown
of the neuron firing rate as a function of stimulation time in response (adapted from Sawczuk et al.
(1997)). Inset: in response to a step of current, neocortical regular spiking neurons respond with an
initial high firing rate that decay to lower sustained firing frequency (top trace: recorded voltage, lower
trace: input current, adapted from Connors and Gutnick (1990)) (C) Smooth spike initiation in mice
cortical neurons. Averaged spike shape from 1157 action potentials (black line, grey area is one standard
deviation). Even if the spike onset is fast, it is not instantaneous as in the LIF model (red). Data is a
courtesy of Olivier Hagens. This smooth spike initiation is a common features throughout all the cortex.
(D) Spiketime variability of cortical neurons evoked by 25 repeated injection of the same fluctuating
current (raster plot, top panel; PSTH computed by an adaptive filtering of the raster plot, bottom panel),
adapted from Mainen and Sejnowski (1995). Spike timing variability is a direct consequence of different
intrinsic noise sources and is a common features of all neurons (see (Faisal et al., 2008) and references
therein).

with τw being the time constant of ω, Eω being its reversal potential and a controlling its

magnitude. Depending on the sign of a, ω can cause subthreshold facilitation or subthresh-

old resonance. Indeed, for a < 0 the impulse response of this system2 is characterized by

an exponential decay with two timescales, while for a >> 0, the membrane filter oscillates

(resonance).

From a physical point of view, Equations 1.6-1.7 describe a damped oscillator with a driving

2The impulse response corresponds to the voltage trajectory elicited by the injection of a δ-dirac current
I (t ) = δ(t ). It corresponds to the linear membrane filter κ(t ) of the spike response model (SRM).
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1.1. Simplified threshold models

force I (t). The impulse response of this system can be derived analytically. This topics is

further discussed in chapter 3 of this thesis.

In the literature, simplified threshold models augmented with a subthreshold current are often

referred to as resonate-and-fire models (Izhikevich, 2001). Linearized subthreshold currents

are included in many models: the SRM (Gerstner and Kistler, 2002), the adaptive exponential

integrate-and-fire model (AdEx, Brette and Gerstner (2005)), the Izhikevich model (Izhikevich,

2003) and a special variant of the LIF model introduced in Richardson et al. (2003) (Table 1.1).

The mechanisms by which subthreshold currents induce burst of action potentials have been

studied in Lampl and Yarom (1997), Izhikevich (2001) or Richardson et al. (2003).

1.1.4 Spike-history effects

Spike-triggered currents

As for subthreshold resonance, the LIF model can be extended to account for SFA with a

second equation that describes the dynamics of a spike-dependent adaptation current ω:

C
dV

d t
= −gL(V −EL)+ I (t )−ω (1.8)

τω
dω

d t
= −ω+bτω

∑
t̂ j<t

δ(t − t̂ j ) (1.9)

According to Eq. 1.9, each time a spike is emitted, the adaptation current is increased by b

and exponentially decay with timescale τω. By integrating equation 1.9, one can see that the

adaptation current ω consists of a sum of spike-triggered current ηa(t ) = b exp −t
τω

:

ω(t ) = ∑
t̂ j<t

ηa(t − t̂ j ) (1.10)

In contrast to ηr , spike-triggered currents induced by different action potential accumulate

and can therefore induce SFA, if b > 0 (Figure 1.2 B, and 1.4 B), or facilitation, if b < 0 (Figure

1.4 C).

A single spike-triggered current of this form is sufficient to account for the after-hyperpolarizing

potential (AHP) observed in cortical neurons, but does not fully capture spike-frequency adap-

tation. Since SFA is mediated by different ion currents, its dynamics is not governed by a

single timescale but acts on multiple timescales (Spain and Schwindt, 1991; Gilboa et al., 2005;

La Camera et al., 2006; Lundstrom et al., 2008). To account for the multiple timescales of

adaptation, a possible solution is to relax the exponential assumption made in Equation 1.9

9
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and describe the spike-triggered current with a arbitrarily shaped current η:

C
dV

d t
= −gL(V −EL)+ I (t )− ∑

t̂ j<t

η(t − t̂ j ) (1.11)

where η(t ) is a causal function of time that summarizes the contribution of multiple channels.

Including a shape-free spike-triggered current gives flexibility to the aforementioned model

and allows it to capture important aspects of spike-frequency modulation (see Figure 1.4). For

example, a biphasic η could mediate relative refractoriness on short timescale and SFA on

longer timescales. The role of the functional shape of η is extensively discussed in the chapter

2 and in the Appendix of this thesis. Table 1.1 lists the most important reference threshold

models that account for SFA by the means of a spike-triggered current.

Spike-triggered movement of the firing threshold

Regardless of the specific definition of the voltage threshold, it has been shown that spikes

do not systematically initiate at the same voltage (Azouz and Gray, 2000, 2003; Wester and

Contreras, 2013). Biophysically spike initiation is driven by a sudden influx of sodium ions

in the cell. Once sodium channels have been activated and a spike has been emitted, they

stay in an inactivated state for a while (Fuortes and Mantegazzini, 1962; Fleidervish et al.,

1996; Fleidervish and Gutnick, 1996), decreasing the number of sodium channels which are

available for the emission of a second spike. Consequently the voltage threshold is increased

by the emission of previous spikes (Henze and Buzsáki, 2001; Melnick et al., 2004). Thus,

sodium inactivation constitutes an additional source of SFA, which should be modeled by a

spike-triggered movement of the firing threshold γ rather than a spike-triggered current:

VT (t ) = V ∗
T + ∑

t̂ j<t

γ(t − t̂ j ), (1.12)

if: V (t ) >VT (t ) =⇒
{

t̂ ← t

V (t ) ← ER
(1.13)

In many models, γ(t ) is assumed to be a single exponential function. In Equation 1.12, γ(t ) is

an arbitrary function of time describing the trajectory of the voltage threshold following spike

emission. The dynamics of the spike-triggered movement of the firing threshold is the topics

of chapter 2 and the Appendix of the present thesis.

Moving threshold has been introduced in the LIF model in the sixties (Geisler and Goldberg,

1966) to account for adaptation (Figure 1.4 B, Chacron et al. (2003); Kobayashi et al. (2009))

and relative refractoriness (Jolivet et al. (2006); Badel et al. (2008) see table 1.1 for references).

Interestingly, recent theoretical and experimental studies have shown that the firing threshold
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1.1. Simplified threshold models

does not simply depend on previous spikes (Platkiewicz and Brette, 2010, 2011), but also

depends on the speed at which the firing threshold is approached (Wester and Contreras,

2013). The complex dynamics of the firing threshold is the topics of the chapter 5 of this thesis.

1.1.5 Spike initiation mechanisms

The voltage threshold is an ill-defined concept, indeed it is hard to say precisely if a spike has

been emitted or if it is still in the initiation phase. Spike initiation is not an instantaneous

process but occurs on a finite timescale (see Figure 1.2 C).

To account for spike initiation, the LIF model has been extended by making the voltage

dynamics nonlinear, giving rise to a new class of model: the nonlinear integrate-and-fire

model (NLIF, Abbott and van Vreeswijk (1993); Latham et al. (2000); Hansel and Mato (2001);

Feng (2001); Izhikevich (2003); Fourcaud-Trocme et al. (2003)):

C
dV

d t
= F (V )+ I (t ) (1.14)

where F (V ) is a nonlinear function of the membrane potential. The two most common

nonlinearities are: (i) a quadratic function (QIF, Feng (2001)) and (ii) an exponential function

(EIF, Fourcaud-Trocme et al. (2003)). These two particular instances of the NLIF family will be

described in the next subsections.

Quadratic integrate-and-fire model (QIF)

The QIF model accounts for spike onset with a quadratic voltage nonlinearity:

F (V ) = a0(V −EL)(V −V ∗
T ) (1.15)

where a0 defines the sharpness of the quadratic function, EL is the resting potential of the

model and V ∗
T is the smooth spike threshold3. In this model, a spike occurs if the voltage

quickly diverges to infinity. In practice, when V =Vth , where Vth >>V ∗
T .

In the absence of an input current (i.e., when I (t) = 0), the QIF model is characterized by

the presence of a stable fixed point at V = EL and an unstable fixed point at V =V ∗
T (Figure

1.3 B), so that the voltage steady-state is at EL . When stimulated with a depolarizing step of

current, the nullcline is instantaneously shifted upward (Figure 1.3 B) and the system loses

stability via a saddle-node bifurcation producing tonic spiking (Figure 1.3 B, right panel). This

particular dynamics leads to a quadratic spike initiation (Figure 1.3 D) that capture smooth

3Even if V ∗
T is related to the voltage threshold of the LIF model, it is not a real threshold. As shown in figure

1.3 B, it represents the unstable fixed point of Eq 1.15 in absence of input current I (t ), so that threshold for spike
emission depends on the specific input current (short pulse, step, ramp, . . . )
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Chapter 1. Introduction: Dynamics of single neurons

spike initiation.

Importantly, in this model there is no unique definition of the voltage threshold. Indeed,

the voltage at which a spike is initiated depends on the stimulation paradigm. For a short

current pulse, a spike will be emitted if V >V ∗
T , whereas for slow depolarization a spike will

occur through the saddle node bifurcation at the lower voltage Ṽ = −(EL+V ∗
T )

2a0
. This creates a

positive correlation between the effective firing threshold and the depolarization rate. In other

words, the threshold is higher for fast input, than for slow input. The dependency predicted by

the QIF model between firing threshold and depolarization rate, is at odd with experimental

evidence. Indeed, it has been shown that both in vitro and in vivo the effective threshold

for spike emission is negatively correlated with the rate of depolarization (Azouz and Gray,

2000, 2003; Wilent and Contreras, 2005; Henze and Buzsáki, 2001; Higgs and Spain, 2011). The

dynamics of the firing threshold is investigated in the chapter 5 of this thesis.

The exponential integrate-and-fire model (EIF)

Another standard instance of the NLIF model is the exponential integrate-and-fire (EIF) model

introduced by Fourcaud-Trocme et al. (2003), where the nonlinearity F (V ) is composed of

a linear part describing the leaky integration of the membrane and an exponential function

capturing the fast onset of spike initiation:

F (V ) = −gL(V −EL)+ gL∆T exp

(
V −V ∗

T

∆T

)
(1.16)

with ∆T being the sharpness of the exponential function and V ∗
T being the smooth voltage

threshold4. As in the QIF model, a spike is emitted if V →∞. The dynamics of the EIF model

is very similar to the QIF dynamics described above, except that the voltage dynamics of the

spike onset is exponential (see Figure 1.3 C and D, red), which is in good agreement with

experimental findings (Badel et al., 2008)

Adaptive exponential integrate-and-fire model (AdEx)

In the previous sections, several extensions of the LIF model have been presented indepen-

dently, however these different extensions have been simultaneously included in two different

single neuron models: the Izhikevich model (Izhikevich, 2003) and the adaptive exponential

integrate-and-fire model (AdEx, Brette and Gerstner (2005)). These two models are highly

flexible and are able to reproduce almost all firing patterns that have been experimentally

observed (Markram et al., 2004; Izhikevich, 2007; Naud et al., 2008). The AdEx model and its

links with the generalized linear model (GLM) is the topic of chapter 3 of this thesis. A detailed

analysis of these two models can be found in Izhikevich (2007); Naud et al. (2008); Touboul

4As for the QIF model, there is no fixed voltage threshold in the EIF model, and spike emission depends on the
stimulation paradigm (see Fourcaud-Trocme et al. (2003))
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1.1. Simplified threshold models
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Figure 1.3: Nonlinear Integrate-and-fire model. Differences between LIF, quadratic IF and exponen-
tial IF models. The dynamics of the nonlinear integrate-and-fire models is better understood by looking
at their phase plane (V̇ as a function of V ). (A) Nullcline of the LIF model (dashed line). In absence of
input current, the dynamics of the LIF model is governed by two fixed points, a stable one at EL (full
red dot) and an unstable one at V ∗

T (open red dot), so that the voltage stays at EL . When a positive
constant current I0 is applied, the nullcline is shifted upward (blue line), the two fixed points collapse
and disappear so that the system loses stability via a saddle node bifurcation, producing spikes. Due to
the reset at a constant value, the LIF model produces tonic spiking (right panel). The hard threshold
guarantees that in response to a suprathreshold injection of current, spikes are always emitted at the
same threshold V ∗

T (right panel, dashed line). (B) As in A, but for the QIF model. The nullcline of the
QIF model is a quadratic function with two fixed points, one stable at EL and one unstable one at V ∗

T ,
when a constant depolarizing current I0 is applied, the nullcline is shifted upward and the system
undergoes a saddle node bifurcation. By contrast to the LIF model, there is no hard threshold and a
spike is emitted when the voltage quickly diverges to infinity. As shown in right panel, the QIF model
approximates the smooth spike initiation by a quadratic function, leading to more realistic spike onset.
In this model the actual firing threshold is ill-defined and depends on the stimulation protocol. (C)
Same as B, but for the EIF model. In contrast to the QIF model, EIF model approximates the spike
initiation with an exponential function, leading to a more realistic spike onset (Badel et al., 2008). (D)
Spike initiation trajectories produced by the three different models. The nonlinearities of the QIF and
EIF models start to play role at relatively high voltages (close to V ∗

T ) and capture smooth spike initiation,
while the LIF emits a spike exactly at V ∗

T (dashed line).

(2008); Touboul and Brette (2008) and Touboul and Brette (2009).

1.1.6 Spike-timing variability

Neurons are intrinsically noisy, indeed when stimulated several times with the same input

current spikes do not occur exactly at the same times (Schneidman et al., 1998; Mainen and

Sejnowski, 1995) and voltage trajectories differ between repetitions (Manwani and Koch, 1999;

13



Chapter 1. Introduction: Dynamics of single neurons

Faisal et al., 2008). This stochasticity is mainly due to two intrinsic sources of noise: (i) thermal

noise due the resistive nature of the neuron membrane (Manwani and Koch, 1999), (ii) channel

noise resulting from the stochastic and discrete nature of ion channels5 (Schneidman et al.,

1998; Manwani and Koch, 1999; White et al., 2000; Stiefel et al., 2013). The functional role of

single neuron stochasticity is still debated (Shadlen and Newsome, 1994; Bair and Koch, 1996;

Faisal et al., 2008; Berkes et al., 2011; Beck et al., 2012).

Trial-to-trial variability can be reproduced by extending IF models with a source of noise in

the input current (i.e. diffusive noise; see van Kampen (1992)), or by making the threshold

process stochastic (escape rate; Gerstner and van Hemmen (1992); Paninski et al. (2005). The

link between IF models extended with diffusive noise and escape rate model is discussed in

Plesser and Gerstner (2000) and a particular case is studied in the 3rd chapter of this thesis. In

the following I will only focus on the escape rate model, since it is the model used throughout

all this thesis.

Escape rate model

In the escape rate model, spikes are produced stochastically according to a point process

with conditional firing intensity λ(t |V ,V ∗
T ) (also called stochastic intensity), which nonlinearly

depends on the distance between the membrane potential V (t ) and the firing threshold V ∗
T

(Gerstner and van Hemmen, 1992; Paninski et al., 2005; Jolivet et al., 2006):

λ(t |V ,VT ) = λ0 · f
(
V ,V ∗

T

)
, (1.17)

where λ0 has units of s−1, so that λ(t ) is in Hz. According to Equation 1.17 the probability of

emitting a spike at time t̂ is given by (Gerstner and Kistler, 2002):

P (t̂ ∈ [t ; t +∆t ]) = 1−exp

(
−

∫ t+∆t

t
λ (s)d s

)
≈λ(t )∆t . (1.18)

where ∆t is an arbitrarily small time step. The choice of the nonlinear function f (·) is free,

however it is reasonable to takes into account informations gathered from data. For instance,

it seems natural to choose a function f (·) for which probability of spiking vanishes when

V →−∞ and goes to infinity when V →∞.

Depending on the properties of f (·), the likelihood of the model6 can be a convex function of

5Extrinsic sources of noise, such as background synaptic activities or unreliability of synaptic transmission
(Allen and Stevens, 1994; Dobrunz and Stevens, 1997) do not play a role when considering somatic injection of
current in in-vitro preparation and so, are out of the scope of this thesis.

6Following Equation 1.17-1.18, the log-likelihood of observing spikes at times t̂ j for an escape rate model is
given by: logL(V ,θ) = ∑

t̂ j
logλ0∆t f (V ,θ)−∑

t log(1−λ0∆t f (V ,θ)) and can be interpreted as the probability of

the model to generate the observed spiketrain {t̂ j }.
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1.2. Generalized Integrate-and-fire model

the model parameters. Convex likelihood is an important criterion to take into account when

choosing f (·), since it allows for a fast and robust parameter estimation (Gerstner and van

Hemmen (1992); Pillow et al. (2008) and chapters 2, 4, 5 and Appendix). One can mathemat-

ically demonstrate that for any convex and log-concave function f (·), the model likelihood

becomes a convex function of its parameters (Paninski, 2004). Typical functions fulfilling these

requirements are: the linear rectifier function, the quadratic function (Simoncelli and Heeger,

1998) and the exponential function (Pillow et al., 2008). Since the exponential function is in

good agreements with experimental data (Jolivet et al., 2006), a good model for stochastic

spike emission is given by:

λ(t |V ,V ∗
T ) = λ0 ·exp

(
V (t )−V ∗

T

∆V

)
, (1.19)

where ∆V defines the level of stochasticity of the model. Note that the LIF model is a special

case of Equation 1.19. Indeed, in the limit ∆V → 0, the model becomes deterministic and

action potentials are emitted at the precise moment when the membrane potential crosses

the firing threshold V ∗
T .

The escape rate model defined by Eq. 1.17 shares some interesting links with another statistical

class of models called Generalized Linear Models (GLM; Truccolo et al. (2005); Pillow et al.

(2008) and also see Dayan and Abbott (2001)), which are introduced in the next section.

1.2 Generalized Integrate-and-fire model

1.2.1 Model definition

The GIF model is obtained by extending the LIF model with a spike-triggered current, a spike-

triggered movement of the firing threshold and an exponential escape rate mechanism for

stochastic spike emission. The subthreshold voltage V (t ) evolves according to the following

differential equation:

CV̇ (t ) =−gL(V (t )−EL)− ∑
t̂ j<t

η(t − t̂ j )+ I (t ), (1.20)

where the parameters C , gL and EL define the passive properties of the neuron, I (t) is the

input current and {t̂ j } are the spike times. After each spike, a stereotypical current η(t) is

triggered7 that accumulates over subsequent spikes to account for SFA. Each time a spike is

emitted, the numerical integration is stopped during a short absolute refractory period Tref

and the membrane potential is reset to V (t̂ j +Tref) =Vreset.

Spikes are produced stochastically according to an inhomogenous point process with firing

intensity λ(t |V ,VT ), which exponentially depends on the difference between the membrane

7the spike-triggered current η(t ) is hyperpolarizing when its amplitude is positive and depolarizing otherwise.
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PIF LIF

SRM
0

RIF Q
IF EIF Iz
hi

AdEx

SRM

GIF

Absolute refractoriness X X X X X X X X X X

Relative refractoriness 7 X X X X X X X X X

Subthreshold resonance 7 7 7 X 7 7 X X X 7

After-hyperpolarizing potential 7 7 X 7 7 7 X X X X

Spike-history effets 7 7 7 7 7 7 X X X X

Realistic reset value 7 7 7 7 7 7 7 7 X X

Smooth spike initiation 7 7 7 7 X X X X 7 7

Spike-timing variablity 7 7 7 7 7 X X1 X1 7 X

Table 1.2: Biological features reproduced by different variants of the IF models. This table summa-
rizes the ability of individual IF model to reproduce a given biological phenomenon. In each column
the model is indicate by its acronym: PIF: Perfect Integrate-and-Fire, Gerstein and Mandelbrot (1964);
LIF: Leaky Integrate-and-Fire, Lapicque (1907); SRM0: Spike Response Model 0, Gerstner (1995a); RIF:
Resonate Integrate-and-Fire, Izhikevich (2001); QIF: Quadratic Integrate-and-Fire, Feng (2001); EIF:
Exponential Integrate-and-Fire, Fourcaud-Trocme et al. (2003); Izhi: Izhikevitch model, Izhikevich
(2003); AdEx: Adaptive Exponential Integrate-and-Fire, Brette and Gerstner (2005); SRM: Spike Re-
sponse Model, Gerstner and Kistler (2002); GIF: Generalized Integrate-and-Fire as presented in the
section 1.2.
Superscript 1: Depending on its parameters, the NLIF model could exhibit chaotic spiking activity.
This chaotic activity is not due to an additional source of noise in the system, but is an emergent
properties of this 2-dimensional system of differential equations, mainly induced by the hard reset in
the dynamics.

potential V (t ) and the firing threshold VT (t ) (Gerstner and van Hemmen, 1992; Paninski et al.,

2005; Jolivet et al., 2006):

λ(t |V ,VT ) =λ0 ·exp

(
V (t )−VT (t )

∆V

)
. (1.21)

In contrast to Equation 1.19, the firing threshold VT (t ) of the GIF model is dynamic:

VT (t ) =V ∗
T + ∑

t̂ j<t

γ(t − t̂ j ), (1.22)

where V ∗
T is the baseline threshold and γ(t ) describes the stereotypical trajectory of the firing

threshold after a spike. Since the contribution of different spikes accumulates, the moving

threshold defined in Equation 1.22 constitutes an additional source of adaptation.

In this thesis, I used the GIF model to perform high throughput parameter extraction from in

vitro recordings (chapter 4), characterize different cell types (chapter 2), predict the spiking

activity of different neuron types (chapter 2, 4, 5 and Appendix) and characterize SFA on
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1.2. Generalized Integrate-and-fire model

multiple timescales (Appendix).

1.2.2 Flexibility of the GIF model

The GIF model is very flexible. Indeed, depending on its parameters, it is able to reproduce

most of the firing patterns that have been experimentally observed (Markram et al., 2004). In

contrast to the NLIF models, where different firing patterns emerge from different bifurcations

(Izhikevich, 2007; Naud et al., 2008; Touboul, 2008; Touboul and Brette, 2008), the type of

response of the GIF model to a step of current mainly depends on the time courses of the

spike-triggered current η(t ) and movement of the firing threshold γ(t ) (Figure 1.4).
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Figure 1.4: Flexibility of the generalized integrate-and-fire model (GIF). (A-F) Depending on its
parameters, the GIF model produces different firing patterns (right panels, black) in response to a step
current (right panels, grey). All the model parameters but the effective history kernel h(t ) (left panel,
red) are kept constant. For illustrating purposes the stochasticity of the GIF model has been set to an
arbitrary small value. (A) Without spike-triggered process (h(t) = 0, left panel, red), the GIF model
produces spikes at regular interval (tonic spiking). (B) When an hyperpolarizing spike-triggered kernel
is present, the GIF model produces spike-frequency adaptation. (C) Conversely, with a depolarizing
history kernel, the instantaneous firing rate increases with time, producing facilitation. (D-E) When
h(t) is composed of a first depolarizing part followed by a longer and weaker hyperpolarizing part,
the GIF model produces bursts of action potentials. Depending on the precise shape of this biphasic
kernel, it can produces an initial burst followed by tonic spiking ((D) initial bursting), or some volleys
of bursts followed by an arbitrary long period of silence ((E), cycling bursting). The precise number of
spikes in a burst depends on the shape of h(t ). (F) With the particular biphasic shape of h(t ) shown on
the left panel, spiking can be switched on by a brief pulse of current and then continue until a brief
hyperpolarizing pulse of current occurs. This kind of behavior is referred as biphasic firing pattern or
memory (since it remembers the last depolarizing pulse of current).
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1.2.3 Link between GIF and GLM

To establish links between the GIF model and the other models introduced in the previous

sections, it is convenient to rewrite the GIF model in its integral form:

V (t ) ≈ EL +
∫ t

0
κ(s)I (t − s)d s − ∑

t̂ j<t

(
ηv (t − t̂ j )+ηR (t − t̂ )

)
(1.23)

where κ(t) = 1
C exp

( −t
RC

)
is the exponential membrane filter of the LIF model (Equation 1.4),

ηR (t ) accounts for the relative refractoriness of the LIF induced by the hard reset and ηv (t ) de-

scribes the stereotypical trajectory of the membrane potential induced by the spike-triggered

current η:

ηv (t ) =
∫ ∞

0
κ(s)η(t − s)d s. (1.24)

The approximation in Eq 1.23 comes from the fact that the voltage at which spikes are emitted

is not fixed, but depends both on the dynamic nature of VT (t ) and on the escape rate mecha-

nism. To avoid this approximation, one should make the magnitude of the refractory kernel

spike-dependent (i.e. ηR (t ) = (VT (t̂ )−ER ) ·exp
( −t

RC

)
). However, under the assumption of low

threshold variability, one can introduce a single refractory kernel ηR given by:

ηR (t ) = (V̄ ∗
T −ER ) ·exp

( −t

RC

)
(1.25)

where V̄ ∗
T = 〈V (t̂ j )〉 j is the average voltage at which spikes occur. In this form, the GIF model

can be interpreted as a Spike Response Model with escape rate (SRM) (Jolivet et al., 2006;

Kobayashi and Shinomoto, 2007; Gerstner and Kistler, 2002).

Interestingly, it is possible to reduce the GIF model into a more abstract model that describes

the spiking activity without explicitly modeling the subthreshold membrane potential: the

Generalized Linear Model (GLM). The GLM provides a statistical description of the single-

neuron spiking activity (Simoncelli and Heeger, 1998; Dayan and Abbott, 2001; Paninski, 2004;

Truccolo et al., 2005; Pillow et al., 2008) and shares many similitudes with the GIF model.

Indeed, the GLM describes the spiking behavior of the neuron by a linear filter κGLM, followed

by an exponential nonlinearity which transforms the filtered input into a spiking intensity

λ(t ) (see equation 1.17). Often, GLMs account for spike-history effects by means of a feedback

kernel h(t ). Mathematically, the conditional firing intensity of the GLM is given by:

λ(t ) = λ0 ·exp

E0 +
∫ t

0
κGLM(s)I (t − s)d s − ∑

t̂ j<t

h(t − t̂ j )

, (1.26)
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1.3. Structure of the thesis

where E0 is a constant. The GIF model can therefore be mapped to a GLM by setting its

parameters as follows:

E0 = 1

∆V
· (EL −V ∗

T ) (1.27)

κGLM(t ) = 1

∆V
·κ(t ) (1.28)

h(t ) = 1

∆V
· (ηv (t )+ηR (t )+γ(t )). (1.29)

Despite the strong similarity between these two models, it is important to point out that the

biological interpretation of the GLM filters κGLM(t ) and h(t ) are not as straightforward as for

the GIF model. The linear filter κGLM(t ) does not transform an input current into a voltage and

consequently it can not be interpreted as the membrane filter. The same observation stands

for the history-dependent filter h(t ), which, as shown in Equation 1.29, summarizes the effect

of the spike-triggered current η and the moving threshold γ.

In the past, GLMs have been used to: (i) infer the connectivity between cells (Okatan et al.,

2005; Eldawlatly et al., 2009; Gerhard et al., 2013), (ii) characterize receptive field of neurons

(by directly mapping external sensory stimuli to output spike trains) and (iii) decode the neural

code (Lawhern et al., 2010; Pillow et al., 2011; Shoham et al., 2005).

1.3 Structure of the thesis

The following chapters of this thesis regroup 3 peer-reviewed articles, 1 submitted paper

and 1 manuscript in preparation, which present novel results in the field of computational

neuroscience, simple neuron models, spike-frequency adaptation and neural coding.

Chapter 2 introduces a new version of the Generalized Integrate-and-Fire model along with a

convex fitting procedure allowing for efficient parameter extraction from intracellular record-

ings. We show how cortical neurons of different cell-types implement spike-frequency adapta-

tion by the means of two distinct mechanisms: the spike-triggered current and the moving

threshold. We also show that adaptation is cell-type specific and acts on different timescales

ranging from milliseconds to seconds. This chapter appeared in Journal of Neurophysiology,

Mensi et al. (2011b).

Chapter 3 explores the links between the AdEx model with diffusive noise and the GLM. In

the first part the GLM linear filters are analytically derived from the AdEX model. In the

second part, the GLM nonlinearity is numerically estimated from the AdEX spiking probability

distribution. Our results show that the firing activities of the two models are statistically

indistinguishable. We therefore concluded that the two are almost equivalent. This chapter

was published in Neural Information Processing Systems (NIPS), Mensi et al. (2011a).
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In the next years automatic patch-clamp will become available, creating a huge amount of

data. To analyze such datasets, fast and efficient tools have to be developed. In Chapter 4,

we demonstrate that the GIF model along with its convex fitting procedure is suitable for

automatic high-throughput single-neuron characterization. This chapter is under review in

Neuron, Mensi et al. (2014).

Chapter 5 introduces a new model, the iGIF model, that accounts for enhanced sensitivity to

input fluctuations experimentally (Arsiero et al., 2007). The iGIF extends the GIF model by a

nonlinear coupling between membrane potential and firing threshold. This new mechanism

implements a form of multiplicative adaptation. This chapter reports preliminary results that

were presented at Cosyne 2013, 2014 and in INCF 2013.

Finally the Appendix presents a study that extends the work presented in Chapter 2 by looking

at longer timescales in the spike-triggered processes. Our results show that, in mice pyramidal

neurons, SFA is a scale-free process, correctly described by a power-law. We also show that

power-law adaptation is optimally tuned to encode in vivo-like input current. This chapter

was published in Nature Neuroscience, Pozzorini et al. (2013).

My contribution to each of these chapters is detailed in the last chapter of this thesis.
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2 Parameter Extraction and Classi-
fication of Three Cortical Neuron
Types Reveals Two Distinct Adaptation
Mechanisms

Cortical information processing originates from the exchange of action potentials between

many cell types1. In order to capture the essence of these interactions it is of critical impor-

tance to build mathematical models that reflect the characteristic features of spike generation

in individual neurons. We propose a framework to automatically extract such features from

current-clamp experiments, in particular the passive properties of a neuron (i.e. membrane

time constant, reversal potential and capacitance), the spike-triggered adaptation currents,

as well as the dynamics of the action potential threshold. The stochastic model that results

from our maximum likelihood approach accurately predicts the spike times, the subthreshold

voltage, the firing patterns, and the type of frequency-current curve. Extracting the model pa-

rameters for three cortical cell types revealed that cell types show highly significant differences

in the time course of the spike-triggered currents and moving threshold, that is, in their adap-

tation and refractory properties, but not in their passive properties. In particular, GABAergic

fast-spiking neurons mediate weak adaptation through spike-triggered currents only, whereas

regular spiking excitatory neurons mediate adaptation with both moving threshold and spike-

triggered currents. GABAergic non-fast-spiking neurons combine the two distinct adaptation

mechanisms with reduced strength. Differences between cell types are large enough to enable

automatic classification of neurons into three different classes. Parameter extraction is per-

formed for individual neurons so that we find not only the mean parameter values for each

neuron type, but also the spread of parameters within a group of neurons, which will be useful

for future large-scale computer simulations.

1This text is copied from Mensi et al. (2011b), full citation in the bibliography
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Chapter 2. Parameter Extraction and Classification of Three Cortical Neuron Types
Reveals Two Distinct Adaptation Mechanisms

2.1 Introduction

Cortical neurons exhibit a variety of different firing patterns in response to step currents

(Connors and Gutnick, 1990; Markram et al., 2004) which has led to intricate electrophysiolog-

ical characterization schemes for three main neuronal cell-types (regular-spiking excitatory

neurons (Exc), GABAergic fast-spiking neurons (FS) and GABAergic non-fast-spiking neurons

(NFS)). The electrophysiological characterization which reflects the biochemical composition

of the cells (Toledo-Rodriguez et al., 2004) is often done manually by visual observation of

the firing patterns or, more systematically, by automatic extraction of a few parameters such

as the ratio of the first to the second interspike interval, the minimum voltage of the spike

afterpotential, the width of an action potential etc. The definition of these parameters is

arbitrary and their relevance for neural information processing questionable. The question

arises whether a more principled characterization and classification of the cell types is possible

based on the properties affecting the conversion of synaptic inputs into a spike.

In the community of computational neuroscience it has been established over the last 20

years that simplified spiking neuron models are capable of reproducing the variety of firing

patterns that have been found in experimental preparations, including delayed spike onset,

bursting, strong or weak adaptation, refractoriness, etc (Gerstner et al., 1996; Izhikevich, 2004,

2007; Brette and Gerstner, 2005; Naud et al., 2008; Touboul and Brette, 2009; Mihalaş and

Niebur, 2009). All of these models belong to the family of generalized integrate-and-fire mod-

els, but vary in the way the standard leaky integrate-and-fire model (Lapicque, 1907; Stein,

1967) is generalized. Features to upgrade the simple integrate-and-fire model include spike

after-currents (Baldissera et al., 1976; Gerstner et al., 1996; Benda and Herz, 2003; Izhikevich,

2007; Paninski et al., 2004; Brette and Gerstner, 2005), dynamic threshold (Hill, 1936; Fuortes

and Mantegazzini, 1962; Chacron et al., 2003; Jolivet et al., 2006; Badel et al., 2007), smooth

spike initiation (Latham et al., 2000; Fourcaud-Trocme et al., 2003; Brette and Gerstner, 2005)

and linearized subthreshold currents (Richardson et al., 2003; Izhikevich, 2007). Important

questions are then: which of these features are needed for basic cortical computation? How

many levels of complexity do we have to add to account for relevant features of cortical dy-

namics? Is the spike-frequency adaptation mediated by moving thresholds or spike-triggered

currents?

To answer these questions several groups used what one could call the Turing test for point-

stimulated neurons (Keat et al., 2001; Paninski et al., 2005; Jolivet et al., 2006, 2007; Kobayashi

et al., 2009; Gerstner and Naud, 2009): a somatic current is injected into a cortical neuron

in-vitro while its response is being recorded. The modeler then asks how the model response

compares with the neuronal response on data that was not used for optimizing the parameters

of the model. This is done both qualitatively (for instance by reproducing the firing patterns

(Gerstner et al., 1996; Izhikevich, 2004; Naud et al., 2008; Touboul and Brette, 2009; Mihalaş

and Niebur, 2009)) and quantitatively. The quantitative test consists of predicting the correct

spike-timing and subthreshold voltage of the real neuron. Obviously, a simplified neuron

model is not expected to work across the whole range of stimuli that one can artificially design

and apply to electrophysiological experiments. The optimal version of this test would therefore
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use for a neuron in-vitro a stimulus that is similar (Poliakov et al., 1997; Monier et al., 2008)

to the one a real neuron receives in an in-vivo situation, so that the activity of the neuron is

within a range that can be expected in-vivo (Crochet and Petersen, 2006; Poulet and Petersen,

2008; Gentet et al., 2010). The optimal stimulus will appear as a noisy time-series reminis-

cent but not identical to the white noise previously used for characterizing the input/output

relationship (Bryant and Segundo, 1976; Marmarelis and Marmarelis, 1978; Van Steveninck

and Bialek, 1988). We say that the model is ‘good enough’ if a neutral expert is not able to

distinguish the activity of the model from that of the real neuron. We call this the ‘Turing Test’

of point-stimulated neuron models in analogy to the test of intelligence in computer programs

suggested by Alan Turing over sixty years ago (Turing, 1950). A similar framework was also

used to test the validity of neuron models in the visual pathway following light stimulation

(Keat et al., 2001; Pillow et al., 2005; Carandini et al., 2007; Pillow et al., 2008)

The aim of this paper is three-fold. Firstly, we present a systematic method for extracting the

parameters that control the conversion of synaptic input into spike emission at the level of

the soma. The method relies on the separation of the parameters affecting the subthreshold

voltage and those affecting the firing threshold and its dynamics. Our method improves

previously described methods for extracting spike-triggered currents (Paninski et al., 2004;

Jolivet et al., 2006; Badel et al., 2007) and dynamic threshold (Azouz and Gray, 2000; Chacron

et al., 2003; Badel et al., 2007). We use this method to fit experimental data from fast spiking

GABAergic neurons (FS), non-fast spiking GABAergic neurons (NFS) and excitatory cells (Exc).

For each neuron type, we find the simplest model that reproduces the activity of neurons

on data that was not used for parameter optimization. The models we extract reproduce the

excitability type of GABAergic FS, GABAergic NFS and Exc neurons (Connors and Gutnick,

1990; Tateno et al., 2004; Markram et al., 2004). Moreover above 80% of the spikes can be

predicted on average while the mismatch in subthreshold voltage prediction is less than 2 mV.

Secondly, we ask which are the features essential for the neuron model to pass the Turing Test

for point-stimulated neurons. We consider subthreshold resonance, conductance- versus

current-based adaptation as well as current- versus threshold-based adaptation. Our results

reveal the importance of adaptation currents and of a moving threshold with time constants

that can be as long as hundreds of milliseconds. We find that different types of neurons

use moving thresholds and spike-triggered currents differently to mediate refractoriness and

spike-frequency adaptation.

Finally, we show that the parameters of the adaptation currents and dynamic threshold can be

used for an automatic classification of the electrophysiological traces into three well-separated

classes, whereas the passive parameters alone do not contain a sufficient amount of informa-

tion to do so. We observe that the three neuron types have very different threshold dynamics

and that efficient classification can be done using the parameters regulating the dynamics of

the threshold.

We expect that applying the automatic fitting method on a larger database could allow an

unsupervised classification of the extracted computational properties, which would open the

possibility to detect the potential spread of parameters within a given class of neurons and

therefore avoid a forced classification if in reality parameters are continuous. Finally, we expect
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that our method of parameter extraction once combined with similar results for synapses,

dendrites and connectivity patterns will enable us to build network models where neuronal

parameters and firing patterns reproduce not only the mean ‘typical’ firing of different neuron

types, but also the spread of firing characteristics within and between classes of neurons.

2.2 Material and Methods

2.2.1 In vitro Two-photon Microscopy and Whole-cell Recordings

All animal experiments were carried out under authorisation from the Swiss Federal Veterinary

Office. Brains of 17-22 day old GAD67-GFP knock-mice (Tamamaki et al., 2003) were removed

and quickly placed into an ice-cold modified ACSF (Bureau et al., 2006) (containing in mM:

110 choline chloride, 25 NaHCO3, 25 D-glucose, 11.6 sodium ascorbate, 7 MgCl2, 3.1 sodium

pyruvate, 2.5 KCl, 1.25 NaH2PO4 and 0.5 CaCl2). 300 µm oblique slices (parasagittal 35° away

from vertical) were cut with a vibrating slicer (Leica VT1000S, Germany) and subsequently

transferred into standard ACSF (containing in mM: 125 NaCl, 25 NaHCO3, 25 D-glucose, 2.5

KCl, 1.25 NaH2PO4, 2 CaCl2 and 1 MgCl2) aerated with 95% O2 / 5% CO2 at 35°C for 15 minutes.

Afterwards slices were maintained at room temperature for at least 30 minutes prior to use

to allow for recovery from the slicing procedure. GFP-expressing neurons were visualized

using a two-photon microscope (Prairie Technologies, USA). Infrared two-photon excitation

light of 880 nm was generated by a MaiTai laser (Spectra-Physics, France) and focused into

the slice tissue through a 40x 0.8NA water immersion objective (Olympus, Japan). Detection

of bandpass-filtered green fluorescence (525 ± 35 nm) was achieved using PMTs above the

objective and below the condenser. Infrared light was passed through a Dodt contrast element

(Luigs & Neumann, Germany) and detected by an additional PMT to allow creation of a high

contrast view of the brain tissue. Whole-cell recordings were carried out at 33°C in standard

ACSF. Borosilicate pipettes of 5-7 MΩ resistance were used. The patch-pipette intracellular

solution contained (in mM): 135 K-gluconate, 4 KCl, 4 Mg-ATP, 10 Na2-phosphocreatine, 0.3

Na-GTP, 10 HEPES (pH 7.3, 280 mOsm). A Multiclamp 700A amplifier (Molecular Devices,

USA) was used for whole-cell recordings. Data were low-pass Bessel filtered at 10 kHz and

digitized at 20 kHz with an ITC-18 acquisition interface (HEKA Electronics, Germany). The

measured membrane potential was not corrected for the liquid junction potential.

The bridge balance feature of Multiclamp was not used during the recordings. Access resis-

tance values were in the range of 10-15 MOhm. If there was an increase in access resistance

or a drift in the resting membrane potential during the recording, traces were discarded.

Moreover background synaptic activity was not blocked (e.g. with CNQX/AP5). Under our

recording conditions, miniature and spontaneous EPSPs are present but neurons do not show

spontaneous spiking.

Cortical layers 2/3 GABAergic inhibitory neurons were distinguished from excitatory neurons

(Exc) by their expression of GFP (Gentet et al., 2010). GFP-expressing GABAergic neurons were

further classified into fast-spiking (FS) and non-fast-spiking (NFS) neurons with respect to

their action-potential (AP) kinetics upon somatic current pulse injection. An AP half-width
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lower than 0.75 ms was used as a selection criterion for GABAergic FS neurons.

2.2.2 Stimulation Protocol: Synaptic-like current

We construct input currents Is yn(t) as a weighted sum of six impinging spike trains con-

structed from independent inhomogeneous Poisson processes (see also (Poliakov et al.,

1997)). Three spike-trains are convolved with a mono-exponential filter with time con-

stant of 2 ms mimicking spike arrival at excitatory synapses and summed with weight w1,2,3,

while the three remaining ones are convolved with a 10 ms mono-exponential filter for the

inhibitory spike trains and summed with weight w4,5,6. The unitary weights of the PSCs

w1,2,3,4,5,6 =
(

20.00 34.14 5.86 −1.60 −3.89 −2.51
)

are then rescaled by a global fac-

tor w0 that was chosen for each cell individually in order to drive the neuron to a mean firing

frequency between 2 and 15 Hz. In our data set w0 is on average 0.89, 0.65 and 0.72 for the

GABAergic FS neurons, the GABAergic NFS neurons and the Exc neurons, respectively. Finally

all the Poisson processes shared the same time-dependent intensity (firing rate) which is a con-

catenation of blocks of 300-500 ms duration each with a constant intensity chosen randomly

from a uniform distribution between 0 and 50 Hz. The duration of the blocks was drawn from

a uniform distribution (Figure 2.1 A, B, C). Note that this procedure produces a colored-noise

current with time-dependent mean and standard deviation. We call the time-dependent input

constructed by the above procedure a synaptic-like current Is yn(t ).

This synaptic-like current has the advantage that it produces voltage traces with ISI distri-

butions that cover a wide range of timescales, from a few ms to more than 1 second (see

Figure 2.8 G, H and I). This enables the extraction of threshold mechanisms that span different

timescales, from milliseconds to seconds.

One minute of this synaptic-like current is injected in the cortical neurons repeatedly, inter-

rupted by silent periods of 10 seconds. Each independent injection is called a ‘repetition’.

Note that in each repetition the cell received exactly the same time course of synaptic-like

current which enables us to study peri-stimulus time histograms (PSTH) and reliability of

neuronal spiking. In order to compare experimental results with our models, we used the

first 30 seconds of all repetitions for fitting and reserved the last 30 seconds for testing the

performance of the models. These two subsets of the data are called training and test sets,

respectively.

2.2.3 Other Stimulation Protocol

To assess the robustness of our fitting procedure on surrogate data, we also test it on 4 different

stimulation paradigms applied only to model neurons but not to real neurons. First we

use a gradually increasing ramp of current of 30 seconds. Second we construct an input

current as a series of 300 ms step current interleaving with 200 ms of silence, with increasing

intensities. Third we used as a stimulation current a white noise with 0 mean that lasts for

30 seconds. Finally we construct a 30 seconds long input current made of colored noise,

generated according to an Ornstein-Uhlenbeck process with correlation time constant of 4 ms.
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A Impinging Poisson spike trains

B EPSC kernel

IPSC kernel

C Input Current I(t)

D Simulated membrane potential (IF2)

D Experimental Membrane Potential

C Input Current

E IF2 Voltage

Figure 2.1: Stimulation protocol and dynamics of an IF model. A: Six spike trains are generated by
an inhomogeneous Poisson process with piecewise constant rates. Rates are switched simultaneously
for all input spike trains. The rate changes at intervals chosen randomly between 300 - 500 ms. B:
The excitatory spike trains are convolved with an excitatory postsynaptic current (EPSC) kernel that
has a time constant of 2 ms to mimic AMPA-receptor dynamics and the inhibitory spike trains are
convolved with an inhibitory postsynaptic current (IPSC) kernel with a time constant of 10 ms to mimic
GABA-receptor dynamics. C: The six current traces are combined in a weighted sum, with weight w1

to w6 to produce the final input current. The weights are chosen to drive the neuron to a mean firing
frequency between 5 and 15 Hz (see panel D), but in a segment of 100 ms the momentary rate can be
above 30 Hz. D: Experimental membrance potential as a function of time of a GABAergic FS neuron
stimulated with the input current in panel C. E: An example of a model voltage trace generated by the
injection of the input current from panel C. Here the model has N = 2 spike-triggered currents (IF2).

All the parameters of these currents are chosen so that the resulting input current produced

an averaged firing frequency of approximatively 15 Hz.

2.2.4 Performance Measurements

Since we are assessing the performance on the test set, the performance of the model will not

increase by merely increasing the number of parameters because over-fitting would occur on

the training set and lower the performance on the test set. Two distinct criteria are used to

evaluate the performance of our IF models: (i) the precise spike time prediction and (ii) the

subthreshold voltage prediction.

Spike Train Similarity

Neurons, as well as stochastic models, have some trial-to-trial variations due to intrinsic noise.

In neurons, this intrinsic noise is mainly due to channel noise and spontaneous synaptic

events (Faisal et al., 2008). To quantify the spike time prediction we used a method that

corrects the bias due to the small number of available repetitions (Naud et al., 2011). We

first use our optimal stochastic model to generate Rm = 1000 spike-time predictions. The
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next step is to compute a quantity between zero and one that measures how well the set

of Rm model spike trains matches the set of Rr experimental spike trains, where Rr is the

number of repetitions available for the specific cell (lower index r for real neuron). To do so,

we first count the total number of spikes of the model that fall within +/- 4 ms of a spike in

the recorded spike train and average the count over all repetitions. We call the resulting raw

measure of comparison between model (lower index m) and real neuron (lower index r ): nmr .

Next we count the average number of coincidences between distinct repetitions of the model

spike trains and average the results across all available repetitions. We call this quantity nmm .

Similarly, nr r is the analogous quantity evaluated over the available repetitions recorded in

the real neuron. Finally, we combine these numbers into the measure:

M∗
d = nmr

1
2 (nmm +nr r )

(2.1)

which is an estimate of the fraction of spikes that are correctly predicted with a precision of +/-

4 ms. It can be shown that this quantity corresponds to a normalized distance between PSTHs

(Naud et al., 2011).

Subthreshold Voltage Trace Similarity

The subthreshold voltage prediction is evaluated using the root mean square error on the

voltage (RMSE) defined by

˜RMSE =
√

1

T1

∫
ψ1

(
Vref(t |I )−Vpredicted(t |I ,θ, {t̂ref})

)2 d t (2.2)

where Vref(t |I ) is the recorded voltage given an input current I , Vpr edi cted (t |I ,θ, {t̂ref}) is the

voltage predicted by a model with the set of parameters θ and the same input current. The

index {t̂ref} indicates that for the voltage comparison we force spikes at exactly the same time

as in the recorded voltage trace. In other words, we ask: how close is the voltage of the model

to that of the data, given the input and the firing times in the recent past. The squared error is

integrated over a subset ψ1 of the available data defined in the Appendix. T1 is the total time

for which the squared error is considered, T1 =
∫
ψ1

d t . Forcing the spikes at the observed spike

times disentangles the subthreshold voltage prediction from the spike time prediction.

To estimate the RMSE solely due to intrinsic noise, we compute the root-mean-squared error

between repetitions only on the subset of data ψ4 (defined in the Appendix), RMSEψ4 which

is restricted to voltage recordings sufficiently far away from the spikes to avoid the effect of

adaptation currents due to spikes emitted at different times across repetitions (Fellous et al.,

2004). RMSEψ4 is clearly an overestimation of the true subthreshold fluctuations because it

still contains some long-lasting spike-triggered effects. Nevertheless it can give some insights

on how well our models have to predict the subthreshold voltage. To quantify the ability

of the models to replicate subthreshold voltage fluctuations we use the normalized ‘Root

27



Chapter 2. Parameter Extraction and Classification of Three Cortical Neuron Types
Reveals Two Distinct Adaptation Mechanisms

Mean Square Error Ratio’: RMSER = ˜RMSE
RMSEψ4

, so that RMSER ≈ 1 for a good reproduction of the

subthreshold voltage and RMSER > 1 for inaccurate reproduction.

2.3 Results

We stimulated an experimental neuron with a time-dependent input current that mimics

stochastic spike arrival (see Figure 2.1 and Methods) and drives the neuron through episodes

of high and low firing rates. We adapted parameters of generalized integrate-and-fire models

so as to explain the data and predict spike times and subthreshold voltage for novel sitmuli

not used during parameter optimization. The results section is organized as follows. First,

we describe the model class and parameter extraction strategy. Second, we quantify the

performance of the extracted neuron model and dicuss differences between different cell

types. Third, we perform automatic classification of the different neuron types based on the

extracted parameters.

2.3.1 Model Dynamics

In order to describe subthreshold voltage and spike generation we studied a family of integrate-

and-fire models augmented with a spike-triggered current η(t ), a moving threshold γ(t ) and

stochastic spike emission via escape noise.

Subthreshold Voltage Dynamics

The somatic voltage is deterministic and follows the differential equation:

CV̇ (t ) =−gl (V (t )−El )+∑
{t̂ j }

η(t − t̂ j )+ I (t ) (2.3)

C , gl and El are the passive membrane parameters of the neuron: the membrane capaci-

tance, leak conductance and the resting potential, respectively. I (t ) is a time-dependent input

current. Adaptation of the subthreshold membrane potential is mediated by an adaptation

current η which is triggered at the firing time t̂ j ; contributions from previous spikes in the

spiking history accumulate by summation of the contributions of η(t − t̂ j ) over all spike times

{t̂ j } = {t̂1, t̂2, . . .}. By convention, the current η in Eq. 2.3 is depolarizing when its amplitude is

positive and hyperpolarizing otherwise. A short hyperpolarizing current mediates refractori-

ness, while a current with a long time constant leads to spike frequency adaptation because

the effect of multiple spikes can accumulate. Even though the reset of the voltage after a spike

is equivalent to a short hyperpolarizing pulse, we use an explicit reset that is discussed below.

We approximate the adaptation current η(t − t̂ j ) sometimes by a single exponential (IF1) or by

two exponentials (IF2), or we keep the time course arbitrary (IFη).
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Stochastic Spike Emission

The deterministic voltage dynamics of Equation 2.3 is integrated so as to yield a voltage

V (t ) =V (t |I ,θ, {t̂ j }) which depends on the input current I (t ′) for t ′ < t ; on the past firing times

t̂1, t̂2, t̂3, . . . < t , as well as the set of parameters (denoted as θ) chosen for the model. This

deterministic voltage is the central variable for the stochastic spike generation. Using the

escape-rate picture (Plesser and Gerstner, 2000; Gerstner and Kistler, 2002; Paninski et al.,

2005), the conditional probability intensity of emitting a spike is a nonlinear function of the

instantaneous distance from the voltage threshold. More precisely the stochastic spiking

process follows an inhomogeneous point process with conditional firing intensity λ(t |V ,VT )

given by:

λ(t |V ,VT ) =λ0exp

(
V (t )−VT (t )

∆V

)
(2.4)

where λ0 has units of s−1, so that λ(t) is in H z, V (t) is the membrane potential, VT (t) is the

voltage threshold and ∆V describes the sharpness of the exponential function. In principle,

any function of V −VT would be possible, but it was shown previously that the exponential

function explains experimental data well (Jolivet et al., 2006). Note that the value of λ0 can be

chosen arbitrarily since a scaling λ0 = aλ1 =λ1 exp(log a) can be compensated in Eq. 2.4 by a

shift of the threshold VT by ∆V log(a).

When a spike is emitted the numerical integration is stopped and after a short absolute

refractory period Trefr, V is reset to Ereset. This voltage reset is typical for a large class of

Integrate-and-Fire (IF) models.

Moving Threshold

The voltage threshold VT (t) can be either a constant threshold, with VT (t) = V0 or a time-

dependent sliding threshold that implements an additional source of refractoriness (Gerstner

and Kistler, 2002; Chacron et al., 2003; Badel et al., 2007). In our model, the dynamic threshold

is a cumulative function of previous spike times:

VT (t ) = V0 +
∑
{t̂ j }

γ(t − t̂ j ) (2.5)

where V0 is the threshold baseline, {t̂ j } the set of spike times that were emitted before t and γ(t )

is the spike-triggered shift in voltage threshold (see Appendix A3 for details). When a dynamic

threshold VT (t ), as specified in Eq. 2.5, is used instead of the constant threshold, we denote

it with ‘+dyn’. For example, IF2 +dyn is an IF model with two exponential spike-triggered

currents and the dynamic threshold defined by γ(t ).
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2.3.2 Fitting Procedure

To extract all the parameters of the neuron model a four-step procedure is applied. The main

steps of the method are illustrated in Figure 2.2. For the details of the fitting procedure and

the definition of appropriate subsets of the available data see Appendix.

Step 1. We measure the average spike shape by computing the spike-triggered average voltage

(Jolivet et al., 2004). The refractory period Trefr and reset potential Ereset are defined by

the value of the minimum of the after hyper-polarization (AHP), see Figure 2.2 B, left

panel. For Excitatory neurons the AHP trace does not have any local minimum, and

we arbitrarily chose Trefr = 4 ms, and fixed Ereset to the corresponding voltage at this

moment. As long as it remains short, the exact value of Trefr has no impact on the quality

of the fit.

Step 2. We extract from the experimental voltage traces the first-order estimate of the time

derivative using the finite difference: V̇t = (Vt+1 −Vt )/d t . Here, Vt denotes the binned

voltage time-series as obtained from the recordings, using a bin size d t of 0.05 ms. We

use the data set ψ2 where spikes are removed (see Appendix C) so as to optimize the

parameters by minimizing the sum square error between the observed voltage time-

derivative V̇t and that of the model. The integrate-and-fire model given in Eq. 2.3 with

η(t) expressed as a linear combination of rectangular basis functions is linear in the

parameters and it is straightforward to obtain the optimal set of parameters with a

multi-linear regression on the derivative of the voltage ((Weisberg, 2005; Paninski et al.,

2005; Huys et al., 2006); see Appendix A1 and D1 for details).

Step 3. To extract the cumulative dynamic threshold γ(t) from the data, we maximize the

likelihood of generating the experimental spike train by our model. The log-likelihood

for a spike train can be written in terms of the probability pt of observing no spike in an

experimental time bin by using Bayes theorem recursively in time (Paninski, 2004):

logL(~θ3) = ∑
{t̂ j }

log(1−pt )+∑
ψ̃2

log(pt ) (2.6)

where the set of spike times {t̂ j } is taken to be 0.5 ms before the peak of the spike and

ψ̃2 contains segments of the voltage trace with the spike times removed (see Appendix

C). The optimal set of parameters θ̂3 is obtained by convex maximization of the log-

likelihood function with respect to the parameters (Paninski et al., 2005). The probability

to spike (1−pt ) or not to spike pt is calculated from the parameters of the model via Eq.

2.4, see Appendix A3 and D2 for details.

Step 4. At this point all the parameters have been extracted, but in order to obtain an optimal

spike time prediction in terms of the spike train similarity measure M∗
d (see Methods

Section ‘Spike Train Similarity’), we recompute the baseline threshold V0 so that it
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maximizes M∗
d (VT ). To do so we find the parameter V0 that maximizes M∗

d through an

exhaustive search over a large range of parameters V0.

I(t)

V(t)

y(t)

A Experimental data set

C Model

ii. Adaptation current

400 ms

25 pAMembrane filter

20 ms

B Fitting
iii. Dynamic threshold

5 m
V
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i. Spike shape
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30 m
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Figure 2.2: Fitting protocol. A: Experimental data set, injected current I (t) (top panel), recorded
voltage trace V (t ) (middle panel) and extracted spike times y(t ) (bottom panel). B: Example of extracted
parameters. (i) All the spikes are aligned (black) and averaged (red) to obtain the spike shape. The
inset shows the first 5 ms on an extended time scale. (ii) Adaptation current η (black) and a double
exponential fit (blue). Inset, membrane filter extracted with a Wiener-Hopf optimal filter method
(black) and single exponential fit (red). (iii) Dynamic threshold γ (black) and a double exponential fit
(green), the grey area represents one standard deviation. C: An example of a model voltage trace (IF2 +
dyn) produced by the injection of the input current I (t ) and the corresponding experimental voltage.
Experimental data (black), predicted voltage trace (red), voltage threshold (green) and adaptation
current (blue). The inset shows the subthreshold voltage over 100 ms in a region far away from any
spikes.

2.3.3 Efficiency and Accuracy of the Fitting Method on Surrogate Data

Before turning to experimental data obtained from cortical neurons, we checked the consis-

tency of our parameter extraction method on artificially generated data. We first generated

60 seconds of surrogate data from an IF model augmented with a spike-triggered current
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decaying exponentially with two time constants and a dynamic threshold (IF2+dyn) and used

our fitting method to retrieve its parameters. Thus we used an IF2 +dyn model to fit data

from another IF2 +dyn model. The error in the estimated parameters and thus the prediction

performance of the model depends on the amount of data used for fitting.

Figure 2.3 shows how the fitting quality evolves as a function of the amount of data used for

parameter extraction. We observe that the voltage prediction of the fitted model becomes

better when a larger amount of data is used (see Figure 2.3 A and C). But even with a small

amount of data (1 second), the predicted voltage is relatively accurate, producing a RMSE of

0.43 mV (the RMSE obtained with 15 seconds of data is 0.26 mV). The spike time prediction

also depends on the size of the training set, leading to a spike train similarity M∗
d of 0.79 with 1

second of data while M∗
d = 0.99 when 15 seconds are used. Furthermore the relative error ε in

the parameter estimate (computed according to ε= 〈|θ−θ̂θ |〉, with θ the true parameters and θ̂

the extracted parameters) also shows a strong decrease as a function of training set size, from

ε(1s) = 0.13 to ε(15s) = 0.03. Thus with less than 20 seconds of data our method enables us to

retrieve the reference parameters to a high degree of accuracy (Fig. 2.3).

To be sure that parameters have reached their steady-state, we systematically compare RMSE,

M∗
d and ε at each training set size. We find that if less than 14 seconds of recordings are used

(Figure 2.3 C, shaded area) parameters are significantly different from their steady-state value

as quantified by ε (two-sample t-test, α= 0.05). So, when our reference model is fitted to itself,

14 seconds of recordings with 10 Hz firing frequency are sufficient to obtain a good fit in terms

of RMSE, M∗
d and ε.

Since fitting a model to data (model extraction) is more difficult than fitting to itself (model

identification), for the fits to real neurons (as done in the next subsection) we always use a

training set of at least 20 seconds and a separated test set that contains at least 100 spikes with

firing frequencies from 0.1 to 40 Hz.

We checked that the fitting procedure works for other stimulation protocols. To study this

we used the stimulated IF2 +dyn model with various kinds of widely used currents: series of

steps, ramp, white noise and colored noise. We tested the fitted models on a test set made

with the synaptic-like current. The results are shown in Table 2.1. We conclude that step

currents or synaptic-like currents are more informative and enable a more reliable parameter

extraction than ramp currents and (white or colored) noise injection. This can be explained

by two facts. First, constant mean noise yields models with almost constant firing rate. The

produced ISI distributions do not span a sufficient range of timescales to allow a fair extraction

of the threshold parameters that potentially act on long timescales. Second, since we use a

training set of fixed length, the distribution of the spike times (i.e. the spiking pattern) plays an

important role in the total amount of available data for the parameter extraction. Indeed, for

the estimation of the model parameters we have to remove a period of time around each spike,

thus there is more available data when the model fires irregularly with long period of silence

interleaved with short period of high activity (which is the case with synaptic-like current

and series of steps) than when the model fires regularly (white and colored noise). Both

facts together explain why parameter extractions fails with white noise stimuli with constant
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Figure 2.3: Assessment of the fitting procedure by fitting a model to a model. A: Upper panel:
Example of injected current used as part of the test data set. Lower Panel: Corresponding voltage
trace of the reference data (black) and a modeled voltage trace (red), the upper traces are obtained
with a training set of 1 second and the lower traces with a training set of 15 seconds. B: Boxplot of
the normalized parameters extracted with a training set of 15 seconds. A perfect fit of the reference
parameters would lead to normalized parameters equal to units. All the parameters are within 5% of
their target value. Crosses denote outliers. C: The spike train similarity measure M∗

d (red) as a quality
measure of spike time prediction, RMSE (blue) as a quality measure of subthreshold voltage prediction,
and the relative error in the parameters estimates ε (black) as a function of the size of the training set,
error bars are one standard deviation. The shaded areas correspond to training set size insufficient
to reliably extract the optimal parameters. Stars denote last significant difference between M∗

d (or ε)
at a given training set size and the final values obtained with the full training set (two sample t-test,
α= 0.05).

mean and standard deviation. The problem occurring with the ramp is of another nature.

Indeed the ramp stimuli do not carry enough information to allow a fair parameter extraction:

the time-derivative is almost constant, which is insufficient to evaluate the membrane time

constant τ and the passive conductance gl .

2.3.4 Quantitative and Qualitative Accuracy of Fitted Models on FS, NFS and Exc

The accuracy of the fitting method is summarized in Fig. 2.4 for exemplars of FS, NFS and Exc

neurons. With voltage prediction consistently below the intrinsic RMSE of the data (estimated

across several repetitions, see ‘Material and Methods’), and spike time prediction above a spike

train similarity of M∗
d = 0.78 we conclude that the simple neuron models, in combination with
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Type of Stimuli RMSE M∗
d Relative Error

[mV ] [−] [−]

ramp 0.15 0.81 0.14
step 0.42 0.97 0.04

white noise 1.77 0.90 0.11
colored noise 0.26 0.88 0.12

synaptic-like noise 0.29 0.98 0.04

Table 2.1: Evaluation of the fitting procedure on different common types of stimulation. We evalu-
ate the ability of our methods to extract parameters from various types of stimulation in the training set.
After parameter extraction the model is evaluated on a test set consisting of synaptic-like current as
defined in section ‘Stimulation Protocol: Synaptic-like current’. The evaluation criteria are: the RMSE
on the voltage, the M∗

d factor as a quality measure for spike time prediction, and the relative error in
the parameter estimates. Step current and synaptic-like current are the most informative stimulation
protocols.

our fitting method accurately model the three different cell types.

Our neuron models extracted by the above procedure are able to reproduce the typical be-

havior of the different cell types in terms of their firing patterns in response to step currents.

To show this we reproduce an experiment done by (Tateno et al., 2004), where the authors

stimulate GABAergic FS and Exc neurons with step currents of 1 second at various amplitudes

and classify cells as a function of their frequency-intensity curves (f-I Curve). Using this

method the authors conclude that GABAergic FS neurons have a step in the f-I curve (Type-II

excitability) whereas Exc neurons exhibit a smooth f-I curve (Type-I excitability).

Figure 2.5 A, B and C, which have been generated using our optimal models for GABAergic

FS, GABAergic NFS and Exc neurons, are analogous to Figure 4 of the paper of (Tateno et al.,

2004). Our model of FS neurons is of Type-II exhibiting a minimal frequency at a critical

input amplitude, with fc = 15.5 Hz (when fc is computed as the inverse of the first interspike

interval) and a steady-state critical frequency of 5.45 Hz. When constant currents are used,

smaller frequencies are possible but the f-I curve always exhibits a finite jump. The critical

frequency and emergence of Type-II behaviour can be traced back to the facilitating compo-

nent of the effective moving threshold (see inset of Figure 2.5 A and Discussion for details).

If the amplitude of the stimulation current is sufficient to evoke a spike, then the facilitating

part of η(t) causes repetitive firing at non-zero frequency that is maintained as long as the

stimulating current is maintained. For NFS and Exc models we obtain a smooth transition of

the f-I curve between silence and repetitive firing, which is the behavior of the Type-I neurons

consistent with experiments of (Tateno et al., 2004). Links between the type of f-I curve and

the bifurcation theory have been previously established (Izhikevich, 2007; Naud et al., 2008).

These relations are discussed in the Section ‘Links with Bifurcation Theory’ of the Discussion.

Finally Figure 2.5 D-F provides examples of firing patterns from our optimal models for each

cell type, analogous to the examples provided in Figure 5 of (Tateno et al., 2004).

We conclude that the fitted models predict quantitatively the subthreshold voltage and the

spike times as well as qualitatively features such as the firing patterns and the type of excitabil-
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Figure 2.4: Examples of voltage traces and spike train predictions for the 3 neuron classes. A: In-
jected current. The waveform of the injected current is the same for the 3 neurons but we rescale it
(note the different scale bars for each neuron) to achieve an average firing frequency between 5 and 15
Hz when averaged across 30 seconds of stimulation, segments of 200 ms can have much higher firing
rates, see ‘Material and Methods’ for details. B: Upper panel: left, experimental voltage trace (black)
and modeled voltage trace (red) for a GABAergic FS neuron. Inset: zoom on 150 ms of subthreshold
voltage. Subthreshold voltage prediction is quantified by the measure RMSER (see Methods). Lower
panel: Raster plot of the emitted spikes during 11 repetitions for the experimental data (black) and
for the model prediction (red). Spikes that occur reliably in the neuron are reliably reproduced by the
model. Spike timing prediction is quantified by the measure M∗

d . C, as in B but for a GABAergic NFS
neuron. D, as in B but for an Excitatory neuron.

ity.

2.3.5 Essential features for Subthreshold Voltage Prediction

The membrane filter κ(t ) (described in the Appendix Section ‘Model-free Extraction of Mem-

brane Filter’) for each neuron type is well approximated by a single exponential function

(Figure 2.6A-C). Since the extraction method of the filter (see Appendix B) is flexible enough to

extract resonances, or multiple exponentials, the absence of resonances and the presence of a
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Figure 2.5: Instantaneous firing frequency of models as a function of the intensity of a step current,
(f-I curve). A: f-I curve for a model of GABAergic FS neuron: black trace - inverse of the 1st interspike
interval; red trace - steady state. Since there is a non-zero onset firing frequency fc (critical frequency)
at the threshold value of the step current amplitude, the FS model has a type-II excitability according
to the definition of (Tateno et al., 2004). Inset: the effective moving threshold in voltage ηv as extracted
by our method and fully described and discussed in Section ‘Effective Moving Threshold’. The blue
horizontal axis is at 0 mV. Around 100 ms after a spike, the effective threshold is lower than its resting
value so that generation of a further spike is facilitated. B: As in A but for a model of a GABAergic NFS
neuron. Note the smooth transition between quiescence and spiking activity, so the NFS model is
type-I. C: As in B but for a model of an Exc neuron. Here again the Exc model is a type-I model. D-F :
Examples of different firing pattern of the three models, FS (D), NFS (E) and Exc (F) neurons, for three
different intensities of the step current.

single timescale shows that voltage-dependent subthreshold currents (Richardson et al., 2003;

Izhikevich, 2007) are small and can be neglected. Moreover it follows from this finding that,

for the neuron types studied here, subthreshold resonance is not the most important factor

for accurate prediction of the voltage traces. Specific spike-triggered currents, however, are

necessary to reproduce the subthreshold voltage.

The spike-triggered current η(t ) corresponds to the stereotypical current that flows into the

neurons after a spike. After the onset of the spike, the dominant features of the spike-triggered

currents consist of (i) the current that produces the spike (i.e. the spike shape), (ii) a short

refractory current that follows the end of the AP (just a few milliseconds after the spike onset)

and (iii) a long cumulative current that can adapt the spike-frequency of the neurons. Here,

we consider only parts (ii) and (iii) since these currents are the most important part for the

processing of information done by the neuron (Koch, 1999; Hille, 1992; Jolivet et al., 2007). To
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investigate the shape of the spike-triggered currents, we measure the cumulative adaptation

current η(t) for each neuron and group these by cell type. Figure 2.6 D-F shows the mean

adaptation current η(t ) (black lines), one example for each neuron class.

Once we have η(t ) in terms of rectangular basis functions, we want to test whether a simpler

model made of a combination of a small number of exponential processes also works. To this

end we fit N exponentially decaying functions with different amplitude bi and time constant

τi on the extracted η(t). An integrate-and-fire model made with N exponential adaptation

currents will be called IFN, so that IF2 means an integrate-and-fire model with two adaptation

currents. A model where the shape η comes from the raw fit of η is called IFη. We explore the

voltage prediction in terms of RMSER mentioned in Materials and Methods, where the lower

the RMSER, the better the prediction. A RMSER < 1 is possible, because we systematically

overestimate the intrinsic ˜RMSE. Here we investigate models with static thresholds, since the

dynamic threshold has no impact on the predicted voltage when the spikes of the model are

enforced at the correct spike times.

Figure 2.6 D shows the average spike-triggered current of the 9 GABAergic FS neurons. We ob-

serve that this spike-triggered current has two main parts, a strong and fast hyperpolarization

that prevents repetitive firing during the first 40 ms, followed by a weaker but longer depolar-

ization that lasts for 350 ms. This resonance is distinct from strictly subthreshold (resonating)

membrane currents (Hutcheon and Yarom, 2000) since, as discussed above, no resonance

was observed in the membrane filter κ(t ). Note that the shape of the spike-triggered current

is similar to the feedback kernel of the FS neurons observed in (Tateno and Robinson, 2009).

The time course η(t) of the spike-triggered current can be well approximated by a double

exponential decay (IF2 with b1 =−111.61 pA, τ1 = 36.86 ms and b2 = 72.64 pA, τ2 = 61.76 ms).

The membrane potential prediction also shows that N = 2 time constants are necessary and

sufficient for optimal RMSER (Fig. 2.6 G).

The NFS GABAergic neurons show a simpler spike-triggered current that only mediates hyper-

polarization, and which can be fitted with a single exponential function (IF1 with amplitude

and time constant b1 = −29.02 pA, τ1 = 34.58 ms (figure 2.6 E, blue trace)). This current

produces the relatively weak adapting behavior of the GABAergic NFS neurons, characteristic

of their firing patterns (Kawaguchi and Hama, 1987). The membrane potential prediction also

shows that a single time constant (N = 1) is necessary and sufficient for optimal RMSER (Fig.

2.6 H).

Excitatory neurons have a stronger and longer adaptation current η(t) (Fig. 2.6 F) than the

GABAergic NFS and the GABAergic FS cells, which mediates the regular spiking (accommodat-

ing) behavior of these cells. Again this current is well approximated with a mono-exponential

function, with b1 =−48.35 pA, τ1 = 44.89 ms. Moreover we observe more variability in η(t)

across individual cells for Exc neuron than for the two other groups. The membrane potential

prediction also shows that a single time constant (N = 1) is necessary and sufficient for optimal

RMSER (Fig. 2.6 I).

From these results, we conclude that the shape and dimensions of the adaptation current

η(t) are cell-type specific. Moreover, we observe that η(t) in GABAergic NFS and Exc differs

only by their time scale and amplitude whereas η(t ) in GABAergic NFS and Exc have a shape
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distinct from η(t ) in GABAergic FS. We also notice that independent of the neuron type, spike-

triggered currents extend for a few hundred milliseconds, so that due to the cumulative effect,

the spike-triggered current influence the spike-frequency adaptation of the neurons on long

timescales. This suggests that adaptation currents might mediate some aspect of cell-type

specific behavior (i.e. firing patterns).

In summary we found that (i) the adaptation currents of different neuron classes reflect their

typical firing behavior (see Figure 2.5), (ii) adaptation currents act on multiple timescales (FS:

37 and 62 ms, NFS: 35 ms, Exc: 45 ms) and (iii) NFS and Exc have strictly hyperpolarizing

currents (leading to spike-frequency adaptation), but FS have both hyperpolarizing and depo-

larizing currents. From these results it is clear that spike-triggered currents can cause different

types of spike-frequency adaptation. However some others mechanisms can also contribute

to adaptation such as a fatigue of action potential (AP) initiation mechanisms (Kobayashi

et al., 2009; Benda et al., 2010). This is discussed in the next section.

In the previous paragraphs, we discussed the importance of spike-triggered currents. However

we know that these mechanisms are mediated by a spike-triggered change in conductance

rather than current (Schwindt et al., 1988b,a). To address this issue we fit spike-triggered

conductances instead of spike-triggered currents and look at the magnitude of the improve-

ments that follow (see Appendix A2 and D1 for a description of the conductance-based

spike-triggered adaptation).

Figure 2.7 A shows the movement of the cumulative change in conductance ηcond following

each spike for excitatory neurons. The ˜RMSE depends on the reversal potential Erev and

shows a minimum at Êrev =−51.89 mV (Figure 2.7 B). Note that Erev could be attributed to the

reversal potential of potassium since most of the spike-triggered currents are mediated by

potassium ion channels. However the high value we found indicates that Erev reflects a mixed

ion reversal, which in addition to potassium, also includes sodium and calcium.

The shape of the spike-triggered conductances ηcond is more difficult to interpret than the

standard spike-triggered current η, because of its dependency on the reversal potential Erev. In

fact, the effect of ηcond on voltage depends on the instantaneous difference between the actual

membrane potential and the reversal potential. Furthermore one can observe that given the

mean voltage reset Ereset =−35.56 mV of the Exc neurons – that is above Erev – the effect of

the spike-triggered conductance after a spike is to hyperpolarize the membrane potential and

thus ηcond also mediates spike-frequency adaptation.

Figure 2.7 C and D shows the averaged RMSER of voltage prediction as well as the spike train

similarity measure M∗
d , for the three cell types and with the two model variants, IFη and IFηcond .

One can observe that conductance-based adaptation does not lead to any significant improve-

ments in terms of spike trains similarity measure M∗
d and the subthreshold voltage prediction

RMSER (two sample t-test, p > 0.2 for M∗
d and p > 0.07 for RMSER ). Thus we conclude that

conductance- or current-based spike-triggered events make equally valid models.
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Figure 2.6: Essential Model Features for Subthreshold Voltage Prediction in GABAergic FS, GABAer-
gic NFS and Exc neurons. A: Membrane filter κ extracted with the Wiener-Hopf method individually
for each GABAergic FS cell (9 cells) are averaged to obtain the mean membrane filter of the GABAergic
FS neurons (black) and its standard deviation (grey area). A single exponential (red) is fitted on the
mean κ. A single exponential is sufficient to approximate the membrane filter and no resonance is
present in any of the 9 GABAergic FS cells or the 8 GABAergic NFS (B) or the 9 Exc neurons (C). D:
The adaptation current η extracted individually for each Fast Spiking GABAergic neuron (9 FS cells)
is averaged to obtain the mean η current (black). The error bars represent one standard deviation.
Note that a positive current represents a depolarizing drive and negative current a hyperpolarizing
drive. A double exponential (blue) is fitted to this mean η current. Inset: zoom on the first 300 ms.
E and F : same Figures with the 8 non-Fast Spiking GABAergic neurons (NFS) and the 9 Exc neurons
(Exc), respectively. Note that for the NFS and the Exc, a single exponential fit (blue trace) is sufficient
to approximate the mean η current. G: Mean RMSER for the 9 GABAergic FS cells as a function of the
number of exponential function used to describe the adaptation current η (0 to 4), and for an arbitrary
shaped spike-triggered current η (last column). Error bars are one standard deviation. Black stars
denote a significant difference (two sample t-test). H : and I : same Figures with the 8 non-Fast Spiking
GABAergic neurons (NFS) and the 9 Exc neurons (Exc), respectively.

2.3.6 Essential Features for Spike Time Prediction

To explore the spike time prediction of our models, we compute the spike train similarity

measure M∗
d (see Materials and Methods) averaged across all neurons of a given type. For
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Figure 2.7: Conductance vs current-based adaptation. A: Conductance-based adaptation extracted
individually for each Excitatory neuron (9 Exc cells) is averaged to obtain the mean ηcond (black). Error
bars represent one standard deviation. A double exponential (blue) is fitted on ηcond. Inset: zoom
on the first 300 ms. B: ˜RMSE as a function of the reversal potential Erev of ηcond. The optimal RMSE
is obtained with Êrev. C: Mean RMSER for the 9 GABAergic FS, 8 GABAergic NFS and 9 Exc cells for
models with current-based adaptation (IFη, dark grey) and similar model with conductance-based
adaptation (IFηcond , light grey), error bars represent one standard deviation. There are no significant
differences between IFη and IFηcond for a given cell type (two-samples t-test). D: Spike time prediction
measured by the mean spike train similarity M∗

d for the 9 GABAergic FS, 8 GABAergic NFS and 9 Exc
cells using a model with current-based adaptation (IFη+dyn, dark grey) or a model with conductance-
based adaptation (IFηcond +dyn, light grey). Error bars represent one standard deviation. There are
no significant differences between current and conductance-based models for a given cell type (two-
sample t-test).

example, as mentioned in the Methods section, a value of M∗
d = 0.8 indicates that 80% of the

PSTH is correctly predicted by the model. In order to compare the effects of adaptation current

η and sliding threshold γ, we show the spike time prediction for models with and without

spike-triggered currents as well as with or without sliding threshold. Figure 2.8D-F, show

our results for GABAergic FS, GABAergic NFS and Exc neurons, respectively. The dynamic

thresholds were in each case described as a double exponential, consistent with the results of

Figure 2.8 A-C (green traces).

For the GABAergic FS cells (Figure 2.8 A), we find that there is almost no movement of the

threshold. The small fluctuations in the extracted moving thresholds are presumably due

to noise in the estimation. This implies that all the adaptive behavior of GABAergic FS cells

is mediated by the spike-triggered current and not by any changes in the AP threshold. We

did not find that adding a moving threshold yields any significant improvement in terms of

spike-time prediction (p > 0.07 for all pairs, with 2 sample t-test with α= 0.05). Nevertheless

when IF0 is augmented with bin-based spike-triggered currents η (IFη), we obtain a minor gain

in spike time predictions (∆M∗
d = 0.05). There is negligible increase in M∗

d when augmenting

the model further with sliding threshold (IFη+dyn; ∆M∗
d = 0.007). The optimal model for
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GABAergic FS neurons is IFη+dyn producing a M∗
d of 0.87±0.06, but the gain compared to

other model variants is marginal.

The moving threshold γ(t ) of GABAergic NFS neurons follows a double exponential decay, with

parameters b1 = 3.64 mV, τ1 = 21.88 ms for the fast component, and b2 = 1.24 mV, τ2 = 336.50

ms for the late component (2.8 B, green trace). After half a second to a second, γ(t) is weak

but by cumulating over multiple spikes the late component can contribute to spike-frequency

adaptation. When comparing the value of spike time prediction M∗
d , a model IF0 performs

always worse than models augmented with spike-triggered currents η or dynamic AP threshold

γ. More precisely, adding a sliding threshold produces a highly significant gain in the spike

prediction measure of ∆M∗
d = 0.10. Adding a spike-triggered current produces a net gain of

∆M∗
d = 0.07 compared to IF0. This leads us to the optimal model for GABAergic NFS cells

being IFη+dyn with a value of spike time prediction M∗
d (I Fη+dyn) that indicates that more

than 90% of the spikes in the PSTH are indeed predicted by the model.

The excitatory neurons also exhibit a dynamic threshold with a double exponential decay

with b1 = 12.45 mV, τ1 = 37.22 ms and b2 = 1.98 mV, τ2 = 499.80 ms (2.8 C, green trace) with

an amplitude that is at least twice as strong as for GABAergic NFS cells. The effect of the

spikes on the threshold lasts for more than 1 second. The case of the excitatory neurons is

special because they show a voltage reset to a value above the threshold baseline (Ereset >VT ).

Therefore all models with static threshold produce repetitive firing at very high and unrealistic

frequencies, which leads to a very low M∗
d , as one can observe on Figure 2.8 F. Thus models

upgraded with a sliding threshold always generate a significantly higher M∗
d than similar

models with static threshold (∆M∗
d = 0.48). We also observe a small increase of ∆M∗

d = 0.07 for

models upgraded with spike-triggered currents. Thus the adaptation process is dominated by

the effect of the sliding threshold (also see Figure 2.11 C). The optimal model for excitatory

neurons is an IFη+dyn that produces M∗
d = 0.81±0.04. The ISI distributions of the data (Fig.

2.8 G-I) agree with the ones coming from the optimal models, but not with those from the

simples model without spike-triggered adaptation.

We summarize results from Figure 2.6 and 2.8 by observing that the minimal optimal model

for GABAergic FS cells must have two spike-triggered currents and a static threshold (IF2),

whereas for GABAergic NFS and Exc neurons the minimal model must have only one spike-

triggered current, but a dynamic threshold (IF1 +dyn). These minimal models reproduce the

subthreshold voltage traces of the experiments (RMSER É 1) and at least 80% of the spikes

(scaled to experimental reliability).

We observe that GABAergic NFS and Exc neurons have AP threshold dynamics that extend from

milliseconds to more than 500 milliseconds. Moreover, due to its cumulative property, the

moving threshold can tune the neuron’s firing frequencies, and thus the PSTH, on timescales

beyond 1 second. Finally AP threshold dynamics are only present in some cell types and –

when present – act on very long timescales. We also note that it is the effect of the dynamic

threshold γ(t) combined with the spike-triggered current η(t) that produces the effective

adaptation behavior of a given neuron.
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Figure 2.8: Essential Model Features for Spike Time Prediction in GABAergic FS, GABAergic NFS
and Exc. A: The dynamic threshold γ extracted individually for each GABAergic FS cell (9 cells) is
averaged to obtain the mean threshold dynamics for GABAergic FS neurons (black) and its standard
deviation (error bars). A double exponential (green) is fitted on the mean threshold. Inset: zoom on
the first 300 ms. B and C: same Figures as in A but with the the 8 non-Fast Spiking GABAergic neurons
(NFS) and the 9 Exc neurons (Exc), respectively. D: Quality of the spike time prediction quantified
by the mean M∗

d for the 9 GABAergic FS cells as a function of the model types, static threshold (dark
grey), dynamic threshold (light grey). Error bars correspond to one standard deviation. E and F : as in D
but for the 8 non-Fast Spiking GABAergic neurons (NFS) and the 9 Excitatory neurons, respectively.
Black stars represent a significant difference between different IF models, (two-sample t-test). G:
Experimental ISI distribution (grey), ISI distribution for a model without adaptation current (IF0, red)
and ISI distribution for a model with adaptation currents and a dynamic threshold (IFη+dyn, black).
Inset: ISI density of the data as a function of the ISI density of the models (IF0, red and IFη+dyn, black).
For perfect fit of the experimental ISI distribution all dots will lie on the diagonal (black line). H : As in
G but for the 8 non-Fast Spiking GABAergic neurons (NFS). I : As in G but for the 9 Excitatory neurons
(Exc).

Dependency of the Extracted Parameters on the State of the Neurons

Given the intricate voltage-dependence of ion channels, it is clear that spike-triggered currents

as well as passive parameters of neurons change as a function of the instantaneous state of the
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neurons. It is conceivable that the intensity and the time course of the spike-triggered currents

would be affected by the instantaneous firing frequency of the neuron (Tateno and Robinson,

2009). To investigate this point, we apply our method to subsets of the data that differ in mean

firing rate and in mean membrane potential. In other words we study the dependence of the

extracted parameters on the state of the neuron.

To do so we split the 60-second long experiments in 6 classes of 10 seconds and compute the

mean firing frequencies and the mean voltage of these classes. Note that we use only 6 classes

because as mentioned in Section ‘Efficiency and Accuracy of the Fitting Method on Surrogate

Data’ we need at least 10 seconds of recordings to obtain a fair estimate of the parameters.

Moreover as mentioned in Section ‘Fitting Procedure’ our method requires data that covers

a large range of ISIs to obtain a good estimate of the threshold parameters γ. With 6 classes

both requirements are fulfilled. In Figure 2.9 A one can observe that a single 10-second class

contains high and low rate episodes interleaved with periods of silence. This produces an ISI

distribution covering a wide range of instantaneous rates (from 0 to 25 Hz, Figure 2.9 B, lower

panel) estimated from episodes of 0.5 seconds. If averaged over segments of 10 seconds, the

apparent range of firing frequency is smaller (from 1 to 6 Hz, Figure 2.9 B, upper panel) but

contains the exact same episodes. The 6 classes of 10 seconds enable us to investigate the

dependency of extracted parameters on the neuronal regime.

Using these 6 classes we could not find important dependencies of the spike-triggered current

η (Figure 2.9 C and D) or the passive parameters C , τ and El (Figure 2.9 E to J) on the firing

rate or on the mean voltage. Moreover it is impossible to distinguish parameters extracted on

a single class from parameters extracted on the whole 60-second long experiment.

These results suggest that over the range of firing frequencies that we have studied, the

parameters of the neurons do not change significantly. This tends to justify our assumptions

that a unique set of parameters per neuron is sufficient to capture its dynamics. This does

not exclude that a neuron behaves differently when driven to some exotic regime (in fact,

it definitely will), but over the range studied here, our method did not indicate important

parameter changes. Other experiments, where rates vary more drastically would be needed to

investigate these points in a more systematic way.

2.3.7 Cell-type Classification

In the last sections we showed that the membrane filter, the time course of adaptation and the

AP dynamics strongly depend on the neuron type. Here we ask whether we can characterize

cell types solely on their extracted parameters. We classify cell types based on (i) their passive

parameters C , gl and El (ii) the parameters describing the adaptation current including the

value of voltage reset Er eset (note that here we use a combination between η and Er eset ,

because the extracted spike-triggered current depends on the voltage reset, and in this view,

Er eset is a part of the adaptation process), (iii) the parameters describing the shape of the

dynamic threshold γ, or (iv) all the parameters. To do so we perform standard Principal

Component Analysis (PCA) using (i) only the passive parameters for each cells, (ii) only the

parameters of adaptation current, (iii) only the parameters of the dynamic threshold and (iv)
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Figure 2.9: Dependency of the extracted parameters upon the instantaneous firing rates and the
mean voltage of the neurons. A: Raster plot (7 repetitions) of the first 10 seconds of a typical GABAergic
FS cells (grey line is 10 seconds and black line 0.5 seconds). B: Distribution of the mean firing rate
of one experiment of 60 seconds where the rate is computed on 10-second bins (upper panel) or
0.5-second bins (lower panel). The distribution strongly depends on the bin size, so even if the mean
firing rate (averaged over 60 seconds) is at 3 Hz, the data contains episodes of high firing rate (> 20
Hz). C: Spike-triggered current η extracted on 6 different subsets of 10 seconds and sorted by the mean
firing frequency of the subset used (shaded blue lines). The black line shows η extracted on the whole
experiment of 60 seconds. D: As in C but η are sorted according to the mean membrane potential of
the subset. E to G: Extracted parameters C , gl and El as a function of the mean firing frequency of
the data subset. Red line shows the value of the parameters extracted on the whole experiments with
its standard deviation (grey area). The horizontal and vertical error bars correspond to one standard
deviation. H to J : As in E, F, G but the parameters are sorted according to the mean voltage of the data
subset.

using all the parameters.

Using any subset of parameters is sufficient for classification with the first two principal

components (Figure 2.10 B-D) except when passive parameters only are used (Figure 2.10 A).

Classification based on passive parameters fails because GABAergic FS and NFS neurons do

not differ in a significant way in their capacitance, their leak conductance or their reverse

potential. However, if PCA is applied on the parameters that characterize the adaptation

current and/or the dynamic threshold, we can successfully classify neurons. Moreover we also
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observe that the variance between the different cells is mainly explained by the reset value

Ereset and the dynamic threshold (2.10 D, right panel).
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Figure 2.10: Principal components of the 3 studied cell types. Principal components are obtained
with standard principal component analysis (PCA) for all the cells. A: PCA applied on the passive
parameters C , gl and El of the modeled neurons. Left panel: projection of all the passive parameters
from all the cells (blue square: FS, green circle: NFS, red losange: Exc) onto the space defined by the
two first principal components. Inset: zoom on the outlined region. Right panel: Loadings of the first
and the second principle component, respectively. The same method is applied to the adaption current
η, the AP dynamics γ and all the parameters of a model IFη+dyn, B, C and D, respectively. In these
cases black lines are lines that separate each group, obtained by a standard linear classifier.

45



Chapter 2. Parameter Extraction and Classification of Three Cortical Neuron Types
Reveals Two Distinct Adaptation Mechanisms

2.4 Discussion

2.4.1 Automatic Fitting Method

There is a rich history of fitting neuron models to intra-cellular recordings of real neurons

(Vanier and Bower, 1999; Rauch et al., 2003; Keren et al., 2005; Achard and De Schutter, 2006;

Huys et al., 2006; Jolivet et al., 2006; Kobayashi and Shinomoto, 2007; Druckmann et al., 2007;

Badel et al., 2008; Kobayashi et al., 2009). The variety of approaches arises from the choice

of neuron model and the fitting method. Still, not all methods yield models that can predict

the spike times and membrane potential with high accuracy (Jolivet et al., 2007; Gerstner

and Naud, 2009). To predict the membrane potential with Hodgkin-and-Huxley compart-

mental models, one needs prior knowledge on the dynamics of the ion channels present in

the recorded cell (Huys et al., 2006; Druckmann et al., 2008). Without knowledge of the ion

channels, fitting Hodgkin-and-Huxley compartmental models becomes plagued with local

minima, and there are often multiple parameters that share the same fitting quality (Achard

and De Schutter, 2006). The only hope for a fitting method that can easily be applied to multi-

ple systems for which we have insufficient knowledge of the ion channel dynamics is to use

convex fitting methods in combination with IF models (Paninski, 2004). Earlier work (Jolivet

et al., 2006) had an efficient fitting method for the subthreshold voltage but the black-box

fitting of the adaptive threshold was not convex. The method of (Badel et al., 2008) may have

been convex, but it applied only to models without spike-frequency adaptation. The method

of (Paninski, 2004) was convex but did not use the information contained in the voltage trace

while the method of (Paninski et al., 2005) was convex and used the voltage trace but lacked the

moving threshold required for efficient spike prediction. In this paper we have used a method

that improves upon the earlier multi-linear regression method (Paninski et al., 2005) by adding

a second fitting step for the moving threshold taken from the literature on generalized linear

models (McCullagh and Nelder, 1998). The method is sure to find only one set of optimal

parameters because it is made of two convex fitting methods (multiple linear regression and

generalized linear model with Poisson or Bernoulli probability distribution, but see constraints

for the convexity in (Paninski et al., 2004)). We expect the method to generalize well to many

cell types because the total time of the spike-triggered current, number and size of the basis

functions is not expected to depend on the cell types.

The notion of a dynamic threshold affecting neuronal computation also has a long history

(Hill, 1936; Azouz and Gray, 1999, 2000; Gerstner and Kistler, 2002; Chacron et al., 2003). So far,

the methods for fitting the dynamics of the firing threshold have relied on the measurement of

the effective threshold for each spike (Azouz and Gray, 2000; Chacron et al., 2003). Instead,

the method presented in this article uses the whole voltage trace, providing information about

the firing threshold each time a transient increase in the membrane potential is not followed

by a spike. We expect this method to be more precise since the number of data points used to

constrain the moving threshold is not proportional to the number of spikes but to the number

of data points constituting the subthreshold voltage trace in the regime close to threshold.

Since the choice of model will affect the prediction performance the question arises, why we
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omit the non-linearity responsible for spike initiation in IF-type models (Fourcaud-Trocme

et al., 2003; Badel et al., 2008). An exponential non-linearity in integrate-and-fire models was

shown to be crucial for accurate processing of the inputs at high frequency (Fourcaud-Trocme

et al., 2003). Such a non-linear term can interact with subthreshold currents to produce

a variety of firing patterns (Izhikevich, 2004, 2007; Naud et al., 2008). The IF models used

here assume strictly linear voltage dynamics and are fitted away from the spikes so that the

increased non-linearity close to a spike does not bias the parameter estimation. It is not

trivial to generalize the present convex method to include an exponential non-linearity for

spike initiation. However, in the present model the spike initiation is stochastic with an ex-

ponential non-linearity for the probability of spiking as a function of voltage as extracted

from experimental data (Jolivet et al., 2006). This exponential non-linearity should not be

confused with the exponential non-linearity in the Adaptive Exponential integrate-and-fire

(AdEx) model (Brette and Gerstner, 2005) or the model of (Badel et al., 2008). Nevertheless,

there are some links between the exponential spike-initiation of the AdEx model and the

exponential transfer function of the generalized integrate-and-fire models discussed here,

so that the AdEx model can be approximately mapped onto a generalized integrate-and-fire

model (Mensi et al., 2011a). The escape-noise IF models discussed here can reproduce all the

main firing patterns, except delayed spike-initiation upon pulse current input (see below).

Another feature of some neurons that is not present in our model is a subthreshold resonance.

A strong subthreshold resonance has been observed in the dendrites of large excitatory neu-

rons (Cook et al., 2007) and in ‘mes V’ neurons (Izhikevich, 2007). Subthreshold resonance

is thought to be mediated by an additional current linearly coupled with the membrane po-

tential. Similarly, delayed spiking upon step current injection has also been attributed to an

additional current linearly coupled with the membrane potential (Naud et al., 2008). One can

check the presence of such an additional effect by looking at the shape of the membrane filter

κ(t ) extracted with a method that does not force an exponential shape (i.e. the Wiener-Hopf

optimal filter method described in Appendix B and in (Jolivet et al., 2004)). Indeed, a resonance

corresponds to a filter with a negative undershoot, while a delayed onset corresponds to a

filter with a double exponential decay. Both cases can be described by an additional current

having linear coupling with the soma to take into account resonance or delayed spiking. We

have tested a method which involves adding the term ae−t/τw ∗V (t ) to Eq. 2.3. Multi-linear re-

gression can still be applied to determine the strength of the coupling a when a time constant

τw is assumed. Iterating through a large range of possible τw by repeating the multi-linear

regression usually yields a convex function of the MSE as a function of τw . This method

enables us to fit the parameters mediating subthreshold resonance or delayed spiking, but this

was not necessary here since the neuron types studied have no resonance or do not display

delayed spiking.

The choice of an appropriate input stimulus is of crucial importance for all model identifi-

cation methods. Here we have successfully tested our method on different kinds of input

currents, injected in current-clamp mode. However, in-vivo neurons receive excitatory and

inhibitory synaptic inputs acting in conductance. It is possible to mimic this complex in-

put scenario in-vitro by patching neurons in dynamic-clamp mode, where excitatory and
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inhibitory conductances are dynamically injected in a patched neuron. We do not directly in-

vestigate the robustness of our method in this particular input scenario in this study. However

we have shown that our fitting procedure can handle dynamic-clamp input by participating

in an international competition in 2008, where the goal was to predict the spike times of a

single neuron stimulated in dynamic-clamp (see (Jolivet et al., 2008) and (Jolivet et al., 2007)

for details and results). For this competition we used a related model and fitting procedure

and obtained similar results.

2.4.2 Effective Moving Threshold

We have seen that the effects of spike-triggered currents and dynamic threshold merge to

produce spike-frequency adaptation. The effect of the spike-triggered adaptation current

η(t ) on the voltage is simply given by the convolution of the spike-triggered current η(t ) with

the membrane filter κ (ηv (t) =−κ∗η). The effective moving threshold ζ(t) arises from the

combination of the threshold dynamics γ(t) and the effect in voltage of the spike-triggered

current. Since spikes are triggered when the membrane potential hits the threshold, the

relevant variable is the difference ζ(t ) between the change in dynamic threshold (increasing

after a spike) and the contribution of the adaptation current to the voltage trace.

ζ(t ) = γ(t )− [κ∗η](t ) (2.7)

To answer the question of whether the spike-frequency adaptation is dominantly mediated by

spike-triggered currents or moving threshold, we can look at the respective contribution of γ(t )

and ηv (t ) towards the effective adaptation ζ(t ). Figure 2.11 A shows that the effective moving

threshold of GABAergic FS cells are clearly dominated by spike-triggered currents. For the Exc

cells, ζ(t ) is dominated by the moving threshold (see figure 2.11 C), whereas for the GABAergic

NFS cells the effective adaptation process ζ(t) (Figure 2.11 B) is a combination of η and γ,

where each spike-triggered mechanism mediates approximatively half of the effective moving

threshold. Therefore, we conclude that the adaptation is mediated by different processes in

different cell types: adaptation is dominated by the moving threshold for the Exc neurons;

caused entirely by spike-triggered currents for the FS neurons; and consists of an equal mix of

threshold and current for the NFS neurons.

The effective moving threshold for GABAergic FS cells has the particularity of crossing zero

after 30-80 ms and remaining negative (i.e. facilitating) thereafter. The zero-crossing then

determines the type of excitability: Under constant current injection, after the neuron model

fires its first spike, the effective threshold is first high, decreases and eventually crosses the

membrane potential, and hence forcing a spike after a period approximatively equal to the

first zero-crossing in the function ζ(t). One can see that under constant current injection

this type of neuron will not fire with a period longer than the time of the minimum of the

effective threshold ζ(t) : fc ≈ 12−33 Hz, in agreement with Fig. 2.5. The facilitating tail of

the effective adaptation must lead to spike-frequency facilitation as observed in the firing

patterns of Fig. 2.5. Moreover, the peak of the facilitating part in η(t ) will indicate a preferred
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frequency around 10 Hz. On the other hand, strictly decaying functions ζ(t ) as in NFS and Exc

will produce adapting firing patterns and type I excitability.
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Figure 2.11: Effective spike-triggered adaptation for the three neuron classes. As discussed in the
main text the effective moving threshold is the sum of the dynamic threshold and of the adaptation
current η convolved with the membrane filter. A: Effective moving threshold for each GABAergic FS
cells (9 cells) are averaged to obtain the mean effective adaptation (black) and its standard deviation
(grey shaded area). Mean threshold dynamics (green) and mean ηv (blue). Inset: zoom on the first 300
ms. B and C: same Figures with the 8 non-Fast Spiking GABAergic neurons (NFS) and the 9 Exc neurons
(Exc), respectively.

2.4.3 Links with Bifurcation Theory

We observe that our FS models have a Type-II exctitability, whereas our Exc and NFS models

are of Type-I. In the literature these Type-I and Type-II behaviors are known to occur via

different types of bifurcations (Koch, 1999; Gerstner and Kistler, 2002; Izhikevich, 2007; Naud

et al., 2008; Touboul and Brette, 2009). For instance Type-I may occur via a saddle-node bifur-

cation onto an invariant circle, whereas Type-II typically occurs through an Hopf bifurcation

or a saddle-node bifurcation off invariant circle. The presence of the hard reset and multiple

timescales in the spike-triggered adaptation means that standard theorems of bifurcation

theory in continuous 2 dimensions do not apply. In spite of this we can draw analogies with

two-dimensional bifurcation theory.

Hopf bifurcations are associated with subthreshold resonances: When a neuron model is

stimulated with a slowly increasing current ramp, subthreshold oscillations would be observed

in response to a short current pulse before stability is lost through the Hopf bifurcation. These

oscillations hch2:appen even before the neuron has fired a first spike and are therefore strictly

subthreshold. Our fitted FS models do not generate such subthreshold oscillations as can be

deduced from the absence of any resonance in the membrane filter κ(t). Nevertheless, the

FS neuron model exhibits resonance in the spike-triggered currents. These spike-triggered

currents, which are summarized in the adaptation current η(t ) are responsible for the mini-

mal firing frequency that is characteristic of Type-II behavior. We note that spike-triggered

currents result in membrane potential oscillations after an action potential, i.e., they give rise

to a non-monotonic spike-afterpotential. Such an oscillatory SAP should not be confused with
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pure subthreshold oscillations. Let us describe in more detail how the Type-II behavior arise

in a simplified version of our fitted models.

We simplify our models such that adaptation is mediated by a single exponential spike-

triggered current of amplitude b, that mediates spike-frequency adaptation (b > 0) for Exc and

NFS neurons and facilitation (b < 0) for FS neurons. This can be done by coupling a second

differential equation τw ẇ =−w to the main voltage Equation 2.3 and to add a constant value

b to w each time a spike is emitted (Izhikevich, 2007). Note that this makes a w-nullcline

that is independent of the membrane potential V , as expected from the fact the membrane

filter is a single exponential (as shown in Figure 2.6 A-C). Under these assumptions, the only

difference between Type-I and Type-II models is the sign of the spike-triggered current. A

schematic of the phase plane of these simplified Type-I and Type-II models is shown in figure

2.12. Before application of a depolarazing step current, the membrane potential is at rest

(Fig. 2.12 A). The stable fixed point looses its stability through a saddle-node bifurcation. The

simple model can still create Type-I or Type-II excitability depending on whether the saddle

node bifurcation is on or off the limit cycle. Facilitating spike-triggered adaptation (b < 0)

implies that the limit cycle stays away from the location of the saddle node bifurcation in

phase space, because the reset of the w variable restarts at lower value (Type II, Figure 2.12 B).

True adaptation (b > 0), however leads to the classic saddle-node bifurcation onto invariant

circle (Type-I, Figure 2.12 C).

We have argued that our fitted FS models loose stability via a saddle-node bifurcation which

causes Type-II excitability because it is off the invariant circle. We have discarded the Hopf

bifurcation because of the absence of subthreshold resonance. It is possible, however, that the

fitting procedure did not capture a subthreshold resonance that appears only at voltages close

to the threshold, and there are exactly the type of resonances that would be expected when

stability is lost via a Hopf bifurcation. Therefore the present analysis can not draw conclusions

on the type of bifurcation responsible for firing in real FS neurons.

2.4.4 Interpretation of Model Parameters

We extract a set of parameters for a typical model of each neuron class. The parameters are

related to the underlying biophysics (density, distribution and dynamics of ion channels,

membrane capacitance, resistance), but the exact relationship is unclear. For instance, the

extracted membrane time constants (τm ranged from 5 ms to 20 ms) are slightly shorter than

the typical membrane time constant measured in experiments with voltage recording of the

response to subthreshold step current injection at rest. This discrepancy can be explained

by the fact that we measure passive parameters of neurons when they are stimulated instead

of at rest. The different working regime of membrane potential will activate differently the

subthreshold conductances (spike-triggered or not) and thus modify the effective membrane

time constant (Richardson et al., 2003; Jolivet et al., 2004; Kobayashi et al., 2009). The presence

of the electrode may also bias our estimate of the membrane membrane capacitance as dis-

cussed in (Badel et al., 2008). Similarly, the reversal potential, voltage threshold and voltage

reset may depend on the bath solution, and the intra-pipette solution. The amplitude and
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Figure 2.12: Phase plane of the Type II (FS) and Type I (NFS and Exc) neurons. Schematics
of the phase plane of our simplified models, assuming a single depolarizing or hyperpolarizing
exponential spike-triggered current of amplitude w (as decribed in Discussion Section ‘Links
with Bifurcation Theory’) for Type II and Type I models, respectively. A: Phase portrait at rest
(resting state marked by a red circle). B: Phase plane of the Type II (FS) model after injection of
a depolarizing step current. Black lines; nullclines V̇ = 0 and ẇ = 0. Red traces; trajectories of
the first three spikes caused by the step current. Red circle; initial conditions. Red square; first
and second reset. Arrows indicate the direction and the strength of the flow. C: As in B but for
a Type I (NFS or Exc) model.

time scale of the spike-triggered adaptation, should not be affected by the electrode or the

bath solution, but the temperature at which the experiment was performed can affect the

dynamics of the underlying ion channels.

We also investigated the dependency of the extracted parameters (i.e. the membrane filter

and the spike-triggered current) on the regime of the neuron. Somewhat surprisingly we did

not observe significant dependencies, in spite of what has been already observed (Tateno and

Robinson, 2009). Our results could be explained by the limited range of firing rates that we

studied and the nature of our stimulation protocol. Indeed we have restricted our analysis to

current-clamp experiments and it is known that neurons exhibit different behaviors under

in-vivo conditions (Prescott et al., 2006, 2008). Those in-vivo conditions can be approximated

in-vitro by dynamic-clamp. The dynamic-clamp allows the study of the neuron behavior as a

function of the relative strength and nature of the input conductances (i.e. balance between

excitatory and inhibitory conductances, shunting). For instance the integration properties

of Exc neurons change drastically depending on the conductance state (Jolivet et al., 2004;

Prescott et al., 2008). Moreover these changes also affect the adaptation mechanisms of the

neurons. The method presented in this article can be applied to dynamic-clamp recordings to

address these issues.

The effect of the spike-triggered current on the voltage ηv (t) is closely related to the spike-

after potential (SAP; (Sah, 1996)). The spike-after potential may differ from ηv (t) since it is

measured around the resting potential while η(t ) is an average of the spike-triggered current

under synaptic-like current injection. Furthermore, the spike-after potential is measured

after a spike that was artificially triggered by a large and short current injection. The amount

of charge that was injected to produce the spike will leak out of the membrane on a time
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scale given by the membrane time constant. The spike-after current extracted by standard

experimental protocols (Sah, 1996) is thus biased by the current used for stimulating the spike.

Yet, the close relationship between the SAP and ηv (t ) indicate that η(t ) should be mediated by

the same ion channels mediating the SAP, namely: the M-type current IM (Adams et al., 1982),

the after-hyperpolarization current I AHP (Madison and Nicoll, 1984) or any other calcium-

dependent ion channels (Hille, 1992; Sah, 1996; Koch, 1999; Wang et al., 2003). Moreover,

spike-triggered events in the dendrites can also shape the spike-triggered current (Doiron

et al., 2007).

The movement of the threshold after a spike has been proposed to depend on sodium channel

de-inactivation (Fleidervish et al., 1996; Fleidervish and Gutnick, 1996; Kobayashi et al., 2009).

Following a spike, a portion of the N a+ channels responsible for the spike initiation stay inac-

tivated, which leads to a higher effective threshold. The sodium channels then de-inactivate

which results in a gradual decay of the spiking threshold (Henze and Buzsáki, 2001; Platkiewicz

and Brette, 2011). It has been proposed that only a subtype of sodium channels are inactivating

(Martina and Jonas, 1997). Thus, in our framework, the observed dynamic threshold must

be related to the proportion and the type (inactivating or non-inactivating) of the sodium

channel. Our results corroborate this hypothesis since only the GABAergic NFS and Exc types

have a moving threshold, which suggest that the GABAergic FS neurons do not express the

inactivating sodium channels.

Finally it would be possible to investigate the biological mechanisms underlying spike-triggered

adaptation by the use of specific pharmacological experiments. For instance, by blocking some

specific ion channels one can study how the shape of the spike-triggered current is affected by

calcium-channels or high-voltage activated potassium channels. Similarly, if one can block

specific sodium channels, like the inactivating N a+ channels, it is possible to investigate the

dependency of the dynamic threshold on the type of sodium channels expressed in a given

neuron type.

2.4.5 Classification

Classification of neuron types can be done on multiple features: firing pattern, spike shape,

morphology, expression of molecular markers (Markram et al., 2004). Here we classify based

on the computational properties of the neurons, that is, the parameters regulating how the

neuron encodes the incoming current into spike trains. These computational properties are

determined by the expression of ion channels and lead to firing patterns that depend on the

neuron type. We have shown that the classification of neuron types relates to a classification

of the computational properties beyond the classification of firing patterns (GABAergic NFS

and Exc cell-types are both regular spiking, and accommodating neurons). In other terms

classification is possible even if the shape of the spike used traditionally for the distinction

between GABAergic NFS and Exc neuron is not taken into account, since the different neuron

types encode the incoming current differently.

We found that the passive properties of the neurons (capacitance, input resistance, membrane

time-constant) are not sufficient to efficiently distinguish between the neurons types. It is the
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adaptation properties (voltage reset, spike-triggered current, moving threshold) that distin-

guishes the different cell types. These results would indicate that the strength and time-scale of

adaptation are important parameters of cortical network computation, indicating a direction

for investigating the importance of micro-circuitry in cortical networks.

We have studied only three types of neurons, but more types of excitatory neurons (Connors

and Gutnick, 1990) and GABAergic neurons (Markram et al., 2004) have been described. Fur-

ther work is needed to check that such extensive classification can be done on the properties

affecting the conversion of synaptic inputs to a spike. Classification on a greater pool of

neurons would also enable to study how distinct the computational properties of different

neuron types are and if a finer classification can be inferred. We expect that one would need

on the order of one hundred recorded neurons under synaptic-like current injection to study

in detail the classification of cortical neurons, and perform unsupervised clustering on the

computational properties.

Neurons recorded in vitro can show very different properties from their alter ego in the intact,

awake and behaving animal. In the awake animal it is not yet possible to know the input a neu-

ron receives from its synaptic connection, but the somatic voltage can be recorded (Crochet

and Petersen, 2006). In such an experiment it is not possible to apply this part of the fitting

method for the spike-triggered current and passive properties because the method requires

the knowledge of the stimulating current arriving at the soma. The moving threshold, on the

other hand, can be extracted since our fitting method only requires the voltage trace and the

time of the spike. It remains to be tested if moving thresholds can effectively be extracted from

in vivo recordings. It is an interesting avenue for further research since this would allow to

study the correspondence of in vitro and in vivo threshold dynamics and its classification

across cell types.

2.4.6 How Good is Good?

Depending on the neuron type, the optimal IF model is able to predict between 81 and 91% of

the spikes and reproduce the subthreshold voltage fluctuations with a precision in the range

of millivolts. One can then ask: Why can we not achieve a perfect prediction (i.e. M∗
d = 100%

and a RMSE close to 0 mV)? What is missing? We can think of three possible explanations.

First, the experimental data suffers from some unavoidable drifts that are not due to the neuron

itself and that we do not model. These drifts are presumably due to some additional currents

that flow out of the neuron near the patch junction and so affect the recorded membrane

potential in a non-systematic manner. The experimental drifts can greatly limit the maximum

prediction performance.

Second, it is known that injecting current through the same electrode used for recording the

voltage corrupts the recorded voltage (Brette et al., 2007). This artifact manifests itself as a high-

frequency component of the recorded voltage that is correlated with the current being injected.

Since we are fitting on the voltage trace, the artifactual component of the voltage will bias the

estimated parameters. Mainly, the electrode artifact will affect the estimation of the membrane

time-constant (Brette et al., 2007). We can also speculate that the average current triggering a
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spike (the so-called spike-triggered averaged current, or STA) will contribute erroneously to the

measured spike-triggered current. However we expect these effects to be small and to affect

only very small time scales since the time-constant of the electrode contribution was measured

to be below the millisecond range (Badel et al., 2008). Similarly, the erroneous high-frequency

component of the voltage can bias our estimation of the threshold and its dynamics. The

extent to which the bias in membrane time-constant and spike-triggered adaptation affects

the prediction performance would have to be studied in details, but we have preliminary

results showing that the effect is negligible. In any case, the artifact due to simultaneous

current injection can be greatly reduced by the use of active electrode compensation methods

(Brette et al., 2007; Badel et al., 2008).

Third, by modeling neurons with simple IF models, we neglect some non-linearities that are

present in the neurons. For instance, the voltage dynamics close to a spike become strongly

non-linear due to the activation of sodium channels (Naundorf et al., 2006; Badel et al., 2008).

Saturation in the open/close fraction of the ion-channels can cause the spike-triggered current

of spikes in a burst to differ from the spike-triggered current of isolated spikes, leading to

higher-order dependencies on the spiking history. Furthermore, we know that ion channels

mediating the spike-triggered currents have time-constants which depend non-linearly on

the voltage, while our formalism imposes voltage-independent time-constants. Similarly, the

escape-noise formalism is only an approximation to the full dynamics entailed by stochastic

activation of a limited number of voltage-dependent ion channels. For injection of synaptic-

like current into the soma of a cortical neuron all these approximations prove to be very good

since the spike-time prediction is high and would be even higher if experimental drifts and

electrode artifacts could be completely removed.

2.5 Appendix

2.5.1 A: Variants of the Family of IF Models

We studied different variants of the main model described by Eq. 2.3, 2.4 and 2.5 (see Section

‘Model Dynamics’). Here we describe more precisly how these models are built and some

variants of the standard models considered in this study.

A1. Shape of the Spike-triggered Current

As mentionned in the results Section ‘Subthreshold Voltage Dynamics’, the spike-triggered

current η(t) could be any function of time, and for fitting purposes we implemented this

spike-triggered current as a linear combination of rectangular basis function, so that η(t ) is
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given by:

η(t ) =
K∑

k=1
ak f (k)(t ) (2.8)

f (k)(t ) = rect

(
t −Tk

δTk

)
=Θ(t − (Tk −

δTk

2
)) ·Θ(Tk +

δTk

2
− t )

where f (k)(t) are rectangular basis functions centered at Tk and of width δTk , and where Θ

denotes the Heaviside step function. Since we expect the spike-triggered current to change

faster close to the previous spike and slower far from it, we spaced the rectangular basis func-

tion logarithmically. The index k runs from 1 to K where K is the total number of rectangular

functions used for fitting. The parameters Tk , δTk and K are meta-parameters fixed a priori so

that the shape of the spike after-currents is controlled by the coefficient ak (see also (Paninski

et al., 2005)). Parameters Tk , δTk and K are chosen to give sufficient freedom to span all

plausible shapes of ηwhile avoiding overfitting. Equation 2.8 will be used to extract the precise

shape of the spike after-current η(t) without assumptions with respect to its shape (single

exponential, double exponential, etc.).

A2. Conductance-based Adaptation

As a variant of the model defined in Eq. 2.3, we can turn the spike-triggered current η(t ) into a

spike-triggered conductance. This is done by replacing η in Eq. (2.3) by ηcond(V −Erev), where

ηcond has now units of conductance and Erev is the reversal potential. If the model’s adaptation

is based on conductance as opposed to an adaptation current, we call the model IFηcond .

A3. Shape of the Dynamic Threshold

The dynamic threshold γ(t ) described in Eq. 2.5 (see Section ‘Model Dynamics’ for details) is

expressed as a linear combination of rectangular basis functions:

γ(t ) =
P∑

p=1
cp f (p)(t ) (2.9)

f (p)(t ) = rect

(
t −Tp

δTp

)

Then the shape of γ(t ) is defined by the coefficients cp which control the amplitude of a set of

the rectangular basis f (p)(t ).
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2.5.2 B: Extraction of Membrane Filter

The passive properties of a neuron, such as the reversal potential El , the leak conductance gl

and the capacitance C , characterize the linear response of a neuron to current injection and

define the membrane filter κ of the neurons. The standard exponential membrane filter arises

from the solution of Eq. 2.3 using the initial condition V (0) = El :

V (t )−El =
∫
κ(t − s)I (s)d s +

∫
κ(t − s)

∑
{t̂ }

η(s − t̂ )d s (2.10)

where κ(t ) acts as a low-pass filter on the current I and on the spike-triggered currents:

κ(t ) = 1

C
exp

( −t

τm

)
(2.11)

with the membrane time constant τm = C
gl

. Eq. 2.10 is known as the Spike-Response Model

(SRM; (Gerstner et al., 1996)). It summarizes the dynamics of the membrane potential as made

of two parts: the effect of the input current (first term on the right-hand side of Eq. 2.10) and

the effect of the afterpotential following each spike (second term on the right-hand side of

Eq. 2.10). The functions κ(t ) and η(t ) are response kernels which depict the membrane filter

and the shape of the spike-after currents, respectively. Eq. 2.10 taken without restrictions

on the shape on η(t ) and κ(t ) is very general and can take into account the effect of multiple

subthreshold or spike-triggered ion-channels.

In practice, the linear filter κ(t) may or may not consist of a single exponential decay. It is

known that subthreshold currents, like Im or Ih (Sabah and Leibovic, 1969; Mauro et al., 1970;

Koch, 1984) generate subthreshold resonances or delayed spiking responses to steps (Naud

et al., 2008; Izhikevich, 2004). These subthreshold currents give rise to a current-to-voltage

filter κ exhibiting a negative bump (for resonances) or an exponential decay with two time

constants (for delayed firing onset). Thus, to make sure that our assumption of an exponential

filter is not too restrictive, we extract the shape-free membrane filter κ defined in Equation

2.10. To do so, we compute this filter by extracting the Wiener-Hopf optimal filter (Jolivet et al.,

2004) on the spike-free subset of dataψ3 (see Appendix C for details), such that we are left with

only the last term on the right-hand side of Eq. 2.10. Note that we take only subset of the data

that are far from the spike to ensure that the resulting κ filter does not take into account some

spike-triggered effects, or non-linearities of the spike onset, that will corrupt the estimation of

the membrane filter.

2.5.3 C: Data Preprocessing

To extract all the parameters of the models it is convenient to define appropriate subsets of

the available data. Since we do not want to model the exact shape of the action potential

we cut out, around each spike time t̂ , a small segment of the data which we ignore. In the

experimental data the spike time t̂ is defined to be the time when the membrane potential

crosses a given voltage Vdetect from below, here we set the detection threshold Vdetect to 0 mV.
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Let us, at each moment t , refer to the last spike time as t̂ (last) and to the forthcoming spike

time as t̂ (next). The subsets of the data that we use for fitting are:

ψ1 = {t | t > t̂ (last) +Trefr and t < t̂ (next)} (2.12)

ψ2 = {t | t > t̂ (last) +Trefr and t < t̂ (next) −2ms} (2.13)

with Trefr the absolute refractory period. Thus ψ1 represents a set of recording times where

the voltage is subthreshold and outside the absolute refractory period. ψ2 further removes 2

ms of data before each spike. We will also use two other subsets of the data:

ψ3 = {t | t > t̂ (last) +Tadapt and t < t̂ (next) −2ms} (2.14)

ψ4 = {t | ψ(1)
3 ∩ψ(2)

3 ... ∩ψ(R)
3 } (2.15)

Thus ψ3 removes a period of time Tadapt after the spikes where Tadapt > Trefr. We use for Tadapt

a period of 200 ms when the recording has a high average firing frequency (> 5 Hz) but we use

Tadapt = 500 ms otherwise. For our recordings made of multiple repetitions, we only consider

the subset of times ψ4 that are separated by a period of at least Tadapt from any previous spike,

from any repetition. This subset is therefore the intersection between the subsets ψ(k)
3 of all

repetitions 1 É k É R. Each subset ψ1, ψ2, ψ3, ψ4 will be used in different steps of the fitting

procedure.

2.5.4 D: Estimation of the Models Parameters

The fitting procedure to extract all the parameters of the model from a single voltage trace and

the input current is a four-step method presented in the Section ‘Fitting Procedure’. Here we

describe in details two critical steps of this method, (i) the linear regression method that allows

the estimation of the optimal parameters governing the dynamics of subthreshold voltage

and (ii) the maximum likelihood method used to estimate the optimal parameters governing

the firing activity of the model. Along with these descriptions some possible variants of the

standard fitting protocol are briefly explained.

D1. Estimation of the subthreshold voltage parameters

As discussed in the step 2 of the Section ‘Fitting Protocol’, the model parameters
~θ2 = {− gl

C , gl El

C , 1
C , a1

C , . . . , aK
C } act linearly on the model’s voltage time-derivative V̇ (mod)

t , so that:

V̇ (mod)
t =−gl

C
(Vt −El )+ 1

C
It +

K∑
k=1

ak

C

∑
{t̂ j }

f (k)
t−t̂ j

(2.16)
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The voltage V , the time-derivative of the voltage V̇ , the input current I and the basis function

are known the only unknown in Eq. 2.16 are the parameters. For notational convenience,

we will write the above equation as a matrix equation, defining ~̇V
(mod)

as the vector of the

binned voltage time-derivatives and X as a matrix with the vector of voltage ~Vt (binned as a

function of time) in the first column, a vector~1 of ones in the second column, the vector of

input current~It (binned as a function of time) in the third column, and the value
∑

t̂ j
f (k)

t−t̂ j
for

1 É k É K evaluated at the known spike times t̂ in the remaining K columns, such that the

differential equation 2.16 becomes:

~̇V = X~θ2 (2.17)

The parameters can be estimated by minimizing the sum of squared errors SSE(~θ2) =‖~̇Vψ2 −
Xψ2

~θ2‖2 between the voltage derivative of the experimental trace Vψ2 and that of the model,

Xψ2θ2, summed over all points in the data set ψ2 that comprise the voltage trace in the

subthreshold regime. According to multi-linear regression theory (Weisberg, 2005), the optimal

set of parameters is then given by

~̂θ2 = (XT
ψ2

Xψ2 )−1XT
ψ2
~̇Vψ2 (2.18)

This method was used in (Paninski et al., 2005) as a linear method to maximize the likelihood

of observing the measured V̇ time series. This step gives the passive parameters of the neurons

and the adaptation current η (figure 2.2 B, middle panel, inset). Note that here we voluntarily

discard the spikes from the data (because we only consider the subset ψ2, see Appendix C),

but it is straightforward to apply the same linear regression method on the whole recording

(including the spikes). To do this we put Trefr = 0 so that the first bins in η(t ) model the shape

of the spike and an explicit reset of the voltage is no longer be necessary.

We presented a method to extract the coefficients ak that govern the shape of the spike-

triggered currentη from the data. However, when a model IFN is considered, the time constants

τi and the amplitude bi of the adaptation currents wi are extracted from η(t ) =∑
k ak f (k)(t )

by fitting N exponential functions to the time course η(t ). When a model IFηcond is considered,

we observe that if Erev is known a priori, then exactly the same protocol can be applied. So we

perform the linear regression defined by Eq. 2.18 iteratively for a set of {Erev} and chose the

optimal Êrev to be the one that minimizes the SSE of the regression (see Figure 2.7 A and B).

D2. Estimation of the voltage threshold parameters

As discussed in step 3 of the Section ‘Fitting Protocol’, it is possible to extract the cumulative

dynamic threshold γ from the data by maximizing the likelihood of generating the experimen-

tal spike train by our model. The log-likelihood for a spike train can be written in terms of

the probability pt of observing no spike in an experimental time bin by using Bayes theorem
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recursively in time (Paninski, 2004):

logL(~θ3) = ∑
{t̂ j }

log(1−pt )+∑
ψ̃2

log(pt ) (2.19)

where the set of spike times {t̂ j } is taken to be 0.5 ms before the peak of the spike and ψ̃2

contains segments of the voltage trace with the exact spike times removed (see Appendix C).

Given the model defined by Eq. 2.3, 2.4 and 2.5, the probability of having no spike in a time

bin [t , t +∆T ) is (Gerstner and Kistler, 2002):

pt = exp

(
−

∫ t+∆T

t
λ(t ′)d t ′

)
≈ e−λt∆T (2.20)

where the approximation holds for small ∆T (here ∆T = 0.05 ms). λt is the discretized version

of λ(t ). Using Eq. 2.4 we have:

λt =λ0 exp(~X t
~θ3) (2.21)

where the vector ~X t is made of Vt , one, and
∑

{t̂ j } f (p)
t , and the parameters are~θ3 = [ 1

∆V , − V0
∆V , −

c1
∆V , . . . , − cP

∆V ]T . Note that to avoid correlations between the parameters for subthreshold

voltage and the parameters that describe the spike emission process, we use the recorded

voltage Vt and not the modeled voltage, as it would be done with a purely generative model.

Now, using λt defined in Eq. 2.21 with λ0 = 1/∆T and using the fact that λt∆T is small, the

optimal set of parameter ~̂θ3 is simply given by:

~̂θ3 = argmax~θ3

∑
{t̂j}

~Xt
~θ3 −

∑
ψ̃2

exp(~Xt
~θ3)

 (2.22)

With the exponential link-function in Eq. 2.21 we are sure that the log-likelihood is a convex

function of the parameters~θ3 (Paninski et al., 2005).

In Section ‘Fitting Procedure’ we mentionned that in order to extract the optimal param-

eters V0, ∆V and cp governing the threshold dynamics γ(t), one has to maximize the log-

likelihood of a spike train with a gradient-ascent. To perform the gradient-ascent of the

log-likelihood function, the simplest method is perhaps to use a pre-programmed script (for

instance fminunc.m in Matlab), but we used the iteratively re-weighted least-square method,

also called Fischer’s scoring method (McCullagh and Nelder, 1998).

All numerical computations have been done in Matlab (The Mathworks, Natwick, MA) on a

desktop computer. In practice our fitting procedure is straightforward and fast; it takes only a

few minutes on a desktop computer to extract all the parameters of a model from 10 seconds

of voltage recordings and current injection producing a firing frequency of 10 Hz. The Matlab

code used to extract the model parameters along with a subset of our data will be available on

ModelDB: http://senselab.med.yale.edu/modeldb/.
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3 From Stochastic Nonlinear Integrate-
and-Fire to Generalized Linear Models

Variability in single neuron models is typically implemented either by a stochastic Leaky-

Integrate-and-Fire model or by a model of the Generalized Linear Model (GLM) family 1. We

use analytical and numerical methods to relate state-of-the-art models from both schools

of thought. First we find the analytical expressions relating the subthreshold voltage from

the Adaptive Exponential Integrate-and-Fire model (AdEx) to the Spike-Response Model with

escape noise (SRM as an example of a GLM). Then we calculate numerically the link-function

that provides the firing probability given a deterministic membrane potential. We find a

mathematical expression for this link-function and test the ability of the GLM to predict

the firing probability of a neuron receiving complex stimulation. Comparing the prediction

performance of various link-functions, we find that a GLM with an exponential link-function

provides an excellent approximation to the Adaptive Exponential Integrate-and-Fire with

colored-noise input. These results help to understand the relationship between the different

approaches to stochastic neuron models.

3.1 Motivation

When it comes to modeling the intrinsic variability in simple neuron models, we can distin-

guish two traditional approaches. One approach is inspired by the stochastic Leaky Integrate-

and-Fire (LIF) hypothesis of Stein (1967) (Stein, 1967), where a noise term is added to the

system of differential equations implementing the leaky integration to a threshold. There are

multiple versions of such a stochastic LIF (Gerstner and Kistler, 2002). How the noise affects

the firing probability is also a function of the parameters of the neuron model. Therefore,

it is important to take into account the refinements of simple neuron models in terms of

1This text is copied from Mensi et al. (2011a), full citation in the bibliography
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subthreshold resonance (Izhikevich, 2001; Richardson et al., 2003), spike-triggered adaptation

(Izhikevich, 2003; Mensi et al., 2011b) and non-linear spike initiation (Fourcaud-Trocme et al.,

2003; Izhikevich, 2003). All these improvements are encompassed by the Adaptive Exponential

Integrate-and-Fire model (AdEx (Brette and Gerstner, 2005; Badel et al., 2007)).

The other approach is to start with some deterministic dynamics for the the state of the neuron

(for instance the instantaneous distance from the membrane potential to the threshold) and

link the probability intensity of emitting a spike with a non-linear function of the state variable.

Under some conditions, this type of model is part of a greater class of statistical models called

Generalized Linear Models (GLM (McCullagh and Nelder, 1998)). As a single neuron model,

the Spike Response Model (SRM) with escape noise is a GLM in which the state variable is

explicitly the distance between a deterministic voltage and the threshold. The original SRM

could account for subthreshold resonance, refractory effects and spike-frequency adaptation

(Gerstner et al., 1996). Mathematically similar models were developed independently in the

study of the visual system (Hubel and Wiesel, 1968) where spike-frequency adaptation has also

been modeled (Pillow et al., 2005). Recently, this approach has retained increased attention

since the probabilistic framework can be linked with the Bayesian theory of neural systems

(Doya et al., 2007) and because Bayesian inference can be applied to the population of neurons

(Gerwinn et al., 2008).

In this paper, we investigate the similarity and differences between the state-of-the-art GLM

and the stochastic AdEx. The motivation behind this work is to relate the traditional threshold

neuron models to Bayesian theory. Our results extend the work of Plesser and Gerstner (2000)

(Plesser and Gerstner, 2000) since we include the non-linearity for spike initiation and spike-

frequency adaptation. We also provide relationships between the parameters of the AdEx and

the equivalent GLM. These precise relationships can be used to relate analog implementations

of threshold models (Schemmel et al., 2008) to the probabilistic models used in the Bayesian

approach.

The paper is organized as follows: We first describe the expressions relating the SRM state-

variable to the parameters of the AdEx (Sect. 3.3.1) in the subthreshold regime. Then, we use

numerical methods to find the non-linear link-function that models the firing probability

(Sect. 3.3.2). We find a functional form for the SRM link-function that best describes the

firing probability of a stochastic AdEx. We then compare the performance of this link-function

with the often used exponential or linear-rectifier link-functions (also called half-wave linear

rectifier) in terms of predicting the firing probability of an AdEx under complex stimulus (Sect.

3.3.3). We find that the exponential link-function yields almost perfect prediction. Finally, we

explore the relations between the statistic of the noise and the sharpness of the non-linearity

for spike initiation with the parameters of the SRM.

3.2 Presentation of the Models

In this section we present the general formula for the stochastic AdEx model (Sect. 3.2.1) and

the SRM (Sect 3.2.2).
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3.2.1 The Stochastic Adaptive Exponential Integrate-and-Fire Model

The voltage dynamics of the stochastic AdEx is given by:

τmV̇ = El −V +∆T exp

(
V −Θ
∆T

)
−Rw +RI +Rε (3.1)

τw ẇ = a(V −El )−w (3.2)

where τm is the membrane time constant, El the reverse potential, R the membrane resistance,

Θ is the threshold, ∆T is the shape factor and I (t ) the input current which is chosen to be an

Ornstein-Uhlenbeck process with correlation time-constant of 5 ms. The exponential term

∆T exp( V −Θ
∆T

) is a non-linear function responsible for the emission of spikes and ε is a diffusive

white noise with standard deviation σ (i.e. ε∼N (0,σ)). Note that the diffusive white-noise

does not imply white noise fluctuations of the voltage V (t), the probability distribution of

V (t ) will depend on ∆T andΘ. The second variable, w , describes the subthreshold as well as

the spike-triggered adaptation both parametrized by the coupling strength a and the time

constant τw . Each time t̂ j the voltage goes to infinity, we assumed that a spike is emitted.

Then the voltage is reset to a fixed value Vr and w is increased by a constant value b.

3.2.2 The Generalized Linear Model

In the SRM, The voltage V (t ) is given by the convolution of the injected current I (t ) with the

membrane filter κ(t ) plus the additional kernel η(t ) that acts after each spikes (here we split

the spike-triggered kernel in two η(t ) = ηv (t )+ηw (t ) for reasons that will become clear later):

V (t ) = El + [κ∗ I ](t )+∑
{t̂ j }

(
ηv (t − t̂ j )+ηw (t − t̂ j )

)
(3.3)

Then at each time t̂ j a spike is emitted which results in a change of voltage described by

η(t ) = ηv (t )+ηw (t ).

Given the deterministic voltage, (Eq. 3.3) a spike is emitted according to the firing intensity

λ(V ):

λ(t ) = f (V (t )) (3.4)

where f (·) is an arbitrary function called the link-function. Then the firing behavior of the

SRM depends on the choice of the link-function and its parameters. The most common link-

function used to model single neuron activities are the linear-rectifier and the exponential

function.
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3.3 Mapping

In order to map the stochastic AdEx to the SRM we follow a two-step procedure. First we derive

the filter κ(t) and the kernels ηv (t) and ηw (t) analytically as a function of AdEx parameters.

Second, we derive the link-function of the SRM from the stochastic spike emission of the AdEx.

Figure 3.1: Mapping of the subthreshold dynamics of an AdEx to an equivalent SRM. A: Membrane
filter κ(t ) for three different sets of parameters of the AdEx leading to over-damped, critically damped
and under-damped cases (upper, middle and lower panel, respectively). B: Spike-Triggered η(t ) (black),
ηv (t ) (light gray) and ηw (gray) for the three cases. C: Example of voltage trace produced when an AdEx
is stimulated with a step of colored noise (black). The corresponding voltage from a SRM stimulated
with the same current and where we forced the spikes to match those of the AdEx (red). D: Error in
the subthreshold voltage (VAdEx −VGLM) as a function of the mean voltage of the AdEx, for the three
different cases: over-, critically and under-damped (light gray, gray and black, respectively) with ∆T = 1
mV. Red line represents the voltage thresholdΘ. E: Root Mean Square Error (RMSE) ratio for the three
cases with ∆T = 1 mV. The RMSE ratio is the RMSE between the deterministic VSRM and the stochastic
VAdEx divided by the RMSE between repetitions of the stochastic AdEx voltage. The error bar shows a
single standard deviation as the RMSE ratio is averaged accross multiple value of σ.

3.3.1 Subthreshold voltage dynamics

We start by assuming that the non-linearity for spike initiation does not affect the mean

subthreshold voltage of the stochastic AdEx (see Figure 3.1 D). This assumption is motivated

by the small ∆T observed in in-vitro recordings (from 0.5 to 2 mV (Brette and Gerstner, 2005;

Badel et al., 2007)) which suggest that the subthreshold dynamics are mainly linear except very

close toΘ. Also, we expect that the non-linear link-function will capture some of the dynamics

due to the non-linearity for spike initiation. Thus it is possible to rewrite the deterministic

subthreshold part of the AdEx (Eq. 3.1-3.2 without ε and without ∆T exp((V −Θ)/∆T )) using
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matrices:

ẋ = Ax (3.5)

with x =
(

V

w

)
and A =

[
− 1
τm

− 1
glτm

a
τw

− 1
τw

]
(3.6)

In this form, the dynamics of the deterministic AdEx voltage is a damped oscillator with a

driving force. Depending on the eigenvalues of A the system could be over-damped, critically

damped or under-damped. The filter κ(t) of the GLM is given by the impulse response of

the system of coupled differential equations of the AdEx, described by Eq. 3.5 and 3.6. In

other words, one has to derive the response of the system when stimulating with a Dirac-

delta function. The type of damping gives three different qualitative shapes of the kernel

κ(t ), which are summarized in Table 3.1 and Figure 3.1 A. Since the three different filters also

affect the nature of the stochastic voltage fluctuations, we will keep the distinction between

over-damped, critically damped and under-damped scenarios throughout the paper. This

means that our approach is valid for at least 3 types of diffusive voltage-noise (i.e. the white

noise ε in Eq. 3.1 filtered by 3 different membrane filters κ(t )).

To complete the description of the deterministic voltage, we need an expression for the spike-

triggered kernels. The voltage reset at each spike brings a spike-triggered jump in voltage of

magnitude ∆=Vr −V (t̂ ). This perturbation is superposed to the current fluctuations due to

I (t) and can be mediated by a Delta-diract pulse of current. Thus we can write the voltage

reset kernel by:

ηv (t ) = ∆

κ(0)
[δ∗κ] (t ) = ∆

κ(0)
κ(t ) (3.7)

where δ(t) is the Dirac-delta function. The shape of this kernel depends on κ(t) and can be

computed from Table 3.1 (see Figure 3.1 B).

Finally, the AdEx mediates spike-frequency adaptation by the jump of the second variables

w . From Eq. 3.2 we can see that this produces a current wspike(t) = b exp(−t/τw ) that can

cumulate over subsequent spikes. The effect of this current on voltage is then given by the

convolution of wspike(t) with the membrane filter κ(t). Thus in the SRM framework the

spike-frequency adaptation is taken into account by:

ηw (t ) = [wspike ∗κ](t ) (3.8)

Again the precise form of ηw (t) depends on κ(t) and can be computed from Table 3.1 (see

Figure 3.1 B).

At this point, we would like to verify our assumption that the non-linearity for spike emission

can be neglected. Fig. 3.1 C and D shows that the error between the voltage from Eq. 3.3
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Membrane Filter: κ(t )

over-damped if: critically-damped if: under-damped if:

(τm +τw )2 > 4τmτw (gl+a)
gl

(τm +τw )2 = 4τmτw (gl+a)
gl

(τm +τw )2 < 4τmτw (gl+a)
gl

κ(t ) = k1eλ1t +k2eλ2t κ(t ) = (αt +β)eλt κ(t ) = (k1 cos(ωt )+k2 sin(ωt ))eλt

λ1 = 1
2τmτw

(−(τm +τw ) + λ= −(τm+τw )
2τmτw

λ= −(τm+τw )
2τmτw√

(τm +τw )2 −4τmτw
gl

(gl +a)
)

λ2 = 1
2τmτw

(−(τm +τw ) − α= τm−τw
2Cτmτw

ω=
√∣∣∣∣(τw−τm

2τmτw

)2 − a
glτmτw

∣∣∣∣√
(τm +τw )2 −4τmτw

gl
(gl +a)

)
k1 = −(1+(τmλ2))

Cτm (λ1−λ2) β= 1
C k1 = 1

C

k2 = 1+(τmλ1)
Cτm (λ1−λ2) k2 = −(1+τmλ)

Cωτm

Table 3.1: Analytical expressions for the membrane filter κ(t ) in terms of the parameters of the AdEx
for over-, critically-, and under-damped cases.

and the voltage from the stochastic AdEx is generally small. Moreover, we see that the main

contribution to the voltage prediction error is due to the mismatch close to the spikes. However

the non-linearity for spike initiation may change the probability distribution of the voltage

fluctuations, which in turn influences the probability of spiking. This will influence the choice

of the link-function, as we will see in the next section.

3.3.2 Spike Generation

Using κ(t ), ηv (t ) and ηw (t ), we must relate the spiking probability of the stochastic AdEx as a

function of its deterministic voltage. According to (Gerstner and Kistler, 2002) the probability

of spiking in time bin d t given the deterministic voltage V (t ) is given by:

p(V ) = prob{spike in [t, t+dt]} = 1−exp
(− f (V (t ))d t

)
(3.9)

where f (·) gives the firing intensity as a function of the deterministic V (t) (Eq. 3.3). Thus

to extract the link-function f we have to compute the probability of spiking given V (t) for

our SRM. To do so we apply the method proposed by Jolivet et al. (2004) (Jolivet et al., 2004),

where the probability of spiking is simply given by the distribution of the deterministic voltage
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estimated at the spike times divided by the distribution of the SRM voltage when there is no

spike (see figure 3.2 A). One can numerically compute these two quantities for our models

using N repetitions of the same stimulus.

The standard deviation σ of the noise and the parameter ∆T of the AdEx non-linearity may

affect the shape of the link-function. We thus extract p(V ) for different σ and ∆T (Fig. 3.2 B).

Then using visual heuristics and previous knowledge about the potential analytical expression

of the link-funtion, we try to find a simple analytical function that captures p(V ) for a large

range of combinations of σ and ∆T . We observed that the log(− log(p)) is close to linear in

most studied conditions Fig. 3.2 B suggesting the following two distributions of p(V ):

p(V ) = 1−exp

(
−exp

(
V −VT

∆V

))
(3.10)

p(V ) = exp

(
−exp

(
−V −VT

∆V

))
(3.11)

Once we have p(V ), we can use Eq. 3.4 to obtain the equivalent SRM link-function, which

leads to:

f (V ) = −1

d t
log

(
1−p(V )

)
(3.12)

Then the two potential link-functions of the SRM can be derived from Eq. 3.10 and Eq. 3.11

(respectively):

f (V ) = λ0 exp

(
V −VT

∆V

)
(3.13)

f (V ) = −λ0 log

(
1−exp

(
−exp

(
−V −VT

∆V

)))
(3.14)

with λ0 = 1
d t , VT the threshold of the SRM and ∆V the sharpness of the link-function (i.e. the

parameters that governs the degree of the stochasticity). Note that the exact value of λ0 has no

importance since it is redundant with VT . Eq. 3.13 is the standard exponential link-function,

but we call Eq. 3.14 the log-exp-exp link-function.

3.3.3 Prediction

The next point is to evaluate the fit quality of each link-function. To do this, we first estimate

the parameters VT and∆V of the GLM link-function that maximize the likelihood of observing

a spike train generated with an AdEx. Second we look at the predictive power of the resulting

SRM in terms of Peri-Stimulus Time Histogram (PSTH). In other words we ask how close the

spike trains generated with a GLM are from the spike train generated with a stochastic AdEx

when both models are stimulated with the same input current.

For any GLM with link-function f (V ) ≡ f (t |I ,θ) and parameters θ regulating the shape of κ(t ),
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Figure 3.2: SRM link-function. A: Histogram of the SRM voltage at the AdEx firing times (red) and at
non-firing times (gray). The ratio of the two distributions gives p(V ) (Eq. 3.9, dashed lines). Inset, zoom
to see the voltage histogram evaluated at the firing time (red). B: log(− log(p)) as a function of the SRM
voltage for three different noise levels σ= 0.07, 0.14, 0.18 nA (pale gray, gray, black dots, respectively)
and ∆T = 1 mV. The line is a linear fit corresponding to the log-exp-exp link-function and the dashed
line corresponds to a fit with the exponential link-function. C: Same data and labeling scheme as B,
but plotting f (V ) according to Eq. 3.12. The lines are produced with Eq. 3.14 with parameters fitted as
described in B. and the dashed lines are produced with Eq. 3.13. Inset, same plot but on a semi-log(y)
axis.

ηv (t ) and ηw (t ), the Negative Log-Likelihood (NLL) of observing a spike-train {t̂ } is given by:

NLL = −
(∑

t̂

log( f (t |I ,θ))−∑
t

f (t |I ,θ)

)
(3.15)

It has been shown that the negative log-likelihood is convex in the parameters if f is convex

and log-concave (Paninski, 2004). It is easy to show that a linear-rectifier link-function, the

exponential link-function and the log-exp-exp link-function all satisfy these conditions. This

allows efficient estimation of the optimal parameters V̂T and ∆̂V using a simple gradient

descent. One can thus estimate from a single AdEx spike train the optimal parameters of a

given link-function, which is more efficient than the method used in Sect. 3.3.2.
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Figure 3.3: PSTH prediction. A: Injected current. B: Voltage traces produced by an AdEx (black) and
the equivalent SRM (red), when stimulated with the current in A. C: Raster plot for 20 realizations of
AdEx (black tick marks) and equivalent SRM (red tick marks). D: PSTH of the AdEx (black) and the SRM
(red) obtained by averaging 10,000 repetitions. E: Optimal log-likelihood for the three cases of the AdEx,
using three different link-functions, a linear-rectifier (light gray), an exponential link-function (gray)
and the link-function defined by Eq. 3.14 (dark gray), these values are obtained by averaging over 40
different combinations σ and ∆T (see Fig. 3.4). Error bars are one standard deviation, the stars denote
a significant difference, two-sample t-test with α= 0.01. F : same as E. but for Md (Eq. 3.16).

The minimal NLL resulting from the gradient descent gives an estimation of the fit quality. A

better estimate of the fit quality is given by the distance between the PSTHs in response to

stimuli not used for parameter fitting . Let ν1(t) be the PSTH of the AdEx, and ν2(t) be the

PSTH of the fitted SRM, then we use Md ∈ [0,1] as a measure of match:

Md = 2
∫

(ν1(t )−ν2(t ))2 d t∫
ν1(t )2d t +∫

ν2(t )2d t
(3.16)

Md = 1 means that it is impossible to differentiate the SRM from the AdEx in terms of their

PSTHs, whereas a Md of 0 means that the two PSTHs are completely different. Thus Md is

a normalized similarity measure between two PSTHs. In practice, Md is estimated from the

smoothed (boxcar average of 1 ms half-width) averaged spike train of 1 000 repetitions for

each models. We use both the NLL and Md to quantify the fit quality for each of the three

damping cases and each of the three link-functions.

Figure 3.3 shows the match between the stochastic AdEx used as a reference and the derived

GLM when both are stimulated with the same input current (Fig. 3.3 A). The resulting voltage

traces are almost identical (Fig. 3.3 B) and both models predict almost the same spike trains

and so the same PSTHs (Fig. 3.3 C and D). More quantitalively, we see on Fig. 3.3 E and F,

that the linear-rectifier fits significantly worse than both the exponential and log-exp-exp
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link-functions, both in terms of NLL and of Md . The exponential link-function performs as

well as the log-exp-exp link-function, with a spike train similarity measure Md being almost 1

for both.

Finally the likelihood-based method described above gives us the opportunity to look at the

relationship between the AdEx parameters σ and ∆T that governs its spike emission and the

parameters VT and ∆V of the link-function (Fig. 3.4). We observe that an increase of the noise

level produces a flatter link-function (greater ∆V ) while an increase in ∆T also produces an

increase in ∆V and VT (note that Fig. 3.4 shows ∆V and VT for the exponential link-function

only, but equivalent results are obtained with the log-exp-exp link-function).

Figure 3.4: Influence of the AdEx parameters on the parameters of the exponential link-function.
A: VT as a function of ∆T and σ. B: ∆V as a function of ∆T and σ.

3.4 Discussion

In Sect. 3.3.3 we have shown that it is possible to predict with almost perfect accuracy the

PSTH of a stochastic AdEx model using an appropriate set of parameters in the SRM. Moreover,

since the subthreshold voltage of the AdEx also gives a good match with the deterministic

voltage of the SRM, we expect that the AdEx and the SRM will not differ in higher moments of

the spike train probability distributions beyond the PSTH. We therefore conclude that diffusive

noise models of the type of Eq. 3.1-3.2 are equivalent to GLM of the type of Eq. 3.3-3.4. Once

combined with similar results on other types of stochastic LIF (e.g. correlated noise), we could

bridge the gap between the literature on GLM and the literature on diffusive noise models.

Another noteworthy observation pertains to the nature of the link-function. The link-function

has been hypothesized to be a linear-rectifier, an exponential, a sigmoidal or a Gaussian

(Plesser and Gerstner, 2000). We have observed that for the AdEx the link-function follows Eq.

3.14 that we called the log-exp-exp link-function. Although the link-function is log-exp-exp

for most of the AdEx parameters, the exponential link-function gives an equivalently good

prediction of the PSTH. This can be explained by the fact that the difference between log-exp-

exp and exponential link-functions happens mainly at low voltage (i.e. far from the threshold),
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where the probability of emitting a spike is so low (Figure 2 C, until -50 mv). Therefore, even

if the exponential link-function overestimates the firing probability at these low voltages it

rarely produces extra spikes. At voltages closer to the threshold, where most of the spikes are

emitted, the two link-functions behave almost identically and hence produce the same PSTH.

The Gaussian link-function can be seen as lying in-between the exponential link-function and

the log-exp-exp link-function in Fig. 3.2. This means that the work of Plesser and Gerstner

(2000) (Plesser and Gerstner, 2000) is in agreement with the results presented here. The

importance of the time-derivative of the voltage stressed by Plesser and Gerstner (leading to a

two-dimensional link-function f (V ,V̇ )) was not studied here to remain consistent with the

typical usage of GLM in neural systems (Doya et al., 2007).

Finally we restricted our study to exponential non-linearity for spike initiation and do not

consider other cases such as the Quadratic Integrate-and-fire (QIF, (Izhikevich, 2003)) or other

polynomial functional shapes. We overlooked these cases for two reasons. First, there are

many evidences that the non-linearity in neurons (estimated from in-vitro recordings of

Pyramidal neurons) is well approximated by a single exponential (Badel et al., 2007). Second,

the exponential non-linearity of the AdEx only affects the subthreshold voltage at high voltage

(close to threshold) and thus can be neglected to derive the filters κ(t ) and η(t ). Polynomial

non-linearities on the other hand affect a larger range of the subthreshold voltage so that it

would be difficult to justify the linearization of subthreshold dynamics essential to the method

presented here.
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4 Automated high-throughput param-
eter extraction for Generalized Inte-
grate and Fire models

In order to perform realistic large-scale simulations of brain activity, mathematical models

need to be developed that accurately capture the spiking activity of individual neurons1.

To account for the large variety of behaviors observed in different neuronal types, single-

neuron models should be flexible and allow efficient parameter extraction from experimental

recordings. Here we demonstrate that, using a convex optimization procedure we previously

introduced, a Generalized Integrate and Fire model capable of predicting both the spiking

activity and the subthreshold dynamics of different cell types, can be accurately fitted with a

limited amount of data. Based on our results, a procedure is proposed that, combined with

a recently developed technology for automatic patch-clamp recordings, allows automated

high-throughput characterization of single neurons.

4.1 Introduction

In the field of computational neuroscience, the last years have been characterized by the

announcements of several large-scale projects aimed to build realistic models of the electrical

activity of entire brains (Markram, 2006; Koch and Reid, 2012; Waldrop, 2012; Kandel et al.,

2013; Lang et al., 2011). To achieve this ambitious goal, it is of crucial importance to build

accurate models of the brain’s fundamental building blocks: the single neurons.

Ideally, a single-neuron model should be sufficiently complex and flexible to capture the

spiking activity of real neurons, but also relatively simple to allow large-scale simulations and

robust parameter estimation (Herz et al., 2006; Gerstner and Naud, 2009). Detailed biophysical

models with stochastic ion channel dynamics can in principle account for every aspect of

the single-neuron activity; however, due to their complexity, they require high computational

1This text is copied from (Mensi et al., 2014), full citation in the bibliography
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power (Herz et al., 2006; Markram, 2006; Lang et al., 2011). While systematic fitting of detailed

biophysical models is possible (Gold et al., 2006; Huys et al., 2006; Druckmann et al., 2007;

Hay et al., 2011; Vavoulis et al., 2012), a computationally efficient solution to this problem is

not known (Gerstner and Naud, 2009). Parallel to efforts of large scale biophysical modeling

(Markram, 2006; Lang et al., 2011), there exist also large scale simulations approaches based

on simplified threshold models in which the biophysical mechanisms relevant for neural

computation are accounted for by phenomenological descriptions (Brainscales; Izhikevich

and Edelman, 2008; Gewaltig and Diesmann, 2007). These approaches are supported by

several studies showing that simplified spiking models are able to accurately predict the single-

neuron activity with millisecond precision (Keat et al., 2001; Paninski et al., 2005; Jolivet et al.,

2008; Kobayashi et al., 2009; Dong et al., 2013), at least for the case of single-electrode somatic

stimulation; but see (Häusser et al., 2000; Larkum et al., 2009).

On the experimental side, a new in vivo technology has recently been developed that allows

for automatic single-neuron intracellular recordings (Kodandaramaiah et al., 2012). With this

method, a robot can establish a whole-cell patch-clamp seal in approximatively five minutes.

In the near future, in vitro automatic patch-clamp techniques combined with genetic labeling

will probably make high-throughput electrophysiology from identified neuronal types possible

(Dunlop et al., 2008). In order to make sense of the resulting large dataset expected from such

high-throughput methods, adequate computational tools have to be developed.

Here we demonstrate that a Generalized Integrate-and-Fire (GIF) model capable of predicting

both the spiking activity and the subthreshold dynamics of different neuronal types (Mensi

et al., 2011b; Pozzorini et al., 2013), can be robustly fitted using only 100 seconds of in vitro

recordings. To validate parameter extraction, a short protocol is proposed in which the ability

of GIF models in predicting the spiking response to new inputs is quantified. Overall, we found

that fitting and validating a GIF model takes approximatively five minutes. Considering the

time required to automatically establish a patch-clamp seal, the complete characterization of

a single neuron can therefore be achieved in around ten minutes. We therefore conclude that

modern computational tools are suitable for high-throughput modeling of single neurons.

4.2 Results

The Results section is organized as follows. In the first two sections, we respectively define the

GIF model and the procedures used for parameter extraction and model validation. Using

artificial data generated by the GIF model itself, we then determine the amount of data and

the computing time required to perform accurate parameter extraction and model valida-

tion. Based on these results, an experimental protocol is established that enables automated

high-throughput characterization of single neurons. In the last sections, the validity of this

protocol is verified using in silico recordings obtained by simulating the activity of a multi-

compartmental conductance-based model (Hay et al., 2011) as well as in vitro recordings

from layer 5 (L5) pyramidal neurons obtained with standard patch-clamp technique. The GIF

74



4.2. Results

model performance is finally compared against that of a standard Generalized Linear Model

(GLM) (Truccolo et al., 2005; Pillow et al., 2008).

4.2.1 Generalized Integrate and Fire model

The GIF model discussed in this study (Mensi et al., 2011b; Pozzorini et al., 2013) is a leaky

integrate-and-fire model augmented with a spike-triggered current η(t ), a moving threshold

γ(t ) and the escape rate mechanism (Gerstner and Kistler, 2002; Jolivet et al., 2006) for stochas-

tic spike emission (Figure 4.1 A). This model is able to predict both the spiking activity and

the subthreshold dynamics of individual neurons (Figure 4.1 B) and it is flexible enough to

capture the behavior of different neuronal types (Mensi et al., 2011b).

Figure 4.1: The GIF model accurately predicts both the subthreshold and the spiking activity of
cortical neurons. (A) Block representation of the GIF model. The membrane acts as a low-pass filter

κ(t ) = 1
C exp

(
− gL t

C

)
on the input current I (t ) to produce the modeled potential V (t ). The exponential

nonlinearity (escape-rate) transforms this voltage into an instantaneous firing intensity λ(t ), according
to which spikes are generated. Each time a spike is emitted, both a current η(t ) and a movement of the
firing threshold γ(t ) are triggered. (B) The GIF model accurately predicts the occurrence of individual
spikes with millisecond precision. To evaluate the predictive power of the GIF model, the response of
a L5 pyramidal neuron to a fluctuating input current (top) has been recorded intracellularly (middle,
black). The same protocol was repeated nine times to assess the reliability of the neural response
(bottom, black raster). The GIF model (with parameters extracted using a different dataset) was able to
accurately predict both the subthreshold (middle, red) and the spiking response (bottom, red raster) of
the cell.
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In the model, the subthreshold membrane potential V (t ) evolves according to the following

differential equation:

CV̇ (t ) =−gL(V (t )−EL)− ∑
t̂ j<t

η(t − t̂ j )+ I (t ), (4.1)

where the parameters C , gL and EL define the passive properties of the neuron, I (t ) is the input

current and {t̂ j } are the spike times. According to Equation 4.1, each time an action potential

is fired, an intrinsic current with stereotypical shape η(t) is triggered. By convention, the

spike-triggered current η(t ) is hyperpolarizing when its amplitude is positive and depolarizing

otherwise. Currents triggered by different spikes accumulate and produce spike-frequency

adaptation, if η(t) > 0 (or facilitation, if η(t) < 0). The functional shape of η(t) varies among

neuron types (Mensi et al., 2011b). Consequently the time course of η(t) is not assumed a

priori but is extracted from intracellular recordings. Each time a spike is emitted, the numeri-

cal integration is stopped during a short absolute refractory period Tref and the membrane

potential is reset to V (t̂ j +Tref) =Vreset.

Spikes are produced stochastically according to a point process with conditional firing in-

tensity λ(t |V ,VT ), which exponentially depends on the momentary difference between the

membrane potential V (t) and the firing threshold VT(t) (Gerstner and van Hemmen, 1992;

Paninski et al., 2005; Jolivet et al., 2006):

λ(t |V ,VT ) =λ0 ·exp

(
V (t )−VT (t )

∆V

)
, (4.2)

where λ0 has units of s−1, so that λ(t) is in Hz and ∆V defines the level of stochasticity.

According to Equation 4.2, if ∆V 6= 0, the probability of a spike to occur at a time t̂ ∈ [t ; t +∆t ]

is given by:

P (t̂ ∈ [t ; t +∆t ]) = 1−exp

(
−

∫ t+∆t

t
λ (s)d s

)
≈λ(t )∆t . (4.3)

In the limit ∆V → 0, the model becomes deterministic and action potentials are emitted at the

precise moment when the membrane potential crosses the firing threshold. Importantly, the

value of ∆V is extracted from experimental data.

Finally, the dynamics of the firing threshold VT (t ) is given by:

VT (t ) =V ∗
T + ∑

t̂ j<t

γ(t − t̂ j ), (4.4)

where V ∗
T is a constant and γ(t ) describes the stereotypical time course of the firing threshold

after the emission of an action potential. Since the contribution of different spikes accu-

mulates, the moving threshold defined in Equation 4.4 constitutes an additional source of

adaptation (or facilitation). Similar to η(t ), the functional shape of γ(t ) is not assumed a priori

but is extracted from intracellular recordings. To help the readers, all model parameters and
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mathematical symbols used are summarized at the end of this chapter in table 4.1.

4.2.2 GIF model parameter extraction

Given the intracellular voltage response Vdata(t ) evoked in vitro by a controlled input current

Itr(t), all of the GIF model parameters are extracted from experimental data (training set)

using a three-step procedure (Figure 4.2 A) that we previously introduced (Mensi et al., 2011a;

Pozzorini et al., 2013). A detailed description of the fitting procedure can be found in the

Experimental Procedures section.

In Step 1 (Figure 4.2 A, Step 1), the experimental spike-train Sdata = {t̂ j } is first defined as

the collection of instants t̂ j at which Vdata(t) crossed a certain threshold from below. The

average spike-shape VSTA(t ) is then obtained by computing the spike-triggered average (STA)

of Vdata(t). Depending on the cell type (that is, depending on the average spike-shape), the

absolute refractory period Tref is fixed to a certain value and the reset potential is computed

as Vreset =VSTA(Tref). In the GIF model, a period of absolute refractoriness can alternatively

be implemented by setting the first milliseconds of the spike-triggered threshold movement

γ(t) to very large values. For this reason, as long as Tref remains smaller than the shortest

interspike-interval observed in the data, its precise value is not crucial. A sensible choice is to

set Tref about twice the spike width at half maximum.

In Step 2 (Figure 4.2 A, Step 2), the first-order temporal derivative of the experimental voltage

V̇data(t ) is estimated by finite differences and the parameters θsub determining the membrane

potential dynamics are extracted by fitting Equation 4.1 on V̇data(t ). This is done by exploiting

the knowledge of the experimental voltage Vdata(t) and the external input Itr(t). To avoid a

priori assumptions on the functional shape of the spike-triggered current, η(t ) is expanded

in a linear combination of rectangular basis functions. Consequently, optimal parameters

minimizing the sum of squared errors between V̇ (t ) and V̇data(t ) can be efficiently obtained

by solving a multilinear regression problem (Paninski et al., 2005) (cf. Equations 4.18-4.19).

In Step 3 (Figure 4.2 A, Step 3), the parameters estimated so far are first used to compute the

subthreshold membrane potential of the model V̂model(t). For that, Equation 4.1 is numeri-

cally solved by enforcing adaptation currents η(t ) at all the observed spike-times {t̂ j }. Given

V̂model(t), the parameters θth defining the firing threshold dynamics (cf. Equations 4.2-4.4)

are then extracted by maximizing the probability (i.e., the log-likelihood) of the experimental

spike-train Sdata(t ) being produced by the GIF model (cf. Equations 4.21-4.22). Similar to η(t ),

the spike-triggered threshold movement is extracted nonparametrically by expanding γ(t ) in a

linear combination of rectangular basis functions. With the exponential function in Equation

4.2, the log-likelihood to maximize is guaranteed to be a concave function of θth (Paninski,

2004) and the optimization problem can be solved using standard gradient ascent techniques.

The method used in this last step closely resembles the standard GLM fitting procedure (Truc-

colo et al., 2005; Pillow et al., 2008). However, here, by exploiting the information contained in

the subthreshold dynamics of the membrane potential, the maximum likelihood approach is

77



Chapter 4. Automated high-throughput parameter extraction for Generalized Integrate
and Fire models

specifically used to infer the dynamics of the firing threshold. In contrast to GLMs, the GIF

model can consequently disentangle adaptation processes mediated by intrinsic currents and

threshold movements.

Figure 4.2: GIF model parameter extraction. (A) Schematic representation of the three-step
procedure used to extract GIF model parameters from in vitro intracellular recordings. In Step 1
(first row), the experimental spike-train Sdata(t) is extracted from the voltage trace Vdata(t) using a
standard threshold-crossing method (left, dashed line). Parameters related to absolute refractoriness
are extracted from the average spike-shape (middle). In Step 2 (second row), given the injected current
Itr(t ) and the recorded potential Vdata, all the parameters θsub defining the dynamics of the subthreshold
membrane potential (Equation 4.1) are extracted by performing a least-square multilinear regression
on the membrane potential derivative V̇data(t).Since Equation 4.1 does not describe the membrane
potential dynamics during action potentials, all the data close to spikes are discarded. In Step 3 (third
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row), the subthreshold parameters θsub are first used to compute the subthreshold voltage of the model
V̂model(t ). The parameters θth defining the dynamics of the firing threshold (left, dashed gray) are then
extracted by maximizing the probability (i.e., the log-likelihood) that the experiential spike-train Sdata(t )
was produced by the model, given the subthreshold dynamics V̂model(t ). (B-E) GIF model parameters
used to generate the artificial data (black) and recovered using a training set of Ttr = 10 seconds (gray)
and Ttr = 100 seconds (red). Error bars and shaded areas represent one standard deviation obtained
using 5 different data sets. In case of perfect agreement, black lines, gray lines and shaded areas are
not visible. (B) Membrane filter κ(t). Inset: membrane timescale τm = C /gL. (C) Spike-triggered
current η(t ). (D) Spike-triggered movement of the firing threshold γ(t ). (E) Reversal potential (EL, top
left); cell resistance (R = g−1

L , top right); threshold baseline (V ∗
T , bottom left) and threshold sharpness

(∆V , bottom right). (F) Estimation error εparam on model parameters (upper panel), performance on
spike-timing prediction M∗

d (middle panel) and computing time required for parameter extraction
(lower panel) as a function of the training set size Ttr. Gray areas indicate one standard deviation
across different artificial datasets generated using the same reference parameters. Gray and red arrows
indicate the performance obtained with a training set of 10 s and 100 s, respectively. (G) Reliability
of the validation procedure as a function of the number of repetitions ntest and the duration Ttest of
the test current. For different values of ntest and Ttest, M∗

d was computed 1000 times using different
test currents. Consistent with the result that M∗

d corrects the small-sample bias, the mean value of
M∗

d obtained across repetitions of different test currents did not depend on ntest and Ttest and was of
M∗

d = 0.998 (dashed line). The continuous lines represent the 0.25-quantiles of the M∗
d distribution

obtained with ntest = {3,6,9,12,15} (from dark to light gray) and indicate that the reliability of the
measure increases with ntest and Ttest.

4.2.3 GIF model validation

To obtain a high-throughput pipeline for GIF model parameter extraction, the method de-

scribed in the previous section has to be complemented with a validation protocol designed

to automatically detect and discard trials in which the fitting procedure fails. Good spiking

neuron models should be able to accurately predict the occurrence of individual action poten-

tials with millisecond precision (Gerstner and Naud, 2009). To take into account the stochastic

nature of single neurons (Mainen and Sejnowski, 1995), we designed a validation protocol

based on the measurement of the model performance in predicting spike emission probability.

After the acquisition of the training dataset used for parameter extraction, a new set of record-

ings (test dataset) is performed in which single neurons are stimulated repetitively with a test

current Itest(t ). The resulting set of experimental spike-trains is then compared against a set

of spike-trains predicted by repetitive simulations of the GIF model. To obtain a quantitative

measure of the model’s predictive power, the similarity M∗
d (Naud et al., 2011) between the

two sets of spike-trains is computed (Experimental Procedures). M∗
d takes values between

0 and 1, where M∗
d = 0 indicates that the model is unable to predict any of the experimental

spikes and M∗
d = 1 indicates a perfect match. Importantly, M∗

d avoids the small-sample bias

known to occur when measuring the similarity between small groups of spike-trains as well as

the deterministic bias known to favor noise-free models (Naud et al., 2011).
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4.2.4 Testing GIF model parameter extraction and validation on artificial data

To estimate the amount of data required to perform GIF model parameter extraction, we first

tested our fitting procedure on an artificial training set generated by simulating the response

of a GIF model to a fluctuating current I (t). The choice of reference parameters (Figure 4.2

B-E, black) was based on previous results (Pozzorini et al., 2013). In particular, both the spike-

triggered current η(t ) and the threshold movement γ(t ) were defined as a linear combination

of K = 26 log-spaced rectangular basis functions approximating a power-law decay over 5

seconds (Pozzorini et al., 2013; Lundstrom et al., 2008). Overall, the reference model had 59

parameters: 31 were related to the subthreshold dynamics and 28 to the firing threshold.

The input current I (t ) used to build the artificial training set was generated at∆T −1= 20 kHz by

numerically solving the stochastic differential equation τİ =−I + I0 +
p

2τσ(t )ξ(t ) in discrete

time

I (t +∆T ) = I (t )+ I0 − I (t )

τ
·∆T +

√
2σ2∆T

τ
·N (0,1), (4.5)

where ξ(t) is a Gaussian white-noise process generated by independently sampling from

a Normal distribution N (0,1), τ = 3 ms is the characteristic timescale on which the input

fluctuates, I0 defines the mean input and σ(t) is the time-dependent standard deviation of

I (t). Ornstein-Uhlenbeck processes (i.e. stationary filtered Gaussian processes) have been

extensively used to model the input current received in vivo at the soma of neocortical neurons

(Destexhe and Pare, 1999). Here, we relaxed the assumption of stationarity by modulating the

variance of the input with a periodic oscillation (Lundstrom et al., 2008) given by:

σ(t ) =σ0(1+∆σsin(2π f t )), (4.6)

where σ0 and ∆σ are constants and f = 0.2 Hz is the modulation frequency. An input current

with non-stationary statistics drives the neurons through different regimes producing broad

ISI distributions that better constrain the fit of adaptation processes. The input parameters I0,

σ0 and ∆σ were adjusted to generate an artificial training set in which the GIF model emitted

spikes at an average firing rate of 10 Hz oscillating over 5 seconds between 7 and 13 Hz.

The fitting procedure illustrated in Figure 4.2 A was then applied to recover the reference

parameters of the GIF model used to generate the artificial dataset (Figure 4.2 B-E, black). To

estimate the amount of data required to guarantee a high degree of accuracy, this operation

was repeated several times by varying the size of the training set Ttr (that is, the duration of

the input current I (t)). 4.2 B-E shows a comparison between the reference parameters and

the results obtained by fitting a training set of Ttr = 10 seconds (gray) and Ttr = 100 seconds

(red). Overall, we found that 100 seconds were sufficient to accurately recover the reference

parameters. To quantify the accuracy of the fit, we computed the mean error εparam on model

parameters (see Experimental Procedures) as a function of Ttr and found that 100 seconds were

sufficient to limit the error to εparam < 2.0% (Figure 4.2 F, top). The great accuracy with which
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the fitted model was able to predict the spiking activity of the reference model (M∗
d = 0.998)

confirmed the goodness of this fit (Figure 4.2 F, middle). To achieve high-throughput and

perform parameter extraction on the fly, it is crucial to minimize the computing time (CPU

time) required for the fit. We measured the CPU time as a function of the training set duration

Ttr (Figure 4.2 F, bottom) and we found that accurate parameter extraction from a training set

of Ttr = 100 seconds requires around 60 seconds of computing. We concluded that GIF model

parameter extraction is suitable for high-throughput.

A second time-consuming procedure that has to be analyzed is the validation protocol. To

quantify the predictive power of the fitted model, the reference model was stimulated with

repetitive injections of a test current Itest(t) generated according to Equations 4.5-4.6. To

estimate the number of repetitions ntest and the duration Ttest of the test current required

to obtain a reliable estimate of the model predictive power, the similarity measure M∗
d was

computed multiple times using different values of ntest and Ttest (Figure 4.2 G). On average,

the value of M∗
d was independent of both the input current duration and the number of

repetitions, confirming that the spike-train metrics M∗
d successfully eliminates the small-

sample bias (Naud et al., 2011). We measured the variability of M∗
d across validation procedures

performed with different realizations of Itest(t ) and found that the reliability of M∗
d increased

with both the number of repetitions ntest and the duration of the test current Ttest (Figure 4.2

G). Spike-triggered processes can last for several seconds (Pozzorini et al., 2013; Lundstrom

et al., 2008). This sets a constraint on the minimal duration of both the test current Itest(t)

and the interstimulus interval. By taking into account these constraints, we concluded that,

while respecting high-throughput constraints, a validation protocol based on 9 injections of a

10-second current guarantees a reliable estimation of the model’s predictive power (Figure 4.2

G).

4.2.5 A protocol for automated high-throughput single-neuron characterization

Based on the results reported in the previous section, we designed a protocol for the fit and

the validation of GIF models on in vitro intracellular recordings (Figure 4.3). The protocol is

conceptually divided in two phases. In the first part, a training set is acquired by recording the

single-neuron response to a fluctuating input Itr(t ) lasting for Ttr = 100 seconds and generated

according to Equations 4.5-4.6. These data are then used for parameter extraction. In the

second part of the protocol, 9 repetitive injections of a new 10-second current Itest(t) are

performed with an interstimulus interval of 10 seconds, so as to allow the cell to recover.

These data (test set) are then used to quantify the predictive power of the GIF model with

the spike-train similarity measure M∗
d . Since all the computations required for parameter

extraction and model validation can be performed on the fly, the whole protocol requires 5

minutes and is suitable for high-throughput.

Current-clamp experiments in which the same electrode is used both for stimulating and

recording from single neurons are biased due to the voltage drop across the electrode (Brette
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et al., 2007). To remove this bias, intracellular recordings are preprocessed using a technique

called Active Electrode Compensation (AEC, refs. (Brette et al., 2007; Badel et al., 2008), see

Experimental Procedures). To perform AEC, the filtering properties of the electrode have to be

estimated. For that, an additional 10-second-long subthreshold injection is performed before

the acquisition of the training set (Figure 4.3).

Time (s)
50 100 150 200 250 3000

In vitro
recordings

Input
current

Computer
usage

Parameter
extraction

Spike timing
prediction Md

*AEC

TRAINING SETAEC TEST SET

Figure 4.3: Schematic representation of the protocol for high-throughput single-neuron charac-
terization. To characterize the properties of the electrode required for AEC, the experimental protocol
starts with the injection of a short subthreshold current. While the filtering properties of the patch
clamp are estimated (AEC left), the training dataset is collected. After training set collection, the raw
data are preprocessed with AEC (AEC right). Then, in parallel with GIF model parameter extraction
and successive spike timing prediction, the test dataset is collected by injecting 9 repetitions of the
same time-dependent current. Finally, after complete acquisition of the test set, the similarity measure
M∗

d between the observed and the predicted spike-trains is computed. Overall, GIF model parameter
extraction and validation requires around 5 minutes.

4.2.6 Testing the high-throughput protocol on in silico recordings

A different class of models used to describe the electrical activity of individual neurons includes

the so called multi-compartment conductance-based models (or detailed biophysical models).

In contrast to point-neuron models, detailed biophysical models account for the intricate

morphology of both dendritic and axonal arborizations and explicitly describe the dynamics

of a large variety of ion channels mediating active currents. Both aspects are likely to play a

role in single neuron information processing (Koch and Segev, 2000; London and Häusser,

2005). A detailed biophysical model (DBM) has recently been proposed that captures several

features of L5b thick-tufted pyramidal neurons (Hay et al., 2011). In particular, this model

includes active dendrites and describes the interactions between Na+ spiking at the soma,

back-propagating action potentials and Ca2+ spikes generated at the distal apical dendrites.

To validate our procedure for high-throughput single-neuron characterization, the protocol

described in Figure 4.3 was tested in silico by simulating the DBM response to a set of current

injections (Figure 4.4 A, see Experimental Procedures). The input parameters were calibrated

to obtain an average firing rate of 10 Hz with slow rate fluctuations between 7 and 13 Hz (see

Figure 4.4 H). Moreover, to model stochastic spike emission, a source of noise was introduced
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by corrupting the input current with some additive white-noise (see Experimental Proce-

dures). Capturing the DBM spiking response to dendritic injections goes beyond the scope

of this study. Since we are ultimately interested in automatic somatic patching, all in silico

experiments were preformed by delivering the current at the somatic compartment (Figure

4.4 A). DBM somatic recordings were then used to perform GIF model parameter extraction

(Fig. 4B-D). Compared with previous results from in vitro recordings in L5 pyramidal neurons

(Mensi et al., 2011a; Pozzorini et al., 2013), the membrane filter κ(t) was characterized by a

relatively short timescale (τm = 6.7 ms, s.d. 0.1 ms, Figure 4.4 B). GIF model parameter extrac-

tion also revealed the presence of a long-lasting adaptation current (Figure 4.4 C) as well as a

long-lasting spike-triggered movement of the firing threshold (Figure 4.4 D). Consistent with

the tendency of L5b pyramidal neurons to produce bursts of action potentials (ref. (Hay et al.,

2011) and Figure 4.4 G), the activation of the spike-triggered current was not instantaneous.
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Figure 4.4: Testing GIF model parameter extraction on in silico recordings from a detailed bio-
physical model. (A) Reconstructed morphology of the detailed biophysical model (DBM, ref. (Hay
et al., 2011)) used to validate the protocol for high-throughput single-neuron characterization. The
recording site is indicated by the red pipette. (B-D) GIF model parameters extracted from in silico
recordings obtained by simulating the DBM response to a somatic current injection. The filters ob-
tained by averaging the parameters extracted from 5 independent training sets of Ttr = 100 s each are
shown in red. Gray areas indicate one standard deviation. (B) Membrane filter κ(t ). Inset: comparison
between the membrane timescale extracted using a GIF model and the timescale of the GLM linear
filter (cf, exponential fit of κGLM(t) in panel E). Each couple of open circles indicates the timescale
extracted from a specific training set. Bar plots represent the mean and one standard deviation across
training sets (τm = 6.7 ms, s.d. 0.1 ms, GIF; τm = 8.9 ms, s.d. 1.3 ms, GLM). (C) Spike-triggered current
η(t ). (D) Spike-triggered movement of the firing threshold γ(t ). (E-F) GLM parameters extracted from
the same in silico recordings used to fit the GIF model. Average filters are shown in blue. Gray areas
indicate one standard deviation across training sets. (E) Linear filter κGLM(t ) (blue) and exponential fit
(dashed black). For comparison, a rescaled version of the membrane filter κ(t ) is shown in red. Inset:
same data displayed on semi-logarithmic scales. (F) History filter hGLM(t ). For comparison, a rescaled
version of the GIF model effective filter h(t ) (Equation 4.8) is shown in red. Inset: same data displayed
on double-logarithmic scales. (G) Interspike-interval (ISI) distributions computed using the test set
data (black) the GIF model prediction (red) and the GLM prediction (blue). (H) Fraction of the input
current Itest(t ) (top, gray) used for model validation; typical DBM response evoked by a single current
injection (middle, black); DBM spiking activity in response to nine repetitive injections of the same
input (bottom, black raster); PSTH constructed by averaging the nine spike-trains smoothed with a
rectangular 500-ms window (bottom, black line). GIF model and GLM predictions are shown in red
and blue, respectively. Dashed black lines represent 0 nA (top) and 0 Hz (bottom). (I-K) Performance
comparison between GIF model (red) and GLM (blue) in predicting the DBM activity. Parameter
extraction and model validation were repeated five times using different datasets. Each couple of open
circles indicates the performance obtained by both models on a specific dataset. Bar plots indicate the
mean one standard deviation across repetitions. (I) Spike-timing prediction as quantified by M∗

d with
precision∆= 4 ms. (J) Mean prediction error εV on subthreshold membrane potential fluctuations. The
GLM does not explicitly model the subthreshold membrane potential dynamics and is therefore not
applicable (N/A). (K) GIF model spike-timing prediction (M∗

d , with precision ∆= 4 ms) as a function of
the training set size used for parameter extraction. Increasing the duration of the training set from 100
s to 120 s does not improve the GIF model predictive power (M∗

d = 0.80, s.d. 0.01, Ttr = 100 s; M∗
d = 0.80,

s.d. 0.01, Ttr = 120 s; n=10, paired Student t-test, t4 = 0.05, p = 0.97; n.s. > 0.05).

In the GIF model, the passive properties of the membrane are described by a single exponential

filter (see Figure 4.1 A):

κ(t ) = R

τm
·exp

(
− t

τm

)
(4.7)

According to cable theory (Rall, 2011), the large number of dendritic branches explicitly

modeled in the DBM, is expected to manifest itself in a linear filter decaying over multiple

timescales. To verify the accuracy of the single-exponential assumption and to compare the

GIF model performance against a reference model, we also used the in silico recordings to fit a

Generalized Linear Model (GLM, (Truccolo et al., 2005; Pillow et al., 2008), Figure 4.4 E-F). In

the GLM, the linear filter κGLM(t ) is not assumed a priori to be an exponential function and its

shape is extracted from experimental data using a non-parametric method (see Experimental

Procedures). We found that the GLM filter κGLM(s) and the membrane filer κ(t) of the GIF
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model were in good agreement (Figure 4.4 E), suggesting that complex dendritic morphologies

weakly affect temporal integration at the somatic compartment. Further quantitative evidence

was provided by fitting κGLM(t ) with a single exponential function and comparing the resulting

timescale against τm (Figure 4.4 B, inset). The GLM spike-history filter hGLM(t ) extracted from

in silico recordings (Figure 4.4 F) was also in good agreement with the effective adaptation

filter h(t ) of the GIF model (Mensi et al., 2011b; Pozzorini et al., 2013):

h(t ) =
∫ ∞

0
κ(s)η(t − s)d s +γ(s). (4.8)

This result confirmed that hGLM(t) combines, but can not disentangle, the effects of the

adaptation current η(t) and the movement of the firing threshold γ(t). In contrast to GIF

models, GLMs do not model absolute refractoriness with a dead time followed by a voltage

reset. This explains why, during the first milliseconds, hGLM(t) is much larger than h(t)

(Figure 4.4 F). Consistent with previous results that in L5 pyramidal neurons spike-frequency

adaptation occurs on multiple timescales (Lundstrom et al., 2008; Pozzorini et al., 2013), we

finally noticed that both h(t ) and hGLM(t ) were approximatively linear on double logarithmic

scales (Figure 4.4 F, inset).

The predictive power of both the GIF model and the GLM was then assessed on a test set

obtained by simulating the DBM response to nine repetitive injections of a new 10-second-

long current (Figure 4.4 H). Both models achieved a similar performance and were able to

predict around 80% of the spikes emitted by the DBM (M∗
d = 0.80, s.d. 0.01, GIF; M∗

d = 0.79,

s.d. 0.01, GLM; Figure 4.4 I). Compared to the GLM, the GIF model presented two advantages.

First, the GIF model, but not the GLM, explicitly modeled the dynamics of the membrane

potential and could therefore explained 74.3 ± 1.1 % (Figure 4.4 J) of the DBM subthreshold

variance. Second, the time required to perform parameter extraction was faster for the GIF

model than for the GLM (TCPU = 86 s, GIF; TCPU = 143 s, GLM).

Repeating the entire protocol by varying the duration of Itr(t ) confirmed that a training set of

Ttr =100 seconds was sufficient to ensure convergence of the fitting procedure (Figure 4.4 K).

Overall, these results suggest that, despite their simplicity, modern point-neuron models are

capable of predicting most of the spikes emitted by a detailed biophysical model in response

to complex somatic current injections.

4.2.7 Testing the high-throughput protocol on in vitro patch clamp recordings

To confirm the results reported in the previous section, the protocol for high-throughput

single-neuron characterization was further tested using standard current-clamp in vitro

recordings from L5 pyramidal neurons (see Experimental Procedures). At the beginning of

the experiment, the input current was calibrated to obtain an average firing rate of 10 Hz with

amplitude fluctuations between 7 and 13 Hz.

Since the same patch-clamp electrode was used to simultaneously stimulate and record
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Figure 4.5: Data preprocessing: Active Electrode Compensation. (A) Schematic representation of
the Active Electrode Compensation technique used to correct for the experimental bias known to
occur when the same patch-clamp electrode is used to simultaneously inject and record from a single
neuron. The artifactual voltage Ve(t ) across the pipette is estimated by filtering the input current I (t )
with the electrode filter κe(t). The intracellular membrane potential Vdata(t) if finally obtained by
subtracting the artifactual voltage Ve(t ) from the recorded signal Vrec(t ). (B) Typical optimal linear filter
κopt(t ) between the subthreshold input current Isub(t ) and the recorded signal Vsub(t ). To estimate the
electrode filter, an exponential fit is performed on the tail of κopt(t ) (dashed black). Inset: Magnification
of the y-axis illustrating the good accuracy of the exponential fit (dashed black) on the tail of the optimal
linear filter κopt(t) (red). (C) Typical electrode filter κe(t) obtained by subtracting the exponential fit
from the optimal linear filter κopt(t ) (see panel B). Since in vitro recordings were performed with the
standard bridge compensation technique, the electrode filter κe(t ) is characterized by a strong initial
negative peak. The characteristic timescale of the electrode filter τe was measured by performing an
exponential fit (dashed black) on κe(t ). Inset: distribution of the electrode timescales τe measured in
10 different recordings included in the study. (D) Comparison between recorded signal Vrec(t ) (black)
and membrane potential Vdata(t ) (red) obtained after AEC. Inset: zoom indicating that AEC operates as
a low-pass filter by removing high-frequency components from the acquired signal. Scale bars: 30 ms,
5 mV.

from single neurons, the acquired signal Vrec(t) is a biased version of the real membrane

potential Vdata(t ) (Brette et al., 2007; Badel et al., 2008). This bias, due to the voltage drop Ve(t )

across the patch-clamp electrode, was removed using a technique called Active Electrode

Compensation (AEC, see Experimental Procedures and Figure 4.5 A). In AEC (Brette et al.,

2007; Badel et al., 2008), the electrode is modeled as an arbitrarily complex linear filter κe(t )
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estimated at the beginning of the experiment from the optimal linear filter κopt(t) between

a 10-second subthreshold current Isub(t) and the recorded response Vsub(t) (Figure 4.5 B).

Consistent with previous results (Pozzorini et al., 2013), the electrode filter κe(t ) decayed on

a very rapid timescale τe = 0.54±0.11 ms (Figure 4.5 C). For all subsequents injections, the

voltage drop across the electrode Ve(t ) is estimated by convolving the input current with the

electrode filter κe(t ). The membrane potential Vdata(t ) is finally recovered by subtracting Ve(t )

from the recorded signal Vrec(t ) (Figure 4.4 A,D):

Vdata(t ) =Vrec(t )−Ve(t ). (4.9)

According to our high-throughput protocol, the training set was compensated only after its

complete acquisition. With this strategy, the time-consuming procedure required to estimate

the electrode filter can be performed during the acquisition of the training set (see Figure 4.3),

limiting the total duration of the protocol.

After preprocessing by AEC, the in vitro recordings acquired from 10 different L5 pyramidal

neurons (Figure 4.6 A) were used to perform GIF model parameter extraction (Figure 4.6 B-E).

All of the extracted parameters were consistent with the ones previously obtained by fitting the

GIF model on in vitro recordings from L5 pyramidal neurons responding to a mean-modulated

input (Pozzorini et al., 2013). To allow for a comparison, we also used the in vitro recordings to

perform GLM parameter extraction (Figure 4.6 F-G, see Experimental Procedures). Confirming

the results reported in the previous section, the effective spike-history filter h(t) of the GIF

model obtained by combining the spike-triggered current η(t ) and threshold movement γ(t )

was in nice agreement with the GLM spike-history filter hGLM(t) (Figure 4.6 F). The linear

filters κGLM(t ) and κ(t ) were also in good agreement (Figure 4.6 B and F, τm= 20.9 ms , s.d. 6.5

ms GIF; τslow= 22.5 ms , s.d. 3.0 ms GLM). However, the large values observed in the first two

bins of κGLM(t) indicated the presence of a second rapid component (τfast = 1.9 ms, s.d. 0.5

ms), which is neglected in the GIF model (Figure 4.6 F, inset).

We tested the predictive power of both the GIF model and the GLM on a new set of recordings

(test set) in which a test current Itest(t) that was repetitively injected (Figure 4.6 I). In terms

of mere spike-timing prediction, the GIF model and the GLM achieved similar results (M∗
d =

0.79±0.04, GIF; M∗
d = 0.81±0.04, GLM; Figure 4.6 J). Moreover, the GIF model, but not the GLM,

could explain 80.1 ± 4.1 % of the subthreshold variance of real neurons (Figure 4.6 K).These

results suggests that the difference observed between the linear filters κ(t ) and κGLM(t ) does

not play a crucial role in spike-timing prediction.
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Figure 4.6: Testing the protocol for high-throughput single-neuron characterization on in vitro
patch-clamp recordings. (A) Staining of a biocytin-filled L5 pyramidal neuron included in this study.
(B-E) GIF model parameters extracted from ten L5 pyramidal neurons. Average filters are shown in
red. Gray areas indicate one standard deviation across neurons. (B) Membrane filter κ(t). Inset:
comparison between the characteristic timescale of κ(t ) and the slow timescale τslow of κGLM(t ) (see
panel F). Each couple of open circles indicates the parameters measured in a single neuron. Bar
plots indicate the mean and one standard deviation across neurons. (C) Spike-triggered current η(t )
displayed on double-logarithmic scales. (D) Spike-triggered movement of the firing threshold γ(t)
displayed on double-logarithmic scales. (E) Histograms of GIF model parameters extracted from ten
L5 pyramidal neurons. From left to right: reversal potential, EL; membrane timescale, τm = C /gL;
cell resistance, R = g−1

L ; firing threshold baseline, V ∗
T ; firing threshold sharpness, ∆V . (F-G) GLM

parameters extracted from ten L5 pyramidal neurons. Average filters are shown in blue. Gray areas
indicate one standard deviation across neurons. (F) GLM linear filter κGLM(t ) (blue). For comparison,
a rescaled version of the GIF filter κ(t ) is shown in red. Inset: same data shown on a semi-logarithmic
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scales. To quantify the slow τslow (panel B, inset) and the fast τfast (see Results section) timescale of
κGLM(t), we performed a double exponential fit (not shown for clarity) of κGLM(t). (G) GLM spike-
history filter hGLM(t) (blue). For comparison, a rescaled version of the effective GIF adaptation filer
h(t ) (cf, Equation 4.8) is shown in red. (H) Distribution of the GLM parameter E0 extracted from ten L5
pyramidal neurons. (I) Input current Itest(t ) (top, gray) used for model validation, typical L5 pyramidal
neuron response evoked by a single current injection (middle, black) spiking activity observed in
response to nine repetitive injections of the same input (bottom, black raster) and PSTH constructed by
averaging the nine spike-trains within rectangular windows of 500 ms (bottom, black line). GIF model
and GLM predictions are shown in red and blue, respectively. (J-L) Summary data for the performance
of the GIF model and the GLM in predicting the responses of 10 L5 pyramidal neurons. Each couple of
open circles indicates the performance on an individual cell. Error plots indicate the mean and one
standard deviation across neurons. (J) Spike-timing prediction as quantified by M∗

d with precision ∆=
4 ms. (K) Mean prediction error εV on subthreshold membrane potential fluctuations. The GLM does
not explicitly model the subthreshold membrane potential dynamics and is therefore not applicable
(N/A). (L) GIF model spike-timing prediction (M∗

d , with precision∆= 4 ms) as a function of the training
set size used for parameter extraction. Increasing the duration of the training set from 100 s to 120 s
does not improve the GIF model predictive power (M∗

d = 0.79, s.d. 0.04, Ttr = 100 s; M∗
d = 0.79, s.d. 0.04,

Ttr = 120 s; n=10, paired Student t-test, t9 = 0.25, p = 0.8; n.s. > 0.05).

Finally, comparing the predictive power of different GIF models with parameters extracted

from five training sets of different durations (Ttr = 10, 30, 60, 100 and 120 s; Figure 4.6 L),

confirmed that 100 seconds of intracellular recordings were sufficient to accurately constrain

the GIF model parameters. We concluded that our protocol for GIF model parameter extraction

is suitable for high-throughput single-neuron characterization.

4.3 Discussion

In vitro patch-clamp recording is the gold standard used to investigate the intrinsic properties

of single neurons. If on one hand this technique is considered to be the most accurate in

reliably recording the single-neuron activity, in vitro patch-clamp remains labour-intensive

and requires a trained experimentalists with high technical skills. In the last years, several

platforms have been successfully developed that automatize electrophysiological recordings

for ion-channel screening and drug discovery (Dunlop et al., 2008). Most of the existing

platforms are however designed to record from mammalian cell lines or oocytes in which

ion-channels of interest are artificially expressed (Xu et al., 2003; Finkel et al., 2006). In the

next future, this technology will likely be transferred to more complex setups, as for example

in vitro brain-slices. Confirming the rising interest for high-throughput electrophysiology, a

system has recently been developed in which in vivo whole-cell patch-clamp recording is, at

least partially, automatized (Kodandaramaiah et al., 2012). With this technique, 3-7 minutes

are sufficient for a robot to automatically identify a cell and form a gigaohm seal of the same

quality as achieved by a trained electrophysiologist. This technological advance represents a

big step towards high-throughput electrophysiology from in vitro brain-slices, which, in the

near future, could open the doors for high-throughput characterization of single neurons. To

make sense of the large datasets that automated patch-clamp will make available, adequate
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computational tools have to be developed. A powerful method to extract and summarize

the most relevant information contained in an intracellular recording, consists of fitting a

simplified spiking neuron model able to accurately capture the experimental data using a

limited number of parameters. Moreover, spiking neuron models are indispensable tools to

study the emergence of complex behaviors from neural circuits.

In this study, we demonstrated that the fitting procedure for GIF models we recently introduced

(Mensi et al., 2011b; Pozzorini et al., 2013) (Figures 4.1 and 4.2) is suitable for high-throughput

analysis of intracellular patch-clamp recordings. Using an artificial dataset generated by the

model itself, we first established that GIF model parameter extraction and validation can be

accomplished in around 5 minutes given a limited amount of intracellular recordings (Figure

4.2). Based on these results, we then designed a protocol for the characterization of the electri-

cal activity of single neurons (Figure 4.3). Importantly, all the computations in the protocol can

be executed on the fly, while electrophysiological recordings are performed. Considering the

time required to automatically select a target neuron and form a gigaohm seal, this means that,

combined with technologies for automatic patch-clamp, the mathematical tools discussed in

this study could be used to implement a high-throughput pipeline performing single-neuron

characterization in around 10 minutes. On the experimental side, the proposed protocol

relies on in vitro injections of rapidly fluctuating currents. To compensate for the artifact

known to occur while delivering inputs through the recording pipette, we propose the use

of Active Electrode Compensation (Brette et al., 2007; Badel et al., 2008) (Figure 4.5). In AEC,

estimating the electrode properties is a potentially time-consuming procedure. For this reason,

in our protocol, artifacts resulting from the voltage drop across the patch-clamp electrode

are removed only after the complete acquisition of the dataset used for parameter extraction

(Figure 4.3). We tested the protocol for high-throughput single-neuron characterization us-

ing both in silico data (Figure 4.4) as well as in vitro recordings obtained with conventional

(i.e., manual) patch-clamp technique (Figure 4.6). In both cases we found that a GIF model

with parameters extracted from a 100-second-long training set accurately predicted both the

subthreshold and the spiking response evoked by a new input. Intriguingly, the GIF model

achieved almost identical performances in predicting in silico and in vitro data (Figures 4.4

and 4.6), indicating that detailed biophysical models could be used in the future to guide the

improvement of simplified spiking models. Analyzing the performance of the GIF model in

response to dendritic inputs goes beyond the scope of this study. However, as demonstrated

by a recent study (Naud et al., 2013), the mathematical framework discussed here is flexible

and can in principle be extended to account for dendritic current injections.

To allow for a comparison, both in silico and in vitro recordings were also fitted with a General-

ized Linear Model (GLM, (Truccolo et al., 2005; Pillow et al., 2008)). Despite the fact that GLMs

are more flexible than GIF models, we found that, in terms of mere spike timing prediction, the

two models achieved similar performance (Figures 4.4 and 4.6). This result can be understood

by noting that the nonparametric filter κGLM(t) extracted with the GLM fitting procedure

are well approximated by the exponential filter κ(t) of the GIF model. GLMs are typically

considered as statistical models for spike trains and their parameters are only loosely related
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to biophysical properties of the cell. The reason for this is that GLM parameter extraction

entirely relies on the likelihood maximization of the spiking data. If on one hand this fact

constitutes a big advantage in case of (multielectrode) extracellular recordings (Paninski et al.,

2005; Pillow et al., 2008), the standard GLM framework is less appropriate for whole-cell

current-clamp data. In contrast to GIF models, GLMs do not explicitly model the membrane

potential dynamics, do not exploit all the information available in intracellular recordings

and, consequently, are unable to predict the subthreshold activity of single neurons. Moreover,

compared to GLMs, we found that parameters extraction for GIF models was faster.

A voltage-dependent plasticity rule has recently been proposed (Clopath et al., 2010) in which

the subthreshold dynamics of the membrane potential plays a crucial role in explaining a large

variety of experimental results obtained using different induction protocols for long-term

potentiation (or depression). Among others, this finding highlights the need of spiking neuron

models that accurately capture the subthreshold membrane potential dynamics. The GIF

model accounts for spike-dependent adaptation using two distinct filters: a spike-triggered

current η(t ) and a spike-triggered movement of the firing threshold γ(t ). At first glance, having

two spike-dependent processes might seem redundant and not necessary. However, while the

firing threshold only affects spike probability, adaptation currents also alter the dynamics of

the subthreshold membrane potential. By noting that, one can understand why the correct

distinction between these two forms of adaptation is key to correctly predict the subthreshold

response of single neurons. Supporting this claim, a reduced GIF model, in which the two

processes mediating spike-frequency adaptation are combined into a single effective filter

h(t ) (Equation 4.8), has been shown to systematically overestimate the membrane potential

(Pozzorini et al., 2013).

Since GLM parameter extraction entirely relies on spiking data (see Experimental Procedures),

the linear filter κGLM(t ) also includes the effects of all biophysical processes that affect spike

emission without altering the subthreshold membrane potential. In particular, the filter

κGLM(t ), but not the filter κ(t ) of the GIF model, is expected to capture an eventual coupling

between membrane potential and firing threshold (Mihalaş and Niebur, 2009; Platkiewicz and

Brette, 2010). Possibly explaining the difference we found between κGLM(t ) and κ(t ) (Figure

4.6 F), both direct (Higgs and Spain, 2011) and indirect (Azouz and Gray, 2003) experimental

evidence has been provided that such a coupling exists in cortical pyramidal neurons. Extend-

ing the GIF model to account for a coupling between membrane potential and firing threshold

goes behind the scope of this study and will be presented in a separate publication. It is

however worth noting that the threshold equation of the GIF model can be easily augmented

as follows:

VT (t ) =V ∗
T + ∑

t̂j<t

γ(t −Tref − t̂ j )+
∫ t

t̂last

κθ(t − s)V (s)d s, (4.10)

with κθ(t ) being an arbitrarily shaped filter that, with a straightforward extension of the max-

imum likelihood method used in Step 3 (see Figure 4.2 A, Step 3), could be extracted from
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intracellular recordings.

In contrast to the GIF model, popular point-neuron models like the adaptive exponential

integrate-and-fire (ADEX, (Brette and Gerstner, 2005)) or the adaptive quadratic integrate-

and-fire (AQIF, (Izhikevich, 2003)) feature a subthreshold adaptation current w(t ) governed by

the following differential equation

τw ẇ =−w +a(V −EL). (4.11)

Extending the GIF model with Equation 4.11 would relax the assumption of having a single

exponential membrane filter κ(t ) and, depending on the parameter choice, the subthreshold

dynamics of the resulting model could account for two-timescale decay or resonance (Mensi

et al., 2011a). In ADEX and AQIF, this current has been shown to play an important role

in explaining the variety of firing patterns emitted by single neurons in response to a step

of current (Naud et al., 2008; Touboul and Brette, 2008). In GIF, the lack of subthreshold

adaptation is, at least partially, compensated by the fact that the spike-triggered current is

not assumed to be exponential, but can have an arbitrary shape. For example, the GIF model

can capture the resonate-and-fire behavior by means of a biphasic spike-triggered current

that, during the first milliseconds hyperpolarizes the membrane and then rapidly becomes

positive, favoring the emission of spikes with a particular interspike interval (Mensi et al.,

2011b). Our results suggest that, while increasing the complexity, extending a GIF model

with a subthreshold current w(t ) does not significantly improve the model’s performance in

predicting the activity of the three main neuronal types of the mouse barrel cortex (Mensi et al.,

2011a). However, this might not hold true for neurons in other brain regions or in case of more

involved stimulation paradigms. Performing parameter extraction with a GIF model extended

with Equation 4.11 is possible. Once the timescale τw is known, performing a least-square

regression similar to Equation 4.18 is indeed sufficient to recover all the other parameters.

Extended GIF parameter extraction can therefore be performed by iterating on τw and looking

for the timescale that minimizes the sum of squared errors on the voltage derivative. Since

line-search (i.e., brute-force) algorithms can be efficiently executed using parallel computing,

extending a GIF model with a subthreshold adaptation current does not necessarily imply a

dramatic increase of the CPU time required for parameter extraction.

The intrinsic dynamics of individual neurons strongly depends on the cell type and the

brain area (Markram et al., 2004). This heterogeneity is increasingly considered as a critical

feature of the brain and not as the consequence of biological imprecision (Padmanabhan

and Urban, 2010; Tripathy et al., 2013). Taking into account single-neuron variability might

therefore be crucial to understand the way in which neural tissues support computation.

For that, high-throughput platforms have to be developed for both data acquisition and

data analysis. Previous results have shown that simplified neurons are surprisingly good

in predicting the spiking activity of single-neurons (Gerstner and Naud, 2009). Here, we

demonstrated that, if combined with automatic patch-clamp recordings, the fitting technique
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we recently introduced (Mensi et al., 2011b; Pozzorini et al., 2013) can be used to build a

high-throughput pipeline for the fitting and the validation of GIF models on a cell-by-cell

basis. In the future, these methods could contribute to the development of realistic large-scale

models of the central nervous system (Koch and Reid, 2012; Waldrop, 2012; Kandel et al., 2013;

Lang et al., 2011; Markram, 2006).

4.4 Experimental procedures

4.4.1 Electrophysiological recordings

All procedures in this study were conducted in conformity with the Swiss Welfare Act and

the Swiss National Institutional Guidelines on Animal Experimentation for the ethical use

of animals. The Swiss Cantonal Veterinary Office approved the project following an ethical

review by the State Committee for Animal Experimentation.

In vitro electrophysiological recordings were performed on 300 µm thick parasagittal acute

slices from the right hemispheres of male P13-15 C57Bl/6J mouse brains, which were quickly

dissected and sliced (HR2 vibratome, Sigmann Elektronik, Germany) in ice-cold artificial

cerebrospinal fluid (ACSF) (in mM: NaCl 124, KCl 2.5, MgCl2 10, NaH2PO4 1.25, CaCl2 0.5,

D-(+)-Glucose 25, NaHC03 25; pH 7.3 ± 0.1, aerated with 95% O2, 5% CO2), followed by a 15

minute incubation at 34 ◦C in standard ACSF (in mM: NaCl 124, KCl 2.5, MgCl2 1, NaH2PO4

1.25, CaCl2 2, D-(+)-Glucose 25, NaHC03 25; pH 7.4, aerated with 95% O2, 5% CO2), equally

used as bath solution. Cells were visualized using infrared differential interference contrast

video microscopy (VX55 camera, Till Photonics, Germany and BX51WI microscope, Olympus,

Japan). Somatic whole-cell current clamp recordings of layer 5 pyramidal cells in the primary

somatosensory cortex were performed at 32 ± 1 ◦C with an Axon Multiclamp 700B Amplifier

(Molecular Devices, USA) using 6.5-7.5 MΩ borosilicate pipettes, containing (in mM): K+-

gluconate 110, KCl 10, ATP-Mg2+ 4, Na+2 -phosphocreatine 10, GTP-Na+ 0.3, HEPES 10, biocytin

5 mg/ml; pH 7.3, 300 mOsm). To ensure intact axonal and dendritic arborisation, recordings

were conducted in slices cut parallel to the apical dendrites.

Data were acquired at ∆T −1 = 20 kHz using an ITC-18 digitising board (InstruTECH, USA)

controlled by a custom-written software module operating within IGOR Pro (Wavemetrics,

USA). Voltage signals were low-pass filtered (Bessel, 10 kHz) and not corrected for the liquid

junction potential. Only cells with an access resistance < 25 MΩ (20.2 ± 3.2 MΩ, n = 10), which

was compensated throughout the recording, and a drift in the resting membrane potential <
2.5 mV (1.2 ± 0.8 mV, n = 10) between the start and the end of the recording were retained for

further analysis.
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4.4.2 In silico recordings: multi compartemental model simulations

In silico recordings were performed by simulating a multi compartmental model of a L5b pyra-

midal neuron (Hay et al., 2011). The model was obtained from Model DB (accession number

139653) and all simulations were performed in Neuron (Carnevale and Hines, 2006). Similar

to the in vitro experiments, input currents I (t ) were generated according to Equations 4.5-4.6

(with sampling frequency ∆T −1 = 20 kHz) and were delivered at the somatic compartment.

To obtain an average firing rate fluctuating between 7 and 13 Hz, the input parameters were

set to I0 = 520 pA, σ0 = 320 pA and ∆σ = 0.5. To reproduce spike timing variability between

responses to repetitive injections of the same current I (t), a source of noise was included

in the model by adding a zero-mean white-noise signal ξw.n.(t) to I (t). In order to capture

the autocorrelation function between spike trains recorded in vitro in response to different

repetitions of the test set current, the magnitude of the noise was set to
√

〈ξw.n.(t )2〉 = 160 pA.

The same amount of noise was also used to generate the training dataset. GIF model and GLM

parameter extraction was performed by treating the noise current ξw.n.(t ) as being unknown.

4.4.3 Data preprocessing: Active Electrode Compensation

All the in vitro recordings included in this study were preprocessed with AEC (Brette et al.,

2007) according to the following four-step procedure (Badel et al., 2008; Pozzorini et al., 2013).

Step 1: Shortly before the acquisition of the training dataset (see Figure 4.3), we recorded the

intracellular response Vsub(t ) evoked by the injection of a short subthreshold current Isub(t ).

The input was generated according to Equation 4.5 with parameters I0=0 pA, σ(t )=75 pA and

τ=3 ms and evoked small-amplitude subthreshold fluctuations around the resting potential.

With this parameter choice, the standard deviation of Vsub(t ) was around 2-3 mV.

Step 2: We then estimated the optimal linear filter κopt(t) between the subthreshold input

Isub(t ) and the recorded signal Vsub(t ) (Figure 4.4 B). To reduce computing time, κopt(t ) was

defined over a finite interval [0,200 ms] as

κopt(t ) =
M∑

m=1
bm f (m)(t ), (4.12)

with { f (m)(t )} being a set of M=202 rectangular basis functions of linearly increasing width. The

parameters b = [b1, . . . ,bM ] determining the shape of κopt(t ) were then estimated by solving

the following multilinear regression:

b = (Z T Z )−1Z T V̇ , (4.13)

where, using the discrete-time notation xt = x(t ·∆T ) and by removing the subscripts sub

for clarity, V̇ is a vector whose t-th element is given by the membrane potential derivative
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V̇t = (V ((t +1)∆T )−V (t∆T ))/∆T and Z is a matrix made of vectors zT
t defined as:

zT
t =

[ t∑
s=0

f (1)
s İt−s∆T, . . . ,

t∑
s=0

f (M)
s İt−s∆T

]
, (4.14)

with İt = (I ((t +1)∆T )− I (t∆T ))/∆T being the first-order temporal derivative of the input

current Isub(t ).

Step 3: An exponential function f (t ; a1, a2) = a1 exp(−t/a2) was then fitted to the tail of κopt(t )

by minimizing the error E(a1, a2) = ∫ ∞
Tmin

(κopt(s)− f (s; a1, a2))2d s (Figure 4.4 B). In AEC, the

electrode is assumed to operate on fast timescales (< 1 ms) and the slow decay in κopt(t) is

attributed to the cell. For this reason the fit was performed with Tmin = 5 ms, and the electrode

filter was estimated as

κe(t ) = κopt(t )− f (t ; â1, â2), (4.15)

with â1 and â2 being the optimal parameters minimizing E (a1, a2). To improve accuracy, Steps

2 and 3 were repeated 15 times by resampling from the available data and the final electrode

filter used for AEC was obtained by averaging the results across repetitions (Figure 4.4 C).

Step 4: Finally, for all subsequent current-clamp injections, the membrane potential Vdata(t )

was estimated as follows (Figure 4.4 A,D):

Vdata(t ) =Vrec(t )−
∫ ∞

0
κe(s)Iext(t − s)d s, (4.16)

where Iext(t) is the injected current, Vrec(t) is the recorded signal and the convolution inte-

gral on the right-hand side of Equation 4.16 approximates the voltage drop Ve(t) across the

electrode.

Expanding κopt(t) in rectangular basis functions drastically reduces the computing time

required in Step 2. Overall, Steps 1-3 were performed in around 62 seconds and can in principle

be executed while the training set is being acquired. Step 4 requires less than 1 second and

can be performed after training set collection without compromising high-throughput (Figure

4.3). Since in our protocol model validation only relies on spike-timing prediction, AEC only

has to be applied to the training dataset. Here, in order to asses the prediction error on the

subthreshold membrane potential, we also performed AEC on all test set recordings.

4.4.4 GIF model parameter extraction

Given the intracellular membrane potential Vdata(t ) measured at a sampling frequency ∆T −1

in response to a known input current Itr(t ), as well as the spike times {t̂ j } defined as instants at

which Vdata(t ) crosses 0 mV from below, all the GIF model parameters are extracted following

a three-step procedure (Mensi et al., 2011b; Pozzorini et al., 2013) (Figure 4.2 A).
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Step 1: The absolute refractory period Tref is fixed to an arbitrary value and the voltage reset

is estimated by the average membrane potential recorded Tref milliseconds after a spike

Vreset = 〈Vdata(t̂ j +Tref)〉 j . Since absolute refractoriness can be captured by a spike-triggered

movement of the firing threshold, the particular choice of Tref is not crucial and the only

constraint is given by the shortest interspike interval in the dataset. Here, for L5 pyramidal

neuron, we set the refractory period to Tref = 4 ms.

Step 2: The parameters determining the subthreshold dynamics of the membrane potential

are extracted. To allow convex optimization, the spike-triggered current η(t ) is expanded as a

linear combination of basis functions (Paninski et al., 2005):

η(t ) =
K∑

k=1
ηk f (k)(t ), (4.17)

where {ηk } is a set of parameters controlling the time course of η(t). The parameters θT
sub =

C−1·[gL,ELgL,η1, ...,ηK ,1] are then extracted by minimizing the sum of squared errors between

the observed voltage derivative V̇data and that of the model (i.e., Equation 4.1). Since all

subthreshold parameters θsub act linearly on the observables, this optimization problem can

be efficiently solved by computing the following multilinear regression (Paninski et al., 2005;

Huys et al., 2006):

θ̂sub = (X T X )−1X T V̇data, (4.18)

where X is a matrix whose rows are given by the vectors

xT
t =

[
−Vdata(t ),1,−∑

j
f (1)(t −Tref − t̂ j ), ... ,−∑

j
f (K )(t −Tref − t̂ j ), I (t )

]
, (4.19)

and V̇data is a column-vector containing the voltage first-order derivative estimated by finite

differences V̇data(t ) = (Vdata(t +∆T )−Vdata(t ))/∆T . Since the GIF model does not capture the

subthreshold dynamics during spike initiation, all the data points close to action potentials

{t |t ∈ [t̂ j −5 ms; t̂ j +Tref]} are excluded from the regression.

Step 3: The parameters defining the dynamics of the firing threshold are extracted. To deter-

mine the functional shape of the spike-triggered movement of the firing threshold, we first

expand γ(t ) as a sum of basis functions:

γ(t ) =
P∑

p=1
γp f (p)(t ). (4.20)

Given the parameters obtained in the first two steps and the spike times observed in the

experiment, the subthreshold membrane potential V̂model(t ) is then computed by numerical

integration of Equation 4.1. All threshold parameters θT
th =∆V −1 · [1,V ∗

T ,γ1, ...,γP ] are finally

extracted by maximizing the log-likelihood of the experimental spike train (Brillinger, 1988;
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Truccolo et al., 2005; Pillow et al., 2008):

θ̂th = argmax
θth

 ∑
t∈{t̂ j }

yT
t θth −∆T · ∑

t∈Ω
exp

(
yT

t θth
) , (4.21)

whereΩ= {t |t ∉ [t̂ j , t̂ j +Tref]} is a set that excludes all the data points falling in the absolute

refractory periods, the vectors yT
t are defined as

yT
t =

[
V̂model(t ),−1,−∑

j
f (1)(t −Tref − t̂ j ), ... ,−∑

j
f (P )(t −Tref − t̂ j )

]
, (4.22)

and, without loss of generality, we set λ0 = 1 s−1. With the exponential function in Equation

4.2, the log-likelihood to maximize is a convex function of θth (Paninski, 2004) and both its

gradient and Hessian can be computed analytically. Consequently, the optimization problem

of Equation 4.21 can be efficiently solved using the Newton-Raphson method. Alternatively,

Step 3 can be performed using the recorded potential Vdata(t ) instead of V̂model(t ) in Equation

4.22. Since small inaccuracies in Step 2 can be compensated in Step 3, performing the fit using

V̂model(t ) generally improves spike-timing prediction.

Further details on the fitting procedure can be found in refs. (Mensi et al., 2011b; Pozzorini

et al., 2013) and a Matlab implementation is available on ModelDB

(http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=143148).

4.4.5 Generalized Linear Model

All GIF model performance included in this study are compared against the ones of a standard

Generalized Linear Model (GLM) (Truccolo et al., 2005; Pillow et al., 2008). In the GLM, spikes

are emitted stochastically according to the following conditional intensity

λGLM(t |I , {t̂ j }) =λ0 ·exp

E0 +
∫ t

0
κGLM(s)I (t − s)d s +∑

t̂ j

hGLM(t − t̂ j )

 . (4.23)

In the GLM, the linear filter κGLM(t) is not assumed to be exponential but is extracted from

experimental data through linear expansion in rectangular basis functions. Moreover, the

GLM accounts for spike-history effects with a unique filter hGLM(t). GLM also differs from

the GIF model because it has neither an absolute refractory period nor an explicit voltage

reset after the emission of a spike. To obtain a fair comparison between the two models, the

filter hGLM(t ) was expanded using the same basis functions as used for γ(t ) in the GIF and the

number of basis functions used for κGLM(t) was such that, in total, the two models had the

same number of parameters. Given the input current I (t ) and the observed spike-train Sdata(t ),

GLM parameters θGLM were extracted with standard methods (Truccolo et al., 2005; Pillow

et al., 2008) by maximizing the model log-likelihood L(θGLM) = log p(Sdata|I ,θGLM). Without

loss of generality, we set λ0 = 1 s−1. Importantly, the GLM fitting procedure does not exploit
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the information available in the subthreshold membrane potential fluctuations.

4.4.6 Similarity measure M∗
d between sets of spike-trains

To quantify the model performance in predicting spikes, we used the normalized, bias-

corrected metrics M∗
d (Naud et al., 2011). M∗

d relies on a measure of the distance between the

experimental and the predicted spike-emission probability, which are in turn inferred from

the responses to a limited number of repetitive current injections. Importantly, M∗
d resolves

the small sample bias known to affect most of the similarity measures when the number of

available spike-trains is small. Also, in contrast to previous measures based on naive pairwise

comparisons (e.g., the Γ coincidence factor used in ref. (Jolivet et al., 2007)), M∗
d does not

suffer from the so-called deterministic bias known to favor noise-free models and is therefore

well suited for the evaluation of stochastic spiking models (Naud et al., 2011). Moreover, in

contrast to many other correlation-based measures, M∗
d is sensitive to the accuracy with which

both the shape and the amplitude of the spike probability is predicted.

Given a small set of experimental spike trains S(d)
i = ∑

f δ(t − t̂ f ) recorded in response to

Nd repetitive injections i = 1, . . . , Nd of the same input current Itest(t), as well as a large set

of spikes trains S(m)
j = ∑

f δ(t − t̂ f ) predicted by Nm repetitive simulations j = 1, . . . , Nm of a

stochastic model, the similarity M∗
d between the two sets of spike trains is defined as (Naud

et al., 2011):

M∗
d = 2 · 〈νd,νm〉

2
Nd(Nd−1)

∑Nd

i=1

∑Nd

i ′=i+1

〈
S(d)

i ,S(d)
i ′

〉
+〈νm,νm〉

, (4.24)

where S(d)
i denotes the i -th experimental spike-train, νd = 1

Nd

∑Nd

i=1 S(d)
i is the average experi-

mental response across trials (that is, the experimental PSTH computed with infinitesimally

small bins), νm = 1
Nm

∑Nm
i=1 S(d)

i is the average model response and 〈νm,νm〉 represents its norm.

Due to high-throughput requirements and experimental constraints, only a small number Nd

of experimental spike-trains are available. For this reason, the norm of νd must be computed

using an unbiased estimator (cf. first term in the denominator of Equation 4.24). Finally, the

brackets 〈·, ·〉 denote the inner product used to quantify the distance between two spike trains

(Naud et al., 2011):

〈Si ,S j 〉 =
∫ T

0

∫ ∞

−∞

∫ ∞

−∞
K (s, s′)Si (t − s)S j (t − s′)d sd s′d t , (4.25)

where K (s, s′) is a two-dimensional kernel defining the degree of coincidence between two

spikes occurred at times s and s′.

While different windows K (s, s′) may be used, the Kistler coincidence kernel K (s, s′) = δ(s′) ·
Θ(s +∆) ·Θ(−s +∆) was chosen with ∆= 4 ms as in refs.(Mensi et al., 2011a; Pozzorini et al.,

2013). With this particular choice, the inner product 〈Si ,S j 〉 equals the number of spikes in Si
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that fell ±∆ms apart to one of the spikes in S j and, consequently, M∗
d becomes:

M∗
d = 2ndm

n∗
dd +nmm

, (4.26)

with ndm being the average number of coincident spikes between data (d) and model (m),

nmm being the average number of coincident spikes computed across Nm = 500 repetitions

generated by the model and n∗
dd being the bias-corrected average number of coincident spikes

between different experimental spike trains (that is, the number of coincident spikes between

experimental spike-trains S(d)
i and S(d)

j averaged across (i , j ) ∈ [1, Nd]× [1, Nd] with i 6= j , see

Equation 4.25).

4.4.7 Performance evaluation

For each repetition i in the test set, we computed the coefficient of determination R2
i between

the experimental membrane potential V (data)
i (t) and the GIF model prediction V̂ (model)

i (t)

obtained by solving Equation 4.1 and forcing the spikes to occur at the same time as in the

experiment.

R2
i = 1−

∫ Ttest
0 (V (data)

i (t )− V̄ (data)
i )2d t∫ Ttest

0 (V (data)
i (t )− V̂ (model)

i (t ))2d t
, (4.27)

R2
i corresponds to the ratio of explained variance to the sample variance, where R2

i = 1 when

the model correctly predicts the voltage fluctuations and R2
i = 0 when the model is unable to

predicts the variance of the subthreshold voltage fluctuations.

The prediction error εV on the subthreshold response was then obtained by averaging the

results from each repetition:

εV = 1

ntest

ntest∑
i=1

R2
i . (4.28)

The parameters Ttest and ntest denote the duration and the number of repetitions in the test

set, respectively.

The mean error εparam on the parameters θ extracted from artificial data is defined as

εparam =
〈
∆θi

|θi |
〉

i
, (4.29)

where ∆θi = |θi − θ̂i | is the L1-error between the estimated parameter θ̂i and the reference

parameter θi (used to generate the artificial data). Overall, εparam measures the absolute

percentage error averaged across model parameters.
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All the CPU times reported in this study were obtained using an IntelCore i7 CPU920 @ 2.67GHz

with 24 GB RAM. Both GLM and GIF model parameters were extracted using custom-written

Matlab procedures.

4.5 Appendix

GIF Model GLM

Membrane capacitance C Stimulus filter κGLM(t )

Membrane conductance gL Spike-history filter hGLM(t )

Reverse potential EL Baseline E0

Absolute refractory period Tref

Voltage reset Vreset AEC

Voltage threshold baseline V ∗
T I-V optimal linear filter (Eq. 4.12) κopt(t )

Threshold sharpness ∆V Electrode filter (Eq. 4.15) κe (t )

Spike-triggered current η(t ) Electrode time constant τe

Spike-triggered threshold γ(t )

Membrane resistance R = g−1
L Performance evaluation

Membrane time constant τm = RC Spike-trains similarity (Eq. 4.26) M∗
d

Membrane filter (Eq. 4.7) κ(t ) Voltage prediction error (Eq. 4.28) εV

Effective adaptation filter (Eq. 4.8) h(t ) Parameters prediction error (Eq. 4.29) εparam

Table 4.1: Symbols and parameters definitions.
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5 Evidence for a nonlinear coupling
between firing threshold and sub-
threshold potential

This chapter is an article in preparation that will be submitted under the following title:

Nonlinear threshold dynamics enhances temporal coding in neocortical pyramidal

neurons

Skander Mensi†, Christian Pozzorini†, Olivier Hagens and Wulfram Gerstner
† equal contribution

5.1 Introduction

In agreement with the predictions of the leaky integrate-and-fire model, neocortical neurons

have been shown to lose sensitivity to input fluctuations at increasing driving currents (Rauch

et al., 2003; Giugliano et al., 2004; La Camera et al., 2006). For this reason, neurons are typically

thought to operate as coincidence detectors when the mean input is below threshold and as

temporal integrators above rehobase (Gerstner and Kistler, 2002). This view has recently been

challenged by in vitro recordings demonstrating that, in rat prefrontal cortex (PFC) and in CA1

hippocampus, pyramidal neurons maintain high sensitivity to input fluctuations through a

wide range of depolarizing inputs (Arsiero et al., 2007; Fernandez et al., 2011). In particular, the

input-output curve of these neurons saturates at relatively low firing rates and the maximal

firing rate depends on the input variance (Arsiero et al., 2007). Similar behaviors can be

qualitatively reproduced by Hodgkin-Huxley models with decreased sodium conductance

(Lundstrom et al., 2008) or augmented with slow sodium inactivation (Arsiero et al., 2007;

Fleidervish et al., 1996). However, while these studies suggest that the firing threshold plays

a role, the mechanism by which single neurons maintain high sensitivity to input variance

remains unclear.

The membrane potential at which spikes are initiated in a given neuron is highly variable

both in vitro and in vivo (Azouz and Gray, 2000, 2003). Threshold variability is not random
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but probably results from a complicated dynamics which is likely to play a functional role

by enhancing temporal coding (Henze and Buzsáki, 2001; Platkiewicz and Brette, 2011) and

stimulus selectivity (Carandini and Ferster, 2000; Wilent and Contreras, 2005; Cardin et al.,

2010). Many studies have demonstrated that the voltage threshold for spike initiation depends

not only on the average value of the membrane potential (Azouz and Gray, 2003) but also

on previous interspike intervals (Henze and Buzsáki, 2001; Chacron et al., 2007; Jolivet et al.,

2006; Badel et al., 2008; Mensi et al., 2011b) and on the depolarization rate before a spike

(that is, the speed at which the firing threshold is approached) (Azouz and Gray, 2000; Henze

and Buzsáki, 2001; Azouz and Gray, 2003; Wilent and Contreras, 2005). In particular, when

single neurons are stimulated with current ramps of different slopes, rapid rates of depo-

larization are often associated with lower thresholds (Higgs and Spain, 2011). While in rat

pyramidal neurons this phenomenon results from the activation of low-threshold Kv1 chan-

nels (Higgs and Spain, 2011), theoretical studies suggest that a rapid coupling between voltage

threshold and subthreshold membrane potential could also result from fast sodium channel

inactivation (Hodgkin and Huxley, 1952; Platkiewicz and Brette, 2010; Wester and Contreras,

2013). Regardless of the underlying biophysical mechanism, threshold dependence on the

rate of depolarization enhances coincidence detection and temporal coding by increasing

the sensitivity to rapid input fluctuations (Azouz and Gray, 2000, 2003; Platkiewicz and Brette,

2011).

Two questions therefore arise. First, is it possible to extract a nonlinear coupling between

firing threshold and subthreshold membrane potential directly from intracellular recordings?

Second, can a simplified spiking neuron model augmented with such a mechanism explain

enhanced sensitivity to input fluctuations?

To answer these questions, we measured the in vitro responses to fluctuating currents of

both pyramidal and fast spiking neurons in mice L5 somatosensory cortex (SSC). While fast

spiking neurons lose sensitivity to input fluctuations at large input, we found that pyramidal

neurons are characterized by input-output curves which are very similar to the ones reported

for excitatory neurons in PFC (Arsiero et al., 2007). Analysis of firing threshold revealed that,

in pyramidal neurons, firing threshold and firing rate were positively correlated. Moreover,

while evoking larger responses, we surprisingly found that increased input fluctuations were

always associated with reduced firing thresholds.

Using a new convex optimization procedure we found that the firing threshold not only

depends on the spike history, but on a shorter timescale is nonlinearly coupled with the

subthreshold membrane potential. As revealed by the model, this two mechanisms interact in

a non trivial way extending the range of input to which sensitivity to input fluctuations are

maintained. Accounting for a nonlinear interaction between firing threshold and membrane

potential significantly improves the ability of GIF model in predicting spike timing with

millisecond predictions as well as the input-output of the neuron. Our results suggest that the

dynamic of the firing threshold is surprisingly complex and plays a non-trivial role in encoding

voltage fluctuations into output spike trains transmitted to postsynaptic cells.
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Overall our results demonstrate and explain how, depending on the input statistics, neocortical

pyramidal neurons adapt their coding strategy operating either as integrators or coincidence

detectors.

5.2 Results

5.2.1 Pyr but not Fs neurons maintain sensitivity to input fluctuations in the supra-
threshold regime

In the brain, neocortical neurons constantly receive barrages of presynaptic spikes (Destexhe

et al., 2003). Single neuron coding can therefore be studied in vitro by recording the spiking

activity elicited in response to rapidly fluctuating currents modeled as filtered Gaussian

processes (see Eq. 5.6). Assuming that the input spikes obey an homogeneous Poisson process

and elicit postsynaptic currents (PSCs) that exponentially decay with a characteristic timescale

τI, the statistics of in vivo-like input currents are described by a mean µI, corresponding to the

average intensity of the driving current, and a standard deviationσI, defining the magnitude of

input fluctuations. If on one hand the timescale on which PSCs decay in vivo is fairly constant,

both the mean µI and the standard deviation σI of inputs occurring in biologically relevant

situations are likely to vary in time (Crochet and Petersen, 2006; Poulet and Petersen, 2008).

To characterize the input-output transformation performed by single neurons, we followed

the same approach already used in previous studies (Rauch et al., 2003; Arsiero et al., 2007)

and we intracellularly measured the single neuron responses evoked in vitro by a set of 5-

second currents obtained by systematically varying the parameters µI and σI (Figure 5.1a,b).

In vivo-like fluctuating currents were generated according to Equation 5.6 and injected at the

soma of L5 neurons in the mouse somatosensory cortex (SSC) (see Materials and Methods). In

qualitative agreement with the response predicted by the standard leaky integrate-and-fire

(LIF) model (Rauch et al., 2003), we found that the steady-state firing rate f of fast spiking (Fs)

inhibitory neurons was dependent on the magnitude of input fluctuations σI but only in the

subthreshold regime, that is, when the mean input µI was smaller than the critical magnitude

at which step currents (i.e., σI = 0) become sufficiently strong to elicit spikes (Figure 5.1a). At

large offsets µI, the four f -µI curves recorded using different values of σI always converged,

confirming that, in the suprathreshold regime, Fs neurons lose sensitivity to rapid fluctuations

(Figure 5.1c). Moreover, the responses observed in Fs neurons did not saturate even in cases

of strong inputs eliciting responses above 100 Hz (Figure 5.1c).

Applying the same protocol in pyramidal (Pyr) neurons from the same brain region led to

different results (Figure 5.1b). Similar to what has been observed in Pyr neurons of the rat

prefrontal cortex (PFC) (Arsiero et al., 2007; Thurley et al., 2008) and hippocampus (Fernandez

et al., 2011), the f -µI curves of these cells were indeed always characterized by saturation at low

firing rates ( fmax=20.2 Hz, s.d .=2.6 Hz). Moreover, the firing rate at which saturation occurred

significantly increased with the amplitude of input fluctuations σI (Figure 5.1d). Overall,
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these results demonstrate that in mice SSC, Pyr, but not Fs neurons, maintain sensitivity to

rapid fluctuations over a wide range of depolarizing offsets. This result suggests that SSC Pyr

neurons operate as coincidence detectors over a wide range of inputs (Ratté et al., 2013).

Previous studies found that the particular input-output function we experimentally observed

in Pyr neurons (see Figure 5.1b) can be qualitatively reproduced by Hodgking-Huxley models

in which the ratio between sodium and potassium maximal conductances is low (Arsiero

et al., 2007; Lundstrom et al., 2008). This result suggests that enhanced sensitivity to input

fluctuations might be mediated by mechanisms that reduce the number of sodium channels

available for spike initiation, and more generally, by processes that regulate the dynamics

of the firing threshold. To explore this hypothesis, we analyzed the intracellular recordings

performed in both Fs and Pyr neurons and estimated the voltages at which action potentials

were initiated (Figure 5.1e,f) (see Methods). Threshold variability was approximatively 2-fold

larger in Pyr neurons (σPyr
θ

=4.5 mV, s.d .=0.3 mV) than in Fs neurons (σFs
θ

=2.2 mV, s.d .=0.3 mV)

(Figure 5.1g). Moreover, plotting the average threshold observed for different input parameters

(µI,σI), revealed nontrivial dependencies. Consistent with previous results showing that the

firing threshold adaptively rises after the emission of previous action potentials (Mensi et al.,

2011b; Pozzorini et al., 2013), the voltage threshold measured in Pyr neurons always increased

with the mean input µI (Figure 5.1f,h). However, at odds with the hypothesis of a threshold

dynamics entirely governed by positive spike-triggered changes, we also found that larger

input fluctuations, while evoking higher firing rates, significantly reduced the mean voltage

threshold (Figure 5.1f,i). Yet, by changing perspective, this result is consistent with enhanced

sensitivity to input fluctuations. Lowering the firing threshold, is indeed an effective way

of increasing the firing rate. Complicating the picture, we found that the voltage threshold

of Fs neurons, while being insensitive to the mean drive µI, was also modulated by input

fluctuations σI (Figure 5.1h,i).

Overall, these results suggest that the dynamics of the voltage threshold of Pyr and Fs neurons

is different and that understanding these differences might be a key to explain the origin of

enhanced sensitivity to input fluctuations. In the next section, the threshold dynamics is

therefore further analyzed.
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Figure 5.1: Pyr neurons, but not Fs neurons, maintain sensitivity to rapid input fluctuations over
the entire spectrum of depolarizing offsets. A: Steady-state firing rate f of a typical Fs neuron as a
function of the mean input µI. Different colors indicate different levels of input fluctuations σI. For
each combination of input parameters (µI, σI), three different 5-s-long recordings were performed.
Firing rates were estimated by discarding the transient response observed during the first second.
Error bars, indicating one standard deviation across repetitions, are small and sometimes not visible
demonstrating high reliability. B: Same results as in panel a, but for a typical Pyr neuron. In contrast to
Fs, Pyr neurons maintain sensitivity to input fluctuations through the entire spectrum of depolarized
offsets µI. C: Summary data of results obtained in different Fs neurons (n=6). Left: Comparison of
steady-state firing rate in response to the two largest depolarizing offsets. Each couple of open circles
represents results obtained in a particular cell for a given standard deviation σI. Bar plots represent
mean and standard deviation across different cells and different values of σI. Right: Percentage change
in steady-state firing rate obtained by increasing the input standard deviation σI . Changes were
computed with respect to σI =0 pA by taking the average response to the two strongest inputs µ(9)

I

and µ(10)
I . Each set of open circles represents data from a particular cell. Bar plots represent mean

and standard deviation across cells. Changes induced by a 3-fold increase in σI were not significant
(n =6, paired Student t-test, t=0.62, p=0.52). D: Same results as in panel c, but for Pyr neurons (n=6).
In contrast to Fs, Pyr neurons maintain sensitivity to input fluctuations (n =6, paired Student t-test,
t=8.0, p=4.9 ·10−4). E: Average voltage threshold for spike initiation in a typical Fs neuron (same cell
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shown in panel a) as a function of the mean input µI. Different colors indicate different σI . The voltage
threshold was estimated for each individual spike by measuring the voltage at which the first-order
derivative of the membrane potential crossed a certain threshold (see Methods). As in a, error bars
indicate one standard deviation across recordings. Dashed lines show least squares linear regressions
performed on experimental data with different σI. Inset: Distribution of voltage thresholds estimated
for all the spike in a typical Fs neuron. F: Same results as in panel e, but for a typical Pyr neuron (same
cell shown in panel b). G: Threshold variability observed in n =6 Fs and n =6 Pyr neurons. Each circle
represents the standard deviation σθ of the distribution of voltage thresholds observed in a given
cell (σθ is defined as the standard deviation of the distributions shown in the insets of panels e and
f ). Bar plots indicate mean and standard deviation across cells. In Pyr neurons, threshold variability
was significantly larger than in Fs neurons (n =12, unpaired Student t-test, t=11.2, p < 10−6). H:
Comparison between regression slopes obtained by least square fits shown in panels e and f. Circles
represent the slopes fitted for different cells and different values of σI. Bar plots indicate mean and
standard deviation. In Pyr neurons (n =6, two-sided Student t-test, t=32.9, p < 106), but not in Fs (n =6,
two-sided Student t-test, t=1.76, p = 0.9), the firing threshold increases with µI. I: Average change
in voltage threshold obtained by increasing the input standard deviation σI in Fs neurons. Changes
were computed with respect to σI = 0 by averaging the results obtained for all depolarizing offsets µI.
Conventions are as in panel c (right). The firing threshold was significantly reduced by a 3-fold increase
in input fluctuations (n =6, paired Student t-test, t=13.1, p=4.6 ·10−5). J: Same results as in panel i, but
for Pyr neurons (n =6, paired Student t-test, t=14.2, p=3.1 ·10−5).

5.2.2 Steady-state analysis suggests a nontrivial threshold dynamics in both Pyr
and Fs neurons

Firing threshold variability unlikely results from channel noise and probably reflects a complex

dynamics. Supporting evidence has been provided by different studies showing that firing

threshold variability can be at least partially explained by taking into account the average

value of the subthreshold membrane potential (Azouz and Gray, 2003), the depolarization rate

preceding the emission of an action potential (that is, the speed dV /d t at which the threshold

is reached) (Azouz and Gray, 2000, 2003) and, as already mentioned, the emission of previous

spikes (Henze and Buzsáki, 2001; Badel et al., 2008; Mensi et al., 2011b). To gain insight into a

potential role of firing threshold in enhanced sensitivity to input fluctuations, we analyzed

these three dependencies in both Fs and Pyr neurons (Figure 5.2).

Plotting the average firing threshold of Pyr neurons as a function of the steady-state firing

rate, revealed an approximatively linear relationship consistent with the hypothesis of slowly

decaying threshold movements being induced after each spike (Mensi et al., 2011b; Pozzorini

et al., 2013) (Figure 5.2a). Consistent with previous results (Mensi et al., 2011b), the firing

threshold of Fs neurons did not significantly correlate with the output firing rate (Figure 5.2a,b).

In both Fs and Pyr neurons, the θ- f curves depended on σI, confirming that increased input

fluctuations always resulted in reduced firing thresholds. Since increased input fluctuations

σI translates into faster currents, we hypothesized that this result could reflect a dependency

of the firing threshold on the membrane depolarization rate. For each input condition, we

therefore estimated the average speed dV /d t at which the firing threshold was reached (see

Materials and Methods). Consistent with this hypothesis, we found that, on average, rapid

membrane depolarizations reduced the voltage threshold for spike initiation in both Fs and
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Pyr (Figure 5.2c,d). A recent theoretical result has demonstrated that the latter dependency

could in principle result from a nonlinear coupling between firing threshold and subthreshold

membrane potential (Platkiewicz and Brette, 2010). As predicted by this theory, we found a

clear relationship between the firing threshold of Pyr neurons and the average subthreshold

membrane potential measured far from spikes (Figure 5.2e and Methods). Finally, while being

significantly weaker, a similar coupling was also present in Fs neurons (Figure 5.2e,f).
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Firing Rate (Hz)
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Figure 5.2: The voltage threshold for spike initiation is variable and depends on several covariates
in both Pyr and Fs neurons. A: Voltage threshold for spike initiation as a function of the output firing
rate in a typical Fs (left, same cell as in Figure 5.1a) and Pyr (right, same cell as in Figure 5.1b) neuron.
Different colors represent different levels of input fluctuations σI. Dashed lines are least-square
regressions fitted for different values of σI. B: Regression slopes obtained by fitting the firing threshold
as a function of the output firing rate (see panel A). Open circles show the results obtained in n=6 Fs
and n=6 Pyr neurons stimulated with different σI. Bar plots indicate means and standard deviations
across cells and σI. In Pyr neurons (n=24, two-sided Student t-test, t=23.5, p <10−6), but not in Fs
neurons (n=24, two-sided Student t-test, t=1.4, p=0.17), regression slopes were significantly larger than
zero, indicating a positive correlation between firing rate and voltage threshold. C: Firing threshold as
a function of the depolarization rate preceding a spike. Results are shown for the same cells in panel
A (Fs, left; Pyr, right). For each spike i (occurred at time t̂i ), the depolarization rate was estimated by
performing a linear regression on the membrane potential recorded in the time interval [t̂i −3.5 ms, t̂i ].
The output firing rate is color coded. The dashed line indicates a least-square regression performed
on experimental data observed at low firing rates f (Fs: 0 < f < 80 Hz, Pyr: 0 < f < 10 Hz, see color
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bars). D: Regression slopes obtained by fitting the firing threshold as a function of the depolarization
rate (see panel C) were not significantly different in Fs (n=6) and Pyr (n=6) neurons (n=12, unpaired
Student t-test, t=1.21, p=0.25). E: Firing threshold as a function of the average subthreshold membrane
potential in the recordings. Different colors indicate different σI. Results are shown for the same cells
in panel A (Fs, left; Pyr, right). The dashed line indicates a least-square regression computed on all the
data points. The thick dashed line is the diagonal x = y delimitating the area (light gray) in which the
membrane potential is larger than the firng threshold. F: The regression slopes obtained by fitting the
firing threshold as a function of the mean membrane potential (see panel E) were significantly larger in
Pyr (n=6) than in Fs (n=6) neurons (n=12, two-sided Student t-test, t=9.1, p=3.7·10−6). In panels A, C
and E, each data point j was computed by averaging the results obtained by analyzing the responses to

three different 5-s-long currents with the same statistics (µ( j )
I , σ( j )

I ). Data recorded in the first second
of each repetition were not considered. Error bars indicate one standard deviation across the three
repetitions. In panels D and F, the bar plots indicate means and standard deviations across results
obtained in different cells (open circles).

Overall, the results reported in Figure 5.2 demonstrate that threshold variability can in part be

explained by considering different covariates. We concluded that the firing threshold evolves

according to a nontrivial dynamics, whose understanding requires mathematical modeling.

In the next section, we therefore introduce a new spiking model.

5.2.3 Modeling a nonlinear coupling between membrane potential and firing thresh-
old

In the standard Hodgkin-Huxley (HH) model (Hodgkin and Huxley, 1952), the sodium current

INa responsible for spike initiation is gated by two independent variables m and h that re-

spectively describe Na+-channel activation and inactivation (Figure 5.3A). Sodium activation

occurs on very short timescales and can therefore be approximated as being instantaneous

(Fourcaud-Trocme et al., 2003; Badel et al., 2008; Platkiewicz and Brette, 2010). It follows that,

at spike onset, the sodium current is correctly described by an exponential function of the

membrane potential INa ∝ h exp
(

V −V ∗
T

ka

)
= exp

(
V −(V ∗

T −ka logh)
ka

)
, where V ∗

T is a constant, ka is

a biophysical parameter describing the sharpness of the Na+-channel activation function

m∞(V ) and θ =V ∗
T −ka logh defines a smooth threshold for spike initiation (Platkiewicz and

Brette, 2010). Since in the HH model Na+-channel inactivation follows a first-order kinetics

τhḣ =−h +h∞(V ), an accurate model of the voltage threshold for spike initiation θ is given by

the following differential equation (Platkiewicz and Brette, 2010, 2011):

τθθ̇ =−θ+θ∞(V ), (5.1)

where τθ = τh. By modeling the steady-state inactivation curve with an inverse sigmoidal

function h∞(V ) =
(
1+exp

(
V −Vi

ki

))−1
, one can further predict that the coupling between firing

threshold and membrane potential resulting from fast sodium inactivation should be correctly

described by a smooth rectifier function (Platkiewicz and Brette, 2011) (Figure 5.3B):

θNa
∞ (V ) =V ∗

T −kah∞(V ) =V ∗
T +ka log

(
1+exp

(
V −Vi

ki

))
. (5.2)
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Depending on the parameter Vi and on the asymptotic slope θNa
slope = ka/ki, Equations 5.1

and 5.2 provide a possible theoretical explanation for the negative correlation between the

voltage threshold for spike initiation and the depolarization rate of the membrane potential

preceding a spike (Platkiewicz and Brette, 2010, 2011; Higgs and Spain, 2011). Indeed, if

θNa
slope > 0 and Vi <V ∗

T , all membrane potential depolarizations occurring on a slower rate than

the characteristic timescale τθ on which Na+-channels inactivate will reduce the number of

Na+-channels which are available for spike initiation (Figure 5.3A,B). Consequently, compared

to fast inputs, slow depolarizations will induce action potentials that are initiated at larger

voltages (Figure 5.3E). On the other hand, if h∞(V ) is shifted towards more depolarized

potentials (Figure 5.3C), Na+-channel will not inactivate at subthreshold potentials and,

consequently, spikes will always be initiated at the same voltage threshold V ∗
T (Figure 5.3D,E).

Overall, to effectively modulate the voltage threshold for spike initiation, the inactivation

profile of Na+-channel has to be such that, in the V −θ plane, the non-constant part of θNa∞ (V )

is not masked on the right-hand side of the diagonal V = θ (compare Figure 5.3A,B with Figure

5.3C,D; see ref. Platkiewicz and Brette (2010)).
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Figure 5.3: Simplified integrate-and-fire model illustrating firing threshold dynamics modula-
tion by fast Na+-channel inactivation. A: Steady-state activation (m∞(V ), black) and inactivation
(h∞(V ), red) functions describing the dynamics of Na+-channels responsible for spike initiation in
a Hodgkin-Huxley (HH) model (Hodgkin and Huxley, 1952). B: Phase plane analysis illustrating the
dynamics of the inactivating leaky integrate-and-fire model (iLIF, (Platkiewicz and Brette, 2010)) con-
sisting of a standard LIF model augmented with a dynamic threshold θ described by Equations 5.1
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and 5.2. In the iLIF model, a spike is deterministically emitted each time the membrane potential
V crosses the firing threshold θ (dashed black line). After each spike, both V and θ are reset to low
values (open circle). The smooth rectifier function defining the steady-state firing threshold θNa∞ (V )
(red) of the iLIF model was obtained by transforming the steady state inactivation function h∞(V )
shown in panel A according to Equation 5.2. The iLIF model responses to different ramps of current
shown in gray. Different gray levels correspond to ramps of current with different slopes (see panel
E). C: Steady-state activation (m∞(V ), black) and inactivation (h∞(V ), blue) functions. Compared to
panel A, the inactivation curve is shifted towards more depolarized potentials. D: Phase plane analysis
illustrating the threshold dynamics of the iLIF model for the case in which Na+-channel inactivation
only occurs after Na+-channel activation (see panel C). Since the non-constant part of θNa∞ (V ) (blue)
lies on the right-hand side of the diagonal V = θ, ramps of current with different slopes elicit spikes that
originate around the same voltage V ∗

T (gray lines and panel E). Same conventions as in panel B. E: iLIF
model response to ramps of current Iext(t ) = s · t with slopes s ranging from 0.2 nA/ms (top left, dark
gray) to 0.005 nA/ms (top left, dark gray). Top: Input current Iext(t ). The dotted line indicates Iext = 0.
Middle: iLIF model responses for the case in which Na+-channel inactivation starts before Na+-channel
activation (see panels A,B). Membrane potential V (t ) and firing threshold θ(t ) are shown in black and
red, respectively. Since Na+-channels inactivation is not instantaneous, but occurs on a characteristic
timescale τθ, fast inputs (left) elicit spikes that, in comparison to slow inputs (right), initiate at lower
membrane potentials (see also panel B). Dotted and dashed lines respectively represent the iLIF model
reversal potential EL and the the lowest possible voltage threshold V ∗

T for spike initiation (cf. Eq. 5.2).
iLIF model parameters: membrane timescale τm = 20 ms; resistance R = 100 MΩ; reversal potential
EL =−65 mV; V ∗

T =−45 mV; Vi =−49 mV; θNa
slope = ka/ki = 0.85, τθ = 5 ms (cf. Eqs. 5.1 and 5.2). These

parameters were not extracted from data, but where chosen to illustrate the theoretical result of ref.
Platkiewicz and Brette (2010) that Na+-channels inactivation could result in a coupling between firing
threshold and membrane potential. Bottom: iLIF model response for the case in which Na+-channel
inactivation starts after Na+-channel activation (see panels C,D). The same model parameters were
used, expect for Vi =−30 mV.

To explain the experimental findings reported in Figures 5.1 and 5.2, we fitted the intracellular

recordings using a new spiking neuron model obtained by extending the previous Generalized

Integrate-and-Fire model (GIF) (Mensi et al., 2011b; Pozzorini et al., 2013) with a nonlinear

coupling between firing threshold and membrane potential. We refer to this new model as iGIF,

where i stands for inactivating (Figure 5.3A, see Materials and Methods). In the iGIF model,

spikes are produced stochastically according to a firing intensity which exponentially depends

on the instantaneous difference between the membrane potential V and firing threshold VT

(Gerstner and van Hemmen, 1992; Jolivet et al., 2006). As in the GIF model, the dynamics of

the membrane potential is modeled as a leaky integrator augmented with a spike-triggered

current η(t) for spike-frequency adaptation. This function describes the time course of the

net current generated by the single-neuron intrinsic dynamics after the emission of an action

potential. In the iGIF model, the firing threshold VT is given by:

VT(t ) = θ(t )+ ∑
t̂ j<t

γ(t − t̂ j ) (5.3)

where the dynamics of θ(t ) is as in Equation 5.1 and implements a nonlinear coupling between

VT and V . In Pyr neurons, the firing threshold has been previously shown to adaptively

increase after the emission of previous spikes (Mensi et al., 2011b; Pozzorini et al., 2013). To
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5.2. Results

capture this phenomenon, the iGIF model also features a spike-triggered movement of the

firing threshold γ(t ). Similar to η(t ), this function describes changes in VT induced by previous

action potentials and constitutes an additional mechanism for spike-frequency adaptation.

A spike-dependent movement of the firing threshold could in principle be accounted for

by increasing θ(t) after each spike. However, such a model would implicitly assume that

spike-dependent and spike-independent threshold movements occur on the same timescale

τθ. To avoid this assumption, in the iGIF model, the variable θ(t) is reset to V ∗
T after each

spike and all threshold changes induced by previous spikes are included in γ(t ). Importantly,

the functional shape of η(t), γ(t) and θ∞(V ), along with all other iGIF model parameters,

were extracted from intracellular recordings using a new nonparametric fitting procedure (see

Materials and Methods). In what follows, we refer to the iGIF model with parameters extracted

using the nonparametric method as iGIF-NP, where NP stands for nonparametric.

5.2.4 iGIF model parameters extracted from intracellular recordings reveals a
nonlinear coupling between V and VT in Pyr neurons

In agreement with previous results (Mensi et al., 2011b; Pozzorini et al., 2013), we found that,

in Pyr neurons, the passive properties of the membrane were characterized by a timescale of

τm = 26.23±2.52 ms (Figure 5.4A). When displayed on log-log scales, the decay of both the

spike-triggered current η(t ) and movement of the firing threshold γ(t ) were approximatively

linear over several orders of magnitude (Figure 5.4C,D). This result provides further evidence

in support of a previous finding that, in Pyr neurons, spike-frequency adaptation does not

have a preferred timescale, but is characterized by scale free dynamics (Lundstrom et al., 2008;

Pozzorini et al., 2013). While avoiding a priori assumptions about the existence of a coupling

between firing threshold and membrane potential, as well as about the underlying biophysical

process, our nonparametric method allowed us also to extract θ∞(V ) directly from intracellular

recordings. We found that, in Pyr neurons, firing threshold and subthreshold membrane

potential were indeed nonlinearly coupled (Figure 5.4E, black). Moreover, the functional shape

of the inferred threshold coupling was in striking agreement with the theoretical prediction

made under the hypothesis of Na+-channel inactivation (Platkiewicz and Brette, 2010) (cf.

Eq. 5.2). Since the value of the coupling timescale τθ = 5.83±0.41 ms (Figure 5.4F) was also

consistent with previous measurements of fast sodium inactivation (Hodgkin and Huxley,

1952), we used the intracellular recordings to fit a new iGIF model, denoted iGIF-Na, in which

θ∞(V ) was assumed a priori to be the smooth rectifier function θNa∞ (V ) defined in Equation

5.2. For that, a different maximum likelihood procedure was used allowing the extraction

of the biophysical parameters ka, ki and Vi (cf. Eq. 5.2), along with all other iGIF-Na model

parameters (Figure 5.4G, see Materials and Methods). Both the spike-triggered movement of

the firing threshold γ(t ) (Figure 5.4D, red) and the nonlinear coupling θNa∞ (V ) (Figure 5.4E, red)

extracted by fitting the iGIF-Na model confirmed the results obtained with the nonparametric

method (Figure 5.4D,E, black). Moreover, by fitting the data acquired in different cells, we

intriguingly found that the ratio ka/ki determining the asymptotic slope of θNa∞ (V ) was always

very close to one (Figure 5.4G, bottom). Providing additional evidence for the hypothesis that
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the biophysical mechanism underlying a nonlinear coupling between firing threshold and

membrane potential is fast Na+-channel inactivation, we found that the log-likelihood was

always larger for the iGIF-Na model than for the iGIF-NP model (Figure 5.4E, inset).
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Figure 5.4: Inactivating Generalized Integrate-and-Fire model (iGIF) with parameters extracted
from intracellular recordings performed in Pyr neurons. A: Schematic representation of the iGIF

model. The input current Iext is first low-pass filtered by the Membrane filter κm(t) = R
τm

· e−
t
τm . The

resulting signal models the subthreshold membrane potential Vm and, after subtraction of the firing
threshold VT, is transformed into a firing intensity λ by the exponential Escape-rate nonlinearity. Spikes
are emitted stochastically and elicit both a Spike-triggered current η(t ) and a Spike-triggered threshold
movement γ(t). In the iGIF model, but not in the GIF model, the firing threshold VT is coupled to
the subthreshold membrane potential (dashed circuit). For that, the membrane potential Vm is first
passed throught the nonlinear Threshold coupling function θ∞(V ) and then low-pass filtered by the

Threshold filter κθ(t) = 1
τθ

· e
− t
τθ . As illustrated in the scheme, the latter mechanism implements

a form of feedforward subthreshold adaptation. B: Mean (red) and standard deviation (gray area)
of the membrane filters κm(t) extracted from 6 Pyr neurons. Inset: the open circles represent the
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characteristic timescale τm extracted from 6 Pyr neurons. The bar plot shows the average and one
standard deviation across cells. C: Log-log plot of the mean (red) and standard deviation (gray area)
of the spike-triggered current η(t) extracted from 6 Pyr neurons. Asymmetric errors are a result of
log-scales. D: Log-log plot of the mean spike-triggered threshold movement γ(t ) extracted from 6 Pyr
neurons by fitting the iGIF-NP model (black) and the iGIF-Na model (red). The gray area represents
one standard deviation across cells for the iGIF-Na model. Asymmetric errors are a result of log-scales.
E: Mean nonlinear threshold coupling θ∞(V ) extracted from 6 Pyr neurons with a nonparametric
fitting procedure (balck, iGIF-NP) and by performing a parametric fit in which the smooth rectifier
function θNa∞ (V ) (Eq. 5.2) was assumed a priori (red, iGIF-Na). The gray area indicates one standard
deviation across cells for the iGIF-Na model. In the absence of spikes, the nonlinear part of θ∞(V ) is
masked (that is, it lies on the right hand side of the diagonal V = θ, dashed black). Spike-triggered
movements of the firing threshold unmask, and consequently activate, the nonlinear coupling θ∞(V )
by shifting the diagonal to the right (dashed gray). Inset: Maximum log-likelihood (LL, Eq. 5.23) of
the GIF (black, LL = 3.82±0.29 bits/spike) and the iGIF-Na model (red, LL = 5.63±0.30 bits/spike).
Each set of open circles represent the performance on the same cell. Bar plots indicate mean and one
standard deviation across cells. The iGIF-Na model significantly outperforms the GIF model (n=6,
paired t-test, t =−23.59, p = 2.5 ·10−6). F: Top: Maximum log-likelihood of the iGIF-NP model as a
function of the coupling timescale τθ . The optimal timescale τθ (red circle) is accurately constrained by
the intracellular recordings. Bottom: optimal timescales τθ extracted from 6 Pyr neurons. Conventions
as in the inset of panel B. G: Top: Maximum log-likelihood of the iGIF-Na model as a function of ki and
Vi . The LL increases from dark red to light red. Bottom: the open circles show the optimal parameters
extracted from 6 different neurons. The mean and the standard devotional ellipse across cells are
shown in red.

Overall, the results reported in Figure 5.4 indicate that, in Pyr neurons, the firing threshold

depends on the emission of previous spikes as well as on the subthreshold membrane potential

dynamics. Importantly, the timescales on which these two mechanisms operate are different.

If on one hand the timescale of the nonlinear coupling θ is relatively short and is consistent

with the hypothesis of fast sodium inactivation, threshold changes induced by the emission

of previous spikes are characterized by a power-law decay lasting for 5 second and possibly

describing slow sodium inactivation (Fleidervish et al., 1996; Pozzorini et al., 2013). Due to

this separation of timescales, it is convenient to consider positive spike-triggered movements

of the firing threshold in the V −θ phase plane (Figure 5.4E), as spike-triggered horizontal

shifts of the diagonal defining the region in which the membrane potential V equals the

firing threshold VT (cf. Eq. 5.3). Since the coupling between membrane potential and firing

threshold is nonlinear, this picture suggests that spike-dependent and spike-independent

threshold adaptation might interact in a nontrivial manner.

5.2.5 Nonlinear interaction between slow and fast Na+-channel inactivation

To understand the interaction between spike-dependent and spike-independend threshold

movements, as well as its implications on single-neuron coding, we analyzed the dynamics

of the iGIF-Na model (with parameters extracted from L5 Pyr neurons) in response to three

fluctuating currents generated according to Equation 5.6 using different means µI, a fixed

standard deviation σI = 0.1 nA and a temporal correlation of τI = 3 ms (Figure 5.5).
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In response to a weak input µI = 60 pA (Figure 5.5A, gray), the membrane potential fluctuated

near the the resting potential and action potentials were occasionally driven by large input

fluctuations (Figure 5.5A, black). In this particular regime, the evoked firing rate f ≈ 1 Hz

was very low and threshold movements induced by different action potentials did not build

up significantly. Indeed, spike-dependent threshold adaptation φ(t) = ∑
t̂j
γ(t − t̂j) mainly

acted as a refractory process by reducing the firing probability after the emission of a previous

spike (Figure 5.5A, blue). On average, given the modest mean contribution φ̄= T -1
∫
φ(t)d t

of spike-dependent processes to the average firing threshold (Figure 5.5A, dashed gray), ac-

tion potentials evoked in response to weak inputs were generally initiated at low membrane

potentials (Figure 5.5B). Subthreshold membrane potential fluctuations were consequently

confined to relatively low voltages, where the coupling between firing threshold and sub-

threshold membrane potential is weak. That is, where the coupling gain Gθ(V ) = d
dV θ

Na∞ (V ) is

close to 0 (Figure 5.5B). As a result, in this regime, the dynamics of θ(t) simply implements

an additional source of refractoriness by transiently increasing the firing threshold as a di-

rect consequence of high-voltage after-spike resets (Figure 5.5A, red). We concluded that,

in Pyr neurons responding to weak inputs, the coupling between subthreshold membrane

fluctuations and firing threshold does not play an important role (Figure 5.5A, red).

This result can alternatively be understood by analyzing the dynamics of the iGIF model in

the V −θ plane (Figure 5.5C), where, as already mentioned, spike-dependent changes of the

firing threshold effectively shift the diagonal for spike initiation to the right (see Figure 5.4E).

Since spike-triggered threshold movements decay according to a power-law (see Figure 5.4C

and ref. Pozzorini et al. (2013)), the spike-initiation boundary V = θ+φ(t ) fluctuates in time

over multiple timescales. Insights on the dynamics of the iGIF-Na model, can however be

gained by simply considering the magnitude of the average shift φ̄. In contrast to the scenario

discussed in Figure 5.3, the iGIF model is stochastic. For this reason, the diagonal V = θ+ φ̄
only approximates the boundary for high firing probability and action potentials can actually

originate from a wider region of the phase plane (cf, Eq. 5.10). As shown in Figure 5.5A, for

weak inputs evoking low firing rates f , the average contribution of spike-dependent threshold

adaptation φ̄∝ f is close to zero, meaning that the, on average, the phase plane region of

high spiking probability is approximately delimited by the identity V = θ+ φ̄≈ θ (Figure 5.5C,

compare dashed black and solid blue lines). Since in all Pyr neurons included in this study we

systematically found that Vi >V ∗
T (Figure 5.4G, bottom), one can intuitively understand that,

at low firing rates, the nonlinear coupling between firing threshold and membrane potential

is not recruited by noting that, on average, the non-constant part of the coupling function

θNa∞ (V ) is masked on the right-hand side of the diagonal V = θ+ φ̄ (Figure 5.5C).
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Figure 5.5: Nonlinear interaction in the iGIF-Na model between spike-dependent and spike-
independent threshold adaptation. The iGIF-Na model dynamics is analyzed by simulating the
responses to three fluctuating inputs generated according to Equation 5.6 with different offsets µI =
0.06 nA (panel A-C), µI = 0.19 nA (panel D-F) and µI = 0.39 nA (panel G-I). In all three conditions, the
magnitude of the input fluctuations was σI = 0.1 nA and the temporal correlation was τI = 3 ms. A:
Input current I (t ) (gray), membrane potential V (t ) (black), spike-independent threshold adaptation
θ(t ) (red), spike-dependent threshold adaptation φ(t ) =∑

t̂ γ(t − t̂ ) (blue) and average spike-dependent

threshold adaptation φ̄= T −1 ·∫ T
0 φ(s)d s (dashed gray, bottom). The four dotted black lines indicates

(from top to bottom): I = 0 nA, V = EL, θ = V ∗
T and φ = 0 mV. B: Distribution of subthreshold membrane

potential fluctuations P (V ) (gray) and distribution of voltages at which spikes were initiated P (V |spike)
(black). The gain of the firing threshold coupling Gθ(V ) = d

dV θ
Na∞ (V ) is shown as a function of the

membrane potential V (red). For weak inputs µI, the membrane potential fluctuates within a range
where the coupling gain Gθ(V ) vanishes, explaining why, except for the transients induced by high
voltage resetting after spikes, θ(t ) is constant (see panel A, red). C: Phase plane θ−V . In this regime,
the threshold coupling θNa∞ (V ) (red) is masked on the right-hand side of the diagonal V = θ+ φ̄ (blue
line). For comparison, the diagonal V = θ is also shown (dashed black). Gray dots indicate the phase
plane region from where spikes originated. Since spike emission is stochastic and φ(t) fluctuates
in time, the gray dots do not coincide with the diagonal V = θ+ φ̄. The black arrow indicates the
mean subthreshold membrane potential (i.e., the mean of P(V) shown in panel B). Inset: The effective
linear filter κeff(t) of the iGIF-Na model (light blue) matches the linear filter κGLM(t) computed as a
control by fitting the iGIF-Na model data with a GLM (dark blue). For weak inputs, the average gain
coupling Ḡθ =

∫
Gθ(V )P (V )dV is almost vanishing. Consequently, the effective filter κeff(t) closely

resembles to the membrane filer κm(t) (dotted black). The dashed black line represents 0 MΩ/ms.
D-F: iGIF-Na model dynamics in response to a fluctuating input current with mean µI = 0.19 nA. Same
conventions as in panels A-C. As a result of the increased mean current, the voltage distribution is
shifted towards more depolarized potentials (panel D, black line; panel F, black arrow), where the
coupling gain Gθ takes intermediate values (panel E). As a result of the increased firing rate f ≈ 10 Hz,
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the average strength of spike-dependent threshold adaptation is also increased (panel D, blue and
dashed gray). On average, the region of the phase plane that has to be reached in order to emit a spike
(that is, the diagonal V = θ+ φ̄) is consequently shifted to the right (panel F, blue), partially unmasking
the nonlinear threshold coupling θNa∞ (V ) (panel F, red). In this regime, the nonlinear coupling θ(t)
activates (panel D, red) and significantly shortens the single-neuron integration timescale as seen
in κeff(t) (panel F, inset). G-I: iGIF-Na model dynamics in response to a fluctuating input current
with mean µI = 0.39 nA. The resulting firing rate is f ≈ 20 Hz. Same conventions as in panels A-C.
Increased spike-dependent threshold adaptation (panel G, blue) further shifts the diagonal V = θ+ φ̄
to the right (panel I, blue line). Consequently, the nonlinear coupling is, on average, unmasked and
the membrane potential fluctuates within a range where the threshold coupling reaches its maximal
strength Ḡθ ≈ θNa

slope. In this regime, where pyramidal neurons manifest enhanced sensitivity to input

fluctuations (see Figure 5.1b), the threshold coupling θ(t ) is strongly active (panel G, red), making the
effective filer κeff(t ) biphasic and transforming the single-neuron behavior from integrate-and-fire to
resonate-and-fire (panel F, inset).

Increasing the input strength to µI = 190 pA (Figure 5.5D, gray) resulted in a mean firing

rate f ≈ 10 Hz and shifted the membrane potential distribution towards more depolarized

potentials (Figure 5.5B, black), where the threshold coupling strength Gθ becomes positive

(Fig 5.5E). As a result of increased spike-dependent threshold adaptation, the diagonal V =
θ+ φ̄ is shifted towards more depolarized potentials, partially unmasking the nonlinear part

of the coupling function θNa∞ (V ). Consequently, in this regime, the coupling θ(t) between

firing threshold and membrane potential starts to play a role that goes beyond the simple

refractoriness induced by after-spike resets (Figure 5.5D, red).

Further increasing the input strength to µI = 390 pA (Figure 5.5G-I) makes the iGIF-Na model

fire at a high rate f ≈ 20 Hz (Figure 5.5G), at which Pyr neurons lose sensitivity to the mean

drive µI and manifest enhanced sensitivity to input fluctuations (see Figure 5.1B,D). Notably,

in this regime, threshold movements triggered by different spikes accumulate in such a way as

to completely unmask the coupling function θNa∞ (V ) (Figure 5.5I). The strong input µI pushes

the membrane potential fluctuations to very depolarized values, where the threshold coupling

reaches its maximal strength Gθ ≈ θNa
slope (Figure 5.5H). Consequently, following the after-spike

reset to θ =V ∗
T , the coupling variable θ(t ) rapidly increases to large values where, in contrast

to the transient behavior observed in response to weak inputs, it fluctuates until the next spike

is emitted (compare the red traces Figure 5.5G, red with Figure 5.5A,D). This result indicates

that enhanced sensitivity to input fluctuations, as it is observed in Pyr neurons responding

to strong inputs, is mediated by the activation of a coupling mechanism between membrane

potential and firing threshold. Indeed, increased input fluctuations translates into faster

currents that, in turn, evoke higher firing rates by overcoming the dampening effect induced

by fast sodium inactivation (see Figure 5.3 and ref. Platkiewicz and Brette (2011)).

Overall, the results reported in Figure 5.5 provide experimental evidence for the existence of a

non-trivial interplay between spike-dependent and nonlinear voltage-dependent threshold

movements. In particular, we found that the increased contribution of spike-dependent

mechanisms induced by large firing rates, progressively unmask (i.e., activates) the nonlinear

coupling θNa∞ (V ) (Figure 5.5C,F,I), thus enhancing single-neuron sensitivity to rapid signals.
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The functional implications of this interaction, and in particular the link with enhanced

sensitivity to input fluctuations, are further investigated in the next section.

5.2.6 In Pyr neurons, nonlinear threshold dynamics adaptively changes the single-
neuron behavior from leaky integration to coincidence detection

To unravel the mechanism underlying enhanced sensitivity to input fluctuations, we reduced

the iGIF model to a Generalized Linear Model (GLM, Truccolo et al. (2005); Pillow et al. (2008)).

In the GLM (Figure 5.6A, see Materials and Methods), the input current I (t) is first passed

through a linear filter κeff(t ). In contrast to both the membrane filter κm(t ) and the threshold

filter κθ(t) of the iGIF model, κeff(t) is not assumed to be an exponential and its shape can

be extracted from experimental data (Truccolo et al., 2005; Pillow et al., 2008). As in the iGIF

model, an exponential nonlinearity transforms the filtered input into a spiking probability

λGLM(t ), according to which action potentials are generated. After each spike, an adaptation

process hGLM(t ) is triggered to accounts for the single-neuron spike-history dependency.
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Figure 5.6: In Pyr neurons, nonlinear threshold dynamics controls a transition from leaky inte-
gration to coincidence detection. A: Schematic representation of the Generalized Linear Model (GLM).
The input current Iext(t) is first low-pass filtered through κeff(t). Importantly, the linear filter κeff(t)
of the GLM is not constrained to be an exponential function, but can take any shape. The filtered
input is transformed by an exponential nonlinearity into a firing intensity λGLM(t ), which defines the
probability of emitting a spike. Each time an action potential is fired, a feedback process hGLM(t ) is trig-
gered that phenomenologically accounts for all spike-history effects (e.g., spike-triggered adaptation
currents, spike-dependent threshold movements and after-spike reset processes). B: The membrane
filter κm(t ) and the threshold filter κθ(t ) are combined to compute the effective filter κeff(t ) of a GLM
that best describes input filtering in the iGIF model. To map the iGIF model to the GLM, the membrane
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filter κm(t ) is first smoothed by κθ(t ); the resulting function is then rescaled by the average coupling
strength Ḡθ =

∫
Gθ(V )P (V )dV and finally subtracted from κm(t ) to obtain κeff(t ) (cf. Eq. 5.5). Since the

average coupling strength Ḡθ is a function of P (V ) (which in turn depends on the input strength µI),
the iGIF model predicts that, in Pyr neurons, somatic integration adaptively changes depending on
the input statistics. C: Effective linear filters κeff(t ) (computed with Eq. 5.5) that best approximate the
iGIF model responding to fluctuating currents with mean increasing from µI = 0 pA (blue) to µI = 400
pA (red). Input fluctuations and temporal correlation were set to σI = 100 pA and τI = 3 ms. For µI = 0
pA, the membrane potential fluctuates within a region where the coupling strength Gθ(V ) vanishes.
Since Ḡθ ≈ 0, the effective filter κeff(t) (dark blue) equals the membrane filer κm(t) (dashed, black).
In this regime Pyr neurons operate as leaky integrators. The average coupling strength Ḡθ increases
with µI (see inset). The progressive activation of the coupling between firing threshold and membrane
potential results into a shrinking of the effective filter κeff(t ). For strong inputs µI > 300 pA, Ḡθ → 1 and
the effective filer κeff(t ) becomes biphasic (red). In this regime, Pyr neurons lose sensitivity to the mean
drive (that is,

∫ ∞
0 κeff(s)d s → 0) and preferentially respond to rapidly fluctuating currents. Inset: The

average coupling strength Ḡθ (left axis, gray line), as well as the mean and the standard deviation of
the membrane potential distribution P (V ) (right axis, circles with colors used to visualize the filters
κeff(t )), are shown as a function of the mean input µI. D: Average effective filters κeff(t ) extracted from
six Pyr neurons by fitting the GLM to experimental data. Shaded areas represent one standard deviation
across neurons. The experimental data used to compute the f −µI curves (see Figure 5.1) were split in
3 groups depending on the input strength: low (blue, µI ∈ [µ1,µ3] pA), medium (gray, µI ∈ [µ4,µ5] pA)
and high (red, µI ∈ [µ8,µ10] pA). GLMs were fitted independently on the three datasets. As predicted
by the iGIF-Na model (panel C), increasing the input strength µI switches the single-neuron behavior
from leaky integration (blue) to differentiation (red). For comparison, a rescaled version of the average
membrane filter κm(t ) of the iGIF-Na (see Figure 5.4B) is shown (dashed black).

In case of a standard GIF model (Mensi et al., 2011b; Pozzorini et al., 2013), where the coupling

between membrane potential and firing threshold is absent, it is straightforward to prove

that the effective filter κeff(t) of a GLM that best captures the GIF model response simply

corresponds to the membrane filter κm(t ). On the other hand, in case of a nonlinear coupling

θ∞(V ), the mapping between iGIF model and GLM is more involved and requires the lineariza-

tion of Equation 5.1 (see Materials and Methods). We simplified the threshold dynamics of the

iGIF-Na model by taking the first-order approximation θNa∞ (V ) ≈ C̄θ+Ḡθ ·V , with C̄θ being a

constant and Ḡθ being the average coupling strength computed with respect to the membrane

potential distribution P (V ):

Ḡθ =
∫ ∞

−∞
Gθ(V )P (V )dV. (5.4)

Since in the iGIF-Na model the subthreshold membrane potential dynamics is linear (see Eq.

5.11) and the spiking probability only depends on the difference between firing threshold and

membrane potential (see Eq. 5.10), the effective linear filter κeff(t ) that best approximates the

response of a iGIF-Na model is given by (Figure 5.6B, see Materials and Methods):

κeff(t ) = κm(t )−Ḡθ ·
∫ t

0
κθ(s)κm(t − s)d s, (5.5)

where κm(t) = R
τm

exp
(
− t
τm

)
is the membrane filter and κθ(t) = 1

τθ
exp

(
− t
τθ

)
is the threshold

filter (see Figure 5.4A). According to Equation 5.5, the nonlinear coupling between membrane
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potential and firing threshold is expected to produce to a shunting effect by reducing the

magnitude of the effective filter through which somatic integration in performed.

To explore this hypothesis, we further analyzed the results reported in Figure 5.5 by computing

the effective linear filters κeff(t ) that best describes the iGIF-Na response to a weak, a medium

and a strong input. As already mentioned, in case of a weak drive µI = 60 pA, the membrane

potential fluctuates within a range where Gθ(V ) vanishes (Figure 5.5B). Consequently, the

average coupling strength Ḡθ ≈ 0 is extremely weak and, from Equation 5.5, it follows that

κeff(t) ≈ κm(t) (Figure 5.5C, inset). This result indicates that, in Pyr neurons responding to

weak inputs, the coupling between membrane potential and firing threshold is not recruited,

meaning that somatic input integration is entirely controlled by the passive properties of

the membrane. Increasing the input strength to µI = 190 pA shifts the membrane potential

distribution P (V ) towards more depolarized potentials, where Gθ(V ) > 0. In this regime, the

coupling mechanism is partially recruited and the effective timescale of somatic integration is

significantly shortened (Figure 5.5F). Notably, in case of a strong input µI = 390 pA at which Pyr

neurons undergo firing rate saturation and manifest enhanced sensitivity to input fluctuations

(see Figure 5.1B,D), the average coupling reaches its maximal strength Ḡθ = θNa
slope, leading

to a resonant filter κeff(t ) (Figure 5.5I). These results were confirmed by fitting a GLM on the

iGIF-Na data (insets of Figure 5.5C,F,I) and provide a mechanistic explanation of why, at strong

inputs µI, the firing rate observed in Pyr neurons increases with the magnitude σI of input

fluctuations (Figure 5.1B,D). Moreover, consistent with the fact that Pyr neurons become

insensitive to µI, the maximal coupling strength extracted from six neurons was always very

close to θNa
slope ≈ 1 (Figure 5.4G), implying that, for strong inputs, the area under the filter κeff(t )

vanishes (that is,
∫ ∞

0 κeff(s)d s ≈ 0), providing a shunting effect.

Overall, the analytical results obtained by analyzing the iGIF-Na model with parameters

extracted from experimental data indicate that increasing the input strength µI progressively

activates the coupling between membrane potential and firing threshold, which in turn

switches the single-neuron behavior from leaky integration to coincidence detection (or

differentiation) (Figure 5.6C). To provide further evidence, we independently fitted the GLM

on three datasets obtained by splitting the experimental data according to the input strengthµI.

The resulting GLM filters κGLM(t ) confirmed that, in response to inputs of increasing strength,

Pyr neurons progressively shorten the timescale on which the input current is integrated.

Moreover, the effective filter κGLM(t ) extracted by fitting a GLM, confirmed that strong inputs

are somatically integrated via a biphasic filer (Figure 5.6D).

5.2.7 The iGIF model captures enhanced sensitivity to input fluctuations

The results reported in the previous section indirectly suggest that accounting for a nonlinear

interaction between membrane potential and firing threshold might be sufficient to explain

enhanced sensitivity to input fluctuations. To confirm this hypothesis, we tested the iGIF-

Na model with a set of 5-second currents generated by systematically varying the input
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parameters µI and σI (Figure 5.7). We compared both the transient and the steady-state

response of the model against experimental data and found that, despite its relative simplicity,

the iGIF-Na model accurately captured the behavior of Pyr neurons over a broad range of input

parameters (Figure 5.7A). In particular, the iGIF-Na model exhibited enhanced sensitivity to

input fluctuations throughout the entire set of depolarizing currentsµI that were tested (Figure

5.7B, top) and reproduced the neural response with an average accuracy of εrate = 1.38±0.95

Hz (Figure 5.7B, bottom). Notably, the iGIF-Na model also captured, at least qualitatively,

the complex dependence of the firing threshold on input parameters. Indeed, the voltage

threshold at which spikes where initiated in iGIF-Na model was positively correlated with the

mean input µI (Figure 5.7C) and negatively correlated to σI (Figure 5.7D).

A

E

C D

I

BTransient Steady-state

F G H

Fi
rin

g 
ra

te
 (H

z)
Fi

rin
g 

ra
te

 (H
z)

Mean input (nA)

Mean input (nA)

Mean input (nA)

Mean input (nA)

Mean input (nA)

Mean input (nA)

Input s.d. (pA)

Input s.d. (pA)

Data (Hz)

Data (Hz)

M
od

el
 (H

z)
M

od
el

 (H
z)

Vo
lta

ge
 th

re
sh

ol
d 

(m
V)

Vo
lta

ge
 th

re
sh

ol
d 

(m
V)

Vo
lta

ge
 th

re
sh

ol
d 

(m
V)

Vo
lta

ge
 th

re
sh

ol
d 

(m
V)

Δ
ra

te
 (H

z)
Δ

ra
te

 (H
z)

Input s.d. (pA)

Input s.d. (pA)

0.
4 

nA
40

 m
V

1 s

Average firing rate 2 Hz J K

1 s 1 s

0.
4 

nA
40

 m
V

0.
4 

nA
40

 m
V

0 pA
50 pA

150 pA
100 pA

0 pA
50 pA

150 pA
100 pA

0 pA
50 pA

150 pA
100 pA

0 pA
50 pA

150 pA
100 pA

Average firing rate 12 Hz Average firing rate 22 Hz

Figure 5.7: The iGIF-Na model captures the firing rate response observed in Pyr neurons over
a broad range of input parameters. A-D: The iGIF-Na model response (red) is compared against
experimental data (gray). A: Comparison between f −µI curves observed in a typical Pyr neuron (gray)
and produced by the iGIF-Na model (red). Different colors and gray levels indicate the magnitude
of input fluctuations σI (see legends). For each combination of input parameters (µI,σI), a 5-second
current was tested three times. Gray error bars indicate one standard deviation across repetitions.
Left: Transient response quantified by computing the average firing rate f during the first second.
Right: Steady-state response computed by discarding the transient response observed during the
first second (see Figure 5.1B). B: Summary data of results obtained in different neurons (n=6). Top:
Percentage change in steady-state firing rate obtained by increasing the input standard deviationσI . As
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in Figure 5.1D, changes were computed with respect to σI =0 pA by taking the average response to the
two strongest inputs µ(9)

I and µ(10)
I . The iGIF-Na model (red) and experimental data (gray) are in nice

agreement. Error bars indicate one standard deviation across cells. Bottom: The steady-state firing rate
of the iGIF-Na model is compared against experimental data. Each dot represents the performance
measured in a single cell for a paritcular input (µI,σI). C: The average firing threshold observed in a
typical cell (gray) and produced by the iGIF-Na model (red) are plotted as a function of the mean input
µI. Different colors and different gray levels indicate the magnitude of input fluctuations (see legends
in panel A). Gray error bars indicate one standard deviation across recordings. Data are from the same
cell as in panel A. Note that, in both the model and the experimental data, the firing threshold decreases
as a function σI. D: Summary data of results obtained in different neurons (n=6). Average change in
voltage threshold obtained by increasing the input standard deviationσI. Changes were computed with
respect to σI = 0 by averaging the results obtained for strong depolarizing offsets µI >µ(8)

I . Conventions
are as in panel B. E-H: As a control, the GIF model response (yellow) is compared against experimental
data (gray). Different colors indicate different magnitudes of input fluctuations σI (see legend in panel
E, right). In contrast to the iGIF-Na model (panel B, top), the GIF model is not sensitive to σI (panel
F, top). Data are presented as in panels A-D. Experimental data were copied from panels A-D. I-K:
Typical raw data used to obtain the results reported in panels A-H. I: Typical intracellular response
(black, middle) evoked by a 5-second current generated with parameters µI = 60 pA and σI = 150 pA
(top, gray). The spiking response (bottom, black) is well predicted by the iGIF-Na model (red), but not
by the GIF model (yellow). Since both models are stochastic, multiple simulations were performed in
which the same current was presented to the models. J: Same data as in panel I, but with a current
generated with parameters µI = 260 pA and σI = 100. The dashed black line indicates 0 pA (top). K:
Same data as panel I, but with a current generated with parameters µI = 600 pA and σI = 150.

To further appreciate the importance of modeling the nonlinear coupling between mem-

brane potential and firing threshold, we also fitted the experimental data with our previous

Generalized Integrate-and-Fire model (GIF, Mensi et al. (2011b); Pozzorini et al. (2013), see

Materials and Methods). The GIF model differs from the iGIF model simply because its firing

threshold dynamics only depends on the spike-history (and not on the membrane potential).

As expected, the GIF model could not capture the firing rate dependence on σI and was much

less accurate than the iGIF model in reproducing the firing rates observed at steady-state

(εrate = 2.92± 0.92 Hz, see Figure 5.7E,F). Finally, the strong mismatch between the firing

threshold measured in the experiments and produced by the GIF model (Figure 5.7G,H),

highlights the fact that a spiking model in which the firing threshold dynamics simply depends

on previous action potentials is not sufficient to explain the activity of Pyr neurons over a wide

range of inputs.

5.2.8 The iGIF model outperforms previous models in predicting in the occur-
rence of individual spikes with millisecond precision

A good single-neuron model should predict the occurrence of individual spikes with millisec-

ond precision (Gerstner and Naud, 2009). As illustrated in Figure 5.7I-K, the iGIF model does

not simply model the average firing rate observed in Pyr neurons, but also reproduces the fine

temporal structure of the spiking response.

To take into account the fact that single-neurons are stochastic (Mainen and Sejnowski, 1995)
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and to avoid problems related to overfitting, we further assessed spike-timing prediction

on a new experimental dataset (test dataset). This dataset was collected by recording the

response to nine repetitive injections of the same fluctuating current Itest(t ) and was not used

for parameter extraction. To test the model’s ability of capturing the single-neuron response

to different levels of input fluctuations, the standard deviation of the current Itest(t) was

modulated by a slow sinusoidal function (Figure 5.8A, see Materials and Methods). On average,

the iGIF model (with parameters extracted from the f-I dataset previously used to compute

the firing-rate response curves) was able to predict 73.6±3.3% of the spikes with a precision of

±4 ms (Figure 5.8B,E). The iGIF model performed well also in predicting the slow firing rate

fluctuations induced by the input modulation (Figure 5.8C,F) and the rapid dynamics of the

subthreshold membrane potential (Figure 5.8D). As expected, the performance achieved by

the GIF model (with parameters extracted form the f-I dataset) were significantly lower. In

particular, the GIF model was able to predict only 20.9±5.0% of the spikes (Figure 5.8B,E)

and, in agreement with the results in Figure 5.7E-F, it did not capture the slow firing-rate

modulation (Figure 5.8C,F).

In previous studies (Mensi et al., 2011b; Pozzorini et al., 2013), we found that the GIF model

was able to predict around 80% of the spikes observed in Pyr neurons responding to non-

stationary inputs. At first glance, the low performance achieved here might therefore seem

surprising. This result can however be understood by comparing the degree of stochasticity

(defined by the parameter ∆V , see Materials and Methods) of the GIF and the iGIF model

(Figure 5.8G). In both models, ∆V defines the sharpness of the firing threshold and regulates

the level of randomness of the spiking process (cf, Eq. 5.10). In particular, both models are

deterministic if ∆V = 0 and tend to an homogeneous Poisson process if ∆V →∞. In the ideal

case of a perfect model, the parameter∆V is optimally tuned to capture trial-to-trial variability.

In reality, a lack of flexibility in the model biases the estimation of ∆V towards large values

(that is, in an oversimplified model, all the single-neuron features that can not be explained

are interpreted as a manifestation of randomness). If on one hand, the level of stochasticity

observed in the iGIF model was weak (∆V = 0.56 mV, s.d. 0.10 mV), the values obtained by

fitting the GIF model on the f-I dataset were always very high (∆V = 7.27 mV, s.d. 2.34 mV),

explaining the low performance achieved by the GIF model in predicting individual spikes.
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Figure 5.8: The iGIF-Na model predicts the occurrence of individual spikes of Pyr neurons with a
millisecond precision. The predictive power of both the iGIF model (red) and the GIF model (yellow)
was assessed on a new dataset (test dataset), which was not used for parameter extraction. A: A segment
of the 20-second current used to build the test dataset is shown. The input current was generated
according to a non-stationary Gaussian process with constant mean and sinusoidal standard deviation
(cf. Eq. 5.7). The dashed line indicates 0 pA. B: Typical spiking response of a Pyr neuron (black raster)
to 9 repetitive injections of the current shown in panel A. The iGIF model (red) outperforms the GIF
model (yellow) in predicting the occurrence of individual spike (results are quantified in panel E, filled
bars). C: PSTHs computed by counting the number of spikes within rectangular windows of 500-ms.
The iGIF model (red) outperforms the GIF model (yellow) in predicting the slow rate fluctuations
(black) induced by the sinusoidal modulation of the input (results are quantified in panel F, filled bars)
The dashed line indicates 0 Hz. D: Typical intracellular response to a single presentation of the input
current shown in panel A (black) compared against the iGIF model prediction (red). E-G: Summary data
showing the performance of the iGIF (red) and the GIF (yellow) model in predicting the spiking activity
of 6 Pyr neurons. Filled bars show the performance of models trained on the experimental dataset
used to compute the f -µI curves (f-I dataset). Empty bars show the performance of models trained
on a different dataset obtained by injecting a 120-second current that was generated with the same
statistics as the test dataset (training dataset). Error bars represent one standard deviation across cells.
E: Spike-timing prediction as quantified by the similarity measure M∗

d . The iGIF model significantly
outperforms the GIF model with parameters extracted from the f-I dataset (M∗

d =0.74, s.d. 0.03, iGIF;
M∗

d =0.21, s.d. 0.05, GIF; n = 6, paired Student t-test, t5 = −28.22, p = 10−6) and from the training
dataset (M∗

d =0.86, s.d. 0.02, iGIF; M∗
d =0.79, s.d. 0.03, GIF; n = 6, paired Student t-test, t5 = −5.68,

p = 0.0024). F: The prediction error on the PSTH was quantified by computing the root mean squared
error (RMSE) between data and model prediction. The iGIF model significantly outperforms the GIF
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model with parameters extracted from the f-I dataset (εrate=2.72, s.d. 0.80 Hz, iGIF; εrate=5.32, s.d. 1.28
Hz, GIF; n = 6, paired Student t-test, t5 = 8.72, p = 0.00033) and from the training dataset (εrate=1.08,
s.d. 0.12 Hz, iGIF; εrate=1.19, s.d. 0.18 Hz, GIF; n = 6, paired Student t-test, t5 = 3.54, p = 0.01660).
G: Comparison between the degree of stochasticity of the GIF and the iGIF models as quantified by
the parameter ∆V . Regardless of the dataset used to perform parameter extraction, the iGIF model
is significantly less stochastic than the GIF model (n = 6, paired Student t-test, t5 = 7.11, p=0.00085,
f-I dataset; n = 6, paired Student t-test, t5 = 7.60, p=0.00062, training dataset). Note that the level of
stochasticity obtained by fitting the GIF model on the f-I dataset is extremely high. This result indicates
that the GIF model is not flexible enough to capture the behavior of Pyr neurons over a wide range of
input parameters.

To make sure that the success of the iGIF model did not simply result from the aberrant level

of stochasticity in the GIF model, we reassessed spike-timing prediction in both models by

performing parameter extraction from a new dataset (training dataset) obtained by injecting

a 120-s current with the same statistics as the test dataset (Figure 5.8E-G, empty bars). As

expected, the level of stochasticity in the GIF model dramatically decreased (Figure 5.8G),

recovering the GIF model’s performances to its normal level (M∗
d = 79.4%, s.d. 3.2%). Notably,

the iGIF model with parameters extracted from the training dataset significantly outperformed

the GIF model by predicting 86.0% of spikes (M∗
d = 86.0%, s.d. 2.4%; Figure 5.8E).

Overall, these results indicate that the iGIF model is an excellent spiking model capable

of predicting individual spikes with millisecond precision and capturing the activity of Pyr

neurons over a wide range on input parameters.

5.3 Discussion

Our main finding is that L5 pyramidal neurons maintain sensitivity to input fluctuations even

at large mean inputs due to the adaptive properties of the voltage threshold. Overall this

means that pyramidal neurons process their inputs more like coincidence detectors than

leaky integrators. Indeed, slow increases of the membrane potential that can result form asyn-

chronous input (or a mean external drive) will lead on average to larger threshold. Consistent

with this argument, fI curves measured in pyramidal neurons were characterized by saturation

of the firing threshold at relatively low potentials. On the other hand, rapid depolarizations

resulting from coincident excitatory inputs will drive the cell more efficiently enhancing tem-

poral coding. Consistent with this explanation, increasing the standard deviation of the input

current and consequently increasing the speed at which the subthreshold membrane potential

fluctuates was reflected in both lower firing threshold and increased firing rate, even at large

mean inputs.

The threshold equation of Platkiewicz and Brette (2010) provides a theory of how different

conductances and channels properties modulate the voltage threshold for spike initiation.

Therefore, given the biophysical properties of the channels expressed in a particular neuronal

types, it is possible to derive an equation for the action potential dynamic. Considering the

biophysical properties of Na+ channels reported in a vast number of publications and reported
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in a meta analysis (Angelino and Brenner, 2007), Platkiewicz and Brette (2011) concluded that

the inactivation properties of sodium channels expressed in the central nervous systems are

likely to be, at least in part, the source of the large voltage threshold variability observed in

vivo.

However, measuring the biophysical properties of sodium currents based on voltage clamp

experiments is problematic. Here we take a different approach, all the threshold parameters of

the iGIF model, in particular the nature of the nonlinear coupling and the threshold timescale

are extracted from intracellular recordings. Based on these results, we can therefore make

predictions on certain biophysical quantities, such as ka , ki and the dynamics of sodium

channel inactivations θ∞(V ).

In our model subthreshold coupling accounts for negative correlation between rate of depo-

larization and firing threshold, while spike-triggered movement of firing threshold, accounts

for negative correlation between firing threshold and previous ISIs. Our results are consistent

with a model of sodium channel mediated by 3 gating variables INa ∝ sm3h (Fleidervish et al.,

1996) where s implements slow inactivation and, in the iGIF model, is approximated by the

stereotypical spike-triggered movement of the firing threshold γ.

To conclude, our data analysis showed that threshold variability was correlated with the

membrane potential, depends on the firing rate and on the rate of depolarization. These

results strongly suggest that this variability has not to be interpreted as noise but can be

explained by the biophysical properties of sodium channels. We fitted a spiking neuron model

in which the firing threshold both dependent on the ISI via a spike triggered movement of the

firing threshold and is coupled to the subthreshold membrane potential. The results indicate

that the firing rate is nonlinearly coupled to the membrane potential in such a way that the the

firing threshold adapts to slow fluctuations making the single neuron more sensitive to rapid

fluctuations than mean currents. Extending the model with this coupling leads to a better

spike timing prediction, a better fit of the fI curve and provides an intuitive explanation of

why at large mean currents the output rate is more sensitive to fluctuations than to the mean

input. Although, here the iGIF model was used to explain particular phenomena, we believe

that it could be used as a biologically plausible model for single neuron dynamics. Indeed, in

terms of spike timing perdition, the model outperforms previous models that were considered

good. The main advantage of this model is its ability to be precise on a white spectrum of

input statistics. A task that, due to the highly non linear dynamics that characterized neurons,

in often difficult to achieve.

5.4 Experimental Procedures

5.4.1 Electrophysiological recordings

All procedures in this study were conducted in conformity with the Swiss Welfare Act and

the Swiss National Institutional Guidelines on Animal Experimentation for the ethical use
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of animals. The Swiss Cantonal Veterinary Office approved the project following an ethical

review by the State Committee for Animal Experimentation.

Somatic whole-cell in vitro current clamp recordings were performed on 300µm thick parasagit-

tal acute slices from the right hemispheres of male P13 - P15 mouse brains. Brains were quickly

dissected and sliced (HR2 vibratome, Sigmann Elektronik, Germany) in ice-cold dissecting

artificial cerebrospinal fluid (ACSF) (in mM: NaCl 124.0, KCl 2.50, MgCl2 10.0, NaH2PO4 1.25,

CaCl2 0.50, D-(+)-Glucose 25.00, NaHC03 25.00; pH 7.3 ± 0.1, aerated with 95% O2 / 5% CO2),

followed by a 15 minute incubation at 34 °C in standard ACSF (in mM: NaCl 124.0, KCl 2.50,

MgCl2 1.00, NaH2PO4 1.25, CaCl2 2.00, D-(+)-Glucose 25.00, NaHC03 25.00; pH 7.40, aerated

with 95% O2 / 5% CO2). To ensure intact axonal and dendritic arborisation, electrophysio-

logical recordings were conducted in slices cut parallel to the apical dendrites. Recordings

in Layer 5 of the primary somatosensory cortex were performed at 32 ± 1 °C in standard

ACSF with an Axon Multiclamp 700B Amplifier (Molecular Devices, USA) using 5 - 7 MΩ

borosilicate pipettes, containing (in mM): K+-gluconate 110.00, KCl 10.00, ATP-Mg2+ 4.00,

Na2+-phosphocreatine 10.00, GTP-Na+ 0.30, HEPES 10.00, biocytin 5.00 mg/ml; pH 7.30, 300

mOsm. Cells were visualised using infrared differential interference contrast video microscopy

(VX55 camera, Till Photonics, Germany and BX51WI microscope, Olympus, Japan).

While pyramidal cells (n = 6, Pyr) were recorded in C57Bl/6J wild-type mice, fast-spiking

interneurons (n = 6, FS) were selected from the GFP-expressing cells in Tg(GAD67-GFP)/J

heterozygote knock-in mice (Tamamaki et al., 2003). To estimate the contribution of synaptic

transmission, half of the FS cells were recorded in the presence of synaptic blockers (20 µM

GABAzine, Tocris Bioscience; 25 µM CNQX, BioTrend; 40 µM AP-5, Tocris Bioscience).

Data were acquired at 10 kHz using an ITC-18 digitising board (InstruTECH, USA) controlled

by a custom-written software module operating within IGOR Pro (Wavemetrics, USA). Voltage

signals were low-pass filtered (Bessel, 10 kHz) and not corrected for the liquid junction poten-

tial. Only cells with an access resistance ≤ 20 MΩ (17.7 ± 2.3 MΩ, n = 6, Py; 17.7 ± 1.4 MΩ, n =

6, FS) and a drift in the resting membrane potential ≤ 8 mV (3.4 ± 2.8 mV, n = 6, Py; 2.5 ± 2.1

mV, n = 6, FS) throughout the recording were retained for further analysis.

5.4.2 Current injections

In all the experiments included in this study, neurons were stimulated with in vivo-like fluctu-

ating currents Iext(t ) generated according to an Ornstein-Uhlenbeck process:

τI İext(t ) =−Iext(t )+µI +
√

2τIσI ·ψ(t ), (5.6)

where ψ(t ) is a Gaussian white-noise process with zero mean and unitary variance, τI is the

correlation timescale, µI is the mean current and σI defines the magnitude of the fluctuations

(that is, the standard deviation of the current). The temporal correlation of the input was fixed

to τI = 3 ms and input currents Iext(t ) were generated at a sampling rate ∆t−1 = 10 kHz.
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To measure the impact of input fluctuations on the single-neuron input-ouput transfer func-

tion (i.e., the f -µI curve), we somatically injected a set of 5-second currents with different

means µI and standard deviations σI (see Equation 5.6). To let the cell recover, injections

were performed with interstimuli intervals of 25 seconds. Similar protocols have already been

applied in previous studies (Rauch et al., 2003; Higgs et al., 2006; Arsiero et al., 2007). Here,

to exhaustively explore the parameter space (µI,σI) and to accurately estimate the experi-

mental f -µI curves, we considered four different standard deviations σI ∈ {0,50,100,150} pA

and ten different means µI ∈ [0,µmax] nA, with µmax begin cell-dependent. Each neuron was

stimulated with 40 different inputs that were presented randomly. The entire protocol was

repeated 3 times. When stimulated with strong inputs, pyramidal neurons undergo spike

failures and can not sustain repetitive firing for long periods of time (Fleidervish et al., 1996).

At the beginning of each experiment, the maximum current µmax was defined in such a way

as to reach saturation of the steady state firing rate while preventing spike failures. For that,

neurons were tested with 6-second long noiseless currents (i.e. σI = 0) of increasing magnitude

µI. Cells that could not sustain continuous firing for input currents µI < 0.4 nA were discarded.

The maximal mean input were µmax ∈ [0.5,0.7] nA. For fast spiking neurons, the maximal mean

current were µmax ∈ [0.4,0.8] nA.

To evaluate model performance in predicting the occurrence of individual spikes, a different

set of experiments was performed. Currents were generated according to Equation 5.6, but

in this case, the stochastic process used to generate the input was made non-stationary by

modulating the standard deviation σI with a sinusoidal function

σI (t ) =σ0

(
1+∆σsin

(
2π

T
· t

))
, (5.7)

where T −1 = 0.2 Hz is the modulation frequency. For each cell, input parameters were cal-

ibrated to obtain an average firing rate of 10 Hz, oscillating between 7 and 13 Hz, approxi-

matively. After calibration, input parameters were in the following ranges: µI ∈ [120,190] pA,

σ0 ∈ [120,190] pA and ∆σ= 0.5 for pyramidal neurons and µI ∈ [70,180] pA, σ0 ∈ [80,180] pA

and ∆σ= 0.5 for fast spiking neurons. Since the spiking responses of both real neurons and

GIF models are stochastic, performances were quantified on a test set obtained by 9 repetitive

injections of the same (i.e. frozen-noise) 20-s current generated according to Eqs. 5.6-5.7. For

parameter extraction, a training set was used in which single neurons were stimulated with a

single 120-s-long current having the same statistics as in the test set but in which a different

realization of the white-noise process ψ(t ) was used. All the injections were performed with

inter-stimuli intervals of 25 seconds.

5.4.3 Data preprocessing

When acquired with the same electrode used to inject the external input Iext(t), current-

clamp recordings Vrec(t) are biased versions of the true membrane potential Vdata(t ) (Badel

et al., 2008). This bias can in principle be removed using series resistance or bridge balance
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compensation. However, perfect calibration of these methods is technically difficult to achieve.

Moreover, during long experiments, the electrode properties, and in particular the series

resistance Re, are subject to change (Pozzorini et al., 2013). Quantitative comparison between

membrane potentials evoked by input currents having different offsets µI requires accurate

electrode compensation. Indeed, a non-neutralized series resistance R̃e would lead, on

average, to a mean input-dependent bias Vbias(µI) = R̃eµI. To avoid this and others problems,

for all the in vitro recordings included in this study, online series resistance compensation

was complemented by offline Active Electrode Compensation (AEC) (Brette et al., 2007; Badel

et al., 2008). For that, the same procedure applied in Pozzorini et al. (2013) was used.

Briefly, we first computed the optimal linear filter Kopt(s) between a weak current and the

evoked subthreshold response. This filter captures the responses of both the electrode Ke(s)

and the recorded neuron Km(s). Consequently, the electrode impulse response Ke(s) was

estimated as

Ke(s) = Kopt(s)−Km(s), (5.8)

where, assuming that neurons operate on relatively long timescales, Km(s) was approximated

by an exponential function fitted on the tail of the optimal linear filter. Knowing Ke(s), sub-

sequent current-clamp recordings Vrec(t) were compensated to obtain the true membrane

potential Vdata(t ):

Vdata(t ) =Vrec(t )−
∫ ∞

0
Ke(s)Iext(t − s)d s, (5.9)

where Iext(t ) is the injected current and the convolution integral on the right hand side of the

equation approximates the voltage drop across the electrode.

In case of long experiments, estimating the electrode properties at different moments in time

can improve the quality of the data by removing drifts due to slow changes in the electrode

properties (Pozzorini et al., 2013). For this reason, electrode filters were extracted from 10-s-

long subthreshold injections performed before the training set, before the test set and every

twenty injections in the protocol used to measure the f -µI curves. Subthreshold input currents

were generated according to Equation 5.6 with the following parameters: µI = 0 nA, σI = 75 pA

and τI = 3 ms.

5.4.4 Extracting voltage threshold for spike initiation from in vitro recordings

Bifurcation analysis of neuron models capturing smooth spike initiation demonstrates that

the concept of voltage threshold (that is, the largest membrane potential that a neuron can

reach without emitting a spike) does not have a univocal definition. However, different

possible definitions produce very similar results that mainly differ by a shift (Platkiewicz

and Brette, 2010). For this reason, our analysis is based on relative variations between the

voltage threshold in different conditions, rather than on absolute values. In practice, given an
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intracellular recording, different methods exist to estimate the voltage threshold (Sekerli et al.,

2004). Here, for each spike in the dataset, the voltage threshold was estimated by measuring

the membrane potential at which the depolarization rate dV /d t became larger than a certain

value (10 mV/ms for Pyr and Fs neurons). In current-clamp experiments performed with a

single electrode, the acquired signal is a biased version of the membrane potential (see Data

preprocessing). When comparing the voltage threshold observed by injecting currents with

different offsets µI, one has to be particularly careful. An uncompensated electrode resistance

would indeed translate into an artifactual correlation between input strength (i.e, µI) and

voltage threshold. Moreover, in case of rapidly fluctuating inputs, the recorded spike shape

is also biased (Badel et al., 2008). Overall, while the choice of the specific method used to

estimate the voltage threshold was not crucial, removing the electrode bias through AEC

was key to achieve the accuracy required to detect a significant dependency of the voltage

threshold on the input fluctuations σI.

In Figure 5.2c, for each input condition, the depolarization rate preceding the emission of

an action potential was extracted from the average spike shape (i.e., from the spike-triggered

average of the membrane potential) by performing a linear regression on the time interval

[t̂ −3.5 ms, t̂ −0.5 ms], with t̂ denoting the time at which action potentials were initiated. In

Figure 5.2e, the average subthreshold membrane potential was computed by discarding all

the data points {t |t ∈ [t̂ j −2 ms, t̂ j +10 ms]} that were too close to action potentials {t̂ j }.

5.4.5 Inactivating Generalized Integrate-and-Fire model (iGIF)

The Generalized Integrate-and-Fire (GIF) model introduced in refs. Mensi et al. (2011b);

Pozzorini et al. (2013) was augmented with a nonlinear coupling between the subthreshold

membrane potential V (t) and the firing threshold VT(t). Such a coupling has recently been

shown to occur in Hodgkin-Huxley models in which fast sodium channels start to inactivate

at subthreshold voltages (Platkiewicz and Brette, 2010). For this reason, we call our model iGIF,

where i stands for inactivating.

In the model, spikes are produced stochastically according to the conditional firing intensity

λ(t) defined by the exponential escape rate (Gerstner and van Hemmen, 1992; Jolivet et al.,

2006):

λ(t ) =λ0 exp

(
V (t )−VT (t )

∆V

)
, (5.10)

where λ0 is a constant with units s−1 and ∆V defines the level of stochasticity. In the limit

∆V → 0, the model becomes deterministic and action potentials are fired each time the

threshold is reached. The dynamics of the subthreshold membrane potential is modeled as a

leaky integrator augmented with a spike-triggered currentη(s) that describes the time course of

the net current generated by the intrinsic dynamics of the neuron after a spike. Mathematically,
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the membrane potential evolves according to the following first-order differential equation:

CV̇ =−gL(V −EL)+ ∑
t̂ j<t

η(t − t̂ j −Tref)+ Iext, (5.11)

where C , gL and EL describe the passive properties of the membrane, {t̂1, t̂2, t̂3, . . .} are the

spike times and Iext is the external input. Currents triggered by different spikes accumulate

and, depending on the sign of η(s), produce spike-frequency adaptation or facilitation. The

functional shape of η(s) depends on neuronal type (Mensi et al., 2011b) and is not assumed a

priori but is extracted from experimental data. After each spike, the membrane potential is

reset to Vreset and numerical integration only restarts after an absolute refractory period Tref.

Depending on neuronal type, the voltage threshold for spike initiation is not constant but

depends on the occurrence of previous action potentials (Badel et al., 2008; Mensi et al.,

2011b; Pozzorini et al., 2013) and also on the depolarization rate of the membrane potential

preceding a spike (Azouz and Gray, 2000, 2003). To account for both dependancies, the

dynamic threshold is modeled as follows:

VT(t ) =V ∗
T + ∑

t̂ j<t

γ(t − t̂ j −Tref)+θ(t ), (5.12)

where V ∗
T is a constant and γ(s) is a function of time describing the movement of the firing

threshold after the emission of an action potential. Since the latter term can only account for

spike-dependent effects, the model is augmented with an additional state variable θ(t ) imple-

menting a coupling between the dynamics of the firing threshold and that of the subthreshold

membrane potential. Based on theoretical results obtained by a systematic reduction of the

Hodgkin-Huxley model, it has recently been proposed that this coupling might be nonlin-

ear and could take different forms depending on the underlying biophysical mechanism

(Platkiewicz and Brette, 2010). In the iGIF model, the dynamics of the variable θ is defined by

a rather general first-order differential equation given by

τθθ̇ =−θ+θ∞(V ), (5.13)

where τθ set the characteristic timescale on which the threshold reacts to changes in the

membrane potential and θ∞(V ) defines the voltage dependent steady-state towards which θ

converges. Depending on the particular shape of θ∞(V ), Equation 5.13 can in principle capture

a dependency of the firing threshold on the depolarization rate preceding a spike (Platkiewicz

and Brette, 2010, 2011). To avoid a priori assumptions on the biophysical processes underlying

the coupling, θ∞(V ) is defined as an arbitrary function of the membrane potential and is

extracted from experimental data using a new non parametric maximum likelihood method

(see Fitting Procedure for iGIF).

Finally, it is worth noting that a spike-triggered movement of the firing threshold could in

principle be implemented by incrementing the value of θ after the emission of a spike. How-

ever, the timescale on which spike-triggered effects occurs might be different from τθ. For this
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reason, spike-dependent movements of the firing threshold are modeled by the function γ(s)

and the state variable θ is reset to θreset = 0 mV after each spike.

iGIF-Na model

The iGIF-Na model is defined exactly as the iGIF model except for the fact that the function

θ∞(V ) defining the coupling between membrane potential and firing threshold is assumed a

priori to be the smooth linear rectifier θNa∞ (V ) defined in Equation 5.2. This particular function

has been shown to accurately capture the voltage-dependence of the firing threshold resulting

from Na+-channel inactivation in a standard Hodgkin-Huxley model (Platkiewicz and Brette,

2010, 2011).

GIF model

As a control, we also fitted the experimental data using our previous Generalized Integrated-

and-Fire (Mensi et al., 2011b; Pozzorini et al., 2013) in which firing threshold only depends on

the spike-history. The GIF model is a particular case of the iGIF model obtained by setting

θ∞(V ) = 0.

5.4.6 iGIF model parameter extraction

Given the input current Iext(t), the intracellular membrane potential Vdata(t), its first-order

derivative V̇data(t) = [Vdata(t +∆t)−Vdata(t)]/∆t and the experimental spike train {t̂ j }, iGIF

model parameters were obtained with a new two-steps procedure developed by extending the

methods introduced in Mensi et al. (2011b); Pozzorini et al. (2013).

In the first step, all the parameters describing the subthreshold dynamics are extracted by

minimizing the sum of squared errors between the voltage derivative observed in the experi-

ment and the one predicted by the model (c.f. Eq. 5.11). To allow convex optimization and

avoid a priori assumptions on the timescales of adaptation, the spike-triggered current was

expanded in a linear combination of basis functions η(s) =∑K
i=1ηi bηi (s), where {bηi (s)} is a set

of K = 30 log-spaced non-overlapping rectangular functions and the parameters {ηi } define

the shape of η(s). As in Paninski et al. (2005); Mensi et al. (2011b); Pozzorini et al. (2013),

the least-square estimate of the subthreshold parameters βT
sub =C−1 · [gL,ELgL,η1, ...,ηK ,1] is

obtained by solving a multilinear regression problem

β̂sub = (X T X )−1X T V̇data, (5.14)

where X is a matrix made of vectors X T
t = [−Vdata(t),1,

∑
j bη1 (t − t̂ j ), ...,

∑
j b(η)

K (t − t̂ j ), Iext(t)]

and V̇data is a vector containing the membrane potential first-order derivative. Since the

model does not capture the voltage trajectory during a spike, all the data points close to action

potentials {t |t ∈ [t̂ j −5 ms; t̂ j +Tref]} were excluded from the fit. Finally, the absolute refractory
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period was set to Tref = 4 ms and the voltage reset was estimated by computing the average

membrane potential after a spike (i.e. Vreset = 〈V (t̂ j +Tref)〉 j ). Since a period of absolute

refractoriness can also be implemented by setting the first milliseconds of the spike-triggered

threshold movement γ(t ) to high values, the particular choice of Tref is not important.

In the second step, an estimate of the subthreshold membrane potential V̂ (t) is obtained

by numerically solving Equation 5.11 and the voltage threshold parameters are extracted by

extending the non-parametric maximum-likelihood approach of Mensi et al. (2011b); Poz-

zorini et al. (2013). Again, to avoid a priori assumptions on the timescales of spike-dependent

adaptation and on the shape of the coupling between firing threshold and subthreshold mem-

brane potential, the two functions γ(s) and θ∞(V ) were expanded in linear combinations of

non-overlapping rectangular basis functions γ(s) =∑K
i=1γi b(γ)

i (s) and θ∞(V ) =∑M
i=1θi b(θ)

i (V ).

For the spike-triggered movement of the firing threshold γ(s), the same log-spaced rectangular

functions already used for η(s) were chosen. For θ∞(V ), M = 11 regularly spaced rectangular

functions {b(θ)
i (V )} were chosen in order to cover the interval [min

j
{V (t̂ j )},max

j
{V (t̂ j )}] of volt-

ages in which action potentials were observed. Consequently, after integration of Equation

5.13, the time-dependent voltage threshold is given by

VT(t ) =V ∗
T +

K∑
i=1

γi ·
∑

t̂ j<t

b(γ)
i (t − t̂ j −Tref)+

M∑
i=1

θi fi (t ;τθ), (5.15)

where fi (t ;τθ) = ∫ t
t̂last+Tref

τ−1
θ

e
− s
τθ ·b(θ)

i (V (t − s))d s and t̂last denotes the time of the last spike

before t . With the exponential function in Equation 5.10, and assuming that the timescale

τθ is known, the log-likelihood of the experimental spike train is a convex function of the

threshold parameters βT
th =∆V −1 · [1,V ∗

T ,γ1, . . . ,γK ,θ1, . . . ,θM ] and can be written as follows

(Paninski, 2004)

L(βth;τθ) = log p
(
{t̂ j }|V̂ (t );βth,τθ

)= ∑
t∈{t̂ j }

Yt(τθ) ·βth −∆T · ∑
t∈Ω

exp
(
Yt(τθ) ·βth

)
, (5.16)

with Yt(τθ) = [V̂ (t ),−1,−∑
j b(γ)

1 (t− t̂ j −Tref), . . . ,−∑
j b(γ)

K (t− t̂ j −Tref),− f1(t ;τθ), . . . ,− fM(t ;τθ)]

being a vector of observables (that implicitly depends on the parameter τθ) and Ω = {t |t ∉
[t̂ j , t̂ j +Tref]} a set that excludes all the points falling in the period of absolute refractoriness.

Given the timescale of the coupling τθ, the maximum likelihood estimate of the other thresh-

old parameters β̂th(τθ) = argmax
βth

{
L(βth;τθ)

}
can be obtained as in refs. Mensi et al. (2011b);

Pozzorini et al. (2013) by maximizing Equation 5.16 using standard gradient ascent meth-

ods. The optimal timescale of the coupling between threshold and membrane voltage τ̂θ =
argmax

τθ

{L(β̂th(τθ);τθ)} is then obtained by systematically searching in the range τθ ∈ [0.5 ms,15 ms]

the value for which the log-likelihood is maximized. Finally, it is worth noting that even if we

do not dispose of a proof of joint convexity, the landscape of the log-likelihood L(β̂th(τθ);τθ)

was smooth in τθ and did not contain local maxima (see Figure 5.4F).
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Since the fit of the parameters defining the dynamics of the voltage threshold relies on the

estimate of the membrane potential V̂ (t ), an incorrect estimation of βsub could bias the results

obtained for β̂th and τ̂θ. To make sure that the functional shapes of γ(s) and θ∞(V ) could

really be attributed to the dynamics of the voltage threshold, all the threshold parameters were

also extracted using the experimental membrane potential Vdata(t ) instead of V̂ (t ).

Fitting procedure for iGIF-Na

The iGIF-Na model parameters were extracted from experimental data using a maximum

likelihood approach closely resembling to the nonparametric method described in the pre-

vious section. Briefly, the log-likelihood L(βNa
th ;τθ,ki,Vi) of the iGIF-Na model is convex in

βNa
th =∆V −1 · [1,V ∗

T ,γ1, . . . ,γK ,ka]. Consequently, given the nonlinear parameters ki, Vi and τθ,

all the other threshold parameters can be easily extracted by solving a convex optimization

problem: β̂Na
th (τθ,ki,Vi) = argmax

βNa
th

{
L(βNa

th ;τθ,ki,Vi)
}

. On the other hand, extracting the optimal

parameters k̂i, V̂i and τ̂θ requires the solution of the following nonlinear problem:

argmax
(τθ ,ki,Vi)

{
L(β̂Na

th (τθ,ki,Vi);τθ,ki,Vi)
}

. (5.17)

Performing an exhaustive search on a three-dimensional space is possible. However, model pa-

rameters were extracted by first fixing the coupling timescale τθ to the optimal value previously

obtained by fitting the iGIF-NP model (see Figure 5.4F) and then performing an exhaustive

search for ki and Vi (see Figure 5.4G).

5.4.7 iGIF model linearization

In order to linearize the iGIF response, Equation 5.13 is simplified by taking the first-order

approximation θ∞(V ) ≈ C̄θ+Ḡθ, with C̄θ being a constant and Ḡθ being the average gain of

the coupling between membrane potential and firing threshold (see Eq. 5.4). By integrating

Equation 5.13, the linearized threshold dynamics of the iGIF model becomes:

VT (t ) = C̄θ+Ḡθ ·
∫ t

t̂last

κθ(s)V (t − s)d s + ∑
t̂ j<t

γ(t − t̂ j )+γref(t − t̂last), (5.18)

where t̂last denotes the last spike before time t , κθ(t) = 1
τθ

exp
(
− t
τθ

)
is the threshold filter

and the function γref(t) describes the transient response induced by the after-spike reset.

Analogously, the subthreshold dynamics defined in Equation 5.11 can be rewritten in its

integral form as:

V (t ) = EL +
∫ t

t̂last

κm(s)I (t − s)d s − ∑
t̂ j<t

η̃(t − t̂ j )−ηref(t − t̂last), (5.19)
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where κm(t) = R
τm

exp
(
− t
τm

)
is the membrane filter, η̃(t) = ∫ ∞

0 κm(s)η(t − s)d s describes the

influence of the spike-triggered current η(t ) on the membrane potential and, similar to γref(t ),

the refractory filter ηref(t ) = (EL −Vreset)exp
(
− t
τm

)
accounts for the transient induced by the

spike-after reset V →Vreset.

In the iGIF model, the spiking probability depends on the difference between the membrane

potential and the firing threshold (Eq. 5.10). Thus, the different terms appearing in Equations

5.18-5.19 can be combined to obtain a compact expression for the linearized iGIF model

intensity λlin(t ):

λlin(t ) =λ0 ·exp

(
E0 +

∫ t
t̂last

κeff(s)Iext(t − s)d s +∑
t̂ j<t ξ(t − t̂ j )

∆V

)
, (5.20)

where the effective filter κeff(t ) = κm(t )−Ḡθ ·
∫ ∞

0 κθ(s)κm(t−s)d s provides a phenomenological

account of somatic integration and E0 = C̄θ +EL is a constant. Finally, assuming that the

timescales τθ and τm are shorter than the average interspike-interval, the transients induced

by the after-spike resets can be absorbed in the effective adaptation filter ξ(t ) = γ(t )+γref(t )+∫ ∞
0 (δ(s)−Ḡθκθ(s))

(
η̃(t − s)+ηref(t − s)

)
d s that phenomenologically accounts for all processes

underlying spike-history dependency.

5.4.8 Generalized Linear Model (GLM)

To confirm the semi-analytical results obtained with the linearized iGIF model, experimental

data were fit with a Generalized Linear Model (GLM, Truccolo et al. (2005); Pillow et al. (2008)).

In the GLM, spikes are generated stochastically with firing intensity λGLM(t ) defined as:

λGLM(t ) =λ0 ·exp

C0 +
∫ ∞

0
κeff(s)Iext(t − s)d s + ∑

t̂ j<t

hGLM(t − t̂ j )

 , (5.21)

where λ0 has units of s−1, C0 is a constant, κeff(t ) is an arbitrarily-shaped filter through which

the input is integrated and hGLM(t ) accounts for all spike-triggered processes that makes the

single-neuron activity history-dependent. GLM parameter extraction is performed using the

standard maximum likelihood method (Truccolo et al., 2005; Pillow et al., 2008). For that, both

κeff(t) and hGLM(t) are expanded in linear combinations of rectangular basis functions. In

contrast to the iGIF model, the GLM somatic integration as a linear process described by the

filter κeff(t). The GLM only differs from the linearized iGIF model defined in Equation 5.20

for the absence of both an after-spike reset and an absolute refractory period. Thus, GLM

parameter extraction can be performed to verify experimentally the iGIF model predictions

about somatic integration (see results in Figure 5.6).
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5.4.9 Performance evaluation

To avoid problems related to overfitting and allow for a comparison between models that

differ in the total number of parameters, all of the performance reported in this study were

evaluated on separate data sets that were not used for parameters extraction.

Normalized log-likelihood

A quantitative measure of the quality of both the GIF and the iGIF model is provided by the

log-likelihood:

Lmodel =
∑

t∈{t̂ }

logλmodel(t )−
∫ T

0
λmodel(t )d t (5.22)

where λmodel(t ) is the conditional firing intensity of the model after parameter optimization,

{t̂ } is the experimental spike train and T is the total duration of the experiment on which the

model performance were evaluated. All of the log-likelihoods reported in this study were

normalized with respect to an homogeneous Poisson process with firing intensity r̄ = Nspikes/T

as well as on the total number of spikes:

L = 1

log(2) ·Nspikes

(
Lmodel −Nspikes(log r̄ −1)

)
, (5.23)

such that L has units of bits per spike.

Spike-timing prediction

Spike-timing prediction was quantified using the spike-train similarity measure M∗
d (Naud

et al., 2011). As in our previous studies (Mensi et al., 2011b; Pozzorini et al., 2013), M∗
d was

computed using the Kistler coincidence window with a temporal granularity of ∆=±4 ms.
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A Temporal whitening by power-law
adaptation in neocortical neurons

Spike-frequency adaptation is widespread in the central nervous system, but its functional

role remains unclear 1. In neocortical pyramidal neurons, adaptation manifests itself by an

increase in neuronal firing threshold and by adaptation currents triggered after each spike.

Combining electrophysiological recordings with modeling, we found that in mice these adap-

tation processes last for more than 20 seconds and decay over multiple time scales according

to a power-law. The power-law decay associated with adaptation mirrors and cancels the

temporal correlations of input current received in-vivo at the soma of L2/3 somatosensory

pyramidal neurons. These findings suggest that, in the cortex, spike-frequency adaptation

causes temporal decorrelation of output spikes (temporal whitening), an energy efficient

coding procedure that, at high signal-to-noise ratio, improves the information transfer.

A.1 Introduction

Neural signaling requires a large amount of metabolic energy (Attwell and Laughlin, 2001).

Consequently, neurons are thought to communicate using efficient codes in which redun-

dant information is discarded (Laughlin, 2001). Theories of efficient coding (Barlow, 1961)

successfully predict several features of sensory systems. At early stages of visual processing,

inputs coming from the external world are decorrelated both in space and time (Srinivasan

et al., 1982; Dong and Atick, 1995; Dan et al., 1996; Pitkow and Meister, 2012); through sensory

adaptation (Wark et al., 2007), codes are dynamically modified so as to maximize information

transmission (Wainwright, 1999; Brenner et al., 2000; Fairhall et al., 2001; Maravall et al., 2007);

and sensory adaptation on multiple timescales (Fairhall et al., 2001; Baccus and Meister, 2002;

Ulanovsky et al., 2004) could possibly reflect the statistics of the external world (Simoncelli

1This text is copied from Pozzorini et al. (2013), full citation in the bibliography
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and Olshausen, 2001).

Sensory adaptation is at least partially due to intrinsic properties of individual neurons and, in

particular, to spike-frequency adaptation (SFA). SFA is not only observed at the early stages of

sensory processing, but is also widespread in cortical neurons embedded in highly recurrent

networks. Often modeled by a single process with one specific timescale (Izhikevich, 2003;

Brette and Gerstner, 2005), SFA also occurs on multiple timescales(Spain and Schwindt, 1991;

Gilboa et al., 2005; La Camera et al., 2006). In pyramidal neurons of the rat somatosensory

cortex, three or more processing steps away from the sensory receptors, SFA is scale-free

(Lundstrom et al., 2008), meaning that the effective speed at which individual neurons adapt

is not fixed but depends on the input. Scale-free adaptation can be captured by simple thresh-

old models with a power-law decaying spike-triggered process (Drew and Abbott, 2006) that

possibly describes the combined action of Na-channel inactivation (Fleidervish et al., 1996;

Mickus et al., 1999; Melnick et al., 2004) and ionic channels mediating adaptation currents

(Madison and Nicoll, 1984; Schwindt et al., 1989; Sanchez-Vives et al., 2000).

Three questions therefore arise: First, can the temporal features of spike-triggered currents and

spike-triggered changes in firing threshold, possibly spanning multiple timescales, directly

be extracted from experimental data? Second, can SFA be explained by these spike-triggered

effects? And finally, do the timescales of SFA match the temporal statistics of the inputs re-

ceived by individual neurons? If temporal characteristics of inputs and SFA were matched, SFA

could lead to a perfect decorrelation of the information contained in one spike with that of

the previous one of the same neuron, a phenomenon called temporal whitening (Wang et al.,

2003). Temporal whitening in turn implies that, at high signal-to-noise ratio, information

transmission is enhanced (Rieke et al., 1999).

A.2 Results

The question of whether SFA is optimally designed for efficient coding can only be addressed if

both the dynamics of SFA and the statistical properties of the inputs generated in biologically

relevant situations are known. Therefore, the Results section is organized as follow. We start

with a combined theoretical and experimental approach so as to extract the dynamics of

spike-triggered processes and SFA directly from in-vitro recordings of cortical neurons. Then,

we analyze the synaptically driven membrane potential dynamics recorded in-vivo from

somatosensory neurons during active whisker sensation (data from (Crochet et al., 2011)).

Our overall goal is to study whether adaptation optimally removes the temporal correlations

in the input to single neurons embedded in the highly recurrent network of the cortex.

A.2.1 SFA is mediated by two power-law spike-triggered processes

To reveal adaptation on multiple timescales, we stimulated L5 somatosensory pyramidal

neurons with sinusoidal noisy currents of period T (see Methods) chosen between 500 ms

and 16 s (Figure A.1). Single neurons responded with a firing rate r (t) characterized by fast
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fluctuations around a sinusoidal mean rmean(t ) given by the first-order approximation

rmean(t ) = r0 + ĤA(w) ·∆Imean sin(w t + ĤΦ(w)), (A.1)

where w = 2π/T is the angular frequency of the input modulation, r0 ≈ 4 Hz is the average

firing rate, ĤA(w) is the amplitude response and ĤΦ(w) is the phase response. In the Fourier

domain, the transfer function Ĥ(w) = ĤA(w)e i ĤΦ(w) constitutes a linear model for the modu-

lation of the output firing rate (Figure A.1).

Since SFA is at least partly due to spike-triggered effects, the simple firing rate picture of

Equation A.1 must be complemented by a spike-based description. We therefore used intracel-

lular recordings to fit a generalized leaky integrate-and-fire model (GLIF-ξ) with escape-rate

noise (Gerstner and Kistler, 2002) for stochastic spike emission (Figure A.1). To capture spike-

triggered adaptation, the model features an effective dynamic threshold, described by the

function ξ(s). This function (also called effective adaptation filter or kernel) summarizes the

stereotypical sequence of biophysical events triggered by the emission of an action potential

and accounts for both adaptation currents and physiological changes of the firing threshold.

Since the effects induced by consecutive spikes accumulate, the effective dynamic threshold

produces SFA. Importantly, the functional shape of ξ(s), like all the other parameters of the

model, were extracted from the data (see Methods and ref. (Mensi et al., 2011b)).

As previously reported (Mensi et al., 2011b), neocortical pyramidal neurons adapt their firing

rates by means of two distinct biophysical mechanisms that respectively increase the firing

threshold and lower the membrane potential after each spike. To get an accurate estimation of

the effective adaptation filer ξ(s), we first fitted a two-process GLIF model (Supplementary Fig.

S1) that explicitly features both a dynamic threshold and an adaptation current, described by

the filters γ(s) and η(s), respectively (Mensi et al., 2011b) (see Methods). Since in the model

the emission of action potentials only depends on the difference between the membrane

potential and the firing threshold, spike-triggered currents η(s) and movements of the firing

threshold γ(s) were then be combined to obtain the effective adaptation filter ξ(s) of the more

parsimonious model GLIF-ξ (see Methods and Figure A.2).

We found that 22 seconds after the emission of an action potential a small but significant

deflection remained in both the spike-triggered current η(t) and the moving threshold γ(t).

Moreover, when displayed on log-log scales, the decay of both adaptation kernels was ap-

proximately linear over four orders of magnitude, meaning that both the adaptation current

and the moving threshold are characterized by scale-free spike-triggered dynamics (Figure

A.2a). Fitting η(t ) and γ(t ) with a power-law function (i.e. fPL(t ) =αft
−βf ), revealed that both

spike-triggered processes have similar scaling exponents (βη = 0.76, βγ = 0.87). Consequently,

the effective adaptation filter ξ(t ) is well described by a truncated power-law

ξPL(t ) =
αξ ·

(
t

Tξ

)−βξ
if t > Tξ

αξ if 0 < t ≤ Tξ
(A.2)
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Figure A.1: Experimental protocol and spiking neuron model GLIF-ξ. To reveal SFA on multiple
timescales, we repeatedly stimulated synaptically isolated L5 pyramidal neurons (PYR neuron) with
fluctuating currents (Input current) generated by adding filtered Gaussian noise to sinusoidal waves
with different angular frequencies w = 2π/T (Mean modulation). The horizontal bars (bottom left
and right) indicate the period T of modulation. The single neuron response (Spiking response, black)
was recorded intracellularly and the firing rate r (t ) was estimated by counting the number of spikes
in every time bin (Firing rate modulation, gray). The periodic oscillations of the firing rate rmean(t)
(Firing rate modulation, black) was related to the mean input (Firing rate modulation, light gray) with a
linear rate model defined in the Fourier domain by the the transfer function Ĥ(w). We then used the
intracellular recordings to fit the Generalized Leaky Integrate & Fire model GLIF-ξ (black-lined box,
top). In this model, the input current is first low-pass filtered by the membrane filter Km(t ) and then
transformed into a firing intensity by an exponential nonlinearity. Spikes are emitted stochastically
(Spiking response, red) and trigger an adaptation process described by the effective adaptation kernel
ξ(s).

with parameters αξ = 19.2 mV, βξ = 0.93 and Tξ = 8.3 ms for the average kernel (Figure A.2b)

and slightly different values for each individual cell (Supplementary Fig. S2), indicating that

scale-free SFA is an intrinsic property of individual neurons and not only of the average over

several cells.

In the following, we will refer to a model with a single spike-triggered adaptation filter as

GLIF-ξL , where GLIF stands for Generalized Leaky Integrate and Fire and ξL indicates that

SFA is implemented by a 22-second Long filter obtained by combining the moving threshold
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and the spike-triggered current extracted from the experimental data. With the same logic,

we denote GLIF-ξPL a model in which the effective filter ξ(s) is described by the truncated

power law ξPL defined by Equation A.2. A list with all the GLIF-ξPL model parameters is given

in Supplementary Table S1.

Figure A.2: Adaptation filter of the GLIF-ξmodel extracted from in-vitro recordings. a: Adaptation
filters of a two-process GLIF model that accounts for SFA with both a spike-triggered current η(s) and a
spike-triggered movement of the firing threshold γ(s). Left: Mean spike-triggered current η(s) (red)
obtained by averaging the results of different cells (n = 14). The dashed black line shows the fit of a
power-law function ηPL(s) = αηs−βη with parameters αη = 0.44 nA, βη = 0.76 and s in milliseconds.
Right: Mean moving thresholdγ(s) (red) obtained by averaging the results of different cells (n = 14). The
dashed black line shows the fit of a power-law function γPL(s) =αγs−βγ with parameters αγ = 24.4 mV,
βγ = 0.87 and s in milliseconds. The dark gray line is a control showing an independent estimation of
the average moving threshold γ(t ) obtained with an alternative fitting procedure (see Methods). b: The
spike-triggered current η(s) and the moving threshold ξ(s) were combined (block diagram) to obtain
the effective adaptation filter ξ(s) of the GLIF-ξ model. The mean adaptation filter ξL(s) (red, GLIF-ξL)
obtained by averaging the effective spike-triggered adaptation measured in individual cells (n = 14, see
Supplementary Fig. S2) is shown in red. The optimal fit of a truncated power-law ξPL(s) (dashed black,
GLIF-ξPL) yields an exponent βξ = 0.93 (c.f. Eq. A.2). In all panels, the gray area indicates one standard
deviation for the distribution of filters across different cells (asymmetric errors are due to log-scales).

A.2.2 Power-law SFA explains neural activity on short timescales

Valid single neuron models should predict the occurrence of individual spikes with a millisec-

ond precision (Jolivet et al., 2008). In response to a single injection of a fluctuating current

(Figure A.3a) the neuron emitted spikes that the GLIF-ξL model was able to predict with a

high degree of accuracy (Figure A.3b, red). When the same current was injected repetitively,

the spiking responses revealed the stochastic nature of single neurons: certain action poten-

tials were emitted reliably with a high temporal precision, while others did not occur at each

repetition or were characterized by larger temporal jitters. The GLIF-ξL model also captured
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this aspect (Figure A.3c). To validate our model, we quantified its predictive power using a

similarity measure denoted M∗
d (see Methods and ref. (Naud et al., 2011)). On average, GLIF-ξL

was able to predict more than 80% of the spikes (M∗
d = 0.807, s.d. = 0.04) with a precision of

±4 ms (Supplementary Fig. S3). Very similar performances, statistically not different (n=12

cells, paired t-test, t11 = 0.30, p=0.77), were achieved by GLIF-ξPL (M∗
d = 0.804, s.d. = 0.05),

indicating that spike-triggered processes are well described by a truncated power-law (Supple-

mentary Fig. S4).

As expected, the subthreshold response observed in-vitro was systematically overestimated

by GLIF-ξL (Figure A.3b, red). This is explained by the fact that GLIF-ξL artificially translates

spike-triggered currents into effective threshold movements. In a two-process GLIF model,

where adaptation currents and threshold movements are described as two distinct features

(i.e. when η(t ) and γ(t ) are not combined in a single effective kernel), model prediction of the

membrane voltage and experimental data were indeed in good agreement (Figure A.3b, gray),

confirming the validity of our fitting procedure. In terms of mere spike-timing prediction, the

two-process GLIF model and the more parsimonious GLIF-ξ model are equivalent (Figure

A.3c). For this reason, we work in the following with single-process model GLIF-ξ.

Overall, the spike time prediction paradigm demonstrates the ability of both GLIF-ξL and

GLIF-ξPL to capture the spiking activity of single neurons on the timescale of milliseconds.

A.2.3 Power-law SFA explains neural activity on slow timescales

We wondered whether the 22-second long adaptation filter ξ(s) could also predict the firing

rate modulation on the much slower timescale of seconds. To this end, we used the GLIF-ξL

model fitted on responses to different frequencies of modulation (0.5 ≤ T ≤ 16 s) to predict

the firing rates recorded in the second part of the experiment, where one of the two slowest

modulations (T = 8 or 16 s) was chosen and repetitively presented to the cell. Comparison of

the raster plots obtained by injecting the same current in both the neuron and the GLIF-ξL

model shows that the spiking activity of the real neuron closely resembles the one predicted

by the model (Figure A.4a-c). Furthermore, the match between the running-mean PSTHs

constructed for the model and the experimental data revealed that both responses share a

similar phase advance (Figure A.4d), indicating that our GLIF-ξL model is sufficient to capture

the characteristic signature of SFA under slow sinusoidal stimulation (Lundstrom et al., 2008).

To study the role of the 22-second long adaptation filter of GLIF-ξL, we then fitted the same

single-process model under the assumption that the adaptation filter ξ(t) has a duration of

only 1 second (GLIF-ξS, where S stands for short adaptation filter). Compared to GLIF-ξL, the

firing rate predicted by GLIF-ξS (Figure A.4e, orange) was in phase with the input (Figure A.4e,

dark gray) and not with the spike output of the cells, indicating that GLIF-ξS was unable to

capture the slow components of SFA (i.e. the model with a short adaptation filter predicted

a wrong phase advance). To provide even stronger evidence, we systematically quantified

the ability to predict both the mean firing rate r0 (Figure A.4f) and the phase lead ĤΦ (Figure

A.4g). Whereas the GLIF-ξL model was capable of very good predictions which are in sta-

tistical agreement with the experimental data (errors ∆r0 =−0.01 Hz, s.d. = 0.67; n=12 cells,
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Figure A.3: The GLIF-ξmodel predicts the occurrence of single spikes with a millisecond precision.
a: Typical 2.5-second segment of injected current. The same fluctuating current is presented several
times (frozen-noise). The dashed black line represents 0 nA. b: The spiking response, but not the
subthreshold membrane potential, predicted by the GLIF-ξL model (red) is in close agreement with
the experimental data (black). In the two-process GLIF model (gray), where spike-triggered currents
and threshold movements are modeled by two distinct processes (i.e. γ(s) and η(s)), the dynamics
of the subthreshold membrane potential predicted by the model is in excellent agreement with the
experimental data. Inset: comparison of subthreshold membrane potential (scale bars: 40 ms, 5 mV).
c: The raster plots show the spiking response of both the neuron (black) and the GLIF-ξL model (red)
to repetitive presentation of the same current. By construction, the spiking response of the GLIF-ξL

model is identical to that of the two-process GLIF model (gray).

Student t-test, t11 =−0.04, p = 0.97 and ∆ĤΦ =−0.17 deg, s.d. = 5.7; n=12 cells, Student t-test,

t11 =−0.10, p = 0.92), GLIF-ξS had the tendency to both overestimate the average firing rate

and underestimate the phase advance (errors ∆r0 = 0.47 Hz, s.d. = 0.72; n=12 cells, Student

t-test, t11 = 2.16, p = 0.05 and ∆ĤΦ = −17.9 deg, s.d. = 6.5 deg; n=12 cells, Student t-test,

t11 =−9.16, p < 10−6), demonstrating that an adaptation filter of 1 second is not sufficient.

Finally, we measured the transfer function Ĥ(w) for both real neurons and spiking models

by fitting Equation A.1 on the firing rates observed in response to six frequencies of mod-

ulation (Figure A.4h-j). For both real neurons and GLIF-ξL, the amplitude response ĤA(w)

was stronger at higher frequencies compared to lower ones revealing high-pass filtering, a

characteristic feature of SFA (Figure A.4h). Consistent with observations in L2/3 pyramidal

neurons (Lundstrom et al., 2008), plotting on log-log scales the amplitude response ĤA as a

function of the input frequency f = T −1, revealed that the gain of L5 pyramidal neurons was

approximatively power-law (Figure A.4i). Moreover, the phase response ĤΦ(w) was always

positive meaning that, for all the frequencies tested in this study, the output firing rate led the

input modulation (Figure A.4j). Overall, GLIF-ξL was able to capture the features of the trans-
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fer function observed in L5 pyramidal neurons. Similar results were obtained with GLIF-ξPL

(Supplementary Fig. S4), confirming that the spike-triggered processes observed in-vitro were

correctly modeled by a truncated power-law lasting 22 seconds. The experimental results re-

ported in Figure 4h-j are very similar to those obtained in L2/3 pyramidal neurons (Lundstrom

et al., 2008) and provide an independent evidence for multiple timescales of adaptation.

Overall, these results show that accounting for long-lasting spike-triggered effects with an

appropriate adaptation filter is crucial to capture the response of L5 pyramidal neurons on

multiple timescales.
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Figure A.4: The GLIF-ξ model accurately predicts the firing rate response on multiple timescales.
a: Input current (gray) with slow mean modulation (dark gray). b: Membrane potential recorded in a
single trial. c: Firing activity (black) obtained by repetitive presentation of the same input current is
compared with predictions of GLIF-ξL (red) and GLIF-ξS (orange). d: Data from c were used to build
two PSTHs (black: data, red: GLIF-ξL). The two sinusoidal functions represent the input modulation
(dark gray) and the best fit of the experimental data (light gray). e: Same as in panel d but with the
prediction of GLIF-ξS (orange). f: Performance in predicting the average firing rate r0 of new stimuli.
Left: Model predictions are plotted against experimental data. Each dot represents a different cell.
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Right: Each couple of open circles shows the prediction errors on the same cell. GLIF-ξL (red) is slightly
more accurate than GLIF-ξS (orange) (n = 12, paired t-test, t11 =−4.09, p = 0.002). g: Performance
in predicting the phase response ĤΦ to inputs at T = 8 or 16 s. GLIF-ξL (red) outperforms GLIF-ξS

(orange) (n = 12 cells, paired t-test, t11 = 6.31, p = 6.0 ·10−5). Conventions as in panel f . h: Gain
ĤA(T ) as a function of the period T = 2π/w . i: Log-log plot of the gain ĤA( f ) as a function of the input
frequency f = T −1. Experimental data were fitted by a power-law with scaling exponent βH = 0.12
(dashed gray). j: Phase response ĤΦ(T ) as a function of the period T = 2π/w . In panels h-j, data from
individual cells (n = 14, gray lines) are averaged (black) and compared with the predictions of GLIF-ξL

(red) and GLIF-ξS (orange). In all panels, error bars indicate one standard deviation and horizontal
dashed lines indicate zero.

A.2.4 Power-law SFA is optimally tuned for temporal whitening

Our model describes how the net current resulting from dendritic integration is encoded into

a spike train at the soma of neocortical pyramidal neurons. To investigate the implications

of power-law adaptation, we considered a situation in which a population of N uncoupled

GLIF-ξPL neurons had to encode a common input I (t ) = I0 +∆I (t ) in the instantaneous firing

rate A(t ), also called population activity. Note that, since the neurons in our population were

all identical and received the same input, the population activity A(t ) is identical to the PSTH

measured by repetitively injecting the same current into one single cell. For relatively small

fluctuations around a mean activity A0, we can assume that the population operates in a

linear regime and responds to an external input fluctuation ∆I (t ) according to the first-order

approximation

A(t ) = A0 +
∫ t

0
∆I (t − s)H(s)d s +n(t ), (A.3)

where the impulse response H (s) is the inverse Fourier transform of Ĥ (w), the noise n(t ) is due

to stochastic firing in a finite population and both terms depend on the intrinsic properties of

the individual neurons and in particular on the precise shape of the adaptation filter ξ(t ).

For large populations, the noise term in Equation A.3 becomes negligible and optimal coding

is achieved by the removal of temporal correlations potentially present in the input (Atick,

1992; Rieke et al., 1999). This encoding strategy is known as temporal whitening and requires

the population activity to have a flat power spectrum A( f ) = Const. (see Supplementary Text

S2).

SFA is known to implement high-pass filtering of the input current (Benda and Herz, 2003;

Kondgen et al., 2008). In the particular case of power-law adaptation, the population response

is characterized by a power-law gain (Figure A.4h,i and ref. (Lundstrom et al., 2008)) suggesting

that, in neocortical pyramidal neurons, spike-triggered processes might be optimally tuned to

efficiently encode scale-free signals (i.e. signals that are temporally correlated across multiple

timescales). However, the issue of whether the functional role of power-law adaptation is to

implement temporal whitening can only be solved if the statistical properties of the input

received in-vivo by neocortical pyramidal neurons are known.

To this end, we analyzed the synaptically driven membrane potential dynamics recorded from
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somatosensory pyramidal neurons during active whisker sensation (see Methods). A spectral

analysis performed on the data of Crochet et al. 2011 (Crochet et al., 2011) revealed that, at low

frequencies, the power spectrum of the subthreshold membrane potential fluctuations was

characterized by a power-law decay (Figure A.5a, red), indicating that natural stimuli received

by somatosensory pyramidal neurons are indeed scale-free.

To provide further evidence, we simulated the activity of a population of GLIF-ξPL neurons in

response to an in-vivo like input characterized by a scale-free spectrum (Figure A.5a, black).

The statistics of the subthreshold responses obtained in individual GLIF-ξPL neurons were

consistent with the ones observed in-vivo (Figure A.5b, gray). Moreover, we found that the

power spectrum of the population activity A( f ) (Figure A.5b, blue) was much closer to a

horizontal line than that of the input, indicating that a population of GLIF-ξPL neurons

efficiently encodes in-vivo like signals by removing temporal correlations present in the input.

Similar results were obtained with a population of GLIF-ξL neurons, where the adaptation

filter ξ(t ) was not an idealized power-law, but the average kernel extracted from intracellular

recordings (Figure 5b, gray).

Overall, our results suggest that in neocortical pyramidal neurons, power-law spike-triggered

adaptation mirrors and approximately cancels the temporal correlations of signals generated

in a biologically relevant situation. This result provides evidence for efficient coding at the

level of single neurons embedded in the highly recurrent network of the cortex.

A.3 Discussion

Neocortical pyramidal neurons are known to adapt their firing rate on multiple timescales

(La Camera et al., 2006; Lundstrom et al., 2008). Here we found that SFA is due to two separable

spike-triggered mechanisms: each time an action potential is fired, both an adaptation current

and a movement of the firing threshold are induced. Our results show that these spike-

triggered effects are surprisingly long (more than 20 s) and decay with a power-law (Figure

A.2), highlighting the fact that SFA does not have a specific timescale. A GLIF model with an

effective power-law spike-triggered process simultaneously captured both the fast dynamics

critical for the prediction of individual spikes (Figure A.3) and the slow processes that modulate

the firing rate (Figure A.4 and Supplementary Fig. S4). Most importantly, we found that, in

behaving mice, the currents resulting form dendritic integration and received as input at the

soma of pyramidal neurons are characterized by long-range temporal correlations that are

partially removed by power-law spike-triggered adaptation (Figure A.5). This final observation

indicates that, in cortex, power-law SFA is near-optimally tuned to efficient coding.

A.3.1 Extent of spike-triggered effects

According to our results, 20 seconds after its emission, an individual spike can still affect the

firing activity of a neuron. Possibly, spike-triggered effects have an even longer duration. How-

ever after 22 seconds the magnitudes of both the moving threshold and the spike-triggered
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Figure A.5: Power-law adaptation is near-optimally tuned to perform temporal whitening. a:
Power spectral density of the intracellular membrane potential fluctuations recorded in-vivo from
L2/3 pyramidal neurons (Voltage PSD, red). The power spectrum was computed using 20-second long
recordings (n = 57) obtained from 7 different cells (data from (Crochet et al., 2011)). Fitting a power
law (not shown) on the frequency band 0.05 < f < 2 Hz yields a scaling exponent βI = 0.67. The power
spectrum of the scale-free input used to stimulate a population of GLIF-ξPL neurons (N = 100) is shown
in black (Input Current PSD). The power spectrum of the subthreshold response of individual GLIF-ξPL

neurons (Voltage PSD, gray) is in good agreement with the in-vivo recordings. b: The population
activity of a group of GLIF-ξPL neurons in response to an in-vivo like input (black, copied from panel a)
has a nearly flat spectrum A( f ) (blue). Similar results were obtained with GLIF-ξL neurons (gray). To
allow a direct comparison between input and output powers, all the spectra shown in panel b were
normalized to have the same total power.

current were too small to be measured by our method (for t > 20 s, η(t) < 0.1 pA and γ(t) <
0.01 mV, see Figure A.2a). Since the effects of consecutive spikes accumulate, these small

contributions shaped the single neuron response in a significant way (Figure A.4).

Whereas power-law adaptation was necessary to capture the firing rate fluctuations, a model

with spike-triggered processes that only last for 1 second (GLIF-ξS) achieved very high perfor-

mances (M∗
d = 0.80, s.d. = 0.03) in predicting the occurrence of individual spikes (Supplemen-

tary Fig. S3). This fact probably explains why power-law adaptation has not been observed in

previous studies where model validation was only based on spike time prediction.
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A.3.2 Biophysical implementation of power-law adaptation

Our fitting procedure enabled us to discriminate between adaptation processes implemented

by spike-triggered currents and physiological changes of the firing threshold. However, the

biophysical details concerning the implementation of power-law dynamics are not part of our

model. In principle, power-law relaxations can be approximated by a sums of exponentials

covering a wide range of timescales (La Camera et al., 2006; Drew and Abbott, 2006). It is

therefore likely that the spike-triggered current η(s) we found results from the combined action

of multiple ion-channels operating on different timescales like for example Ca-dependent,

Na-depedent and high-voltage activated potassium channels. Note, however, that a match of

the relative strength of different currents implies a fine-tuned regulation of gene expression

levels. In line with this hypothesis, multiple timescales of SFA have been previously modeled

by biophysical models with several channels mediating adaptation currents (La Camera et al.,

2006; Wang et al., 2003; Lundstrom et al., 2008). Alternatively, scale-free dynamics could also

be an intrinsic property of single channels. In particular, the power-law decay we found in

the moving threshold γ(s) might reflect the scale-free dynamics observed during Na-channel

de-inactivation (Toib et al., 1998). In this alternative view, scale-free dynamics is likely to

emerge from the presence of multiple inactivated states of ionic-channels (Lowen et al., 1999;

Gilboa et al., 2005).

A.3.3 How general is power-law adaptation?

All the in-vitro results presented in this paper are from mouse layer 5. We also investigated

SFA in L2/3 and obtained very similar results (data not shown). In particular, we found that

L2/3 pyramidal neurons adapt by means of power-law filters that closely resemble the ones

observed in L5 and cause positive phase lead of the firing rate response to slow sinusoidal

currents. These preliminary results suggest that L2/3 and L5 somatosensory pyramidal neu-

rons share similar adaptation mechanisms. We also fitted GLIF models to the data of ref.

(Lundstrom et al., 2008) and found that both L2/3 and L5 pyramidal neurons of the rat so-

matosensory cortex adapt by means of spike-triggered power-law processes (data not shown)

indicating that this mechanism is conserved across species and could be a common feature of

cortical pyramidal neurons.

A.3.4 Functional implications

Both the moving threshold and the spike-triggered current are characterized by power-law

decays with very similar scaling exponents. This suggests that the particular shape of the

adaptation filters plays an important role. Neural signaling consumes a large amount of

metabolic energy (Attwell and Laughlin, 2001; Laughlin, 2001). The brain should therefore

represent information using codes in which redundant information is discarded. According

to efficient coding theory, optimality is achieved by adapting to the stimulus statistics and,

at high signal-to-noise ratio (SNR), by completely removing correlations that are potentially
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present in the signals to be encoded (Barlow, 1961). Efficient coding theory has been used to

explain neural processing at early stages of the visual system. In the retina, center-surround

receptive fields coupled with nonlinear processing strongly attenuate spatial correlations of

natural images (Srinivasan et al., 1982; Pitkow and Meister, 2012). Similarly, in primary visual

cortex (V1), spatial decorrelation of features has been found (Simoncelli and Olshausen, 2001).

In the temporal domain, neural firing was found to be decorrelated in the lateral geniculate

nucleus of the cat (Dan et al., 1996) and pyramidal neurons of V1 adapt on multiple timescales,

providing further temporal decorrelation (Wang et al., 2003). However, it remained unclear

whether SFA serves for temporal redundancy reduction in the cortex.

To solve this issue, we estimated the statistics of input currents received in-vivo at the soma of

L2/3 somatosensory pyramidal neurons during active whisker sensation (data from (Crochet

et al., 2011)). This current, which reflects spatio-temporal statistics of spike arrivals at the

synapses as well as subsequent filtering in the dendritic tree, can be seen as the driving current

for spike generation. We found that input currents of pyramidal neurons did not have a

preferred timescale but were characterized by scale-free dynamics. Moreover, our numerical

simulations indicated that power-law spike-triggered processes are near-optimally tuned to

completely remove the temporal correlations revealed by the power-law decay of the input

spectrum (Figure A.5). Overall, these results provide evidence for efficient coding in single

neocortical neurons stimulated with behaviorally relevant signals.

The GLIF-ξ model implements a form of predictive coding. Indeed, the sum of adaptation

processes ξ(s) triggered by past spikes can be interpreted as a linear predictor of the future

input. Consistent with predictive coding, further spiking only occurs when the real input

exceeds the prediction. In line with our results, it has been shown that predictive coding of

scale-free inputs by means of power-law spike-triggered kernels reduces the number of action

potentials required to achieve a certain signal-to-noise ratio (Bohte and Rombouts, 2010).

A.3.5 Temporal Whitening vs. Noise-Shaping

For deterministic signals encoded in absence of noise, efficient coding theory states that

redundancy reduction is the optimal solution. However, in presence of noise, complete decor-

relation can be detrimental. Redundancy can indeed improve the robustness of a code (Rieke

et al., 1999). To assess optimal coding in small populations of neurons, the noise term n(t)

associated with stochastic firing (c.f. Eq. A.3) has therefore to be considered.

Previous studies have shown that non-renewal firing activity with negatively correlated inter-

spike intervals can achieve higher information rates by noise-shaping (Mar et al., 1999; Shin,

2001; Chacron et al., 2004). In this coding strategy, the SNR is increased in the frequency band

of the input signal by transferring the effective noise power to other frequencies (see Supple-

mentary Text S2). As already hypothesized in (Avila-Akerberg and Chacron, 2011), we found

that at low-frequencies, spike-triggered adaptation resulted in a reduction of noise which was

completely counterbalanced by a similar modification of the gain that controls the amplitude

of the signal, so that the SNR remained unchanged. Consequently, modifying the adaptation

filter ξ(s) did not affect the power spectrum of the effective noise (Supplementary Fig. S5),
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indicating that noise-shaping is probably not the functional role of power-law adaptation. The

question of how this result generalizes to different stimulation paradigms is out of the scope

of this study and will be addressed in a future paper.

In computational studies of memory and learning in neural networks, SFA is often neglected

and, when considered, it is usually assumed to operate on short timescales. From our per-

spective, the power-law of spike-triggered adaptation could be helpful in bridging the gap

between the millisecond timescale of spike timing and behavioral timescales. Moreover, our

results suggest that power-law adaptation causes temporal decorrelation of output spikes, a

procedure that, at high signal-to-noise ratio, improves information transfer.

A.4 Acknowledgments

We thank C. C. H. Petersen, B. N. Lundstrom, G. Hennequin and A. Seeholzer for helpful

discussions. We are also grateful to S. Crochet for sharing his in-vivo recordings and to B. N.

Lundstrom for sharing the data that inspired this work. Finally, a particular thanks goes to S.

Naskar for his precious help with the in-vitro recordings.

This project was funded by the Swiss National Science Foundation (SNSF, grant number

200020_132871/1; C. P. and S. M.) and by the European Community’s Seventh Framework

Program (BrainScaleS, grant no. 269921; S. M. and R. N.).

A.5 Author contributions

C.P. and R.N. conceived the study. C.P. designed the experiments, analyzed the data, performed

the modeling and wrote the initial draft. S.M. contributed to data analysis and modeling. W.G.

supervised the project. All the authors worked on the manuscript.

A.6 Online Methods

A.6.1 In-vitro electrophysiological recordings

All animal experiments were performed using published procedures (Lefort et al., 2009; Aver-

mann et al., 2012) in accordance with the rules of the Swiss Federal Veterinary Office. Briefly,

somatosensory brain slices were obtained from P14-18 Wild Type mice (C57BL6/J) and whole-

cell patch-clamp recordings were performed at 35 C from L5 pyramidal neurons. The pipette

solution was comprised of (in mM): 135 K-gluconate, 4 KCl, 4 Mg-ATP, 10 Na2-phosphocreatine,

0.3 Na3-GTP and 10 HEPES (pH 7.3, 290 mOsm). During the experiments, we blocked all

excitatory synaptic transmission by adding CNQX (20 µM) and D-AP5 (50 µM) to the bath

solution. All electrophysiological data were low-pass Bessel filtered at 10 kHz and digitized

at 20 kHz. Measurements were not corrected for the liquid junction potential. Recordings

characterized by instabilities in the action potential shape and/or large drifts in the baseline

firing rate r0 were excluded from the dataset upon visual inspection.
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A.6.2 Current Injections

To characterize single neurons with the standard tools of linear system analysis, we performed

64-s long experiments in which noisy currents modulated by sinusoidal means were delivered

in current-clamp mode. The injected current, denoted Iext, was generated according to the

following equation

Iext(t ) = I0 +∆Imean · sin

(
2π

T
t

)
+∆Inoise ·N (t ) (A.4)

were I0 is a constant offset, ∆Imean controls the amplitude of the sinusoidal mean and ∆Inoise

defines the standard deviation of the noise. The noise N (t ) was generated with an Ornstein-

Uhlenbeck process with zero mean, unitary variance and a temporal correlation of 3 ms.

Each experiment consisted of many injections of currents generated according to Equation

A.4. In the first half of the experiment (training set), we performed six injections using different

periods of modulation T ∈ {0.5,1,2,4,8,16} in seconds. Stimuli were delivered in random order

and, for each of the six injections, a new realization of the noise N (t ) was used. In the second

part of the experiment (test set), one of the two slowest modulations (T = 8 or 16 s) was chosen

and more injections were performed. To assess the reliability of single neurons, the same

realization of noise N (t) was used (frozen-noise). All the injections were performed with

interstimulus intervals of 1 minute.

Before and after each injection, we stimulated the neuron with two additional inputs. The

first was a 2.5-s long current composed of a hyperpolarizing step followed, after 500 ms,

by a suprathreshold step. We used the response to this stimulus to identify the neuronal

type (L5 burst-generating cells were not included in the dataset). The second was a 4-s

long subthreshold noisy current generated with an Ornstein-Uhlenbeck process with zero

mean and temporal correlation of 3 ms. We used this second injection to characterize the

electrode response and perform Active Electrode Compensation (see Data Preprocessing and

Supplementary Text S1).

At the beginning of each experiment, we tuned the input parameters I0, ∆Imean and ∆Inoise to

obtain a firing rate rmean oscillating periodically between 2 and 6 Hz. Typical values obtained

after calibration were comprised in the range 100-450 pA for I0, 15-30 pA for ∆Imean and

50-150 pA for ∆Inoise.

A.6.3 Linear analysis

For each neuron, we estimated the transfer function Ĥ(w) (Figure A.4h-j) using standard

methods already used in previous studies (Lundstrom et al., 2008; Kondgen et al., 2008). Briefly,

the experimental spike train {t̂ j } was built by selecting the times at which the membrane

potential V (t) crossed 0 mV from below. We then obtained the firing rate r (t) by building a

histogram of the spike times. The bin size was chosen such that each period of modulation T

was divided in 30 bins. For each input frequency w = 2π/T , we finally obtained the transfer

function by minimizing the sum of squared errors (SSE) between the sinusoidal function
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rlinear(t ) =C0 +C1 · sin
(
w t +φ)

and the experimental firing rate r (t ), with {C0,C1,φ} being the

only free-parameters. The transfer functions of GLIF-ξ models (Figure A.4h-j) were obtained

with the same method.

A.6.4 Generalized Leaky Integrate-and-Fire model (GLIF-ξ)

The spiking neuron models discussed in this study are generalized leaky integrate-and-fire

models equipped with a spike-triggered mechanism for SFA and with escape rate noise for

stochastic spike emission (Figure A.1). Spikes are produced according to a point process with

conditional firing intensity λ(t) which exponentially depends on the momentary distance

between the membrane potential V (t) and the effective firing threshold VT (t) (Jolivet et al.,

2006):

λ (t ) =λ0 exp

(
V (t )−VT (t )

∆V

)
(A.5)

where λ0 has units of s−1 so that λ(t ) is in Hz and ∆V defines the sharpness of the threshold.

Consequently, the probability of a spike to occur at a time t̂ ∈ [t ; t +∆t ] is

P (t̂ ∈ [t ; t +∆t ]) = 1−exp

(
−

∫ t+∆t

t
λ (s)d s

)
≈λ(t )∆t . (A.6)

In the limit of ∆V → 0, the model becomes deterministic and action potentials are emitted

at the moment when the membrane potential crosses the firing threshold. For finite ∆V and

a membrane potential at threshold (i.e. when V =VT ), λ−1
0 defines the mean latency until a

spike is emitted.

The subthreshold dynamics is modeled as a standard leaky integrator defined by the following

ordinary differential equation for the membrane potential V

CV̇ =−gL (V −EL)+ Iext (A.7)

where the three parameters C , gL and EL determine the passive properties of the membrane,

the dot denotes the temporal derivative and Iext is the injected current.

The dynamics of the effective firing threshold VT (t ) in Equation A.5 is given by

VT (t ) =V ∗
T + ∑

t̂ j<t

ξ(t − t̂ j −Tref) (A.8)

where V ∗
T is a constant, {t̂1, t̂2, t̂3, . . .} are the times at which action potentials have been fired

and ξ(s) is an effective adaptation filter that accounts for all the biophysical events triggered

by the emission of an action potential. According to Equation A.8, each time a spike is

emitted, a threshold movement with stereotypical shape ξ(s) is triggered, after a delay of

absolute refractoriness Tref. Threshold movements induced by different spikes accumulate

and therefore produce SFA, if ξ> 0. For s < 0, we fixed ξ(s) = 0 so that only spikes in the past

can affect the momentary value of the firing threshold. Importantly, the adaptation filter ξ(s)
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also accounts for adaptation processes mediated by spike-triggered currents. Consequently,

VT (t) does not describe the physiological threshold (i.e. the membrane potential at which

action potentials are initiated in-vitro) but has to be interpreted as a phenomenological model

of spike-triggered adaptation. Finally, the functional shape of ξ(s) was not defined a priori but

was obtained by combining the effects of both spike-triggered currents and spike-triggered

movement of the physiological threshold which, in turn, were extracted from the experimental

data (see Fitting GLIF-ξ on in-vitro recordings).

In principle, an absolute refractory period can be included in the adaptation kernel ξ(s).

However, here we prefer to work with an explicit reset after a dead time. Each time a spike is

emitted the membrane potential is reset to Vr and the numerical integration is restarted after a

short period of absolute refractoriness Tref. The GLIF-ξ model only differs from a Generalized

Linear Model (Truccolo et al., 2005; Pillow et al., 2008) due to this explicit reset.

The three GLIF-ξ models discussed in the paper differ in the duration and shape of the

adaptation filter ξ(s). In GLIF-ξL and GLIF-ξS, the functional shape of ξ(s) is the one directly

extracted from intracellular recordings. In these two models the duration of the adaptation

filter is of 22 s and 1 s, respectively. In GLIF-ξPL, the adaptation filer ξ(s) is modeled as a

truncated power law and lasts for 22 s.

A.6.5 Data preprocessing

In-vitro recordings were preprocessed to remove the bias due to the voltage drop across the

recording electrode. For that, we performed Active Electrode Compensation (AEC) (Brette

et al., 2007) following the procedure described in ref. (Badel et al., 2008). The electrode

response was estimated before, during and after each 64-s long injection. Consequently, we

were able to remove experimental drifts due to slow changes in the electrode properties (see

Supplementary Text S1 and Supplementary Figs. S6-S8).

A.6.6 Fitting the GLIF-ξmodel on in-vitro recordings

To fit GLIF-ξ models, the method introduced in ref. (Mensi et al., 2011b) was extended to get a

more accurate estimate of ξ(s). This was done with an additional hidden variable Idrift(t ) able

to absorb small drifts that are likely to occur in long recordings.

To get an accurate estimation of the effective adaptation filter ξ(s), in-vitro recordings were

first fitted with a two-process GLIF model (Supplementary Fig. S1) that explicitly features

both a spike-triggered current η(s) and a spike-triggered movement of the firing threshold γ(s)

(Figure A.2). We then obtained the effective adaptation filer ξ(s) by combining η(s) and γ(s)

according to the following formula

ξ(t ) =
∫ ∞

0
Km(t − s)η(s)d s +γ(t ), (A.9)
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where Km(s) =Θ(s) R
τm

e−
s
τm is the membrane filter,Θ(s) is the Heaviside step function, R = g−1

L

and τm = RC . Importantly, the functional shapes of η(s) and γ(s) were not assumed a priori

but were directly extracted from the experimental data by the following two-step procedure.

In the first step, we extracted the functional shape of η(s), together with all the parameters

that determines the subthreshold dynamics, by fitting V̇ (t) on the experimental voltage

derivative V̇ (data)(t ) = [V (d at a)(t +∆T )−V (d at a)(t )]/∆T , where ∆T = 0.05 ms was given by the

experimental sampling frequency. Since adaptation currents directly affect the membrane

potential dynamics, we fitted V̇ (data) with the following model

CV̇ =−gL (V −EL)+ Iext −
∑

t̂ j<t

η(t − t̂ j −Tref)+ Idrift(t ), (A.10)

where Equation A.7 was extended with a spike-triggered current η(s) and the additional term

Idrift(t ) is an unknown current that averages out at zero over time and captures experimental

drifts within individual injections. To avoid any a priori assumption on the functional shape

of the spike-triggered current, we defined η(s) as linear combination of basis functions

η(s) =
K∑

k=1
αk fk (s), (A.11)

where the coefficients αk control the shape of η(s) and fk (s) = rect
(

s−Tk
∆k

)
are rectangular func-

tions of width ∆k and centered at Tk . For GLIF-ξL, we used K =45 log-spaced non-overlapping

bins with ∆k ranging from 0.5 ms to 4 s. For GLIF-ξS, we set K =30 and ∆k ∈ [0.5,200] ms.

Similarly, we defined Idrift(t ) as a piecewise constant function

Idrift(t ) =
L∑

l=1
βl · rect

(
t −∆(l −0.5)

∆

)
. (A.12)

For both GLIF-ξL and GLIF-ξS, we constrained Idrift(t) to vary slowly in time by choosing a

small number of L = 5 of regularly spaced bins of size ∆= 12.8 s.

As in ref. (Paninski et al., 2005; Mensi et al., 2011b), given the injected current Iext and the

estimate of the membrane potential obtained after electrode compensation V (d at a) as well

as the spike times {t̂ j }, optimal parameters (minimizing the SSE between V̇ (data) and V̇ of

Eq. A.10) were obtained by solving a multilinear regression problem in discrete time. Since

GLIF models do not account for the action potential waveform, all the data points {t |t ∈
[t̂ j −5ms; t̂ j +Tref]} were excluded from the fit. Finally, we fixed the absolute refractory period

at Tref = 2 and obtained the voltage reset by averaging the potential recorded Tref milliseconds

after the spikes Vr = 〈V (data)(t̂ j +Tref)〉 j .

Performing parameters extraction in presence of the term Idrift(t) qualitatively affected the

results and slightly improved the predictive power of the model (Supplementary Fig. S3).

Note, however, that the term Idrift(t ) was not part of the model but was just used in the fitting

procedure to absorb slow changes in the subthreshold potential that could not be explained

by spike-triggered processes.

Given the subthreshold dynamics, the second step consisted in estimating the parameters of
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the firing threshold. Since adaptation due to spike-triggered currents was already captured by

the filter η(s), the effective threshold of Equation A.8 was replaced by

V (bio)
T (t ) =V ∗

T + ∑
t̂ j<t

γ(t − t̂ j −Tref), (A.13)

where V (bio)
T (t ) describes the physiological threshold at which action potentials were initiated

in-vitro. In contrast to ξ(s), γ(s) is not a phenomenological model but describes physiological

changes of the firing threshold triggered by the emission of previous spikes. Similar to η(s), we

defined the moving threshold γ(s) as a linear combination of rectangular basis function

γ(s) =
K∑

k=1
δk fk (s), (A.14)

with fk (s) as in Equation A.11. Finally, the functional shape of γ(s), among with the parameters

V ∗
T and ∆V , were extracted from experimental data by maximizing the log-likelihood of the

observed spike-train (Brillinger, 1988):

logL(θ) = log p({t̂ j }|V ;θ) =∑
t̂ j

logλθ(t̂ j )−
∫
Ω
λθ(s)d s, (A.15)

where θ = {δ1, . . . ,δK ,V ∗
T ,∆V } are the threshold parameters,Ω= {t |t ∉ [t̂ j , t̂ j +Tref]} is a set that

excludes periods of absolute refractoriness and the conditional firing intensity λθ(s) is given

by

λθ(t ) =λ0 exp

(
V (t )−V ∗

T −∑
t̂ j<t γ(t − t̂ j −Tref)

∆V

)
(A.16)

where V (t ) was obtained by integrating Equation A.10 and, without loss of generality, we set

λ0 =∆T −1. With the exponential function in Equation A.16, the log-likelihood to maximize is

a concave function of θ (Paninski, 2004). Consequently, we could perform the fit in discrete

time using standard gradient ascent methods (Truccolo et al., 2005; Pillow et al., 2008; Mensi

et al., 2011b).

With this fitting procedure, an inaccurate estimation of the spike-triggered current η(s) would

affect the measure of the moving threshold γ(s). To make sure that the estimation of γ(s) we

obtained (Figure A.2a, red line) can indeed be attributed to a movement of the physiological

threshold, we also extracted the threshold parameters using the experimental membrane

potential V (data), rather than V (Figure A.2a, gray line).

Power-law fit of the effective adaptation filter ξ(s)

For GLIF-ξPL, the effective adaptation filter ξL(s) extracted from the intracellular recordings

was fitted with a truncated power law ξPL(s) (Eq. A.2). The fit was performed in two steps.

In the first step, we estimated the magnitude αξ and the scaling exponent βξ using a least-
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square linear regression performed in log-log space. For that, data points were logarithmically

resampled and excluded from the fit if ξL(s) < 5 ·10−3 mV or s < 5 ms. In the second step,

we obtained the cutoff Tξ by calculating the intercept between the power-law fitted in the

first step and the average value of the extracted kernel ξL(s) computed on the first 5 ms. A

similar procedure (i.e. least-square linear regression in log-log space with logarithmically

resampled points) was used for the power-law fit of the spike-triggered current η(s) and the

spike-triggered movement of the firing threshold γ(s) shown in Figure 2a.

A.6.7 Performance evaluation

Cross-validation

All the performances reported in this study were evaluated on datasets that have not been

used for parameter extraction. For the predictions reported in Figure 3 and Figure 4a-g, the

model fitted on the first half of the experiment (training set) was used to predict the responses

observed in the second half (test set). Since in certain experiments the average firing rates r0

observed in the test set were slightly different than the ones of the training set, the parameter

V ∗
T was readjusted using the firsts 16 s of all the test set injections and models were validated

on the responses recorded in the remaining 48 s. According to this procedure, models that

do not capture SFA on slow timescales were expected to overestimate the average firing rate

r0. For the predictions reported in Figure 4h-j, a leave-one-out strategy was used. In this case,

models fitted on the responses to five different periods of modulation were used to predict the

sixth one.

Spike-train metrics

To evaluate spike time prediction, we used the similarity measure M∗
d introduced in ref. (Naud

et al., 2011). M∗
d quantifies the similarity between two groups of spike trains generated by two

stochastic processes and corrects the bias caused by the small number of available repetitions.

M∗
d takes values between 0 and 1, where M∗

d = 0 indicates that the model is unable to predict

any of the observed spikes and M∗
d = 1 means that the two groups of spike trains have the same

instantaneous firing rate and are statistically indistinguishable. M∗
d can also be interpreted

as the number of spikes correctly predicted (here with a precision of ±4 ms) divided by an

estimate of the number of reliable spikes.

A.6.8 Estimating the statistical properties of the input current received in-vivo by
neocortical pyramidal neurons

To test the hypothesis that power-law adaptation contributes to efficient coding by whitening

the single neuron output, we measured the power spectrum of the currents ∆I ( f ) received

as input at the soma of a neocortical pyramidal neuron in-vivo. According to Equation A.10,

in absence of spikes, the membrane potential ∆V (t) is a low-pass filtered version of the

157



Appendix A. Temporal whitening by power-law adaptation in neocortical neurons

input current, where the cutoff frequency fc = τ−1
m is defined by the membrane timescale.

Consequently, at all frequencies f ¿ fc , we have that ∆I ( f ) =∆V ( f )/R2, with ∆V ( f ) being

the power spectrum of the subthreshold membrane potential fluctuations and R the input

resistance.

We estimated ∆V ( f ) using 20-second long whole-cell recordings (n = 57) of the synaptically

driven membrane potential dynamics obtained from 7 different L2/3 pyramidal neurons of

behaving mice (data from (Crochet et al., 2011)). All the in-vivo recordings were performed in

primary somatosensory barrel cortex during active whisker sensation. Further details on the

experimental protocol can be found in the original paper (Crochet et al., 2011). Spike-triggered

currents last for more than 20 seconds and can in principle affect ∆V ( f ) even at very low

frequencies. For this reason, only trials with low firing rates r0 < 0.5 Hz were used. However,

including recordings with r0 > 0.5 Hz did not affect the results.

A.6.9 Simulating the population response to in-vivo like inputs

To obtain the results reported in Figure 5, we simulated a population of N = 100 unconnected

GLIF-ξPL neurons in response to 4000-s long currents I (t ) characterized by a power spectrum

∆I ( f ) ∝ f −βI , with βI = 0.67. Model parameters are given in Supplementary Table S1 and

input currents were generated as in ref. (Wang et al., 2003) by numerically solving the following

inverse Fourier transform

I (t ) = I0 +C ·
∫ +∞

−∞

p
∆I ( f )N ( f )e i (2π f t+φ( f ))d f , (A.17)

where N ( f ) is a Gaussian white-noise process, the phases φ( f ) were independently sampled

from a uniform distribution and the scaling factor C was adjusted to fit the power spectrum of

the subthreshold membrane potential fluctuations observed in-vivo (see Figure A.5a). To avoid

unrealistic large power at slow frequencies, we introduced a cutoff ∆I ( f ) = 0, for f < 0.025 Hz.

The highest frequency in the signal was determined by the time step ∆T = 0.5 ms used for

numerical simulations. The mean input I0 was adjusted to obtain a plausible average activity

of A0 = 4 Hz, which was consistent with the firing rates obtained in-vitro.

The population activity A(t ) was constructed by counting the number of spikes falling in bins

of 50 ms and its power spectrum A( f ) was finally computed using time series of 40 s.

A.6.10 Statistics

The number of cells used for the analysis (n =12 or n =14) was limited due to experimental

constraints. Data analysis only started after complete data collection and no data were

excluded. Two-sided t-test was used as standard. Normality was verified using the Anderson-

Darling test. Multiple comparison correction was not appropriate and therefore not used.

158



Contributions

This section summarizes my contribution to each of the preceding chapters. It also presents

my contribution to another publication not presented in this thesis (Naud et al., 2011).

Chapter 1: I wrote the introduction and produced the figures especially for this thesis.

Chapter 2: I developed the fitting procedure and introduced the GIF model along with Chris-

tian Pozzororini and Richard Naud. Experiments were designed by Richard Naud and done

by Michael Avermann. I performed the data analysis, produced all the figures and wrote the

text in collaboration with Richard Naud and Wulfram Gerstner. This chapter is published in

Journal of Neurophysiology under the following name:

"Parameter extraction and classification of three cortical neuron types reveals two distinct

adaptation mechanisms"

S. Mensi, R. Naud, C. Pozzorini, M. Avermann, C. C. Petersen & W. Gerstner, 2012

Journal of neurophysiology, 107(6), 1756-1775.

Chapter 3: I designed the conceptual work with Richard Naud and Wulfram Gerstner, per-

formed all the calculations and the numerical simulations and produced the figures. Richard

Naud wrote most of the text. This chapter is published in NIPS under the name:

"From Stochastic Nonlinear Integrate-and-Fire to Generalized Linear Models"

S. Mensi, R. Naud & W. Gerstner, 2011

Neural Information Processing Systems (NIPS), pp. 1377-1385.

Chapter 4: The original idea of this article has followed from a discussion with Prof. Christof

Koch addressing the feasibility of implementing our fitting procedure in high throughput

framework. Christof Koch conceptualized the study and Wulfram Gerstner supervised the

project. I performed all the data analysis, numerical simulations, calculations and produced

the figures. Christian Pozzorini wrote the main part of the manuscript and performed the

active electrode composition on the experimental recordings. Olivier Hagens performed the

in vitro experiments and Richard Naud helped us with the spike trains similarity measure. We

have submitted this chapter to Neuron:
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"Automated high-throughput parameter extraction for generalized integrate and fire models"

S. Mensi, C. Pozzorini, O. Hagens, R. Naud, C. Koch & W. Gerstner, 2014

Submitted to Neuron.

Chapter 5: Christian Pozzorini and I developed and conceptualized this study under the

supervision of Wulfram Gerstner. This project is a joint work between Christian Pozzorini and

I. We performed the derivation of the results, designed the experimental protocol, analyzed

the in vitro recordings. Then we developed the new model and its fitting procedure together.

Finally we produced the figure and wrote the text. On average Christian Pozzorini is more

involved in the data analysis and the writing and I am more responsible for the modeling parts

and figures production. Olivier Hagens performed all the in vitro experiments. This chapter is

a manuscript under preparation.

Appendix: Since I am not first author on the original article (Pozzorini et al., 2013), this chapter

is presented as an appendix. However I have contributed to this study in a significant way. I

was mainly involved on the data analysis and on the modeling side. The model and the fitting

procedure used in this paper are an extension of the one used in Mensi et al. (2011b), so that it

makes sense to present this work in this thesis. This paper appears in Nature Neuroscience

under the name:

"Temporal whitening by power-law adaptation in neocortical neurons"

C. Pozzorini, R. Naud, S. Mensi & W. Gerstner, 2013

Nature neuroscience, 16(7), 942-948.

Other publication: Naud et al. (2011): I have contributed to the conceptual work of this

studies along with Richard Naud, Felipe Gerhard and Wulfram Gerstner. Richard Naud wrote

the manuscript, performed simulations and produced the figures. Felipe Gerhard optimized

the GLM and produced one figure. This article is published in Neural computations:

"Improved similarity measures for small sets of spike trains"

R. Naud, F. Gerhard, S. Mensi & W. Gerstner, 2011

Neural computation, 23(12), 3016-3069.
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