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Abstract

Function computation of arbitrarily correlated discreteiges over Gaussian networks with orthogonal com-
ponents is studied. Two classes of functions are considénedarithmetic sum function and the type function.
The arithmetic sum function in this paper is defined as a setufiple weighted arithmetic sums, which includes
averaging of the sources and estimating each of the souscgseaial cases. The type or frequency histogram function
counts the number of occurrences of each argument, whidthsymeany important statistics such as mean, variance,
maximum, minimum, median, and so on. The proposed computatiding first abstracts Gaussian networks into
the corresponding modulo sum multiple-access channelsested lattice codes and linear network coding and then
computes the desired function by using linear Slepian—\&tlfrce coding. For orthogonal Gaussian networks (with
no broadcast and multiple-access components), the cotigputzapacity is characterized for a class of networks.
For Gaussian networks with multiple-access componentsridbroadcast), an approximate computation capacity
is characterized for a class of networks.

Index Terms

Distributed averaging, function computation, joint sas#channel coding, lattice codes, linear source coding,
network coding, sensor networks.

. INTRODUCTION

In wireless sensor networks, the goal of communicationggcily for a fusion center to learnfanctionof the
sensor observations, rather than the raw observationsstiees. Examples include distributed averaging, alarm
detection, environmental monitoring, and so on. The funelatad paradigm of digital communication suggests that
each sensor should independently compress its obsersdlising sophisticated compression techniques, taking
into account possible correlations in the observations el ag the fact that the fusion center is only interested
in a function of the observations), whereupon these corspresersions are communicated reliably (at negligible
error probability) to the fusion center. For point-to-ppgommunication, this architecture has been shown to be
optimal by Shannon [1], a result that is sometimes refemeabstthesource—channel separation theorefor general
networked communication, however, it is well known thastigital communication paradigm leads to suboptimal
performance, see e.d.l[2]. Furthermore, in terms of the murobnodes in the network, the suboptimality can be
dramatic [3]. Hence, for the communication problem wheresadn center needs to learn a function of the sensor
observations, it is beneficial to considemt source—channel coding.

Communication strategies for the problem of function cotapon over networks have been actively studied
in the literature, see e.d.1[4]4{8] and the reference timerEbr one class of strategies of function computation
over wireless networks, the essence is to exploit the sopéign property of wireless channels to more efficiently
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Fig. 1. Type computation over the Gaussian MAC.

compute the desired function. Roughly speaking, previoukn this area can be categorized into three classes: the
modulop sum computation over (noisy) modufosum networks[[4]+[6],[18],[[9], the modulp-sum computation
over Gaussian networks assuming an arbitrarily lardé], [8], and the sum of Gaussian sources over Gaussian
networks under the mean squared error distortion [8], [Alllthese works rely on joint source—channel coding
in order to exploit thesimilarity between sum-type functions and the supermosproperty of wireless channels
We can easily find examples that this joint source—channgihgoapproach significantly improves an achievable
computation rate or decrease an achievable distortion amedpto the source—channel separation approach.

In spite of the previous work, however, it is still uncleamhto efficiently compute fundamental sample statistics
such as sample mean, variance, maximum, minimum, and soesrGaussian networks. As mentioned before, many
sensor applications are interested in the sample meanndtarice, average temperature from several temperature
readings. For alarm detection, a relevant function wille maximum or minimum value among the measurements.
One naive approach is to estimate each of the measuremerasasdy, which is universal in the sense that any
function of the measurements can be deduced accordingfariunately, it turns out that this naive approach is
quite suboptimal in terms of computation rate for most fior of interest. Another extreme approach is to tackle
each function case by case, but we may want to avoid this apprtoo since there exist numerous important
functions to be considered. Therefore, it would be nice tmeap with a general coding scheme that is able to
compute a broad class of functions including the above fonesdal functions but at the same time provide a better
computation rate than the separation-based computation.

To achieve this goal, we focus on computithg type or frequency histogram functionthis paper. For a better
understanding, consider the type computation over the skausnultiple-access channel (MAC) depicted in Eig. 1.
The K sensors observe their discrete sourgesSs,--- , Sk € {0,1,--- ,p—1}, which can be arbitrarily correlated
to each other, and the fusion center wishes to reliably caenjsi type, represented as

K K K
(21&_0,21&_1,--- 21) 7 <1>
=1 =1 =1

where1 ., denotes the indicator function of an event. As pointed oJiLlj, computing the type function is very
powerful since it yields many important statistics such asmgle mean, maximum, minimum, variance, median,
mode, and so on. Basicallgny symmetric function whose function value is invarianthweéspect to permutations of
its arguments is computable from the type functids seen in[{lL), the type function consists of multiple anigtic
sums of indicator functions, which can be regarded as bisanyces. Therefore, a fundamental question for the type
computation is how to exploit the similarity between thefarietic sum of discrete sources and the superposition
property of real-valued transmit signals corrupted by &zinoise.

In this paper, we consider the computation of a more genéaas of functions over a general Gaussian network
assuming some orthogonal components, which includes thiglgm in Fig.[1 as a special case. Two classes of
desired functions are considered: the arithmetic sum fomand the type function. The former in this paper is
defined as a set of multiple weighted arithmetic sums, whithudes averaging of the sources and estimating
each of the sources as special cases. The latter is couhtingumber of occurrences of each argument among



the sources, sekl(1). Regarding the channel model, we eorisid types of Gaussian channels. The first model is
orthogonal Gaussian networks in which there is no broadmadtmultiple-access component, which is equivalent
to bit-pipe wired networks/ [12]-[14]. The second model isu€sian networks with multiple-access components
(and no broadcast component), which includes Gaussian MAGge generally Gaussian tree networks as special
cases!([8],[[15].

A. Contribution

The main contributions of the paper is as follows.

« For orthogonal Gaussian single-hop networks, we proposenargl computation code which includes both
Slepian—Wolf source coding and Korner—Marton linear sewoding for computing. An example is presented
to demonstrate the benefit of introducing Kérner—Martoedir source coding for computing when the sources
are correlated.

« We extend Korner—Marton linear source coding for commutin general orthogonal Gaussian networks
incorporated with linear network coding at each relay nddfe. characterize the computation capacity for
a class of networks. The result demonstrates that, everowitmultiple-access component, Korner—Marton
linear source coding for computing is still beneficial for @dd class of relay networks.

« For Gaussian MACs, we propose a computation code that fisttaaits the original Gaussian MAC into the
corresponding modulo sum channel via lattice codes and appties Korner—Marton linear source coding
for computing on top of the transformed channel. We show thatproposed computation code provides a
much better computation rate than the separation-basegutation, especially when the number of sources
becomes large.

« We extend the proposed computation code for Gaussian MAG@gneral Gaussian networks with multiple-
access components. For this, we establish a general travatfon method from Gaussian networks with
multiple-access components into the corresponding maglito channels. On top of this transformed network,
we apply the computation code proposed for Gaussian MACs.aFdass of networks, we characterize an
approximate computation capacity that provides a boundgdfgpom computation capacity, independent of
power P.

B. Related Work

In his seminal work[[11], Shannon showed that separation afceand channel coding is optimal for discrete
memoryless point-to-point channels. However, sourceatblaseparation is not optimal for general networks, for
instance, the problems of sending correlated sources ov&€IM16], [17] or broadcast channels (BCS§) [18],
[19]. That is, joint source—channel coding is essentiadlguired for sending correlated sources over networks.
Furthermore, it has been proved that an uncoded transmissiteme, a simple way of joint source-channel coding,
is optimal or near-optimal for estimating a source from saleorrelated observations over Gaussian netwaorks [3],
[20].

Function computation has been actively studied in the socoding perspective [4], [5], [21]-[26]. In particular,
computing the modulo-two sum has been consideredlin [4] utidedistributed source coding framework, which
captures the potential of linear source coding [27] for fiorccomputation. A more general achievability has been
proposed for the modulo-two sum computation [in [5] and foremegal discrete function in_[25], [26]. In_[22],
computing a general function with the help of side informathas been studied. Function computation has been
also considered in the context of cascade source codinga@3]jinteractive source coding |24].

The modulo sum or more generally linear function computatias been recently extended to relay networks
under various channel models such as bit-pipe wired nesv@&]-[30], linear finite field networks [8], Gaussian
networks assuming no broadcast compongnt [8] by incoripgrdinear network codingl [12]=[14]131]) [32] at
each relay node. Function multicasting has been studiedirfear finite field interference channels [9] and for
undirected graphs _[33]/_[34]. A more general classes of tfanccomputation over bit-pipe wired networks has
been considered in_[28], [35].

Scaling laws on function computation has been studied basethe collision model[[11],[[36], in which
concurrent transmission from multiple senders is assurnechtise a collision and, therefore, is not allowable.
In particular, it has been shown that the orderﬁglff scaling law is achievable as the number of sour&es
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Fig. 2. Computation over a network in which notieobserves the length-sources; = [s;[1], - - - , s:[k]]” and noded wishes to compute
the desired functior{ f(s[4])}f—,, wheres[j] = [s1[5], - , sk [j]]".

increases for the type or frequency histogram computati@n oollocated collision networks [11], [36]. Recently,
it has been shown that non-vanishing scaling law is achleviao the type-threshold function computation over
collocated Gaussian network even Estends to infinity [37].

The potential of linear source coding has been also captoyeldazer and Gastpar inl[6], applying the linear
source coding in 4] for the function computation over MA@s efficient way of computing the modulo sum or the
sum of Gaussian sources over Gaussian MACs is to applydattdes|[6],/[10], see alsb [38]-[40] for lattice code
construction. Lattice-based network computation has lveeently extended to multiple receivers called compute-
and-forward|[[7] in which each relay computes or decodealimembination of the sources. In [8], a similar lattice
code construction has been used for computing a lineariumaiver linear finite field networks and the sum of
Gaussian sources over Gaussian networks.

[I. PROBLEM FORMULATION

Throughout the paper, we dendte n] := {1,2,--- ,n}, C(z) := 3 log(1+x), andC*(z) := max {1 log(z),0}.
For z; € Fp, @;_, z; denotes the modulp-sum of {zi}ic[1:m), Wherep is assumed to be a prime number. Let
1(.y denote the indicator function of an event. For random vég@H and B, H (A) denotes the entropy of and
I(A; B) denotes the mutual information betwedn

A. Network Model

Consider a network represented by a directed gi@ph (V, E) depicted in Fig[2. Denote the set of incoming
and outgoing nodes at nodec V by I';,(v) = {u € V : (u,v) € E} andT'yy,(v) = {u € V : (v,u) € E},
respectively. Denote théh senderj € [1: K], by t; € V and suppose that it observes a lengtHiscrete source
vectors; = [s;[1],--- ,s;[k]]T € [0: p— 1]*. Denote the set of{ sources at timg by s[j] = [s1]j], - ,sk[j]?-

The receiverd € V' wishes to compute a symbol-by-symbol functionfofsources, i.e.f(s[j]) for all j € [1 : k].
We assume that ¢ {t;};c1.x) andG contains a directed path from all nodeslinto the receiver. Without loss
of generality, we assume that the nodes with no incoming edgencluded in{t;};c(.x -

We mainly consider two desired functions: the arithmetimsuinction and the type or frequency histogram
function, whose formal definitions are given below.

Definition 1 (Arithmetic Sum Function)ets = [s1,--- ,sx|? € [0 : p— 1]¥. For the arithmetic sum computa-
tion, the desired function is given bfi(s) = {3°X | ays;}L,, wherea;; € [0 : p—1]. Hencef(s) € [0 : (p—1)2K]*
for the arithmetic sum function.

Definition 2 (Type Function)iets = [s1,--- ,sx]” € [0:p—1]¥ andby(s) = 3K 1, for 1 € [0:p—1].

For the type computation, the desired function is givenfl®) = {bo(s), - ,b,—1(s)}. Hencef(s) € [0 : K]P for
the type function.

Remark 1 (Arithmetic Sum and Typé)he arithmetic sum function in this paper is defined as mleltipeighted
arithmetic sums, which includes averaging of the sourceksemtimating each of the sources as special cases. As
shown in Definitior 2, the type function can be also represgats multiple arithmetic sums. Therefore, the essence



of the type computation is how to efficiently compute arlityacorrelated multiple arithmetic sums over Gaussian
networks.

Remark 2 (Symmetric Function Computatio®s pointed out by [[111], computing the type function is very
powerful since it yields many important statistics such asmgle mean, maximum, minimum, variance, median,
mode, and so on. Basically, any symmetric function whosetfan value is invariant with respect to permutations

of its arguments is computable from the type function. TBatsymmetric functions satisfy(si, s, - ,sx) =
[ (8618055 » 80, ) fOr any permutation sefo; };c(1.x) and, therefore, they are deterministic functions of theetyp
function.

We assume arbitrarily correlated stationary and ergodioccgs. The following definition formally states the
underlying probability distribution and the corresporgliandom variables regarding the setffsources.

Definition 3 (Sources)Let S = [Sy,---,Sk]7 € [0 : p — 1]¥ be a random vector associated with a joint
probability mass functiompg(-). At each timej € [1 : k], s[j] is assumed to be independently drawn frpgt-).

As a special case in Definitidd 3, we will consider the follogridoubly symmetric binary sources throughout
the paper.

Definition 4 (Doubly Symmetric Binary Sourceg®ssumeK = 2. Denote the doubly symmetric binary sources
with the associated probability by DSBS¢). Let Bern(a) be the Bernoulli distribution with the probability.
For DSBS(), S; follows Bern(1/2) and Sy = S;1 & Z, whereZ follows Bern(«) and is independent of;.

Let f(S) denote the desired function induced by the random source®w&c The following two definitions
define random variables associated with the desired fumctinich will be used throughout the paper.

Definition 5 (Arithmetic Sum Function Induced 8y. DefineU; = Zfilahsi for I € [1 : L], which are the
random variables associated with the arithmetic sum fanctThenf(S) = (Uy,--- ,Uy) for the arithmetic sum
function.

Definition 6 (Type Function Induced I8): Define B; = Zfil 1g,-; for [ € [0 : p — 1], which are the random
variables associated with the type function. Th&8) = (By,--- , B,—1) for the type function.

Remark 3 (Worst Case Source®yote that H(f(S)) is upper bounded bynin{K log p, Llog(p?’K)} for the
arithmetic sum function anchin{ K log p, plog(K + 1)} for the type function. For both caseH,(f(S)) scales as
the order oflog K as the number of sourcés increases.

Associated withG = (V, E), we consider two classes of Gaussian channels, which ameafigr stated in the
following two definitions.

Definition 7 (Orthogonal Gaussian Networkdjor this case, we assume Gaussian point-to-point channtds w
no broadcast and no multiple-access for eachy) € E. That is, the length: time-extended input—output is given
by

Yuow = hu,vxu,v + Zy o, (2)

where the elements af, , are independently drawn froi((0, 1). Each transmit signal should satisfy|x,,.[|> < P
for all (u,v) € E. For notational simplicity, we will use the subscrip},, to denote orthogonal Gaussian networks.
Definition 8 (Gaussian Networks With Multiple-AccesBjr this case, we assume Gaussian multiple-access chan-
nels with no broadcast from € I';,,(v) to eachv € V. That is, the length time-extended input—output is given
by
Yu = Z hu,vxu,v + Zy, (3)
u€l;, (v)

where the elements ef, are independently drawn from’(0, 1). Each transmit signal should satisfy|x,.||> < P
for all (u,v) € E. For notational simplicity, we will use the subscriplm.. to denote Gaussian networks with
multiple-access.

Remark 4 (Bit-Pipe Wired NetworksYhe considered orthogonal Gaussian network is almost algmi/ to a
bit-pipe wired network in the sense that it can be easily edied into a bit-pipe wired network by using capacity-
achieving point-to-point channel codes. Neverthelessyillestate this paper based on Gaussian networks assuming
orthogonal components defined in Definitidds 7 Ahd 8.

Remark 5 (Single-Hop Networkslror notational simplicity, we will use the following simfieéd notation for the
single-hop case. For orthogonal Gaussian single-hop mke$ware rewrite the length-time-extended input—output
as

yi = hix; + 2z, (4)
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wherei € [1 : K|. For Gaussian single-hop networks with multiple-acces&aussian MACs, we rewrite the
lengthy time-extended input—output as

K
y = Z hix; + z. (5)
i=1

B. Computation Capacity

Based on the above network model, the lengtblock code for orthogonal Gaussian networks is defined as
follows, wherey® denotesy[1], - - , y[a]
t—1

« (Sender Encoding) Théth sendert; transmitsz,”, = v{", (s;, {y'!
w e Fout(ti)-

« (Relay Encoding) Node ¢ {t;};cq1.x)U{d} transmitsz'"), = o ({y' Yuer,. ) for ¢ € [1 : n] to node
w € Fout('U)- R

« (Decoding) The received estimatesf(s[j]) = ¢ ({yu,a}uer., (@) for j € [1 : &].

buer,, 1)) for t € [1 : n] to node

Similarly, we can define the lengtihblock code for Gaussian networks with multiple-accesscipally, x(?w =
D (5:3171)s 2l = ol (v571) for v ¢ {ti}iepaq U{d}, and f(s[]) = 9 (va)-
The probability of error is defined bﬁ") = Pr [Ule f(s[j]) # f(s[j])]. We then define the computation

capacity as the follow.
Definition 9 (Computation Capacity)The computation rate? := % is said to be achievable if there exists a

sequence of length-block codes such thd{’e(") converges to zero asincreases. The computation capacity is the
maximum over all achievable computation rates.
From Definition[®, the computation rate is the number of bdyiacomputable functions per channel use.

I1l. PRELIMINARIES

Before stating our main results, we first introduce previmask that is closely related to our work in Sections
[T=Alto [M-C.] For comparison, we introduce a cut-set upgund in Section III-ID and a separation-based lower
bound in Section II-E.

A. Distributed Source Coding

Figure[3 illustrates the two-user distributed source cgdaor function computation. Two senders respectively
observe the lengthk-sourcess; ands, and deliver some information for function computing via segesw; <
[1: 28] andw, € [1: 2872]. The receiver wishes to compute the desired funcfifits[j]}%_, based on(w;, w).
The optimal distributed lossless source coding f¢s[j]) = s[j] in Fig.[3 has been solved by Slepian and Wolf
[41]. For the two-user case, the Slepian—Wolf rate regiothésset of all rate pair§R;, Rs) satisfying

Ry > H(51|52),
Ry > H(SQ’Sl),
Ri+ Ry > H(Sl,SQ). (6)

Obviously, the above rate region is also an achievable egfiem for any desired function. It was proved by Csiszar
in [27] that the same Slepian—Wolf rate region is achievéyldinear source coding.
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The potential of the linear source coding has been first cagty Korner and Marton in_[4] in the context of the
modulo-two sum computation. Consider binary field soutges F§ ands, € F5 and{f(s[j]) = s1[j]® sa[j]}5_;.
It was proved in([4] that the set of all rate paitB;, Rs) satisfying

Ry > H(S1 & S2),
Ry > H(S1 @ S2) ()

is achievable by linear source coding. A simple outer bouraivs a necessary condition on an achievélle R,)
as

Ry > H(51|52),
Ry > H(Sl‘SQ),
Ry + Ry > H(S, ® S2). (8)

Example 1 (Modulo-Two Sum of DSBH( For DSBS{), the Kdrner—Marton rate regiof](7) shows that any
rate pair satisfyingR; > Hs(a) and Ry > Hs(«) is achievable, which coincides with the outer boundin (8).

Unfortunately, the optimal rate region for the modulo-tworscomputation of arbitrarily correlated binary sources
is unknown. The outer bound ial(8) does not coincide with thevex hull of the union of the Slepian-Wolf rate
region [6) and the Kdrner—Marton rate regidnh (7). A moreegahachievability containing both the Slepian—-Wolf
rate region[(6) and the Kdrner—Marton rate regioh (7) hanh®oposed by Ahlswede and Hanlin [5, Section VI].
Let W7 and W5 be auxiliary random variables that form a Markov chélih — S; — So — W5. Ahlswede and Han
showed that the set of all rate paiiB;, R2) satisfying

Ry > I(Wl;Sl‘Wg) + H(Sl & SQ’Wl,WQ),
Ry > I(Wa; So|Wh) + H(S1 @ S| Wi, Wa),
Ri + Ry 2[(Wl,WQ;Sl,SQ)—i-QH(Sl@SQ’Wl,WQ) (9)

is achievable. An example that this new rate region strigtilarges the convex hull of the union of the Slepian—Wolf
rate region[(6) and the Korner—Marton rate regian (7) was g@rovided in[[5, Example 4].

B. Cascade Source Coding

Figure[4 illustrates the two-user cascade source codingufation computation. The first sender observes the
length#% sources; and delivers some information for function computing viassegew; < [1 : 28], The second
sender observegs, w;) and again delivers some information ¢f,,w;) for function computing via message
wy € [1: 28], The receiver wishes to compute the desired funcfits[j])}_, based onws.

The cascade source coding for function computation has $teered in [23] in the context of lossy computation.
For the lossless case depicted in Hif. 4, the computationoitgpfor a general function has been shown to be
represented by the conditional graph entrapy [22].

Again, consider arbitrarily correlated binary field soweg € F5 ands, € F5 and the modulo-two sum
computation of these two sources. In this case, the optiatalregion is given by the set of &lR;, R,) satisfying

Ry > H(Sl‘SQ),
Ry > H(S @ Sa), (10)

which can be attained from a simple application of SlepiaoK\8burce coding.
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C. Modulop Sum Computation Over MAC

The potential of linear source coding has been also capthyetNazer and Gastpar in the context of the
computation over MAC[[6]. Figuré]5 illustrates the modwlaum computation over the deterministic modulo-
p sum channel and a more general case can be found in [6, Thégrérhe ith sender observes € F’; and the
receiver wishes to compute the modglgum function, i.e.f(s[j]) = {®X, aisiljl} . ai; € Fp. The lengthn
time-extended input—output of the modylosum channel is given by = @fil xi, Wherex; € F; andp is
assumed to be a prime number.

To compress multiple modulpsum functions, which are in general correlated to each pit@zer and Gastpar
applied linear Slepian—-Wolf source coding as introducethanfollowing lemma.

Lemma 1 (Csisw [27]): Let (vy,---,vy) be the set of length- sources, independently drawn from some
joint probability mass functiorpy; ... v, (-). For any point in the Slepian-Wolf rate region, there exisitines
H,, --- ,Hy of sizen; x k, respectively, taking values over a finite field with asstradecoding function that can
be used to compress the sources in a distributed fashionBwik;, - -- ,vr) # (v1,--- ,vz)] — 0 ask increases.

Theorem 1 (Nazer—Gastpar![6])Consider the modulg-sum computation over the modutosum channel de-
picted in Fig[5. LetV; = @fil a;;S;. Then the computation capacity is given by

log p
R AV V) (11)
For a better understanding, we briefly explain the achidialiere. From lemmall, we s@#l,--- ,H;, of size
ny X k, respectively, which corresponds to some point in the 8kepiVvolf rate region with sum raté (V3,--- , V7).
The ith sender transmits
X; = [aqusi, e ,(LLZ'HLSZ']T (12)

for i € [1: K], where we set = Y, n;. Then [12) yields

K K K T
y=Pxi = [Hl (@ alisi> oo, Hy (@ aLﬁi)] - (13)
i=1 i=1 i=1

Hence, from Lemmall, the receiver can FeCO{/@filausi}zep;L] with an arbitrarily small probability of error
asn increases if

L
(an) logp =nlogp > kH(V1,---,VL). (14)
1=1

n log

Therefore, setting = H(Vip‘&)' which satisfies[(14), provides that

log p
i H(WV1, -+, VL) (15)
is achievable.
Nazer and Gastpar recently proposed compute-and-forivhravhich provides a general framework for comput-
ing modulop sum functions at multiple receivers over Gaussian chanwdriefly describe compute-and-forward

here with respect to a single receiver depicted in [Hig. 6. iflheender observes IE"; and the receiver wishes to
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Fig. 6. Modulop sum computation over the Gaussian MAC.

compute the modulg-sum functionf (s[j]) = @fil a;s;jl, a; € F,. Herep is assumed to be a prime number. The
length+ time-extended input—output is given y= Zfil h;x; + z, where the elements of are independently
drawn fromA/(0,1) and 1 ||x;[|? < P for all i € [1 : K].

Theorem 2 (Nazer—Gastpar![7])Consider the modulp-sum computation over the Gaussian MAC depicted in
Fig.[8. Leta = [ay,--- ,ax]” andh = [hy,--- , hi]". Then the receiver can decodg(s[j])};_; = DE | asi
reliably for n sufficiently large if

T2 \ L
R-teoc <(uau2 - ) ) (log )" 16)

andp is an increasing function ot such that% — 0 asn — oo.

Example 2 (Gaussian MAC Whén = a; = 1): Suppose that; = a; = 1 for all i € [1 : K]. For this case,
Theoreni® yields that the receiver can dec@®g ; s; reliably forn sufficiently large ifR < C* (% + P) (logp)~*
andp is an increasing function af satisfying thatp — co asn — oc.

D. Cut-Set Upper Bound

To describe a cut-set upper bound on the computation cgpaeit first introduce the notation. For a subset
Y. C[1: K], defineG(X) = (V(X), E(X)) as the subgraph @ consisting of the nodes having a direct path from
at least one of the senders {m,; },cx. Let A(X) denote the set of all cuts dividing all of the senders{if};cx
from the receiver! on G(X). Then the minimum-cut value for general discrete memosyfetworks over the cuts
in A(X) on G(X) is given by

ax min I(Xq; Yq-

p({zs tovev(z)) QEA(R) & ) ( )

If there exists an input cost constraipt{z, },cv (x)) should be set to satisfy the corresponding input cost cainstr
For orthogonal Gaussian networks, the minimum-cut valugivien by

Cotp(X) :== min C(h2,P). 18
ptp( ) 2eA®) (u,v)EE(X%;LGQ,UGQC ( 7 ) ( )

Similarly, for Gaussian networks with multiple-access thinimum-cut value is upper bounded by

_ ) 2
Cmsc(¥) := min > C (( Z’ueﬂmm) P) . (19)

veNe w€l;, (v)

Since the desired function is locally computable][11], foy& C [1 : K], f(s[j]) can be represented as
f'{silil}ies) + f"({sili]}ien.x)\x2)- Hence, by assuming that a genie provides}ci.x)\x t0 the receiver,
computing{f/({si[j]},-ez)}g?:1 at the receiver is enough to recover the desired funcfipfs[;]) 5?:1. Therefore
assuming full cooperation between the nodef iand between the nodesf, from the source—channel separation
theorem[1], Cons(T)

. ptp
Hotp = SClK] H(f(S){Siticp:xns)

(20)
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for orthogonal Gaussian networks. In the same manner, we hav

R < min Crmac (%)
™= ncik] H(f(S){Sitien k)

for Gaussian networks with multiple-access.

(21)

E. Separation-Based Computation

We generalize the notion of the separation-based compat&iroduced in[[B6]. We refer td_[6, Section Il1]
for the formal definition of the separation-based compatatRoughly speaking, the separation-based computation
means that a communication network is first transformedamntend-to-end bit-pipe channel by channel coding and
then separately applied source coding for computing theatbfunction over the transformed end-to-end bit-pipe
channel.

Let R denote the distributed compression rate region for comguif (s[/]) ;?:1 (see [6, Definition 8]) and
C,tp denote the capacity region for orthogonal Gaussian nesyavkich can be represented as the set of all rate
tuples such that

D R < Cop(%) forall S C [1: K. (22)
€Y

Then a computation ratRéstf)p) is achievable by separation if

Rf N Cptp 7é wa (23)
whereCy,,, = {(%, e %) (Ry,--- ,Rg) € Cptp}.
Similarly, we define the achievable computation rdtg,. for Gaussian networks with multiple-access by
separation. SpecmcaII)Rr(ﬁi'é is achievable by separation if
RN Cmac 7é wv (24)
whereC/, .. = %, e ,% :(R1, - ,RK) € Cmac ¢ and Cy,,c denotes the capacity region for Gaussian
networks with multiple-access, which is upper bounded by
D Ri < Crmac(E) for all € [1: K. (25)
IS

Example 3 (1.I.D. Sources and Symmetric MAGuppose that the sources are i.i.d., ifg(:) = Hfilpsi(')
andpg.(-) = ps(-). Then from [6, Lemma 1] (also seel [6, Example T is given by all rate tuples such that
R; > H(S) for both the arithmetic sum function and the type functioompatation. Therefore, for symmetric
MAC, see the definition in_ |6, Definition 11], an achievablemquutation rate by separation is upper bounded by

gl < Conn([L: K)

PP = KH(S) (26)
for orthogonal Gaussian single-hop networks and
(sep) < émac([l : K])

for Gaussian MACs.

IV. MAIN RESULTS

In this section, we state our main results. For a better wtaleding, we first provide a high level description of
the proposed approach based on the single arithmetic sumputation over the Gaussian MAC in Section TV-A.
We then state our results for orthogonal Gaussian netwaerétsGmussian networks with multiple-access in Sections
IV-Bland[V-C, respectively.
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A. Main ldea

We begin this section by explaining the essence of how to ctenp single arithmetic sum, i.e{f(s[j]) =
Zfil Si[j]}f:p over the Gaussian MAC with equal channel gains. For natatisimplicity, we rewrite the length-
n time-extended input—output as = Zfil x; + z. We first apply compute-and-forward in![7] to transform the
length# Gaussian MAC into the following length: modulo¢ sum channel:

K
y = Px. (28)
i=1

wherex, € F,". Hereq is set to be the largest prime number amd¢hgn logn] and

K

Specifically, from Theorer] 2 (also see Exarigle 2), by trgaginin (28) as the desired function, we can construct
the above modul@-sum channel.

Now consider the computation over the transformed mogusam channel. The key observation is that utilizing
a small portion of input finite field elements and then computihe corresponding modulpsum can attain the
desired arithmetic sum. Furthermore, linear source codingemmall (for this casel. = 1) can compensate
the inefficiency of utilizing only a small portion of input fte field elements by compressing the corresponding
modulog sum in a distributed manner.

Let g(-) denote the mapping from a subset of integiers ¢ — 1] to the corresponding finite fieldl,. Define
sij] = g(sil4]) and U’ = @X, ¢(S;). Suppose that théth sender observeg = [s}[1],-- - s}[k]]”, which can
be obtained froms;, and the receiver wishes to compute= X , s’. Then, from Theorerfil1, the receiver can

i=1"1

computeu’ reliably for m sufficiently large (equivalently, fon sufficiently large) if

m =nC*t <i + P) (log q)~t. (29)

k log q

- < )
m — H(U") (30)
Hence by setting: = "I}E‘[’Jg)q the computation rate
r="
n
_ mlogq
- nH(U)
o (£+P) (31)
H(U)

is achievable for the desired functiarl, where the last equality follows fromh_(29). Since there &xig > 0 such
thatq > (p — 1)2K for all n > ng (¢ is the largest prime number amofig: nlogn]), we have

K K r
u/: [g (Zsz[1]> [ 79(281[1{7])] )
12:1 i=1
U (Z S,-> (32)
=1

for n sufficiently large. Sinceg(-) has one-to-one correspondence, the receiver can compaitarithmetic sum
S°K s from u’. Finally, from the fact that? (¢(>>%, S;)) = H(3X, S;), the achievable computation rate for
the desired functiod X | s; is given by
R Ct(£+P)
H(3 2, 8:)
Example 4 (Arithmetic Sum of 1.I.D. Binary SourceSuppose tha$;’s are independently and uniformly drawn
from {0,1} and the receiver wishes to computé(s[j]) = Zfil silJ] 5‘?:1. LetU = Zfil S;. Then, from [(3B),

(33)
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Fig. 7. Computation onf{zl S; for the K-user Gaussian MAC with equal channel gains wiies- 15 dB.

R = % is achievable, whergy(z) = (%)27%. On the other hand, an achievable computation rate by

separation is upper bounded 69@ from (217). Lastly, the cut-set upper bound in](21) shows #raachievable
computation rate is upper bounded 6&,&@. Figure[T plots these three rates with respecftoSince H(U)
scales as the order dfg K as K increases[[42, Lemma 2.1], our computation-based ratecdees as the order
of log K, while the separation-based rate decreases almost {inedh an increasing’. Therefore, the rate gap
between the computation-based and separation-basedaappsbecomes significant Asincreases.

B. Orthogonal Gaussian Networks

We first state our main result for orthogonal Gaussian sihgjenetworks and then extend it to general orthogonal
Gaussian networks. We also demonstrate a class of netwmaksithieves the computation capacity.

1) Single-hop networksConsider orthogonal Gaussian single-hop networks in wtiieHengthr time-extended
input—output is given by[{4). For orthogonal Gaussian netaowe abstract each Gaussian channel into the corre-
sponding error-free bit-pipe channel using point-to-paiapacity-achieving codes. Then the problem is equivalent
to the distributed source coding problem. [n [5, Section, \d]general achievability containing the Slepian—Wolf
rate region and the Koérner—Marton rate region has beenogegpfor the modulo-two sum computation of binary
sources, which has been introduced in Sedtion]II-A. Thar@pdcheme in[[5, Section VI] can be straightforwardly
generalized to more than two users and general finite fieldcesuand more importantly, to the arithmetic sum
and type computation.

Theorem 3 (Orthogonal Gaussian Single-Hop Network3)nsider the orthogonal Gaussian single-hop network.
Let W;, i € [1 : K], be an auxiliary random variable that forms a Markov chidin— S; — {S;, W;} c:x)\{i}-
Then any computation rate satisfying

o5 C(RZP

RS ZZEZ ( (3 ) (34)
I({Wities; SHWibiep:x\s) + [ZIH (f(S)[Wh, -+, Wk)
for all ¥ C [1 : K] is achievable, where¢f(S) = (Uy,--- ,Ur) for the arithmetic sum function and(S) =
(By,- -+ ,Bp—1) for the type function.
Proof: We refer to Appendix | for the proof. |
Notice that if we setV; = () for all i € [1 : K], then Theorem]3 provides

oy C(RZP

R < Ziex D) (35)

— [XIH(f(S))
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Fig. 8. Computation of5; + S, for the two-user orthogonal Gaussian single-hop netwotk wgual channel gains wheh = 15 dB.

for all ¥ C [1 : K], which corresponds to the achievable computation rate fro@ar source coding for computing.
On the other hand, if we sét; = S; for all i € [1 : K|, then Theorem]3 provides

Sy C(H2P)
B TTE AW T w— (36)

for all ¥ C [1 : K], which corresponds to the achievable computation rate pgraéon.

Unlike the computation over MAC, for example, see SecliopAlMthe following example shows that without
multiple-access component linear source coding cannotowepthe computation rate achievable by separation if
the sources are independent.

Example 5 (Independent Source§uppose that the sources are independent to each othex (:¢ = Hfil ps, ().

Then [36) yieldsk < % For the arithmetic sum and type functiod$(f(S)) > H(S;) foralli € [1: K]
when the sources are ?EnE(jependent. Hence, the separased-bamputation always outperforms the computation
based on linear source coding for independent sources.

When the sources are correlated, however, linear sourdegsduseful even without multiple-access component.
For DSBS), for example, the computation based on linear source godutperforms the separation-based
computation wheny is small, which can be verified in the following example.

Example 6 (Arithmetic Sum of DSB$Y Suppose thall = 2, h; = hy = 1, and the sources follows DSBH(
The receiver wishes to compufé (s[j]) = s1[j]+s2[/] ?:1- From Theorernl3, leWl; = S1@®Z; andWy = Sa® Zo,
where Z; and Z, are independent and folloBern(3). Then, due to symmetry, any computation rate satisfying

R< C(P)

- I(Wl; 51,52|W2) + H(Sl + SQ|W1, Wg)’
2C(P)

(W1, Wa; S, S2) + 2H (S1 + Sa|W1, Wa)

is achievable. Figurgl8 plots the computation rate[in (3@y. éomparison, we also plot the computation rates
achievable by computation (settii; = S; and W, = S, in (37)) and separation (setting’; = Wy = (),
respectively. The cut-set upper bound is given By min{C(P)/H(Z),2C(P)/(H(S1 + S2))} [4]. As shown

in the figure, the computation based on linear source codirigdeed helpful even if there is no multiple-access
component. For this symmetric source, the hybrid approacfiieorem[ B provides the maximum of the two
computation rates achievable by the computation and sépaischemes.

(37)

<
R_[
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Fig. 9. An example of orthogonal Gaussian networks thateselsi the computation capacity, where the channel coefficeme equal to
one on all links.

2) General networks:Now consider general orthogonal Gaussian networks. Foctifum computation, the
previous work in [[6], [[7] has exploited the similarity betrethe channel and the desired function. Specifically,
modulop sum computation over (noisy) modutosum channel or Gaussian MAC has been considered. It seems
that channel's multiple-access or superposition progsrgssentially required to compute sum-type functions more
efficiently than the separation-based computation. We deinate that, even for orthogonal channels with no
multiple-access component, relaying based on linear nktamding provides an efficient end-to-end interface for
function computation, which yields the following theorem.

Theorem 4 (Orthogonal Gaussian Network€onsider the orthogonal Gaussian network. Then the cortipaita

e inscqiok) Coep (i)
mie1:x] Uptp(1?
Rpep = 38
= TH(]E)) %)
is achievable, wher¢ (S) = (Uy,--- ,Uyr) for the arithmetic sum function anfi(S) = (By,--- , B,—1) for the
type function.

Proof: We refer to Sectiof VI-A for the proof. [ |
For convenience, denote the cut-set upper bountih (20¥fer[1 : K] as
(w ._ Cowp([1: K])
o = H (7(8)) 9
and the achievable computation rate in Theokém 4 as
RO ._ minge 1. g Cotp({7}) (40)

e H(f(8S))

Remark 6 (Computation Capacityfrrom [39) and[(40), the gap betwe&éijg and Rfft)p is zero if the condition
Cotp([1 = K]) = minepr.x1 Corp({i}) is satisfied, which characterizes the computation capakigure[9 is an
example of this class of networks. Basically, any layeretivagk with equal channel gains can be an example.
Remark 7 (Bit-Pipe Wired Networksfs mentioned in RemaiK 4, we can easily interpret the regulifieorems
and[4 for bit-pipe wired networks. Hence, Remiark 6 also iges/the computation capacity for a certain class
of bit-pipe wired networks, which closes the gap betweenldlaer and upper bounds in [28], [35] in the case of

the arithmetic sum function computation.

C. Gaussian Networks With Multiple-Access

We extend the idea presented in Secfion IV-A to the commrtaii multiple weighted arithmetic sums, which
contains the type function, and also to a general networkltgy in the following theorem. For the achievability,
we first abstract each multiple-access component by corgndeforward and then apply linear network coding at
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Orthogonal components

Fig. 10. An example of Gaussian networks with multiple-ascthat satisfies the condition in Corollady 1, where the nbhnoefficients
are equal to one on all links.

each relay node to convert the original Gaussian network witltiple-access into the end-to-end modgleum

channel.
Theorem 5 (Gaussian Networks With Multiple-Acceg3)nsider the Gaussian network with multiple-access. Then

the computation rate

Rmac _ mln’le 1: K mac({z}) (41)
H(f(S))
is achievable, where
1
Cl.c({i}) = min 1r, (v c* < + min A2 P) 42
W= ity % FnlnOE= A\ T (@)]  uelin(v) (42)
Here f(S) = (Ui, --- ,Uy) for the arithmetic sum function anfi(S) = (B, --- , B,—1) for the type function.
Proof: We refer to Sectiof VI-B for the proof. [ |
Similarly, denote the cut-set upper bound[inl(21) Yo [1: K] a
(u) Cmac([l K])
Rimac = ——ae— (43)
H(f(S))
and the achievable computation rate in Theokém 5 as
) minepy. ) Clac ({1})
Rmac = . (44)
7 (f (S))

Then the following corollary holds.
Corollary 1 (Approximate Computation Capacitylf: 4, are the same for all € T';,(v) and Cmac([1 : K]) —
min;e . ] Cmac({i}) < c1|V|log |V| for some constant; > 0, then

co|V|log V]

H(7(S)) 45)

Rine — Riphe <
for any powerP, wherecy, > 0 is some constant.
Proof: We refer to_VI-B for the proof. [ |
Remark 8 (Bounds on the Capacity Gajirst of all, the gap in Corollaryl1 does not dependand therefore
provides a universal performance guarantee for Bnjlso, sinceH (f(S))) is an increasing function ok < |V/|,
the gap in Corollaryll increases at most/&$log |V'|. Figure[10 is an example of the class of networks satisfying
the condition in Corollary]l. Basically, any layered netiwavith equal channel gains can be an example.
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Remark 9 (Tighter Bound for the Gaussian MAG)pr the single-hop case, i.e., the Gaussian MAC, we can
easily tighten the gap in Corollafy 1. Speciﬁcally,Gf((Zfi1 hi)2P> — C (4 + min;epr. 1 h2P) < cglog K for

some constants > 0, then
0 cqlog K

(w)
Rac — Rmac < H(f(S)) (46)

for any powerP, wherec, > 0 is some constant.

V. COMPUTATION OVER LINEAR FINITE FIELD NETWORKS

In this section, we introduce the following linear finite deletwork and show how to compute the desired function
over the considered network. Specifically, we first explas¢omputation over the modulosum channel in Section
V-Al Then we introduce the network transformation methaat ttonverts a general linear finite field network into
the modulog sum channel in Sectidn VIB. The computation coding and foamsation method presented in this
section will be used for proving the results for general Garsnetworks with orthogonal components in Section
V1l

Again, we assume a network represented by a directed gtaph (V, E) and the same source and desired
function in Definitiond 1L td 6. For the considered linear &nfteld network model, the input—output at times

given by
y’l()t) = @ hu,vw(ut)a (47)
u€l;, (v)

Wheremg) € Fy-, yff) € IE‘qBv, andh,,, € Fqﬁvm“. Here ¢ is assumed to be a prime number. Then the lemgth-
time-extended input—output is represented as

Yo = @ Hu,vxm (48)
u€l;, (v)
T T T 7T
wherex, = |2V Lo ,x&") € Fiov, yy = &,5}’ ,oee ,y&") € F2¥ and H,, € FifoXnew denotes the
block diagonal matrix consisting df, , at each block diagonal element.

Remark 10:Without loss of generality, we can assume that= 3, is the same for all € V' since the effect of
different values oty andj, can be equivalently reflected by the channel matjx. However, we allow different
values ofa,, and g, in this section for easy explanation of the transformatiemf the Gaussian network model
in Section V.

Remark 11:The considered linear finite field network includes the ljitepwired channel model and the linear
finite field deterministic model proposed in [32].

A. Computation Over the Modulp-Sum Channel

As a special case of the considered linear finite field netwfirkt consider the modulg-sum channel. The
following lemma shows how to compute the arithmetic sum petjunction over the modulg-sum channel when
the field sizeq is large enough. This lemma is of crucially importance tovprthe main theorems in the paper.
The key observation is that utilizing a small portion of finfield elements and then computing the corresponding
modulo¢ sum can attain the desired function. Furthermore, linearc&coding in Lemmall can compensate
the inefficiency of utilizing only a small portion of finite fak elements and, as a result, achieves the optimal
computation rate when the field sizes large enough.

Lemma 2 (Computation Over the Moduldsum Channel):Consider the computation over the modylsum
channel in which the length-modulog sum channel is given as

K
y =P« (49)
=1
wherex) € F,” andq is a prime number. If; > (p — 1)2K, then the computation capacity is given by

_ loggq
B=He) (50)
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where f(S) = (Uy,--- ,Uy) for the arithmetic sum function anfi(S) = (By, - - , B,—1) for the type function.
Proof: Let ¢(-) denote the mapping from a subset of integérsqg — 1] to the corresponding finite field,.
First consider the arithmetic sum computation. Defifig] = g(s;[j]), a;; = g(ai;), andU] = @fil a;,;9(S;)

for i € [1: K] andl € [1: L]. Suppose that théth sender observes = [s![1],- - - si[k]]T, which can be obtained
from s;, and the receiver wishes to compitg,--- ,u}) = (@fil aysh, - P ds Z) From Theorenill, the
receiver can computéu), - - - ,u}) reliably for n sufficiently large if
k log q
— 51
n = O 0p) oD
; nlo, ;
Hence by setting: = quw the computation rate
k
R=~-
n
log q
_ 52
(], 0F) 2
is achievable for the desired functign,--- ,u’ ). From the conditiony > (p — 1)K, we have

K K T
= [9 (Z alisi[1]> ;g (Z alisi[k]>] ; (53)
U=y (Z ay; ) = g(). (54)

Sinceg(-) has one-to-one correspondence, frormd (53), the receiveu:cnmputt—z(Zfi1 a1, Zfil aL,:i%;rom
(uf,---,u}), Finally, from the fact thatZ((U7,--- ,U;) = H(Uy,--- ,Ur), which can be verified fro 4), the
achievable computation rate f(€|§:fi1 a1iSiy - Yo, aL,-si> is given by [GD).

Now consider the type computation. Defityg[j] = 1;,(;—;. Let b},[j] = g(bi[j]) andby, = [b],[1],-- -, b, [k]]”.
Suppose that theth sender observek);, which can be obtained froms;, and the receiver wishes to compute
{u/ = @K, bj,}'~,. From Theorenfll1, the receiver can comp{ité }/-_, reliably for n sufficiently large if

k log q
s ) (55)
H(By, -+, B)y)
where B] = @X | B), and B); = g(1s,—;). Hence by setting: = %, the computation rate
k
R=~-
n
log q (56)

T H(By B

is achievable for the desired functigm; }}_,. From the conditiory > (p — 1)2K, we have

K K T
= [g (Zbli[1]> g <Zbli[k]>] :

K
By =g (Z 1si:l> = 9(B)). (57)

i=1

Sinceg(-) has one-to-one correspondence, the receiver can conjpi(tds]), - - - , bp—1(s[j]) ;?:1 from {u;f}g’;ol
Finally, from the fact thatt (B, -+, B, ;) = H(Bo,--- , Bp-1), the achievable computation rate for the type
function is given by[(50).

The converse for both cases can be easily shown from the satrsetaargument in Section IIliD, which completes
the proof. [ |
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Remark 12 (Computation of Multiple Arithmetic Sumklptice that the channel model ih_{49) is exactly the
same as in(28) except thais fixed in this section. Hence Lemrna 2 extends the computati@ single arithmetic
sum in Section IV-A to the computation of multiple weightetttametic sums (the type function can be represented
as multiple arithmetic sums, see Definitioh 2 and Rerhark 1).

B. Computation Via Network Transformation

We now describe how to convert a general linear finite fieldvoek into the modulay sum channel in[(49) in
the following lemma. The basic principle is similar to thgeeposed in[[8] in the sense that linear network coding
is applied at each relay node to construct an end-to-endrlifigite field channel and then precoder at each sender
to convert the end-to-end channel into the linear finite figHdnnel in [(4D).

To describe the following lemma, fat C [1 : K|, let Ho(X) denote the transfer matrix associated with the cut
Qe AX) onG(X).

Lemma 3 (Transform Into the ModuioSum Channel):Consider the linear finite field network in which the
length+» time extended input—output is given Hy {48) . Rorsufficiently large, the network can be transformed
into the following modulog sum channel:

K
ya=Dxi., (58)
=1
wherex; € Ry ™"t mineerc rank(Ha(il) gor gl 4 € [1: K],
Proof: We refer to Appendix Il for the proof. [ |

Based on Lemmas| 2 arid 3, we characterize the computatiortitsapden ¢ > (p — 1)2K in the following
theorem.

Theorem 6 (Linear Finite Field NetworksiConsider the linear finite field network in which the lengttiime-
extended input-output is given as [n148)4lt> (p — 1)2K and

Q@I\I(l[llr:lKDrank(HQ([l :K))) = zern[lnll(} Qerﬁ%l{li})rank (Ha({3})), (59)
then the computation capacity is given by

R min;e. ) Mingen (f5)) rank (HQ({i}))7 (60)
H(f(S))
where f(S) = (U, --- ,Uy) for the arithmetic sum function anfl(S) = (By, - - , B,—1) for the type function.
Proof: The achievability follows by the network transformatioringsLemmd 8 and then the computation over

the transformed modulg-sum channel using Lemna 2. The converse follows by the duifgger bound showing
that R < mmﬂe““:?&a‘é};gH"(“:KD) and the condition in[{39), which completes the proof. [

Remark 13 (Type é:omputationbfsor the type computation, the conditign> K is enough for proving Lemma
and Theoreml6.

Remark 14 (Computation Over Gaussian Network&g will apply the same computation coding and network
transformation in Lemmds| 2 and 3 after converting Gaussawarks into linear finite field networks in Section
VTl For this case, we set arbitrarily large and, as a result, the conditipn- (p — 1)2K in Lemma2 and Theorem
disappears for Gaussian networks.

VI. COMPUTATION OVER GAUSSAIN NETWORKSWITH ORTHOGONAL COMPONENTS

We are now ready to prove Theorefds 4 ahd 5 and Cordllary 1,hadnie about the computation over general
Gaussian networks with orthogonal components.

A. Orthogonal Gaussian Networks

Consider orthogonal Gaussian networks in which the lengtime-extended input—output is given as [0 (2).
In the following, we prove the achievable computation ratelTheoreni 4. The achievability follows the network
abstraction based on capacity-achieving point-to-poir@noiel codes and then transformation into the modulo-
sum channel via linear network coding at each relay (the deansformation used in Lemnia 3). Finally, we apply
linear source coding for computation over the transformemtiuto¢ sum channel as the same manner used in
Lemmal2.
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1) Proof of Theorenmi]4:By applying capacity-achieving point-to-point channetes, forn sufficiently large,
the lengthn time extended orthogonal Gaussian channelln (2) can beftnamed into

Y = Xuo (61)
for all (u,v) € E, wherex, , € Fg""". Herem,, log ¢ < nC(h ,P) should be satisfied. Hence we get K +1
andm,,, = nC(h%wP)(log q)~L.

In order to use Theorem 3, we defi’g = {Xuu}ver,,, () @AY, = {Yuv}uer,, vy @nd represent the input—
output as

= P ", x,. (62)

u€l';, (v)
HereH, , is determined by the original channel condition[inl(61). isetthat the input—output in_(62) is the same
linear finite field model considered in Sectibn V, skel (47)ekwe can treay, andx/, as ‘super-symbol’ and
apply the multi-letter coding over these lengtlsuper-symbols, that is, length: symbols. Hence, from Lemma

[3, we can transform the linear finite field network with the utputput [6R) into the following modulg-sum
channel:

K
vi=EPx,, (63)
=1

wherex, € Fyj™ e mineeac rank(Ha(il) gor a1l 4 € [1: K.

Now conS|der the computation over the above modukatm channel. Since = K +1 > K, from Lemmal2,
the receiver can compute the desired function reliablyrfaufficiently large if
k < log q

N minge (1. ) Minge }) rank (Ho({i})) — H(f(S))

Hence by setting; = Z120icix] min“i;é;:(}é)rfnk(lfﬂ({i}))k’gq, the computation rate
k

R=_—"_
nn
min;e(. ) Mingen (i) rank (Ho({i})) log ¢
nH(f(S))
() MiNie[1: ] MO ({i}) Z(u, YeB({i})uewens Muw 108 q
B H(f(8))
)

b) MiNie[1. ) MiNgeA ({i}) Z(u,v eB({iueaven: ChG,P)

- ] H(/(S))
(¢) minge1:x] Cptp({7})
a H(f(S)) (65)

is achievable, wheréu) follows sincerank (Hq({¢})) assuming the channé[(62) is the same as that assuming the

channel [(61L) andank (Hao({i})) = Y, v)er({i})ucavear Muv: (b) follows sincem,,, = nC(h ,P)(logq)~",
and (c) follows from the definition [(1]88 In conclusion, Theoréin 4idm

(64)

—

—

—

B. Gaussian Networks With Multiple-Access

Consider Gaussian networks with multiple-access in whighléngthr time-extended input—output is given as
in @). In the following, we prove the achievable computatrate in Theorerhl5 and Corollaly 1. The achievability
follows the network abstraction based on compute-anddohin Theorem|2 and the rest of the procedure is similar
to that in Section VI-A.
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1) Proof of Theoreral5For each node < V, suppose that node < I';,,(v) observesx,, , € F;™ and nodev
wishes to decod€D,cr, (,) Xu,v- L€t x'j‘fj‘ce(x;,v) denote a dither-added transmit lattice point from nade node

v for the compute- -and-forward framework in [7], which saésfithe power constrain®. Then nodeu transmits
X, (X)) = mm“e“gif{‘h“’“‘}x';‘“‘ce(x;) to nodewv. We can equivalently interpret that,, = 1 and the average
power constraint from nodeto nodev is given asminger,, (v){hi,v}P. From Theorerhl2 (see also Example 2), node
v can decod€D, 1, (,) X, reliably forn sufficiently large ifm, < nC* (ﬁ + minger,, () hfwP) (log q)~*
andgq is an increasing function of satisfying thatq — oo asn — oo. Therefore, by treating;, , as the channel

input from nodeu to nodev and @, . () Xu @S the channel output of node for n suff|C|entIy large, we
can transform each length-Gaussian multlple access componént (3) into the follovargthsn, modulog sum

channel:
D . (66)
u€l;, (v)

wherex;, , € [/, Hereq is the largest prime number amofig: nlog »n] and

1
my =nCt < + mm h P) log ¢) L. 67
We again defines;, = {Xyv }ver,.,(u) @nd represent the input—output as
= Y H,X. (68)
u€l';, (v)

Here H;, , is determined by the original channel condition [in](66). Thas the same manner from62) [01(65),
we can apply multi-letter coding and, from Lemnias 2 Bhd 3,civaputation rate

ho
nn

_ minep g mingea gy rank (Ho({i})) log g

B nH(f(8))

(@) MiNe 1/ MINQEA({i}) Dpene 1T, (v)noz0Mw log g

B nH(f(8))

(b MiNGe(1: k) MINQeA({i}) 2ovene 1, (20T (‘1"”—1@” + minger,, () he P ) 59

) H(f(S) (©9)
is achievable, wheréa) follows sincerank (Hn({:})) assuming the channél (68) is the same as that assuming
the channell(66) andank (Hqo({i})) = > cq- 11, (v)nazem and(b) follows from (67). Note thay, which is
the largest prime number among: nlogn|, becomes arbitrarily large as — oo and, as a result, satisfies the
conditiong > (p — 1)?K in Lemmal2 forn sufficiently large. In conclusion, Theorer 5 holds.

2) Proof of Corollary[l: Denote

it = arg minie[l:K]Cnﬁac({i}) (70)
and

* . 1
Q" = argminge p (34 Z 1, ( OQ;A@C <|F Bl + e1111111% )h P> (71)
veQe m u
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Then

H(f(S))(R%Y. — RE.)

= Chmac([1: K]) — B Crnac({i})

< Coac (1) = el i) + (Coacl(L: K1)~ iy Coac ()

i€l
0 1
< UGQMC ((ug”%):’ueﬂ ) ) UGZQ:C I, (o #0C" (m +u€11{11r% )h P)
(el K1)~ iy Coac((2))
(_2 > I, w20 (CAVIPA,P) = CF (h ,P))
veQ*e
- (Cmel[1 KD = it el () )
(i) V|(log(IV}) +1) + <Cmac([1 K]) - Zén[lm}()mac({ })> (72)

where (a) follows from the definition ofi*, (b) follows from the definition of2*, (¢) follows from the condition
thath,, , are the same for all € I';,(v), and(d) follows sinceC(z) — C*(z) < 1 for all z > 0. Finally, from the
condition Cmac([1 : K]) — mine(. 5] Cmac({i}) < 1|V [log [V], we have[(db), which completes the proof.

VIl. EXTENSIONS

In this section, we apply our computation code to other @gting scenarios for computing over Gaussian
networks.

A. Modulop Sum Computation

Consider the modulg- sum computation over Gaussian networks with orthogonal poomants. In [[6], [[8],
achievable computation rates have been derived assumiragbémarily large source field size, i.ep, » oo as
the block lengthn increases. When the source field size is fixed, it is hard tdyap previous work to find a
better computation rate than the separation-based cotiggut&rom our framework, on the other hand, one naive
approach is for the fusion center to first compute the comedimg arithmetic sum over networks and then take
the modulop operation in order to obtain the desired modplsum. Hence the achievable computation rates for
the arithmetic sum in this paper can also be achievable ctatipn rates for the corresponding modglasum.
Obviously, this approach is not optimal but we can easily irdmples that it outperforms the separation-based
computation.

B. Superposition Approach for Unequal Channel Coefficients

One drawback of the achievability in Theoréi 5 is when thenokhcoefficients have different values. For the
single-hop case, i.e., the Gaussian MAC in which the lemgtime-extended input—output is given iy (5), Theorem
B provides
Ct (% + minjep. e h2P)

H(f(S))

As shown in [[7B), the achievable computation rate is bour@ethe minimum of the channel gains. In order
to achieve computation rates scalable witHrom the compute-and-forward framewofK [7], the transnuiver of
each lattice should be reduced to let the received powerdoh éattice be the same at the receiver side, resulting
mine(. g h? in (Z3). An improved computation rate is achievable by theesposition of multiple codes and then

R= (73)
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allocating residual transmit power to high layer codes. Tdllewing theorem provides an improved computation
rate for the two-user case.
Theorem 7:Consider the2-user Gaussian MAC witth > h2. Then the computation rate satisfying

Ct (3 +niP)

R< — 2 - /
T H(S51]S2)
CH(L+12P)  H(F(S)) — H(S1IS) € (Tair)
B==mge) 0 H®) H((S) (74)

is achievable.

Proof: Let x/2tie denote a dither-added transmit signal from lattice codklddhe ith sender for compute-
and-forward in[[7], which satisfies the power constramtLet x""4°™ denote the transmit signal from a capacity-
achieving point-to-point Gaussian codebook, which sassfhe power constraii®. Then the first sender transmits

x| = x'att'Ce and the second sender transmits = ’“ 'att'ce + 7thhl random | ot R, denote the message rate
delivered byx"™"d°m The receiver first decodes the message dellvere&“W‘"m that is reliably decodable if
Ry < C <(}1‘+22‘2}) ) The receiver then subtrack$®"@°™ from the received signal. Then, from the same argument

in the proof of Theorerl5, we can construct the modptaim channel if{49) with, = nC* (% + h3P) (logq) ',
whereq is set to be the largest prime number amdhg nlogn]. By utilizing the lengthnR;(logq)~* of this
modulog sum channel, the first sender is able to transmit its messatie aate ofR; if Ry < CT (5 + hP).
The remaining modulg-sum channel has the length of(C* (3 + h2P) — R;) (logq) .

For the bit-pipe channels with the rat&s and R, we apply Slepian—Wolf source coding to deliver two sources
separately, then compute the desired function. For the iremgamodulog sum channel, we apply linear source
coding for computation in Lemmia 2. This approach achievescttmpute rate represented by the following rate
constraints:

R=R+R"
1
Ry<Ct (5 +h%P> :

ho<c(UE00)

1+2h3P
Ry
R < ,
H(5:1]52)
Ry
R ,
~ H(S2/51)
- H(Sl, 52) ’
Ct(3+hP)— R
R// S 2 1 (75)
H(f(8))
After Fourier—Motzkin elimination, we havé (74), which cplates the proof. |

Example 7 (Arithmetic Sum of I.I.D. Binary SourceSuppose thatX = 2, hy = 1, hy > 1, and 51,5, are
independently and uniformly drawn frof0, 1}. The receiver wishes to computef (s[j]) = s1[j] + s2[j]}] k_
Figure[I1 plots the achievable computation rate by the gaséion in Theorerh]7. A&? increases, the separatlon—
based computation outperforms the computation scheme @rém[b and the gap to the cut-set upper bound
decreases. As shown in the figure, the superposition apptattain both of the computation in Theorlem 5 and
the separation-based computation.

Remark 15 (Multiple Layering for More Than Two User&or more than two users, we can apply the same
superposition approach by layering multiple lattice codds refer to [[8, Section Ill. F] for the detailed lattice
code construction and encoding, decoding procedure.
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Fig. 11. Computation of; + S> for the two-user Gaussian MAC with unequal channel gainsnafe= 15 dB.

C. Fading Networks

Consider fading Gaussian MAC in which channel coefficierty/independently over time. The lengthtime-
extended input—output is given by

K
y=> Hx +z, (76)
i=1
whereH; = diag (hgl), e ,hﬁ’”) and hZ@ denotes the complex channel coefficient at tirfeom theith sender

to the receiver. We assume tl'{ahtgt)} are independently drawn fro@\ (0, 1) and also independent over time. We
further assume that the elementszoéire independently drawn fro@W\ (0, 1). Global channel state information is
assumed to be available at each sender and the receivee. {&ijﬁ}:} are i.i.d. over time, we drop the time index
hereafter for simplicity.

If we simply apply Theorenl]5 for each time slot, then duentn;c(.x, |h;|? in Theorem[b, the achievable
computation rate for fading will decrease Asincreased. We can fix this problem and achieve an approximate
computation capacity similar to Corollary 1 and Remiark 9féating Gaussian MAC.

To achieve this, we modify Theorelm 5 to the fading scenaria similar approach gs given by Goldsmith and
. i . . L mine. g7 [hil* P
Varaiya [43]. At each time slot, thgth sender transmits with power -
Thi[? Elmingepi. g [2il?/ 1712

the average power constraint. Then from the same analySikaéorenl b, the computation rate

1 1 min;e. g [hil> P ]
R= 7S] E [c+ (— + €[L:K] = Riting (77)

, Which satisfies

K E[mingep.q i/ |P1]?]

is achievable, wher€" (z) := max {log(z),0}. On the other hand, the cut-set upper bound is given by

K 2
! (u)
R < e — E C h‘l Z h s e ’h = R i , 78
N H(f(S)) ¢1I7I}?:}(;K <;| |¢ ( 1 K)> fading ( )

Although we describe the paper including Theofdm 5 basedeneal channel model, the results in the paper can be dfiaigardly
extended to the complex channel model.
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where ¢; denotes the power allocation policy of tiigh sender that should satis{¢?(h4,--- ,hi)] < P and
C(x) := log(1 + z). The following theorem establishes an approximate contipmtaapacity for i.i.d. Rayleigh
fading.

Theorem 8 (Approximate Computation Capacity for Fading MAConsider fading Gaussian MAC with time-
varying channel coefficients. For i.i.d. Rayleigh fading,

3logK+2+loge
RW gL <

fading fadmg H(f(S))
for any P, where f(S) = (Uy,--- ,Uy) for the arithmetic sum function anfi(S) = (By,--- , B,—1) for the type

function.
Proof: Let {¢}} denote an optimum power allocation policy maximizifigl(7B)en

(79)

u l

H(f(s))(REac%mg Riga)ding)
2
(a) 1+ (Zi[il |hil®; (ha, - - ’hK))
< E |log ——TE +log K
L+ K et /]
. 5 2

K .mbll’liE[l:K]V;J 4 1 szi ‘hz’(ﬁ(hh . 7hK)

< |1og | EE TR P (£, ) g K

mini€[1:K] ‘hi|2
E[min;equ g [hil?/[ha|?]

Y min;e(1. x| |h; |2 1
< 2E|lo K - L halét (-~ B
- [ ° (\/ E[mlniE[lzK] |h2|2/|h1|2] P Z’ ’¢ ( 1 K)
—I—log< [ mln |h | /|h1|2]> —E [log< min |hz|2>:|
1€[1: K]
(c) mmZe 1:K] ’h'm 1 K
(\/ Elminep.x [hal?/|Ma 2]~ VP Z [|72i| b7 (Ra )
+ log <E[mln | /|h1|2]> —E[log< i |hl|2>]
€[1:K]
K E [min;c (.5 [hil?] + K | +log <E [ min ‘hi‘z/‘h1’2:|> _E [10g< in ]h ‘ >]
Efmingep.x [hil?/1h1]?] nin min

= 2log <\/KE [ mln \h \2} —i—K\/E [ min ]h,-]2/]h1\2}> -E [log < min ]h | >]
i€[1:K] ek

<2log(VK + K) — E [log < min_|h; y2>] (80)

1€[1:K]

where (a) follows sinceCt (£ + P) > 1log(1+ KP) — 1 log K, (b) follows sincelog(a + b) < 2log(y/a + V)
for a > 0 andb > 0, (c¢) follows from Jensen’s inequality, an@!) follows since E[|h;|¢} (h1, -, hik)] <
VEIRPTE[(} (b1, -+ hi))?] < VP.

For Rayleigh fading|h;|? is exponentially distributed. Thus, we have

E [log( min_ b )} = /OOO log(z)K exp(—Kz) dx

ie[l: K

= —log K +/ log(u) exp(—u) du
0

1 oo
> —log K +/ log(u) du +/ log(u) exp(—u) du
0 1
> —log K —loge. (81)
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Therefore, from[(80) and_ (81),
u ! 3log K +2+1loge
Réad)ing - Réa)ding < H(f(S)) )

which completes the proof. |

(82)

D. Scaling Laws

One interesting performance metric is to focus on how themgdation rate scales as the number of sources
K increases. The work [11] studied scaling laws on the contipmtaate under collocated collision networks
assuming that concurrent transmission from multiple namesses collisions and, therefore, is not allowed. It was
shown in [11] that the order o‘% rate scaling law is achievable for the type computationcilig the same scaling
law achievable by the separation-based computation. Vikeféheorerh]5 provides the orderﬁi? rate scaling
law for collocated Gaussian networks. The gain comes frompeerefficient physical layer abstraction using the
compute-and-forward framework and exploiting the supsitfim property of the abstracted channel for function
computation, which is not allowed for collocated collisinatworks.

E. Function Multicast

Throughout the paper, we assume that a single receiver svisheompute the desired function. Now consider
the function multicasting problem in which multiple reosig wish to compute the same desired function. It has
been shown in 9] that function alignment is essentiallyuised for linear finite field single-hop networks in order
to optimally compute the modulo sum function at multipleawers. For the multihop case, if there is a relay node
that is connected from all senders and also at the same timeected to all receivers, this relay node can first
compute the desired function and then broadcast it to nieltgreivers. For the first task, i.e., function computation
at a single relay node, our coding schemes are applicabiehEsecond task, i.e., function broadcast to multiple
receivers, quantize-map-and-forward|[32] or noisy neknarrding [44] achieves a near-optimal rate. Although this
approach is not applicable for any network topology, we casilg find examples of interest that it achieves a
near-optimal computation rate. A similar approach has leen proposed in_[33], analyzing the rate scaling law
under a bit-pipe wired network represented by an undiregtagh.

VIIl. CONCLUSION

In this paper, we studied the function computation over Gaumsnetworks assuming orthogonal components.
We proposed a novel computation coding that is able to compuiltiple weighted arithmetic sums including
the type function. Computing the type function is very pdwksince any symmetric function such as the same
mean, maximum, minimum, and so on, can be obtained from e fiynction. Hence, the proposed computation
coding is useful not only for the arithmetic sum computatibat for any symmetric function computation. The
main ingredients of the proposed computation coding aren#tteork transformation via lattice codes and linear
network coding and then the computation based on lineaigé@lejolf source coding for computing. In many cases,
the proposed computation coding outperforms the separbfised computation, especially when the number of
sources becomes large. We established the computatiocittafta a class of orthogonal Gaussian networks and
an approximate capacity for a class of Gaussian networks mvitltiple-access.

APPENDIX |
HYBRID APPROACH

In this appendix, we prove Theoreih 3. First consider a disted source coding problem with rate tuple
(Ry,---, Rg) to compute the desired function. Tk bit-pipe orthogonal channel with rafe; can be treated as

the orthogonal finite field channel with"**°9™"  From the same argument in Lemfda 2, setijng (p — 1)2K

and computing the corresponding modygleum function yields the desired function. We generalize abding
scheme in[[5, Section VI] to thé& -user case, (Also see [25, Theorem Il11.2] for the rate caisis for decoding
the set of auxiliary random sequences). Then any rate {Uple- - - , Rx) satisfying

Z R > I({Wities; SHWitiep:xp) + [ZH(f(S)|W1, -+, Wk) (83)
e
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for all ¥ C [1: K] is a necessary condition for the desired function compraBy abstracting théth orthogonal
Gaussian channel using point-to-point capacity-achgendes, we have error-free bit-pipe channel with te?).
Hence if a rate tuplqc(}}?),--- ) C(’;f‘)) is located inside the regiofn (83), the computation rAtés achievable,
which provides the rate constraint dhas in [34). In conclusion, Theorem 3 holds.

APPENDIXII
NETWORK TRANSFORMATION

In this appendix, we prove Lemma 3.

A. Layered Networks

In this subsection, we prove Lemrha 3 for the layered caseldy@red networks, we can partition the set of
nodes intoM layers. LetV[j] C V denote the set of nodes at tligh layer, wherej € [1 : M]. We assume that
V[1] is the set of senders and the node at Mith layer is the receiver. That i¥/[1] = {¢;}£, andV[M] = {d}.
The encoding functions are set as follows:

« (Sender Encoding) Node € V'[1] transmitsx, = F,x;, whereF, € Fy**"" andx; € Fy7. We will specify

T later.
« (Relay Encoding) Node < Uj]‘igl V[j] transmitsx,, = F,y,, whereF, € Fp® "%,

Then the receiver generatg§ = F,y,, WhereF, € IE‘ZTX"Bd.
Let I'Y (v) = {w : there exists a direct path fromto w,w € TI';,(v)}. From the definitionI'} (v) C I'i,(v).
Then the input-output from,, v € V1], to y/; assumingx;, = 0 for all v # u is given by

/
Yalx,=0Yv#u

= Fd @ Hval,dXUMq
v —1€ELY (d)

=Fq @ Hy, 1 dFo, @ Ho, o Foys o @ Ho, .%o,

v 1€, (d) v —2€LY, (var-1) v2€TY, (vs)
"
= Fd @ H'UlwfldeUM—l @ HUM727'UZ\/I—1F'UZ\/I—2 e @ HU27U3 sz Huﬂiz Fuxu‘ (84)
vap—1 €M% (d) vnv—2€l% (Var—1) v €Y (vs)

Let us denote

H, =Fy @ cot @ HUMfl,dFUIW—l e HU27U3FU2HU7U2FU7 (85)
vp—1 €Y (d) v €T, (v3)

which is thent x n7 dimensional end-to-end channel matrix frotf) to y/,. Theny!, can be represented as

Ya = @ H,x),

ueV|[1]
K
i=1

The following theorem and corollary show that if the size loé tend-to-end channel matrB;, is smaller than
the corresponding minimum-cut value, theéh, becomes a full-rank matrix for all € [1 : K] with probability
approaching one as increases.

Theorem 9 (Avestimehr-Diggavi-Tsel[32]or anyi € [1 : K], let {x} (w)},e[1:0n-105a) D€ @ set of randomly
chosen2"71°84 vectors inFy and {yy;(w) }wefi:2-1024) D€ the corresponding set of output vectors, iyg(w) =
H, x{ (w). Suppose that the elements Bf are i.i.d. drawn uniformly froni, for all v € V. Then there exists
one-to-one correspondence betwelet] (w)}ye(1:onr1osa] @NA {y/;(w) }iyefi:2n-1054) With probability approaching
one asn increases, provided that

7 < min rank(Hq({:})). 87
o in vaulk (Ho({i}) (87)

Proof: We refer to [32, Theorem 4.1] for the proof. [ |
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Corollary 2: Suppose that the elements Bf, are chosen i.i.d. uniformly fron¥, for all v € V. If 7 <
min;e (. ) Mingea(f}) rank (Ho({1})), then

rank(Hy,) = nt (88)

for all i € [1: K] with probability approaching one asincreases.
rank(H,,

Proof: Assume thatrank(H;,) < n7. Then, since the vector space spannedHy is F, ) space, it
contains strictly less thaqi'” distinguishable vectors i, ™. On the other hand, Theorédm 9 shows that it is possible
to have2"7l°e4 = ¢"7 distinguishabley’;’s with probability approaching one asincreases, which contradicts the
assumption. In conclusion, from the union bound] (88) hdétdsall i € [1 : K] with probability approaching one
asn increases, which completes the proof. |

Based on Corollari]2, we set such that the elemeniB ofre independently and uniformly chosen frdin for
allv eV and
T = zén[llrll(] nglé?i}) rank (Hqo({i})), (89)
which guarantees the existenceIfI{j1 for all i € [1 : K] with probability approaching one asincreases. Then
by settingx; = H;,lxgi, x; € Fy7, for n sufficiently large, we have

K
vi =P, (90)
=1

from (88). In conclusion, Lemmi@ 3 holds for layered networks

B. Arbitrary Networks

In this subsection, we prove Lemrnh 3 for a general linearefifitld network (not necessarily layered). We can
unfold the networkG over time to establish the corresponding layered netwohle. dnderlying approach is similar
to that proposed in_[32, Section V. B]. Let

Cmin := mi i k(Hq({7})) 1 91
oy e () o ©

Define theT" time-steps unfolded networety = (Vry, E1y) as follows.

« The network hag” + 2 stages, numbered frotto 7"+ 1.
« Stage0 has the senders|0] to ¢ [0], which are the senders, and stage- 1 has nodel[T" + 1], which is the
receiver.
Stagej has all nodes € V' denoted byv[j], wherej € [1: T]. These nodes will act as relay nodes.
There are finite-capacity links with the rate Bt,,,;, between

— (t;[0],¢;[1]) for all s € [1: K] and (d[T],d[T + 1]).

— (v[jl,v[j+1]) forallve V andj € [1:T].
Nodev[j] is connected to node|[;j + 1] with the linear finite field channel of the original netwatk for all
(v,w) € E,v # w.

e lengthr time-extended transmit signal effj],7 € [0 : T}, is given by the pair of{ x %, x 7% |, where
The lengthn ti ded it signal "bh'f“j](”h

i v[j]” Tol]
5}1[3] g FrTCmn/logd € F,""Y. The lengthn time-extended received signal ofl] € T, (#:]0]), i €

[1: K], is given byyfjl[i} = xil[())]. The lengthn time-extended received signal ofj],j € [2 : T, is given by
(yil[;},y%).]), Whel’ey&;} = Xil[g)'_u and yf}zb).] = @v[j—l}er(u[j]) Hv[j—l},v[j]xi?'_l] (see the input—output relation
)). The_Iengtha time—ext(—_:‘nded received signal ofT" + 1] is given -byy%i%“ :_xf}[)ﬂ. For other unspecified
received signals, they receive all-zero vectors. For aebethderstanding, Fig. 12 illustrates an example offan
time-steps unfolded network.

Since this unfolded networ&'ry is layered, we can apply the same linear coding as in Appdhdixto Gry.
Specifically,

and x?

X vlj]
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Fig. 12. Unfolded network example, whefe) is the original network andb) is the corresponding unfolded network.

IFnTC'm;n/ log gxnt

i itaye (D) e9) @ _ p®@ €))
« (Sender Encoding) Nodg0] transmitsx, ) = F o[0] U[O] andx o0] = FU[O} o] whereFv[O}

F([)] € ot , andxj, € Fy™. We will specify 7 later. i
i q ) pee ) @ [T T @) @ |,mT @
« (Relay Encoding) Nodelj], j € [1 : T], transmitsx o] = Fopp |Y [ olj] o Yolj] ] andxvH =F [ Yo Yol } ,
WhereF(l[)} c FnTCmm/loqun(TCmm/logq+5v 1) andF([)] c Fnav Xn(TCmm/logq-‘rﬁu[j]).
vl
Then the receiver generatyéTH] Ff}l[)TH} f}})ﬂl} whereF(K)FH]
Similar to [86), the input—output fronﬁxv[0 Yolojevio) 1O Y o1 Can be represented as

yv[T—i—l] = @ HU[O]Xu[o]a (92)
v[0]€V][0]

c Fm—anC'm;n/ logq

whereV[0] denotes the set of nodes at stéigavhich is the set of senders, an{TJr 1] is the node at stat& + 1,
which is the receiver. Her#, g is the end-to-end channel matrix froxf, to y; . ;.
Now consider the minimum-cut value 6fry with respect to a subset of nodeslifo]. In the same manner in
Section1l-B, for X C V[0], we can defingsy(X) and Aty (X). Then the minimum-cut value is given by
27u(8) == mi k(HY(D))1 93
Cro(%) =, min_ rank (H{V(3)) logg (93)
where H1Y(X) denotes the transfer matrix associated with the(zat Aty () on Gry(%).

Hence, from Theoreinl 9 and Corolldry 2, by setting the eIemehF([)] and F([).} l.i.d. drawn uniformly from
[F,, we can guarantee that

rank(H,[g)) = n71 (94)
for all v[0] € V[0] with probability approaching one asincreases if
r< min CTU({U[O]}). (95)
v[0]eV[0] log g

For v[0] € V[0], the minimum-cut value is lower bounded by

Cro(folol) = min ek (HIY({0[0]})) log g
= (T = V), min rank(Ha({i}))log ¢, (96)

wheret; = v[0]. The inequality follows from the same analysis [in![32, Lemn2).
From [95%) and[(96), we set

— (T — k(H 97
7= ( \V\)Zerr[llnflmergg{l})ran( a({i})) (97)
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and the elements oli‘fjl[j).} and Ff}z[])] i.i.d. drawn uniformly from[F,. This guarantees the existence |f ! for

v[0]
all v[0] € V[0] with probability approaching one as increases. Therefore frorh (92), setting[o] = HU[(I)] ;[O},
X, 0 € 7, provides
v[T-‘rl @ Xy(0]- (98)
v[0]eV[o]

Finally, since any coding scheme for tfétime-steps unfolded networkrty can be performed in the original
network G usingn1' time slots, see the argument [n [32, Lemma 5.1], we have

K
vi=EPx,, (99)
=1
wherex; < Fy7 for all i € [1 : K] usingnT time slots for the original network:. Here, we simply rewrite
{xt Yepir) = {X;[O]}v[o}eV[O} andy!, = yff[gpﬂ} from (98) sinceV[0] is the set of senders andT + 1]

is the receiver. Then using time slots, we havel (99) withk} ¢ IF"T/ T From the fact thatimy oo 7 —

minge(y: ) Mingea (q}) rank(Ho({i})), Lemmal3 holds for any arbltrary networks.
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