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bances. The quality of acquired data is degraded as a result. For instance, the quality of
captured video frames from an onboard camera greatly depends on the angular velocity of
the body on which the camera is mounted. Motion blur degradation results if large angular
motions are present. In order to compensate for such disturbances, stabilization platforms
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Stabilization platform are used. A common approach is measuring body movements using inertial sensors and
Friction attempting their cancellation with actuators and control systems. Design of high perfor-
Simulation mance control systems often requires analytical system models. In this article, a planar
Model validation stabilization platform is considered, to develop and study its kinematic and simple-to-

complex dynamic model. The mathematical derivation of the model is presented with and
without neglect of the actuator mass components as well as friction effects. This is fol-
lowed by the comparative validation of these model alternatives against a realistic numer-
ical model fitted to physical experimental data. The results demonstrate that the analytical
model, in particular with the actuator mass and friction components included, provides a
high degree of fit to the actual behavior.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Many applications involve platforms that are subjected to either external motion disturbances or disturbances that are
due to the ego-motion of the platform. Typical examples are provided by mobile sensor platforms, and in particular mobile
robots carrying a variety of sensors. Legged robots are examples that exhibit more severe motion disturbances due to the
impulsive nature of legged locomotion. Many sensors are sensitive to such disturbances either from a vibration/reliability
perspective or in relation to the quality of the collected data. For instance, image capture devices such as video cameras are
sensitive to such disturbances because camera motion exceeding camera dependent limits may cause image degradations
such as motion blur [1]. Utilization of stabilization platforms that use high performance actuators combined with control
algorithms is the common approach for compensating for these motion disturbances and improving the data collection pro-
cess. Here, the sensor(s) are placed on top of a platform that is actively moved in order the cancel the effect of the disturbing
motion.
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Besides those in mobile robotics, there are many applications for stabilized platforms. For example, cameras mounted
on aircraft are also subjected to large disturbances. However, with the use of stabilization platforms they can capture sharp
images without any motion blur even for low altitude flight under turbulent air conditions [2]. In an underwater suspended
work platform, an actively controlled stabilization system enables a stable working base even though the underwater work
platform is subjected to large water currents [3]. For stabilization platforms one of the most widely used mechanisms is the
Stewart Platform.

The development in platform stabilization technology is driven primarily by accelerating developments in sensor tech-
nologies such as those of inertial sensors using microelectromechanical systems (MEMS) [4], low cost precision machinery
[5], digital video signal processing methods and algorithms [6] as well as power electronics and servo drive technologies [7].
For example, the small scale mechanism presented in the present work has been made possible by the availability of very
small size brushless linear motors.

Research for defense systems has always been a driving factor. Advanced defense systems based on inertial sensors
widely utilized stabilized platforms, but high cost sensors limited the adoption of these technologies for more widespread
applications. The US Navy, for example, used the quartz tuning fork gyroscope to develop the ship based satellite antenna
stabilization system [8-10].

On the methods side for camera based applications, stabilization approaches have been studied by researchers for
decades, and many video stabilization schemes have been proposed. These can be classified into two broad categories [11]:
(1) image processing based (algorithmic) stabilization and (2) mechanical (motion) based video stabilization. The former
class focuses on processing corrupted image frames either individually or in sequence to recover image data suitable for the
given application, while the latter approach (the focus of the present paper) is based on electromechanical design coupled
with automatic control to physically stabilize the camera platform.

Firstly on the algorithmic side, some examples can be discussed. For example, a real-time smoothing methodology for
the stabilization of videos captured from small robotic helicopter platforms is introduced in [12]. It uses a Lucas-Kanade
feature tracker to detect the regions and then estimate the transformation between two consecutive frames. A fast video
stabilization algorithm presented in [13] uses a circular block to search for and match the key places. A dual-pass video
stabilization system in [ 14] uses an iterative method for global motion estimation and an adaptive window smoothing for
the intentional motion estimation. This method is only for off-line processing of video stabilization. The processing speed
can reach 25 fps. A method is proposed in [15] for removing the camera shake in the video sequence and reconstructing a
stabilized video sequence with good visual quality. Algorithmic approaches to image stabilization are not the focus of the
present paper and hence will not be further discussed.

Motion control based approaches for improving the camera image stream are based on sensing the motion disturbances
affecting the camera and using advanced automatic control approaches coupled with actuators to compensate/cancel these
disturbances. As aresult, a camera which experiences only the residual disturbances results in a major improvement in image
data. Cancellation of motion blur is a very important application example. Most commonly, the design of control systems
for such motion control requires an analytic platform model. Such models can be linearized around operating points to
design high performance linear and optimal controllers such as the linear-quadratic regulator (LQR) [16]. This fact strongly
motivates the mathematical model developed in the present study.

Although different kinematic configurations can be designed in order to obtain a three-degree-of-freedom (DoF) angular
stabilization of a camera platform, our focus is on parallel kinematic structure, an angular-only special case of the Stewart
Platform [17]. This structure has a number of advantages: its design is homogeneous (three identical actuators), it is
mechanically simpler than a closed-chain (gimbal type) structure and, finally, the study of its planar special case is a major
step in modeling the 3-DoF general form. The contribution of the present paper is twofold. Firstly, a mathematical model
of the planar case is derived from first principles using the Lagrangian formulation. This involved a both kinematic and
dynamic formulation. The contribution of the masses of the motor body and motor shaft are compared with that of the
platform, studied in the model. Secondly, the effect of friction is studied by explicit addition to the model. The mathematical
model is validated using a two-stage experimental approach.

The paper is organized as follows. We start in Section 2 with the kinematic analysis of the platform. This is followed
by Sections 3 and 4 where the dynamic motion analysis of the platform is presented for two different approximations.
Section 5 presents the experimental results composed, in sequence, of the experimental validation of the kinematic model,
the experimental validation of the baseline numerical dynamic model and the validation of the analytical dynamic model.
The paper concludes with our observations.

2. Kinematic analysis

In Fig. 1(a) and (b) the stabilization platform in planar motion, together with body fixed reference frames, is shown.

The relation between the input motor shaft displacement (S) and the output platform angular displacement (@) is the
fundamental kinematic relationship that should be determined as a first step in the analysis. The closed kinematic chain
structure requires that we have the vector relation

— — = — =
OA + AB = OE + ED + DC + CB, (1
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Fig. 1. Planar stabilization platform. (a) Physical experimental setup; (b) solid model with axis definitions and unit vectors.

which is known as the loop closure equation (LCE) of the mechanism. This can also be written in terms of the coordinate
frame unit vectors as

af +b cos(@)? +b sin(@)f' = ef+ d}+ c cos(a)7+ csin aj+ S cos(oz)j’ ) sin(oz)?. (2)
Eq. (2) can be transformed into two scalar equations given by

bcos(0) = e + c cos(x) — S sin(x), (3)

a4+ bsin(@) = d + csin(a) + S cos(x). (4)
We define the three terms

A=e®—c?+ (a—d)? + 1% (5)

B = 2eb, (6)

C = 2b(a —d). (7)
Then by rearranging, squaring and adding Eqgs. (3) and (4), we obtain

S = o/A—Bcos(9) + Csin(d), (8)

where we have o = +£1. Of these two possibilities, 0 = —1 is impossible because there is a joint restriction, leaving with

the final kinematic relationship between S and 6 as

S = /A — Bcos(6) + Csin(9). 9)

Also, the relationship between the output angular displacement 8 and actuator angle « is obtained from Eqs. (3) and (4)
by calculating the sine and cosine of « as

—Sbcos 6 + ac + bcsinf + Se — dc

sina = , 10
* S22 +c? (10)
bccos® + aS + bS sinf — ec — dS
cosa = . (11)
S2+c?

Another relationship that will be useful later in the dynamic analysis relates the velocities of the actuator angle « and the
output platform angle 8, and also the velocities of the motor shaft displacements S and the output platform angle 6. From
Eqs. (3) and (4), a lengthy derivation leads to

|:(c sina + S cos @) sina] [a} _ [bé sin(Q)] (12)

(ccosa — Ssina) cosa||S bé cos(6)

3. Dynamic analysis using the Lagrangian formulation (one body)

In this and the following sections, we assume that the input to the system is a force exerted by the motor shaft and
determine the dynamic response of the platform output angle. The Lagrangian approach is used for deriving the equations
of motion (EoM) for the platform. As a first approximation, only the mass properties of the stabilized platform are considered
in the formulation.
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For our mechanism, we have the system DoF = 1 and the single generalized coordinate is 8. We have the platform
angular velocity given by'

- - (4
Wplatform = QU; )~ (13)

In the following formulation, the dyadic notation is used in order to develop a reference frame independent vector for-
mulation. The moment of inertia dyadic of the platform with respect to the mass center is given by

v M -(4)>(4 -(4)=(4 >(4)=(4 ->(4)=(4
]platform = ]p =]p11u§ )UE ) +]p12U(1 )Ué ) +]p13u§ )ug ) +]p1zug )u(1 )
~(4)~(4 ~(4)=(4 ~(4)=(4 ~(4)=(4 ~(4)=(4
+]p22U§ )u§ ) +Jp23u; )Ué ) +]p13u§ )uﬁ ) +]pz3u§ )U; ) +Jp33U§ )ué . (14)
The kinetic energy equation can then be written and simplified as
1. v o 1 -
K=-wp Jp owp=-Jp20". (15)
2 2
The virtual work expression is given by
SW = Qyég = Fs, (16)

where F is the actuating force applied by the linear motor. Now, §s is written in the o coordinates. From (9), we have

Bsin(6 C 6
5 — sin(@) + C cos( )89.

17
s 55 (17)
Inserting Eq. (17) into (16), we obtain
Bsin(@) + C cos(0
SW=F © + ( )89. (18)
2S
By comparing Eqs. (16) and (18), one can obtain
Bsin(0 C cos(0
—F 0) + ( ) (19)
2S
Finally, we define the generalized momenta as given by
oK .
Py = Y = Jp220. (20)
In the analysis, friction forces between mechanical parts are also modeled. The Rayleigh dissipation function given by
1
D= > avi, (21)
i=1

can be used for modeling the viscous friction [18,19].

The platform considered has three revolute joints and a prismatic joint. The viscous friction model is used for all joints.
The first one is the revolute joint which is connecting the motor body to the base, and its coefficient is denoted as c;. The
second one is the revolute joint between the platform and the motor shaft, and its coefficient is c,. The third one is the
revolute joint between the stabilization platform and the main fixed column on the base, with the coefficient given by cs.
The final one is the prismatic joint between the motor shaft and motor body, with the coefficient c4. Therefore, the total
dissipation function becomes

p=lew v loer s Lair s Lo (22)
= -« — G —c —C4S°.
56 5C 76 S
Taking the derivative of Eq. (22) with respect to 6 and substitutingS and & with & by using Eq. (12), the dissipation function
expression becomes

D 9D 9Dd& 3D aS

90 90  9x 90  aS 3o

oD 0+ (cré + ‘)ad‘+( S)ag (24)
— = C 1 ) — C. —_.

20 Y Y

In Eq. (24), ”d’—‘; and g—; were obtained from Eq. (12).
For the one-body formulation, only the mass of the platform is considered and its center of mass (CoM) coincides with the
joint. Therefore the potential energy change due to platform angle change is zero. Hence we have % = 0 and the Lagrange

1 The superscript in unit vectors shows the reference frame and the subscript denotes the axes of Cartesian coordinates, e.g. 2 corresponds to the y axis.
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equation becomes

5 8K+8D+8U_Q9 05)
“T 0 a0 a0

The equation of motion is then obtained as

Bsin(6) + C cos(6)
2S

. , 96 . 3S
Jomb =F — (36 + (16 + 8) = + (5 ). (26)
P 30 30

4. Dynamic analysis using the Lagrangian formulation (three bodies)

For deriving the Lagrange equation for the three-body case, the CoM velocity and the CoM angular velocity of the motor,
motor shaft and platform should be considered. In this case the kinetic and potential energies of the CoMs of the three bodies
are calculated.

From Fig. 1(b), the displacement of the CoM of the motor can be obtained as follows:

- - e T T
P = Tmjo = OC = OE + ED + DC, (27)

P = —eil® + i + ciil). (28)

The displacement of the CoM of the motor in matrix notation with respect to the platform base fixed reference (inertial)
frame is given by

PO = —eu ™ + duf® + cif’?, (29)
FO = —eiiy + diis + c¢* Vi, (30)

where ¢©1 denotes the rotation matrix between reference frames (0) and (1) utilizing the rotational frame base (RFB)
. . A (T — . -
sequence. It is given by £(®V = e#2(3 ) a5 a rotation about Ii,. Hence, we have

FO = —eily + dity + ce™ (3 7). (31)
Expanding the last term, we further obtain

5O — iy + dity + c [y cos (T — ) + iy sin (% —

m = 1 uz + c | us cos 5 o) + uq sin > o), (32)

79 = —eii; + diiz + c[ii3 sin(er) + il cos(a)], (33)

which, in vector notation with respect to the base frame, becomes

T = 1" (c cos(a) — e) + 1Y (c sin(a) + d). (34)
The velocity of the motor CoM can similarly be expressed as follows:

Bm = Dm/kg(o) = Dofm = 17 (—cé sin(a)) + 1 (c& cos(a)). (35)
For obtaining the equation of motion, the scalar expression for the velocity is needed. We have

|Um]?* = (ca sin(a))? + (cd cos(a))?, (36)

[ |? = c2a. (37)
The angular velocity of the motor is obtained as

The reference frame (2) is fixed to the CoM of the motor as illustrated in Fig. 1(b). The motor moment of inertia dyadics with
respect to the CoM are

¥ ~2)=(2 ~2)=(2 ~(2)=(2 ~2)=(2 ~2)=(2
Jn = ]mnuﬁ )uﬁ ) +]m12U(1 )ué) +]m13u§ )u§) +.]m12u§ )uﬁ ) +]m22U§ )ué)
~(2)=(2 ~(2)=(2 ~(2)=(2 ~(2)=(2
+]m23u§ )ué ) +Jm13u§ )U§ ) +sz3u§ )Ué ) +]m33u§ )u§ ). (39)
- M - .2
WO Jm - Om = Jmna”. (40)

In order to calculate the CoM velocity and angular velocity of the motor shaft we may proceed as follows. From Fig. 1(b) the
displacement of the CoM is given by

o o = - = @ — =

Fsh = 13,0 = OB = OF + ED + DC + CB. (41)

Fon = —etll” + diiy” + cii” + Su{" (42)



960 B. Rohani et al. / Journal of Computational and Applied Mathematics 259 (2014) 955-964

where S is the current actuator length and Sis the change of the actuator length from its rest position, given as

S=s5—5, (43)

where Sy is the initial position of the shaft.
Similarly, the scalar magnitude of the shaft velocity is

V2 = (cé — 5)? + (S — So)?a. (44)
The angular velocity of the motor shaft is obtained as

=) _

Om = dnjo = —ally) = —aily) = —ail. (45)

The reference frame (3) is fixed to the motor shaft CoM as in Fig. 1(b). The motor moment of inertia dyadics with respect to
this CoM are

M =(3)2(3) =(3)2(3) =(3)=(3) =(3)2(3) =(3)2(3)
Jon = JstP + St P05 + Szt V0 + Joatis T+ JoatiS U
~(3)=(3 ~(3)=@3 ~(3)=@3 ~(3)=(3
+ I3t 0 + Jna3tiS 0 4 Jonosti 0D + Jopssti 1S (46)
o v . -3 . -3 . -3
Wsh ']sh = _a]shlzug - a]sh22u2) - a]shZ?:u; )~ (47)
c_[)sh ']sh . L_[)sh :JshZZdzo (48)

The kinetic energy of the system is given by the equation

1 o 1. v 2 1 R 1, + 2 1 R 1. +v .
K= Emm|vm|2 + iwm Jm - om + 5m5h|vsh|2 + Ewsh < Jsh - wsh + imp|vp|2 + Ewp '.]P  Wp. (49)

Inserting Eqs. (37), (40), (44) and (48) into (49) and also using the simplification in Eq. (15), we obtain

K= m c2a2+1] '2+1 [('—$)2+(5—5)2'2]+1 '2+1 6? (50)
= 3 Mm FIm220t 2m5h ca 0) 2]5112201 2_]p22 .
Now, we define generalized momenta as

b _ oK N 9K 8¢ N 9K 3S 51)
“T %0 T da a6 aSab’

and from Eq. (12), we obtain

. ) . . ) . da Y
Py = Jp220 + [MmC?& + Jimpod + mgpc(cd — S) + mgp (S — o) tJsia2d] 5 4 [=ma(cd — )] 5. (52)

The potential energy equation becomes
U = (d+ csin(a))mpg + [d + ¢ sin(a) + (S — Sp) cos(a)mg:g (53)
while its partial derivative is

oU _ 98U da  BU 8S

— = — —— 54
a0 do 960 + aS 26 (54)
Hence, we have
U . Jdo oS
¥ = [cmpg cos(a) + cmgg cos(a) — (S — So)mgrg sin(a)] % + mg,g cos(oz)a—e. (55)
The friction (dissipation force) expression is the same as for one-body analysis. The Lagrange equation is given by
dK . oD . au —0 (56)
90 a0 80
By substituting the derived Lagrangian terms into Eq. (56), the equation of motion is obtained in the form of
6=f0,0,F,t). (57)

5. Experimental and simulation results

In this section, we present simulation and experimental results, to validate the analytical model developed, and compar-
atively present results with respect to the contribution of the secondary masses in the system as well as friction. Since our
physical experimental setup does not have the ability to apply controlled forces, nor a means of measuring motor shaft force,
we needed to follow a two-stage experimental approach. In stage 1, we build a numerical model in Matlab-SimMechanics
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Kinematic Validation: Shaft Position wrt Angular Platform Position
6 T T T T T

ot

Motor Shaft Position [mm]

-8 [# = = = Measured

Simulated (Analytical)
Simulated (SimMechanics)
T

_10 I 1 1 T
-15 -10 -5 0 5 10 15

Platform Angular Position [deg]

Fig. 2. The validation of the analytical kinematic model against the SimMechanics numerical model and the physical platform setup.
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Vertical Support Column Weld Joint

Fig. 3. A sample section (central support pillar) of the SimMechanics intermediate numerical model.

and validate it using physical experiments with the platform setup. Here, gravity is used alone as a known driving force for
the platform. Once we have the intermediate numerical model as a baseline, in stage 2 it is then used as a basis for validating
the analytical model itself. At this stage, being in a simulation gives us the means of exciting the two models using known
force inputs, and observing and comparing the behaviors.

5.1. Validation of the kinematic model

For the kinematic analysis, it was possible to fully validate the analytical model against the physical setup and this is what
the first set of results presented here show. For this, the platform was driven in position controlled mode, very slowly, for
a range of shaft positions and resulting platform angles. The same shaft position samples were also used as an input to the
analytical model as well as the intermediate baseline numerical model. The results for these three cases are comparatively
illustrated in Fig. 2, where the close overlap between the two sets of results is apparent. These results also include the overlap
of the SimMechanics based intermediate numerical model that will be described in the following section.

5.2. The baseline numerical model using Matlab-SimMechanics

As a first stage of the validation of the analytical dynamic model, we have developed an intermediate numerical model in
Matlab-Simulink, that closely models the physical setup using an interconnection of mechanical components. SimMechanics
has been shown to generate accurate dynamic models of complex mechanical systems [20]. A section of our numerical model
in SimMechanics is illustrated in Fig. 3. The model is hierarchical and is composed of other sub-blocks. For both the analytical
model and this intermediate numerical model, the model parameters are derived from the actual physical system and the
source solid model design files. These are given in Table 1.

Nevertheless, this numerical model was cross-validated with the actual physical system through a system identification
experiment. The viscous friction parameters of the intermediate numerical model were also the output for the experiment
as well as the observation of the overlap between the model and the physical system. In the experiment, the platform was
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Table 1
Model and simulation parameters obtained from the physical setup and solid model
design files.
Parameter Value Unit  Parameter Value Unit
a 57.48 mm 11.1857 x 1076 kg m?
b 35.99 mm Mg 19.1
c 29.55 mm  Jo 12.94578 % 107° kg m?
d 10.03 mm 1.5260e—06 Nms/®
e 81.64 mm C 1.5260e—06 Nms/®
mp 92.33 g c3 1.2543e—08 Nms/°
Jp22 53.87012% 1075  kgm® ¢4 8.9949e—06 Ns/m
My 48.1 g
Load-1 (75g) Load-2 (407g) No-Load
9.0 T T T T T 13.6
8.6 4 F O F 4 13.0
[9]
[]
8.0 1 r o 1 r 1 1241
8 m—— Measured
8 Load-1
7.0 1 S 1T Measured 1 106
S Load-2
& m—— \leasured S
6.0 1 fo 17T No-Load 18" 2
= § O  Simulated H
E 3 %
= 5.0 g o) 1 F 176 8
S o] o
= o, ]
5° g o<
% g E
o) o
& s
3.0 b & 1r 146 =
:" o
g
2.0 — § 1 r 43.0
1.0 — 1 r 415
. 0.0
0.05 0089 0 0.05 0.1

0.05 0.091 o0
Time [s]

Fig. 4. Intermediate numerical model validation using gravitational fall experiments with the physical platform setup.

set to an initial angle where gravity would pull the platform into motion. Since the gravitational force is known, the same
conditions could be applied both for the physical system and in the simulation. The result of the experiment is illustrated in
Fig. 4. One may see that the intermediate numerical model built in SimMechanics closely approximates the physical system
behavior, building confidence that one may use it as a baseline for the subsequent experimentation. The small deviation for
the larger load may be attributed to the nonlinearity of physical friction that may result from higher loads on the joints.

5.3. Validation of the analytical dynamic platform model
Finally, it is possible to present the validation of the dynamic part of the analytical model which is the main mathematical
contribution of the present paper. This is achieved by making use of the intermediate numerical SimMechanics model
as a baseline for validating the behavior of the analytical model under gravity and known force excitation as well as the
presence or absence of a viscous friction component. This final set of experiments is conducted exclusively in the simulation
environment. The analytical model (the final set of equations of motion) is numerically integrated while Simulink integrates
the intermediate SimMechanics model. The first two experiments are conducted with a constant force applied first in the
positive direction from the negative limit of the mechanism and then in the negative direction from the positive angular
25° (way beyond the mechanism limit of about 6 = 13°).

limit. The simulation is run until the final platform is 6
Fig. 5(a) and (b) illustrate superimposed plots of the analytical model and the baseline SimMechanics numerical model. In
this experiment, (a) illustrates the case where gravity is neglected and (b) the case where gravity is present. Similarly, the
case with the addition of the viscous friction model is given in Fig. 6. Although we have small friction values in the system,
the experiment with the addition of the friction model shows that the presence of friction further reduces the mismatch
between the analytical model and intermediate numerical model outputs.
For another comparative experiment, Fig. 7 illustrates a comparison of the one-body and three-body approximations in
the model, and hence the effect of neglecting or including the masses and inertias of the motor shaft and motor body. This
experiment is conducted with constant force and gravity as input. The friction is taken as zero for this experiment. From the
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a CASE-3>g=0[m/s2], F=-1&+1[N],C = (000 0) [N.s/deg] b CASE-4 > g =9.81 [m/s2], F = —1 & +1 [N], C = (0 0 0 0) [N.s/deg]
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Fig. 5. Validation of the analytical model with constant force input. The viscous friction coefficient is zero. (a) Gravity is neglected. (b) Gravity is present.
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Fig. 6. Validation of the analytical model with constant force input. The viscous friction is nonzero. (a) Gravity is neglected. (b) Gravity is present.

figure, it can be observed that the one-body approximation significantly deviates from the three-body approximation, and
hence from the true behavior of the physical system.

Collectively from these results, one may draw a number of conclusions. The analytical model composed of the nonlinear
equations of motion for the system approximates well a fully numerical model generated by SimMechanics, which itself
was validated against the physical system. There is a small amount of discrepancy between the models, which particularly
manifests itself under the gravitational effect, leading to the conclusion that very small inaccuracies in the assumed mass
properties as well as the homogeneous mass distribution assumption in the analytical model generate some mismatch. This
is an expected result. We may also observe that errors due to the numerical integration process necessary for simulating the
time responses contribute to the mismatch. Finally, the mismatch accumulates over time when the models are integrated
numerically for a long period. Nevertheless, there is a reasonable confidence that the analytical model is sound and can
model the system considered fairly well.

6. Conclusion

In this work, an analytic model is developed for a linear-motor actuated planar stabilization platform using the Lagrangian
formulation. The model of the designed platform is studied for the one-body and three-body approximations and with the
inclusion/exclusion of a viscous friction model. The model is experimentally validated using a system identification approach
based on physical experiments. Physical experiments are directly used for validating the kinematic part of the model while a
two-stage approach is required for the dynamic part, where an intermediate SimMechanics based numerical model is used.
The experimental results, both physical and simulation based, have shown that the analytical model is sound with some
small approximation errors. The small mismatch is shown to be mostly present when the gravitational input is nonzero.
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CASE-4>g=9.81 [m/s2], F = -1 & +1 [N],C
T .
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Fig. 7. The mismatch between the one-body and three-body analytic model approximations.

Overall, the model is accurate and is being used for developing control policies for regulating the platform angle and angular
velocity.
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