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Vojin Jovanović† Amir Shaikhha† Sandro Stucki† Vladimir Nikolaev∗

Christoph Koch† Martin Odersky†
†EPFL, Switzerland: {firstname}.{lastname}@epfl.ch ∗University ITMO, Russia: {firstname}.{lastname}@cs.ifmo.ru

Abstract
Deeply embedded domain-specific languages (EDSLs) intrinsically
compromise programmer experience for improved program per-
formance. Shallow EDSLs complement them by trading program
performance for good programmer experience. We present Yin-Yang,
a framework for DSL embedding that uses Scala macros to reli-
ably translate shallow EDSL programs to the corresponding deep
EDSL programs. The translation allows program prototyping and
development in the user friendly shallow embedding, while the cor-
responding deep embedding is used where performance is important.
The reliability of the translation completely conceals the deep em-
bedding from the user. For the DSL author, Yin-Yang automatically
generates the deep DSL embeddings from their shallow counterparts
by reusing the core translation. This obviates the need for code
duplication and leads to reliability by construction.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Languages, Design

Keywords Embedded Domain-Specific Languages, Deep Embed-
ding, Shallow Embedding, Reflection, Macros

1. Introduction
Domain-specific languages (DSLs) provide a restricted, high-level,
and user-friendly interface crafted for a specific domain. Restricting
the language to a particular domain allows programming at a high
level of abstraction while retaining good run-time performance
by leveraging domain knowledge for optimized code generation
or interpretation. In certain cases, code can even be targeted at
heterogeneous computing environments [23].

The implementation of a usable external (or stand-alone) DSL
requires building a parser, type-checker, and possibly a complete tool
chain consisting of IDE integration, debugging, and documentation
tools. This is a great undertaking that is often not justified by the
benefits of having an external DSL. A promising alternative to
external DSLs are embedded DSLs (EDSLs) [10] which are hosted
in a general-purpose language and reuse its facilities. For the purpose
of the following discussion, we distinguish between two main types
of embeddings: shallow and deep embeddings.
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• In a shallowly embedded DSL, values of the embedded language
are directly represented by values in the host language. Conse-
quently, terms in the host language that represent terms in the
embedded language are evaluated directly into host-language
values that represent DSL values. In other words, evaluation in
the embedded language corresponds directly to evaluation in the
host language.
• In a deeply embedded DSL, values of the embedded language

are represented symbolically, that is, by host-language data struc-
tures, which we refer to as the intermediate representation (IR).
Terms in the host language that represent terms in the embedded
language are evaluated into this intermediate representation. An
additional evaluation step is necessary to reduce the interme-
diate representation to a direct representation. This additional
evaluation is typically achieved through interpretation of the IR
in the host language, or through code generation and subsequent
execution.

An important advantage of deep embeddings over shallow ones is
that DSL terms can be easily manipulated by the host language.
This enables domain-specific optimizations [20, 23] that lead to
orders-of-magnitude improvements in program performance, and
multi-target code generation [2].

On the other hand, shallow embeddings typically suffer less
from linguistic mismatch: this is particularly obvious for a class of
shallow embeddings that we refer to as direct embeddings. Direct
embeddings preserve the intrinsic constructs of the host language
“on the nose”. That is, DSL constructs such as if statements, loops,
or function literals, as well as primitive data types such as integers,
floating-point numbers, or strings are represented directly by the
corresponding constructs of the host language.

Deep EDSLs intrinsically compromise programmer experience
by leaking their implementation details (§3.2). Often, IR construc-
tion is achieved through complex type system constructs that are,
inevitably, visible in the EDSL interface. This can lead to cryptic
type errors that are often incomprehensible to DSL users. In addi-
tion, the IR complicates program debugging as programmers cannot
easily relate their programs to the code that is finally executed. Fi-
nally, the host language often provides more constructs than the
embedded language and the usage of these constructs can be unde-
sired in the DSL. If these constructs are generic in type (e.g., list
comprehensions or try\catch) they can not be restricted in the
embedded language by using complex types (§3.2).

Ideally, we would like to complement the high performance of
deeply embedded DSLs, along with their capabilities for multi-target
code generation, with the usability of their directly embedded coun-
terparts. Reaching this goal turns out to be more challenging than
one might expect: let us compare the interfaces of a direct embed-
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ding and a deep embedding of a simple EDSL for manipulating
vectors1. The direct version of the interface is declared as:
t ra i t Vector[T] {

def map[U](fn: T => U): Vector[U]
}

The interface of the deep embedding, however, fundamentally
differs in the types: while the (polymorphic) map operation in
the direct embedding operates directly on values of some generic
type T, the deep embedding must operate on whatever intermediate
representations we chose for T. For our example, we chose the
abstract, higher-kinded type Rep[T] to represent values of type T
in the deep embedding:
t ra i t Vector[T] {

def map[U](fn: Rep[T => U]): Rep[Vector[U]]
}

The difference in types is necessarily visible in the signature and
thus inevitably leaks into user programs. This might seem like a low
price to pay for all the advantages offered by a deep embedding.
However, as we will see in §3.2, this difference in types is at the heart
of many of the inconveniences associated with deep embeddings.
How then, can we conceal this fundamental difference?

In Forge [29], Sujeeth et al. propose maintaining two parallel
embeddings, shallow and deep, with a single interface equivalent to
the deep embedding. In the shallow embedding, Rep is defined to be
the identity on types, that is Rep[T] = T, effectively identifying IR
types with their direct counterparts. As a result, shallowly embedded
programs may be executed directly to allow for easy prototyping
and debugging. In production, a simple “flip of a switch” enables
the deep embedding. Unfortunately, artifacts of the deep embedding
still leak to the user through the fundamentally “deeply typed”
interface. We would like to preserve the idiomatic interface of the
host language and completely conceal the deep embedding.

The central idea of this paper is the use of reflection to convert
programs written in an unmodified direct embedding into their
deeply embedded counterparts. Since the fundamental difference
between the interfaces of the two embeddings resides in their
types, we employ a configurable type translation to map directly
embedded types T to their deeply embedded counterparts JT K. For
our motivating example the type translation is simply:

JT K = T if T is in type argument position,
JT K = Rep[T ] otherwise.

In §4 we describe this translation among several others and discuss
their trade-offs.

Together with a corresponding translation on terms, the type
translation forms the core of Yin-Yang, a generic framework for
DSL embedding, that uses Scala’s macros [3] to reliably translate
directly embedded DSL programs into corresponding deeply em-
bedded DSL programs. The virtues of the direct embedding are
used during program development when performance is not of im-
portance; the translation is applied when performance is essential
or alternative interpretations of a program are required (e.g., for
hardware generation). To avoid error prone maintenance of syn-
chronized direct and deep embeddings Yin-Yang reuses the core
translation to generate the deep embeddings based on the definition
of direct embeddings. Since the same translation is applied both
for the EDSL definition and the EDSL program the equivalence
between the embeddings is assured.

Yin-Yang contributes to the state of the art as follows:

• It completely conceals leaky abstractions of deep EDSLs from
the users. The virtues of the direct embedding are used for pro-

1 All code examples are written in Scala. Similar techniques can be applied
in other statically typed languages. Cf. [4, 14, 30].

totyping, while the deep embedding enables high-performance
in production. The reliable translation ensures that programs
written in the direct embedding will always be correct in the
deep embedding. The core translation is described in §4.
• It restricts host language features in the direct EDSL based on the

supported features of the deep EDSL. Specialized type checking
of the translated direct EDSL displays comprehensible error-
messages to the user. Language restriction is further described
in §5.
• It simplifies deep EDSL development and guarantees semantic

equivalence between the direct embedding and the deep embed-
ding by reusing the core translation to generate the deep EDSL
definition out of the direct EDSL definition (§6).

We evaluate Yin-Yang by generating 3 deep EDSLs from their
direct embedding, and providing interfaces for 2 existing EDSLs.
The effects of concealing the deep embedding and reliability of
the translation were evaluated on 21 programs (1284 LOC), from
EDSLs OptiGraph [27] and OptiML [28]. In all programs combined
the direct implementation obviates 101 type annotations related to
the deep embedding. The complete evaluation is presented in §7.

Throughout the paper, we target the LMS [20] framework as
a deep embedding back-end due to the plethora of existing LMS
EDSLs. Consequently, we will assume that deep embeddings use
LMS’ extensible IR. However, Yin-Yang is applicable to other
types of IR (e.g., polymorphic embeddings [9]) and possibly other
statically typed languages (§8).

2. Background on Scala
In this section we provide background information necessary for
understanding Yin-Yang’s implementation in Scala. We briefly
explain the core concepts of Lightweight Modular Staging [20, 23]
and Scala Macros [3]. Throughout the paper we assume familiarity
with the basics of the Scala Programming Language [17].

2.1 Deep Embedding of DSLs with LMS
Lightweight Modular Staging (LMS) is a staging [31] framework
and an embedded compiler for developing deeply embedded DSLs.
LMS provides a library of reusable language components orga-
nized as traits (Scala’s first-class modules). An EDSL developer
selects traits containing the desired language features, combines
them through mix-in composition [16] and adds DSL-specific func-
tionality to the resulting EDSL trait. EDSL programs then extend
this trait, inheriting the selected LMS and EDSL language con-
structs. Figure 1 illustrates this principle. The trait VectorDSL
defines a simplified EDSL for creating and manipulating vectors
over some numeric type T. Two LMS traits are mixed into the
VectorDSL trait: the Base trait introduces core LMS constructs
and the NumericOps trait introduces the Numeric type class and
the corresponding support for numeric operations. The bottom of
the figure shows an example usage of the EDSL. The constant liter-
als in the program are lifted to the IR through implicit conversions
introduced by NumericOps [18].

All types in the VectorDSL interface are instances of the
parametric type Rep[_]. The Rep[_] type is an abstract type
member of the Base LMS trait and abstracts over the concrete
types of the IR nodes that represent DSL operations in the deep
embedding. Its type parameter captures the type underlying the IR:
EDSL terms of type Rep[T] evaluate to host language terms of
type T during EDSL execution.

Operations on Rep[T] terms are added by implicit conversions
that are introduced in the EDSL scope. For example, the implicit
class VectorOps introduces the + operation on every term of
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// The EDSL declaration
t ra i t VectorDSL extends NumericOps with Base {

object Vector {
def fill[T:Numeric]

(v: Rep[T], size: Rep[Int]): Rep[Vector[T]] =
vector_fill(v, size)

}

imp l ic i t c lass VectorOps[T:Numeric]
(v: Rep[Vector[T]]) {
def +(that: Rep[Vector[T]]): Rep[Vector[T]] =

vector_+(v, that)
}
// Operations vector_fill and vector_+ are elided

}

new VectorDSL { // EDSL program
Vector.fill(1,3) + Vector.fill(2,3)

} // returns a regular Scala Vector(3,6)

Figure 1: Minimal EDSL for vector manipulation.

type Rep[Vector[T]]. In the example, the type class Numeric
ensures that vectors contain only numerical values.

LMS has been successfully used by in project Delite [2, 27]
for building DSLs that support heterogeneous parallel computing.
EDSLs developed with Delite cover domains such as machine
learning, graph processing, data mining, etc. Due to its wide use and
high performance we choose Delite as a back-end for Yin-Yang.

2.2 Scala Macros
Scala Macros [3] are a compile-time meta-programming feature
of Scala. Macros operate on Scala abstract syntax trees (ASTs):
they can construct new ASTs, or transform and analyze the existing
Scala ASTs. Macro programs can use common functionality of the
Scala compiler like error-reporting, type checking, transformations,
traversals, and implicit search.

Yin-Yang uses a particular flavor of Scala macros called def
macros, though we will often drop the prefix “def” for the sake
of brevity. From a programmer’s point of view, def macros are
invoked just like regular Scala methods. However, macro invocations
are expanded during compile time to produce new ASTs. Macro
invocations are type checked both before and after expansion
to ensure that expansion preserves well-typedness. Macros have
separated declarations and definitions: declarations are represented
to the user as regular methods while macro definitions operate on
Scala ASTs. The arguments of macro method definitions are the
type-checked ASTs of the macro arguments.

For DSLs based on Yin-Yang we use a macro that accepts a
single block of code as its input. At compile time, this block is first
type checked against the interface of the direct embedding. Then,
Yin-Yang applies the generic transformation to translate the directly
embedded AST to the corresponding deeply embedded AST. For
example, given the following DSL snippet, Yin-Yang produces the
VectorDSL program in Figure 1:

vectorDSL {
Vector.fill(1,3) + Vector.fill(2,3)

}

3. Motivation
The main idea of this paper is that EDSL users should program in a
direct embedding, while the corresponding deep embedding should
be used only in production. To motivate this idea we consider the
direct embedding and the deep embedding of a simple EDSL for
manipulating vectors. Here, we use Scala to show the problems with
the deep embedding that apply to other statically typed programming

object Vector {
def fromSeq[T: Numeric](seq: Seq[T]): Vector[T] =

new Vector(seq)
def fill[T: Numeric](v: T, size: Int): Vector[T] =

fromSeq(Seq.fill(size)(v))
def range(start: Int, end: Int): Vector[Int] =

fromSeq(Seq.range(start, end))
}
class Vector[T: Numeric](val data: Seq[T]) {

def map[S: Numeric](f: T => S): Vector[S] =
Vector.fromSeq(data.map(x => f(x)))

def +(that: Vector[T]): Vector[T] =
Vector.fromSeq(data.zip(that.data)

.map(x => x._1 + x._2))
}

Figure 2: The interface of a direct EDSL for manipulating
numerical vectors.

languages (e.g., Haskell and OCaml). These languages achieve
the embedding in different ways [4, 8, 14, 30], but this is always
reflected in the type signatures. In the context of Scala, there are
additional problems with type inference and implicit conversions,
however, we omit those from the discussion as language specific.

Figure 2 shows a simple direct EDSL for manipulating numerical
vectors. Vectors are instances of a Vector class, and have only two
operations: i) vector addition (the +), and ii) the higher-order map
function which applies a function f to each element of the vector.
The Vector object provides factory methods fromSeq, range,
and fill for vector construction. Note that though the type of the
elements in a vector is generic, we require it to be an instance of the
Numeric type class.

For a programmer, this is an easy to use library. Not only
can we write expressions such as v1 + v2 for summing vectors
(resembling mathematical notation), but we can also get meaningful
type error messages. The EDSL is an idiomatic Scala and displayed
type errors are comprehensible. Finally, in the direct embedding, all
terms directly represent values from the embedded language and
inspecting intermediate values with the debugger is straightforward.

The problem, however, is that the code written in such a di-
rect embedding suffers from major performance issues [23]. For
some intuition, consider the following code for adding 3 vectors:
v1 + v2 + v3. Here, each + operation creates an intermediate
Vector instance, uses the zip function, which itself creates an
intermediate Seq instance, and calls a higher-order map function.
The abstractions of the language that allow us to write code with
high-level of abstraction have a downfall in terms of performance.
Consecutive vector summations would perform much better if they
were implemented with a simple while loop.

3.1 The Deep Embedding
For the DSL from Figure 2, the overhead could be eliminated with
optimizations like stream fusion [5] and inlining, but to properly
exploit domain knowledge, and to potentially target other platforms,
one must introduce an intermediate representation of the EDSL pro-
gram. The intermediate representation can be transformed according
to the domain-specific rules (e.g., eliminating addition with a null
vector) to improve performance beyond common compiler optimiza-
tions [23]. To this effect, we use the LMS framework and present
the deep version of the EDSL for manipulating numerical vectors in
Figure 3.

In the VectorDSL interface every method has an additional
implicit parameter of type SourceContext and every generic type
requires an additional TypeTag type class. The SourceContext
contains information about the current file name, line number, and
character offset. SourceContexts are used for mapping generated
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t ra i t VectorDSL extends Base {
object Vector {

def fromSeq[T:Numeric:TypeTag](seq: Rep[Seq[T]])
( imp l ic i t sc: SourceContext): Rep[Vector[T]] =
vector_fromSeq(seq)

def fill[T:Numeric:TypeTag]
(value: Rep[T], size: Rep[Int])
( imp l ic i t sc: SourceContext): Rep[Vector[T]] =
vector_fill(value, size)

def range(start: Rep[Int], end: Rep[Int])
( imp l ic i t sc: SourceContext):Rep[Vector[Int]]=
vector_range(start, end)

}

imp l ic i t c lass VectorRep[T:Numeric:TypeTag]
(v: Rep[Vector[T]]) {
def data

( imp l ic i t sc: SourceContext): Rep[Seq[T]] =
vector_data(v)

def +(that: Rep[Vector[T]])
( imp l ic i t sc: SourceContext):Rep[Vector[T]] =
vector_plus(v, that)

def map[S:Numeric:TypeTag](f: Rep[T] => Rep[S])
( imp l ic i t sc: SourceContext): Rep[Vector[S]] =
vector_map(v, f)

}

// IR constructors for ‘map‘ and ‘plus‘ are elided
case class VectorFill[T:TypeTag]

(v: Rep[T], s: Rep[Int])
( imp l ic i t sc: SourceContext)

def vector_fill[T:Numeric:TypeTag]
(v: Rep[T], size: Rep[Int])
( imp l ic i t sc: SourceContext): Rep[Vector[T]] =
VectorFill(v, size) // IR node construction

}

Figure 3: A LMS based deep EDSL for manipulating numeri-
cal vectors.

code to the original program source. TypeTags carry all information
about the type of terms. They are used to propagate run-time type
information through the EDSL compilation for optimizations and
generating code for statically typed target languages. In the EDSL
definitions the SourceContext is rarely used explicitly (i.e., as an
argument). It is provided “behind the scenes” by implicit definitions
that are provided in the DSL.

3.2 Abstraction Leaks in the Deep Embedding
The programs in the deep embedding construct the IR instead of the
values in the embedded language. This inevitably leaks to the users
in the following ways:

Convoluted interfaces. The interface of the EDSL has Rep[_]
types in all its method signatures. Furthermore, once we introduce
code generation, the method signatures must be enriched with
source and type information (SourceContext and TypeTag)
and inevitably become complex. This makes the interface very
complicated to understand. The user of the EDSL, who might not be
an expert programmer, needs to understand concepts like TypeTag
and SourceContext to grasp the interface.

Difficult debugging. In the methods of the direct EDSL all terms
directly represent values in the embedded language (there is no
intermediate representation). This allows users to trivially use
debugging tools to step through the terms and inspect the values of
the embedded language. With the deep EDSL, method definitions
only instantiate the IR nodes. In the classical debugging mode this
does not convey any useful information to the user. Furthermore,
debugging generated code or an interpreter is extremely difficult.

Users cannot relate the debugger position and the original line of
code.

Complicated Type Errors. The Rep[_] types leak to the user
through type errors. Even for simple type errors the user is exposed
to non-standard error messages. In certain cases (e.g., incorrect call
to an overloaded function), the error messages can become hard to
understand. To illustrate, we present a typical type error for invalid
method invocation:

found : Int(1)
required: Vector[Int]

x + 1
^

In the deep embedding the corresponding type error contains Rep
types and the this qualifier:

found : Int(1)
required: th is.Rep[ th is.Vector[Int]]

(which expands to) th is.Rep[vect.Vector[Int]]
x + 1

^
This example represents one of the most common type errors. For
more complicated type errors cf. [13].

Unrestricted host language constructs. In the deep embedding
all generic constructs of a host language can be used arbitrarily. For
example, scala.List.fill[T](count: Int, el: T) can,
for the argument el, accept both direct and deep terms. This is often
undesirable as it can lead to code explosion and unexpected program
behavior.

In the following example, assume that generic methods fill
and reduce are not masked by the VectorDSL and belong only
to the host language library. In this case, the invocation of fill
and reduce performs meta-programming over the IR of the deep
embedding:

new VectorDSL {
List.fill(1000, Vector.fill(1000,1)).reduce(_+_)

}

Here, at DSL compilation time, the program creates a Scala list
that contains a thousand IR nodes for the Vector.fill operation
and performs a vector addition over them. Instead of producing a
small IR the compilation result is a thousand IR nodes for vector
addition. This is a typical case of code explosion that could not
happen in the direct embedding which does not introduce an IR.

On the other hand, some operations can be completely ignored.
In the next example, the try/catch block will be executed during
EDSL compilation instead during DSL program execution:

new VectorDSL {
try Vector.fill(1000, 1) / 0
catch { case _ => Vector.fill(1000, 0) }

}

Here, the resulting program always throws a DivisionByZero
exception.

4. Translation of the Direct Embedding
The purpose of the core Yin-Yang translation is to reliably and
automatically make a transition from a directly embedded DSL
program to its deeply embedded counterpart. The transition requires
a translation for the following reasons: i) host language constructs
such as if statements are strongly typed and accept only primitive
types for some of their arguments (e.g., a condition has to be of
type Boolean), ii) all types in the direct embedding need to be
translated into their IR counterparts (e.g., Int to Rep[Int]), iii)
the directly embedded DSL operations need to be mapped onto their
deeply embedded counterparts, and iv) methods defined in the deep
embedding require additional parameters, such as run-time type
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Γ ` t : T2

Jx : T1 ⇒ tK = lam[T1, T2](x : T1 ⇒ JtK)

Γ ` t1.f : [T1](T2 ⇒ T3)

Jt1.f [T1](t2)K = app[T2, T3](Jt1K.f [T1], Jt2K)
q
def f [T1](x : T2) : T3=t

y
= def f [T1] : (T2⇒T3)= Jx : T2⇒tK

q
val x : T = t

y
= val x : T = valDef[T ](t)

Γ ` if(t1) t2 else t3 : T

Jif(t1) t2 else t3K = ifThenElse[T ](Jt1K, Jt2K, Jt3K)

Figure 5: Subset of rules for language virtualization.

information and source positions. To address these inconsistencies
we propose a straightforward solution: a type-directed program
translation from direct to deep embeddings.

Since the translation is type-directed it requires reflection that
supports type introspection and type transformation. The translation
is based on the idea of representing language constructs as method
calls [4, 22] and systematically intrinsifying direct DSL operations
and types of the direct embedding to their deep counterparts [4].
The translation operates in two main steps:

Language virtualization converts host language intrinsics into
function calls, which can then be evaluated to the appropriate IR
values in the deep embedding.

EDSL intrinsification converts DSL intrinsics (operations and
types) from the direct embedding into their deep counterparts.

To illustrate the core translation, we use an example program for
calculating

∑n
i=0 i

exp using the vector EDSL defined in Figure 2.
Figure 4 contains three versions of the program: Figure 4a depicts
the direct embedding version, Figure 4b represents the program after
type checking (as the translation sees it), and Figure 4c shows the
result of the translation.

Language virtualization allows to redefine intrinsic constructs
of the host language, such as if and while statements. This can
be achieved by translating them into suitable method invocations
as shown by Rompf et al. in the modified Scala compiler named
Scala-Virtualized [22].

Yin-Yang follows the same approach as Scala-Virtualized but
uses macros of unmodified Scala to virtualize Scala intrinsics re-
quired to write direct DSL programs. In addition to Scala-Virtualized
we virtualize function definition and application, and variable bind-
ing. Furthermore, Scala is designed such that the types Any and
AnyRef, which reside at the top of the Scala class hierarchy, contain
final methods; through inheritance, these methods are defined on
all types making it impossible to override their functionality. Since
Yin-Yang uses unmodified Scala we must virtualize all methods on
Any and AnyRef.

Figure 4 illustrates this process and Figure 5 lists a subset of
the translation rules used to virtualize the Scala intrinsics, with JtK
denoting the translation of a term t. Note that method definitions2

need to be translated into function definitions in order to be virtual-
ized. In all expressions the original types are introspected and used
as a type argument of the virtualized method. These generic types
are translated later during the DSL intrinsification phase in order to
avoid type inference in future stages of the translation.

2 In Scala, the def keyword is used to define (possibly recursive) methods.
This is similar to the let and letrec constructs in other functional
languages.

Constructs that are not virtualized are class and trait definitions,
including case class definitions, and pattern matching. We are
planning to add the latter in future versions of Yin-Yang.

DSL intrinsification maps directly embedded versions of the DSL
intrinsics to their deep counterparts. The constructs that need to be
converted are: i) DSL types, ii) DSL operations, iii) constant literals,
and iv) captured variables in the direct program:

• The type translation maps every DSL type in the, already virtual-
ized, term body to an equivalent type in the deep embedding. In
other words, the type translation is a function on types. Note that
this function is inherently DSL-specific, and hence needs to be
configurable by the DSL author. We discuss aspects of different
type translation in more detail in §4.1.
The type mapping depends on the input type and the context.
In practice, we need only distinguish between types in type-
argument position, e.g. the type argument Int in the polymor-
phic function call lam[Int, Int], and the others. To this end,
we define a pair of mutually recursive functions τarg, τ : T → T
where T is the set of all types and τarg and τ translate types in
argument and non-argument positions, respectively.
• The operation translation maps directly embedded versions of

the DSL operations into corresponding deep embeddings. To
this end, we define a function opMap on terms that returns deep
operation for each directly embedded operation. For deep em-
beddings based on LMS, or polymorphic embeddings [9] in
general, opMap simply injects operations into the scope of the
deep EDSL (i.e., by adding the prefix this). Of course, other
approaches, such as name mangling or importing definitions
from a different module, are also possible. In the current imple-
mentation of Yin-Yang, the opMap function is fixed to simply
inject the this prefix, although this might change in the future.
In Figure 4, calls to range on the object vector.Vector
and pow on the package object math.‘package‘ are respec-
tively translated to calls range and pow on this.Vector and
this.‘package‘. For simplicity, passing source information
(SourceContext) and type information TypeTag is handled
implicitly by the Scala compiler. In absence of implicit parame-
ters they should be handled by the translation.
• Constants can be intrinsified in the deep embedding in multiple

ways. They can be converted to a method call for each constant
(e.g., J1K = __1), type (e.g., J1K = liftInt(1)), or with a
unified polymorphic function (e.g., J1K = lift[Int](1)). In
the example, we use the polymorphic function approach for the
constants.
• Free variables are external variables captured by a direct EDSL

term. All that deep embedding knows about these terms is their
type and that they will become available only during evaluation
(i.e., interpretation or execution after code generation). Hence,
free variables need to be treated specially by the translation
and the deep embedding needs to provide support for their
evaluation. In Figure 4, the free variables n and exp are replaced
with calls to the polymorphic method hole[T], which handles
the evaluation of free variables in the deep embedding. Each
captured identifier is assigned with a unique number that is,
together with type information, passed as an argument to the
hole method (0 and 1 in Figure 4). The identifiers are later
sorted and passed as arguments to the Scala function that is
a result of EDSL compilation. The DSL author is required to
ensure that the position and the type of the resulting function
matches the order and types of the sorted identifiers passed by
Yin-Yang.

77



import vector._; import math.pow;
val n = 100; val exp = 6;
vectorDSL {

i f (n > 0) {
val v = Vector.range(0, n)
v.map(x => pow(x, exp)).sum

} else 0
}

(a) A program in direct embedding for calculating
∑n

i=0 i
exp.

val n = 100; val exp = 6;
vectorDSL {

i f (n > 0) {
val v: Vector[Int] =

vector.Vector.range(0, n)
v.map[Int](x: Int =>

math.‘package‘.pow(x, exp)
).sum[Int](math.Numeric.IntIsIntegral)

} else 0
}

(b) The original program after desugaring and type inference.

val n = 100; val exp = 6;
new VectorDSL with IfOps

with MathOps { def main() = {
ifThenElse[Int](

hole[Int](typeTag[Int], 0) > lift[Int](0),{
val v: Rep[Vector[Int]] =

valDef[Vector[Int]](
th is.Vector.range(
lift[Int](0),
hole[Int](typeTag[Int], 0)))

v.map[Int](lam[Int, Int](x: Rep[Int] =>
th is.‘package‘.pow(
x,
hole[Int](typeTag[Int], 1))

).sum[Int]( th is.Numeric.IntIsIntegral)
},{

lift[Int](0)
}

)}

(c) The Yin-Yang translation of the program from Figure 4b.

Figure 4: Transformation of an EDSL program for calculating
∑n

i=0 i
exp.

4.1 Alternative Type Translations
Having type translation as a function opens a number of possible
deep embedding strategies. Alternative type translations can also
dictate the interface of lam and app and other core EDSL constructs.
Here we discuss the ones that we find useful in EDSL design:

The identity translation. If we choose τ to be the identity function
and virtualization methods such as lam, app and ifThenElse to
be implemented in the obvious way using the corresponding Scala
intrinsics, the resulting translation will simply yield the original,
directly embedded DSL program.

Generic polymorphic embedding. If instead we choose τ to map
any type term T (in non-argument position) to Rep[T ], for some
abstract, higher-kinded IR type Rep in the deep EDSL scope, we
obtain a translation to a finally-tagless, polymorphic embedding [4,
9]. For this embedding, the translation functions are defined as:

τarg(T ) = T

τ(T ) = Rep[T ]

By choosing the virtualized methods to operate on the IR-types
in the appropriate way, one obtains an embedding that preserves
well-typedness, irrespective of the particular DSL it implements.
We will not present the details of this translation here, but refer the
interested reader to [4].

Eager inlining. In high-performance EDSLs it is often desired to
eagerly inline all functions and to completely prevent dynamic dis-
patch in user code (e.g., storing functions into lists). This is achieved
by translating function types of the form A=>B in the direct em-
bedding into Rep[A] => Rep[B] in the deep embedding (where
Rep again designates IR types). Instead of constructing an IR node
for function application, such functions reify the whole body of the
function starting with IR nodes passed as arguments. The effect of
such reification is equivalent to inlining. This function representa-

tion is used in LMS [20] by default and we use it in Figure 4. The
translation functions are defined as:

τarg(T [I1, ... , In]) = T [τarg(I1), ... , τarg(In)]

τarg(T1 ⇒ T2) = error

τarg(T ) = T, otherwise
τ(T1 ⇒ T2) = Rep[τarg(T1)] ⇒ Rep[τarg(T2)]
τ(T ) = Rep[T ], otherwise

This translation preserves well-typedness but rejects programs
that contain function types in the type-argument position. In this
case this is a desired behavior as it fosters high-performance code by
avoiding dynamic dispatch. As an alternative to rejecting function
types in the type-argument position the deep embedding can provide
coercions from Rep[A] => Rep[B] to Rep[A=>B] and from
Rep[A=>B] to Rep[A] => Rep[B].

Untyped backend. If DSL authors want to avoid complicated types
in the back-end (e.g., Rep[T]), the τ functions can simply transform
all types to the Dynamic [1] type. Giving away type safety can make
transformations in the back-end easier for the DSL author.

Custom types. All previous translations preserved types in the
type parameter position. The reason is that the τ functions behaved
like a higher-kinded type. If we would like to map some of the base
types in a custom way, those types need to be changed in the position
of type-arguments as well. This translation is used for EDSLs based
on polymorphic embedding [9] that use this.T to represent type
T.

With the previous translations the type system of the direct
embedding was ensuring that the term will type-check in the deep
embedding. We applied this translation to Slick [32] with great
success (§7.3).

Interestingly, just by changing the type translation, the EDSL
author can modify the behavior of an EDSL. For example, with the
generic polymorphic embedding the EDSL will reify function IR
nodes and thus allow for dynamic dispatch. In the same EDSL that
uses the eager inlining translation, dynamic dispatch is restricted
and all function calls are inlined.
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4.2 Correctness
To completely conceal the deep embedding all type errors must
be captured in the direct embedding or by the translation, i.e.,
the translation must never produce an ill-typed program. Proving
this property is verbose and partially covered by previous work.
Therefore, for each version of the type translation we provide
references to the previous work and give a high-level intuition:

• The identity translation ensures that well-typed programs remain
well typed after the translation to the deep embedding [4]. Here
the deep embedding is the direct embedding with virtualized
host language intrinsics.
• Generic polymorphic embedding preserves well-typedness [4].

Type T is uniformly translated to Rep[T] and thus every term
will conform to its expected type.
• Eager inlining preserves well-typedness for programs that are

not explicitly rejected by the translation. We discuss correctness
of eager inlining in [13] on a Hindley-Milner based calculus
similar to the one of Carette et al. [4].
For the intuition why type arguments can not contain function
types consider passing an increment function to the generic
identity function:

id[T => T](lam[T, T](x => x + 1))

Here, the id function expects Rep[_] type but the argument is
Rep[T] => Rep[T].
• The Dynamic type supports all operations and, thus, static type

errors will not occur. Here, the DSL author is responsible for
providing a back-end where dynamic type errors will not occur.
• Custom types can cause custom type errors since EDSL authors

can arbitrarily redefine types (e.g., type Int = String. Yin-
Yang provides no guarantees for this type of the translation.

5. Restricting Host Language Constructs
The direct DSL programs can contain well-typed expressions that
are not supported by the deep embedding. Often, these expressions
lead to unexpected program behavior (§3) and we must rule them
out by reporting meaningful and precise error messages to the user.

We could rule out unsupported programs by relying on properties
of the core translation. If a direct program contains unsupported
expressions, after translation it will become ill-typed in the deep
embedding. We could reject unsupported programs by simply
reporting type checking errors. Since, the direct program is well-
typed and the translation preserves well-typedness all type errors
must be due to unsupported expressions.

Unfortunately, naively restricting the language by detecting type-
checking failures is leaking information about the deep embedding.
The reported error messages will contain virtualized language
constructs and types. This is not desirable as users should not be
exposed to the internals of the deep embedding.

Yin-Yang avoids leakage of the deep embedding internals in
error messages by performing an additional verification step that, in
a fine grained way, checks if a method from the direct program exists
in the deep embedding. This step traverses the tree generated by the
core translation and verifies for each method call if it correctly type-
checks in the deep embedding. If the type checking fails Yin-Yang
reports two kinds of error messages:

• Generic messages for unsupported methods:

List.fill(1000, Vector.fill(1000,1)).reduce(_+_)
^
Method List.fill[T] is unsupported in VectorDSL.

• Custom messages for unsupported host language constructs:

try Vector.fill(1000, 1) / 0
^
Construct try/catch is unsupported in VectorDSL.

With Yin-Yang the DSL author can arbitrarily restrict virtualized
constructs in an embedded language by simply omitting correspond-
ing method definitions from the deep embedding. Due to the addi-
tional verification step all error messages are clearly shown to the
user. This allows easy construction of embedded DSLs that support
only a subset of the host language.

6. Automatic Generation of the Deep Embedding
So far, we have seen how Yin-Yang translates programs written
in the direct embedding to the deep embedding. This arguably
simplifies life for EDSL users by allowing them to work with
the interface of the direct embedding. However, the EDSL author
still needs to maintain synchronized implementations of the two
embeddings, which can be a tedious and error prone task.

To alleviate this issue, Yin-Yang automatically generates the
deep embedding from the implementation of the direct embedding.
This happens in two steps: First, we generate high-level IR nodes
and methods that construct them through a systematic conversion
of methods declared in a direct embedding to their corresponding
methods in the deep embedding (§6.1). Second, we exploit the fact
that method implementations in the direct embedding are also direct
DSL programs. Reusing our core translation from §4, we translate
them to their deep counterparts (§6.2). In the translated method
bodies, in addition to the translated DSL itself, we also allow usage
of the Scala library constructs that supported by the target back-end
(cf. [13]).

The automatic generation of deep embeddings reduces the
amount of boilerplate code that has to be written and maintained
by EDSL authors, allowing them to instead focus on tasks that can
not be easily automated, such as the implementation of domain-
specific optimizations in the deep embedding. However, automatic
code generation is not a silver bullet. Hand-written optimizations
acting on the IR typically depend on the structure of the later,
introducing hidden dependencies between such optimizations and
the direct embedding. Care must be taken in order to avoid breaking
optimizations when changing the direct embedding of the EDSL.

For further information on how to use Yin-Yang’s code genera-
tion together with the core translation, and how to specify rewrite
rules, cf. [13].

6.1 Constructing High-Level IR Nodes
To make the generation regular Yin-Yang provides a corresponding
IR node and construction method for every operation in the direct
embedding. By using reflection, we extract the method signatures
from the direct embedding. From these, we generate the interface,
implementation, and code generation traits as prescribed by LMS.
This part of the translation is LMS specific and applying it to other
frameworks would require changing the code templates. Based
on the signature of each method, we generate the case class that
represents the IR node. Then, for each method we generate a
corresponding method that instantiates the high-level IR nodes.
Whenever a method is invoked in the deep EDSL, instead of being
evaluated, a high-level IR node is created.

Figure 6 illustrates the way of defining IR nodes for Vector
EDSL. The case classes in the VectorOps trait define the IR nodes
for each method in the direct embedding. The fields of these case
classes are the callee object of the corresponding method (e.g.,
v in VectorMap), and the arguments of that method (e.g., f in
VectorMap).
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t ra i t VectorOps extends SeqOps with
NumericOps with Base {
// elided implicit enrichment methods. E.g.:
// Vector.fill(v, n) = vector_fill(v, n)

// High level IR node definitions
case class VectorMap[T:Numeric,S:Numeric]

(v: Rep[Vector[T]], f: Rep[T] => Rep[S])
extends Rep[Vector[S]]

case class VectorFill[T:Numeric]
(v: Rep[T], size: Rep[Int])
extends Rep[Vector[T]]

def vector_map[T:Numeric,S:Numeric]
(v: Rep[Vector[T]], f: Rep[T] => Rep[S]) =

VectorMap(v, f)
def vector_fill[T:Numeric]

(v: Rep[T], size: Rep[Int]) =
VectorFill(v, size)

}

Figure 6: High-level IR nodes for Vector.

class Vector[T: Numeric](val data: Seq[T]) {
// effect annotations not necessary
def print() = System.out.print(data)

}
t ra i t VectorOps extends SeqOps with
NumericOps with Base {
case class VectorPrint[T:Numeric]

(v: Rep[Vector[T]]) extends Rep[Vector[T]]
def vector_print[T:Numeric](v: Rep[Vector[T]]) =

reflect(VectorPrint(v))
}

Figure 7: Direct and deep embedding for Vector with side-
effects.

Deep embedding should, in certain cases, be aware of side-
effects. The EDSL author must annotate methods that cause side-
effects with an appropriate annotation. To minimize the number of
needed annotations we use Scala FX [25]. Scala FX is a compiler
plugin that adds an effect system on top of the Scala type system.
With Scala FX the regular Scala type inference also infers the
effects of expressions. As a result, if the direct EDSL is using
libraries which are already annotated, like the Scala collection
library, then the EDSL author does not have to annotate the direct
EDSL. Otherwise, there is a need for manual annotation of the direct
embedding by the EDSL author. Finally, the Scala FX annotations
are mapped to the corresponding effect construct in LMS.

Figure 7 shows how we automatically transform the I/O effect
of a print method to the appropriate construct in LMS. As the
Scala FX plugin knows the effect of System.out.println, the
effect for the print method is inferred together with its result type
(Unit). Based on the fact that the print method has an I/O effect,
we wrap the high-level IR node creation method into reflect,
which is an effect construct in LMS to specify an I/O effect [21]. In
effect, all optimizations in the EDSL will have to preserve the order
of println and other I/O effects. We omit details about the LMS
effect system; for more details cf. [21].

6.2 Lowering High-Level IR Nodes to their Low-Level
Implementation

Having domain-specific optimizations on the high-level representa-
tion is not enough for generating high performance code. In order
to improve the performance, we must transform these high-level
nodes into their corresponding low-level implementations. Hence,

t ra i t VectorLowLevel extends VectorOps
with SeqLowLevel {
// Low level implementations
override def vector_fill[T:Numeric]

(v: Rep[T], s: Rep[Int]) =
VectorFill(v, s) atPhase(lowering) {

Vector.fromSeq(Seq.fill[T](s)(v))
}

}

Figure 8: Lowering to the low-level implementation for Vector.

we must represent the low-level implementation of each method in
the deep EDSL. After creating the high-level IR nodes and applying
domain-specific optimizations, we transform these IR nodes into
their corresponding low-level implementation. This can be achieved
by using a lowering phase [23].

Figure 8 illustrates how the invocation of each method results in
creating an IR node together with a lowering specification for trans-
forming it into its low-level implementation. For example, whenever
the method fill is invoked, a VectorFill IR node is created like
before. However, this high-level IR node needs to be transformed
to its low-level IR nodes in the lowering phase. This delayed trans-
formation is specified using an atPhase(lowering) block [23].
Furthermore, the low-level implementation uses constructs requiring
deep embedding of other interfaces. In particular, an implementa-
tion of the fill method requires the Seq.fill method that is
provided by the SeqLowLevel trait.

Generating the low-level implementation is achieved by trans-
forming the implementation of each direct embedding method. This
is done in two steps. First, the expression given as the implementa-
tion of a method is converted to a Scala AST of the deep embedding
by core translation of Yin-Yang. Second, the code represented by
the Scala AST must be injected back to the corresponding trait. To
this effect, we implemented Sprinter [15], a library that generates
correct and human readable code out of Scala ASTs. The generated
source code is used to represent the lowering specification of every
IR node.

7. Evaluation
We compared the deep embedding generation of Yin-Yang with
Forge on three Delite-based deep EDSLs: OptiML, OptiQL, and
Vector (§7.1). Then, we measured the effect of concealing the deep
embedding by counting the number of obviated annotations related
to deep embedding in the test suites of OptiML and OptiGraph
EDSLs (§7.2). Finally, we evaluated the ease of adopting Yin-Yang
for the existing deep EDSL Slick [32] (§7.3) and compare the effort
of designing the interface with the current version of the interface.
We do not report on execution speed since performance benefits of
the deep embedding have been studied previously [23, 29].

7.1 Automatic Deep EDSL Generation
To evaluate the automatic deep EDSL generation for OptiML,
OptiQL, and Vector, we used Forge [29], a Scala based meta-
EDSL for generating both direct and deep EDSLs from a single
specification. Forge already contained specifications for OptiML
and OptiQL.

To avoid re-typing OptiML and OptiQL we modified Forge to
generate the direct embedding from its specification and generated
the direct embeddings from the existing Forge based EDSL specifi-
cations. Then, we used our automatic deep generation tool to convert
these direct embeddings into their deep counterparts. Since, deep
EDSLs mostly consist of boilerplate the generated embeddings have
a similar number of LOC as the handwritten counterparts. For all
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three EDSLs, we verified that tests running in the direct embeddings
behave the same as the tests for the deep embeddings.

In Table 1, we give a line count comparison for the code in the
direct embedding, Forge specification, and deep embedding for three
EDSLs: i) OptiML is a Delite-based EDSL for machine learning, ii)
OptiQL is a Delite-based EDSL for running in-memory queries, and
iii) Vector is the EDSL shown as an example throughout this paper.
We are careful with measuring lines-of-code (LOC) with Forge and
the deep EDSLs: we only count the parts which are generated out of
the given direct EDSL.

Overall, Yin-Yang requires roughly the same number of LOC as
Forge to specify the DSL. This can be viewed as positive result
since Forge relies on a specific meta-language for defining the
two embeddings. Yin-Yang, however, uses Scala itself for this
purpose and is thus much easier to use. In case of OptiML, Forge
slightly outperforms Yin-Yang. This is because Forge supports meta-
programming at the level of classes while Scala does not.

Table 1: LOC for direct EDSL, Forge specification, and deep
EDSL.

EDSL Direct Forge Deep

OptiML 1128 1090 5876
OptiQL 73 74 526
Vector 70 71 369

We did not compare the efforts required to specify the DSL with
Yin-Yang and Forge. The reason is twofold:

• It is hard to estimate the effort required to design a DSL.
If the same person designs a single DSL twice, the second
implementation will always be easier and take less time. On
the other hand, when multiple people implement a DSL their
skill levels can greatly differ. Finally, DSL design is technically
demanding and it is hard to find a large enough group to conduct
a statistically significant user study.
• Writing the direct embedding in Scala is arguably simpler than

writing a Forge specification. Forge is Delite-specific language
and uses a custom preprocessor to define method bodies in Scala.
Thus, learning a new language and combining it with Scala
snippets must be harder than just writing idiomatic Scala.

7.2 No Annotations in the Direct Embedding
To evaluate the number of obviated annotations related to the deep
embedding we implemented a direct embedding for the OptiGraph
EDSL (an EDSL for graph processing), and used the generated
direct EDSL for OptiML. We implemented the whole application
suites of these EDSLs with the direct embedding. All 21 applications
combined have 1284 lines of code.

To see the effects of the direct embedding as the front-end we
counted the number of deep embedding related annotations that
were used in the application suite. The counted annotations are
Rep[T] for types and lift(t) for lifting literals when implicit
conversions fail. In 21 applications the direct embedding obviated
96 Rep[T] annotations and 5 lift(t) annotations.

7.3 Yin-Yang for Slick
Slick is a deeply embedded Scala EDSL for database querying and
access. Slick is not based on LMS, but still uses Rep types to achieve
reification. To improve the complicated interface of Slick we used
Yin-Yang. However, since the deep embedding of Slick already
exists, we first designed the new interface (direct embedding). The
new interface has dummy method implementations since semantics
of different database back-ends can not be mapped to Scala. Thus,

this interface is used only for user friendly error reporting and
documentation. The interface is completely new, covers all the
functionality of Slick, and consists of only 70 lines of code (cf.
[13]).

Slick has complicated method signatures that do not correspond
to the simple new interface. In order to preserve backward compat-
ibility, the redesign of Slick to fit Yin-Yang’s core translation was
not possible. We addressed this by adding a wrapper for the deep
embedding of Slick that fits the required signature. The wrapper
contains only 240 lines of straightforward code.

We compare the effort required for the interface design with
Yin-Yang and with traditional type system based approaches. The
development of the previous Slick interface required more than a
year of development while the Yin-Yang version was developed in
less than one month. The new front-end passes all 54 tests that cover
the most important functionalities of Slick. When using Slick all
error messages are idiomatic to Scala and resemble typical error
messages from the standard library.

This study was performed by only two users and, thus, is not
statistically significant. Still, we find the difference in required
effort large enough to indicate that Yin-Yang simplifies front-end
development of EDSLs.

8. Discussion
Yin-Yang consistently translates terms to the embedded domain and,
thus, postpones DSL compilation to run-time. Although, compila-
tion happens in a different compilation stage, Yin-Yang does not
allow staging [31]. EDSLs can, however, achieve partial evalua-
tion [12] if their implementation supports it.

We implemented Yin-Yang in Scala, however the underlying
principles are applicable in the wider context. Yin-Yang operates
in the domain of statically typed languages based on the Hindley-
Milner calculus with a type system that is advanced enough to
support deep EDSL embedding. The type inference mechanism,
purity, laziness, and sub-typing, do not affect the operation of Yin-
Yang. Different aspects of Yin-Yang require different language
features, which we discuss separately below.

The core translation and language restriction are based on term
and type transformations. Thus, the host language must support
reflection, introspection and transformation on types and terms. This
can be achieved both at run-time and compile-time.

Semantic equivalence between the direct embedding and deep
embedding is required for debugging and prototyping. If there is a
semantic mismatch [6] between the two embeddings, e.g., the host
language is lazy and the embedded language is strict, Yin-Yang can
not be used for debugging. In this scenario the direct embedding
can be implemented as stub which is used only for its user friendly
interface and error reporting.

9. Related Work
Yin-Yang is a framework for developing embedded DSLs in the spirit
of Hudak [10, 11]: embedded DSLs are Scala libraries and DSL
programs are just Scala programs that do not, in general, require pre-
or post-processing using external tools. Yin-Yang translates directly
embedded DSL programs into finally-tagless [4] deep embeddings.
Our approach supports (but is not limited to) polymorphic [9] deep
embeddings, and – as should be apparent from the examples used in
this paper – is particularly well-adapted for deep EDSLs using an
LMS-type IR [22, 23].

As discussed in §1, Sujeeth et al. propose Forge [29], a Scala
based meta-EDSL for generating equivalent shallow and deep
embeddings from a single specification. DSLs generated by Forge
provide a common abstract interface for both shallow and deep
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embeddings through the use of abstract Rep types. A shallow
embedding is obtained by defining Rep as the identity function
on types, i.e. Rep[T] = T.

A DSL user can switch between the shallow and deep embed-
dings by changing a single flag in the project build. Unfortunately,
the interface of the shallow embedding generated by Forge remains
cluttered with Rep type annotations. Additionally, some plain types
that are admissible in a directly embedded program may lack coun-
terparts among the IR types of the deep embedding. This means
that some seemingly well-typed DSL programs become ill-typed
once the transition from the shallow to the deep embedding is made,
forcing users to manually fix type errors in the deeply embedded
program. Finally, DSL authors must learn a new language for EDSL
design whereas with Yin-Yang this language is Scala itself.

Project Lancet [24] by Rompf et al. and work of Scherr and
Chiba [26] interpret Java bytecode to extract domain-specific knowl-
edge from directly embedded DSL programs compiled to bytecode.
These solutions are similar to Yin-Yang in that the direct embedding
is translated to the deep embedding, however, they do not provide
functionality to generate a deep embedding out of a direct one.

10. Conclusions
We presented Yin-Yang, a framework for DSL embedding that
completely conceals the unfriendly interface of the deep embedding,
while still leveraging all their benefits. We believe Yin-Yang is
an important step towards wider adoption of embedded DSLs. If
Yin-Yang would be used in combination with custom type-error
reporting of Scalad [19] and syntax extensibility of frameworks
like SugarJ [7], embedded DSLs would provide most benefits of
the external DSLs, while, due to automatic generation of the deep
embedding, DSL implementation is significantly simplified.
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