A new robust and efficient estimator for ill-conditioned linear inverse problems with outliers

Marta Martinez-Camara1, Michael Muma2,
Abdelhak M. Zoubir2, Martin Vetterli1

1School of Computer and Communication Sciences
École Polytechnique Fédérale de Lausanne (EPFL)

2Signal Processing Group
Technische Universität Darmstadt

23 April, 2015
1. Motivation

2. Problem formulation

3. Background on robust estimators

4. New regularized τ-estimator

5. Algorithm

6. Results

7. Conclusions
Motivation
Motivation

Source location

Sensor location

Weather information

Measurements
Problem formulation

Consider the following linear inverse problem

$$y = Ax + e$$

- **y**: measurement vector
- **A**: known deterministic matrix
- **e**: error term
- **x**: unknown parameter vector
Problem formulation

Consider the following linear inverse problem

\[y = Ax + e \]

- \(y \): measurement vector
- \(A \): known deterministic matrix
- \(e \): error term
- \(x \): unknown parameter vector

Typical assumptions

- \(A \) is well conditioned
- Distribution of \(e \) is Gaussian

Standard estimator: least-squares (LS)

\[\hat{x} = \arg \min_x \| y - Ax \|_2^2 \]
Problems formulation

Consider the following linear inverse problem

\[y = Ax + e \]

- **y**: measurement vector
- **A**: known deterministic matrix
- **e**: error term
- **x**: unknown parameter vector

Typical assumptions

- **A** is well conditioned
- Distribution of **e** is Gaussian

Standard estimator: least-squares (LS)

\[\hat{x} = \arg \min_x ||y - Ax||_2^2 \]
Ill-conditioned problem:

\(\mathbf{A} \) has a large condition number \(\rightarrow \) LS estimate fails

\((\mathbf{A} \in \mathbb{R}^{300 \times 120}, \text{condition number} = 1000, \text{Gaussian errors SNR} = 10 \text{ dB})\)
Impulsive noise and outliers

e contains outliers \rightarrow LS estimate breaks down
Goals of this work

1. Design an estimator that is simultaneously
 - robust against outliers,
 - near optimal with Gaussian errors, and
 - can handle \mathbf{A} with a large condition number.

Proposed approach: regularized τ-estimator
- A robust and efficient loss function.
- A penalty term for regularization.
Goals of this work

1. Design an estimator that is simultaneously
 - robust against outliers,
 - near optimal with Gaussian errors, and
 - can handle A with a large condition number.

2. Develop a fast and reliable algorithm to compute the estimates.
Goals of this work

1. Design an estimator that is simultaneously
 ▶ robust against outliers,
 ▶ near optimal with Gaussian errors, and
 ▶ can handle A with a large condition number.

2. Develop a fast and reliable algorithm to compute the estimates.

Proposed approach: regularized τ-estimator
 ▶ A robust and efficient loss function.
 ▶ A penalty term for regularization.
Background: robust estimation

Least Squares estimator

\[\hat{x}_{LS} = \arg \min_x \sum_{n=1}^{N} (r_n(x))^2 \]

- \(r_n(x) = y_n - A_n x \)
- \(A_n \) is the n-th row of \(A \)
Background: robust estimation

Least Squares estimator

\[\hat{x}_{LS} = \arg \min_x \sum_{n=1}^{N} (r_n(x))^2 \]

- \(r_n(x) = y_n - A_n x \)
- \(A_n \) is the \(n \)-th row of \(A \)
- Optimal in the sense that the variance of the estimate \((\sigma_{\hat{x}_{LS}}^2) \) is minimised with Gaussian noise.
Least Squares estimator

\[\hat{x}_{LS} = \arg \min_x \sum_{n=1}^{N} \rho(r_n(x)) \]

- \(r_n(x) = y_n - A_n x \)
- \(A_n \) is the n-th row of \(A \)
- Optimal in the sense that the variance of the estimate \(\sigma^2_{\hat{x}_{LS}} \) is minimised with Gaussian noise.
Least Squares estimator

\[\hat{x}_{LS} = \arg \min_x \sum_{n=1}^{N} \rho(r_n(x)) \]

- \(r_n(x) = y_n - A_n x \)
- \(A_n \) is the n-th row of \(A \)
- Optimal in the sense that the variance of the estimate \(\sigma_{\hat{x}_{LS}}^2 \) is minimised with Gaussian noise.
M estimation

$$\hat{x}_{LS} = \arg\min_x \sum_{n=1}^{N} \rho(r_n(x))$$

- $$r_n(x) = y_n - A_n x$$
- $$A_n$$ is the n-th row of $$A$$
M estimation

\[\hat{x}_M = \arg\min_x \sum_{n=1}^{N} \rho(r_n(x)) \]

- \(r_n(x) = y_n - A_n x \)
- \(A_n \) is the n-th row of \(A \)
Background: robust estimation – M estimation

M estimation

\[\hat{x}_M = \arg \min_x \sum_{n=1}^{N} \rho(r_n(x)) \]

- \(r_n(x) = y_n - A_nx \)
- \(A_n \) is the n-th row of \(A \)
M estimation

\[\hat{x}_M = \arg \min_x \sum_{n=1}^{N} \rho \left(\frac{r_n(x)}{\hat{\sigma}_M(r(x))} \right) \]

- \(r_n(x) = y_n - A_n x \)
- \(A_n \) is the n-th row of \(A \)
- \(\hat{\sigma}_M(r(x)) \): residual scale M-estimate
- \(\rho(x) \): Symmetric, positive and non-decreasing on \([0, \infty]\)
- If \(\frac{\sigma_{\text{XLS}}}{\sigma_{\text{XM}}} \) close to 1 with Gaussian errors, efficient
Background: robust estimation – \(\tau \) estimation

- Choosing \(\rho(x) \) based on the data

\[
\hat{x}_\tau \text{ minimizes a robust and efficient } \tau \text{-scale estimate}
\]

\[
\hat{x}_\tau = \arg \min_x \hat{\sigma}_\tau(r(x))
\]

Martinez-Camara et al.
ICASSP’15
23.04.2015 14 / 25
Choosing $\rho(x)$ based on the data

Asymptotically equivalent to an M-estimator

$\rho(\cdot) = w(\cdot) \rho_1(\cdot) + \rho_2(\cdot)$

$w(\cdot)$: adapts to the distribution of the data
Background: robust estimation – τ estimation

- Choosing $\rho(x)$ based on the data

- Asymptotically equivalent to an M-estimator

$$\rho(\cdot) = w(\cdot) \rho_1(\cdot) + \rho_2(\cdot)$$

- $w(\cdot)$: adapts to the distribution of the data

- \hat{x}_τ minimizes a robust and efficient τ-scale estimate

$$\hat{x}_\tau = \arg \min_{x} \hat{\sigma}_\tau(r(x))$$
Recap

<table>
<thead>
<tr>
<th></th>
<th>Robust</th>
<th>Efficient</th>
<th>Ill posed</th>
</tr>
</thead>
<tbody>
<tr>
<td>M estimator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>robust</td>
<td>✔</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>efficient</td>
<td>✗</td>
<td>✔</td>
<td>✗</td>
</tr>
<tr>
<td>T estimator</td>
<td>✔</td>
<td>✔</td>
<td>✗</td>
</tr>
</tbody>
</table>
New regularized τ-estimator

Proposed estimator

$$\hat{x}_\tau = \arg\min_x \hat{\sigma}_\tau(r(x)) + \lambda \|x\|_2$$

- $\hat{\sigma}_\tau(r(x))$: τ-estimate of the scale
- $\lambda \geq 0$: regularization parameter
New regularized τ-estimator

Proposed estimator

$$\hat{x}_\tau = \arg \min_x \hat{\sigma}_\tau(r(x)) + \lambda \|x\|_2$$

- $\hat{\sigma}_\tau(r(x))$: τ-estimate of the scale
- $\lambda \geq 0$: regularization parameter

Key difficulty: How to compute the regularized τ estimate?

- Non-convex function
- No guarantees of finding the global minimum
Steps:

1. How to find local minima
2. How to find the global one
3. Speeding up the algorithm
Algorithm

Step 1: finding local minima

- Equivalent to Iterative Reweighted Least Squares (IRLS)

\[
\hat{x} = \arg \min_x \| W(x)(y - Ax) \|^2_2 + \lambda^2 \| x \|^2_2
\]

- \(W(x) \): data adaptive term that we derive from

\[
\frac{\partial (\hat{\sigma}_\tau^2(r(x)) + \lambda \| x \|^2_2)}{\partial x} = 0
\]
Step 2: finding the global minima

- We take many different initial solutions...

- ... and we hope to find the correct valley!
Step 3: speeding up the algorithm

- For each initial solution, make only a few IRLS iterations. → fast convergence
- Pick the N best solutions.
- Use them as new initial solutions.
- Iterate IRLS until convergence.
Results

Experimental setup

\[y = Ax + e_G + e_o \]

- \(A \in \mathbb{R}^{300 \times 120} \): random iid Gaussian
- \(x \): piecewise constant
- \(e_G \): Gaussian noise
- \(e_o \): sparse vector, entries with large variance (outliers)
- \(\lambda \): determined experimentally
Results – with previous estimators

Non-regularized LS-estimator, M-estimator, and τ-estimator

- A with a condition number of 50.
- $\|\hat{x} - x\|$: Monte Carlo average.
Results – with new estimator

Regularized LS-estimator, M-estimator, and τ-estimator

- A with a condition number of 1000.
- $\|\hat{x} - x\|$: Monte Carlo average.
Conclusions

- New regularized robust estimator
 - highly robust against outliers
 - highly efficient in the presence of Gaussian noise
 - stable when the mixing matrix has a large condition number
Conclusions

- New regularized robust estimator
 - highly robust against outliers
 - highly efficient in the presence of Gaussian noise
 - stable when the mixing matrix has a large condition number

- Current research
 - Study the interrelation of robustness and regularization
 - Develop Lasso-type regularized τ-estimator
 - Derivation of influence function
 - Application to real data

Reproducible Results
https://github.com/LCAV/RegularizedTauEstimator
Conclusions

▶ New regularized robust estimator
 ▶ highly robust against outliers
 ▶ highly efficient in the presence of Gaussian noise
 ▶ stable when the mixing matrix has a large condition number

▶ Current research
 ▶ Study the interrelation of robustness and regularization
 ▶ Develop Lasso-type regularized τ-estimator
 ▶ Derivation of influence function
 ▶ Application to real data

▶ Reproducible Results
 ▶ https://github.com/LCAV/RegularizedTauEstimator
Thank you for your attention.
Thank you for your attention.

Questions?