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Abstract

This paper addresses the problem of optimal grasping of an object with a multi-fingered robotic
hand for accomplishing a given task. The task is first demonstrated by a human operator and its
force/torque requirements are captured through the usage of a sensorized tool. The grasp quality
is computed through a task compatibility criterion. Grasp synthesis is then formulated as a single
constrained optimization problem, generating grasps that are feasible for the hand’s kinematics
by maximizing the corresponding task-oriented quality criterion and ensuring grasp stability. The
method was validated on a human hand model and is shown to be easily adapted to different hand
kinematic models.
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1. Related work

One fundamental challenge in robotic grasping is: given a particular hand, an object and a task
to perform, what is the optimal grasp of the object permitting to efficiently accomplish the task? In
order to answer this question, two main issues need to be addressed: 1) capturing and modelling
the task requirements and 2) finding the best hand configuration that is adapted to the task.

1.1. Task modelling

Few approaches in the literature addressed the problem of task modelling. The wrenches
that are expected to occur for a given task are referred to as the Task Wrench Space (TWS). Li
and Sastry [12] showed that the choice of a grasp should be based on its capability to generate
wrenches that are relevant to the task. Assuming the task and the object geometry to be known,
they computed the object trajectory while performing the task before the grasping action occurred
and based on a human experience, they modeled the task by a six-dimensional ellipsoid, called task
ellipsoid, in the object wrench space. These ellipsoid’s principal axes were determined intuitively
by forces/torques requirements directions. Considering the difficulty of pre-computing the object
trajectory to accomplish the task, the authors in [18] assumed the task to be unknown. In this
case, the probability for every wrench direction to occur as a disturbance is equal and the TWS
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is modeled as a unit sphere. However, modeling the TWS with a unit sphere has no physical
interpretation; in order to accomplish a task, the forces and their corresponding torques act on
the object surface and consequently the TWS varies with the object shape. Thus, the TWS is not
uniform and Pollard [16] introduced the notion of Object Wrench Space (OWS) incorporating the
object geometry in the computation of the TWS. The OWS is a general model over any task and
takes into account all possible disturbances on the object surface. Borst et al. [4] approximated the
OWS with an ellipsoid in order to analytically model the TWS. This enabled the authors to obtain
a physically motivated, task independent description of the TWS. More recently and in order to
consider a specific task constraints, the authors in [5] introduced the Functional Wrench Space
(FWS) which is defined as the set of wrenches exerted on an object through a sequence of task-
oriented demonstrated grasps in a virtual reality environment. The FWS is a subset of the global
OWS, is task-dependent as it is defined based on a set of exemplar grasps appropriate for the task
but does not take into account the wrenches exerted on the object all along the task.

1.2. Task-oriented quality criteria and grasp synthesis

Based on these models, researchers proposed several criteria to measure the quality of a task-
oriented grasp. The convex hull over the set of all wrenches that the manipulator can exert on
the object for a given grasp is defined as the Grasp Wrench Space (GWS). Li and Sastry [12]
defined their quality criterion as the scaling factor that can embed the largest task ellipsoid to
the grasp wrench space. Borst et al. [4] defined this criterion as the largest scaling factor for a
given OWS to fit it into a GWS. Aleotti et al. [S] evaluated a grasp by computing a quality metric,
defined as the largest factor by which the GWS can be scaled to fit in the demonstrated functional
wrench space (FWS). While the authors in [4, 16] used these criteria for selecting the optimal
grasp among a set of pre-computed grasps, the authors in [12] used the grasp quality criterion to
solve the grasp synthesis problem. They formulate grasp synthesis as an optimization problem in
order to determine the optimal contact locations on the object’s surface without however taking
into account the feasibility of their solution for the the hand kinematic constraints. In [5], the
authors use grasp quality criterion in order to locally optimize a grasp; given a candidate grasp
suggested by a grasp planning algorithm, they find a sub-optimal grasp close to the specified one.

1.3. Our approach

The previous approaches present two major limitations. Task modelling has been performed
either in a general, task-independent manner [16, 18, 4] or when trying to take into account the
specificity of one particular task, the model was constructed intuitively [12] or based on a vir-
tual environment grasp experience [5]. The second limitation concerns the task-oriented grasp
synthesis which was reduced to optimizing either the contact points locations on the object or
when taking into account the hand model, to only locally optimizing pre-generated grasps and
consequently generating sub-optimal grasps.

In our previous work [11], we proposed a method for generating a variety of grasps by formu-
lating grasp synthesis as a single constrained optimization problem. The computed grasps were
feasible for the hands kinematics and were obtained by minimizing the norm of the joint torque
vector of the hand ensuring grasp stability. We extend this previous work in three ways: 1) We
use a sensorized tool and model the task constraints in terms of force/torque exerted on the object
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all along the task from human demonstration; 2) We conduct an experiment showing that the task
model does not depend on the choice of the grasp; 3) We include the task constraints extracted
from human demonstration in the formulation of grasp synthesis, modify our objective function to
a task-oriented quality measure and generate task compatible grasps. The algorithm was tested on
a biologically plausible representation of the human hand.

In the following paragraphs, we derive the steps by which we can include the task-oriented
quality criterion, the kinematic constraints of the hand to describe finger placement on the object
surface yielding an optimal grasp. Section 2 describes the sensorized tool and its usage in mod-
elling the task wrench space. Section 3 describes the Human hand kinematics and force capabili-
ties model; Section 4 describes briefly the representation of the object surface; Section 5 describes
the constraints that must be satisfied to yield stable and high quality task-oriented grasps on 3D
objects; Section 6 shows that grasp computation can be formulated as a non-linear optimization
problem; Section 7 illustrates the performance of the approach; Section 8 concludes.

1.4. Notation

In the following of the document, bold letters represent vectors, capital letters represent matri-
ces and normal letters represent scalars.

R, = (01,03,03) = orthonormal reference frame attached to the object.
Rj, = (hy,hy,h3) = orthonormal reference frame attached to the palm expressed in R,.
dp, = palm’s position expressed in R,.

R! = (e‘:, vij, r:) = orthonormal reference frame attached to joint i of finger j expressed in Rj,.
d{( = vector connecting origins of Ri and Ri p-related to the k' and (k4 1) links of finger ;.

¢’ = number of joints of the j** finger.
g = number of joints torques for all fingers.
b = number of fingers, also number of contact points.

7/ = maximal i’ joint torque of the j'”* finger.

i max
7= {1/} € R% = all hand joint torques.
J7 = jacobian matrix of the j* finger.

J =diag(J',J?,...J").

G € R%3 = the grasp matrix.

p} = contact point located on the 7" finger.

n,,; = contact normal at point p.

fi = force applied by the hand at contact point p.
f € R3 = all the applied forces at all the contact points.
g(p) = implicit surface representing the object shape.

l{: = i"" edge vector of the friction cone centered about the contact point internal normal n;.
7Ll.j = non negative constants associated each to l{

p = friction coefficient.

W{ € R® = primitive contact wrench associated to the j** contact point p/.

¢)ij = positive scalars associated each to le .

u; € RS = main direction i of the task ellipsoid in the wrench space.
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Figure 1: The sensorized tool is composed of a cylindrical handle to which is attached a 6D force/torque sensor. The end effector or the tool
(pencil in this case) is then attached to the force/torque sensor enabling the human expert to accomplish a variety of tasks.

¥ = positive scalars associated with u;.

2. Modelling the Task

To quantitatively model the TWS, capturing the wrenches exerted on the object while perform-
ing a task is essential. To capture these forces/torques applied on the object, we propose the usage
of a sensorized tool that can be used by a human expert for this goal. Figure (1) illustrates the
corresponding tool while being used during the task of drawing circles. It consists of a cylindrical
handle to be grasped with, a 6D force/torque sensor that can be attached to this handle and a tool or
end effector attached to the force/torque sensor enabling the human expert to accomplish a variety
of tasks such as writing, screw driving, cutting, etc. For performing this variety of tasks using this
same tool, one needs only to replace the end effector with the one that corresponds to the task to
perform.

This experimental setup allows a human expert to demonstrate a task during which forces/torques
applied on the object can be collected and analysed. We have chosen to express this data in
the object reference frame located at the center of the cylindrical handle. The black dots in fig-
ure (2) illustrate the forces and torques exerted on the object during the drawing circles task. This
six dimensional data is then approximated by a 6D ellipsoid. The main axes of this ellipsoid
u; € R®, i = 1..6, give the main directions in the wrench space that characterize the task and the
associated length {7 > 0}, i = 1..6 give a measure of the range of the force/torque applied for
the given task. Modeling this distribution is crucial to determine the positioning of the fingers
that can generate the required range of force/torque for the task. For example, figure (2) shows
the projection of the 6D ellipsoid in the 3D force and the 3D torque domains. The main axis of
each ellipsoid is represented in magenta. Notice that for the task of drawing circles, the forces
applied on the z axis along the cylindrical handle is more important than the friction forces along
the x-y axis along the cross section of the handle. In the torque domain, as expected, the torques
are mainly generated along the x and y axes, almost no torque was generated along the z axis.
This figure also shows that the main force ellipsoid axis is perpendicular to the one of the torque
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Figure 2: Drawing circles task: (a) the 6D ellipsoid is projected onto the 3D force domain (in blue) and onto the 3D torque domain (in green)
The black dots are the collected force/torque data points. The main axis of each of the ellipsoids is represented in magenta; (b) the main force
ellipsoid axis is perpendicular to the one of the torque ellipsoid.

ellipsoid. Thus, these task ellipsoids are capable of capturing the task characteristics and could be
used for modelling the task requirements in terms of forces and torques.

3. Human Hand Model

We use for our study a human hand model as a proof of concept of the approach. The aim is
to test whether the results of our optimization problem would correspond to grasps that are similar
to those used by humans to accomplish a certain task.

3.1. The Human hand kinematics

The human hand kinematic model is inspired by the one used for the cyberglove [8, 7] and
consists of 21 degrees of freedom distributed as follows: 4 revolute joints for modelling the index,
middle, ring and pinky fingers (2 joints for flexion and abduction at the metacarpophalangeal
junction (MCP) and one joint each at the proximal (PIP) and distal interphalangeal (DIP) junctions)
and 5 revolute joints for modelling the thumb (the thumb requires one additional joint as it exhibits
the ability for pronation/supination at the MCP junction). A detailed kinematic model of a 4
degrees of freedom finger is presented in paragraph (3.3). Figure 3 illustrates the revolute joints
at each of the fingers. One should note that the distal link is coupled to the proximal one and it
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Figure 3: The Human hand kinematic model. Notice the 5 revolute joints of the thumb and the 4 revolute joints for each of the rest of the fingers.

moves with it at a fixed rate. For generating grasps later on in this paper, we use the thumb, index
and middle fingers, resulting in 13 degrees of freedom.

3.2. The Human hand force capabilities

Similarly to the work in [17], we formalize in this paragraph the forces capabilities of a human
finger. Figure (4) shows the tendons of a human index finger. A muscle or an actuator is attached
to each tendon. Each muscle is assigned an activation level that varies from O indicating an inactive
muscle to 1 at its maximum activation level. Following the biomechanical literature, the mapping
from activation levels to joint torques is given through the following equation:

e = MIPI g (1)

Where ™., = {7 lmax} Iand 7/ ma Stands for the maximal izh joint torque of the jth finger
(for the human hand j Varles between 1 and 5, for the index finger for example i varies between
1 and 4); al = {ak} and aj stands for the activation level of the krh muscle of the Jth finger (the
number of muscles per finger is equal to the number of tendons of that finger); P/is am/ xm/
diagonal matrix, where m/ is the number of muscles of the jth finger, P/ converts activation levels
to tendon forces, its diagonal element py corresponds to the maximum muscle force that can be
supplied to tendon k; M/ is a ¢/ x m/ matrix, where ¢/ is the number of joints of the ;' finger, M/
contains joint moment arm information and converts tendon forces to joint torques, (more details
about M/, P/ and their corresponding values are given in annexe 10.1).

3.3. Finger kinematics

Figure 5 shows a detailed model of a 4 degrees of freedom model of the human hand finger.
The revolute joints are represented as cylinders aligned with their axes, noted as r: An orthonor-
mal reference frame le = (eg, vf,r}) is attached to each joint, where i = 1,..,¢/, j=1,..,5 stand

! In the rest of this document, we use bold, normal and capital letters to represent respectively vectors, scalars and
matrices.
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Figure 4: Flexor and extensor tendons of the human index finger. the numbers indicate ratios of outgoing forces at each branch point in the
extensor web. Figure taken from [17].

respectively for the joint and finger numbers, ¢’ is thus the number of DOFs of the j'” finger. The
R{ are expressed according to an orthonormal reference frame, R;, = (hy,hy,h3), attached to the
hand palm. Ry, is expressed in the object reference frame, R, = (01,03,03), which is the origin of
the system.

Figure 5: Kinematic structure of a human hand figer model, adapted from [19]. R, = (hy,h,h3) and R, = (01,02, 03) are the reference frames
attached respectlvely to the hand palm and the object. The revolute Jomts are represented as cylinders aligned with their axes, noted as r . The
Rl (e v

7, l.) are the reference frames attached to each joint. The m vectors are not shown for simplicity on the display. Rl represents the

revolute joint responsible for the thumb opposition movement. RJ R’ and R/ represent respectively the MP, PIP and DIP joints. nj, is the normal
vector at the contact point. dj is the finger anchor point defined relative to the hand reference frame. {6’ } are the joint angles with i = 1,..,4 in the
thumb case. v/ is a vector whose orientation is fixed relatively to the palm, it is useful for measuring 9’

4. Oject modeling

We want to solve grasp synthesis as an optimization problem starting from a position of the
hand away from the object and converging towards a good grasp. An implicit representation of
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the object surface is needed in order to test at each step of the optimization whether the fingers are
inside, outside or placed on the object surface. Implicit surfaces are contours or isosurfaces, which
can be described as the set of all the x € 2~ C R? for which the function g: 2 — Requals to zero.
Thus g gives a description of the object shape by telling for each location in space, p, whether it is
part or not of the object. A point p is defined by its 3D cartesian coordinates (p1, p2, p3):

g: R = R; g(p) =¢(p1,p2,p3)
<0, pisinsidethe object
=<¢ =0, pisontheobject surface
>0, pisoutsidethe ob ject

We use superquadrics to represent simple object shapes such as cylindrical ones and a probabilis-
tic method, namely Gaussian Process Regression to represent complex object shapes as a single
implicit function. For more details on this representation, please refer to our previous work [11].

5. Constraints for generating task-oriented feasible grasps

This paragraph details the different constraints required for the generation of optimal grasps
according to a task related quality criterion. These constraints include the fingers placement on
the object surface, the force/kinematic feasibility for the hand, the grasp stability, and collision
avoidance requirements.

5.1. Computing fingers locations

We assume a frictional contact point model and thus three contacts are sufficient to achieve a
stable grasp [14]. To solve the grasp synthesis problem, we have chosen to locate these contact
points on the fingertips of the thumb, index and middle fingers.

If we select a contact point p! located on the fingertip of the j*” finger, its coordinates in the object’s
frame of reference are obtained using the hand kinematic model described in section 3:

. g
P =dp+R;. Y d} )
k=0

Where dy, is the palm’s position in the object’s reference frame; d{( is the vector connecting two

successive reference frames, Ri and R,JC Ny related to the k" and (k+ l)th links.

A grasp is obtained when b contact points are established between the contact locations on the
hand and the object’s surface. Since we have at our disposal an analytical function g : R> — R
that describes the object’s surface, see Section 4, when a contact point pJ located on the hand is in

contact with the object, it satisfies:

g(p') =0, forall b contact points 3)

Equation (3), if satisfied, guarantee that b points located on the hand are in contact with the
object’s surface. However, this is not sufficient to ensure that the resulting grasp is feasible for the
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hand. An additional set of constraints is needed in order to take into account the range of motion
of each of the joint angles. These constraints are directly derived from standard transformations
across frames of reference and have been moved into appendix 10.2.

5.2. Generating Force-closure grasps

A grasp is said to be force-closure when the origin of its wrench space is contained inside the
convex hull of the contact wrenches [15]. Computing force-closure grasps requires to compute
the location of the contact points p} on the object surface as well as their corresponding contact
normals n,;, and is formulated as follows [15]:

3/ €R.6/ >0, L0/ =1, j=1,..5 i=1,..1 )
s.t ZiJ‘PiJ lJ:O

Where ¢/ are positive scalars ensuring that the primitive wrenches can positively span R® and

hence resist any external wrench; and le eRS, i=1,.,1, is called a primitive contact wrench
associated to the jth contact point p’/ and is computed as follows:

J 1/

. l . . .
=Y 21, A >0 (6)
i=1

fl is the force applied by the hand at a contact point p} and must satisfy Coulomb’s law [9] and
lie within the friction cone to prevent slippage along the surface of the object. Generally, the
friction cone is linearized by a polyhedral convex cone with / sides, where lg represents the ith
edge vector of the polyhedral convex cone centered about the contact point internal normal n;.

The coefficients ),ij are non negative constants, see Appendix 10.3.

5.3. Force feasibility criterion

Following the biomechanical literature, we showed previously that the maximal i joint torque
of the ;" finger, ’L'i] nax €an be computed by equation (1). In order for the grasp to be force feasible,
the hand in a grasp configuration needs to be able to apply on the object the wrenches required to
accomplish the task without exceeding the limitations on its finger joint torques. Thus, we need to

relate the wrenches applied on the object to the finger joint torques as follows [3]:
t=Jt, and w=Gf (7)

Where 7 € R? is defined to group all the hand joint torques, T = {Tl:i }; g is the total number of
joints and b is the number of fingers; the vector f € R3 groups all the applied forces at all the
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contact points; J = diag(J',J?,..,J%) where J/ is the jacobian matrix of the j'” finger; w € R is
the wrench applied on the object; G € R6*3” is the grasp matrix [12]. The equations (8) could be
written as:

7 =JT (GRw + Ax) (8)

Where GR is the right-inverse of the matrix G; A is a basis of .4 (G) and x is a parameter vector.
This formulation shows that wrench intensities with no effect on object motion are only those
in .4 (G). However, it has also been shown that in order for all internal forces to be actively
controlled by the joint actions, the null spaces of G and J need not to overlap and thus .4 (G) N
A (JT) =0, [20]. This constraint could also be formulated as:

JTA#0 C))

The limitation on the joint torques is expressed as:

T< Tmax, With Tmax=1{t/ 3}, i=1.¢/,j=1.b (10)

5.4. Task-oriented quality criterion

In order to quantify the quality of a task-compatible grasp, we have chosen the generalized
force manipulability criterion detailed in [3] that quantifies the ability of the grasp in ensuring
the maximum transformation ratio between the hand joint torque and the object wrench space
domains. This criterion is defined as:

T
Ry = Wy an

Where M,, and M; are symmetric positive definite weight matrices. The authors in [3] were
interested in finding an optimum of this index or the maximum transformation ration with respect
to both w and 7. In our case, the task wrench space is well defined and thus w is fixed. Conse-
quently, optimizing the index R,, consists in minimizing t7 M, 7 in the direction of the task wrench
space. Thus, our grasp quality criterion could be written as:

6

0=Y 7t My, (12)
i=1

Ty, = J7 (GRuj + Ax) (13)

Where {u;} and {7}, defined in section (2), are respectively the unitary vectors along the directions
of the task wrench requirements and their corresponding normalized lengths. In this way, {¥}
factors weigh the relative importance of each force/torque direction for the accomplishment of the
task.
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5.5. Collision avoidance

Our objects are described by an implicit surface function. This formulation allows to detect
whether a point is inside, outside or on the surface of the object. Therefore, collision avoidance
between the object and the hand is obtained by sampling several points c¢Xi, on the finger phalanges
and palm; we compute the distance from these points to the object surface and add a new set of
constraints to ensure all points are outside the object’s surface:

g(c%) >0, Vk; (14)

Where k; is the number of sampled points on the jrh finger. Collision avoidance between the
fingers is taken into account in the kinematic feasibility of the hand by considering the finger joint
limits.

6. Solving Optimal Grasp Synthesis as an optimization problem

Given an analytical representation of the object and a hand kinematical model, this paragraph
shows the formulation of grasp synthesis as a constrained optimization problem. Our objective
function tries to maximize the task-oriented quality measure while satisfying force-closure con-
straints, hand kinematic constraints and collision constraints. This yields a constraint-based min-
imization for the set of parameters 6 = {¢/,i=1..m,j = 1.3,Ry, dn, R/, i = 1..¢/, j=1.3},
given by:

argmin_ O(p)
0
under the constraints (3), (14), (4), (8 —10), (16 —23)

While the objective function is convex, this is still a difficult optimization problem since the
constraints are non-linear and the problem is high dimensional (in total 579 variables and 653
constraints). We have shown in our previous work [11] that Interior Point OPTimizer (IPOPT)
method proposed by Wichter and Biegler [22] is adapted to solving problems with non linear
constraints and thus we have chosen to apply this optimization technique on our new optimization
problem. The algorithm is written in the Modeling Language for Mathematical Programming
(AMPL). By formulating the problem in AMPL, no analytical gradient computation is required.
The TPOPT solver generates locally optimal solutions and we exploit this to generate multiple
possible solutions for performing a task. This diversity in the possible grasps is a richness in
manipulation capability that may prove useful in complex manipulation.

7. Experimental Results

The conducted experiments aimed at testing the ability of our approach of generating task
compatible grasps. We first model the task using the data collected from the sensorized tool while
a human demonstrates the task. Seven subjects participated in the experiment. The subjects were
seated and were asked during the experiments to keep their elbow in the air and to rely as much
as they can on the usage of the motion of their fingers for accomplishing the task, minimizing the
usage of the wrist when it is possible.
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Figure 6: Three tested different grasps for performing the circles drawing task: tripod grasp, cylindrical grasp and power grasp.

Force Ellipsoid
Torque Ellipsoid

y(N) E
X(N)

(a)

Force Ellipsoid Torque Ellipsoid

z(N)

y(N) X (N)

(b)

Figure 7: Drawing circles task with a tripod grasp: (a) the force ellipsoids resulting from 21 trials are shown in blue; the torque ellipsoids are
shown in green; the main axis of each of the ellipsoids is shown in magenta; the average main axis is shown in black in both force and torque
domains. The black points correspond to the collected force/torque data; (b) the projection of the force/torque ellipsoids resulting from 21 trials

along the average main axis represented in black.
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7.1. Task Vs Grasp

The aim of this experiment is to show whether the choice of the grasp influences the task
description. For this purpose, one task is performed using different grasps and their models are
compared.

7.1.1. Experiment

The task chosen for this experiment is the circles drawing task. The subjects were asked to
use the sensorized tool as a pen and draw a circle by following a preprinted circular contour on
a piece of a paper, repeating this motion 4 times. The choice of this task forces the subject to
move the pen in the different directions that are involved in the motion of writing. The subjects
were instructed to perform the circles drawing task using 3 different grasps of the sensorized tool,
a tripod grasp, a cylindrical grasp and a power grasp, see figure(6). For each grasp type, each of
the seven subjects performed the task three times for a total of 21 trials per grasp type. The 6D
force/torque data collected from each trial was expressed in the object reference frame located at
the center of the tool’s cylindrical handle and then approximated by a 6D ellipsoid. In order to get
a sense of how this ellipsoid is shaped in the object reference frame, we project this ellipsoid onto
the 3D force and 3D torque domains. Figure (7.a) illustrates the 21 force ellipsoids as well as the
21 torque ellipsoids that correspond to the tripod grasp. The black dots represent the force/torque
data collected along the circles drawing task. We plot in magenta the main axis along each of the
3D ellipsoids in the force and torque domains. The average of these main axes is then represented
as a black axis, showing the main directions in force and torque required by the task. Figure (7.b)
shows the projection of these ellipsoids along these main directions. To get a sense of how their
shapes vary from one to the other.

7.1.2. Results

In the following, we compute the axes lengths of the force/torque ellipsoids and check their
variability across the 21 demonstrations. The following notation is used: (i and L, correspond to
the average length of the 3 main axes of the force and torque ellipsoids respectively across the 21
trials; 0y and o; are the corresponding standard deviations. s, and U, are the average length ob-
tained after normalizing the axis length of each of the ellipsoid in order to get an insight about their
shape and the importance of each axis in respective to the others; oy, and oy, are the correspond-
ing standard deviations of the normalized shape. i, v, and Ly, vy, are the normalized average of
the projection of the ellipsoids axes lengths along the x,y,z axes of the object. 6/ Us, Ofy / Lfns
o; / Wy and oy, / W, measure the different coefficients of variation and express the dispersion of the
different examples as a percentage of their average. Tables (1, 2) show the force/torque ellipsoid
shape of the circles drawing task for the 3 different grasp types, tables (3, 4) show the correspond-
ing normalized force/torque ellipsoid shapes, and table (5) shows the normalized average of their
projections along the x,y, z axes of the object.

7.1.3. Discussion
By checking the force ellipsoid shapes in tables (1, 3, 5) across the 3 different grasp types, we
noticed the following:
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Table 1: Force ellipsoid shapes of the circles drawing task: average and standard deviation of the axes lengths of the force ellipsoids for the 3
grasp types, tripod, cylindrical and power grasps. Each line corresponds to the measures performed along one of the 3 axes of the ellipsoid, ordered

according to their length ascending values.

Force ellipsoid shapes
Tripod grasp Cylindrical grasp Power grasp
uiN) | 04(N) | op /My | ur(N) | 0¢(N) | Of /by | Hy(N) | Of(N) | O / 1y
0.38 | 0.18 0.47 0.33 | 0.21 0.64 049 | 0.23 0.47
0.52 | 0.23 0.44 042 | 0.24 0.57 0.66 | 0.32 0.48
1.62 | 0.68 0.42 1.38 | 0.78 0.56 2.00 | 0.86 0.43

Table 2: Torque ellipsoid shapes of the circles drawing task: average and standard deviation of the axes lengths of the torque ellipsoids for the 3
grasp types, tripod, cylindrical and power grasps. Each line corresponds to the measures performed along one of the 3 axes of the ellipsoid, ordered
according to their length ascending values.

Torque ellipsoid shapes
Tripod grasp Cylindrical grasp Power grasp
w(N) | 6;(N) | or /1 | l(N) | 6:(N) | o1 /s | ls(N) | 6:(N) | 07 / 1t
0.03 | 0.01 0.33 | 0.04 | 0.01 0.25 | 0.04 | 0.02 | 0.50
263 | 1.22 | 046 | 2.19 | 1.31 0.60 | 3.18 | 1.52 | 048
341 | 136 | 040 | 299 | 1.85 | 0.62 | 416 | 2.12 | 0.51
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e The shape of the force ellipsoids is similar for the 3 different grasp types, see the lengths
of the 3 main axes of the ellipsoids in the different tis, columns, table (3). Notice that the
dispersion among the different examples is also small and varies between 5 and 6% along
the main axis and between 9 and 13% along the minor axes, see columns G, / U .

e Even though the shape of the ellipsoids is similar, their scale varies across trials (from 42
to 56% along the main axis, columns oy / 117 ) and across grasp types (from 1.38N to 2.0N
along the main axis, columns i), table (1). Notice that the forces applied on the object
during a power grasp are higher than the ones involving a tripod or a cylindrical grasp. This
is probably due to the fact that the subjects tend to press more on the paper when they’re
holding the pen using a power grasp.

e According to columns s, y,, the major force applied on the object is, as expected, directed
along the z axis of the tool, table (5). The forces along the x and y axes correspond to the
friction forces along both directions. They are very close and this is due to the circular mo-
tion of the pen involving friction in both directions.

Similarly, if we check the values in tables (2, 4, 5) related to the torque ellipsoids across the 3
different grasp types, we notice the following:

e The shape of the torque ellipsoids is similar for the 3 different grasp types, see the lengths
of the 3 main axes of the ellipsoids in the different u;, columns, table (4). Notice that the
dispersion among the different examples is also small and varies between 5 and 9% along
the 2 major axes and between 30 and 60% along the minor axes, see columns Oy, / ll;,. This
big variation along the minor axis is due to the fact that the average normalized torque value
along this axis is around 0.01N.cm, almost non existent and the variance is due to noise.

e Even though the shape of the ellipsoids is similar, their scale varies across trials (columns
o; / Iy ) and across grasp types (columns L), table (2). Notice that the torques applied on
the object during a power grasp are higher than the ones involving a tripod or a cylindrical

grasp.

e According to columns L, vy, the 2 major torques applied on the object are, as expected,
directed along the x and y axes of the tool, table (5). The torques along the z axes are almost
non existent.

This experiment shows that the scale of the task ellipsoids may vary across trials and grasp
types but their shape remains very similar with a dispersion between 5 and 9% along force/torque
requirements. This variation is probably related to how well each subject has performed the task.
For example, some subjects took the time to guide the pen precisely around the preprinted circles
while others where less precise in their motions. Additionally to this dispersion measurement,
we compute in the following section another metric showing the statistical similarity of these
ellipsoids.
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Table 3: Normalized force ellipsoid shapes of the circles drawing task: normalized average and standard deviation of the axes lengths of the force
ellipsoids for the 3 grasp types, tripod, cylindrical and power grasps. Each line corresponds to the measures performed along one of the 3 axes of
the ellipsoid, ordered according to their length ascending values.

Normalized force ellipsoid shapes
Tripod grasp Cylindrical grasp Power grasp
.ufn(N) Ofn (N) Cfn / Hfn .ufn(N) Ofn (N) Ofn / Hfn .ufn(N) Ofn (N) Ofn / Hfn
0.15 0.02 0.13 0.15 0.02 0.13 0.15 0.02 0.13
0.20 0.02 0.10 0.20 0.02 0.10 0.21 0.02 0.09
0.65 0.03 0.05 0.65 0.04 0.06 0.64 0.035 0.05

Table 4: Normalized torque ellipsoid shapes of the circles drawing task: normalized average and standard deviation of the axes lengths of the

torque ellipsoids for the 3 grasp types, tripod, cylindrical and power grasps. Each line corresponds to the measures performed along one of the 3

axes of the ellipsoid, ordered according to their length ascending values.

Normalized torque ellipsoid shapes
Tripod grasp Cylindrical grasp Power grasp
Uin(N) | 01n(N) | Oin [/ tin | Win(N) | O1n(N) | Ot/ Min | Uin(N) | Otn(N) | Opn / Min
0.01 0.003 0.30 0.01 0.006 0.60 0.007 | 0.003 0.43
0.42 0.04 0.09 042 | 0.041 0.09 0.43 0.03 0.07
0.57 0.04 0.07 0.57 0.04 0.07 0.56 0.03 0.05

Table 5: Circles drawing task: the normalized average of the projection of the force/torque ellipsoid axes lengths along the x,y,z axes of the
object for the 3 grasp types, tripod, cylindrical and power grasps. The 3 rows illustrate respectively the ellipsoid lengths along the x,y and z axes of
the object reference frame.

Tripod grasp Cylindrical grasp Power grasp
Hpnoyz(N) | Manoyz(N.cm) | Pnayz(N) | Penxyz(N-cm) | Ppnyz(N) | Hinxyz(N-cm)
0.19 0.49 0.19 0.55 0.18 0.50
0.22 0.50 0.18 0.44 0.19 0.49
0.59 0.01 0.63 0.01 0.63 0.01
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Figure 8: Three different tasks were performed with the sensorized tool: circles drawing, cutting and screw driving.

7.2. Modelling different tasks

The aim of this experiment is to show that the task ellipsoids are able to capture the differences
in terms of force/torque requirements across different tasks. Three tasks were chosen for this
purpose, each demanding different force and torque requirements. Since the task model does not
depend on the choice of grasp, in the following, the subjects have selected a grasp of their choice
to perform the required task.

7.2.1. Experiment
Three tasks were analysed: drawing circles, cutting and using a screw driver, see figure (8):

e Circles drawing task: similar description to previous section.

e Cutting task: the pen end effector was replaced for this task by a blade and the subjects
were asked to use the sensorized tool as a knife, moving the blade back and forth until they
cut a small piece of candle. While the writing/drawing task involves mainly forces along
the cylindrical handle of the tool, the cutting task involves forces along both directions, the
cylindrical handle and the cutting direction.

e Screw driving task: this task was chosen because it involves not only applying forces along
the cylindrical handle of the tool but also requires applying a torque along the same direction.
During this task, the end effector of the tool was replaced by a screw driver tip, the screws
had a black mark and the subjects were asked to drive the screws in a piece of wood until
the black mark was reached.

A task needed to be completed successfully by the subject in order to take the corresponding
data into account. Again, seven subjects performed successfully each of the previous tasks 3
times, for a total of 21 trials per task. Tables (6, 6) show the force/torque ellipsoid shapes of the
circles drawing, cutting and screw driving tasks, tables (8, 9) show the corresponding normalized
force/torque ellipsoid shapes, and table (10) shows the normalized average of their projections
along the x,y, z axes of the object.

7.2.2. Results

Figure (10) illustrates the force and torque ellipsoids of the three tasks across the different
trials. In the previous section, we have already showed how the shape of the circles drawing task
ellipsoids corresponded to our intuition about the task requirements. If we consider now the task of
cutting, we notice in figure (10.b) that the forces applied on the object are mainly along the x and
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Figure 9: The normalised Riemannian metric applied on our data set. The first 63 data points correspond to the 6D ellipsoids resulting from
the circles drawing experiment using the 3 different grasp types (21 samples per grasp type). The following 21 samples correspond to the cutting
experiment data. The last 21 data points correspond to the screw driving experiment, resulting in a total of 105 ellipsoids.

z axes which are the directions of the blade and the cylindrical handle respectively. The torques
related to this task are mainly along the y axis and they are due to the back and forth motion cutting
motion along the x axis. As for the screw driving task, we notice in figure (10.c) that the forces are
mainly along the z axis. The torques involved in this task are as well important along the z axis but
they also have a considerable value along the x and y axes, see column p;, in table (10). One would
expect for the screw driving task to have mainly torques along the z axis only but in practice when
the subjects were trying to drive the screw within the wooden block, the screw driver tip was not
immediately directed towards the center of the screw, it was often touching the edges of the screw,
resulting in generating torques along the x and y directions. Thus, these task ellipsoids managed
to capture what the subject was really doing. Notice also the columns 6, / s, and Gy, / s, in ta-
bles (8, 9) showing once more time that the shape of the ellipsoids per task are similar across trials
with a dispersion varying between 5 and 12% along the main axes defining the force requirements
and between 4 and 12% along the main axes defining the torque requirements, with the exception
of the screw driving task where a torque was exerted along the 3 axes and one of them showed a
dispersion of 28%. While the subjects performed the circles drawing and cutting easily, they were
not experts in performing screw driving tasks and as explained previously, they were clumsy in the
way they directed the tool to fit within the screw resulting in this big dispersion along the screw
driving torque task ellipsoid. The range of force/torque involved in these experiments, could easily
be checked from the columns iy and y, in tables (6, 7)showing that the average forces involved in
the circles drawing, cutting and screw driving tasks along the major axis are respectively 1.67N,
8.3N and 11.49N while the corresponding torques are of 3.52N.cm, 61.75N.cm and 9.64N .cm.

In order to quantify the similarity and dissimilarity between the task ellipsoids, we need a
metric measuring the distance between two ellipsoids. An ellipsoid belongs to a special category

18



Table 6: Force ellipsoid shapes of the circles drawing, cutting and screw driving tasks: normalized average and standard deviation of the axes
lengths of the force ellipsoids for the 3 tasks. Each line corresponds to the measures performed along one of the 3 axes of the ellipsoid, ordered
according to their length ascending values.

Force ellipsoid shapes
Drawing task Cutting task Screw driving task
piN) | 04(N) | op /My | ke(N) | 0¢(N) | of /By | uy(N) | Of(N) | O / 1y
0.38 | 0.18 0.47 097 | 0.33 0.34 1.00 | 0.57 0.57
0.52 | 0.23 0.44 4.82 1.21 0.25 1.57 1.00 0.64
1.62 | 0.68 0.42 8.33 1.61 0.19 | 1149 | 3.01 0.26

of symmetric matrices, which is the positive definite symmetric matrices, see equation (??), and
these matrices form a Riemannian manifold. Ordinary Euclidean distance ignores such a manifold
structure, therefore, in the literature, a Riemannian metric is used to compute the distance between
these matrices [2]. This metric maps the symmetric positive definite matrices to a flat Riemannian
space so the ordinary Euclidean distance could be used, and is defined as:

D(X,Y) = —|[|log(X) —log(Y)||F (15)

Where ||.||F stands for the Frobenius norm. When normalizing this metric by the maximal distance
in the data set, a distance of 0 would correspond to the case where both ellipsoids have identical
shapes and 1 corresponds to the case where two ellipsoids have the most different shapes. Fig-
ure (9) illustrates the different values of the normalized Riemannian metric when applied to our
data set. The first 63 data points correspond to the 6D ellipsoids resulting from the circles drawing
experiment using the 3 different grasp types (21 samples per grasp type). The following 21 sam-
ples correspond to the cutting experiment data. The last 21 data points correspond to the screw
driving experiment, resulting in a total of 105 ellipsoids. We can easily distinguish in this figure
3 different groups of ellipsoids corresponding to the 3 different tasks, which shows that the task
ellipsoids managed to capture the differences in the task requirements. We can also notice that the
3 different drawing grasp types are similar to each others.

7.3. Grasp Synthesis

The experiments presented in this paragraph aimed at testing the optimization algorithm’s
ability to generate for a given task, grasps that are feasible for the hand’s kinematics and that
are adapted to the task requirements. Since we model the task from human demonstration, we
have chosen to test our algorithm on a human hand kinematic model in order to check whether
the obtained grasps could be similar to those chosen by a human subject. The sensorized tool is
described in the optimization algorithm by a cylindrical superquadric with length of 20 ¢m and
a diameter of 2 cm. To explore the diversity of possible solutions, we run the algorithm starting
from different initial conditions. We generate 42 orientations of the palm that span uniformly
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Figure 10: Force ellipsoids in blue and torque ellipsoids in green corresponding to the tasks of writing (a), cutting (b) and screw driving (c).
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Table 7: Torque ellipsoid shapes of the circles drawing, cutting and screw driving tasks: normalized average and standard deviation of the axes
lengths of the torque ellipsoids for the 3 tasks. Each line corresponds to the measures performed along one of the 3 axes of the ellipsoid, ordered

according to their length ascending values.

Torque ellipsoid shapes
Drawing task Cutting task Screw driving task
wN) | 6:(N) | o /iy | eN) | 6:(N) | 00 /s | te(N) | 6:(N) | 01 / Wy
0.03 | 001 | 033 | 209 | 0.85 | 041 | 3.15 | 1.16 | 0.37
263 | 1.22 | 046 | 830 | 3.00 | 036 | 650 | 329 | 0.51
341 | 136 | 040 | 61.75] 1298 | 021 | 9.64 | 6.13 | 0.64

Table 8: Normalized force ellipsoid shapes of the circles drawing, cutting and screw driving tasks: normalized average and standard deviation of
the axes lengths of the force ellipsoids for the 3 tasks. Each line corresponds to the measures performed along one of the 3 axes of the ellipsoid,
ordered according to their length ascending values.

Normalized force ellipsoid shapes
Drawing task Cutting task Screw driving task
.ufn(N) an(N) Ofn / Hin .ufn(N) an(N) Ofn /.ufn .ufn(N) Ofn (N) Ofn / Hin
0.15 0.02 0.13 0.07 0.02 0.29 0.07 0.02 0.28
0.20 0.02 0.10 0.34 0.04 0.12 0.11 0.04 0.36
0.65 0.03 0.05 0.59 0.06 0.10 0.82 0.06 0.07

Table 9: Normalized torque ellipsoid shapes of the circles drawing, cutting and screw driving tasks: normalized average and standard deviation
of the axes lengths of the force ellipsoids for the 3 tasks. Each line corresponds to the measures performed along one of the 3 axes of the ellipsoid,

ordered according to their length ascending values.

Normalized torque ellipsoid shapes

Drawing task Cutting task Screw driving task
Pen(N) | Gn(N) | Oun /[ tan | Men(N) | 610(N) | Otn / tin | Ken(N) | Ota(N) | O / Han
0.01 | 0.003 0.30 0.03 0.01 0.33 0.18 0.05 0.28
0.42 0.04 0.09 0.12 0.04 0.33 0.34 0.04 0.12
0.57 0.04 0.07 0.85 0.04 0.04 0.48 0.06 0.12
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Table 10: Drawing, cutting and screw driving tasks: the normalized average of the projection of the force/torque ellipsoid axes lengths along

the x,y,z axes of the object for the 3 different tasks. The 3 rows illustrate respectively the ellipsoid lengths along the x,y and z axes of the object

reference frame.

Drawing task Cutting task Screw driving task
HUin xyz (N) Min xyz (N.cm) Hin xyz (N) Hin xyz (N.cm) Hin xyz (N) Hin xyz (N.cm)
0.19 0.49 0.44 0.19 0.10 0.37
0.22 0.50 0.09 0.76 0.10 0.36
0.59 0.01 0.46 0.05 0.80 0.27
Quality 0.37 9.7
Grasp

Table 11: The grasp quality of the generated grasps for the circles drawing task.

the different directions in space, initialized from 3 different locations (the palm is positioned on
the diagonal of the reference system attached to the center of the object, the palm aligned with the
middle of the object height and the palm placed above the object), for a total of 126 different initial
hand postures. Starting from each initial configuration, we computed grasps on the cylindrical tool
for the 3 different task models, writing, cutting and screw driving. The experiments were run on
an AMD Opteron machine with 47 GB and a CPU at 2.4 GHz. For the 126 trials, the algorithm
converges to 7 locally optimal solutions in the case of circles drawing task, 20 solutions in the case
of the cutting task and 3 in the case of the screw driving task. Many of these were similar in terms
of hand/fingers configurations. Tables (11, 12 and figure 11) illustrate the different configurations
obtained for each of the tasks and show their corresponding quality. The average computation time
to find a solution was of 459 secwith a standard deviation of 186 sec. The solutions were plotted
using the SynGrasp Matlab toolbox for grasp analysis [13].

7.3.1. Discussion

The grasps chosen by the subjects to perform the writing, cutting and screw driving tasks often
involved 4 contact points or more and were distributed on different parts involving many times
the sides of the fingers. Consequently, the interpretation of the computed grasps from a human-
likeness point of view is not intuitive. However, our choice of choosing fingertip grasp generation
was mainly due to the fact that current robotic hands are still far from reaching the dexterity of
a human hand. For example, the Barrett hand has three fingers and only one degree of freedom
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Quality 0.04 0.35 2.7

<

Grasp

Table 12: The grasp quality of the generated grasps for the cutting task.

Figure 11: The generated grasp for the screw driving task.

per finger and consequently it is kinematically limited in the sense that one finger is not able to
touch the side of another finger similarly to a human hand. To prove that our approach is able
to be directly transferable to any robotic hand model and since the minimum required number
for grasp stability considering frictional contact points is 3 [14], we have chosen to initially test
our algorithm on the human hand model considering only 3 contact points on the thumb, index
and middle fingers resulting in 13 degrees of freedom. This shows the ability of the algorithm
to generate task-oriented grasps for any hand whether simple or complex in terms of number of
degrees of freedom. If one is then interested in generating grasps that involve more contact points,
one needs to sample possible contact points on the hand and reformulate the problem as a discrete
optimization problem varying both the number and the locations of the contact points.

Concerning the choice of a sensorized tool to model the task, one could also think of collecting
task oriented data in a similar way to the paper of Kry et al. [10] where the authors collected their
data by either placing pressure sensors on the fingertips of the user or by placing a force/torque
sensor underneath the object to measure interaction forces. While placing a force/torque sensor
underneath the paper the user will be writing on is simple and allows the hand to perform a natural
writing motion with a standard writing tool, sensorizing the environment in the case of the screw
driving or the cutting task is more tricky and requires a different setup for each of the tasks. Placing
pressure sensors on the fingertips could be a solution that is adapted for measuring interaction
forces across several manipulation tasks but first needs to be coupled with an estimation of the
torques applied on the object through tracking its motion and second it restricts the user to the
usage of his/her fingertips while manipulating the object which might not be their natural way of
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handling the object. Using a sensorized tool is useful in the sense that, with the same setup, one
can capture interaction forces/torques across several tasks. In this case, the tool structure might be
slightly different from the usual knife or pen or screw driver and thus capturing the task model is
also not done in a very natural way. However, no matter the way adopted to capture the interaction
forces/torques, it does not affect the core of our approach which is to model the task constraints
from user demonstration and include them in the formulation of the grasp synthesis approach.

If we consider the solutions generated with our task-oriented grasp synthesis algorithm, we notice
that different optimal grasps were obtained for different task descriptions. The only solution that
was found in the case of the screw driving task positions the hand in a way to have the fingers
holding the cylindrical tool around its central part. This configuration allows the hand to exert
both forces and torques along the z-axis which is the main axis of the cylindrical handle, allowing
the hand to accomplish the task requirements. Notice that this configuration was of low quality
for the cutting task as it requires to apply a force along the x-axis and a torque along the y-axis
requiring the palm to be placed more parallel to the side of the tool instead of being perpendicular
to its axis. Finally, the grasps obtained in the case of the circles drawing task are intuitive and
resemble the usual tripod grasp used for writing. If we compare these results to our previous work
in [11], where the objective function was to minimize the norm of the joint torque vector of the
hand ensuring grasp stability and where no task constraints were included in that formulation, we
notice that the solutions obtained were a variety of force-closure grasps, which are not necessarily
task-oriented. In this paper, the usage of the task constraints and task-oriented objective function
forces the optimization algorithm to converge towards a task-oriented grasp. The results show that
different solutions were obtained for different tasks, while the solutions obtained in [11] were a
set of generic force-closure grasps. Thus, one could conclude that including these task-oriented
constraints and their corresponding objective function resulted indeed in task-oriented grasps.

8. Conclusion

This paper presented a detailed approach for task modelling through human demonstration
and through the usage of a sensorized tool. It also showed that once a task 6D model is obtained,
its main axes in the force/torque domain as well their relative importance could be identified and
plugged into a task-oriented quality criterion. This quality measure was used as an objective
function in the formulation of grasp synthesis as an optimization problem generating grasps that
are feasible for the hand kinematic model and optimal according to the task requirements. Our
approach was tested on a human-like hand model and is directly transferable for any robotic hand
model.
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Table 13: Maximum force per tendon of the human finger model.

Tendon Maximum force (N)
flexor digitorum profundus (FDP) 143.5
flexor digitorum superficialis (FDS) 127.8
first dorsal interosseous (DI) 145.6
extensor digitorum communis (EDC) 48.7
extensor indicis proprius (EP) 39.2
first palmar interosseous (PI) 56.0
first lumbrical (LUM) 12.6

Table 14: Moment arms (mm) for each tendon of the human finger model about each degree of freedom.

Tendon | MCP Abd | MCP flex | PIP flex | DIP flex
FDP -1.1 11.1 7.9 4.1
FDP -1.7 11.9 6.2 -

DI 6.1 3.7 - -
EDC 0.2 -8.6 -2.6 -1.9

EP -1.3 9.0 -2.6 -1.9

PI -5.8 6.6 -2.6 -1.9
LUM 4.8 9.3 -2.6 -19

10. Appendix

10.1. Human fingers moment arms

Moment arms, and maximum force per tendon are given in tables (1, 2), [1, 17].
More recent values of the human hand moment arms can be found in [6]. However, the authors
do not mention in their paper the maximum force per tendon of their model.

10.2. Joint limit and axes orientation constraints

In order to have a grasp that is feasible for the hand, the corresponding joint angles {91/ b=
1,...,q¢, j=1,..,3 should be within the joint limits. Two different representations of the joint an-
gles were employed. The first one uses the non-linear functions cosine and sine in the computation
of the kinematical chain. The second one replaces cosine and sine with the inner product between
the relevant vectors. Let ¢! = cos(6/), and s! = sin(6/), we have the following relationships:
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Satisfying joint angle limits induce a limitation on c{ and s{ . Their corresponding lower and upper
bounds are respectively cjo, Siow and cyp, Sup:

Cfowgcfgcip, i=1,..q, j=1,..3 (20)
Stow <81 <Stp, i=1,.,q7, j=1,.,3 1)

For each finger j, the revolute joints responsible for flexion/extension have parallel axes and
the abduction/adduction axis, defined by the vector r{ is orthogonal to ré. These constraints can
be expressed by the following equations:
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10.3. Friction cone segments
The friction cone is linearized by a polyhedral convex cone with m sides l{ . In the reference
frame of the object, l{ is given by:
‘ . u.cos(%)
l{:Rh.RJj. 1 , Wherei=1,...m 24)
4 (2T
p.sin(=3)
)

=y That

Where U is the friction coefficient. Vectors llj are then normalized as follows: llj

assumes that all the finger forces have the same limit.
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