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HIGHLIGHTS

« FRP’s can be effectively used to strengthen existing flat slabs against punching shear.

« The CSCT can be applied to predict the punching strength of strengthened slabs using FRP’s.

« The strengthening efficiency is more pronounced in slabs with lower reinforcement ratio and larger column sizes.
« The strengthening efficiency is less pronounced in actual continuous flat slabs.

ARTICLE INFO ABSTRACT
Article history: One possibility for strengthening existing flat slabs consists on gluing fibre reinforced polymers (FRPs) at
Received 5 February 2014 the concrete surface. When applied on top of slab-column connections, this technique allows increasing

Received in revised form 27 August 2014

the flexural stiffness and strength of the slab as well as its punching strength. Nevertheless, the higher
Accepted 23 September 2014

punching strength is associated to a reduction on the deformation capacity of the slab-column connec-
tion, which can be detrimental for the overall behaviour of the structure (leading to a more brittle behav-
iour of the system). Design approaches for this strengthening technique are usually based on empirical
formulas calibrated on the basis of the tests performed on isolated test specimens. However, some signif-
icant topics as the reduction on the deformation capacity or the influence of the whole slab (accounting
for the reinforcement at mid-span) on the efficiency of the strengthening are neglected. In this paper, a

Keywords:

Flat slabs

Punching shear

Fibre reinforced polymer strengthening

Continuous slabs critical review of this technique for strengthening against punching shear is investigated on the basis of
Internal forces redistribution the physical model proposed by the Critical Shear Crack Theory (CSCT). This approach allows taking into
Construction sequence account the amount, layout and mechanical behaviour of the bonded FRP’s in a consistent manner to
Critical Shear Crack Theory estimate the punching strength and deformation capacity of strengthened slabs. The approach is first

used to predict the punching strength of available test data, showing a good agreement. Then, it is applied
in order to investigate strengthened continuous slabs, considering moment redistribution after concrete
cracking and reinforcement yielding. This latter study provides valuable information regarding the
differences between the behaviour of isolated test specimens and real strengthened flat slabs. The results
show that empirical formulas calibrated on isolated specimens may overestimate the actual performance
of FRP's strengthening. Finally, taking advantage of the physical model of the CSCT, the effect of the
construction sequence on the punching shear strength is also evaluated, revealing the role of this issue
which is also neglected in most empirical approaches.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction failures developing at slab-column connections [1-12]. For this
purpose, FRP strips are usually glued on the top surface of the slab

Fibre Reinforcement Polymers (FRP) can be used as a technique (Fig. 1). Different potential failure modes can be governing for

to strengthen existing two way flat slabs against punching shear members strengthened with FRP’s as described in Smith and Teng
[13]: (1) FRP rupture, (2) crushing of the compressed concrete, (3)

- shear failure, (4) concrete cover separation, (5) plate end interfacial
* Corresponding author. ) o ) debonding and (6) intermediate crack induced interfacial debond-
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strength is explained in Fig. 2 with the help of the Critical Shear
Crack Theory (CSCT) [14]. In Fig. 2a, a conventional reinforced slab
(without any FRP strengthening) is presented. Punching failure
occurs for a given deformation level (rotation i of the slab at
the connection), when the shear demand equals the available shear
strength (V). According to the CSCT, the shear strength decreases
for increasing opening of the flexural cracks (related to the rotation
and size of the slab) as wider cracks have a lower capacity to trans-
fer shear stresses. If the member is strengthened during its service
life by gluing FRP strips on the surface of the slab (refer to Fig. 2b),
the flexural behaviour would be stiffer (lower crack openings
developing for the same level of load) and thus the punching shear
strength can potentially be increased (Vgs). It is to be noted that
the increase on the flexural stiffness leads however to a reduction
of the deformation capacity at failure [14,15]. As Fig. 2b shows, the
strength and deformation capacities are also dependent on the
level of load at the moment of strengthening [16]. Strengthening
for levels of load similar to the strength of the unstrengthened slab
(Vg) leads to a poor efficiency of the system (low increase of
strength), whereas the efficiency in terms of strength is larger for
strengthening occurring at low load levels (Vgsy1)> Vrsyz) in
Fig. 2b).

This behaviour (increasing shear strength but decreasing defor-
mation capacity of the strengthened slabs) can be considered as
peculiar to this type of strengthening, whereas other approaches
for strengthening (such as post-installing shear reinforcement)
are aimed at increasing both the failure load and deformation
capacity [16-18]. Despite this physical reality, most design
approaches based on empirical formulas do not acknowledge for
the reduction of the deformation capacity and the influence of
the level of load at the moment of strengthening, and may poten-
tially lead to unsafe or unexpectedly brittle designs. In this paper,
the topic of punching strengthening of flat slabs with glued FRP’s is
investigated on the basis of the mechanical model of the CSCT.
Suitable load-rotation curves are developed and the approach is
validated through comparisons to available test data from the liter-
ature. The mechanical model of the CSCT is finally used to investi-
gate the influence of FRP strengthening on actual (continuous) flat
slabs, where moment redistributions occur due to cracking and

(b) FRP laminates

ordinary
reinforcement

Fig. 1. (a) Practical application of bonded FRP’s for slab strengthening (courtesy of
VSL), and (b) cross-section of a strengthened slab.
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Fig. 2. Behaviour of flat slabs: (a) unstrengthened; and (b) strengthened at various
load levels.

flexural reinforcement yielding. This investigation will focus on
the punching strength of the connections strengthened using FRP’s
with sufficient bonded length, and other potential failure modes
(such as debonding or laminate failure) will not be investigated.

2. Mechanical behaviour of flat slabs strengthened with post-
installed glued FRP strips

In the following, the mechanical behaviour of concrete slabs
strengthened with FRP’s glued on the surface is investigated on
the basis of the mechanical model of the CSCT. This approach is
selected as it allows relating the shear force that can be carried
by the concrete to the activation of the glued strengthening and
available reinforcement.

2.1. Failure criterion of concrete according to the CSCT

The fundamentals of the CSCT to slabs without transverse rein-
forcement have been presented in detail elsewhere [14]. According
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to this theory, the punching shear strength of a flat slab depends on
the opening and roughness of a critical shear crack that develops
through the inclined compression strut carrying shear, refer to
Fig. 3. The opening of the critical shear crack (w) can be related
to the rotation (i) of the slab around the slab-column connection
times the effective depth of the member: w o -ds (Where d; refers
to the effective depth of the slab measured between the bottom
compressed face and the centroid of the top longitudinal reinforce-
ment bars). According to this hypothesis, and by considering the
roughness of the failure surface proportional to the maximum
aggregate size, Muttoni [14] proposed the following failure crite-
rion to calculate the shear strength of flat slabs:

3 bo-dy-
VR:Z 0 - Us \{fd? (])
T+15-25%

where V is the slab rotation at failure, by is the length of the control
perimeter at a distance equal to ds/2 from the edge of the supported
area, f. is the compressive strength of the concrete in (MPa), dg is the
maximum aggregate size and dg is a reference aggregate size of
16 mm. In Eq. (1), the effect of the slab slenderness and of the
amount, stiffness and yield stress of the reinforcement is taken into
account in the slab rotation . Size effect is accounted by the
parameter d, in the denominator of Eq. (1).

In case a slab presents a number of layers of reinforcement (as
for slabs strengthened in flexure), the effective depth ds of Eq. (1) is
to be replaced by an average effective depth (d.,), which also mod-
ifies the length of the control perimeter (b.q at a distance of d.q/2
from the edge of the supported area):

V_3beq‘deq‘\/ﬁ 2
RiZ V-deq ()
]+15'dgﬂ—+dg

For brittle failures in punching (critical failures with low
rotation capacity), the flexural reinforcement remains mostly elas-
tic. Thus, deq can be calculated as an average of ds and the effective
depth of the strengthening reinforcement (ds.), weighted upon the
stiffness of each layer:

2
Pst  Es . (ds
_ds‘as‘Es+dst‘ast‘Es[_ 1+Ps Es (ds)

- 3
0 Es + 5 - Eq Db (%) ”

eq

where as is the cross sectional area of the longitudinal reinforce-
ment per unit width, as is the cross sectional area of the strength-
ening reinforcement per unit width, pg is the strengthening

compressive and tensile
transversal stresses

L1

potential debonding due to vertical displacement
related to crack opening

Fig. 3. FRP debonding in the vicinity of the critical shear crack.

reinforcement ratio (=as/ds;); ps is the ordinary reinforcement ratio
(=as/ds); Es; and Es are the modulus of elasticity of the strengthening
reinforcement and of the ordinary reinforcement bars. It can be
noted that Eq. (3) is only applicable when the strengthening
reinforcement crosses the critical shear crack ry from the column
face (refer to radial FRP in Fig. 5), otherwise d; applies.

2.2. Load-rotation behaviour of isolated slab tests specimens

In order to calculate the punching shear capacity of a slab using
Eq. (2), it is necessary to determine the load-rotation (V-i/) rela-
tionship of the slab, refer to Fig. 1a. In the following this will be
done by considering that no FRP debonding failure happens.
Despite the fact that it will not be investigated hereafter, consider-
ing bond failures of FRP’s is however possible as the model by
Muttoni [14] allows considering the gradient of moments and
strains, thus enabling the implementation of FRP bond failure
models from existing works [13,19,20] to two way slabs. In [14],
it was shown that the load-rotation relationship can be suitably
estimated for reinforced concrete slabs considering a quadrilinear
moment-curvature (M-y) relationship for the cross-sections
(Fig. 4, case (a)).

When considering slabs strengthened with glued FRP strips, the
M-y law has to be modified to suitably account for the contribu-
tion of the FRP strips. This leads to a larger number of potential
regimes and cases, refer to Fig. 4. The various regimes show a linear
behaviour that can be characterized as follows:

e El, - stiffness before cracking (stiffness of strengthening can be
neglected).

o El; - stiffness of the cracked unstrengthened section.

e EI, - stiffness of the cracked strengthened section.

e EI; - stiffness of the strengthened section after yielding of the
ordinary reinforcement bars.

Such moment-curvature laws can also take account of the
construction sequence (that is, the load level at which the
strengthening is performed) leading to three different cases
(Fig. 4, cases (b-d)). Appendix B of this paper describes a possible
approach to obtain suitable moment-curvature relationships for
reinforced concrete sections reinforced with glued FRP strips.

Mo
< O ZAEL
b fracture due to
®)~ My, ¢y FRP rupture or
pvd debonding
(O~
(d)~ m
A E [2 \[ (a) c/] R
mcr 7% - -
- 78 Q\; 3‘)
AE]O A o ~,

(a) unstrengthened slab

(b) strengthening before section cracking

(c) strengthening before reinforcement yielding
(d) strengthening after reinforcement yielding

Fig. 4. Moment curvature relationship of unstrengthened and strengthened RC
sections.
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Fig. 5. Assumed behaviour for axisymmetric slab: (a) unstrengthened slab; (b)
strengthened slab; (c) forces in concrete and in reinforcement; and (d) internal
forces acting on slab sector.

On the basis of given sectional moment-curvature, the load-
rotation relationship of a slab (V-y) can be determined for an
axis-symmetric slab portion by accounting for equilibrium and
kinematical conditions [14]. To do so, it is assumed that outside
the critical shear crack (Fig. 5), the slab portion deforms following
a conical shape with a constant slab rotation (i), whereas it
deforms following a spherical shape within this region. The equi-
librium conditions of the slab portion shown in Fig. 5d (conical
region) lead to the following expression:

Ap s
V-T-(rq—rc):—m,-A(p~r0—A(p-/ m.dr (4)
V4 Jrgy
where m, is the radial moment at ry (computed using the M-y rela-
tionships, hogging moment assumed to be negative) with y, = —%.
The tangential moment m; along the distance rs-rg can also be
determined using the corresponding M-y relationships as a func-
tion of y,= —/r. For reinforced slabs associated to quadri-linear
moment-curvature relationships, an analytical solution to Eq. (4)
can be found [13]. For the very general case of a slab strengthened

with FRP strips at a given load level, a numerical integration of Eq.
(4) is more suitable in order to determine the shear force developed
for a given level of rotation. This approach, thoroughly described in
Appendix C of this paper, will be followed hereafter.

3. Analisis of available tests results on isolated slab specimens
3.1. Description of the selected test data

Several experimental programmes regarding the behaviour of
strengthened flat slabs using bonded FRP strips have been carried
out in the last years. In the following, test results on symmetrical
isolated slab specimens that reported all necessary mechanical
and geometrical properties to be compared to the previous
mechanical model and with an effective depth d; larger than
80 mm (to account for realistic dimensions in practice) were
selected [1,8,12]. Some other works [2-7,9-11] were not consid-
ered as there was no information on the maximum aggregate size
or the slabs were relatively thin. Table 1 presents the main charac-
teristics of the tested slab specimens and the experimental and
predicted load capacity of each specimen. These series are briefly
described below.

Abdullah et al. [12] tested four slabs measuring 1800 x
1800 x 150 mm together with a reference specimen used for
comparisons. One of the specimens was strengthened with non-
prestressed CFRP laminates, whereas the other three had
prestressed laminates. It was shown that the load capacity of the
non-prestressed specimen increased considerably up to 43%. The
three specimens with prestressed laminates failed due to debond-
ing and will not be considered in this investigation. Suter and More-
illon [8] tested four FRP strengthened slab specimens, along with a
control specimen, measuring 2400 x 2400 x 200 mm. The aim of
this series was to investigate on the serviceability behaviour and
increase of strength resulting from different strengthening materi-
als, such as FRP’s (carbon, glass and aramid) laminates or tissues.
According to the authors [8], the results showed that the increase
on strength is dependent on the strengthening type and layout,
reaching a maximum of approximately 20%. Wang and Tan [1]
tested four slab specimens, from which one was a reference slab.
The specimens measured 1750 x 1750 x 120 mm. The adopted
strengthening consisted of glued CFRP tissues. It was found that
the strengthening slabs presented almost no improvement in the
load capacity, but a stiffer behaviour was recorded. It can be noted
that, in some cases, the failure of the slabs was accompanied by deb-
onding of the FRP’s. These debonding phenomena are probably
related to the relative vertical displacement associated to the coni-
cal failure surface during the punching failure process (Fig. 3).

The efficiency as strengthening of the glued FRP’s reported in
the previous works is quite different (refer to Table 1). This seems
to be related to the ratio between the flexural stiffness of the
unstrengthened slab and the strengthened one. For instance, Wang
and Tan’s [1] slabs had a relatively high reinforcement ratio of
ordinary steel (corresponding to a stiff and brittle behaviour
according to Fig. 2). The strengthening, on the contrary, was consti-
tuted by thin tissues, with relatively low axial stiffness. The overall
influence of the strengthening on the flexural behaviour was thus
limited (limited increase on the stiffness of the slab) and the
corresponding increase on the punching failure load was therefore
limited. This observed behaviour is in agreement to the CSCT
approach.

3.2. Analysis of test data using the CSCT

The use and application of the CSCT to several cases has already
been described in detail in previous works (punching with and
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Table 1
Tests specimens and comparison with the CSCT.
Specimen dg fe dg f;/ Ps FRP properties deq VR test ¥ = Vg test/(bods Tvd Vi test|
(mm) (MPa) (mm) (MPa) (%) (mm)  (kN) VI VR.cale
Wang and Tan [1]  RC-0 95 26.1° 10 518 1.19 - - 242 0.56 1.00 1.14
CS-1 23.0° 1 Carbon FRP tissues in each direction 99 242 0.59 1.05 1.15
along the complete surface with
0.160 mm thick; Es; = 235 GPa;
fiwu = 3550 MPa
CS-2 22.2¢ 2 Superposed carbon FRP tissues in 103 244 0.61 1.09 1.09
each direction along the complete
surface with 0.160 mm thick;
Es¢ = 235 GPa; foy = 3550 MPa
Suter and Mureillon DA-01 170 36 16° 500° 031 - - 470 0.31 1.00 d
(8]
DA-04 37 Carbon FRP laminates measuring 190 495 0.32 1.03 1.00
80 x 1.2 mm; E; = 164 GPa;
fseu =2800 MPa
DA-06 39 2 Superposed glass FRP tissues in 179 491 0.31 1.00 1.05
each direction with a cross section of
670 x 0.308 mm; Es =73 GPa;
fsew = 3400 MPa
DA-07 45 3 Superposed aramid FRP laminates 178 514 0.30 0.97 1.12
in each direction with a cross section
of 300 x 0.200 mm; E; = 120 GPa;
fsew =2900 MPa
DA-08 45 3 Superposed carbon FRP laminates 182 566 0.33 1.06 1.08
in each direction with a cross section
of 300 x 0.176 mm; E, = 240 GPa;
fsew =3800 MPa
Abdullah et al. [12] RS, 118 355 10 570 043 - - 284 0.30 1.00 1.01
RS-Fq 118 35.5 10 570 0.43 Carbon FRP laminates with a cross 139 405 0.42 1.40 1.07

section of 120 x 1.2 mm;
Es =172 GPa; fo, = 2970 MPa

Average 1.08
cov 0.05

2 Computed as 80% of the cubic compressive strength.
b Authors only reported a characteristic yield strength.
¢ Private communication by the author.

4 The reference specimen had a flexural failure mode with hardening, and thus it was not considered. The control perimeter is calculated at a distance deq/2 form the edge of

the column according to MC2010 [31].

without shear reinforcement, fibres, prestressing and others
[14,16,21-25]). In this paper, focus is given to its application to
the case of strengthened slabs using bonded FRP strips. To that
aim, some specific considerations are needed in the computation
of the bending strength and in the layout and behaviour of the used
FRP’s. According to Fig. 5b, bonded FRP’s positioned outside rp, are
only considered as contributing to the tangential moment m;,
while bonded FRP’s positioned inside ry are only considered as con-
tributing to the radial moment m, (as long as they develop over the
critical shear crack, and have and sufficient bonded anchorage
length).

Fig. 6 presents the experimental and computed load-rotation
relationships for the tests by Abdullah et al. [12], where good
agreement between the theory and the actual behaviour can be
observed. The highest increase on the punching strength due to
the FRP strengthening was obtained by Abdullah et al. [12]. This
is explained by the fact that the unstrengthened test failed due
to punching after extensive rebar yielding and, thus, the effect of
the strengthening on the flexural behaviour is quite significant
(leading to a high increase on the punching load and a large reduc-
tion of the deformation capacity). More details on the accuracy of
the predictions are presented in Table 1. For the other tests, failure
of the control specimens occurred with limited rebar yielding and
thus the influence of the FRP strengthening on the punching
strength was more limited (due to a less significant increase on
the flexural stiffness).

From the observation of the results (Table 1) it can be concluded
that the CSCT provides good agreement with the test results and so

it can be used to predict the load capacity of FRP flexural strength-
ened slab specimens subjected to a concentrated loading. The aver-
age relation, between the measured and the computed capacity is
of 1.08 with a very low value of the Coefficient of Variation (5%).
This low value of the Coefficient of Variation may also be related
to the limited amount of available tests that were used in the
analysis.

4. Influence of the strengthening and slab reinforcement
distribution

This section takes advantage of the physical model of the CSCT
presented before to investigate on the efficiency of FRP strengthen-
ing against punching shear. This is performed with reference to an
example of a slab whose geometry is given in Fig. 7b. The geometry
of the slab (span length L = 6.00 m and slab thickness of 250 mm) is
selected in order to be identical to other available examples on
realistic flat slabs [21]. The example focuses first on the behaviour
of an isolated specimen of an inner slab-column connection
(Fig. 7a) and will later be completed with the complete flat slab
behaviour (Fig. 7b, accounting for the influence of the top and bot-
tom reinforcement).

Concrete is considered with an average compressive strength of
fc =40 MPa, and reinforcing bars with an average yield strength of
fy =550 MPa and a modulus of elasticity E; = 205 GPa (all analyses
were performed considering average material properties with no
partial safety factors in-built). The considered strengthening
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consists of CFRP laminates measuring 120 x 1.4 mm, with a spac-
ing of 170 mm, a modulus of elasticity E;; =210 GPa and a tensile
strength of 2800 MPa.

4.1. Parametric analysis
The parametrical analysis considers two main parameters:

1. The amount of top and bottom flexural reinforcement in the
slab (four different configurations: psp=0.30% with pgpe=
1.20%;  psiop=0.75% with pgpor=0.70%; s op=1.05% with
Pspor=0.42% and  pgrop = 1.25% with pgpor = 0.25%), refer to
Fig. 7;

2. The amount and layout of bonded FRP’s laminates (Fig. 8).

The amount and layout of laminates was selected in order to
simulate strengthening solutions commonly used in practice. The
distribution of the reinforcement (top and bottom layers) was
selected such that all the investigated unstrengthened slabs had
approximately the same flexural capacity (yield plateau according
to Eq. (4) and Appendix C). For each reinforcement configuration,
the application of the six different amounts of strengthening are
investigated, determining its influence on the behaviour and
punching strength.

4.2. Equivalent isolated slab specimens

The punching shear strength is first investigated considering
the region of the slab near the slab-column connection acting as
an isolated specimen. To that purpose, it will be assumed that
the line of contraflexure of bending moments is located at a dis-
tance equal to 0.22 L [14] from the centre of the column (location
in agreement to an elastic moment field). As a consequence, only
the top reinforcement influences the load-rotation curve (refer to
Fig. 5). It is also assumed that the slab is strengthened from the
beginning (unloaded and undeformed slab). The results, presented
in terms of the punching strength Vi and rotation capacity at fail-
ure )y are plotted in Fig. 9, as a function of the effective reinforce-
ment ratio p.,, defined in Eq. (5) to account for the bending
stiffness of the slab:

Eq 1o (ds }
pm[:ps+pst'E7:'T:<d7:> (5)

where 1 and r are defined in Fig. 5b.
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Fig. 6. Experimental and computed behaviour of tests by Abdullah et al. [12].

The results confirm that the increase of p. leads to an increase
of the punching strength (Fig. 9a) and to a decrease of the rotation
capacity (Fig. 9b) and that flat slab strengthening is significantly
more efficient in cases with low steel reinforcement ratio. Results
from previous works show similar trends [3-5,10]. This is in agree-
ment to the previously presented experimental data. The obtained
results also show that the use of FRP’s is more efficient in increas-
ing the punching strength when compared to the increase in
strength that would have been obtained using the same total rein-
forcement ratio of ordinary reinforcement (Fig. 9a). This is justified
by the higher strength of FRP’s compared to the reinforcement bars
yield strength (not considered in Eq. (5), which accounts only for
their stiffness) and also by the increased effective depth defined
in Eq. (2).

4.3. Behaviour of continuous flat slab

In the previous section, the CSCT was applied to isolated slab
specimens. However, the actual layout of reinforcement in a slab
may have a considerable influence on the flexural behaviour of a
slab and thus on its punching strength [26,27]. In a recent work
[28], the physical model of the CSCT was used in order to predict
the punching strength of three tested slabs with restrained edge
rotations and different top and bottom reinforcement ratios [29]
(following the approach described in Appendix C). It was shown
that the CSCT, considering moment redistribution, provides good
agreement with the tests results regarding both the punching
strength and the load-deformation capacity behaviour. Moment
redistribution allows additional activation of sagging bending rein-
forcement after cracking and/or yielding of hogging reinforcement.
This moment redistribution stiffens the load-rotation response
and thus reduces crack widths in the shear critical region,
eventually increasing punching shear strength [28]. Therefore,
the punching shear strength according to the CSCT considers all
these parameters. On the contrary, approaches based on empirical
formulas that do not allow taking into account the bottom rein-
forcement of the slab at mid-span (such as Eurocode 2 [30]) pro-
vided potentially too conservative results for slabs with low top
reinforcement ratios over the column.

In Fig. 10, the response of the isolated slabs (Fig. 10a) and that
of a continuous slab (Fig. 10b) are compared for the case with
Ps.op=1.05% and considering the various strengthening amounts
(Fig. 8). In the presented cases, the punching strength of the con-
tinuous flat slabs is always higher than the one of an equivalent
isolated specimen (specimen with r; = 0.22 L subjected only to hog-
ging moments). For each case, three failure criteria are considered,
corresponding each to different square column sizes (260 mm,
350 mm and 450 mm). The strength increase with respect to that
of the isolated specimen is associated to the stiffer behaviour of
the continuous slab and is particularly noticeable for the
unstrengthened slab and for the larger column sizes. Fig. 11 shows
the results in terms of punching strength and rotation capacity of
the investigated continuous slabs. Qualitatively, the results are
similar to those of the previous section (Fig. 9). Nevertheless, a
detailed observation of the results show that the efficiency of the
strengthening in the continuous slab is not as significant as in
the isolated specimens, since the punching strength increases at
a slower rate than for the isolated specimens.

This, as previously explained, is justified by the stiffer
behaviour of the continuous flat slabs, which is associated to
low deformation levels at failures and, consequently, to the devel-
opment of low stresses in the FRP’s. For example, in the slab with
a top longitudinal reinforcement ratio of 0.75% and with the 7
strengthening laminates (Figs. 7 and 8), the punching shear
increase is of only 20% for the continuous slab, whereas it was
of 34% for isolated slab.
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Fig. 7. Investigated members: (a) isolated specimen; and (b) continuous slab.
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Fig. 8. Strengthening with FRP laminates, examples for: (a) two laminates and (b) seven laminates (dimensions in mm).

In Fig. 11b it may also be noted that, in most cases, there is a
slight increase on the rotation capacity between the unstrength-
ened and the strengthened specimens. This phenomenon is due
to the fact that the failure criterion is not the same for all slabs,
since deq is increased by the strengthening. The results also show
that the increase on the punching strength is not linearly propor-
tional to the increase of the amount of strengthening material,
and that the most efficient FRP strips are those located close to
the column region. This is related to the strain developed in the
FRP strengthening laminates (Eq. (6)), which depends on the slab
rotation ¥/ but also on the distance to the column r [14]:

e=Y - )

where ¢ is the strain in the FRP laminates, r is the radial distance
from the column axis and x is the depth of the compression zone.
Based on these results, it may be concluded that for slabs
strengthened with low reinforcement ratios or large column sizes
(Fig. 10), the FRP strips develop higher strains and are more
efficient as strengthening technique. This positive aspect is never-
theless associated to a negative one, related to a higher risk of deb-
onding of the FRP. In these cases, depending on the level of strain of
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Fig. 9. (a) Punching shear strength and (b) rotation capacity as a function of p; for
the investigated isolated slab specimens, ¢ = 260 mm.

the FRP, adopting some special detailing measures may be neces-
sary (such as anchorages for the FRP or mechanical connections).

It is pertinent to mention that the CSCT effectively allows
accounting for moment transfer to columns due to unsymmetrical
geometry or loading configuration. This influences the distribution
of shear forces around the column as well as the load-rotation
relationship of the slab. This topic can be consistently considered
according to the CSCT [27] or to MC2010 [31].

5. Influence of construction sequence on the punching strength
and strengthening efficiency

Another important issue that may have a considerable impact in
the strengthening efficiency is the construction sequence. This
influence is usually not considered in most empirical design equa-
tions calibrated with tests performed on slabs strengthened before
loading. However, according to the physical model of the CSCT,
neglecting the construction sequence on the strengthened slab
may lead to an overestimate of its load capacity [16], refer to
Fig. 2b.

Fig. 12 investigates the influence of the load level at which the
strengthening is performed. The behaviour of the unstrengthened
continuous slab (ps,op = 0.75%, ¢ =260 mm) is compared to those
of two slabs strengthened at different load levels. The former,
strengthened prior to the application of any load (Vi =0) and,
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Fig. 10. Investigated slab behaviour and punching strength for (a) isolated and (b)
continuous models.

the latter, strengthened at 85% of the unstrengthened slab punch-
ing strength. It may be observed that the load at which strengthen-
ing is performed has a strong influence on the response of the slab,
both in terms of strength and deformation capacity. The increase
on the punching capacity is 14% if the slab is strengthened prior
to application of any load, but reduces to only 3.4% if the slab is
strengthened at 85% of the unstrengthened punching load. This
example clearly shows that the strengthening efficiency of non-
prestressed FRP laminates can be considerably reduced when the
slab is only capable of developing limited rotations after gluing
of the FRP strips. A possible manner to improve the efficiency in
these cases (provided that debonding issues are avoided) can be
to prestress the FRP laminates [8,9,12].

6. Conclusions

This paper investigates the efficiency of using bonded non-
prestressed FRP’s for strengthening of existing reinforced concrete
flat slabs. The applicability of the Critical Shear Crack Theory
(CSCT) was investigated, comparing it to available test data from
different research works. This analysis is followed by a number
of parametric analyses, both on isolated slab specimens (as the
available test data) and continuous flat slabs (reproducing the
behaviour of actual structures). The effect of the construction
sequence was also investigated. The main conclusions of this
investigation are:
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1. FRP’s can be effectively used to strengthen existing flat slabs

against punching shear failures. It should however be noted
that although the strength may be increased, the deformation
capacity of the slab decreases, which leads to potentially more
brittle structures.
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2. The mechanical model of the CSCT can be successfully applied

in order to predict the punching strength of strengthened slabs
using FRP’s, taking into account its layout and considering the
suitable moment-curvature relationships for the strengthened
sections of the slab. The same suitability is expected in slabs
strengthened with other flexural strengthening systems such
as concrete topping layers and bonded steel plates.

. Very good agreement is found when comparing the predictions

of the CSCT to available test data (average ratio between the
experimental and the computed punching strength of 1.08 with
a Coefficient of Variation of 5%).

. According to the CSCT, the actual efficiency of the strengthening

depends much on the deformations that can be developed by
non-prestressed FRP strips during loading of the slab. This is
highly influenced particularly by the redistribution of bending
moments that can occur in a flat slab and by the load level at
which strengthening is performed. These parameters are how-
ever not investigated by available testing (isolated specimens
strengthened prior to the application of any load). Empirical
formulas calibrated on the basis of these tests may thus lead
to potentially unsafe estimates of the punching resistance of
slabs strengthened with FRP strips.

. The increase on punching strength due to strengthening is not

linearly proportional to the amount of FRP laminates and
depends on its location, with higher efficiencies for laminates
glued near the slab-column connection.

6. The increase on punching strength due to strengthening is more

pronounced in slabs with lower reinforcement ratio and larger
column sizes. Thus, the use of bonded FRP’s as a punching shear
strengthening is more appropriate for these cases.

7. The efficiency of non-prestressed FRP laminates is lower in actual

continuous flat slabs than in isolated specimens (usual test
specimens). This is due to the stiffer behaviour of continuous flat
slabs, associated to lower levels of deformation at failure.
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Appendix A
Notation:
A; area of a slab segment
E. modulus of elasticity of the concrete
EI; flexural stiffness of a section
Es modulus of elasticity of longitudinal reinforcement

Es modulus of elasticity of FRP

L span of slab

M applied moment in a section

Vv shear load applied to the slab

Vexp  experimental failure load

Vi punching strength

Vrse punching strength of a strengthened slab

Ve load level at strengthening

as cross-sectional area of the longitudinal reinforcement
per unit width

A cross-sectional area of the FRP strengthening per unit
width

bo length of the control perimeter at a distance equal to d,/2

beg length of the control perimeter at a distance equal to
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eq/2

distance between the bottom compressed face and the

centroid of the top longitudinal reinforcement bars

distance between the bottom compressed face and the

centroid of the FRP strengthening

equivalent effective depth

maximum aggregate size

is a reference size of aggregate which is 16 mm
average concrete compression strength on

150 x 300 mm cylinders

average concrete tensile strength

yield strength of steel reinforcement

slab depth

unitary bending moment (bending moment per unit
width)

cracking moment per unit width

radial moment per unit width

tangential moment per unit width

nominal moment capacity per unit width of the
unstrengthened RC section

moment at strengthening

moment corresponding to the yielding of the
reinforcement bars in a strengthened section
distributed load

radial distance

radius of the critical shear crack

location of the centre of gravity of the element
radius of a circular column

radius of the load introduction at the perimeter
radius of circular isolated slab element
distance where strengthening is distributed
equivalent length of the control perimeter
depth of the compression zone

distance from extreme compression fibre to neutral
axis of a section

crack opening

length of a slab segment

angle of a slab sector

efficiency factor of bending reinforcement for stiffness

calculation

slab segment displacement

is the strain in the strengthening laminates
total flexural reinforcement ratio

equivalent flexural reinforcement ratio
average ratio of ordinary reinforcement
strengthening reinforcement ratio

slab top ordinary reinforcement ratio

slab bottom ordinary reinforcement ratio
curvature of a section

curvature in stabilized cracking

curvature at cracking

radial curvature

curvature at strengthening

decrease in curvature due to tension stiffening
tangential curvature

curvature corresponding to mg

curvature corresponding to the yielding of the
reinforcing bars of a strengthened section
curvature corresponding to the yielding of the
reinforcing bars of an unstrengthened section
slab rotation

slab rotation at failure

Appendix B

This appendix presents the elements necessary to compute the
M-y relationships presented in the paper. The relationships are
characterized by stiffnesses Ely (stiffness before cracking, rein-
forcement stiffness can be neglected), El; (stiffness of the cracked
unstrengthened section), EI, (stiffness of the cracked strengthened
section) and/or El; (stiffness of the strengthened section after
yielding of the ordinary reinforcement bars), by moments and by
curvatures. The terms before cracking are obtained neglecting the
effect of the reinforcement (Fig. 5):

E.-I’
Ely = P (B.1)
7fct ) hz
My = 5 (B.2)
Mer
Ko = El, (B.3)

After cracking, assuming linear-elastic behaviour of steel and
concrete the following terms are computed:

—p B E-d-(1-9).(1_-
El, = p,-p-E & (1 d5> (1 3 dg) (B.4)
—p B E.-d . (1-5). (1.~
El = poy- - Es - d, (1 dgq) (1 3 deq> (B.5)
—p BE..d. (1-8).(1_5
Els = py - B Eg - d’, (1 dgf) <1 3 dﬁ) (B.6)
with:
a5+ Age - - G Ex (dy\’
Peq = d, ko Ps + Pyt F: (?:) (B.7)

where the depth of the compressive zone is computed as:

/ 2-E
Xel.l:ps‘ﬁ'ds'< 1+M1> (B.8)
/ 2-E
Xe[_z :peq'ﬁ'deq' ( 1+m—1> (Bg)

2-E
Xel3 = Pyt - ~dg - 1 cC 1
13 = Pge B dst ( +pst'ﬁ'Est )

where f is a factor accounting for the efficiency of an orthogonal
reinforcement layout and the reduction in the ratio between the
torsion and bending stiffness of the slab after cracking. It is assumed
as 0.6 [14] and only affects the stiffness of the member and not its
flexural strength. Considering a perfectly-plastic behaviour of the
reinforcement after yielding, a rectangular stress block for concrete
in the compression zone and neglecting the compression reinforce-
ment, the unstrengthened section moment capacity may be com-
puted as:

(B.10)

f
mg = p, - -d2-<1—p5 y) B.11
R ps fy s 2 'fc ( )
The tension stiffening effect can be taken as [13]:
fiﬂ 1 (B.12)

A5 = 5 B E 6-h
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where in the place of p, the adequate value (ps or peq) must be
adopted in the corresponding M-y relation. In the case where the
strengthening occurs during the stabilized cracking regime, y; is
given by:
Mg

=g~ s (B.13)

while in the case where the strengthening occurs before the stabi-
lized cracking regime, y; is given by:

_ Mo _
X = EIZ X1s

(B.14)

In the case of an unstrengthened section or when strengthening
occurs after reaching its moment capacity, the curvature at yield-
ing x, may be computed as:

Mg
Xy - EI1 XTS (Bls)
In the case of a section which is strengthened while in the
stabilized cracking regime, it is necessary to determine if the
strengthening occurs before or after the existing reinforcement
bars in the unstrengthened section have yielded. The curvature
at which bars start to yield y,., in the unstrengthened section
may be computed as:
&y

—yu = (e Irs (B.16)

When strengthening occurs before the curvature reaches the
one computed using Eq. (A.17), the behaviour is followed by a stif-
fer behaviour (El;) and the existing reinforcement bars yield at:

&y
—Xyp = G- s (B.17)

Afterwards, the behaviour becomes less stiff. The calculation of
m, is shown next. In the case of a section that is strengthened
before the ordinary reinforcement bars have yielded, m, may be
computed as:

My = Mo+ El - (o = 1) + L (Hy = i) (B.18)

When the section is strengthened before the stabilized cracked
regime m,, may be computed as:

my, =meg +EI - (}(y‘b — X1) (B.19)

Appendix C

In the continuous model, the slab is modelled as an axisymmet-
ric disk supported on a round column. The disk is divided into
sector elements over the radius r so that the length of each element
is Ar;. The forces acting on an element are shown in Fig. C-1. The
shear force is assumed to be transferred only in radial direction
while the bending moment is assumed to be transferred both in

radial and tangential directions respecting the geometric
compatibility:

y(r
7 = -0 (&)

Calculation is started in the centre of the slab by choosing an
initial radial curvature y,;. Tangential curvature in the middle of
the element can be calculated:

_ 7‘&1‘ + er ) Ari/z

Xt,i - Ti+ Arj/z (CZ)

Tangential moment acting on the element can thereafter be
found using the non-linear moment-curvature relationship from
Fig. 4. The radial moment at the outer edge of the element (at
r+1) can be determined from the moment equilibrium of the
element around the edge at r; as:

Fig. C-1. Forces acting in a slab segment.

T Ari
Mypjpq = Myj - ——+Mej - —— — Vi1 - A1 — QA -
Tit1 Tit1 i+1

Tq—Ti

(C3)

where A; is the area and r, is the location of the centre of gravity of
the element. The radial curvature at the outer edge of the element
can be found from the inverse of the moment-curvature relation-
ship. The slab rotation at r;.q is:

Xri + Xri
Via=Vi-———% L. Ar (C.4)

And the vertical displacement of a point ri.; can be calculated
as:

Sin = 61+ % AF (C.5)

The calculation is continued for the next element. When the last
element is reached, an edge condition is checked. For an isolated
slab element, the edge condition is the equilibrium of radial
moments:

m, =0 (C6)

To model a continuous slab, the radius of the axisymmetric disk
is taken as half the span and the edge condition is:

y=0 (C.7)

If the edge condition is not satisfied, the initial assumption of
the radial curvature y,; has to be modified. The iteration has to
be performed for every different load level to obtain a load-
rotation relationship.
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