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Abstract A transformation to variant and invariant states, called extents, is used to decouple
the dynamic effects of reaction systems and serves as basis for incremental model identification,
in which kinetic models are identified individually for each dynamic effect. This contribution
introduces a novel transformation to extents for the incremental model identification of two-
phase distributed reaction systems. Distributed reaction systems are discussed for two cases,
namely, when measurements along the spatial coordinate are available and when they are not.
In the second case, several measurements made under appropriate operating conditions are
combined to overcome the lack of measurements along the spatial coordinate. This novel method
is illustrated via the simulated example of a two-phase tubular reactor.
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1. INTRODUCTION

Dynamic models of reaction systems represent the corner-
stone of monitoring, control and optimization of indus-
trial chemical processes. If it can be assumed that each
phase is well mixed, the models describe the state evolu-
tion over time by means of ordinary differential equations
(ODE) expressing the conservation of mass and energy.
The identification of rate expressions (or kinetic models)
for the various dynamic effects at work often represents a
challenge. The difficulty arises from the coupling between
the different physical effects, as in the case of reaction
systems with two phases, where reaction and mass-transfer
phenomena are interdependent (inherently coupled).

Identification problems are commonly solved in one step
using a simultaneous method, where an overall kinetic
model comprising rate expressions for all dynamic effects
is identified. This method suffers from combinatorial com-
plexity and can lead to convergence problems and high
parameter correlation, Bhatt et al. (2012). As an alter-
native, the incremental methods break down the original
identification problem into a set of subproblems of lower
complexity, which allows the individual modeling of each
dynamic effect, Marquardt (2005). The incremental meth-
ods exist in two variants, (a) the rate-based approach that
relies on a differential method of parameter estimation via
rates, Brendel et al. (2006); Jia et al. (2012), and (b) the
extent-based approach that uses an integral method of
parameter estimation via extents. This latter approach,
which is discussed in this article, is based on two steps:
(i) the computation of the contributions of each dynamic
effect in the form of extents, Rodrigues et al. (2015), and
(ii) the identification of each kinetic model by comparing
individually the computed and modeled extents, Srini-
vasan et al. (2012); Billeter et al. (2013).

In this article, the assumption of perfect mixing within
each phase is relaxed, and the model identification in two-
phase distributed reaction systems (resolved in time and
space) is considered from a methodological standpoint,
Rodrigues et al. (2015). Inhomogeneity can either result
from a technical flaw, as in reactors with poor mixing
(dead zones), or be the consequence of a technical choice,
as in tubular reactors. Such reaction systems are described
by partial differential equations (PDE), which complicates
the identification task.

The paper is organized as follows. Section 2 presents a
novel transformation to extents for two-phase distributed
reaction systems described by PDE and discusses the use
of these extents for incremental identification. Section 3
proposes experimental conditions that lead to a simplified
identification problem using ODE. Section 4 discusses a
simulated example of a two-phase tubular reactor, while
Section 5 concludes the paper.

2. INCREMENTAL MODEL IDENTIFICATION

As a working example, let us consider a one-dimensional
tubular reactor of length ze resolved in time t and space
z containing two fluid phases, L and G, at constant
temperature. Each phase F ∈ {L,G} contains sf species,
f ∈ {l, g}, which are subjected on one hand to advection
(forced convection) and on the other hand to rf reactions
and m mass transfers between the phases. Assuming the
velocity is sufficiently high, diffusion is neglected and the
velocity profile is in a plug-flow regime, which allows
treating the tubular reactor as one dimensional.

2.1 Material Balance Equations

The dynamics of the distributed reaction system outlined
above can be described by a set of PDE representing the
material balance of all species involved in the phase F :
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∂

∂t

(

ǫf cf (z, t)
)

+
∂

∂z

(

ǫf vf cf (z, t)
)

=

NT

f ǫf rf (z, t)±Em,f ǫf φφφm,f (z, t) (1)

with the initial conditions cf (z, 0) = cf,0(z) and the
boundary conditions cf (0, t) = cf,in(t), see Friedly (1972).

In (1), cf denotes the sf -dimensional vector of concen-
trations, ǫf the volumetric fraction of phase F such that
ǫl+ ǫg = 1, Nf the rf ×sf constant stoichiometric matrix,
rf the rf -dimensional vector of reaction rates, Em,f the
sf × m mass-transfer matrix containing ones for species
transferring via a given mass transfer and zeros for all
others, a positive sign (+) being used for the phase L and
a negative sign (–) for the phase G (by convention), φφφm,f

the m-dimensional vector of mass-transfer rates, and vf
the velocity of the advective flow. The rates rf and φφφm,f

are expressed in units of concentration per unit of time.
For the sake of conciseness, the dependence of vf and ǫf
on z and t is omitted, that is, vf and ǫf stand for vf (z, t)
and ǫf(z, t).

2.2 Transformation to Extents

Equation (1) has three contributions that are associated
with advection, reactions and mass transfers. Since the
corresponding terms ∂

∂z
(ǫfvfcf ), ǫfrf and ǫfφφφm,f appear

linearly, the principle of superposition is satisfied and each
contribution can be computed separately.

The effect that advection has on the initial and bound-
ary conditions in absence of all other dynamic effects is
obtained by solving the differential equation

∂

∂t

(

ǫf cibc,f (z, t)
)

+
∂

∂z

(

ǫf vf cibc,f (z, t)
)

= 0sf (2)

with cibc,f (z, 0) = cf,0(z) and cibc,f (0, t) = cf,in(t).

The effect of advection on the initial and boundary con-
ditions is removed by writing concentrations as deviation
variables, δcf = cf − cibc,f , and (1) becomes:

∂

∂t

(

ǫf δcf (z, t)
)

+
∂

∂z

(

ǫf vf δcf (z, t)
)

=

NT

f ǫf rf (z, t)±Em,f ǫf φφφm,f (z, t) (3)

with δcf (z, 0) = 0sf and δcf (0, t) = 0sf .

Let rank
(

[

NT

f ±Em,f

]

)

= rf + m and consider the

matrix Tf =
[

NT

f ±Em,f Pf

]

−1
, where Pf is the null

space of the matrix
[

NT

f ±Em,f

]T
. 1 Then, Tf transforms

δcf into three contributions, namely, rf extents of reaction
xr,f , m extents of mass transfer xm,f , and qf = sf − (rf +
m) invariants xiv,f :

[

xr,f (z, t)
xm,f (z, t)
xiv,f (z, t)

]

= Tf δcf (z, t) =
[ Tr,f
Tm,f

Tiv,f

]

δcf (z, t). (4)

With this transformation, the material balance equations
(3) are split into the three sets of equations:

1 Provided that the rank condition is satisfied, the dimension of cf
can be reduced to sf ≥ rf +m.

∂

∂t

(

ǫf xr,f (z, t)
)

+
∂

∂z

(

ǫf vf xr,f (z, t)
)

= ǫf rf (z, t) (5)

∂

∂t

(

ǫf xm,f (z, t)
)

+
∂

∂z

(

ǫf vf xm,f (z, t)
)

= ǫf φφφm,f(z, t) (6)

xiv,f (z, t) = 0qf (7)

with all initial and boundary conditions equal to zero. 2

Pre-multiplying (4) by T −1
f =

[

NT

f ±Em,f Pf

]

,

considering the fact that xiv,f (z, t) = 0qf , and using the
definition of deviation variables, cf = δcf + cibc,f , the
concentrations can be reconstructed from the extents as:

cf (z, t) = NT

f xr,f (z, t)±Em,f xm,f (z, t)+ cibc,f(z, t) (8)

The meaning of the extents introduced in (5)-(7) is as
follows:

Extents of reaction xr,f The extent of reaction xr,f,i

(∀i = 1, ..., rf ) indicates the amount in concentration units
at position z and time t that has been produced by the ith
reaction. The ith extent of reaction is decoupled from all
the other extents (in particular from the other extents of
reaction).

Extents of mass transfer xm,f The extent of mass
transfer xm,f,j (∀j = 1, ...,m) indicates the amount in
concentration units at position z and time t that has been
transferred between phases by the jth mass transfer.

Invariants xiv,f The qf invariants xiv,f represent vari-
ables that are orthogonal (by construction) to all the
other extents and therefore invariant in time and space.
These variables represent true invariants since they remain
identically equal to zero.

For each extent, the term ∂
∂z
(·) accounts for the amount

of material that has been transported by advection over
time to a farther position.

2.3 Model Identification

Incremental model identification in its extent-based form
consists in two steps: first, measured concentrations are
transformed into individual contributions (called extents)
of each dynamic effect; in a second step, the rate expres-
sions are identified one at a time and the corresponding
rate parameters are estimated.

If concentrations are measured at P positions and H time
instants and the rank condition associated with transfor-
mation (4) is satisfied, these measurements can be trans-
formed into rf + m variant contributions, namely, the
extents x̃r,f (z, t) and x̃m,f (z, t), where the superscript (̃·)
is used to denote a quantity associated with measurements.
Each extent is used to identify the corresponding rate
expression rf,i or φm,f,j by comparing, in the least-squares
sense, the ‘experimental’ extents, obtained by transforma-
tion of the concentration measurements via (4), and the
‘modeled’ extents, obtained by integration of the postu-
lated rate model via (5) or (6). The identification problems
are formulated as follows.

2 That is xr,f (z, 0) = 0rf , xm,f (z, 0) = 0m, and xr,f (0, t) = 0rf ,
xm,f (0, t) = 0m.
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Identification of reaction rates rf . The identification of
the rate expression for the ith reaction rf,i (∀i = 1, ..., rf )
and the estimation of the parameters θθθr,f,i are carried out
by solving the regression problem:

min
θθθr,f,i

P
∑

p=1

H
∑

h=1

(

x̃r,f,i(zp, th)− xr,f,i(zp, th, θθθr,f,i)
)2

s.t. ∂
∂t

(

ǫf xr,f,i(z, t, θθθr,f,i)
)

+ ∂
∂z

(

ǫf vf xr,f,i(z, t, θθθr,f,i)
)

= ǫf rf,i(c̃f (z, t), θθθr,f,i),

xr,f,i(z, 0, θθθr,f,i) = xr,f,i(0, t, θθθr,f,i) = 0. (9)

Identification of mass-transfer rates φφφm,f . The identi-
fication of the rate expression for the jth mass transfer
φm,f,j (∀j = 1, ...,m) and the estimation of the parameters
θθθm,f,j are carried out by solving the regression problem:

min
θθθm,f,j

P
∑

p=1

H
∑

h=1

(

x̃m,f,j(zp, th)− xm,f,j(zp, th, θθθm,f,j)
)2

s.t. ∂
∂t

(

ǫf xm,f,j(z, t, θθθm,f,j)
)

+ ∂
∂z

(

ǫf vf xm,f,j(z, t, θθθm,f,j)
)

= ǫf φm,f,j(c̃l(z, t), c̃g(z, t), θθθm,f,j),

xm,f,j(z, 0, θθθm,f,j) = xm,f,j(0, t, θθθm,f,j) = 0. (10)

Obviously, the accuracy of the identification/estimation
improves if concentrations can be measured frequently
at many locations along the tubular reactor. While the
former condition is generally fulfilled, the latter condition
– measurements along the reactor – is difficult to achieve
in practice. Although, in recent years, research in the
field of process intensification and development of stacked
plate reactors have made possible the measurements of
concentrations along the spatial coordinate, see Kockmann
et al. (2011), concentrations are more commonly measured
only at the entry (z = 0) and exit (z = ze). Hence, the
next section considers some common simplifications.

3. SIMPLIFIED IDENTIFICATION PROBLEM

The following simplifications are commonly found/made
in experimental studies of distributed reaction systems:

(1) the reactions are only significant in one phase, say in
phase L, hence, NT

g ǫgrg(z, t) = 0sg ,
(2) the mass transfers are sufficiently fast to be consid-

ered at steady state, thence φφφm,l = φφφm,g = φφφm,
(3) the reactions and mass transfers are significantly

slower than the advection, thus the volumetric frac-
tions ǫl and ǫg are constant,

(4) the velocity is the same for the two phases and
remains constant, namely, vl(z, t) = vg(z, t) = v, 3

(5) the boundary conditions cl,in and cg,in are constant.

3.1 Material Balance Equations

On the basis of the simplifications (1)-(5), one can rewrite
the PDE system (1) as the ODE system: 4

3 The two fluid phases are treated as an incompressible quasi-single
phase flow.
4 To an observer sitting on a particle of velocity v, the concentrations
c(z, t) are viewed as cp(τ), with z = vτ and t = τ . It follows from

cp(τ) = c(z, t) that
dcp
dτ

= ∂c
∂z

(

dz
dτ

)

+ ∂c
∂t

(

dt
dτ

)

= ∂c
∂z

v + ∂c
∂t

.

d

dτ
cp(τ) = NT r(τ) + Emφφφm(τ), (11)

where τ is the time spent in the reactor up to position z,

cp =

[

cp,l
cp,g

]

, NT =

[

NT

l

0sg×r

]

and Em =

[

+Em,l

−Em,g

]

, with

cp(0) = cin =

[

cl,in
cg,in

]

.

3.2 Transformation to Extents

The right-hand side of (11) has two contributions that
are associated with the reactions and the mass transfers,
respectively. Deviation variables δcp = cp − cin are intro-
duced to remove the effect of the boundary conditions.

Let rank
([

NT Em

])

= r + m and consider the matrix

T =
[

NT Em P
]

−1
, where P describes the null space of

the matrix
[

NT Em

]T
. 5 Then, T partitions δcp into three

contributions, namely, r extents of reaction xp,r, m extents
of mass transfer xp,m and q = (sl+sg)−(r+m) invariants
xp,iv:

[

xp,r(τ)
xp,m(τ)
xp,iv(τ)

]

= T δcp(τ) =

[ Tr
Tm
Tiv

]

δcp(τ), (12)

with which the dynamic equations (11) give:

d

dτ
xp,r(τ) = r(τ), xp,r(0) = 0r (13)

d

dτ
xp,m(τ) =φφφm(τ), xp,m(0) = 0m (14)

xp,iv(τ) = 0q. (15)

Pre-multiplying (12) by T −1 =
[

NT Em P
]

, consid-
ering that xp,iv(τ) = 0q, and using the definition of δcp
yields

cp(τ) = NTxp,r(τ) +Emxp,m(τ) + cin. (16)

3.3 Model Identification

Transformation (12) requires the measurements of cp(τk)
for various values of τk. We show next that cp(τk) can be
obtained by measuring the concentrations at the reactor
exit corresponding to the velocity vk = ze

τk
.

From z = vτ and t = τ , one can write c(z, t) =
cp(τ) = cv(z), with the latter indicating the concentration
profile associated with the velocity v. Note that a different
velocity will lead to a different concentration profile.
Furthermore, from τ = z

v
= αz

αv
, with α > 0, one can

write cp(τ) = cv(z) = cαv(αz). In particular, for αv = vk
and τk = ze

vk
, it follows that cp(τk) = cvk(ze).

Hence, if concentrations are measured at the reactor exit
for K values τk, that is, for K velocities vk = ze

τk
, and

the rank condition associated with transformation (12) is
satisfied, the measured concentrations can be transformed
in the r + m variant contributions x̃p,r and x̃p,m.

5 Provided that the rank condition is satisfied, the dimension of cp
can be reduced to sl + sg ≥ r +m.
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As described in Section 2.3, each extent is used to identify
a corresponding rate model by comparing, in the least-
squares sense, the ‘experimental’ and ‘modeled’ extents.

Identification of reaction rates r. The identification of
the rate expression for the ith reaction ri (∀i = 1, ..., r)
and the estimation of the parameters θθθr,i are carried out
by solving the regression problem:

min
θθθr,i

K
∑

k=1

(

x̃p,r,i(τk)− xp,r,i(τk, θθθr,i)
)2

s.t.
d

dτ
xp,r,i(τ,θθθr,i) = ri

(

c̃p,l(τ), θθθr,i
)

, xp,r,i(0) = 0 (17)

Identification of mass-transfer rates φφφm. The identifica-
tion of the rate expression for the jth mass transfer φm,j

(∀j = 1, ...,m) and the estimation of the parameters θθθm,j

are made by solving the regression problem:

min
θθθm,j

K
∑

k=1

(

x̃p,m,j(τk)− xp,m,j(τk, θθθm,j)
)2

s.t.
d

dτ
xp,m,j(τ,θθθm,j) = φm,j

(

c̃p,l(τ), c̃p,g(τ), θθθm,j

)

,

xp,m,j(0) = 0 (18)

4. ILLUSTRATIVE EXAMPLE

Incremental model identification is applied to the simu-
lated example of the chlorination of butanoic acid (BA).
This reaction system takes place in an organic solvent
at 25◦C and involves two parallel auto-catalytic reactions
producing mono- and di-chlorobutanoic acid (MBA and
DBA). The system is composed of sg = 2 species in the
gas phase and sl = 5 species in the liquid phase that are
involved in r = 2 reactions and m = 2 mass transfers (Cl2
and HCl). The reactions read:

R1: BA(l) +Cl2(l)
MBA(l)−−−−−→ MBA(l) +HCl(l) (19a)

R2: BA(l) + 2Cl2(l)
MBA(l)−−−−−→ DBA(l) + 2HCl(l) (19b)

with the reaction rate r expressed in kmol/(m3 s):

r1 = k1 cl,BA cl,Cl2
√
cl,MBA (20a)

r2 = k2 r1 cl,Cl2 (20b)

and the rate constants k1 = 1.3577 (m3)1.5/(kmol1.5 s)
and k2 = 0.6788 m3/kmol. The steady-state rates of mass
transfer φφφm expressed in kmol/(m3 s) are:

φm,Cl2 = kCl2 a
(

c⋆Cl2 − cl,Cl2

)

(21a)

φm,HCl = kHCl a (c⋆HCl − cl,HCl) (21b)

with c⋆Cl2
=

pCl2

HCl2
and c⋆HCl = pHCl

HHCl
, where kCl2 =

0.6660·10−4 and kHCl = 0.8450·10−4 m/s are the mass-
transfer coefficients, a = 5·103 m−1 is the specific inter-
facial area (finely dispersed gas bubbles in liquid), c⋆Cl2
and c⋆HCl are the equilibrium concentrations at the inter-
face, HCl2 = HHCl = 70.33 (bar m3)/kmol are Henry’s
constants, and pCl2 and pHCl are the partial pressures (in
bar) in the gas phase calculated using the ideal gas law
from the concentrations in the gas phase.

For the sets of species Sl = {Cl2(l), BA(l), MBA(l), HCl(l),
DBA(l)} and Sg = {Cl2(g), HCl(g)}, the matricesNT

l , Em,l,
NT

g and Em,g read:

NT

l =

[

−1 −2
−1 −1
1 0
1 2
0 1

]

, Em,l =

[

1 0
0 0
0 0
0 1
0 0

]

, NT

g = 02×2, Em,g = I2

(22)

Assuming that the velocity of the advective flow is suffi-
ciently large, the effects of diffusion can be neglected and
the tubular reactor can be treated as one dimensional.

4.1 Dynamic Experiments

Concentrations of all species cf (zp, th) in the liquid and
gas phases are assumed to be measured at P = 11 different
values of z equally distant between the entry (z = 0) and
exit (ze = 1 m) of a reactor composed of 10 stacked plates
and forH = 25 different values of t equally spaced between
0 and 5 s. The velocity vf at the entry is 0.2 m/s for
both phases and varies according to the total mass of each
phase along z and t. 6 The volumetric fractions at the
entry are ǫl = 0.79 and ǫg = 0.21 and vary according to
the composition of the phase along z and t. 7 Both vf and
ǫf are assumed to be available at the points (zp, th) where
cf is measured.

The boundary conditions at the entry point are assumed
to be constant at cl,in = [0 1.82 10−6 0 0]T and
cg,in = [4.07 0]T kmol/m3. The initial conditions cf,0(z)
are chosen as the steady-state values obtained with the
aforementioned boundary conditions.

The concentrations cf (z, t) are simulated by integrating
(1) with varying vf (z, t) and ǫf (z, t) and using the rate
expressions (20) and (21). 8 Simulated concentrations are
reduced to P ×H points in space and time, and corrupted
with 2% zero-mean Gaussian noise with respect to each
maximal concentration, as shown in Figure 1a.

The extents are obtained from the measured concentra-
tions c̃f (zp, th) by subtracting c̃ibc,f (zp, th) that result
from the integration of (2) to obtain δc̃f (zp, th), and ap-
plying transformation (4). Figure 1b shows the resulting
extents of reaction x̃r(zp, th) and extents of mass transfer
x̃m,l(zp, th) and x̃m,g(zp, th). Note that x̃m,l and x̃m,g only
differ due to the variation of ǫl and ǫg along z and t.

For each extent of reaction x̃r,i(zp, th) (i = 1, 2), several
rate expressions ri

(

c̃l(zp, th), θθθr,i
)

are postulated and the
regression problem (9) solved for each rate expression –
using ṽf (zp, th) – as shown in Table 1. Based on the sum of

squared errors (SSE), the rate models r̂
(4)
1 and r̂

(4)
2 , which

correspond to the rate expressions (20a) and (20b) that
were used to generate the concentration data, are correctly
identified.

6 The velocities vary due to changes in density. The variation
∂
∂z

vf (z, t) is computed from the mole balance equation (1) and
knowledge of the molecular weights.
7 The volumetric fractions vary due to changes in concentrations.
The variation ∂

∂z
ǫf (z, t) is computed from the concentrations and

knowledge of the molar volumes.
8 A stiff integration method was used for the time coordinate and
the space coordinate was discretized in 100 intervals from 0 to ze = 1.
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Figure 1. (a) Simulated (noise-free, continuous lines) and experimental (noisy) concentrations of the gas species Cl2(g)(◦) and HCl(g) (�)

on the right axis, and of the liquid species Cl2(l) (×), BA(l) (+), MBA(l) (△), HCl(l) (∗) and DBA(l) (♦) on the left axis at t = 5 s;

(b) Modeled (with the identified models, continuous lines) and experimental (noisy) extents of reaction and mass transfer xr,1 (△),

xr,2 (♦), xm,l,1 (Cl2, ◦), xm,l,2 (HCl, �), xm,g,1 (Cl2, +) and xm,g,2 (HCl, ×) at z = 0.5 m (above) and z = 1 m (below).
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Figure 2. (a) Simulated (noise-free, continuous lines) and experimental (noisy) concentrations of the gas species Cl2(g)(◦) and HCl(g) (�)

on the right axis, and of the liquid species Cl2(l) (×), BA(l) (+), MBA(l) (△), HCl(l) (∗) and DBA(l) (♦) on the left axis; (b) Modeled

(with the identified models, continuous lines) and experimental (noisy) extents of reaction and mass transfer xp,r,1 (△), xp,r,2 (♦),

xp,m,1 (Cl2, ◦) and xp,m,2 (HCl, �).

Table 1. Incremental model identification of reactions R1 and R2 based on the extents of reaction, with the

corresponding sum of squared errors (SSE).

R1 Rate expression
SSE

R2 Rate expression
SSE

xr,1(zp, th) xp,r,1(τk) xr,2(zp, th) xp,r,2(τk)

r̂
(1)
1 k1cl,Cl2 0.923 1.270 r̂

(1)
2 k2k1cl,BAcl,Cl2 0.153 0.018

r̂
(2)
1 k1cl,BAcl,Cl2 5.120 0.563 r̂

(2)
2 k2k1cl,BAc2

l,Cl2
0.131 0.017

r̂
(3)
1 k1cl,BAcl,Cl2cl,MBA 2.013 0.320 r̂

(3)
2 k2k1cl,BAc2

l,Cl2
cl,MBA 0.107 0.010

r̂
(4)
1 k1cl,BAcl,Cl2

√
cl,MBA 0.089 0.026 r̂

(4)
2 k2k1cl,BAc2

l,Cl2

√
cl,MBA 0.049 0.005
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Note that, in this example, the mass-transfer rate ex-
pressions are assumed to be known, thus limiting the
identification to the estimation of the parameters.

As shown in Table 2, the rate parameters k1, k2, kCl2 and
kHCl are correctly estimated. Mass-transfer coefficients can
be estimated either from x̃m,l or x̃m,g.

4.2 Steady-State Experiments

Assuming simplifications (1)–(5) in Section 3 can be made,
concentrations of all species cp(τk) in the liquid and gas
phases are measured at steady state at the entry and exit
(ze = 1 m) of the reactor for K = 25 different values τk
equally spaced between 0.1 and 10 s, and corresponding
velocities vk = ze

τk
. The boundary conditions are identical

to those described in Section 4.1.

The vectors cp,l(τ) and cp,g(τ) are concatenated into the
vector cp(τ) according to (11), with the matrices NT =
[

N
T
l

0sg×r

]

and Em =
[

+Em,l

−Em,g

]

.

The concentrations cp(τ) are simulated by integrating (11)
using the rate expressions (20) and (21). After reduction
to K points, the simulated concentrations cp(τk) are
corrupted with 2% zero-mean Gaussian noise with respect
to each maximal concentration (Figure 2a).

The extents are obtained from the measured concentra-
tions c̃p(τk) by subtracting the boundary conditions cin
to obtain δc̃p(τk) and applying transformation (12). Fig-
ure 2b shows the resulting extents of reaction and mass
transfer x̃p,r(τk) and x̃p,m(τk).

For each extent of reaction x̃p,r,i(τk) (i = 1, 2), several
rate expressions ri

(

c̃p,l(τk), θθθr,i
)

are postulated and the
regression problem (17) solved for each rate expression (see
Table 1). According to the sum of squared errors (SSE),

the rate models r̂
(4)
1 and r̂

(4)
2 are identified, similarly to

Section 4.1. As shown in Table 2, the rate parameters are
also correctly estimated.

Table 2. Estimated rate constants for reactions R1

and R2 and mass-transfer coefficients for Cl2 and HCl,

with the corresponding 99% confidence intervals (C.I.).

Rate Const. True Fitting Estimated [99% C.I.]

r1 k1 1.3577 xr,1(zp, th) 1.3612 [1.3551, 1.3672]

xp,r,1(τk) 1.3540 [1.3441, 1.3640]

r2 k2 0.6788 xr,2(zp, th) 0.6757 [0.6610, 0.6904]

xp,r,2(τk) 0.6725 [0.6658, 0.6792]

φCl2 kCl2 ·104 0.6660 xm,l,1(zp, th) 0.6661 [0.6634, 0.6688]

xm,g,1(zp, th) 0.6667 [0.6580, 0.6754]

xp,m,1(τk) 0.6665 [0.6552, 0.6778]

φHCl kHCl·104 0.8450 xm,l,2(zp, th) 0.8476 [0.8353, 0.8600]

xm,g,2(zp, th) 0.8421 [0.8369, 0.8473]

xp,m,2(τk) 0.8460 [0.8362, 0.8558]

5. CONCLUSION

This paper has provided a novel transformation to extents
of reaction and mass transfer for the case of two-phase
distributed reaction systems. The transformed system is
well suited to decoupled kinetic identification using an
extent-based incremental approach. Experimental simpli-
fications of distributed reaction systems have also been
reviewed, and their implications on the formulation of the
identification problem have been discussed.

The applicability of this incremental identification method
has been demonstrated via the simulated example of a
two-phase tubular reactor described in a one-dimensional
coordinate system. Although the identification of kinetic
models in distributed reaction systems formally requires
measurements along the spatial and time coordinates,
accurate identification can also be performed using steady-
state measurements at the reactor exit only, when a
number of simplifying assumptions hold.

The method described in Section 2 can be extended to
distributed reaction systems with diffusion, by adapting
the transformation to extract the extents of diffusion, as
proposed in Rodrigues et al. (2015), and then modeling
individually each rate of diffusion. However, the method
of Section 3 does not apply in case of diffusion.

Industrially relevant applications of the proposed method
include the identification of distributed reaction-separation
systems such as reaction-absorption or reaction-distillation
columns, or reaction systems in three dimensions such as
tubular reactors or micro-reactors.
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