Pedestrian-oriented flow characterization

Marija Nikolić
Michel Bierlaire

Pedestrian and Evacuation Dynamics conference (PED 2014)
October 24, 2014

Introduction

Objective

- Definitions of flow characteristics by adapting Edie's definitions
- Stream-based approach
- Data-driven discretization framework

Motivation

- Definitions and measurement methods currently available in the literature
- Mostly fail to account for the multidirectional nature of pedestrian flows
- Rely on arbitrarily chosen space and time discretization
- Realistic flow characterization important to many areas

Edie's definitions

- Density

$$
k(A)=\frac{\sum_{i} t_{i}}{|A|}
$$

- Flow

$$
q(A)=\frac{\sum_{i} x_{i}}{|A|}
$$

- Speed

$$
v(A)=\frac{\sum_{i} x_{i}}{\sum_{i} t_{i}}
$$

L.C. Edie, Discussion of Traffic Stream Measurements and Definitions, Proceedings of the Second International Symposium on the Theory of Traffic Flow, Paris, OECD, 1965
(PPll

Edie's definitions in 3D

- Density

$$
k(V)=\frac{\sum_{i} t_{i}}{\operatorname{Vol}(V)}
$$

- Flow

$$
q(V)=\frac{\sum_{i} d_{i}}{V o l(V)}
$$

- Speed:

$$
v(V)=\frac{\sum_{i} d_{i}}{\sum_{i} t_{i}}
$$

Saberi, M., and Mahmassani, H. (2014) Exploring Area-Wide Dynamics of Pedestrian Crowds Using a Three-Dimensional Approach, Transportation Research Record: Journal of the Transportation Research Board.

Sample of points

- $p_{i}^{1}, \ldots, p_{i}^{n(i)}$, where $n(i)$ is the number of data for pedestrian i
- For each observed point $p_{i}^{k}=\left(x_{i}^{k}, y_{i}^{k}, t_{i}^{k}\right)$ the trajectory is $p\left(t_{i}^{k}\right)=p_{i}^{k}$
- Many trajectories can interpolate the same set of points
- Interpolation is not necessary if a discretization is data-driven
- Voronoi based space-time discretization

Data-driven discretization framework

Two-dimensional Voronoi diagrams

- $p_{1}, p_{2}, \ldots, p_{N}$ is a finite set of points
- Voronoi space decomposition assigns a region to each point

$$
V\left(p_{i}\right)=\left\{p\| \| p-p_{i}\|\leq\| p-p_{j} \|, i \neq j\right\}
$$

Steffen, B., and Seyfried, A., Methods for measuring pedestrian density, flow, speed and direction with minimal scatter, Physica A: Statistical mechanics and its applications, 389(9), 1902-1910.

Data-driven discretization framework

Three-dimensional Voronoi diagrams

Data-driven discretization framework

Three-dimensional Voronoi diagrams

- Pedestrian i represented by $p_{i}=\left(x_{i}, y_{i}, t_{i}\right)$ and point $p=(x, y, t)$
- Space-time distance

$$
d_{\alpha}=\sqrt{\left(x_{i}-x\right)^{2}+\left(y_{i}-y\right)^{2}+\alpha^{2}\left(t_{i}-t\right)^{2}}
$$

$\alpha-1$ second of time is equivalent to α meters of distance

- Three-dimensional Voronoi diagram

$$
V\left(p_{i}\right)=V_{i}=\left\{p \mid d_{\alpha}\left(p, p_{i}\right) \leq d_{\alpha}\left(p, p_{j}\right), j \neq i\right\}
$$

- $\operatorname{Vol}\left(V_{i}\right)$ - the volume of a Voronoi cell V_{i} associated with the point p_{i} with the unit square meters times seconds

Voronoi-based Edie's definitions

Density indicator

- The set of all points in V_{i} corresponding to a given location $\left(x_{i}, y_{i}\right)$ is a set of dimension 1 - a time interval

$$
V_{i}\left(x_{i}, y_{i}\right)=\left\{\left(x_{i}, y_{i}, t\right) \in V_{i}\right\}
$$

- $V_{i}\left(x_{i}, y_{i}\right)$ - the time interval that the pedestrian i occupies the location $\left(x_{i}, y_{i}\right)$

$$
k\left(p_{i}\right)=\frac{V_{i}\left(x_{i}, y_{i}\right)}{\operatorname{Vol}\left(V_{i}\right)}
$$

Voronoi-based Edie's definitions

Flow indicator

- The set of all points in V_{i} corresponding to a specific time t_{i} is a set of dimension 2 - a physical area on the floor

$$
V_{i}\left(t_{i}\right)=\left\{\left(x, y, t_{i}\right) \in V_{i}\right\}
$$

- Distance d_{i} - a maximum distance in $V_{i}\left(t_{i}\right)$ in the movement direction of pedestrian i

$$
q\left(p_{i}\right)=\frac{d_{i}}{\operatorname{Vol}\left(V_{i}\right)}
$$

Speed indicator

$$
v\left(p_{i}\right)=\frac{d_{i}}{V_{i}\left(x_{i}, y_{i}\right)}
$$

Voronoi-based Edie's definitions

Aggregated

Disaggregated

$$
\begin{aligned}
& k\left(p_{i}\right)=\frac{V_{i}\left(x_{i}, y_{i}\right)}{\operatorname{Vol}\left(V_{i}\right)} \\
& q\left(p_{i}\right)=\frac{d_{i}}{\operatorname{Vol}\left(V_{i}\right)} \\
& v\left(p_{i}\right)=\frac{d_{i}}{V_{i}\left(x_{i}, y_{i}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& k(V)=\frac{\sum_{i} k\left(p_{i}\right) \cdot \operatorname{Vol}\left(V_{i}\right)}{\sum_{i} V_{o l}\left(V_{i}\right)} \\
& q(V)=\frac{\sum_{i} q\left(p_{i}\right) \cdot \operatorname{Vol}\left(V_{i}\right)}{\sum_{i} V_{0 l}\left(V_{i}\right)} \\
& v(V)=\frac{\sum_{i} q\left(p_{i}\right) \cdot \operatorname{Vol}\left(V_{i}\right)}{\sum_{i} k\left(p_{i}\right) \cdot \operatorname{Vol}\left(V_{i}\right)}
\end{aligned}
$$

Asymptotic analysis

Voronoi

Edie

$k(A)=\frac{\Delta t}{|A|}$
$q(A)=\frac{\Delta x}{|A|}$
$v(A)=\frac{\Delta x}{\Delta t}$

$$
\begin{aligned}
k(A) & =\frac{\sum_{i} \Delta t_{i}}{|A|} \\
q(A) & =\frac{\sum_{i} \Delta x_{i}}{|A|} \\
v(A) & =\frac{\sum_{i} \Delta x_{i}}{\sum_{i} \Delta t_{i}}
\end{aligned}
$$

Asymptotic analysis

Two-dimensional case

- Sampling interval $\Delta t_{s} \rightarrow 0$
- Path L specified in parametric form: $x=x(t), t \in[\alpha, \beta]$

$$
\begin{gathered}
\lim _{\Delta t_{i} \rightarrow 0} \sum_{i} \Delta t_{i}=\int_{L} d t=\Delta t \\
\lim _{\Delta x_{i} \rightarrow 0} \sum_{i} \Delta x_{i}=\int_{L} d x=\int_{L} \dot{x} d t=\Delta x
\end{gathered}
$$

Asymptotic analysis

Three-dimensional case

- Sampling interval $\Delta t_{s} \rightarrow 0$
- Pedestrian identifier n
- Path L_{n} specified in parametric form:

$$
\begin{gathered}
x_{n}=x_{n}(t), y_{n}=y_{n}(t), t_{n} \in\left[\alpha_{n}, \beta_{n}\right] \\
\lim _{\Delta t_{i} \rightarrow 0} \sum_{n} \sum_{i} \Delta t_{i}=\sum_{n} \int_{L_{n}} d t=\sum_{n} \Delta t_{n} \\
\lim _{\Delta x_{i} \rightarrow 0} \sum_{n} \sum_{i} \Delta d_{i}=\sum_{n} \int_{L_{n}} \sqrt{\dot{x}^{2}+\dot{y}^{2}} d t=\sum_{n} \Delta d_{n}
\end{gathered}
$$

Simulation experiment

Single pedestrian

$$
p(t)=(x(t), y(t), t)=\left(0.02 t^{2}+0.9 t+0.1,1, t\right)
$$

Inst. speed	Voronoi	Analytical trajectory
v_{1}	1.196	0.902
v_{2}	1.031	0.940
v_{3}	1.020	0.980
v_{4}	0.980	1.020
v_{5}	0.943	1.060
v_{6}	0.913	1.082

Simulation experiment

Density map

- Reproduced movement with uniform and non-uniform density
- Smooth transitions in flow characteristics over space and time

Stream-based approach

- Pedestrian traffic composed of different streams
- A stream definition: direction-based and exogenous

$$
\left(\varphi_{j}\right)_{j=1}^{S}, S \geq 2
$$

- Trajectories are assumed to contribute to the streams to some extent
- The contribution is related to the angle between a movement direction of a pedestrian and the corresponding stream

Stream-based approach

- Pedestrian trajectory: $p(t)=(x(t), y(t), t)$
- Tangential direction associated with each point $p(t)$ of a trajectory

$$
\nabla p(t)=\left(\frac{d x(t)}{d t}, \frac{d y(t)}{d t}, 1\right)
$$

- Pedestrian movement direction - normalized vector e composed of the first two components of $\nabla p(t)$
- The individual contribution to the stream

$$
c_{i}^{\varphi_{j}}=\left\{\begin{array}{lr}
\|e\|\left\|\varphi_{j}\right\| \cos \theta & : 0^{\circ}<\theta \leq 90^{\circ} \\
0 & : 90^{\circ}<\theta \leq 180^{\circ}
\end{array}\right.
$$

θ - the angle between the vectors e and φ_{j}

Stream-based Voronoi definitions

Disaggregated

$$
\begin{gathered}
k\left(p_{i}\right)=\frac{V_{i}\left(x_{i}, y_{i}\right)}{V_{o l}\left(V_{i}\right)} \\
q_{\varphi_{j}}\left(p_{i}\right)=\frac{d_{i}^{\varphi_{j}}}{V_{o l}\left(V_{i}\right)} \varphi_{j} \\
v_{\varphi_{j}}\left(p_{i}\right)=\frac{d_{i}^{\varphi_{j}}}{V_{i}\left(x_{i}, y_{i}\right)} \varphi_{j}
\end{gathered}
$$

Aggregation

$$
\begin{gathered}
k(V)=\frac{\sum_{i} k\left(p_{i}\right) \cdot V_{o l}\left(V_{i}\right)}{\sum_{i} \operatorname{Vol}\left(V_{i}\right)} \\
q_{\varphi_{j}}(V)=\frac{\sum_{i} q_{\varphi_{j}}\left(p_{i}\right) \cdot V_{o l}\left(V_{i}\right)}{\sum_{i} V_{o l}\left(V_{i}\right)} \varphi_{j} \\
v_{\varphi_{j}}(V)=\frac{\sum_{i} q_{\varphi_{j}}\left(p_{i}\right) \cdot \operatorname{Vol}\left(V_{i}\right)}{\sum_{i} k\left(p_{i}\right) \cdot \operatorname{Vol}\left(V_{i}\right)} \varphi_{j}
\end{gathered}
$$

Conclusions

- The framework for pedestrian-oriented flow characterization
- Definitions based on data-driven discretization
- Asymptotically consistent with Edie's definitions
- Smooth transition in measured characteristics from point to point in 3D
- Stream-based approach to account for the multidirectional nature of pedestrian flows

Future research

- More numerical analysis needed
- Investigation of the role of conversion constant α
- Stream-based fundamental relationships for pedestrians
- Case study: Gare de Lausanne

Thank you

Measurement methods

Method A

- A reference location in space (x) is considered
- The mean value of q and v are calculated over time (Δt)

$$
q=\frac{n}{\Delta t}, v=\frac{1}{n} \sum_{i} v_{i}(t)
$$

n - number of pedestrians passing the location x during Δt

$$
v_{i}(t) \text { - instantaneous speed of pedestrian } i
$$

Zhang, J., 2012. Pedestrian fundamental diagrams: Comparative analysis of experiments in different geometries. volume 14. Forschungszentrum Jülich

Measurement methods

Method B

- The measures of k and v are averaged over time (Δt) and space

$$
k=\frac{1}{\Delta t} \int_{t} \frac{n}{b \Delta x} d t, v=\frac{\sum_{i} v_{i}}{n}
$$

$b, \Delta x$ - width and length of the measurement area

$$
v_{i}=\frac{\Delta x}{\Delta t_{i}}-\text { individual space-mean speed }
$$

Zhang, J., 2012. Pedestrian fundamental diagrams: Comparative analysis of experiments in different geometries. volume 14. Forschungszentrum Jülich

Measurement methods

Method C

- The measures of k and v are specified per space unit

$$
k=\frac{n}{b \Delta x}, v=\frac{\sum_{i} v_{i}}{n}
$$

$b, \Delta x$ - width and length of the measurement area

$$
v_{i}=\frac{\Delta x}{\Delta t_{i}}-\text { individual space-mean speed }
$$

Zhang, J., 2012. Pedestrian fundamental diagrams: Comparative analysis of experiments in different geometries. volume 14. Forschungszentrum Jülich

Measurement methods

Method D

- The measures of k and v are specified via Voronoi diagrams

$$
\begin{gathered}
k=\frac{\iint \rho_{x y} d x d y}{\Delta x \Delta y}, v=\frac{\iint v_{x y} d x d y}{\Delta x \Delta y} \\
\rho_{x y}=\frac{1}{A_{i}}, A_{i}-\text { area of Voronoi cell associated to pedestrian } i \\
v_{x y} \text { - instantaneous speed of pedestrian } i
\end{gathered}
$$

Zhang, J., 2012. Pedestrian fundamental diagrams: Comparative analysis of experiments in different geometries. volume 14. Forschungszentrum Jülich

