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Introduction

Objective

• De�nitions of �ow characteristics by adapting Edie's
de�nitions

� Stream-based approach
� Data-driven discretization framework

Motivation

• De�nitions and measurement methods currently available in
the literature

� Mostly fail to account for the multidirectional nature of
pedestrian �ows

� Rely on arbitrarily chosen space and time discretization

• Realistic �ow characterization important to many areas
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Edie′s de�nitions

• Density

k(A) =

∑
i
ti

|A|

• Flow

q(A) =

∑
i
xi

|A|

• Speed

v(A) =

∑
i
xi∑

i
ti

L.C. Edie, Discussion of Tra�c Stream Measurements and De�nitions, Proceedings of the Second
International Symposium on the Theory of Tra�c Flow, Paris, OECD, 1965
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Edie′s de�nitions in 3D

• Density

k(V ) =

∑
i
ti

Vol(V )

• Flow

q(V ) =

∑
i
di

Vol(V )

• Speed:

v(V ) =

∑
i
di∑

i
ti

Saberi, M., and Mahmassani, H. (2014) Exploring Area-Wide Dynamics of Pedestrian Crowds Using a
Three-Dimensional Approach, Transportation Research Record: Journal of the Transportation Research
Board.
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Sample of points

• p1i , ..., p
n(i)
i , where n(i) is the number of data for pedestrian i

• For each observed point pki = (xki , y
k
i , t

k
i ) the trajectory is

p(tki ) = pki

• Many trajectories can interpolate the same set of points

� Interpolation is not necessary if a discretization is data-driven

• Voronoi based space-time discretization
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Data-driven discretization framework

Two-dimensional Voronoi diagrams

• p1, p2, ..., pN is a �nite set of points

• Voronoi space decomposition assigns a region to each point

V (pi ) = {p| ‖p − pi‖ ≤ ‖p − pj‖ , i 6= j}

Ste�en, B., and Seyfried, A., Methods for measuring pedestrian density, �ow, speed and direction with
minimal scatter, Physica A: Statistical mechanics and its applications, 389(9), 1902-1910.
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Data-driven discretization framework

Three-dimensional Voronoi diagrams
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Data-driven discretization framework

Three-dimensional Voronoi diagrams

• Pedestrian i represented by pi = (xi , yi , ti ) and point

p = (x , y , t)

• Space-time distance

dα =
√

(xi − x)2 + (yi − y)2 + α2(ti − t)2

α - 1 second of time is equivalent to α meters of distance

• Three-dimensional Voronoi diagram

V (pi ) = Vi = {p|dα(p, pi ) ≤ dα(p, pj), j 6= i}

• Vol(Vi ) - the volume of a Voronoi cell Vi associated with the

point pi with the unit square meters times seconds
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Voronoi-based Edie's de�nitions

Density indicator

• The set of all points in Vi corresponding to a given location

(xi , yi ) is a set of dimension 1 - a time interval

Vi (xi , yi ) = {(xi , yi , t) ∈ Vi}

• Vi (xi , yi ) - the time interval that the pedestrian i occupies the
location (xi , yi )

k(pi ) = Vi (xi ,yi )
Vol(Vi )
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Voronoi-based Edie's de�nitions

Flow indicator

• The set of all points in Vi corresponding to a speci�c time ti is
a set of dimension 2 - a physical area on the �oor

Vi (ti ) = {(x , y , ti ) ∈ Vi}

• Distance di - a maximum distance in Vi (ti ) in the movement

direction of pedestrian i

q(pi ) = di
Vol(Vi )

Speed indicator

v(pi ) = di
Vi (xi ,yi )
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Voronoi-based Edie's de�nitions

Disaggregated

k(pi ) = Vi (xi ,yi )
Vol(Vi )

q(pi ) = di
Vol(Vi )

v(pi ) = di
Vi (xi ,yi )

Aggregated

k(V ) =

∑
i
k(pi )·Vol(Vi )∑
i
Vol(Vi )

q(V ) =

∑
i
q(pi )·Vol(Vi )∑
i
Vol(Vi )

v(V ) =

∑
i
q(pi )·Vol(Vi )∑

i
k(pi )·Vol(Vi )
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Asymptotic analysis

Edie

k(A) = ∆t
|A|

q(A) = ∆x
|A|

v(A) = ∆x
∆t

Voronoi

k(A) =

∑
i

∆ti

|A|

q(A) =

∑
i

∆xi

|A|

v(A) =

∑
i

∆xi∑
i

∆ti
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Asymptotic analysis

Two-dimensional case

• Sampling interval ∆ts → 0

• Path L speci�ed in parametric form: x = x(t), t ∈ [α, β]

lim
∆ti→0

∑
i

∆ti =
∫
L

dt = ∆t

lim
∆xi→0

∑
i

∆xi =
∫
L

dx =
∫
L

ẋdt = ∆x
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Asymptotic analysis

Three-dimensional case

• Sampling interval ∆ts → 0

• Pedestrian identi�er n

• Path Ln speci�ed in parametric form:

xn = xn(t), yn = yn(t), tn ∈ [αn, βn]

lim
∆ti→0

∑
n

∑
i

∆ti =
∑
n

∫
Ln

dt =
∑
n

∆tn

lim
∆xi→0

∑
n

∑
i

∆di =
∑
n

∫
Ln

√
ẋ2 + ẏ2dt =

∑
n

∆dn
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Simulation experiment

Single pedestrian

p(t) = (x(t), y(t), t) = (0.02t2 + 0.9t + 0.1, 1, t)

Inst. speed Voronoi Analytical trajectory

v1 1.196 0.902

v2 1.031 0.940

v3 1.020 0.980

v4 0.980 1.020

v5 0.943 1.060

v6 0.913 1.082
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Simulation experiment

Density map

• Reproduced movement with uniform and non-uniform density

• Smooth transitions in �ow characteristics over space and time
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Stream-based approach

• Pedestrian tra�c composed of di�erent streams

• A stream de�nition: direction-based and exogenous

(ϕj)
S
j=1

, S ≥ 2

• Trajectories are assumed to contribute to the streams to some

extent

• The contribution is related to the angle between a movement

direction of a pedestrian and the corresponding stream
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Stream-based approach

• Pedestrian trajectory: p(t) = (x(t), y(t), t)

• Tangential direction associated with each point p(t) of a

trajectory

∇p(t) = (dx(t)
dt , dy(t)

dt , 1)

• Pedestrian movement direction - normalized vector e
composed of the �rst two components of ∇p(t)

• The individual contribution to the stream

c
ϕj

i =

{
‖e‖ ‖ϕj‖ cosθ : 0◦ < θ ≤ 90◦

0 : 90◦ < θ ≤ 180◦.

θ - the angle between the vectors e and ϕj
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Stream-based Voronoi de�nitions

Disaggregated

k(pi ) = Vi (xi ,yi )
Vol(Vi )

qϕj (pi ) =
d
ϕj
i

Vol(Vi )
ϕj

vϕj (pi ) =
d
ϕj
i

Vi (xi ,yi )
ϕj

Aggregation

k(V ) =

∑
i
k(pi )·Vol(Vi )∑
i
Vol(Vi )

qϕj (V ) =

∑
i
qϕj

(pi )·Vol(Vi )∑
i
Vol(Vi )

ϕj

vϕj (V ) =

∑
i
qϕj

(pi )·Vol(Vi )∑
i
k(pi )·Vol(Vi )

ϕj
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Conclusions

• The framework for pedestrian-oriented �ow characterization

• De�nitions based on data-driven discretization

� Asymptotically consistent with Edie's de�nitions
� Smooth transition in measured characteristics from point to

point in 3D

• Stream-based approach to account for the multidirectional

nature of pedestrian �ows
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Future research

• More numerical analysis needed

• Investigation of the role of conversion constant α

• Stream-based fundamental relationships for pedestrians

• Case study: Gare de Lausanne
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Thank you
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Measurement methods

Method A

• A reference location in space (x) is considered

• The mean value of q and v are calculated over time (∆t)

q = n
∆t , v = 1

n

∑
i
vi (t)

n - number of pedestrians passing the location x during ∆t
vi (t) - instantaneous speed of pedestrian i

Zhang, J., 2012. Pedestrian fundamental diagrams: Comparative analysis of experiments in di�erent
geometries. volume 14. Forschungszentrum Jülich
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Measurement methods

Method B

• The measures of k and v are averaged over time (∆t) and
space

k = 1

∆t

∫
t

n
b∆x dt, v =

∑
i
vi

n

b,∆x - width and length of the measurement area
vi = ∆x

∆ti
- individual space-mean speed

Zhang, J., 2012. Pedestrian fundamental diagrams: Comparative analysis of experiments in di�erent
geometries. volume 14. Forschungszentrum Jülich

22 / 22



Measurement methods

Method C

• The measures of k and v are speci�ed per space unit

k = n
b∆x , v =

∑
i
vi

n

b,∆x - width and length of the measurement area
vi = ∆x

∆ti
- individual space-mean speed

Zhang, J., 2012. Pedestrian fundamental diagrams: Comparative analysis of experiments in di�erent
geometries. volume 14. Forschungszentrum Jülich
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Measurement methods

Method D

• The measures of k and v are speci�ed via Voronoi diagrams

k =
∫ ∫

ρxydxdy
∆x∆y , v =

∫ ∫
vxydxdy

∆x∆y

ρxy = 1

Ai
, Ai - area of Voronoi cell associated to pedestrian i
vxy - instantaneous speed of pedestrian i

Zhang, J., 2012. Pedestrian fundamental diagrams: Comparative analysis of experiments in di�erent
geometries. volume 14. Forschungszentrum Jülich
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