Pedestrian-oriented flow characterization

Marija Nikolić Michel Bierlaire

Pedestrian and Evacuation Dynamics conference (PED 2014)

October 24, 2014

Introduction

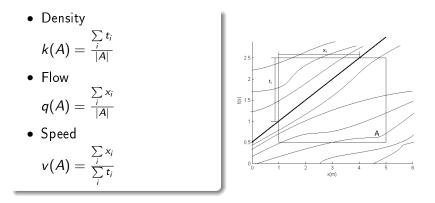
Objective

- Definitions of flow characteristics by adapting Edie's definitions
 - Stream-based approach
 - Data-driven discretization framework

Motivation

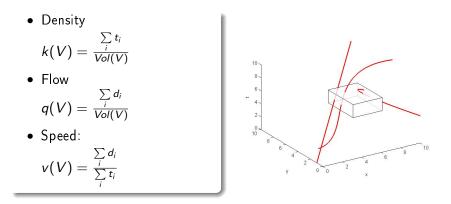
- Definitions and measurement methods currently available in the literature
 - Mostly fail to account for the multidirectional nature of pedestrian flows
 - Rely on arbitrarily chosen space and time discretization
- Realistic flow characterization important to many areas

Edie's definitions



L.C. Edie, Discussion of Traffic Stream Measurements and Definitions, Proceedings of the Second International Symposium on the Theory of Traffic Flow, Paris, OECD, 1965

Edie's definitions in 3D



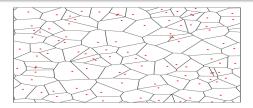
Saberi, M., and Mahmassani, H. (2014) Exploring Area-Wide Dynamics of Pedestrian Crowds Using a Three-Dimensional Approach, *Transportation Research Record: Journal of the Transportation Research Board*.

- $p_i^1, ..., p_i^{n(i)}$, where n(i) is the number of data for pedestrian i
- For each observed point $p_i^k = (x_i^k, y_i^k, t_i^k)$ the trajectory is $p(t_i^k) = p_i^k$
- Many trajectories can interpolate the same set of points - Interpolation is not necessary if a discretization is data-driven
- Voronoi based space-time discretization

Two-dimensional Voronoi diagrams

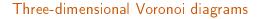
- $p_1, p_2, ..., p_N$ is a finite set of points
- Voronoi space decomposition assigns a region to each point

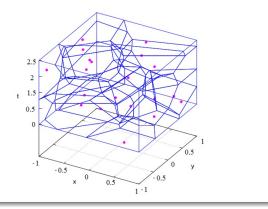
$$V(p_i) = \{p | \|p - p_i\| \le \|p - p_j\|, i \ne j\}$$



Steffen, B., and Seyfried, A., Methods for measuring pedestrian density, flow, speed and direction with minimal scatter, *Physica A: Statistical mechanics and its applications, 389(9), 1902-1910.*

Data-driven discretization framework





Three-dimensional Voronoi diagrams

- Pedestrian *i* represented by $p_i = (x_i, y_i, t_i)$ and point p = (x, y, t)
- Space-time distance

$$d_{lpha} = \sqrt{(x_i - x)^2 + (y_i - y)^2 + lpha^2 (t_i - t)^2}$$

 α - 1 second of time is equivalent to α meters of distance

• Three-dimensional Voronoi diagram

$$V(p_i) = V_i = \{p | d_{\alpha}(p, p_i) \leq d_{\alpha}(p, p_j), j \neq i\}$$

• Vol(V_i) - the volume of a Voronoi cell V_i associated with the point p_i with the unit square meters times seconds

Density indicator

• The set of all points in V_i corresponding to a given location (x_i, y_i) is a set of dimension 1 - a time interval

$$V_i(x_i, y_i) = \{(x_i, y_i, t) \in V_i\}$$

• $V_i(x_i, y_i)$ - the time interval that the pedestrian *i* occupies the location (x_i, y_i)

$$k(p_i) = \frac{V_i(x_i, y_i)}{Vol(V_i)}$$

Flow indicator

• The set of all points in V_i corresponding to a specific time t_i is a set of dimension 2 - a physical area on the floor

$$V_i(t_i) = \{(x, y, t_i) \in V_i\}$$

• Distance d_i - a maximum distance in $V_i(t_i)$ in the movement direction of pedestrian i

$$q(p_i) = \frac{d_i}{Vol(V_i)}$$

Speed indicator

$$v(p_i) = \frac{d_i}{V_i(x_i, y_i)}$$

Voronoi-based Edie's definitions

Disaggregated

$$k(p_i) = \frac{V_i(x_i, y_i)}{Vol(V_i)}$$

 $q(p_i) = \frac{d_i}{Vol(V_i)}$
 $v(p_i) = \frac{d_i}{V_i(x_i, y_i)}$
 $v(V) =$

Aggregated

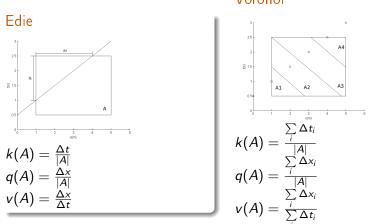
$$k(V) = \frac{\sum_{i} k(p_i) \cdot Vol(V_i)}{\sum_{i} Vol(V_i)}$$

$$q(V) = \frac{\sum_{i} q(p_i) \cdot Vol(V_i)}{\sum_{i} Vol(V_i)}$$

$$v(V) = \frac{\sum_{i} q(p_i) \cdot Vol(V_i)}{\sum_{i} k(p_i) \cdot Vol(V_i)}$$

1

Asymptotic analysis



Voronoi

Two-dimensional case

- Sampling interval $\Delta t_s
 ightarrow 0$
- Path L specified in parametric form: $x = x(t), t \in [lpha, eta]$

$$\lim_{\Delta t_i \to 0} \sum_{i} \Delta t_i = \int_{L} dt = \Delta t$$

$$\lim_{\Delta x_i \to 0} \sum_{i} \Delta x_i = \int_{L} dx = \int_{L} \dot{x} dt = \Delta x$$

Three-dimensional case

- Sampling interval $\Delta t_s
 ightarrow 0$
- Pedestrian identifier n
- Path L_n specified in parametric form:

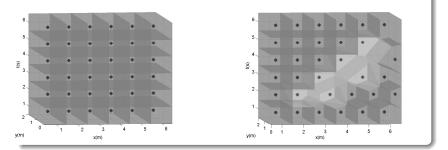
$$x_n = x_n(t), y_n = y_n(t), t_n \in [\alpha_n, \beta_n]$$
$$\lim_{\Delta t_i \to 0} \sum_n \sum_i \Delta t_i = \sum_n \int_{L_n} dt = \sum_n \Delta t_n$$
$$\lim_{\Delta x_i \to 0} \sum_n \sum_i \Delta d_i = \sum_n \int_{L_n} \sqrt{\dot{x}^2 + \dot{y}^2} dt = \sum_n \Delta d_n$$

Single pedestrian $p(t) = (x(t), y(t), t) = (0.02t^2 + 0.9t + 0.1, 1, t)$

Inst. speed	Voronoi	Analytical trajectory
V1	1.196	0.902
V2	1.031	0.940
V3	1.020	0.980
V4	0.980	1.020
V ₅	0.943	1.060
V ₆	0.913	1.082

Simulation experiment

Density map



- Reproduced movement with uniform and non-uniform density
- Smooth transitions in flow characteristics over space and time

- Pedestrian traffic composed of different streams
- A stream definition: direction-based and exogenous

$$(\varphi_j)_{j=1}^S, S \ge 2$$

- Trajectories are assumed to contribute to the streams to some extent
- The contribution is related to the angle between a movement direction of a pedestrian and the corresponding stream

Stream-based approach

- Pedestrian trajectory: p(t) = (x(t), y(t), t)
- Tangential direction associated with each point p(t) of a trajectory

$$abla p(t) = \left(\frac{dx(t)}{dt}, \frac{dy(t)}{dt}, 1\right)$$

- Pedestrian movement direction normalized vector e composed of the first two components of ∇p(t)
- The individual contribution to the stream

$$c_i^{\varphi_j} = \left\{ egin{array}{ll} \|e\| \, \|arphi_j\| \cos heta & : 0^\circ < heta \leq 90^\circ \ 0 & : 90^\circ < heta \leq 180^\circ. \end{array}
ight.$$

heta - the angle between the vectors e and $arphi_j$

Stream-based Voronoi definitions

Disaggregated

$$k(p_i) = \frac{V_i(x_i, y_i)}{Vol(V_i)}$$

$$q_{\varphi_j}(p_i) = rac{d_i^{\varphi_j}}{Vol(V_i)} \varphi_j$$

$$v_{\varphi_j}(p_i) = rac{d_i^{\varphi_j}}{V_i(x_i,y_i)} \varphi_j$$

Aggregation $k(V) = \frac{\sum_{i} k(p_i) \cdot Vol(V_i)}{\sum_{i} Vol(V_i)}$ $q_{\varphi_j}(V) = \frac{\sum\limits_{i} q_{\varphi_j}(p_i) \cdot Vol(V_i)}{\sum\limits_{i} Vol(V_i)} \varphi_j$ $\mathbf{v}_{\varphi_j}(\mathbf{V}) = \frac{\sum\limits_{i} q_{\varphi_j}(p_i) \cdot Vol(V_i)}{\sum k(p_i) \cdot Vol(V_i)} \varphi_j$

Conclusions

- The framework for pedestrian-oriented flow characterization
- Definitions based on data-driven discretization
 - Asymptotically consistent with Edie's definitions
 - Smooth transition in measured characteristics from point to point in 3D
- Stream-based approach to account for the multidirectional nature of pedestrian flows

- More numerical analysis needed
- Investigation of the role of conversion constant $\boldsymbol{\alpha}$
- Stream-based fundamental relationships for pedestrians
- Case study: Gare de Lausanne

Thank you

22 / 22

Method A

- A reference location in space (x) is considered
- The mean value of q and v are calculated over time (Δt)

$$q = \frac{n}{\Delta t}, \ v = \frac{1}{n} \sum_{i} v_i(t)$$

n - number of pedestrians passing the location x during Δt $v_i(t)$ - instantaneous speed of pedestrian *i*

Method B

 The measures of k and v are averaged over time (Δt) and space

$$k = \frac{1}{\Delta t} \int_{t} \frac{n}{b\Delta x} dt, \ v = \frac{\sum_{i} v_{i}}{n}$$

b, Δx - width and length of the measurement area
 $v_{i} = \frac{\Delta x}{\Delta t_{i}}$ - individual space-mean speed

$\mathsf{Method}\ \mathsf{C}$

• The measures of k and v are specified per space unit

$$k = \frac{n}{b\Delta x}, \ v = \frac{\sum_{i} v_i}{n}$$

b, Δx - width and length of the measurement area
 $v_i = \frac{\Delta x}{\Delta t_i}$ - individual space-mean speed

Method D

• The measures of k and v are specified via Voronoi diagrams

$$k = rac{\int \int
ho_{xy} dx dy}{\Delta x \Delta y}$$
, $v = rac{\int \int v_{xy} dx dy}{\Delta x \Delta y}$

 $\rho_{xy} = \frac{1}{A_i}, A_i$ - area of Voronoi cell associated to pedestrian i v_{xy} - instantaneous speed of pedestrian i

