Route choice models: bringing behavioral aspects into shortest path

Michel Bierlaire

Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne
October 27, 2014

Outline

(1) Introduction
(2) Shortest paths
(3) Traffic equilibrium

4 Behavioral model
(5) Sampling of alternatives

6 Sampling of paths
(7) Conclusion
(8) Bibliography

Introduction

The problem

- Given an origin o and a destination d,
- given a mode of transportation
- how does a traveler select a path to travel from o to d ?

Introduction

Motivation

- Each route choice contributes to congestion
- We want to predict it
- We want to mitigate it
 FEDIRALE DE LAUSANNE

Network representation

Nodes

- Intersections, bus stops, airports, train stations, parkings
- Centroids: subset of nodes, potential origins and destinations

Links

- Connecting two nodes
- Oriented edges
- Associated with attributes: length, travel time, cost, level of comfort, capacity, etc.

Modes of transportation

- Single mode
- or multi-modal

Shortest paths

Definition

- Given a network
- given a cost associated with each link
- given an origin o and a destination d,
- what is the path with the minimum total cost from o to d.

Assumptions

- Path attributes are link-additive
- Link attributes are summarized into a generalized cost
- Link cost can be negative, but no cycle with negative cost

Shortest path

Algorithms

- Bellman (1957)-Ford (1956)
- Dijkstra (1959)
- A* (Hart et al. (1968))
- Hub labeling (Abraham et al. (2011), specialized for road networks)
- and many variants

Main properties

- No enumeration of path
- Efficient implementations

Assignment

Motivation

- We are interested in congestion.
- Suppose that we know how travelers select their route.
- How do we measure the impact on the traffic through the network?

Problem definition

- For each origin o and destination d, we know the number of travelers performing the trip during the period of interest: $q_{o d}$.
- We know the route choice model.
- What is the flow on each link of the network?

Assignment: example

 ECOLE POLYTECHNIQUE fedirale de Lausanne

Assignment: example

 fedirale de lausanne

Assignment: example

	a	b	c	d
a	0	2	3	7
b	4	0	2	3
c	4	4	0	1
d	1	1	2	0

Assignment: example

	a	b	c	d
a	0	2	3	7
b	4	0	2	3
c	4	4	0	1
d	1	1	2	0

GCOLE POLYTICHNIQUE ECOLE POLYTECHNIQUE FEDIRALE DE LAUSANNE

Assignment: example

 fCOLI POLYTECHNIGUE
FEDIRALE DE LAUSANNE

Model

Assignment matrix

- Vector of OD flows: $q \in \mathbb{R}^{m \times 1}$
- Vector of link flows: $x \in \mathbb{R}^{n \times 1}$
- Total number of paths: p (potentially extremely large)
- Path-link incidence matrix: $P \in \mathbb{R}^{n \times p}$

$$
P_{\ell k}=1 \text { if link } \ell \text { belongs to path } k, 0 \text { otherwise }
$$

- Route choice matrix: $R \in \mathbb{R}^{p \times m}$
$R_{k j}$ proportion of OD flow j using path k
- Assignment map:

$$
x=P R q
$$

- Assignment matrix: $A=P R \in \mathbb{R}^{n \times m}$

All or nothing assignment

Assumptions

- Travel time is given for each link
- Every traveler takes the shortest path from o to d

Consequences

- Each column of R contains exactly one 1 and all zeros
- Assignment matrix can be built directly without enumerating the paths

All or nothing assignment

Limitation: non robust

Minor variations of the data may generate significantly different output
Assignment of 6000 units of flow

All or nothing assignment

Limitation: ignores congestion

- Travel time increases with flow
- Flow depends on route choice
- Route choice depends on travel time

TRANSP-OR

Accounting for congestion

Example

x : 1000 units of flow

Accounting for congestion

Empty network

Load 1000 units of flows

Accounting for congestion

Network with 1000 units

Load another 1000 units of flows

Accounting for congestion

Network with 6000 units

Result: Nash equilibrium

Nash equilibrium

Definition

The network is in Nash equilibrium or user equilibrium if no traveler can improve her travel time by unilaterally changing routes.

Property

For each OD pair, the travel time on all used paths are equal, and lower or equal to the travel time on any unused path

Nash equilibrium

Definition

The network is in Nash equilibrium or user equilibrium if no traveler can improve her travel time by unilaterally changing routes.

Property

For each OD pair, the travel time on all used paths are equal, and lower or equal to the travel time on any unused path

Back to the example

Construct a new link: $t=10+x$

Before: 83 min .
After: 70 min .

Back to the example

Flows

Travel times

Back to the example

Travel times

Before: 93 min .
After: 81 min .

Back to the example

Flows

Travel times: Nash equilibrium

Back to the example

Travel times: Nash equilibrium

M. Bierlaire (EPFL)

Braess paradox

Before: $t=83$

After: $t=92$

- Increasing the capacity of the network deteriorates its overall performance
- If travelers coordinate (coalition), they can be better off
- If not, they pay the "price of anarchy"
- Braess (1968)

Solution algorithm

Beckmann transformation (Beckmann et al. (1956))

- Equivalent nonlinear optimization problem
- Traffic equilibrium conditions $=$ optimality conditions of the optimization problem

Frank-Wolfe algorithm (Frank and Wolfe (1956))

- Shortest paths
- Convex combinations

Outline

(1) Introduction

(2) Shortest paths
(3) Traffic equilibrium

4 Behavioral model
(5) Sampling of alternatives

6 Sampling of paths
Conclusion
(8) Bibliography

Behavioral models

Traffic equilibrium

- Inherit the non robustness of all or nothing assignment
- Everybody has exactly the same behavior

Behavioral models

Choice models

- Account for the heterogeneity of behavior
- Theoretical foundations: utility theory
- Operational models used in transportation, marketing, etc.

Choice models

Theoretical foundations

- Random utility theory
- Choice set: \mathcal{C}_{n}
- Logit model:

$$
P\left(i \mid \mathcal{C}_{n}\right)=\frac{e^{V_{i n}}}{\sum_{j \in \mathcal{C}_{n}} e^{V_{j n}}}
$$

Route choice models

Advantages

- Link-additivity not necessary
- Traveler specific attributes
- Utility can be estimated from real data

Drawbacks

- Enumeration of paths
- Structural correlation among alternatives

Sampling of alternatives: McFadden (1978)

Sampling
Consider $D \subset \mathcal{C}_{n}$ sampled

$$
\begin{aligned}
\operatorname{Prob}(D, i) & =\operatorname{Prob}(D \mid i) P\left(i \mid \mathcal{C}_{n}\right) \\
& =P_{n}(i \mid D) \operatorname{Prob}(D) \\
& =P_{n}(i \mid D) \sum_{k \in D} \operatorname{Prob}(D \mid k) P\left(k \mid \mathcal{C}_{n}\right)
\end{aligned}
$$

Therefore,

$$
P_{n}(i \mid D)=\frac{\operatorname{Prob}(D \mid i) P\left(i \mid \mathcal{C}_{n}\right)}{\sum_{j \in D} \operatorname{Prob}(D \mid j) P\left(j \mid \mathcal{C}_{n}\right)}
$$

Sampling of alternatives: McFadden (1978)

Model based on sample of alternatives

$$
P_{n}(i \mid D)=\frac{\operatorname{Prob}(D \mid i) P\left(i \mid \mathcal{C}_{n}\right)}{\sum_{k \in D} \operatorname{Prob}(D \mid k) P\left(k \mid \mathcal{C}_{n}\right)}
$$

Logit model

$$
P\left(i \mid \mathcal{C}_{n}\right)=\frac{e^{V_{i n}}}{\sum_{j \in \mathcal{C}_{n}} e^{V_{j n}}}
$$

Sampling with logit

$$
P_{n}(i \mid D)=\frac{\operatorname{Prob}(D \mid i) e^{V_{i n}}}{\sum_{k \in D} \operatorname{Prob}(D \mid k) e^{V_{k n}}} \frac{\sum_{j \in \mathcal{C}_{n}} e^{V_{j n}}}{\sum_{j \in \mathcal{C}_{n}} e^{V_{j n}}}
$$

Sampling of alternatives: McFadden (1978)

Sampling with logit

$$
\begin{aligned}
P_{n}(i \mid D) & =\frac{\operatorname{Prob}(D \mid i) e^{V_{i n}}}{\sum_{k \in D} \operatorname{Prob}(D \mid k) e^{V_{k n}}} \frac{\sum_{j \in \mathcal{C}_{n}} e^{V_{j n}}}{\sum_{j \in \mathcal{C}_{n}} e^{V_{j n}}} \\
& =\frac{\operatorname{Prob}(D \mid i) e^{V_{i n}}}{\sum_{k \in D} \operatorname{Prob}(D \mid k) e^{V_{k n}}} \\
& =\frac{e^{V_{i n}+\ln \operatorname{Prob}(D \mid i)}}{\sum_{k \in D} e^{V_{k n}+\ln \operatorname{Prob}(D \mid k)}}
\end{aligned}
$$

Sampling of alternatives: McFadden (1978)

Comments

- Choice probability can be approximated using a sample of alternatives
- Terms involving \mathcal{C}_{n} cancel out with logit
- Condition: $\operatorname{Prob}(D \mid k) \neq 0$, for each $k \in D$
- Generalized to more complex models by Bierlaire et al. (2008)

Sampling of paths: challenges

Importance sampling: prefer shorter paths
Path p is sampled with probability

$$
\pi_{p}=\frac{e^{-\lambda L_{p}}}{\sum_{q \in \mathcal{C}_{n}} e^{-\lambda L_{q}}}
$$

Calculate correction $\operatorname{Prob}(D \mid k)$
Frejinger et al. (2009)

Draw D from \mathcal{C}_{n}
Flötteröd and Bierlaire (2013)

Metropolis-Hastings

Principles

- Let $b_{j}=\exp \left(-\lambda L_{j}\right), j \in \mathcal{C}_{n}$
- Let $B=\sum_{j \in \mathcal{C}_{n}} b_{j}$. B cannot be computed.
- We want to simulate a r.v. with pmf $\pi_{j}=b_{j} / B$.
- Consider a Markov process on \mathcal{C}_{n} with transition probability Q.
- Define another Markov process with the same states in the following way:
- Assume the process is in state i, that is $X_{t}=i$,
- Simulate the (candidate) next state j according to Q.
- Define

$$
X_{t+1}= \begin{cases}j & \text { with probability } \alpha_{i j} \\ i & \text { with probability } 1-\alpha_{i j}\end{cases}
$$

Metropolis-Hastings

Accept-reject probability
Derived from the theory of Markov processes:

$$
\alpha_{i j}=\min \left(\frac{b_{j} B Q_{j i}}{b_{i} B Q_{i j}}, 1\right)=\min \left(\frac{b_{j} Q_{j i}}{b_{i} Q_{i j}}, 1\right)
$$

Does not involve B.
In practice: define a Markov process Q

- Q is generating a sequence of paths
- Too little variability: slow convergence
- Too much variability: random search
- Transition probabilities $Q_{i j}$ and $Q_{j i}$ must be calculated.

Markov process Q

State $i=(\Gamma, a, b, c)$

- a path 「
- three node indices $a<b<c$ within that path
- Node indices are important to compute $Q_{i j}$ and $Q_{j i}$

First type of transition: shuffle Re-sample (uniformly) $a<b<c$ within path 「

Second type of transition: splice

- sample a node v "near" the path segment $\Gamma(a, c)$
- connect $\Gamma(a)$ to v
- connect v to $\Gamma(c)$
- let new b point at v, update c

Markov process Q

Case study: Tel Aviv

Large network

- 17118 links
- 7879 nodes
- Movie...

Summary

Route choice behavior

- Shortest paths: efficient algorithm, limited realism
- Accounting for congestion: traffic equilibrium
- Accounting for behavioral heterogeneity: random utility models

Sampling of path

- Allows to approximate choice probability
- Importance sampling
- Metropolis-Hastings algorithms

Future work

Making the models more complex
Lai and Bierlaire (2014)

Making the models simpler
Kazagli and Bierlaire (2014)

Bibliography I

Abraham, I., Delling, D., Goldberg, A. V., and Werneck, R. F. (2011). A hub-based labeling algorithm for shortest paths in road networks. In Experimental Algorithms, pages 230-241. Springer.
Beckmann, M. J., McGuire, C. B., and Winsten, C. B. (1956). Studies in the Economics of Transportation. Yale University Press.
Bellman, R. (1957). Dynamic programming, princeton. NJ: Princeton UP, 18.

Bierlaire, M., Bolduc, D., and McFadden, D. (2008). The estimation of generalized extreme value models from choice-based samples. Transportation Research Part B: Methodological, 42(4):381-394.
Braess, D. (1968). Uber ein paradoxon der verkhersplannung. Unternehmenforschung, 12:256-268.

Bibliography II

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. 1:269-271.

Flötteröd, G. and Bierlaire, M. (2013). Metropolis-hastings sampling of paths. Transportation Research Part B: Methodological, 48:53-66.
Ford, L. R. (1956). Network flow theory.
Frank, M. and Wolfe, P. (1956). An algorithm for quadratic programming. Naval Research Logistics Quarterly, 3(1-2):95-110.
Frejinger, E., Bierlaire, M., and Ben-Akiva, M. (2009). Sampling of alternatives for route choice modeling. Transportation Research Part B: Methodological, 43(10):984-994.
Hart, P., Nilsson, N., and Raphael, B. (1968). A formal basis for the heuristic determination of minimum cost paths. Systems Science and Cybernetics, IEEE Transactions on, 4(2):100-107.

Bibliography III

Kazagli, E. and Bierlaire, M. (2014). Revisiting route choice modeling: A multi-level modeling framework for route choice behavior. In Proceedings of the Swiss Transportation Research Conference, Ascona, Switzerland.

Lai, X. and Bierlaire, M. (2014). Specification of the cross nested logit model with sampling of alternatives for route choice models. Technical Report 140602, Transport and Mobility Laboratory, Ecole Polytechnique Fédérale de Lausanne.

McFadden, D. (1978). Modelling the choice of residential location. In A. Karlquist et al., editor, Spatial interaction theory and residential location, pages 75-96, Amsterdam. North-Holland.

