000203350 001__ 203350
000203350 005__ 20181203023705.0
000203350 022__ $$a0022-0248
000203350 0247_ $$2doi$$a10.1016/j.jcrysgro.2011.12.057
000203350 037__ $$aARTICLE
000203350 245__ $$aAluminum catalyzed growth of silicon nanowires: Al atom location and the influence of silicon precursor pressure on the morphology
000203350 269__ $$a2012
000203350 260__ $$c2012
000203350 336__ $$aJournal Articles
000203350 520__ $$aWe study the growth of silicon nanowires (SiNWs) by chemical vapor deposition (CVD) with aluminum as catalyst. We show that for a growth temperature of 600 °C, the silicon precursor partial pressure (SiH 4 in this study) is a key parameter for controlling the structural quality of the resulting SiNWs. We find by transmission electron microscopy that at high SiH 4 partial pressure, the SiNWs are composed of a monocrystalline core with a high density of surface defects, mainly twins, sheathed by a rough amorphous silicon layer. By contrast, at low SiH 4 partial pressure, the SiNWs are monocrystalline with a lower density of surface crystalline defects and a smooth surface. For the low SiH 4 partial pressure SiNWs, Al atoms have been detected at the SiNW surface by Auger spectroscopy at level around 3 at% and in the SiNW core by energy dispersive X-ray spectroscopy (EDS) at levels around 1 at%. Interestingly, higher Al concentrations are measured inside the nano-twin domains by EDS (around ten times increase). Two possible explanations are proposed; stacking faults are induced by Al atoms that lower their energy formation, or Al atoms can be trapped inside these stacking faults due to segregation effect during growth. These findings will be important for growing high quality SiNWs using Al as metal catalyst in reduced-pressure CVD tool. © 2012 Elsevier B.V.
000203350 6531_ $$aA1. Crystal structure
000203350 6531_ $$aA1. Defects
000203350 6531_ $$aA1. Nanostructures
000203350 6531_ $$aA2. Single crystal growth
000203350 6531_ $$aAl-concentration
000203350 6531_ $$aAluminum
000203350 6531_ $$aAmorphous silicon layers
000203350 6531_ $$aAtoms
000203350 6531_ $$aAuger spectroscopy
000203350 6531_ $$aB1. Nanowire
000203350 6531_ $$aB2. Semiconducting materials
000203350 6531_ $$aCatalysts
000203350 6531_ $$aChemical vapor deposition
000203350 6531_ $$aCore levels
000203350 6531_ $$acrystalline defects
000203350 6531_ $$aEnergy dispersive X ray spectroscopy
000203350 6531_ $$aEnergy formation
000203350 6531_ $$aHigh density
000203350 6531_ $$aHigh quality
000203350 6531_ $$aKey parameters
000203350 6531_ $$aLower density
000203350 6531_ $$aMetal catalyst
000203350 6531_ $$aMonocrystalline
000203350 6531_ $$aNanowires
000203350 6531_ $$aPartial pressure
000203350 6531_ $$aSegregation effects
000203350 6531_ $$aSilicon nanowires
000203350 6531_ $$aSilicon precursors
000203350 6531_ $$aSmooth surface
000203350 6531_ $$aStructural qualities
000203350 6531_ $$aSurface defects
000203350 6531_ $$aSurfaces
000203350 6531_ $$aTransmission electron microscopy
000203350 6531_ $$aX ray spectroscopy
000203350 700__ $$aKohen, D.
000203350 700__ $$0248450$$g112215$$aCayron, C.
000203350 700__ $$aDe Vito, E.
000203350 700__ $$0249732$$g265228$$aTileli, V.
000203350 700__ $$aFaucherand, P.
000203350 700__ $$aMorin, C.
000203350 700__ $$aBrioude, A.
000203350 700__ $$aPerraud, S.
000203350 773__ $$j341$$tJournal of Crystal Growth$$q12-18
000203350 909C0 $$xU12903$$0252516$$pLMTM
000203350 909C0 $$xU13118$$0252565$$pINE
000203350 909CO $$pSTI$$particle$$ooai:infoscience.tind.io:203350
000203350 937__ $$aEPFL-ARTICLE-203350
000203350 973__ $$rREVIEWED$$sPUBLISHED$$aOTHER
000203350 970__ $$akohen_aluminum_2012/INE
000203350 980__ $$aARTICLE