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Abstract. Advection–dominated problems, which arise in many engineering situations,
often require a fast and reliable approximation of the solution given some parameters as
inputs. In this work we want to investigate the coupling of the reduced basis method –
which guarantees rapidity and reliability – with some classical stabilization techiques to
deal with the advection–dominated condition. We provide a numerical extension of the
results presented in [1], focusing in particular on problems with curved boundary layers
and inner fronts whose direction depends on the parameter.

1 INTRODUCTION

Advection–diffusion equations are widely used to model physical phenomena. For in-
stance, we recall heat transfer phenomena [2] and the diffusion of pollutants in the atmo-
sphere or waters [3, 4]. These equations may often depend on several parameters involving
both the coefficients, e.g. the thermal conductivity or the wind (transport) direction, and
the domain itself of the equation, e.g. the geometry of a thermal cooling system. In en-
gineering applications, accurate numerical approximations of the solution are needed and
these can be provided, for instance, by the Finite Element (FE) method [5]. In some
situations, however, a very fast approximation of the solution is needed and a complete
FE simulation may not suit one’s purpose, because it can turn out to be excessively
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time-demanding. In particular, when dealing with real–time simulations or many–query
situations (i.e., the same equation must be solved for many different parameters values),
it is possible to resort to the Reduced Basis (RB) method [6], which aims to recover a
high–fidelity approximated solution, often called truth solution, by performing a Galerkin
projection onto a low–dimensional space. Moreover, the RB method provides rigorous
a posteriori error estimators which guarantees the reliability of the method. The com-
putational efficiency of the RB method is reached thanks to the fact that it is split in
two computational stages. During the first expensive stage, to be performed once, a low–
dimensional space – spanned by FE solutions computed at properly chosen parameter
values – is built and stored, together with all the structure needed to assemble and solve
the small linear problem associated with the RB Galerkin projection. The assembly and
the solution of this small linear problem, which provides the fast approximation of the
solution given a value of the parameters, is called Online stage. The latter is computa-
tionally inexpensive and can be repeated an arbitrary number of times.

The RB method has been successfully applied to the approximation of advection–
diffusion problems in [2, 7, 8, 9, 10]. These cited works deal with problems in which the
Péclet number, which is the ratio between the advection term and the diffusion one, takes
low values. More precisely, the values taken by Péclet number are sufficiently small to
avoid the numerical instabilities well known in literature [11].

It is possible to find many methods to fix the instability problems. A widely studied
class of them is represented by the strongly consistent stabilization methods [11], which we
will briefly recall in Section 2. First results about the coupling of stabilization methods
and RB method can be found in [3, 4]. Recently, new methods have been proposed
as regards the Model Order Reduction for advection dominated problems. We recall
[12] in which a Petrov–Galerkin approach involving a double Greedy strategy is followed.
Moreover, in [13] a method based on Variational Multiscale (VMS) and Proper Orthogonal
Decomposition (POD) is proposed. This method has also been extended to Navier–Stokes
equation in [14].

The present work is a numerical extension of the results presented in [1]. In the latter,
a comparison between two possible computational–split stabilization strategies is carried
out. The first strategy, called Offline–Online stabilized method, consists in performing
both the Offline and the Online stages with respect to a stabilized problem. This strategy
fits the standard RB theory presented in [6] and it was actually used in [3, 4]. In the
second strategy, called Offline–only stabilized method, only the Offline stage is performed
using the stabilized form, while the Online Galerkin projection is done using the standard
advection diffusion form. To motivate this approach we observe that the RB solution
is actually a linear combination of precomputed particular solutions of the equations, so
that it can be reasonable to expect that if the basis functions are stable, so it is the RB
solution. In [1] it is shown that this is not valid in general. However, if we are using
a Streamline Upwind Petrov Galerkin (SUPG) stabilization, the Offline–only stabilized
method can produce still stable solutions, especially when the boundary layers are parallel
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to the transport field.
In this work we want to extend the study carried out in [1] with new investigations,

by testing the proposed methods on geometries with curved boundaries, which imply the
presence of curved boundary layers. Moreover, we perform tests with multiple inner fronts
whose direction depends on the parameter and with immersed bodies in the thermal flow.

In Section 2 we briefly recall the methods used, while in Section 3 we show the numerical
results. Conclusions follow.

2 OVERVIEW OF THE STABILIZED REDUCED BASIS METHOD

We follow the framework presented in [1]. Let the domain Ω be an open subset of R2,
and let the parameter space D be a subset of RP , where P is the number of parameters.
Given a value µ ∈ D, the problem we are going to consider is

−ε(µ)∆u(µ) + β(µ) · ∇u(µ) = h(µ) on Ω. (1)

with Dirichlet, Neumann or mixed boundary conditions. The diffusion coefficient ε(µ)
and the advection field β(µ) are sufficiently regular functions defined on Ω with values in
(0,+∞) and R2, respectively. The source term h(µ) is a L2 function defined on Ω. From
the general advection–diffusion PDE theory (see e.g. [15]), in order to ensure the well
posedness of problem (1) we must make proper assumptions on the coefficients ε(µ) and
β(µ). In our numerical tests, for each value of the parameter µ ∈ D, we will assume that it
exists ε̄ > 0 such that ε(µ) ≥ ε̄ and the advection field β(µ) is directed outwards Ω on the
Neumann boundaries, i.e., Neumann conditions are only imposed on outflow boundaries.
The associated problem in variational form is

find u(µ) ∈ H1
0 (Ω) such that: a(u(µ), v;µ) = f(v;µ) ∀ v ∈ H1

0 (Ω), (2)

where a is the bilinear form associated with the advection–diffusion operator, while the
right–hand side functional f(·;µ) depends on the source term h(µ) and on the boundary
conditions.

When the advection term dominates the diffusion one, the numerical approximation of
problems like (1) can be difficult [11]. In particular, spurious oscillations in the numerical
solution may arise. More precisely, when using a piecewise–linear FE approximation
defined on a triangulation T N of the domain Ω, we say that a problem is advection–
dominated in K ∈ T N when the following condition holds:

PeK(µ)(x) :=
|β(µ)(x)|hK

2ε(µ)(x)
> 1 ∀x ∈ K ∀µ ∈ D, (3)

having denoted with hK the diameter of K.
Many strategies have been proposed to deal with the FE approximation of advection

dominated problems. An example can be the strongly consistent stabilization methods [5,
11]. The basic idea is to modify the advection–diffusion bilinear form a by adding a
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stabilization term to the standard form. Denoting with XN the piecewise linear FE space
on T N , given a value ρ, the general form of these methods is

a
(ρ)
stab(w

N , vN ;µ) = a(wN , vN ;µ) +
∑
K∈Th

δK

∫
K

LµwN
(

hK
|β(µ)|(L

µ
SS + ρLµ

S)vN
)
, (4)

for each vN , wN ∈ XN , where Lµ is the advection–diffusion operator, while LS and LSS

are its symmetric and skew–symmetric parts, respectively. Also the right–hand side of
the equation must be modified in order to recover the strong consistency and we will
denote in with f

(ρ)
stab(·;µ). For ρ = 0 we have the so called Streamline Upwind Petrov–

Galerkin (SUPG) method, for ρ = 1 the Galerkin Least–Squares (GLS) method and for
ρ = −1 the Douglas–Wang (DW) method. We observe that, when using piecewise linear
FE, the three mentioned stabilization techniques actually coincide. We refer to [11] and
the references therein for a detailed presentation and analysis of the strongly consistent
stabilization methods.

In order to couple the FE stabilization techniques with the RB machinery, we resort
to the Offline–Online stabilized and the Offline–only stabilized strategies introduced and
studied in [1]. In this framework, to compute the particular solutions which spans the
reduced space XNN , we perform the Offline stage of both methods with respect to the same
stabilized bilinear form (4). The differences between the two stabilization strategies arise
during the Online stage, in which different Galerkin projections are exploited.

find usN (µ) ∈ XN such that

a
(ρ)
stab(u

sN (µ), vN ;µ) = f
(ρ)
stab(v

N ;µ)

∀ vN ∈ XN .

Offline–Online stabilized

find usN(µ) ∈ XN
N such that

a
(ρ)
stab(u

s
N(µ), vN ;µ) = f

(ρ)
stab(vN ;µ)

∀ vN ∈ XN
N .

Offline–Only stabilized

find uN(µ) ∈ XN
N such that

a(uN(µ), vN ;µ) = f(vN ;µ)

∀ vN ∈ XN
N .

Online stage problems

Offline stage problem

In order to carry out succesfully a RB approach, we need to make proper assumptions
on the forms involved. In particular we assume the affine dependence on the parameter [6],
i.e.,

a(wN , vN ;µ) =

Qa∑
q=1

Θq
a(µ)aq(wN , vN ) ∀µ ∈ D. (5)
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where Θq
a, q = 1, . . . , Qa, are D → R functions, while aq, q = 1, . . . , Qa, are parameter

independent bilinear forms on XN . We make this assumption on all the forms involved.
The following upper bound can be proven (see [1]).

Proposition 1 If ρ = 0 (SUPG), the following estimate of the error between the Offline-
only stabilized approximation uN(µ) and the stabilized FE approximation usNN (µ) holds:

|||uN(µ)− usNN (µ)|||µ ≤ |||usN(µ)− usNN (µ)|||+ hC(µ)‖β(µ) · ∇(usN(µ) + gh)‖L2(Ω) (6)

where usN(µ) is the Offline–Online stabilized solution, gh is the lifting of the Dirichlet
boundary condition, ||| · |||µ is the norm induced by the symmetric part of the bilinear
form a(·, ·;µ) and C(µ) is such that |v|H1(Ω) ≤ C(µ)|||v|||µ, for all v ∈ H1

0 (Ω). The value
h is the maximum element diameter of the mesh T N .

For the sake of presentation, we decided to set our problem on a parameter independent
domain Ω. However, it is possible to consider domains which are the transformation of a
reference domain through suitable mappings [1, 6, 9].

3 NUMERICAL RESULTS

In this section we show some numerical results obtained with the model problem we
considered. In Subsection 3.1 we test the presented methodology on a problem which
can model the diffusion of some quantity transported by a fluid flowing in a stenosed
vessel. In this case we tested also different strongly consistent stabilization techniques.
In Subsection 3.2 we focus on a system made by three bars immersed in a flowing fluid
in which they release a particular substance (e.g. pollutant, oxygen, drugs, etc.).

3.1 Stenosed vessel test case

We consider an advection–diffusion problem defined on the stenosed vessel sketched in
Figure 1. The problem is

− 1

µ1

∆u+ β(µ2) · ∇u = 0 in Ω,

u = 0 on Γ1 ∪ Γ2,
1

µ1

∂u

∂n
= 0 on Γ3,

1

µ1

∂u

∂n
= 1 on Γ4.

(7)

where the divergence free advection field β(µ2) is defined as follows:

β(x, y;µ2) = −16

25
y

(
y − 5

2

)
i + µ2 j, (8)

having denoted with i, j the usual unit vectors of R2.
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(0, 1.25)

(0, 0) (3, 0)

(3, 1.25)

Γ4

Γ1 Γ3

Γ2

Ω

Figure 1: Stenosed vessel test case. Boundary conditions: Neumann condition 1
µ1

∂u
∂n = 1 on the bold

dashed side, homogeneous Neumann on the dashed side and homogeneous Dirichlet conditions on the
remaining sides.

(a) µ = (800, 0) (b) µ = (800,−0.3)

Figure 2: Stenosed vessel test case. Representative Offline–Online stabilized approximated solutions.

We chose the SUPG stabilization technique (ρ = 1) and we let the parameter µ =
(µ1, µ2) in the parameter space D = [100, 1000] × [−0.5, 0]. The Greedy algorithm pro-
duced 61 basis, while the FE space dimension is 2341. In Figures 2 and 3 we show some
relevant RB solutions obtained with both the stabilization strategies, while in Figure 4 we
compare the approximation errors. We observe that, when the advection field is almost
parallel to the boundary layer (i.e., when µ2 = 0), the Offline–only stabilized solution
does not show instabilities. This is in accordance with the results in [1].

3.1.1 Test with different stabilization techniques

We tried also to perform a RB approximation of problem (7) comparing the results
obtained using either SUPG or GLS stabilization. We chose to use piecewise quadratic

(a) µ = (800, 0) (b) µ = (800,−0.3)

Figure 3: Stenosed vessel test case. Representative Offline–Only stabilized approximated solutions.

6



Paolo Pacciarini and Gianluigi Rozza

Offline-Online
Offline-only
Upper bound

10−6

10−3

1

μ2 = 0
100 1000

10−6

10−3

1

μ2 = -0.3
100 1000

Figure 4: Stenosed vessel test case. Approximation error and error a priori upper bound of Proposition
1. The curves represent the error as a function of µ1, given a fixed value of µ2.

(a) Offline–Online stabilized (b) Offline–Only stabilized

Figure 5: Stenosed vessel test case. RB solutions obtained using SUPG.

finite elements, as done e.g. in [1]. In Table 1 we show some data about the computation.
Here N is the dimension of the truth FE space while N the dimension of the RB space.
We reported also the number of iteration performed by the SCM algorithm [6] used to
allow the approximation of the µ–dependent lower bound of the coercivity constant. We
observe that the GLS method requires a higher number of SCM iterations. In Figure 5 we
show the solution obtained using the SUPG stabilization coupled with the Offline–Online
and Offline–only strategies. We observe that the Offline–only stabilized solution shows
notable instability phenomena. The situation of the GLS computation is similar.

Stabilization D N N SCM iter.

SUPG
[100, 1000]× [−0.3,−0.25] 2318

19 10
GLS 23 23

Table 1: Stenosed vessel test case. Comparison of SUPG and GALS stabilization.
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(a) Offline–Online stabilized (b) Offline–Only stabilized

Figure 6: Stenosed vessel test case. RB solutions obtained using GLS.

3.2 Bars test case

We consider an advection–diffusion problem defined on the domain Ω sketched in Fig-
ure 1. The problem is

− 1

µ1

∆u+ β(µ2) · ∇u = 0 in Ω,

u = 0 on Γ1 ∪ Γ2 ∪ Γ4,
u = 1 on Γ5 ∪ Γ6 ∪ Γ7,

1

µ1

∂u

∂n
= 0 on Γ3.

(9)

where the divergence–free advection field β(µ2) is defined as follows:

β(x, y;µ2) =

[
−64

49
y

(
y − 7

4

)]
i + µ2 j, (10)

having denoted with i, j the usual unit vectors of R2. The x–component of the advection
field has a parabolic profile and it is null along Γ1 and Γ3. Its maximum value is 1.
We point out that Γ5, Γ6 and Γ7 are circles of radius 0.5 and are centered in (0.75, 0.5),
(0.75, 1.25), (1.75, 0.875), respectively.

In our test, we let the parameter µ = (µ1, µ2) in the parameter space D = [10, 100]×
[−0.5, 0.5]. The FE truth space dimension id 2407 and the Greedy algorithm produced
125 basis. In Figures 8 we show some relevant RB solution obtained with both Offline–
Online and Offline–only stablized method. We observe that in this case the performances
of the Offline–Online stabilized method are significantly better. In Figure 9 we compare
the approximation errors. As already pointed out in [1], when dealing with a problem
characterized by internal layers whose directions depend on the parameter, it is required
a conspicuous number of reduced basis functions in order to properly resolve the layer
during the Online stage.

4 CONCLUSIONS

We have compared numerically two possible stabilization strategies, the Offline–Online
stabilized and the Offline–only stabilized, on domains with curved boundary and in pres-
ence of multiple internal layers. In general, the Offline–Online stabilized gives better
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(0, 1.75)

(0, 0) (2.5, 0)

(2.5, 1.75)

Γ4

Γ1 Γ3

Γ2

Γ5

Γ6

Γ7

Ω

Figure 7: Bars test case domain. Boundary conditions: Dirichlet condition u = 1 on the bold sides,
homogeneous Neumann on the dashed side, homogeneous Dirichlet on the remaining sides. The grey
disks are not part of the domain.

(a) Offline–Online stabilized (b) Offline–Only stabilized

Figure 8: Stenosed vessel test case. RB solutions obtained using GLS.

Offline-Online
Offline-only
Upper bound

10−6

10−3

1

100 1000

Figure 9: Bars test case. Approximation error and error a priori upper bound of Proposition 1. The
curves represent the error as a function of µ1, given µ2 = 0.
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results, while Offline–only stabilized solution can often show instability phenomena which
mainly arise when the advection field is not parallel to the boundary layer. Moreover,
as observed in [1], the Offline–Online stabilized method can also be provided with the
standard RB a posteriori error estimators.

Possible extensions of this work could involve the reduced basis approximation of a
scalar advection–diffusion problem in which the advection field is the velocity of a fluid,
which has to be computed according to the parameter. Future research will be then
devoted to stabilization strategies for vectorial and non–linear problems (e.g. Navier–
Stokes flows).
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