000203323 001__ 203323
000203323 005__ 20181203023704.0
000203323 022__ $$a09650393
000203323 0247_ $$2doi$$a10.1088/0965-0393/8/2/309
000203323 037__ $$aARTICLE
000203323 245__ $$aParameter identification method for a polycrystalline viscoplastic selfconsistent model based on analytical derivatives of the direct model equations
000203323 269__ $$a2000
000203323 260__ $$c2000
000203323 336__ $$aJournal Articles
000203323 520__ $$aAn inverse method for automatic identification of the parameters involved in a polycrystalline viscoplastic selfconsistent (VPSC) model is presented. The parameters of the constitutive viscoplastic law at the single-crystal level, i.e. the critical resolved shear stresses (CRSS) of slip and twinning and the micro-hardening coefficients, can be identified using experimental data at the polycrystal level, i.e. stress-strain curves and deformation-induced textures. The minimization problem is solved by means of a Gauss-Newton scheme and the sensitivity matrix is evaluated by analytical differentiation of the direct model equations. As a particular case, the optimization procedure for the Taylor full constraints (FC) formulation is also presented. The convergence and stability of the identification scheme are analysed using several validation tests for different deformation paths imposed to a polycrystal of hexagonal structure. As an example of application of this inverse method, the relative CRSS of the active deformation systems of a Zircaloy-4 sheet are identified, based on several textures measured for different reductions and rolling directions.
000203323 6531_ $$aComputer simulation
000203323 6531_ $$aCritical resolved shear stress
000203323 6531_ $$aDeformation induced texture
000203323 6531_ $$aGauss-Newton scheme
000203323 6531_ $$aMathematical models
000203323 6531_ $$aPlastic deformation
000203323 6531_ $$aPolycrystalline materials
000203323 6531_ $$aPolycrystalline viscoplastic selfconsistent model
000203323 6531_ $$aShear stress
000203323 6531_ $$aSingle crystals
000203323 6531_ $$aStrain
000203323 6531_ $$aStresses
000203323 6531_ $$aStress strain curve
000203323 6531_ $$aTaylor full constraint
000203323 6531_ $$aTextures
000203323 6531_ $$aTwinning
000203323 6531_ $$aViscoplasticity
000203323 6531_ $$aZirconium alloys
000203323 700__ $$aSignorelli, J.W.
000203323 700__ $$0248074$$g243441$$aLogé, R.E.
000203323 700__ $$aChastel, Y.B.
000203323 700__ $$aLebensohn, R.A.
000203323 773__ $$j8$$tModelling and Simulation in Materials Science and Engineering$$q193-209
000203323 909C0 $$xU12903$$0252516$$pLMTM
000203323 909CO $$pSTI$$particle$$ooai:infoscience.tind.io:203323
000203323 937__ $$aEPFL-ARTICLE-203323
000203323 973__ $$rREVIEWED$$sPUBLISHED$$aOTHER
000203323 980__ $$aARTICLE