000203296 001__ 203296
000203296 005__ 20180913062841.0
000203296 0247_ $$2doi$$a10.1016/j.commatsci.2010.04.042
000203296 022__ $$a09270256
000203296 037__ $$aARTICLE
000203296 245__ $$a3D finite element model of semi-solid permeability in an equiaxed granular structure
000203296 260__ $$c2010
000203296 269__ $$a2010
000203296 336__ $$aJournal Articles
000203296 520__ $$aA multi-domain finite element formulation has been applied to determine the semi-solid permeability of an equiaxed granular structure. The granular model was constructed from a Voronoï tessellation algorithm. The liquid-solid interface is represented implicitly by a level set function, and an anisotropic meshing technique is employed for an accurate description of the interface geometry with reasonable computation resources. The liquid phase is considered as an incompressible Newtonian fluid, and permeability is computed based on Darcy's law. A good agreement is found with available literature data and with the Kozeny-Carman prediction. The proposed method, associating the finite element method with a level set framework, is shown to be an effective technique for examining microstructure effects on the semi-solid permeability. This is illustrated by considering the influence of the Gibbs-Thomson effect. © 2010 Elsevier B.V. All rights reserved.
000203296 6531_ $$aAnisotropic meshing and remeshing
000203296 6531_ $$aAnisotropy
000203296 6531_ $$aDrop breakup
000203296 6531_ $$aFinite element
000203296 6531_ $$aFinite element method
000203296 6531_ $$aGibbs-Thomson
000203296 6531_ $$aGibbs-Thomson effect
000203296 6531_ $$aLevel measurement
000203296 6531_ $$aLevel set method
000203296 6531_ $$aLiquids
000203296 6531_ $$aPermeability
000203296 6531_ $$aPhase interfaces
000203296 6531_ $$aRemeshing
000203296 6531_ $$aSemi-solid
000203296 6531_ $$aSemi-solids
000203296 6531_ $$aTextures
000203296 6531_ $$aThermoelectricity
000203296 6531_ $$aThree dimensional
000203296 700__ $$aSun, Z.
000203296 700__ $$0248074$$aLogé, R.E.$$g243441
000203296 700__ $$aBernacki, M.
000203296 773__ $$j49$$q158-170$$tComputational Materials Science
000203296 909C0 $$0252516$$pLMTM$$xU12903
000203296 909CO $$ooai:infoscience.tind.io:203296$$pSTI$$particle
000203296 937__ $$aEPFL-ARTICLE-203296
000203296 973__ $$aOTHER$$rREVIEWED$$sPUBLISHED
000203296 980__ $$aARTICLE