000203277 001__ 203277
000203277 005__ 20181203023703.0
000203277 0247_ $$2doi$$a10.1016/j.commatsci.2014.05.060
000203277 022__ $$a09270256
000203277 037__ $$aARTICLE
000203277 245__ $$aAssessment of simplified 2D grain growth models from numerical experiments based on a level set framework
000203277 260__ $$c2014
000203277 269__ $$a2014
000203277 336__ $$aJournal Articles
000203277 520__ $$aIn this paper, the results of a 2D full field grain growth model are compared with several 2D mean field grain growth models (Burke and Turbull model and Hillert/Abbruzzese model), using simplified assumptions of isotropic grain boundary energy and mobility, and under the absence of precipitates. The full field model is based on a finite element formulation combined with a level set framework, used to describe the granular structure, and model grain boundary motion through a diffusion formulation. The initial digital microstructures are created using a coupled "Voronoï-Laguerre/dense sphere packing" algorithm, which allows to obey different types of initial grain size distributions, in the considered 2D context. The results show that only the Hillert/Abbruzzese model accurately describes grain growth kinetics for all considered grain size distributions. The validity of the Burke and Turnbull model is, on the contrary, restricted to specific distributions. © 2014 Elsevier Inc. All rights reserved.
000203277 6531_ $$aFinite element
000203277 6531_ $$aFinite element formulations
000203277 6531_ $$aFinite element method
000203277 6531_ $$aFull field model
000203277 6531_ $$aFull field models
000203277 6531_ $$aGrain boundaries
000203277 6531_ $$aGrain boundary motions
000203277 6531_ $$aGrain growth
000203277 6531_ $$aGrain growth modeling
000203277 6531_ $$aGrain size and shape
000203277 6531_ $$aGrain size distribution
000203277 6531_ $$aLevel set
000203277 6531_ $$aMean field model
000203277 6531_ $$aMean field modeling
000203277 6531_ $$aMean field theory
000203277 6531_ $$aSpecific distribution
000203277 700__ $$aCruz-Fabiano, A.L.
000203277 700__ $$0248074$$g243441$$aLogé, R.
000203277 700__ $$aBernacki, M.
000203277 773__ $$j92$$tComputational Materials Science$$q305-312
000203277 909C0 $$xU12903$$0252516$$pLMTM
000203277 909CO $$pSTI$$particle$$ooai:infoscience.tind.io:203277
000203277 937__ $$aEPFL-ARTICLE-203277
000203277 973__ $$rREVIEWED$$sPUBLISHED$$aOTHER
000203277 980__ $$aARTICLE