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Abstract In this article we study Sobolev metrics of order one on diffeomorphism
groups on the real line. We prove that the space Diff1(R) equipped with the homoge-
neous Sobolev metric of order one is a flat space in the sense of Riemannian geometry,
as it is isometric to an open subset of a mapping space equipped with the flat L2-
metric. Here Diff1(R) denotes the extension of the group of all compactly supported,
rapidly decreasing, or W ∞,1-diffeomorphisms, which allows for a shift toward infin-
ity. Surprisingly, on the non-extended group the Levi-Civita connection does not exist.
In particular, this result provides an analytic solution formula for the corresponding
geodesic equation, the non-periodic Hunter–Saxton (HS) equation. In addition, we
show that one can obtain a similar result for the two-component HS equation and
discuss the case of the non-homogeneous Sobolev one metric, which is related to the
Camassa–Holm equation.
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1 Introduction

In recent decades it has been shown that various prominent partial differential equations
(PDEs) arise as geodesic equations on certain infinite-dimensional manifolds. This
phenomenon was first observed in the groundbreaking paper Arnold (1966) for the
incompressible Euler equation, which is the geodesic equation on the group of volume
preserving diffeomorphisms with respect to the right-invariant L2-metric. It was shown
that this geometric approach could be extended to a whole variety of other PDEs used in
hydrodynamics: the Camassa–Holm equation (Camassa and Holm 1993; Kouranbaeva
1999), the Constantin–Lax–Majda equation (Wunsch 2010; Bauer et al. 2013) and the
Korteweg–de Vries equation (Ovsienko and Khesin 1987; Bauer et al. 2012), to name
but a few examples.

It was later realized that the geometric interpretation could be used to prove results
about the behaviour of the PDEs. The first such result was by Ebin and Marsden
(1970), where the researchers showed the local well-posedness of Euler equations.
Similar techniques were then applied to other PDEs which arise as geodesic equations
(see e.g. Constantin et al. 2007; Constantin and Kolev 2003; Escher et al. 2012; Gay-
Balmaz 2009; Bauer et al. 2011).

The analysis in this paper is mainly concerned with the Hunter–Saxton (HS) equa-
tion. For the periodic case it was shown in Khesin and Misiołek (2003) that the HS
equation is the geodesic equation on the homogeneous space Diff(S1)/S1 with respect
to the homogeneous Sobolev Ḣ1-metric of order one. Lenells used this geometric
interpretation in Lenells (2007, 2008) to construct an analytic solution formula for
the equation. In fact, he showed that the Riemannian manifold

(
Diff(S1)/S1, Ḣ1

)

was isometric to an open subset of an L2-sphere in the space C∞(S1,R) of periodic
functions and thereby obtained an explicit formula for the corresponding geodesics
on Diff(S1)/S1.

The aim of this article is twofold. First, we extend the results of Lenells (2007)
to groups of real-analytic and ultra-differentiable diffeomorphisms and show that the
solutions of the HS equation are analytic in time and space. Second, we consider the
Ḣ1-metric and the HS equation on the real line. Our main result can be paraphrased
as follows (Sect. 4).

Theorem The non-periodic HS equation is the geodesic equation on DiffA1(R) with
respect to the right-invariant Ḣ1-metric. Furthermore, the space

(
DiffA1(R), Ḣ1

)
is

isometric to an open subset in
(A(R), L2

)
and is thus a flat space in the sense of

Riemannian geometry.

Here A(R) denotes one of the function spaces C∞
c (R), S(R) or W ∞,1(R), and

DiffA1(R) is an extension over the diffeomorphism group including shifts near +∞
(Sect. 2).

The first surprising fact is that the normal subgroups DiffA(R) do not admit the
geodesic equation (or the Levi-Civita covariant derivative) for this right-invariant met-
ric. The extended group DiffA1(R) admits it but in a weaker sense than realized in
Arnold (1966) and follow-up papers (Sect. 3.2). We also sketch Arnold’s curvature
formula in this weaker setting.
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The second surprising fact is that DiffA1(R)with the Ḣ1-metric is a flat Riemannian
manifold, as opposed to Diff(S1), which is a positively curved one.

The main ingredient for the proof of this result is the R-map, which allows us to
isometrically embed DiffA1(R) with the right-invariant Ḣ1-metric as an open sub-
set of a (flat) pre-Hilbert space. This phenomenon has also been observed for the
space Imm(S1,R2)/R2 of plane curves modulo translations (see e.g. Kurtek et al.
2010; Younes 2008; Bauer and Bruveris 2012) and on the semi-direct product space
Diff(S1) � C∞(S1,R) [the corresponding geodesic equation is the periodic two-
component HS (2HS) equation; see Lenells 2011].

In the periodic case we extend the results to groups of real-analytic diffeomor-
phisms and ultra-differentiable diffeomorphisms of certain types and show that the
HS equation has solutions which are real-analytic or ultra-differentiable if the initial
diffeomorphism is.

In Sect. 5 we apply the same techniques to treat the 2HS equation on the real line.
We discuss the existence of the geodesic equation and construct an isometry between
the configuration space DiffA(R)� A(R) and an open subset of a pre-Hilbert space.

Finally, we generalize the constructions to the case of the right-invariant non-
homogeneous H1-metric on Diff(S1) whose geodesic equation is the dispersion-free
Camassa–Holm equation. In this case we define an R-map whose image is a subspace
of a pre-Hilbert space, no longer open.

2 Some Diffeomorphism Groups on the Real Line and the Circle

The group of all orientation-preserving diffeomorphisms Diff(R) is not an open subset
of C∞(R,R) endowed with the compact C∞-topology, and so it is not a smooth
manifold with charts in the usual sense. One option is to consider it as a Lie group in
the cartesian closed category of Frölicher spaces (see Kriegl and Michor 1997, Sect. 23
with the structure induced by the injection f �→ ( f, f −1) ∈ C∞(R,R)× C∞(R,R).
Alternatively, one can use the theory of smooth manifolds based on smooth curves
instead of charts from Michor (1984a, b), which agrees with the usual theory up to
Banach manifolds. In this paper we will restrict our attention to subgroups of the
whole diffeomorphism group, which are smooth Fréchet manifolds.

Let us first briefly recall the definition of a regular Lie group in the sense of Kriegl
and Michor (1997); see also Kriegl and Michor (1997, Sect. 38.4). A smooth Lie group
G with Lie algebra g = TeG is called regular if the following conditions hold:

• For each smooth curve X ∈ C∞(R, g) there exists a smooth curve g ∈ C∞(R,G)
whose right logarithmic derivative is X , i.e.

{
g(0) = e

∂t g(t) = Te(μ
g(t))X (t) = X (t).g(t).

(1)

The curve g, if it exists, is uniquely determined by its initial value g(0).
• The map evolrG(X) = g(1), where g is the unique solution of (1), considered as a

map evolrG : C∞(R, g) → G, is C∞-smooth.
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2.1 The Group DiffB(R)

The ‘largest’ regular Lie group in Diff(R) with charts is the group of all diffeomor-
phismsϕ = IdR + f , with f ∈ B(R) such that f ′ > −1. B(R) is the space of functions
which have all derivatives (separately) bounded. It is a reflexive nuclear Fréchet space.

The space C∞(R,B(R)) of smooth curves t �→ f (t, ·) in B(R) consists of all
functions f ∈ C∞(R2,R) satisfying the following property:

• For all k ∈ N≥0 and n ∈ N≥0 the expression ∂k
t ∂

n
x f (t, x) is uniformly bounded in

x ∈ R, locally in t .

We can specify other regular Lie groups by requiring that g lies in certain spaces
of smooth functions. Now we will discuss these spaces, describe the smooth curves
in them, and describe the corresponding groups, specializing the results from Michor
and Mumford (2013), where most of these groups are treated on R

n in full detail.

2.2 Groups Related to Diffc(R)

The reflexive nuclear (LF) space C∞
c (R) of smooth functions with compact support

leads to the well-known regular Lie group Diffc(R); see Kriegl and Michor (1997,
Sect. 43.1).

We will now define an extension of this group which will play a major role in
subsequent parts of this article.

Define C∞
c,2(R) = { f : f ′ ∈ C∞

c (R)} as the space of antiderivatives of smooth
functions with compact support. It is a reflexive nuclear (LF) space. We also define

the space C∞
c,1(R) =

{
f ∈ C∞

c,2(R) : f (−∞) = 0
}

of antiderivatives of the form

x �→ ∫ x
−∞ g dy with g ∈ C∞

c (R).
Diffc,2(R) = {ϕ = Id + f : f ∈ C∞

c,2(R), f ′ > −1
}

is the corresponding group.
Define the two functionals Shift�,Shiftr : Diffc,2(R) → R by

Shift�(ϕ) = ev−∞( f ) = lim
x→−∞ f (x), Shiftr (ϕ) = ev∞( f ) = lim

x→∞ f (x)

for ϕ(x) = x + f (x). Then the short exact sequence of smooth homomorphisms of
Lie groups

Diffc(R) �� �� Diffc,2(R)
(Shift�,Shiftr ) �� �� (R2,+)

describes a semi-direct product, where a smooth homomorphic section s : R
2 →

Diffc,2(R) is given by the composition of flows s(a, b) = FlX�
a ◦ FlXr

b for the vector
fields X� = f�∂x , Xr = fr∂x , with [X�, Xr ] = 0, where f�, fr ∈ C∞(R, [0, 1])
satisfy

f�(x) =
{

1 for x ≤ −1,

0 for x ≥ 0,
fr (x) =

{
0 for x ≤ 0,

1 for x ≥ 1.
(2)

123



J Nonlinear Sci (2014) 24:769–808 773

The normal subgroup Diffc,1(R) = ker(Shift�) = {ϕ = Id + f : f ∈
C∞

c,1(R), f ′ > −1} of diffeomorphisms which have no shift at −∞ will play an
important role subsequently.

2.3 Groups Related to DiffS(R)

The regular Lie group DiffS(R) was treated in Michor (2006, Sect. 6.4). Let us sum-
marize the most important results: the space S(R) consisting of all rapidly decreasing
functions is a reflexive nuclear Fréchet space.

The space C∞(R,S(R)) of smooth curves in S(R) consists of all functions f ∈
C∞(R2,R) satisfying the following property:

• For all k,m ∈ N≥0 and n ∈ N≥0, the expression (1 + |x |2)m∂k
t ∂

n
x f (t, x) is

uniformly bounded in x ∈ R, locally uniformly bounded in t ∈ R.

DiffS(R) = {ϕ = Id + f : f ∈ S(R), f ′ > −1
}

is the corresponding regular Lie
group.

We again define an extended space:
S2(R) = { f ∈ C∞(R) : f ′ ∈ S(R)}, the space of antiderivatives of functions in

S(R). It is isomorphic to R×S(R) via f �→ ( f (0), f ′). It is again a reflexive nuclear
Fréchet space, contained in B(R).

The space C∞(R,S2(R)) of smooth curves in S2(R) consists of all functions f ∈
C∞(R2,R) satisfying the following property:

• For all k,m ∈ N≥0, and n ∈ N>0, the expression (1 + |x |2)m∂k
t ∂

n
x f (t, x) is

uniformly bounded in x and locally uniformly bounded in t .

We also define the space S1(R) = { f ∈ S2(R) : f (−∞) = 0} of antiderivatives
of the form x �→ ∫ x

−∞ g dy, with g ∈ S(R).
DiffS2(R) = {

ϕ = Id + f : f ∈ S2(R), f ′ > −1
}

is the corresponding regular
Lie group. We have again the short exact sequence of smooth homomorphisms of Lie
groups

DiffS(R) �� �� DiffS2(R)
(Shift�,Shiftr ) �� �� (R2,+) ,

which splits via the same smooth homomorphic section s : R
2 → DiffS2(R) as

in Sect. 2.2 and, thus, describes a semi-direct product. The normal Lie subgroup
DiffS1(R) = ker(Shift�) of diffeomorphisms which have no shift at −∞ will also
play an important role later on.

2.4 Groups Related to DiffW∞,1(R)

The space W ∞,1(R) = ⋂
k≥0 W k,1(R) = { f ∈ C∞(R) : f (k) ∈ L1(R) for k =

0, 1, 2, . . . } is the intersection of all Besov spaces of type L1. It is a reflexive Fréchet
space. By the Sobolev inequality we have W ∞,1(R) ⊂ B(R), thus, also, W ∞,1(R) ⊂
W ∞,p(R) = { f ∈ C∞(R) : f (k) ∈ L p(R) for p = 0, 1, 2, . . . }. For any f ∈
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W ∞,1(R) each derivative f (k) is smooth and converges to 0 for x → ±∞ since it is
in B(R) and since C∞

c (R) is dense in W ∞,1(R).
The space C∞(R,W ∞,1(R)) of smooth curves t �→ f (t, ·)in W ∞,1(R) consists

of all functions f ∈ C∞(R2,R) satisfying the following property:

• For all k ∈ N≥0 and n ∈ N≥0 the expression ‖∂k
t ∂

n
x f (t, )‖L1(R) is locally

bounded in t .

DiffW∞,1(R) = {
ϕ = Id + f : f ∈ W ∞,1(R), f ′ > −1

}
denotes the corresponding

regular Lie group.
We again consider an extended space:
W ∞,1

2 (R) = { f ∈ C∞(R) : f ′ ∈ W ∞,1(R)} is the space of bounded antideriva-
tives of functions in W ∞,1(R). It is isomorphic to R× W ∞,1(R) via f �→ ( f (0), f ′).
The space C∞(R,W ∞,1

2 (R)) of smooth curves in W ∞,1
2 (R) consists of all functions

f ∈ C∞(R2,R) satisfying the following property:

• For all k ∈ N≥0, n ∈ N>0, and t ∈ R the expression ‖∂k
t ∂

n
x f (t, )‖L1(R) is locally

bounded in t .

We also define the space W ∞,1
1 (R) = { f ∈ W ∞,1

2 (R) : f (−∞) = 0} of antideriv-
atives of the form x �→ ∫ x

−∞ g dy for g ∈ W ∞,1(R).
DiffW∞,1

2
(R) = {

ϕ = Id + f : f ∈ W ∞,1(R), f ′ > −1
}

denotes the correspond-

ing regular Lie group.
We have again the following exact sequence of smooth homomorphisms of regular

Lie groups:

DiffW∞,1(R) �� �� DiffW∞,1
2
(R)

(Shift�,Shiftr ) �� �� (R2,+),

which splits with the same section as for Diffc,2(R). The group DiffW∞,1
1
(R) =

ker(Shift�) of diffeomorphisms, which have no shift at −∞, will play an important
role subsequently.

Remark on the H∞ = W ∞,2case
One may wonder why we use the groups related to DiffW∞,1(R) instead of those

modelled on the more usual intersection H∞ of all Sobolev spaces. The reason is that
H∞ �⊂ L1; thus, for f ∈ H∞(R) the antiderivative x �→ ∫ x

−∞ f (y) dy is not bounded
in general, and the extended groups are not contained in DiffB(R) and thus do not
admit charts. If we model the groups on H∞ ∩ L1, then they are not Lie groups: right
translations are smooth, but left translations are not. See Kriegl et al. (2014, 14) for
this surprising fact.

Theorem The groups Diffc(R), Diffc,1(R), Diffc,2(R), DiffS(R), DiffS1(R), DiffS2

(R), DiffW∞,1(R), DiffW∞,1
1
(R), DiffW∞,1

2
(R), and DiffB(R) are all smooth regular

Lie groups. We have the following smooth injective group homomorphisms:
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Diffc(R) ��

��

DiffS(R)

��

�� DiffW∞,1(R)

��
Diffc,1(R) ��

��

DiffS1(R)
��

��

DiffW∞,1
1
(R)

��
Diffc,2(R) �� DiffS2(R)

�� DiffW∞,1
2
(R) �� DiffB(R)

Each group is a normal subgroup in any other in which it is contained, in particular
in DiffB(R).

Proof That the groups Diffc(R), DiffS(R), and DiffB(R) are regular Lie groups is
proved (for R

n instead of R) in Michor and Mumford (2013), and in (Kriegl and
Michor 1997, Sect. 43.1) for Diffc(R). Moreover, the group Diff H∞(Rn) (where
H∞ = W ∞,2) is treated in Michor and Mumford (2013); the proof for W ∞,1 is the
same. See also (Kriegl et al., 2014, Theorem 8.1). The extension to the semi-direct
products is easy and is proved in Michor (1997, Sect. 38.9). That each group is normal
in the largest one is also proved in Michor and Mumford (2013). ��

2.5 Remark on the Existence of Normal Subgroups

This section will not be used in the remainder of the paper. It is a well-known result
that Diffc(R) is a simple group (see Mather 1974, 1975, 1985). We want to discuss
some effects of this result for the diffeomorphism groups introduced in the previous
sections.

Existence of normal subgroups in Diffc,2(R). We first claim that any non-trivial
normal subgroup N of Diffc,2(R) intersects Diffc(R) non-trivially: let Id �= ϕ ∈ N . If
ϕ has compact support, we are done. If ϕ does not have compact support, without loss
of generality assume that Shiftr (ϕ) = a > 0. Thus, for some x0 we have ϕ(x) = x +a
for x ≥ x0. Choose x0 + 2a < x1 < x2 < x0 + 3a and ψ ∈ Diffc(R) with support in
the interval [x1, x2], so that ψ(x) = x for x /∈ [x1, x2]. For x ∈ [x1, x2] we then have
(ψ−1 ◦ ϕ ◦ ψ)(x) = ψ−1(ψ(x)+ a) = ψ(x)+ a. Thus, ψ−1 ◦ ϕ ◦ ψ ∈ N differs
from ϕ just on the compact interval [x1, x2]. But then ψ−1 ◦ ϕ ◦ ψ ◦ ϕ−1 ∈ N has
compact support, and we are done.

By the simplicity of Diffc(R) we obtain N ⊇ Diffc(R). Therefore, the lattice
of normal subgroups of Diffc,2(R) has a Diffc(R) as minimal element and, thus, is
isomorphic to the lattice of subgroups of (R2,+), which is quite large (see Fuchs
1970, 1973).

Existence of normal subgroups N with Diffc(R) → N → DiffS(R). By conjugat-
ing with x �→ 1/x we see that the quotient group DiffS(R)/Diffc(R) is isomorphic
to the group of germs at 0 of smooth diffeomorphisms ϕ : (R, 0) → (R, 0) such that
ϕ(x) − x is flat at 0: ϕ(x) − x = o(|x |N ) for each N . This group contains infinitely
many normal subgroups: ϕ(x) − x = o(e−1/|x |) or = o(exp(− exp(1/|x |))), and so
on.
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We have not looked for normal subgroups N with

DiffW∞,1(R) → N → DiffW∞,1
2
(R).

2.6 Groups of Real-Analytic Diffeomorphisms

Since the HS equation will turn out to have solutions in smaller groups of diffeo-
morphisms, we give here a description of them. For simplicity’s sake, we restrict our
attention to the periodic case. Let Diffω(S1) be the real-analytic regular Lie group
of all real-analytic diffeomorphisms of S1, with the real-analytic structure described
in Kriegl and Michol (1990, Sect. 8.11), see also Kriegl and Michol (1997, Theorem
43.4). Recall that a mapping between c∞-open sets of convenient vector spaces is
real-analytic if it preserves smooth curves and real-analytic curves.

2.7 Groups of Ultra-Differentiable Diffeomorphisms

Let us now describe the Denjoy–Carleman ultra-differentiable function classes which
admit convenient calculus, following Kriegl et al. (2009, 2011, 2012). We consider a
sequence M = (Mk) of positive real numbers serving as weights for derivatives. For
a smooth function f on an open subset U in R

n , a compact set K ⊂ U , and for ρ > 0
consider the set { dk f (x)

ρk k! Mk
: x ∈ K , k ∈ N

}
. (3)

We define the Denjoy–Carleman classes

C (M)(U ) := { f ∈ C∞(U ) : ∀ compact K ⊆ U ∀ρ > 0 : (3) is bounded},
C {M}(U ) := { f ∈ C∞(U ) : ∀compact K ⊆ U ∃ρ > 0 : (3) is bounded}.

The elements of C (M)(U ) are said to be of the Beurling type, those of C {M}(U ) of the
Roumieu type. If Mk = 1, for all k, then C (M)(R) consists of the restrictions to U of
the real and imaginary parts of all entire functions, while C {M}(R) coincides with the
ring Cω(R) of real-analytic functions. We shall also write C [M] to mean either C (M)

or C {M}. We shall assume that the sequence M = (Mk) has the following properties:

• M is log-convex: k �→ log(Mk) is convex, i.e. M2
k ≤ Mk−1 Mk+1 for all k.

• M has moderate growth, i.e. sup j,k∈N>0

(
M j+k

M j Mk

) 1
j+k

< ∞.

• In the Beurling case C [M] = C (M), we also require that Cω ⊆ C (M) or, equiva-
lently, M1/k

k → ∞.

Then, both classes C [M] are closed under composition and differentiation, can be
extended to convenient vector spaces, and form monoidally closed categories (i.e.
admit convenient settings). Moreover, on open sets in R

n , C [M]-vector fields have
C [M]-flows, and between Banach spaces, the C [M] implicit function theorem holds.
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For mappings between c∞-open subsets of convenient vector spaces we have the
following statements:

• For non-quasi-analytic M , the mapping f is C {M} if it maps C {M}-curves to C {M}-
curves, by Kriegl et al. (2009).

• For certain quasi-analytic M , the mapping f is C {M} if it maps C {N }-curves to
C {N }-curves, for all non-quasi-analytic N which are larger than M and have the
aforementioned properties, by Kriegl et al. (2011).

• For any M , the mapping f is C [M] if it respects C [M]-maps from open balls in
Banach spaces, by Kriegl et al. (2012).

For every M with the aforementioned properties we have the regular Lie groups
Diff{M}(S1) and Diff [M](S1) (we write Diff [M](S1) if we mean any of the two) of
C [M]-diffeomorphisms of S1 which is a C [M]-group (but not better), by Kriegl et al.
(2009, Sect. 6.5; 2011, Sect. 5.6; 2012, Sect. 9.8).

3 Right-Invariant Riemannian Metrics on Lie Groups

3.1 Notation on Lie Groups

Let G be a regular Lie group, which may be infinite-dimensional, with Lie algebra g.
Let μ : G × G → G be the group multiplication, μx the left translation and μy the
right translation, given by μx (y) = μy(x) = xy = μ(x, y).

Let L , R : g → X(G) be the left- and right-invariant vector field mappings,
given by L X (g) = Te(μg).X and RX = Te(μ

g).X respectively. They are related by
L X (g) = RAd(g)X (g). Their flows are given by

FlL X
t (g) = g. exp(t X) = μexp(t X)(g), FlRX

t (g) = exp(t X).g = μexp(t X)(g).

We also need the right Maurer–Cartan form κ = κr ∈ 	1(G, g), given by κx (ξ) :=
Tx (μ

x−1
) · ξ . It satisfies the left Maurer–Cartan equation dκ − 1

2 [κ, κ]∧ = 0, where
[ , ]∧ denotes the wedge product of g-valued forms on G induced by the Lie bracket.
Note that 1

2 [κ, κ]∧(ξ, η) = [κ(ξ), κ(η)]. The (exterior) derivative of the function
Ad : G → GL(g) can be expressed by

d Ad = Ad .(ad ◦ κ l) = (ad ◦ κr ).Ad

since we have d Ad(Tμg.X) = d
dt |0 Ad(g. exp(t X)) = Ad(g). ad(κ l(Tμg.X)).

3.2 Geodesics of a Right-Invariant Metric on a Lie Group

Let γ = g × g → R be a positive-definite bounded (weak) inner product. Then

γx (ξ, η) = γ
(
T (μx−1

) · ξ, T (μx−1
) · η) = γ

(
κ(ξ), κ(η)

)
(4)
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is a right-invariant (weak) Riemannian metric on G, and any (weak) right-invariant
bounded Riemannian metric is of this form, for suitable γ . We shall denote by γ̌ :
g → g∗ the mapping induced by γ from the Lie algebra into its dual (of bounded
linear functionals) and by 〈α, X〉g the duality evaluation between α ∈ g∗ and X ∈ g.

Let g : [a, b] → G be a smooth curve. The velocity field of g, viewed in the right
trivializations, coincides with the right logarithmic derivative

δr (g) = T (μg−1
) · ∂t g = κ(∂t g) = (g∗κ)(∂t ), where ∂t = ∂

∂t
.

The energy of the curve g(t) is given by

E(g) = 1

2

b∫

a

γg(g
′, g′)dt = 1

2

b∫

a

γ
(
(g∗κ)(∂t ), (g

∗κ)(∂t )
)

dt. (5)

For a variation g(s, t) with fixed endpoints we then use that

d(g∗κ)(∂t , ∂s) = ∂t (g
∗κ(∂s))− ∂s(g

∗κ(∂t ))− 0,

partial integration and the left Maurer–Cartan equation to obtain

∂s E(g) = 1

2

b∫

a

2γ
(
∂s(g

∗κ)(∂t ), (g
∗κ)(∂t )

)
dt

=
b∫

a

γ
(
∂t (g

∗κ)(∂s)− d(g∗κ)(∂t , ∂s), (g
∗κ)(∂t )

)
dt

= −
b∫

a

γ
(
(g∗κ)(∂s), ∂t (g

∗κ)(∂t )
)

dt

−
b∫

a

γ
([(g∗κ)(∂t ), (g

∗κ)(∂s)], (g∗κ)(∂t )
)

dt

= −
b∫

a

〈
γ̌ (∂t (g

∗κ)(∂t )), (g
∗κ)(∂s)

〉
g dt

−
b∫

a

〈
γ̌ ((g∗κ)(∂t )), ad(g∗κ)(∂t )(g

∗κ)(∂s)
〉
g dt

= −
b∫

a

〈
γ̌ (∂t (g

∗κ)(∂t ))+ (ad(g∗κ)(∂t ))
∗γ̌ ((g∗κ)(∂t )), (g

∗κ)(∂s)
〉
g dt.
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Thus the curve g(0, t) is critical for the energy (5) if and only if

γ̌ (∂t (g
∗κ)(∂t ))+ (ad(g∗κ)(∂t ))

∗γ̌ ((g∗κ)(∂t )) = 0.

In terms of the right logarithmic derivative u : [a, b] → g of g : [a, b] → G, given
by u(t) := g∗κ(∂t ) = Tg(t)(μ

g(t)−1
) · g′(t), the geodesic equation has the expression

∂t u = − γ̌−1 ad(u)∗ γ̌ (u). (6)

Thus the geodesic equation exists in general if and only if ad(X)∗γ̌ (X) is in the image
of γ̌ : g → g∗, i.e.

ad(X)∗γ̌ (X) ∈ γ̌ (g) (7)

for every X ∈ X. Condition (7) then leads to the existence of the so-called Christof-
fel symbols. Interestingly, it is not neccessary for the more restrictive condition
ad(X)∗γ̌ (Y ) ∈ γ̌ ∈ g to be satisfied in order to obtain the geodesic equation, Christof-
fel symbols and the curvature [cf. Michor (2006, Lemma 3.3]. Note here the appearance
of the geodesic equation for the momentum p := γ (u):

pt = − ad(γ̌−1(p))∗ p.

Subsequently, we shall encounter situations where (7) is satisfied but where the usual
transpose ad�(X) of ad(X),

ad�(X) := γ̌−1 ◦ ad∗
X ◦ γ̌ , (8)

does not exist for all X .

3.3 Covariant Derivative

The right trivialization (πG , κ
r ) : T G → G × g induces the isomorphism

R : C∞(G, g) → X(G), given by R(X)(x) := RX (x) := Te(μ
x ) · X (x), for

X ∈ C∞(G, g) and x ∈ G. Here X(G) := �(T G) denotes the Lie algebra of all
vector fields. For the Lie bracket and the Riemannian metric we have

[RX , RY ] = R(−[X,Y ]g + dY · RX − d X · RY ),

R−1[RX , RY ] = −[X,Y ]g + RX (Y )− RY (X),

γx (RX (x), RY (x)) = γ (X (x), Y (x)), x ∈ G.

In what follows, we shall perform all computations in C∞(G, g) instead of X(G). In
particular, we shall use the convention

∇X Y := R−1(∇RX RY ) for X,Y ∈ C∞(G, g)

to express the Levi-Civita covariant derivative.
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Lemma Assume that for all ξ ∈ g the element ad(ξ)∗γ̌ (ξ) ∈ g∗ is in the image of
γ̌ : g → g∗ and that ξ �→ γ̌−1 ad(ξ)∗γ̌ (ξ) is bounded quadratic (or, equivalently,
smooth). Then the Levi-Civita covariant derivative of the metric γ exists and is given
for any X,Y ∈ C∞(G, g) in terms of the isomorphism R by

∇X Y = dY.RX + ρ(X)Y − 1

2
ad(X)Y,

where

ρ(ξ)η = 1

4
γ̌−1( ad∗

ξ+η γ̌ (ξ + η)− ad∗
ξ−η γ̌ (ξ − η)

) = 1

2
γ̌−1( ad∗

ξ γ̌ (η)+ ad∗
η γ̌ (ξ)

)

is the polarized version. ρ : g → L(g, g) is bounded, and we have ρ(ξ)η = ρ(η)ξ .
We also have

γ
(
ρ(ξ)η, ζ

) = 1

2
γ (ξ, ad(η)ζ )+ 1

2
γ (η, ad(ξ)ζ ),

γ (ρ(ξ)η, ζ )+ γ (ρ(η)ζ, ξ)+ γ (ρ(ζ )ξ, ξ) = 0.

Proof It is easily checked that ∇ is a covariant derivative. The Riemannian metric is
covariantly constant since

RXγ (Y, Z) = γ (dY.RX , Z)+ γ (Y, d Z .RX ) = γ (∇X Y, Z)+ γ (Y,∇X Z).

Since ρ is symmetric, the connection is also torsion-free:

∇X Y − ∇Y X + [X,Y ]g − dY.RX + d X.RY = 0.

��

3.4 Curvature

For X,Y ∈ C∞(G, g) we have

[RX , ad(Y )] = ad(RX (Y )) and [RX , ρ(Y )] = ρ(RX (Y )).

The Riemannian curvature is then computed by

R(X,Y ) = [∇X ,∇Y ] − ∇−[X,Y ]g+RX (Y )−RY (X)

= [RX + ρX − 1

2
adX , RY + ρY − 1

2
adY ]

− R(−[X,Y ]g + RX (Y )− RY (X))− ρ(−[X,Y ]g + RX (Y )− RY (X))

+ 1

2
ad(−[X,Y ]g + RX (Y )− RY (X))

= [ρX , ρY ] + ρ[X,Y ]g − 1

2
[ρX , adY ] + 1

2
[ρY , adX ] − 1

4
ad[X,Y ]g ,
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which is visibly a tensor field.

3.5 Sectional Curvature

For the linear two-dimensional subspace P ⊆ g spanned by linearly independent
X,Y ∈ g, the sectional curvature is defined as

k(P) = − γ
(R(X,Y )X,Y

)

‖X‖2
γ ‖Y‖2

γ − γ (X,Y )2
.

For the numerator we obtain

γ
(R(X,Y )X,Y

) = γ (ρXρY X,Y )− γ (ρYρX X,Y )+ γ (ρ[X,Y ] X,Y )

− 1

2
γ (ρX [Y, X ],Y )+ 1

2
γ ([Y, ρX X ],Y )

+ 0 − 1

2
γ ([X, ρY X ],Y )− 1

4
γ ([[X,Y ], X ],Y )

= γ (ρX X, ρY Y )− ‖ρX Y‖2
γ + 3

4
‖[X,Y ]‖2

γ

− 1

2
γ (X, [Y, [X,Y ]])+ 1

2
γ (Y, [X, [X,Y ]]).

= γ (ρX X, ρY Y )− ‖ρX Y‖2
γ + 3

4
‖[X,Y ]‖2

γ

− γ (ρX Y, [X,Y ]])+ γ (Y, [X, [X,Y ]]).

If the adjoint ad(X)� : g → g exists, this is easily seen to coincide with Arnold’s
original formula Arnold (1966),

γ (R(X,Y )X,Y ) = −1

4
‖ ad(X)�Y + ad(Y )� X‖2

γ + γ (ad(X)� X, ad(Y )�Y )

+ 1

2
γ (ad(X)�Y − ad(Y )� X, ad(X)Y )+ 3

4
‖[X,Y ]‖2

γ .

4 Homogeneous H1-Metric on Diff(R) and the Hunter–Saxton Equation

In this section we will study the homogeneous H1 or Ḣ1-metric on the various dif-
feomorphism groups of R defined in Sect. 2. It was shown in Khesin and Misiołek
(2003) that the geodesic equation of the Ḣ1-metric on Diff(S1) is the HS equation.
We will show that suitable diffeomorphism groups on the real line also have the HS
equation as a geodesic equation. In Lenells (2007) a way was found to map Diff(S1)

isometrically to an open subset of an L2-sphere in C∞(S1,R). We will generalize this
representation to the non-periodic case.

In the situation studied here—diffeomorphism groups on the real line—the resulting
geometry will be different from the periodic case. Some of the diffeomorphism groups
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will be flat in the sense of Riemannian geometry, while others will be submanifolds of
a flat space [see Kriegl and Michor 1997, Sect. 27.11 for the definition of (splitting)
submanifolds in an infinite-dimensional setting].

4.1 Setting

In this section, we shall use any of the following regular Lie groups:

(1) We will denote by A(R) any of the spaces C∞
c (R), S(R), W ∞,1(R) or H∞

0 (R).
By DiffA(R) we will denote the corresponding groups Diffc(R), DiffS(R), and
DiffW∞,1(R) as defined in Sects. 2.2, 2.3 and 2.4 respectively.

(2) Similarly A1(R) will denote any of the spaces C∞
c,1(R), S1(R), or W ∞,1

1 (R). By
DiffA1(R) we will denote the corresponding groups Diffc,1(R), DiffS1(R) and
DiffW∞,1

1
(R) as defined in Sects. 2.2, 2.3 and 2.4 respectively.

4.2 Ḣ1-metric

For DiffA(R) and DiffA1(R) the homogeneous H1-metric is given by

Gϕ(X ◦ ϕ,Y ◦ ϕ) = GId(X,Y ) =
∫

R

X ′(x)Y ′(x) dx,

where X,Y are elements of the Lie algebra A(R) or A1(R). We shall also use the
notation

〈·, ·〉Ḣ1 := G(·, ·).

Theorem On DiffA1(R), the geodesic equation is the HS equation

(ϕt ) ◦ ϕ−1 = u ut = −uux + 1
2

∫ x
−∞(ux (z))2 dz, (9)

and the induced geodesic distance is positive.
On the other hand, the geodesic equation does not exist on the subgroups DiffA(R)

since the adjoint ad(X)∗ǦId(X) does not lie in ǦId(A(R)) for all X ∈ A(R).

Note that this is a natural example of a non-robust Riemannian manifold in the sense
of Micheli et al. (2012, Sect. 2.4).

Proof Note that ǦId : A1(R) → A1(R)
∗ is given by ǦId(X) = −X ′′ if we use the

L2-pairing X �→ (Y �→ ∫
XY dx) to embed functions into the space of distributions.

We now compute the adjoint of the operator ad(X) as defined in Sect. 3.2:
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〈
ad(X)∗ǦId(Y ), Z

〉 = ǦId(Y, ad(X)Z) = GId(Y,−[X, Z ])
=
∫

R

Y ′(x)
(
X ′(x)Z(x)− X (x)Z ′(x)

)′ dx

=
∫

R

Z(x)
(
X ′′(x)Y ′(x)− (X (x)Y ′(x))′′

)
dx .

Therefore, the adjoint as an element of A∗
1 is given by

ad(X)∗ǦId(Y ) = X ′′Y ′ − (XY ′)′′.

For X = Y we can rewrite this as

ad(X)∗ǦId(X) = 1

2

(
(X ′2)′ − (X2)′′′

) = 1

2

( x∫

−∞
X ′(y)2 dy − (X2)′

)′′

= 1

2
ǦId

(
−

x∫

−∞
X ′(y)2 dy + (X2)′

)
.

If X ∈ A1(R), then the function − 1
2

∫ x
−∞ X ′(y)2 dy + 1

2 (X
2)′ is again an element

of A1(R). This follows immediately from the definition of A1(R). Therefore, the
geodesic equation exists on DiffA1(R) and is given by (9).

However, if X ∈ A(R), a neccessary condition for
∫ x
−∞(X

′(y))2dy ∈ A(R)would
be
∫∞
−∞ X ′(y)2dy = 0, which would imply X ′ = 0. Thus, the geodesic equation does

not exist on A(R).
The positivity of geodesic distance will follow from the explicit formula given in

Corollary 4.4. ��
Remark One obtains the classical form of the HS equation,

utx = −uuxx − 1

2
u2

x ,

by differentiating the preceding geodesic Eq. (9). In Sect. 4.3 we will use a geometric
argument to give an explicit solution formula, which will also imply the well-posedness
of the equation. For A1(R) = W ∞,1

1 (R) an analytic proof of well-posedness could
also be carried out similarly to that in Bauer et al. (2011, Sect. 10) by adapting the
arguments to R. Furthermore, using this geometric trick, we will conclude that the
curvature of the Ḣ1-metric vanishes. One can also show this statement directly using
the adaption of Arnold’s formula presented in Sect. 3.5. From the foregoing proof one
can easily deduce the formula for the mapping ρ:

ρ(X)Y = 1

2
Ǧ−1 (ad(X)∗G(Y )+ ad(X)∗G(Y )

)
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= 1

2
Ǧ−1 (X ′′Y ′ − (XY ′)′′ + Y ′′ X ′ − (Y X ′)′′

)

= 1

2
Ǧ−1 ((X ′Y ′)′ + (XY )′′′

)

= 1

2

⎛

⎝−
x∫

−∞
(X ′Y ′) dx + (XY )′

⎞

⎠ .

Using this formula, the desired formula for the curvature is a straightforward calcula-
tion.

Remark For general X �= Y ∈ A1(R) we will have ad(X)∗ǦId(Y ) /∈ ǦId(A1(R)). If
there were a function Z ∈ A1(R) such that −Z ′′ = X ′′Y ′ − (XY ′)′′, then a necessary
condition would be 0 = Z ′(−∞) = − ∫∞

−∞ X ′′Y ′dx , which would in general not
be satisfied. Thus, the transpose of ad(X) as defined in (8) does not exist; only the
symmetric version X �→ Ǧ−1

Id (ad(X)∗ǦId(X)) exists.

4.3 Square-Root Representation on DiffA1(R)

We will define a map R from DiffA1(R) to the space

A(R,R>−2) = { f ∈ A(R) : f (x) > −2}

such that the pullback of the L2-metric on A(R,R>−2) is the Ḣ1-metric on the
space DiffA1(R). Since A(R,R>−2) is an open subset of C∞(R), this implies that
DiffA1(R) with the Ḣ1-metric is a flat space in the sense of Riemannian geometry.
This is an adaptation of the square-root representation of Diff(S1)/S1 used in Lenells
(2007); see also Sect. 6, where we review this construction.

Theorem We define the R-map by

R :
{

DiffA1(R) → A(R,R>−2
) ⊂ A(R,R)

ϕ �→ 2
(
(ϕ′)1/2 − 1

)
.

The R-map is invertible with inverse

R−1 :
{A(R,R>−2

)→ DiffA1(R)

γ �→ x + 1
4

∫ x
−∞

(
γ 2 + 4γ

)
dx .

The pullback of the flat L2-metric via R is the Ḣ1-metric on DiffA1(R), i.e.

R∗〈·, ·〉L2 = 〈·, ·〉Ḣ1 .

Thus the space
(
DiffA1(R), Ḣ1

)
is a flat space in the sense of Riemannian geometry.
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Here 〈·, ·〉L2 denotes the L2-inner product on A(R) interpreted as a Riemannian
metric on A(R,R>−2), which does not depend on the basepoint, i.e.

GL2

γ (h, k) = 〈h, k〉L2 =
∫

R

h(x)k(x) dx,

for h, k ∈ A(R) ∼= TγA(R,R>−2).

Proof We will first prove that for ϕ ∈ DiffA1(R) the image R(ϕ) is an element of
A(R,R>−2). To do so, we write ϕ(x) = x + f (x), with f ∈ A1. Using a Taylor
expansion of

√
1 + x around x = 0,

√
1 + x = 1 + 1

2
x − 1

4

1∫

0

1 − t

(1 + t x)
3
2

dt x2,

we obtain

R(ϕ) = 2
(
(ϕ′)1/2 − 1

) = 2
√

1 + f ′ − 2

= f ′ − 1

2

1∫

0

1 − t

(1 + t f ′) 3
2

f ′ dt f ′

=: f ′ + F( f ′) f ′,

with F ∈ Cω(R>−1,R) satisfying F(0) = 0.
Because ϕ = Id + f is a diffeomorphism, we have f ′ > −1, and since f ′ ∈ A(R)

implies that f ′ vanishes at −∞ and at ∞, we can can even conclude that f ′ > −1+ε
for some ε > 0. Therefore, F( f ′) is a bounded function for each f ′ ∈ DiffA1(R).
Using that all the spaces A(R) are B(R)-modules we conclude that F( f ′) f ′ and,
hence, R(ϕ) are elements of A(R).

To check that the mapping R : DiffA1(R) → A(R,R>−2
)

is bijective, we use the
identity 1

4 (γ (x)+ 2)2 − 1 = f ′(x), with γ = R(ϕ) = R(Id + f ). Using this identity
it is straightforward to calculate that

R ◦ R−1 = IdA, R−1 ◦ R = IdDiff .

To compute the pullback of the L2-metric via the R-map, we first need to calculate
its tangent mapping. To do this, let h = X ◦ ϕ ∈ TϕDiffA1(R), and let t �→ ψ(t) be a
smooth curve in DiffA1(R), with ψ(0) = Id and ∂t |0ψ(t) = X . We have

TϕR.h = ∂t |0 R(ψ(t) ◦ ϕ) = ∂t |02
(
((ψ(t) ◦ ϕ)x )1/2 − 1

)

= ∂t |02((ψ(t)x ◦ ϕ) ϕx )
1/2

= 2(ϕx )
1/2∂t |0((ψ(t)x )1/2 ◦ ϕ) = (ϕx )

1/2( ψt x (0)

(ψ(0)x )−1/2 ◦ ϕ
)
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= (ϕx )
1/2(X ′ ◦ ϕ) = (ϕ′)1/2(X ′ ◦ ϕ) .

Using this formula we have for h = X1 ◦ ϕ, k = X2 ◦ ϕ

R∗〈h, k〉L2 = 〈TϕR.h, TϕR.k〉L2 =
∫

R

X ′
1(x)X

′
2(x) dx = 〈h, k〉Ḣ1 .

��
Corollary Given ϕ0, ϕ1 ∈ DiffA1(R), the geodesic ϕ(t, x) connecting them is given
by

ϕ(t, x) = R−1
(
(1 − t)R(ϕ0)+ t R(ϕ1)

)
(x) (10)

and their geodesic distance is

d(ϕ0, ϕ1)
2 = 4

∫

R

(
(ϕ′

1)
1/2 − (ϕ′

0)
1/2)2 dx . (11)

Furthermore, the support of the geodesic is localized in the following sense: if
ϕ(t, x) = x + f (t, x) with f (t) ∈ A1(R) and similarly for ϕ0, ϕ1, then supp(∂x f (t))
is contained in supp(∂x f0) ∪ supp(∂x f1).

Proof The formula for the geodesic ϕ(t, x) is clear. The geodesic distance between
ϕ0 and ϕ1 is given as the L2 difference between their R-maps:

dDiff(ϕ0, ϕ1) = dA(R(ϕ0), R(ϕ1)) =
1∫

0

√√√√
∫

R

(
R(ϕ1)− R(ϕ0)

)2 dx dt

= 2

√√√
√
∫

R

(
(ϕ′

1)
1/2 − (ϕ′

0)
1/2
)2 dx .

To prove the statement regarding the support of the geodesic, we use the inversion
formula of R to obtain

f ′(t, x) = ϕ′(t, x)− 1 = 1

4
γ (t, x)(γ (t, x)+ 4),

where γ (t, x) = (1 − t)R(ϕ0)(x) + t R(ϕ1)(x) is the image of the geodesic under
the R-map. Next we note that at the points where f ′

i (x) = 0, we have ϕ′
i (x) = 1 and

R(ϕi )(x) = 0. Hence, at the points where both f ′
0(x) = f ′

1(x) = 0, we also have
f ′(t, x) = 0 for all t ∈ [0, 1]. ��

123



J Nonlinear Sci (2014) 24:769–808 787

Fig. 1 Complete geodesic ϕ(t, x) ∈ DiffA1 (R) sampled at time points t = 0, 1
2 , 1, 3

2 , 2, 5
2 , 3. Left image:

geodesic in R-map space. Right image: geodesic in original space, visualized as ϕ(t, x)− x

Example A geodesic connecting the identity to the diffeomorphism ϕ1(x) = x +
e−1/(x+1)2 e−1/(x−1)2 can be seen in Fig. 1. In all the examples presented in this article,
we consider diffeomorphisms ϕ with supp(ϕ′ − 1) ⊂ [−1, 1]. We approximated the
diffeomorphisms with 1000 points on this interval. In the following lemma it is shown
that this behaviour does not hold in general.

Lemma The metric space
(
DiffA1(R), Ḣ1

)
is path-connected and geodesically con-

vex but not geodesically complete.
In particular, for every ϕ0 ∈ DiffA1(R) and h ∈ Tϕ0 DiffA1(R), h �= 0, there exists

a time T ∈ R such that ϕ(t, ·) is a geodesic for |t | < |T | starting at ϕ0 with ϕt (0) = h,
but ϕx (T, x) = 0 for some x ∈ R.

Proof Set γ0 = R(ϕ0) and k = Tϕ0 R.h. Then R maps the geodesic ϕ(t) to

R(ϕ(t))(x) = γ (t, x) = γ0(x)+ tk(x)

and the geodesic ϕ(t) ceases to exist when γ (t) leaves the image of the R-map,
i.e. when γ (t, x) = −2 for some pair (t, x). Consider the function g(x) = |2 +
γ0(x)|/|k(x)|, and set g(x) = ∞, where k(x) = 0. Since we assumed h �= 0, there
is at least one x ∈ R such that g(x) is finite. Since k(x) → 0 as |x | → ∞, we have
g(x) → ∞ for x large, and g attains the minimum at some point. Let this point be x0,
and define T = −(2 + γ0(x0))/k(x0). Then |T | is the time when γ (t, x) first reaches
−2. So for |t | < |T | the geodesic γ (t) lies in A(R,R>−2) and γ (T, x0) = −2. Then
we have

ϕx (T, x0) = 1 + 1

4
γ (T, x0)(γ (T, x0)+ 4) = 1 − 1 = 0,

as required. This proves that the space is not geodesically complete.
The statement regarding path connectedness and geodesic convexity are direct con-

sequences of the path connectedness and convexity of A(R,R>−2). ��
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Fig. 2 Incomplete geodesic ϕ(t, x) ∈ DiffA1 (R). Left image: geodesic in R-map space at time points

t = 0, 1
2 , 1, 3

2 , 2, 5
2 , 3. At time t = 3 (red line) the geodesic has already left the space of R-maps. Right

image: geodesic in original space visualized as ϕ(t, x) − x sampled at time points t = 0, 1
2 , 1, 3

2 , 2, 5
2

(Color figure online)

Example This behaviour is illustrated in Fig. 2, where we have again chosen ϕ0 = Id
and we have solved the geodesic equation in the direction

h(x) = R−1
( −1

4 + 4e−10x

)

until the geodesic leaves the space of diffeomorphisms—which happens approxi-
mately at time t = 2.58.

4.4 Square-Root Representation on DiffA(R)

We will now study the homogeneous H1-metric on diffeomorphism groups which do
not allow a shift towards infinity. We can still use the same square-root representation
as in the previous section, but now the image of this map will be a splitting submanifold
in the image space A(R,R>−2).

Theorem The square-root representation on the diffeomorphism group DiffA(R) is
a bijective mapping given by

R :
{

DiffA(R) → (
Im(R), ‖ · ‖L2

) ⊂ (A(R,R>−2
)
, ‖ · ‖L2

)

ϕ �→ 2
(
(ϕ′)1/2 − 1

)
.

The pullback of the restriction of the flat L2-metric to Im(R) via R is again the
homogeneous Sobolev metric of order one. The image of the R-map is the splitting
submanifold (in the sense of Kriegl and Michor 1997, Sect. 27.11) of A(R,R>−2)

given by
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Im(R) =
{
γ ∈ A(R,R>−2) : F(γ ) :=

∫

R

γ
(
γ + 4

)
dx = 0

}
.

Proof The statement regarding the image of R follows from the fact that a diffeomor-
phism ϕ = Id +g ∈ DiffA1(R) is also an element of DiffA(R) iff

∫

R

(ϕ′(x)− 1) dx =
∫

R

g′(x) dx = 0.

Using that for γ = R(ϕ) we have 1
4 (γ (x) + 2)2 − 1 = g′(x) we obtain the desired

result. The mapping A(R,R>−2) � f �→ 2(( f + 1)1/2 − 1) ∈ A(R,R>−2) is a
diffeomorphism, and it maps A(R,R>−1)∩{ f : ∫ f dx = 0} diffeomorphically onto
Im(R), which is therefore a splitting submanifold. ��
Remark Note that we have d F(γ )(δ) = ∫

R
(2γ +4).δ dx , but 2γ +4 is not in A, only

in the dual A∗. So the so-called normal field along the codimension 1 submanifold
Im(R) has no length; methods like the Gauss formula or the Gauss equation do not
make sense. This is a diffeomorphic translation of the non-existence of the geodesic
equation in DiffA(R).

4.5 Geodesic Distance on DiffA(R)

We have seen that on the space DiffA(R) the geodesic equation does not exist. It
is, however, possible to define the geodesic distance between two diffeomorphisms
ϕ0, ϕ1 ∈ DiffA(R) as the infimum over all paths ϕ : [0, 1] → DiffA(R) connecting
these:

dA(ϕ0, ϕ1) = inf
ϕ(0)=ϕ0
ϕ(1)=ϕ1

1∫

0

√
Gϕ(t)(∂tϕ(t), ∂tϕ(t)) dt.

In Corollary 4.4 we gave an explicit formula for the geodesic distance dA1 on the
space DiffA1(R). It turns out that the geodesic distance dA on DiffA(R) is the same
as the restriction of dA1 to DiffA(R). Note that this is not a trivial statement, since
in the definition of dA the infimum is taken over all paths lying in the smaller space
DiffA(R).

Theorem The geodesic distance dA on DiffA(R) coincides with the restriction of
dA1 to DiffA(R), i.e. for ϕ0, ϕ1 ∈ DiffA(R) we have

dA(ϕ0, ϕ1) = dA1(ϕ0, ϕ1).

Proof Because the space DiffA(R) is smaller than DiffA1(R), we have the inequality
dA1 ≤ dA. The following argument will establish the other inequality dA ≤ dA1 ,
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and hence with both of these inequalities together we will be able to conclude that
dA1 = dA.

Take ϕ0, ϕ1 ∈ DiffA(R), and let ϕ(t) be a path connecting them in the larger space
DiffA1(R). Then γ (t) = R(ϕ(t)) is a path in A(R,R>−2), and its length is measured
by

L(γ ) =
1∫

0

√√
√√
∫

R

∂tγ (t, x)2dxdt.

We also have the functional

F(γ ) =
∫

R

γ (x)2 + 4γ (x)dx,

which measures whether γ lies in the image of DiffA(R) under the R-map.
We will construct a sequence γ̃n of paths with n → ∞ such that these paths satisfy

F(γ̃n) = 0 and L(γ̃n) → L(γ̃ ). This will show that each path in DiffA1(R) can be
approximated arbitrarily well by a path in the smaller space DiffA(R), and hence we
will have established the other inequality dA ≤ dA1 .

Since γ (t) and ∂tγ (t) decay to 0 as x → ∞, there exists for each n > 0 some
xn ∈ R such that

|γ (t, x)| < 1
n|∂tγ (t, x)| < 1

n
for x > xn .

We also define εn = 1
n . Let ψ : R → R be a smooth function with support in [−1, 1],

ψ(x) ≥ 0 and
∫
ψ(x)dx = 1, as well as

∫
ψ(x)2dx = 1. Now define the new path

γ̃n(t, x) = γ (t, x)+ αn(t)εnψ
(
εn(x − xn − ε−1

n )
)
,

with the function αn(t) determined by F(γ̃n(t)) = 0. To make the calculations easier,
we set ψn(x) = ψ

(
εn(x − xn − ε−1

n )
)

and we note that

εn

∫

R

ψn(x)dx = 1, εn

∫

R

ψn(x)
2dx = 1.
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Writing the condition F(γ̃n(t)) = 0 more explicitly we obtain

F(γ̃n(t)) =
∫

R

γ (t)2 + 2αn(t)εnψnγ (t)+ αn(t)
2ε2

nψ
2
n + 4 (γ (t)+ αn(t)εnψn) dx

= εnαn(t)
2 +

⎛

⎝4 + 2εn

∫

R

ψnγ (t)dx

⎞

⎠αn(t)+ F(γ (t)).

We need to estimate the integral

Cn(t) := εn

∫

R

ψn(x)γ (t, x)dx

to be able to control α(t). We have

|Cn(t)| =
∣∣∣∣∣
∣
εn

∫

R

ψ
(
εn(x − xn − ε−1

n )
)
γ (t, x)dx

∣∣∣∣∣
∣

≤ εn

xn+2ε−1
n∫

xn

ψ
(
εn(x − xn − ε−1

n )
)

|γ (t, x)| dx

≤ εn

xn+2ε−1
n∫

xn

ψ
(
εn(x − xn − ε−1

n )
) 1

n
dx

≤ 1

n
.

Hence we see that for large n we will have αn(t) → −F(γ (t))/4, and the convergence
is uniform in t . To see that α(t) is smooth in t , we can use the explicit formula

αn(t) = −ε−1
n (2 + Cn(t))−

√
ε−2

n (2 + Cn(t))2 − ε−1
n F(γ (t))

and note that for εn sufficiently small the term under the square root will always be
positive.

Now we look at the length of the path γ̃n . Let us consider only the inner integral∫
R
∂t γ̃n(t, x)dx . We will show the convergence

∫

R

(∂t γ̃n(t, x))2 dx →
∫

R

(∂tγ (t, x))2 dx
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uniformly in t , which will imply the convergence L(γ̃n) → L(γ ). To do so, we look
at

∫

R

(∂t γ̃n(t))
2 dx =

∫

R

(∂tγ (t))
2 + 2∂tαn(t)εnψn∂tγ (t)+ (∂tαn(t))

2 ε2
nψn(x)

2dx

=
∫

R

(∂tγ (t))
2 dx + 2∂tαn(t)εn

∫

R

ψn∂tγ (t)dx + (∂tαn(t))
2 εn .

The integral

Dn(t) := εn

∫

R

ψn(x)∂tγ (t, x)dx

can be estimated in the same way as Cn(t) previously to obtain Dn(t) ≤ 1
n . It remains

to bound ∂tα(t) uniformly in t to show convergence. We differentiate the equation

εnαn(t)
2 +

⎛

⎝4 + 2εn

∫

R

ψnγ (t)dx

⎞

⎠αn(t)+ F(γ (t)) = 0

that defines α(t), which gives us

∂tαn(t) (2εnαn(t)+ 4 + 2Cn(t))+ Tγ (t)F.∂tγ (t) = 0,

and thus

∂tαn(t) = − Tγ (t)F.∂tγ (t)

4 + 2εnαn(t)+ 2Cn(t)
.

We see that ∂tαn(t) → −Tγ (t)F.∂tγ (t)/4, and the convergence is uniform in t . Thus
we have shown the convergence L(γ̃n) → L(γ ) of the length functional. ��

4.6 Submanifold DiffA(R) Inside DiffA1(R)

The following theorem deals with the question how DiffA(R) lies inside the extension
DiffA1(R). We give an upper bound for how often a geodesic in DiffA1(R) might
intersect or be tangent to DiffA(R). It is only an upper bound because the geodesic
might leave the group of diffeomorphisms before intersecting DiffA(R).

Theorem Consider a geodesic ϕ(t) in DiffA1(R) starting at ϕ(0) = ϕ0, with initial
velocity ∂tϕ(0) = u0 ◦ ϕ0, and denote by u(t) = ∂tϕ(t) ◦ ϕ(t)−1 the right-trivialized
velocity. Then the size of the shift at infinity is given by
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Shift(ϕ(t)) = Shift(ϕ0)+ tu0(∞)+ t2

4

∫

R

(u′
0)

2dx

u(t,∞) = u0(∞)+ t
∫

R

(u′
0)

2dx .

This means that every geodesic in DiffA1(R) intersects DiffA(R) at most twice, and
every geodesic is tangent to a right coset of DiffA(R) at most once.

For ϕ0, ϕ1 ∈ DiffA(R) we can give the following formula for the size of the shift
along the connecting minimal geodesic:

Shift(ϕ(t)) = t2 − t

4

∥∥R(ϕ0)− R(ϕ1)
∥∥2

L2 = (t2 − t)
∥∥
√
ϕ′

0 −
√
ϕ′

1

∥∥2
L2 .

Proof To make the computations easier, define the following variables:

γ0 = R(ϕ0)

k0 = Tϕ0 R.(u0 ◦ ϕ0) =
√
ϕ′

0u′
0 ◦ ϕ0

γ (t) = R(ϕ(t)) = γ0 + tk0.

For a diffeomorphism ϕ ∈ DiffA1(R) the size of the shift at ∞ is given by

Shift(ϕ) = lim
x→∞ϕ(x)− x =

∞∫

−∞
ϕ′(x)− 1 dx = 1

4

∞∫

−∞
R(ϕ)2 + 4R(ϕ) dx .

Similarly, the value of a function u ∈ A1 at ∞ can be computed by

u(∞) =
∞∫

−∞
u′(x)dx =

∞∫

−∞
(u′ ◦ ϕ)(x)ϕ′(x) dx

= 1

2

∞∫

−∞
(R(ϕ)+ 2)TϕR.(u ◦ ϕ)(x) dx .

Note that this holds for any ϕ ∈ DiffA1(R). Since the R-map pulls back the L2-metric
to the Ḣ1-metric, we also have the identity

∞∫

−∞
u′(x)dx =

∞∫

−∞
(TϕR.(u ◦ ϕ))2dx .

123



794 J Nonlinear Sci (2014) 24:769–808

For the sake of convenience let us rewrite the last two equations using the variables
u0, γ0 and k0:

u0(∞) = 1

2

∞∫

−∞
(γ0 + 2)k0 dx

∞∫

−∞
(u′

0)
2 dx =

∞∫

−∞
k2

0 dx .

Now computing the shift of ϕ(t) at ∞ is easy:

Shift(ϕ(t)) = 1

4

∞∫

−∞
(γ0 + tk0)

2 + 4(γ0 + tk0) dx

= 1

4

∞∫

−∞
γ 2

0 + 4γ0 + 2tγ0k0 + 4tk0 + t2k2
0 dx

= Shift(ϕ0)+ tu0(∞)+ t2

4

∞∫

−∞
(u′

0)
2dx .

Computing the value of u(t) at ∞ is just as simple:

u(t,∞) = 1

2

∞∫

−∞
(γ0 + tk0 + 2)k0 dx

= u0(∞)+ t
∫

R

(u′
0)

2dx .

If we start with ϕ0, ϕ1 ∈ DiffA(R), then the geodesic connecting them has k0 =
γ1 − γ0, with γ1 = R(ϕ1). Some algebraic manipulations, keeping in mind that
Shift(ϕi ) = 1

4

∫
γ 2

i + 4γi = 0, give us

u0(∞) = 1

2

∞∫

−∞
(γ0 + 2)(γ1 − γ0) dx = 1

2

∞∫

−∞
γ0γ1 − γ 2

0 − 2γ0 + 2γ1 dx

= 1

2

∞∫

−∞
γ0γ1 − γ 2

0 + 1

2
γ 2

0 − 1

2
γ 2

1 dx = −1

4

∞∫

−∞
(γ1 − γ0)

2 dx,

which in turn leads to

Shift(ϕ(t)) = tu0(∞)+ t2

4

∞∫

−∞
(u′

0)
2 dx = t2 − t

4

∞∫

−∞
(γ1 − γ0)

2 dx .
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Fig. 3 Geodesic ϕ(t, x) ∈ DiffA1 (R) between two diffeomorphisms in DiffA(R) sampled at times

t = 0, 1
6 ,

2
6 ,

3
6 ,

4
6 ,

5
6 , 1. Left image: geodesic in R-map space. Right image: geodesic in original space,

visualized as ϕ(t, x)− x

This completes the proof. ��
An example of a geodesic illustrating the behaviour described in the lemma can be

seen in Fig. 3.

4.7 Solving the Hunter–Saxton Equation

The theory described in the preceding sections allows us to construct an analytic
solution formula for the HS equation on A1(R). Here A1(R) denotes one of the
function spaces C∞

c,1(R), S1(R) or W ∞,1
1 (R), as defined in Sects. 2.2–2.4.

Theorem (Solutions to HS equation) Given an initial value u0 in A1(R), the solution
to the HS equation is given by

u(t, x) = ϕt (t, ϕ
−1(t, x)), with ϕ(t, x) = R−1(tu′

0

)
(x).

In particular, this means that a solution with initial condition in one of the spaces
C∞

c (R), S(R) or W ∞,1(R) exists for all time t > 0 if and only if u′
0(x) ≥ 0 for all

x ∈ R. All solutions are real-analytic in time in the sense of Kriegl and Michor (1997,
Sect. 9).

Proof By the theory of the previous sections, we know that the path

ϕ(t, x) = R−1(tγ )(x),

with ϕ(0, x) = x , is a solution to the geodesic equation for every γ ∈ A1(R). It
remains to choose γ such that the initial condition

ϕt (0, ϕ
−1(0, x)) = ϕt (0, x) = u0(x)
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is satisfied. This can be achieved by choosing γ = TId R.u0 since,

γ = ∂t |0(tγ ) = ∂t |0 R(ϕ(t)) = Tϕ(t)R.ϕt (t)
∣∣
0 = TId R.u0.

Using the formula TϕR.h = (ϕ′)−1/2h′ from the proof of Theorem 4.3 yields
TId R.u0 = u′

0.
The solution is real-analytic in t since t �→ t.u0 is a real-analytic curve in A1(R)

and since R−1 respects real-analytic curves (see Kriegl and Michor 1997, Sect. 9).
Given x0, u0 such that u′

0(x0) < 0, there exist t0 ∈ R, with t0u′
0(x0) < −2. Thus

the geodesic at time t0 has left the R-map space, and the solution of the HS equation
leaves the space A1. ��

A more explicit formula for the solution is given by

u(t, x) = u0(ϕ
−1(t, x))+ t

2

ϕ−1(t,x)∫

−∞
u′

0(y)
2 dy

ϕ(t, x) = x + 1

4

x∫

−∞
t2(u′

0(y))
2 + 4tu′

0(y) dy.

Remark The HS equation on the real line also provides an example of how geometry
and PDE behaviour influence each other. It was shown in Sect. 4.2 that the geodesic
equation on DiffA(R) does not exist because the condition ad∗(u) u ∈ ǦId(u) is not
satisfied. From a naive point of view we could start with the energy

E(u) =
1∫

0

∞∫

−∞
u2

x dx dt (12)

defined on functions u ∈ C∞([0, 1],A(R)) and take variations of the form δu =
ηt + ηx u − ηux with fixed endpoints η(0, x) = ϕ0(x) and η(1, x) = ϕ1(x). This
would lead, after some integration by parts, to

〈DE(u), δu〉 =
1∫

0

∞∫

−∞
(utxx + (uux )xx − ux uxx ) η dx dt,

and we could now declare

utxx + (uux )xx − ux uxx = 0

to be the geodesic equation. It is in any case the equation which the critical points of
the energy functional (12) must satisfy. But this equation has no solutions in A. It is
shown in Theorem 4.6 that a solution u ∈ C∞([0, 1],A1(R)) intersects A(R) at most
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once. To find solutions, we must enlarge the space to A1(R), and then the preceding
theorem via the R-map gives us the existence of solutions.

4.8 Continuing Geodesics Beyond the Group, or How Solutions
of the Hunter–Saxton Equation Blow Up

Consider a straight line γ (t) = γ0 + tγ1 in A(R,R). Then γ (t) ∈ A(R,R>−2)

precisely for t in an open interval (t0, t1), which is finite at least on one side, say, at
t1 < ∞. Note that

ϕ(t)(x) := R−1(γ (t))(x) = x + 1

4

x∫

−∞
γ 2(t)(u)+ 4γ (t)(u) du

makes sense for all t , that ϕ(t) : R → R is smooth and that ϕ(t)′(x) ≥ 0 for all x
and t ; thus, ϕ(t) is monotone non-decreasing. Moreover, ϕ(t) is proper and surjective
since γ (t) vanishes at −∞ and ∞. Let

MonA1(R) := { Id + f : f ∈ A1(R,R), f ′ ≥ −1
}

be the monoid (under composition) of all such functions.
For γ ∈ A(R,R) let x(γ ) := min{x ∈ R ∪ {∞} : γ (x) = −2}. Then for the

line γ (t) from above we see that x(γ (t)) < ∞ for all t > t1. Thus, if the ‘geodesic’
ϕ(t) leaves the diffeomorphism group at t1, it never comes back but stays inside
MonA1(R) \ DiffA1(R) for the rest of its life. In this sense, MonA1(R) is a geodesic
completion of DiffA1(R), and MonA1(R) \ DiffA1(R) is the boundary.

What happens to the corresponding solution u(t, x) = ϕt (t, ϕ(t)−1(x)) of the HS
equation? In certain points it has infinite derivative, it may be multivalued, or its graph
can contain whole vertical intervals. If we replace an element ϕ ∈ MonA1(R) by its
graph {(x, ϕ(x)) : x ∈ R} ⊂ R, we get a smooth ‘monotone’ submanifold, a smooth
monotone relation. The inverse ϕ−1 is then also a smooth monotone relation. Then
t �→ {(x, u(t, x)) : x ∈ R} is a (smooth) curve of relations. Checking that it satisfies
the HS equation is an exercise left for the interested reader. What we have described
here is the flow completion of the HS equation in the spirit of Khesin and Michor
(2004).

4.9 Soliton-Like Solutions

For a right-invariant metric on a diffeomorphism group one can ask whether (general-
ized) solutions u(t) = ϕt (t)◦ ϕ(t)−1 exist such that the momenta Ǧ(u(t)) =: p(t) are
distributions with finite support. Here the geodesic ϕ(t) may exist only in some suit-
able Sobolev completion of the diffeomorphism group. By the general theory (see in
particular Michor 2006, Sect. 4.4, or Michor 2013) the momentum Ad(ϕ(t))∗ p(t) =
ϕ(t)∗ p(t) = p(0) is constant. In other words, p(t) = (ϕ(t)−1)∗ p(0) = ϕ(t)∗ p(0),
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i.e. the momentum is carried forward by the flow and remains in the space of distrib-
utions with finite support. The infinitesimal version (take ∂t of the last expression) is
pt (t) = −Lu(t) p(t) = − adu(t)

∗ p(t); cf. Sect. 3.2. The space of N solitons of order 0
consists of momenta of the form py,a =∑N

i=1 aiδyi , with (y, a) ∈ R
2N . Consider an

initial soliton p0 = Ǧ(u0) = −u′′
0 = ∑N

i=1 ai δyi , with y1 < y2 < · · · < yN . Let H
be the Heaviside function

H(x) =

⎧
⎪⎨

⎪⎩

0, x < 0,
1
2 , x = 0,

1, x > 0,

and D(x) = 0 for x ≤ 0 and D(x) = x for x > 0. We will see later why the
choice H(0) = 1

2 is the most natural one; note that the behaviour is called the Gibbs
phenomenon. With these functions we can write

u′′
0(x) = −

N∑

i=1

aiδyi (x),

u′
0(x) = −

N∑

i=1

ai H(x − yi ),

u0(x) = −
N∑

i=1

ai D(x − yi ).

We will assume henceforth that
∑N

i=1 ai = 0. Then u0(x) is constant for x > yN , and
thus u0 ∈ H1

1 (R); with a slight abuse of notation we assume that H1
1 (R) is defined

similarly to H∞
1 (R). Defining Si =∑i

j=1 a j we can write

u′
0(x) = −

N∑

i=1

Si (H(x − yi )− H(x − yi+1)) .

This formula will be useful because supp(H(.− yi )− H(.− yi+1)) = [yi , yi+1].
The evolution of the geodesic u(t) with initial value u(0) = u0 can be described

by a system of ordinary differential equations (ODEs) for the variables (y, a). We cite
the following result.

Theorem (Holm and Marsden 2005) The map (y, a) �→∑N
i=1 aiδyi is a Poisson map

between the canonical symplectic structure on R
2N and the Lie–Poisson structure on

the dual T ∗
Id DiffA(R) of the Lie algebra.

In particular, this means that the ODEs for (y, a) are Hamilton’s equations for the
pullback Hamiltonian

E(y, a) = 1

2
GId(u(y,a), u(y,a)),
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with u(y,a) = Ǧ−1(
∑N

i=1 aiδyi ) = −∑N
i=1 ai D(. − yi ). We can obtain the more

explicit expression

E(y, a) = 1

2

∫

R

(
u(y,a)(x)

′)2 dx = 1

2

∫

R

(
N∑

i=1

Si1[yi ,yi+1]

)2

dx

= 1

2

N∑

i=1

S2
i (yi+1 − yi ).

Hamilton’s equations ẏi = ∂E/∂ai , ȧi = −∂E/∂yi are in this case

ẏi (t) =
N−1∑

j=i

Si (t)(yi+1(t)− yi (t)),

ȧi (t) = 1

2

(
Si (t)

2 − Si−1(t)
2
)
.

Using the R-map we can find explicit solutions for these equations as follows. Let
us write ai (0) = ai and yi (0) = yi . By Theorem 4.9 the geodesic with initial velocity
u0 is given by

ϕ(t, x) = x + 1

4

x∫

−∞
t2(u′

0(y))
2 + 4tu′

0(y) dy

u(t, x) = u0(ϕ
−1(t, x))+ t

2

ϕ−1(t,x)∫

−∞
u′

0(y)
2 dy.

First note that

ϕ′(t, x) =
(

1 + t

2
u′

0(x)

)2

u′(t, z) = u′
0

(
ϕ−1(t, z)

)

1 + t
2 u′

0

(
ϕ−1(t, z)

) .

Using the identity H(ϕ−1(t, z)− yi ) = H(z − ϕ(t, yi )) we obtain

u′
0

(
ϕ−1(t, z)

)
= −

N∑

i=1

ai H (z − ϕ(t, yi )) ,
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and thus

(
u′

0

(
ϕ−1(t, z)

))′ = −
N∑

i=1

aiδϕ(t,yi )(z).

Combining these we obtain

u′′(t, z) = 1
(
1 + t

2 u′
0

(
ϕ−1(t, z)

))2

(

−
N∑

i=1

aiδϕ(t,yi )(z)

)

=
N∑

i=1

−ai
(
1 + t

2 u′
0(yi )

)2 δϕ(t,yi )(z).

From here we can read off the solution of Hamilton’s equations

yi (t) = ϕ(t, yi ),

ai (t) = −ai
(
1 + t

2 u′
0(yi )

)−2
.

When trying to evaluate u′
0(yi ),

u′
0(yi ) = ai H(0)− Si ,

we see that u′
0 is discontinuous at yi , and it is here that we seem to have the freedom to

choose the value H(0). However, it turns out that we observe the Gibbs phenomenon,
i.e. only the choice H(0) = 1

2 leads to solutions of Hamilton’s equations. Also, the
regularized theory of multiplications of distributions (see the discussion in Grosser et
al. 2001, Sect. 1.1) leads to this choice. Thus we obtain

yi (t) = yi +
i−1∑

j=1

(
t2

4
S2

j − t S j

) (
y j+1 − y j

)

ai (t) = −ai
(
1 + t

2

( ai
2 − Si

))2 = −
(

Si

1 − t
2 Si

− Si−1

1 − t
2 Si−1

)

.

It can be checked by direct computation that these functions indeed solve Hamilton’s
equations.

5 Two-Component Hunter–Saxton Equation on Real Line

In this section we will show, similarly to the previous section, that one can adapt the
work of Lenells on the periodic 2HS equation Lenells (2011) to obtain results for the
non-periodic case. On the real line this system has been studied from an analytical
viewpoint in Wunsch (2010, Sect. 4).
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Theorem Let M = DiffA(R) � A(R,R) and M̃ = DiffA1(R) � A(R,R) be the
semi-direct product Lie groups with multiplication

(ϕ, α)(ψ, β) = (ϕ ◦ ψ, β + α ◦ ψ),

where A and A1 are as defined in Sect. 4.1. Consider the following weak Riemannian
metric G on M and M̃:

G(Id,0)((X, a), (Y, b)) =
∫

X ′(x)Y ′(x)+ a(x)b(x) dx,

where (X, a) and (Y, b) are elements of the corresponding Lie algebra.
Then the geodesic equation on M̃ is the two-component non-periodic HS equation

given by

(u, ρ) = (ϕt ◦ ϕ−1, αt ◦ ϕ−1),

ut = −uux + 1

2

x∫

−∞
ux (z)

2 + ρ2(z) dz,

ρt = −(ρu)x .

The geodesic equation does not exist on M since the adjoint ad((X, a))∗G(Id,0) is not
in G(Id,0)(Lie algebra) for all (X, a). These are not robust Riemannian manifolds in
the sense of Micheli et al. (2012, Sect. 2.4).

Remark Note that one obtains more so-called classical forms of the HS equation by
differentiating the equation for ut :

utx = −uuxx + 1

2
(−u2

x + ρ2),

utxx = (− uuxx + 1

2
(−u2

x + ρ2)
)

x = −2ux uxx − uuxxx + ρρx .

The second of the preceding equations is the version which Lenells called the two-
component HS equation in Lenells (2011).

Proof To prove the formula for the geodesic equation we need to calculate the adjoint
as defined in Sect. 3.2. For vector fields (X, a) and (Y, b) the Lie bracket is given by

[(X, a), (Y, b)] = (−[X,Y ],−(LX b − LY a)) .
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We calculate

〈
ad((X, a))∗G((Y, b)), (Z , c)

〉

= G((Y, b), ad((X, a))(Z , c))

= G
(
(Y, b), (−[X, Z ],−LX c + LZ a)

)

=
∫

R

Y ′(x)
(
X ′(x)Z(x)− X (x)Z ′(x)

)′ + b(x)(−LX c(x)+ LZ a(x)) dx

=
∫

R

Y ′(x)
(
X ′′(x)Z(x)+ X ′(x)Z ′(x)− X ′(x)Z ′(x)− X (x)Z ′′(x)

)
dx

+
∫

R

b(x)(−c′(x)X (x)+ a′(x)Z(x)) dx

=
∫

R

Z(x)
(
X ′′(x)Y (x)+ (X (x)Y ′(x))′′ + b(x)a′(x)

)
dx

+
∫

R

c(x)(b′(x)X (x)+ b(x)X ′(x)) dx

=
〈(

X ′′Y + (XY ′)′′ + ba′, b′ X + bX ′), (Z , c)
〉
.

Therefore, the adjoint is given by

ad(X, a)∗G(Y, b)(x) = (X ′′Y + (XY ′)′′ + ba′, b′ X + bX ′).

Note that for general (X, a), (Y, b) ∈ A×A the adjoint is not an element of G(A×A);
the same statement is true for A1 × A. But for (X, a) equal to (Y, b) we can rewrite
the preceding equation in a form similar to that in Sect. 4.2 to obtain

ad(X, a)∗G(X, a)(x) =
(

1

2
(X ′2)′ + 1

2
(X2)′′′ + 1

2
(a2)′, a′ X + aX ′

)

=
⎛

⎝1

2

⎛

⎝
x∫

−∞
X ′2 + a2dx + (X2)′

⎞

⎠

′′
, a′ X + aX ′

⎞

⎠

= Ǧ

⎛

⎝1

2

⎛

⎝
x∫

−∞
X ′2 + a2dx + (X2)′

⎞

⎠ , a′ X + aX ′
⎞

⎠ .

An argument similar to that in Sect. 4.2 proves the existence of the adjoint and, thus,
of the geodesic equation on M̃ and the non-existence on M. ��
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Theorem (R-map for 2HS equation) Define the map

R :
{

M̃ → (A(R,C/{−2}), ‖ · ‖L2
)
,

(ϕ, α) �→ 2 ϕ′1/2eiα/2 − 2.

The R-map is invertible with inverse

R−1 :
{A(R,C/{−2}) → M̃,

γ �→
(

x + 1
4

∫ x
−∞(|γ + 2|2 − 4) dx, 2 arg(γ (x)+ 2)

)
.

The pullback of the flat L2-metric via R is the metric G as defined in Theorem 5.
Thus the space

(
M̃,G

)
is a flat space in the sense of Riemannian geometry.

Proof An argument similar to that in Sect. 4.3 shows that the image R(ϕ, α) is an
element of A(R,C/{−2}). The bijectivity follows from a straightforward calculation
using that for γ = R(ϕ, α) = R(Id + f, α) we have

1

4
|γ (x)+ 2|2 − 1 = f ′(x),

which proves the identities R ◦ R−1 = R ◦ R−1 = Id.
Since the mapping R is bijective, the pullback via R yields a well-defined metric on

M̃. To obtain its formula, we must calculate the tangent mapping of R. Let (h,U ) =
(X ◦ ϕ,U ) ∈ Tϕ,αM̃. We have

Tϕ,αR(h,U ) = ϕ
−1/2
x h′eiα/2 + iϕ1/2

x eiα/2U .

Using this formula we have for h = X1 ◦ ϕ, k = X2 ◦ ϕ

R∗〈(h,U ), (k, V )〉L2 = Re
∫

R

〈Tϕ,αR(h,U ), Tϕ,αR(k, V )〉dx

=
∫

R

X ′
1(x)X

′
2(x)+ α(x)β(x)dx

= Gϕ,α((h,U ), (k, V )).

��
We can now again use this result to construct an analytic solution formula for the
corresponding geodesic equation—the 2HS equation.

Theorem (Solutions to 2HS equation) Given an initial value (u0, ρ0) in A1(R) ×
A(R), the solution to the HS equation is given by

(u, ρ) = (ϕt ◦ ϕ−1,−α ◦ ϕ + αt ◦ ϕ−1) with (ϕ, α) = R−1(t (u′
0 + iρ0)).
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In particular, this means that a solution breaks in finite time T if and only if there
exists a x ∈ R such that u′

0(x) < 0 and ρ0(x) = 0.

Proof By the previous theorem we know that the path

(ϕ(t, x), ρ(t, x)) = R−1(t γ0)(x)

is a solution to the geodesic equation for every γ0 ∈ A1(R,C/{−2}). It remains to
choose γ such that the initial conditions are satisfied. This can be achieved exactly by
choosing γ0 = TId,0 R(u0, ρ0) = (u′

0 + iρ0). ��
Remark This theorem holds also in more general situations, i.e. for spaces A1(R)×
C(R) with A �= C, e.g. W ∞,1

1 (R) × S(R). The result holds in this situation since
the diffeomorphism group DiffA1(R) acts on C(R) for all choices of A and C among
C∞

c (R), S(R) and W ∞,1(R).

6 Remarks on Periodic Case

In this section we will briefly review the results of Lenells (2007) and extend them to
the case of real-analytic or ultra-differentiable functions on the circle. In this section,
Diff◦(S1)/S1 denotes one of the following homogeneous spaces:

(1) Diff(S1)/S1 the space of smooth diffeomorphisms on the circle modulo rotations.
(2) Diffω(S1)/S1 the space of real-analytic diffeomorphisms on the circle modulo

rotations; cf. Sect. 2.6.
(3) Diff [M](S1)/S1 the space of ultra-differentiable diffeomorphisms of the Beurling

type or Roumieu type on the circle modulo rotations; cf. Sect. 2.7.

A diffeomorphism ϕ ∈ Diff◦(S1) is related to its universal covering diffeomorphism
ϕ̃ by ϕ(eix ) = ei ϕ̃(x). Then ϕ̃(x) = x + f (x), where f is a 2π -periodic real-valued
function. Rotations correspond to constant functions f . Let D̃iff

◦
(S1) denote the

regular Lie group of lift to the universal cover of diffeomorphisms. The corresponding
homogeneous space is then D̃iff

◦
(S1)/R, factoring out all translations.

Theorem (Lenells 2007) On the homogeneous space D̃iff
◦
(S1)/R the square-root

representation is a bijective mapping given as follows:

R :
{

D̃iff
◦
(S1)/R → (

Im(R), ‖ · ‖L2([0,2π ])
) ⊂

(
C◦

2π -per(R,R>0), ‖ · ‖L2

)

ϕ̃ �→ 2 (ϕ̃′)1/2.

The image of the R-map is a sphere of radius
√

8π , i.e.

Im(R) =
{
γ ∈ C◦

2π -per(R,R>0) : ‖γ ‖2
L2 =

2π∫

0

γ 2 dθ = 8π
}
.
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The pullback of the restriction of the L2-metric to Im(R) via R is the homogeneous
Sobolev metric of order one, i.e.

R∗〈·, ·〉 = 〈·, ·〉Ḣ1 .

Thus the spaces
(
Diff◦(S1)/S1, Ḣ1

)
have constant positive sectional curvature.

Here C◦
2π−per(R,R>0)denotes the corresponding space of sufficiently smooth func-

tions, i.e. either the space of C∞, real-analytic or ultra-differentiable functions.

Proof The case of C∞-functions is proven in the work of Lenells Lenells (2007). The
statement about the image of R follows from

‖R(ϕ̃)‖2 = 4‖ (ϕ̃′)1/2‖2 = 4

2π∫

0

ϕ̃′(x)dx = 4

2π∫

0

1 + f ′(x)dx = 8π.

The remaining cases follow similarly using that Diffω(S1) and Diff [M](S1) are Lie
subgroups of Diff(S1); cf. Sects. 2.6 and 2.7. ��

As a direct consequence we obtain the following result:

Theorem (Solutions to the periodic HS equation) Given an initial value u0 in
C◦(S1,R>0), the solution to the HS equation stays locally in the same space. A solution
exists for all time t if and only if u′

0(θ) ≥ 0 for all θ ∈ S1.

Remark From our setup in Sects. 2.6 and 2.7 it is obvious that the results of Lenells
(2011) for the 2HS equation extend to the cases of real-analytic and ultra-differentiable
functions.

7 A Similar Representation for Camassa–Holm Equation

In this article we have shown that certain non-trivial Riemannian spaces that have flat
or constant curvature can be represented as a simple submanifold of the flat manifold
of all sufficiently smooth functions equipped with the L2-metric. In this section we will
present a natural example of a metric space with non-trivial curvature which can also
be represented as a (complicated) subspace of the flat manifold of all smooth functions,
namely the Lie group Diff(S1) equipped with the right-invariant non-homogeneous
H1-metric.

Theorem (Kouranbaeva 1999) The right-invariant H1-metric on the Lie group
Diff(S1) is given by

Gϕ(X ◦ ϕ,Y ◦ ϕ) =
∫

X (x)Y (x)+ X ′(x)Y ′(x) dx,
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where X,Y are vector fields in the Lie algebra X(S1). The induced geodesic distance is
positive, and the corresponding geodesic equation is the Camassa–Holm Eq. Camassa
and Holm (1993) given by

ut − uxxt + 3uux = 2ux uxx + uuxxx .

The geodesic equation is well posed, and the exponential map is a local diffeomor-
phism.

Using the ideas of Lenells (2011) we can introduce an R-map for this space. We use
again ϕ(eix ) = ei ϕ̃(x) with ϕ̃(x) = x + f (x) for periodic f . Again let D̃iff(S1) denote
the regular Lie group of lifts to the universal cover of diffeomorphisms. For curves
we obtain ∂t |0ϕ(t, eix ) = i∂t |0ϕ̃(t, x).ei ϕ̃(x) = i∂t |0 f (t, x).ei ϕ̃(x). Thus, for tangent
vectors we obtain δϕ = i.δϕ̃.ϕ = i.δ f.ϕ.

Theorem The R-map is defined by

R(ϕ̃) := 2ϕ̃′ 1
2 ei(ϕ̃−Id)/2 = 2(1 + f ′)

1
2 ei f/2,

R : D̃iff(S1) → C∞
2π -per(R,C).

The image under the R-map of the diffeomorphism group is the space S given by

S := R(̃Diff(S1)) =
{
γ ∈ C∞

2π -per(R,C \ {0}) : F(γ ) = (F1(γ ), F2(γ )) = 0
}
,

where F1(γ ) : =
2π∫

0

(|γ |2 − 1) dθ,

and F2(γ ) : = 8 arg(γ )′ − |γ |2.

The R-map is injective, and for any curve in S the inverse of R is given by

R−1(γ ) = 2 arg(γ )+ IdR R−1 : S �→ Diff(S1).

Furthermore, the pullback of the L2 inner product on C∞(S1,C) to the diffeomorphism
group by the R-map is the right-invariant Sobolev metric of order one.

Proof To prove the characterization for the image of R, we observe that for γ ∈
C∞(S1,C \ {0}) the function R−1(γ ) ∈ C∞([0.2π), [0, 2π)) is periodic if and only
if F1(γ ) = 0. Furthermore, we have that R(R−1(γ )) = γ if and only if F2(γ ) = 0.

To calculate the formula for the pullback metric, we need to calculate the tangent
of the R-map where h is tangent to ϕ̃, i.e. to f :

Tϕ̃Rh = ϕ̃′− 1
2 h′ei f/2 + i ϕ̃′ 1

2 ei f/2h.
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Thus the pullback of the L2 inner product on C∞(S1,C) is given by

(R∗〈 , 〉L2)ϕ̃(h, h) =
2π∫

0

Tϕ̃R(h) · Tϕ̃R(h) dx

=
2π∫

0

h′2

ϕ̃′ + hϕ̃′ dx =
∫

S1

X2 + X ′2 dx,

with h = X ◦ ϕ̃. ��
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