
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. W. Zwaenepoel, président du jury
Prof. A. Ailamaki, directrice de thèse

Dr Ph. Bernstein, rapporteur
Dr E. Bugnion, rapporteur

Prof. S. Madden, rapporteur

Transactions Chasing Scalability and Instruction Locality on
Multicores

THÈSE NO 6411 (2014)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 7 NOVEMBRE 2014

À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE SYSTÈMES ET APPLICATIONS DE TRAITEMENT DE DONNÉES MASSIVES

PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

Suisse
2014

PAR

Pınar TÖZÜN

I felt once more how simple and frugal a thing is happiness:

a glass of wine,

a roast chestnut,

a wretched little brazier,

the sound of the sea.

Nothing else.

— Nikos Kazantzakis, Zorba the Greek

To my fellow musketeers. . .

Acknowledgements
Below is the list of the people whom I shared my PhD journey with; without them this journey

would not be possible.

....

When my advisor, Natassa Ailamaki, accepted me to her lab, I was already a second year PhD

student that had already changed two labs. She basically gave me my second chance in PhD

and supported me in every way so that I would use that chance well. She has been an excellent

advisor and a true inspiration in my work. Natassa, thanks for appreciating my honesty at our

meeting just before I joined the lab. That meeting was the reason why I still believed I can do a

good PhD and it showed me that I can always rely on and be honest with you.

....

Even though Andreas Moshovos was not an official co-advisor, he has been practically my

co-advisor for the past three years. I feel extremely lucky to be working with him during these

years and am indebted to him for all the advice and feedback in my work.

....

Phil Bernstein has been one of my favorite people to interact with during conferences and his

work was a huge goldmine when I first dived into the world of transactions. Sam Madden has

always been a role model for the young academics with the diversity of the research topics

he has been working on. As a person who primarily came to PhD to become a good systems

researcher, I hope one day I would have as much breadth and depth in the field of computer

systems as Ed Bugnion has. Thanks for accepting to be in my thesis committee and providing

invaluable feedback to this thesis.

....

After being my candidacy exam president, Willy Zwaenepoel gave me great advice for my PhD

and encouraged me the most to continue doing systems research. I was really glad that he

accepted to be my thesis jury president as well.

....

I have two great academic brothers, Ippokratis Pandis and Ryan Johnson, who stood by me

as two indestructible pillars throughout this journey. Everything I learned about the guts of

database systems, I either learned from them or through their guidance. Thanks for being

patient with me.

....

I was incredibly lucky to be part of the DIAS lab at EPFL. Ladies first. Danica Porobic, you were

a great collaborator, office mate, and travel companion. Thanks for supporting my magnet

i

Acknowledgements

collection and being patient with my frantic keyboard typing. Erietta Liarou, thanks for being

my stunt double. Renata Borovica, I am going to miss our chats at random EPFL events with a

wine-glass in our hands. Eleni Zacharatou, thank you for always looking lively and energetic.

Mirjana Pavlovic, special thanks to you for joining me for a lunch at Tiffany’s. Let’s move on

to the boys. Many thanks to Manos Athanassoulis for many random discussions about work

and politics, Radu Stoica for the challenging questions, Iraklis Psaroudakis and Utku Şirin

for being great junior students to advice, Miguel Branco for many feedback sessions, Thomas

Heinis for translating my abstract to German, Adrian Popescu and Farhan Tauheed for all the

good pictures, Ioannis Alagiannis for the frappes, Manos Karpathiotakis for the endless Game

of Thrones discussions, and Matt Olma for being as enthusiastic as me in shooting videos.

Finally, Erika Raetz and Dimitra Tsaoussis, thank you very much for being patient with my

random bureaucratic questions and being my French-to-English translators.

....

In addition to the members of the DIAS lab, several people from the PARSA lab at EPFL and

AENAO lab at University of Toronto have been influential in this thesis. It was a pleasure to work

with Islam Atta who has been an essential collaborator during the last part of this thesis. Cansu

Kaynak and Djordje Jevdjic were extremely resourceful while taming TPC-E. Onur Koçberber

has been an encyclopedia for me while performing various workload characterization studies.

Moreover, Christoph Koch and his students at the DATA lab at EPFL were all a great source of

feedback.

....

I am very grateful to Eric Sedlar for giving me the opportunity to do an internship at Oracle

Labs and for all the long chats during various conferences and EPFL visits. Brian Gold was a

wonderful mentor at Oracle Labs and tremendously helpful for me to boost my knowledge on

computer architecture.

....

I am also indebted to many people in our community who supported me over the years.

Especially, I would like to thank Shel Finkelstein for inviting me to my first HPTS after my first

conference talk. This gave me a great exposure early on that would not be possible otherwise.

....

There have been many friends who helped this journey to be as colorful as possible. First

comes my fantastic four. Duygu Ceylan, you are the main reason I kept my sanity during

these five years. You have become like my sister and my best friend here and were the only

indicator of home in Lausanne for me. Thanks for listening to all my whinings, tolerating

my weird habits, and watching Gilmore Girls for the Nth time with me. Ippokratis Pandis, in

addition to being my academic brother, thank you for also being like a real brother to me; you

complained about me not eating well like my mom, warned me about not dressing properly

for cold weather like my grandma, and constantly gave me advice about life and work like my

dad. Esra Aslantürk, thanks for being my kid and sharing my other world (the world of songs,

books, films, and series) with me since college. Helena Kotthaus, thanks for turning Redwood

Shores from a hell full of ducks to a wonderland for me.

....

ii

Acknowledgements

I would also like to thank the Turkish Gang (Cansu Kaynak, Onur Koçberber, Barış Kaşıkçı,

and Kerem Kapucu) for all the times you trashed my house and made me laugh as much as a

South Park season, Günseli Çakmakcı for a never-ending friendship since high-school, Ece

Öztürk for all the fun at Zurich, Mihai Dobrescu for the Starbucks chats, Minh Dang for the

badminton Sundays, and Tia Tsi for the True Blood sessions.

....

Mom and dad, thanks for loving and supporting me no matter what I do. This gives me the

biggest confidence and pulls me up in every step of the way. I love you.

....

Many thanks also to my extended family for all the home-time in Istanbul, Chicago, and

Stuttgart.

....

Finally, I would like to thank Rammstein for being incredibly helpful during coding, Green Day

for increasing my creativity while preparing slides, Sigur Ros for helping me concentrate on

writing, and Tori Amos and Lou Reed for allowing me to relax.

....

....

....

....

This research has been supported by grants from Dotation (DIAS Lab), FN Sinergia, Naval

Research Global (London), and Hasler Foundation.

iii

Abstract
For several decades, online transaction processing (OLTP) has been one of the main server

applications that drives innovations in the data management ecosystem, and in turn the

database and computer architecture communities. Recent hardware trends oblige software to

overcome two major challenges against systems scalability on modern multicore processors:

(1) exploiting the abundant thread-level parallelism across cores and (2) taking advantage of

the implicit parallelism within a core. The traditional design of the OLTP systems, however,

faces inherent scalability problems due to its tightly coupled components. In addition, OLTP

cannot exploit the full capability of the micro-architectural resources of modern processors be-

cause of the conventional scheduling decisions that ignore the cache locality for transactions.

As a result, today’s commonly used server hardware remains largely underutilized leading to a

huge waste of hardware resources and energy.

....

In this thesis, we first identify the unbounded critical sections of traditional OLTP systems

as the main enemy of thread-level parallelism. We design an alternative shared-everything

system based on physiological partitioning (PLP) to eliminate the unbounded critical sections

while providing an infrastructure for low-cost dynamic repartitioning and without introducing

high-cost distributed transactions. Then, we demonstrate that L1 instruction cache stalls are

the dominant factor leading to underutilization in the commodity servers. However, we also

observe that independently of their high-level functionality, transactions running in parallel

on a multicore system share significant amount of common instructions. By adaptively

spreading the execution of a transaction over multiple cores through thread migration or

multiplexing transactions on one core, we enable both an ample L1 instruction cache capacity

for a transaction and reuse of common instructions across concurrent transactions.

....

As the hardware demands more from the software to exploit the complexity and parallelism

it offers in the multicore era, this work would change the way we traditionally schedule

transactions. Instead of viewing a transaction as a single big task, we split it into smaller parts

that can exploit data and instruction locality through careful dynamic scheduling decisions.

The methods this thesis presents are not only specific to OLTP systems, but they can also

benefit other types of applications that have concurrent requests executing a series of actions

from a predefined set and face similar scalability problems on emerging hardware.

....

v

Abstract

Keywords: Database management systems, transaction processing, multicore and multi-

socket hardware, micro-architectural behavior, instruction misses, transaction-aware schedul-

ing, benchmarking.

vi

Zusammenfassung
Online Transaction Processing (OLTP) ist bereits seit mehreren Jahrzehnten eine der wich-

tigsten Serveranwendungen welche Innovationen im Datenmanagement Ökosystem und

dadurch in den Forschungsgebieten der Datenbank und der Computerarchitektur vorantreibt.

Neueste Hardwaretrends zwingen Software zwei große Herausforderungen der Systemskalier-

barkeit auf modernen Multicore-Prozessoren zu überwinden: (1) die Nutzung der reichlich

vorhandenen Parallelismus über Cores auf Threadebene und (2) die Nutzung des impliziten

Parallelismus innerhalb der Prozessorcores. Das traditionelle Design von OLTP-Systemen

jedoch steht inhärenten Skalierbarkeitsprobleme aufgrund seiner eng gekoppelten Kompo-

nenten gegenüber. Darüber hinaus kann OLTP heute nicht die volle Leistungsfähigkeit der

Mikroarchitekturressourcen moderner Prozessoren nutzen weil das Scheduling der Threads

den Ort an dem Threaddaten gespeichert sind nicht berücksichtigt. Als Konsequenz bleibt die

heute gängige Serverhardware weitgehend unausgelastet was zu einer großen Verschwendung

von Hardware-Ressourcen und Energie führt.

....

In dieser Doktorarbeit identifizieren wir zunächst die unskalierbaren kritischen Abschnitte der

traditionellen OLTP-Systeme als Hauptfeind des Parallelismus auf Threadebene. Wir entwerfen

dann ein alternatives Shared-Everything System welches auf physiologischer Partitionierung

(PLP) basiert um die unskalierbaren kritische Abschnitte zu beseitigen. PLP vermeidet die

hohen Kosten von verteilten Transaktionen durch die Bereitstellung einer Infrastruktur für eine

kostengünstige und dynamischen Repartitionierung. Weiter zeigen wir, dass Cache-Misses im

L1-Instruktionscache der dominierende Faktor ist, der zur Unterauslastung von Servern führt.

Allerdings beobachten wir auch, dass unabhängig von ihren übergeordneten Funktionen,

parallel laufende Transaktionen auf einem Multicore-System einen erheblichen Anteil an

gemeinsamen Anweisungen aufweisen. Indem wir eine Transaktion adaptiv auf mehreren

Prozessorcores durch Threadmigration oder durch Multiplexing auf einem Core ausführen,

ermöglichen wir einerseits ausreichend L1-Instruktionscachekapazität für eine Transaktion

und ermöglichen andererseits die Wiederverwendung von gemeinsamen Instruktionen von

nebenläufigen Transaktionen.

....

Während die Hardware immer mehr Anforderungen an die Software stellt um die Komplexität

und den Parallelismus von heutigen Multicores zu nutzen, wird diese Arbeit die Art und

Weise ändern wie wir Transaktionen planen. Anstatt eine Transaktion als eine einzige große

Aufgabe zu verstehen, teilen wir sie in kleinere Teile, welche Daten- und Instruktionslokalität

vii

Zusammenfassung

durch sorgfältige dynamische Schedulingentscheidungen nutzen können. Die Methoden

welche wir in dieser Arbeit entwickeln sind nicht nur spezifisch auf OLTP-Systeme anwendbar

und können daher auch für andere Arten von Anwendungen, in welchen die gleichzeitige

Ausführung einer Reihe von Aktionen aus einer vorgegebenen Menge die Skalierbarkeit auf

neuartiger Hardware limitiert, von großem Nutzen sein.

Stichwörter: Datenbanksysteme, Transaktionsverarbeitung, Multicore- und Multisocket-

Hardware, Mikroarchitekturverhalten, Instruktionscache-Misses, Transaktionsbewusstes Sche-

duling, Benchmarking.

viii

Contents

Acknowledgements i

Abstract (English/Deutsch) v

Table of Contents ix

List of Figures xv

List of Tables xvii

1 Introduction 1

1.1 Data Management . 1

1.2 Evolution of Hardware . 2

1.3 OLTP on Modern Hardware . 3

1.4 Scaling Up on Multicores . 4

1.5 Utilizing Resources within a Core . 5

1.6 Thesis Statement and Contributions . 6

1.7 Roadmap . 7

2 Background 9

2.1 Transaction Processing . 9

2.2 Micro-architecture of OLTP’s Playground . 11

2.3 Exploiting Modern Hardware while Running OLTP 13

2.3.1 Scaling Up OLTP . 13

2.3.2 Minimizing Memory Stalls . 15

2.4 Evolution of TPC’s OLTP benchmarks . 17

2.4.1 The obsolete TPC-A and TPC-B . 17

2.4.2 The ubiquitous TPC-C . 18

2.4.3 The unexplored TPC-E . 20

2.4.4 The evolution summary . 22

2.5 The TATP benchmark . 23

2.6 Shore-MT and Shore-Kits: Benchmarks on Top of Shore-MT 24

ix

Contents

I Scalable and Dynamically Balanced Shared-Everything OLTP with Physio-
logical Partitioning 25

3 Latch-free Shared-everything OLTP 27

3.1 Introduction . 27

3.1.1 Multi-rooted B+Trees . 28

3.1.2 Physiological Partitioning . 29

3.1.3 Contributions and Organization . 29

3.2 Communication Patterns . 30

3.2.1 Types of Communication . 30

3.2.2 Communication Patterns in OLTP . 32

3.2.3 Physical vs. Logical Partitioning . 33

3.3 Physiological Partitioning . 34

3.3.1 Design Overview . 34

3.3.2 Multi-rooted B+Tree . 36

3.3.3 Heap Page Accesses . 37

3.3.4 Page Cleaning . 38

3.3.5 Benefits of Physiological Partitioning . 38

3.4 Evaluation . 40

3.4.1 Experimental Setup . 40

3.4.2 Page Latches and Critical Sections . 41

3.4.3 Reducing Index and Heap Page Latch Contention 43

3.4.4 Impact on Scalability and Performance . 44

3.4.5 MRBTrees in Non-PLP Systems . 46

3.4.6 Transactions with Joins in PLP . 47

3.4.7 Secondary Index Accesses . 48

3.4.8 Fragmentation Overhead . 50

3.4.9 Summary . 51

3.5 Related Work . 52

3.5.1 Critical Sections . 52

3.5.2 B+Trees and Alternative Concurrency Control 53

3.6 Limitations of PLP . 54

3.7 PLP on Future Hardware and Conclusions . 56

4 Dynamic Load Balancing for PLP 57

4.1 Introduction . 57

4.2 Need for Dynamic Repartitioning . 59

4.3 Repartitioning Cost . 60

4.3.1 Splitting Non-clustered Indexes . 61

4.3.2 Splitting Clustered Indexes . 65

4.3.3 Moving Fewer Records . 65

4.3.4 Example of Repartitioning Cost . 65

4.3.5 Cost of Merging Two Partitions . 66

x

Contents

4.4 A Dynamic Load Balancing Mechanism for PLP 67

4.4.1 Monitoring . 68

4.4.2 Deciding New Partitioning . 70

4.4.3 Using Control Theory for Load Balancing 73

4.5 Evaluation . 74

4.5.1 Experimental setup . 74

4.5.2 Overhead in Normal Operation . 75

4.5.3 Overhead of Updating Secondary Indexes for DLB 78

4.6 Related Work . 79

4.7 Conclusions . 80

II Characterizing OLTP Benchmarks 81

5 From A to E: Analyzing TPC’s OLTP Benchmarks 83

5.1 Introduction . 83

5.2 Related Work . 85

5.3 Setup and Methodology . 86

5.3.1 Hardware . 86

5.3.2 TPC-E Implementation . 87

5.3.3 Software Setup . 87

5.3.4 Experiments . 88

5.4 Profiling Analysis . 89

5.4.1 High-level Analysis . 89

5.4.2 Time breakdown . 90

5.5 Micro-architectural Analysis . 92

5.5.1 OLTP on an Out-of-Order Processor . 93

5.5.2 OLTP on an In-Order Processor . 96

5.6 Summary of Results and Conclusion . 98

6 Transactions under the Microscope 101

6.1 Introduction . 101

6.2 Related Work . 103

6.3 Setup and Methodology . 104

6.4 Sensitivity to Data Size . 106

6.5 Breakdown of Misses . 107

6.5.1 Into Miss Categories . 107

6.5.2 Into Operations . 109

6.5.3 Into Components . 110

6.6 Inside Transactions . 111

6.6.1 Database Operations . 111

6.6.2 Commonalities across Transactions . 113

6.6.3 Average Reuse in an Instance . 117

xi

Contents

6.7 Conclusions . 117

III Chasing Instructions 119

7 Boosting Instruction Cache Reuse in OLTP 121

7.1 Introduction . 122

7.2 Exploiting Instruction Overlap . 124

7.3 Self-Assembly of Instruction Cache Collectives 125

7.3.1 SLICC Design . 125

7.3.2 Implementation Requirements . 128

7.3.3 Exploiting Transaction Type Information 130

7.3.4 Support for Thread Migration . 131

7.4 Stratified Transaction Execution . 131

7.4.1 STREX Synchronization Algorithm . 132

7.4.2 Implementation . 132

7.4.3 Effect on Regular Execution . 133

7.5 Evaluation . 134

7.5.1 Methodology . 134

7.5.2 Exploring SLICC’s Parameter Space . 136

7.5.3 L1 Miss Rate . 139

7.5.4 Throughput . 140

7.5.5 Transaction Throughput vs. Latency . 141

7.5.6 Hardware Cost . 142

7.6 Related Work . 144

7.7 Conclusions . 145

8 Transaction-aware Instruction Chasing 147

8.1 Introduction . 147

8.2 ADDICT . 149

8.2.1 Finding Migration Points . 149

8.2.2 Migrating Transactions . 152

8.3 Evaluation . 157

8.3.1 Setup and Methodology . 157

8.3.2 Migration Points . 159

8.3.3 Instruction and Data Misses . 160

8.3.4 Performance Impact . 161

8.3.5 Effect of Changing Loads . 162

8.3.6 With Simultaneous Multithreading . 163

8.3.7 On Deeper Memory Hierarchies . 164

8.3.8 Overhead . 165

8.3.9 Summary . 166

8.4 Related Work . 166

xii

Contents

8.5 Conclusions . 167

9 Future Directions and Concluding Remarks 169

9.1 Hardware Specialization . 169

9.2 Other Applications to Benefit from Alternative Scheduling 170

9.3 Thesis Summary . 172

Bibliography 173

Curriculum Vitae 189

xiii

List of Figures
1.1 OLTP on modern hardware . 3

2.1 Main components of a storage manager . 10

2.2 Memory hierarchy of commodity servers . 12

2.3 TPC-B and TPC-C schemas . 18

3.1 Critical sections of OLTP . 31

3.2 Breakdown of the critical sections . 32

3.3 Breakdown of the page latches . 33

3.4 Shared-everything, shared-nothing, and PLP designs 34

3.5 Transaction flow graph of TPC-C’s Payment under PLP 35

3.6 Average number of page latches acquired per transaction 41

3.7 Breakdown of the critical sections with PLP . 42

3.8 Time breakdown in an insert/delete-heavy micro-benchmark 43

3.9 Time breakdown in TPC-B’s AccountUpdate . 43

3.10 Time breakdown in TPC-C’s StockLevel . 44

3.11 PLP performance while running TATP’s GetSubscriberData 45

3.12 PLP performance while running TPC-C’s StockLevel 45

3.13 PLP performance while running TATP, TPC-B, and TPC-C 46

3.14 MRBTree’s impact on non-PLP systems . 46

3.15 MRBTree’s impact on structural modification operations 47

3.16 PLP with transactions that involve join operations 48

3.17 Effect of aligned and non-aligned secondary indexes on PLP 49

3.18 Space overhead of the three PLP variations . 50

3.19 Overhead of PLP variations during file scan . 51

4.1 Effect of access skew on the throughput of a statically partitioned system 60

4.2 Splitting a partition in PLP-Leaf . 63

4.3 Splitting a partition in PLP-Partition . 64

4.4 A two-level histogram for MRBTrees . 68

4.5 The aging algorithm example . 69

4.6 Example of how to decide on the new partition ranges 72

4.7 Overhead of DLB under normal operation . 75

4.8 Dynamic load balancing in action . 76

xv

List of Figures

4.9 Partitions before and after the repartitioning . 77

4.10 Overhead of updating secondary indexes during repartitioning 79

5.1 Time breakdown as the machine load increases on UltraSPARC T2 90

5.2 Time breakdown inside the lock manager . 91

5.3 Execution cycles breakdown on an OoO processor 93

5.4 Core stalls breakdown on an OoO processor . 94

5.5 MPKI on an OoO processor . 95

5.6 IPC and MLP on an OoO processor . 96

5.7 MPKI on an in-order processor . 97

5.8 IPC on an in-order processor . 98

6.1 Effect of data size on MPKI and stalls . 106

6.2 Misses breakdown into compulsory, capacity, and conflict misses 108

6.3 8-way L1-I MPKI as cache size increases . 108

6.4 Misses breakdown into database operations . 109

6.5 Misses breakdown into storage manager components 110

6.6 Misses breakdown into storage manager components in each database operation111

6.7 Flow graph of database operations with instruction footprint percentages . . . 112

6.8 Instruction and data overlaps across transactions 114

6.9 Reuse of instructions and data in a transaction 116

7.1 Ways of scheduling transactions . 124

7.2 SLICC’s thread migration algorithm . 126

7.3 SLICC architecture . 128

7.4 Partial-address bloom filter . 130

7.5 SLICC performance as a function of fill-up_t and matched_t 137

7.6 SLICC performance as a function of dilution_t . 138

7.7 SLICC’s partial-address bloom filter accuracy . 138

7.8 Effect of SLICC and STREX on L1-I and L1-D misses 139

7.9 Effect of SLICC and STREX on throughput . 140

7.10 Latency distribution of STREX and SLICC . 141

7.11 STREX throughput as team_size increases . 142

8.1 Stability of ADDICT’s migration points . 159

8.2 ADDICT’s impact on instruction and data misses 161

8.3 Impact of different scheduling techniques on performance 162

8.4 Impact of changing server load (or batch size) on ADDICT 163

8.5 Behavior of different scheduling mechanisms with SMT 163

8.6 ADDICT on deeper cache hierarchies . 164

8.7 Frequency of context-switches and thread migrations 165

9.1 MPKI of an in-memory OLTP system . 171

xvi

List of Tables
2.1 TPC-E transactions . 21

2.2 Evolution of TPC’s OLTP benchmarks . 22

4.1 Modelling cost of splitting a partition into two . 62

4.2 Example of costs when splitting a partition into two 66

4.3 Average index probe times as skew increases . 77

4.4 Index probe throughput for hot records as skew increases 78

5.1 Server properties . 87

5.2 Statistics for each benchmark per scaling factor 89

5.3 Number of worker threads used for each benchmark 92

6.1 Simulated memory hierarchy . 104

7.1 SLICC thresholds . 127

7.2 Workloads setup . 134

7.3 Simulated system parameters . 136

7.4 Hardware space cost of SLICC and STREX . 143

8.1 Simulated system parameters . 158

xvii

1 Introduction

1.1 Data Management

We live in a data-driven world today [79, 80]. People have various opportunities to reach a

wide range of information at any time and they themselves can contribute to the available

information [49]. The past few years have even witnessed cases where people act as powerful

media sources when the official news sources, such as broadcast networks and press, fail to do

so [19, 165]. However, the maintenance and processing of the sheer amount of data to retrieve

the essential information in an efficient and cost-effective way poses a tremendous challenge

on traditional data management practices [90].

For several decades, database management systems have enabled many influential appli-

cations that transform data into useful information. These applications range from high-

performance online services (social networks, online shopping, banks, financial markets, etc.)

to big data analytics (scientific exploration, sensor networks, business intelligence, etc.). On-

line transaction processing (OLTP) [64] is one of the most important and challenging database

applications and covers the online services applications above. OLTP applications were the

primary reason why relational databases were invented back in the day [34, 35].

Some of the notable challenging characteristics of OLTP are that

• there are many concurrent read/write requests to the database,

• each request usually touches a few records in the whole database, and

• clients expect low and predictable response times while also interacting with fresh and

consistent data.

Today OLTP is still among the most fundamental applications in the data management ecosys-

tem and has a multi-billion dollar industry [63, 205]. The increased accessibility of the World

Wide Web and big data volumes nowadays amplify the challenges of OLTP. Specifically,

1

Chapter 1. Introduction

• There are many more concurrent requests from various clients to the data. Therefore, OLTP

has to exploit any parallelism opportunity from the underlying hardware in order to satisfy

all the client requests.

• Touching a small portion of a database as the data volumes grow fast requires smart

indexing and caching mechanisms to be able to maintain fast and predictable performance.

As a result, researchers and developers from the database and computer architecture com-

munities lead many innovations targeting the usability and performance of OLTP systems on

modern and emerging applications and hardware [86, 111, 142].

1.2 Evolution of Hardware

For the past five decades, processor technology has gone through major advancements mainly

following Moore’s law [132] that predicts the doubling of the number of transistors within a

single chip every year or two. To exploit this increase in the transistor counts in a unit area,

initially, computer architects focused on boosting the performance of a single thread while

designing chips. More specifically, they kept clocking the processors at higher frequencies

and designing complex micro-architectural features (e.g., aggressive pipelining, super-scalar

execution, out-of-order execution, and branch prediction [78]) that enable instruction and

data level parallelism implicitly (i.e., vertical parallelism). This led software developers to

rely on this implicit/vertical parallelism within a chip to execute a single task as efficiently as

possible.

Since the beginning of this decade, however, power draw and heat dissipation have pre-

vented processor vendors from leaning on rising clock frequencies or more complex micro-

architectural techniques for higher performance. Instead, they have started adding more

processing cores or hardware contexts (i.e., horizontal parallelism) on a single processor to

enable exponentially increasing parallelism and performance opportunities [138]. As a result,

any software design today has to pay attention to both implicit/vertical and explicit/horizontal

parallelism in order to get the best of the underlying hardware.

Unfortunately, the end of this trend is also upon us. While we will still be able to incorporate

more cores on a single die, we will no longer be able to use them all at the same time. The

main problem is again power-related. Even though Moore’s law still holds today, Dennard

scaling [43], which enables keeping the power density of the transistors constant, does not.

The supply voltage required to power all the transistors up does not decrease at a proportional

rate [50]. Putting more cores in a chip is not going to be able to overcome this problem any

longer. This trend is referred to as dark silicon and fundamentally alters the focus of hardware

designs [71]. In this new era, the focus needs to shift toward optimizing energy per instruction.

2

1.3. OLTP on Modern Hardware

S
p

e
e

d
u

p
 (

o
v
e

r
1

 w
o

rk
e

r)

% of Hardware Contexts Used

conventional

ideal

0

1

2

3

4

In
st

ru
ct

io
n

s
p

e
r

C
y

cl
e

conventional

0 100

Maximum in a cycle

Figure 1.1: A conventional OLTP system on a commodity server; exploiting horizontal (left-
hand side) and vertical parallelism (right-hand side) while running a simple short transaction
that just reads a client’s balance.

1.3 OLTP on Modern Hardware

As the previous section briefly mentions, the hardware technology has mainly evolved in the

direction of providing further opportunities for parallelism in two dimensions, vertical and

horizontal, to be able to continue exploiting the increasing number of transistors. However,

the evolution of hardware does not automatically translate into proportional performance

improvements for some complex software systems such as databases.

On the one hand, as shown by various early workload characterization studies, commercial

workloads, especially transaction processing, exhibit diminishing returns from aggressive

micro-architectural features [3, 69, 106, 177]. They cannot exploit the vertical parallelism

in a core fully, especially due to poor instruction-level parallelism (ILP). On the other hand,

exploiting the horizontal parallelism offered by multicores is limited by Amdahl’s law [11],

which states that the speedup of a program in parallel computing is bounded by the fraction

of the program that can be parallelized. The tightly-coupled components in traditional data

management systems lead to various scalability bottlenecks on multicores and hinder the

parallel execution of even non-conflicting requests [8, 99, 116, 155, 166].

Figure 1.1 demonstrates how well traditional transaction processing systems utilize the re-

sources of high-end server hardware (an Intel Sandy Bridge server [88]) in two dimensions:

• at the level of the whole machine (i.e., exploiting horizontal parallelism) and

• within a core (i.e., exploiting vertical parallelism).

The experiment uses the Shore-MT storage manager [96, 172] (and Section 2.6) executing a

very simple read-only transaction that just looks up a client’s key value in the database through

an index search and reads the client’s balance column from the record that belongs to this

client.

3

Chapter 1. Introduction

The left-hand side of Figure 1.1 plots the relative throughput over the throughput achieved

using a single worker thread as the number of worker threads executing transactions increases,

i.e., as the number of hardware contexts used in the machine increases. The dashed line

indicates the ideal case where each worker thread performs the same as the single worker

thread in isolation. However, in practice, what we achieve is the solid line. Even though

the overall throughput keeps increasing, the gap between the ideal line and the line of the

conventional system also increases as we use more hardware contexts in the system. This

highlights the poor scalability of the conventional system, which is only going to get worse

with emerging hardware that offers more hardware contexts, and hence more horizontal

parallelism.

On the other hand, the right-hand side of Figure 1.1 shows whether a worker thread in isolation

can get the best of the micro-architectural features within a core. More specifically, the graph

shows the instructions retired in a cycle (IPC) as one worker thread executes transactions

based on the above setup. Even though the Intel server being used has four-way processors,

i.e., each core has the ability to retire up to four instructions in a cycle, the conventional system

barely retires one. Therefore, exploiting vertical parallelism is also a big challenge for OLTP.

Problem: Traditional OLTP systems face two major challenges while trying to utilize modern

hardware:

• Exploiting the abundant thread-level parallelism given by multicores.

• Taking advantage of the aggressive micro-architectural features within a core.

The focus of this dissertation is to tackle the two challenges above in the context of tradi-

tional transaction processing systems running on a multicore server. We seek solutions that

introduce minimal changes to existing software and hardware systems to maximize possible

adoption of the proposed mechanisms.

1.4 Scaling Up on Multicores

Conventional shared-everything OLTP design is simple to configure, yet vulnerable to various

scalability bottlenecks due to shared resources and tightly coupled internal components. The

worker threads in the system can handle any client request. It is unpredictable which data each

worker thread might access as they execute transactions [174]. As a result, the execution of a

typical transaction is cluttered with critical sections to ensure the ACID (Atomicity, Consistency,

Isolation, Durability) properties over the shared data. These critical sections either lead to

contention among multiple threads, which limits scalability [94, 99], or impose a significant

penalty on single-thread performance even under no contention [76].

Various analysis studies demonstrate that as the available parallelism increases on multicore

hardware, the time spent in different storage manager components change [95]. The lock

4

1.5. Utilizing Resources within a Core

manager becomes the component that contributes the most to the overall execution time

under high concurrency [95, 145]. On the other hand, techniques that try to sidestep the

problematic components often fail to be effective on the future generations of multicores [153,

154] and elimination of some scalability bottlenecks surfaces other unscalable components

and critical sections [97, 147]. Therefore, one needs a methodological way to identify and

minimize the scalability problems in order to scale up on emerging hardware.

Shared-nothing designs, on the other hand, choose to deploy independent database instances

by physically partitioning the data [45, 178]. In this way, the contention on the shared data

resources can be explicitly tuned by determining the number of processors assigned to each

instance. Therefore, the shared-nothing design potentially leads to superior performance

under perfectly partitionable workloads. However, its performance suffers when the workload

triggers distributed transactions or when skew causes load imbalance [153].

Goal: Providing an alternative shared-everything design and transaction execution model that

allow more robust scalability on modern and future multicore architectures while preventing

load imbalance across the worker threads in the system.

1.5 Utilizing Resources within a Core

In the computer architecture community, it is more common to evaluate hardware advance-

ments using the SPEC benchmarks [176] rather than the data management benchmarks [188].

The problem with this practice is that the data management applications tend to be a lot

more complex in terms of memory access patterns (both in instruction and data accesses)

compared to the compute-intensive benchmarks in the SPEC suite. Therefore, the aggressive

micro-architectural properties that tend to boost the performance of the SPEC benchmarks

usually do not benefit data management applications as much.

There has been a large body of workload characterization studies during the last two decades

that investigate the micro-architectural behavior of OLTP workloads [16, 106, 161, 177]. They

all conclude that OLTP cannot exploit aggressive micro-architectural features, thereby wasting

most of its execution cycles in memory stalls and exhibiting low IPC.

After almost 15 years later than the initial detailed workload characterization studies for data-

intensive applications, in a more recent study, Ferdman et al. [55] demonstrate that there is still

a clear mismatch between what modern hardware offers and what data management systems

can exploit from it. Large-scale data management workloads, including OLTP applications,

still fail to take advantage of the full capability of today’s commodity servers at the micro-

architectural level due to poor instruction and data locality at different levels of the memory

hierarchy. Such underutilization of micro-architectural features is a great waste of hardware

resources.

5

Chapter 1. Introduction

Goal: Identifying the dominant factors from both the hardware and software sides causing the

underutilization of micro-architectural resources in a core while running transaction processing

applications, and eliminating their effect through techniques that improve locality at the right

level of the memory hierarchy.

1.6 Thesis Statement and Contributions

This thesis contributes to the quest of bridging the gap between software and hardware in the

context of transaction processing systems.

Thesis Statement

Typical database management systems process each transaction as an indivisible unit,
thereby exploiting less than the abundant parallelism available in today’s hardware

platforms and underutilizing processor caches. To optimize the use of
micro-architectural features and avoid wasting hardware resources, systems should

break transactions dynamically into smaller parts, according to which data and
instructions each part accesses, and schedule each part adaptively depending on the

other transactions currently running in the system.

With the above statement, we depart from the traditional way of scheduling transactions,

which considers them as a black-box. We advocate for a more fine-grained task scheduling

that is aware of the actions a transaction executes. In this way, on the one hand, we can

improve thread-to-data access locality and minimize contention on shared data, and on the

other hand, maximize instruction cache locality to eliminate memory stalls that are hard to

overlap.

A summary of the contributions of this thesis is below:

• We demonstrate that the scalability of a shared-everything transaction processing sys-

tem depends on minimizing the unbounded communication points on the critical path

of a transaction. Through physiological partitioning, we provide an infrastructure for

eliminating unbounded critical sections during logical and physical data accesses, which

in turn eliminates a majority of the unbounded communication in a transaction. The

same infrastructure also minimizes the costs of multi-partition transactions and dynamic

repartitioning.

• We perform thorough workload characterization of the Transaction Processing Perfor-

mance Council’s (TPC’s) [188] transaction processing benchmarks. Our analysis

• illustrates the evolution (e.g., complexity increase) with each generation of OLTP bench-

mark TPC standardizes,

6

1.7. Roadmap

• highlights that first-level instruction cache misses are the dominant factor causing OLTP

to exhibit low IPC and spend more than half of its execution cycles on memory stalls,

• maps memory stalls to the storage manager components they stem from, and

• reveals that transactions exhibit significant temporal code overlap as they run concur-

rently on multicore hardware.

• Based on the insights from our analysis, we design alternative ways of scheduling transac-

tions at the hardware-level that aim to minimize L1 instruction misses through maximizing

instruction reuse across concurrent transactions. Two of the techniques are programmer-

transparent (pure hardware) techniques: one adaptively spreads the execution of transac-

tions over multiple cores through thread migration and the other one time-multiplexes

transactions on the same core. On the other hand, the last technique is more transaction-

aware and gets software-side hints as it migrates transactions over cores in order to reduce

the complexity required from the hardware side.

To be able to have better software/hardware integration for transaction processing systems,

this thesis aims to lead people to re-think scheduling decisions for transaction processing

workloads to better utilize the micro-architectural resources of underlying modern hardware

and also give guidance on how to specialize future hardware designs for OLTP. In addition, even

though this thesis targets transaction processing applications, the insights and techniques

presented here have potential to benefit any other application that executes concurrent

requests formed of some predefined tasks, suffers from unbounded communication on the

critical path, and exhibits micro-architectural inefficiencies due to memory stalls.

1.7 Roadmap

The three parts of this thesis cover the three contributions above. The details for each chapter

are as follows:

• Chapter 2 gives background on improving hardware utilization while running OLTP on

modern multicore hardware. It also introduces the OLTP benchmarks and the Shore-MT

storage manager used throughout this thesis. Readers familiar with these concepts can

skip this chapter.

• In Part I:

• Chapter 3 first classifies the critical sections in a typical OLTP system into three: fixed,

unbounded, and cooperative. It shows that not all critical sections cause scalability

bottlenecks and the key to scale-up OLTP in a single node is to either remove unbounded

critical sections or downgrade them into fixed or cooperative types. Based on this

insight, the chapter presents physiological partitioning (PLP) to eliminate unscalable

locking and latching, which form the majority of the unbounded critical sections in a

shared-everything OLTP system.

7

Chapter 1. Introduction

• Chapter 4 designs a lightweight yet effective dynamic load balancing mechanism for

PLP after demonstrating with a cost model that PLP provides a very good infrastructure

for dynamic repartitioning. The resulting design enables a shared-everything OLTP

system to run free of most unbounded communication without introducing costly dis-

tributed transactions, and adapt to workload changes and skew with low-cost dynamic

repartitioning.

• In Part II:

• Chapter 5 investigates the evolution of the OLTP benchmarks introduced by TPC [188]

focusing mainly on the latest benchmark, TPC-E [193]. The chapter demonstrates

that TPC-E is significantly more complex in terms of its schema and data accesses

compared to its predecessors and suffers due to logical lock contention. However, at

the micro-architectural level all OLTP benchmarks behave the same: more than half of

the execution cycles go to stalls and on machines that have the ability to execute four

instructions per cycle, OLTP exhibits barely one instruction per cycle.

• Chapter 6 shows that the large instruction footprint of transactions is the dominant

factor causing the low utilization of the existing micro-architectural resources. OLTP

workloads mainly suffer from L1 instruction cache misses coming from very common

clear execution paths within the index, lock, and buffer manager components of a typi-

cal storage manager, mainly during an index probe. The next problematic component

is the long-latency data misses from the last-level cache. On the other hand, the worker

threads of an OLTP system usually execute similar transactions in parallel and each

transaction is formed of a subset of the predefined database operations. As a result,

even though the threads running on different cores do not execute exactly the same

code, they do share a non-negligible amount of instructions.

• In Part III:

• Chapter 7 proposes two programmer-transparent scheduling techniques that aim to

improve instruction locality at L1 caches via exploiting the instruction overlap across

concurrent transactions. By adaptively spreading the execution of a transaction over

multiple cores through thread migration or multiplexing transactions on one core, these

scheduling mechanisms create an ample L1 instruction cache capacity and enable

instruction reuse.

• Chapter 8 presents transaction-aware thread migration to dynamically allocate cores to

each database operation based on their frequencies and instruction footprint. Through

getting software-side hints, this chapter minimizes the functionality that needs to be

added to hardware for the type of scheduling mechanisms presented in this part.

• Finally, Chapter 9 concludes this thesis focusing on the possible next steps in the quest of

better hardware/software integration for data management applications.

8

2 Background

This chapter provides a brief overview of 1

• some of the terminology regarding the database transactions (Section 2.1),

• the memory hierarchy of high-end server hardware and techniques that provide implicit

parallelism within a core (Section 2.2),

• related work aiming to exploit implicit/explicit hardware parallelism in the context of

transaction processing systems (Section 2.3), and

• industry standard online transaction processing benchmarks (Section 2.4 and Section 2.5)

and the storage manager (Section 2.6) used throughout this thesis for the analysis studies

and evaluation of the proposed ideas.

2.1 Transaction Processing

A transaction is a unit of work in a database system that satisfies the properties (abbreviated

as ACID [64]) given below:

• Atomicity: When a transaction completes the execution of its actions, either all or none of

their effects are visible to the other transactions.

• Consistency: The transactions start from a consistent state of the database and complete

their execution through transforming the database to another consistent state.

• Isolation: Transactions should not interfere with each other’s effects to the database. 2

1 This chapter uses material from [64, 78, 96, 137, 186, 188].
2 Some isolation levels would allow a transaction to see the changes done by another incomplete transaction.

However, after all the transactions commit, the changes should appear as if the transactions were run in
isolation.

9

Chapter 2. Background

Buffer Pool Manager Latching

Log
Manager

Metadata
Manager

Free Space
Management

Transaction
Management Lock Manager

Figure 2.1: Main components of a storage manager (taken from [96]).

• Durability: The effects of complete transactions must be persistent in the database.

The maintenance of these properties in the face of many concurrent client requests is a big

challenge for any transaction processing system and complicates the design of a storage

manager. Multiple storage manager components are involved in satisfying each of the ACID

properties and a storage manager component is usually involved in providing several prop-

erties. For example, both isolation and consistency properties rely on atomicity to rollback

the changes of a failed transaction, where atomicity itself depends on logging since upon a

transaction abort the log is used to undo the changes of the aborted transaction. Therefore, as

Chapter 1 mentions, the components of a typical storage manager in transaction processing

systems are very tightly coupled, which leads to various forms of underutilization on modern

multicore hardware.

Figure 2.1 illustrates the main components of a conventional storage manager. A brief expla-

nation for each of the components is given below.

• Transaction Management: The transaction manager does the bookkeeping about all active

transactions (e.g., thread-to-transaction assignments, transaction order, etc.), coordinates

the checkpointing, and orchestrates the recovery upon system crashes.

• Lock Manager: Conventional transaction processing systems maintain a centralized lock

manager in order to dictate isolation among concurrent transactions. It keeps information

about which worker threads (and hence active transactions) are holding or waiting for a

particular record’s/table’s/volume’s lock and in which lock mode (shared, exclusive, etc.).

Each worker thread must consult the lock manager before acquiring the locks for the

records they are going to access. The lock manager grants these requests if no other thread

currently holds the lock or the lock modes of the thread holding the lock and the thread

requesting the lock are compatible. If the lock cannot be granted, the thread is added to

the list of threads waiting this lock.

• Log Manager: The log manager records all the modifications performed by transactions

in the database. For each transaction, the in-memory log buffer keeps the changes it

10

2.2. Micro-architecture of OLTP’s Playground

performs. Before a transaction commits successfully, the log entries of that transaction

must be flushed to disk. The database log allows the recovery of the database when the

system crashes before the changes of some of the committed transactions were flushed to

disk and rollback of the modifications done by the aborted transactions.

• Metadata Manager: The metadata manager keeps information about the objects a database

stores: the files that keep the database records and table indexes. From the perspective of

the storage manager, the metadata information is just another type of data to be stored

that is not frequently updated.

• Buffer Pool: The buffer pool is the virtual memory of a database management system. It

gives the illusion that all the data is in-memory and manages the retrieval/flushing of the

database pages from/to disk.

• Free Space Management: Space manager tracks the free space on each database page and

handles the allocation of new pages if needed.

• Latching: Even though the lock manager ensures consistent updates of database records

at the logical level, it does not protect the contents of database pages against concurrent

updates since the database pages keep multiple records or information about multiple

records. This is the duty of page latching. Latches are at the granularity of a database page

and usually held for short periods, only for the duration of a read/write operation on a

particular page.

2.2 Micro-architecture of OLTP’s Playground

As Chapter 1 also mentions, hardware vendors heavily innovated on implicit parallelism till

2005 through aggressive micro-architectural techniques. The main goal behind all these inno-

vations was to prevent CPUs from stalling due to either memory accesses or core functionality

while processing an instruction. The main sources of implicit parallelism are described below:

• Pipelining: The execution of an instruction is composed of a sequence of steps. For

example, the classic RISC pipeline consists of five stages for an instruction:

• fetching the instruction from the cache,

• decoding the instruction to specify which operation it performs and inputs it needs,

• executing the operation,

• accessing the memory for inputs if needed, and

• writing back the results into registers.

Early processor designs processed instructions one after the other requiring several cycles

per instruction. Instruction pipelining allows overlapping of the above stages, and hence,

partially overlaps the processing of several instructions.

11

Chapter 2. Background

~4 cycles

~12 cycles

~30 cycles

~200 cycles

CoreCore

L1‐I L1‐D

MAIN MEMORY

L2 L2

L3 / LLC

L1‐I L1‐D

access latency in practice

no
penalty

possible
stalls

Figure 2.2: Memory hierarchy of commodity servers.

• Superscalar: A superscalar CPU is able to maintain multiple instruction pipelines, and

therefore, can issue multiple instructions in a cycle.

• Out-of-Order Execution (OoO): Out-of-order execution mainly enhances the execute stage

of the instruction pipeline and allows a processor to execute instructions based on the

availability of input data rather than strictly following the instruction ordering of a program.

• SIMD: The three techniques presented above all focus on instruction-level parallelism.

SIMD instructions, on the other hand, provide data-level parallelism. They apply the

same instruction over multiple data items simultaneously. Hence, they prevent the cost of

processing the same instruction over and over.

All these techniques, however, become ineffective either when an application exhibits high

memory dependencies (a memory address to be accessed depending on the memory access

that comes right before) or excessive memory stalls. Unfortunately, data management ap-

plications suffer from both aspects. For example, during an index probe operation the next

index node to be accessed depends on the index node that is currently accessed and the key

value that is searched. In addition, the instruction and data footprints for data management

applications usually exceed the size of the typical L1 caches and lead to excessive memory

stalls.

Since this thesis targets the problem of memory stalls, next we focus on why they happen.

Figure 2.2 shows the memory hierarchy of a typical server processor today. There are usually

three levels of caches. The first-level caches are split between instructions and data, whereas

the lower levels of the memory hierarchy are shared by instructions and data. The L1 instruc-

tion and data caches as well as the L2 caches are private per core and the cores of a processor

share the L3 or last-level cache (LLC). While going down in this hierarchy, the access latencies

drastically increase at each level. However, in practice, a superscalar OoO core easily hides the

latency of accessing the L1 caches. On the other hand, if a core cannot find a memory address

in the L1 caches, then the lower levels of the memory should be searched. This might stall the

12

2.3. Exploiting Modern Hardware while Running OLTP

core till it gets the instructions or data needed to continue the execution. Such memory stalls

are the dominant factor in the underutilization of a core’s resources and have to be minimized.

2.3 Exploiting Modern Hardware while Running OLTP

As Chapter 1 also mentioned, hardware trends oblige OLTP systems to overcome two major

challenges against hardware utilization:

• exploiting explicit/horizontal parallelism provided by an increasing number of available

hardware contexts on multicore architectures and

• taking advantage of implicit/vertical parallelism supported by the micro-architectural

features within a core.

There is a large body of related work that tackles both of these challenges, which are highlighted

in the following two subsections, respectively. This section aims to give an overview of the

work in this field. In the following parts of the thesis, each chapter compares its contributions

to the corresponding related work presented in this section.

2.3.1 Scaling Up OLTP

The traditional shared-everything design for transaction processing systems is simple to de-

ploy since there is only a single database instance to maintain and transactions are assigned

to worker threads randomly regardless of which data they are going to access. However,

shared-everything systems were not designed with abundant horizontal parallelism in mind.

Even though they can handle several concurrent requests very efficiently while satisfying the

ACID properties on a few single-core processors, their performance suffers on multicore archi-

tectures due to the tightly-coupled and centralized internal components and unpredictable

accesses to the shared data [96, 145].

Proposals that depart from traditional transaction processing in order to scale up on multicores

can be grouped into two broad categories based on whether they apply some sort of data

partitioning or not. The ones that are based on partitioning, in turn, fall into two categories:

physical or logical partitioning. On the other hand, the systems that prefer avoiding any kind

of data partitioning rely on lock-free algorithms and multiversion concurrency control.

Physical Partitioning

Shared-nothing systems [45, 178] deploy multiple instances of a database and physically

partition the data across these instances. One can determine which part of the data belongs

to which instance of the database and how many worker threads each instance should have.

In a way, physically partitioned systems give explicit control to users in terms of managing

13

Chapter 2. Background

data access patterns and contention on the data. For example, systems like VoltDB [199]

(commercial version of H-Store [179]) and Hyper [107] apply the idea of physical partitioning

to the extreme and deploy single-threaded database instances. Such a design eliminates all

unbounded communication within the database engine and has the potential to achieve

perfect scalability as long as the workloads are perfectly partitionable; i.e., all the transactions

are handled by a single database instance and data accesses are balanced across the instances.

However, for workloads that are not amenable to partitioning, physically partitioned systems

suffer from multi-partition/distributed transactions [39, 77, 149] or load imbalance [150].

Dynamic repartitioning to minimize distributed transactions or load balancing is highly costly

due to the amount of data to be moved from one partition to another and reorganization of

the index structures [169].

Logical Partitioning

In contrast with physical partitioning, there are shared-everything systems that apply logical

partitioning of the data in a single database instance to regulate the data access patterns. In

such designs, each logical partition is owned by a single worker thread [145] or a few worker

threads [114, 143]. Through managing the number of worker threads per partition, logically-

partitioned systems can also control contention over the data. By logically-partitioning the

accesses to the database records, this design also partitions the accesses to the lock manager.

Therefore, logical partitioning decentralizes the lock manager and ensures each partition

correctly maintains its own lock manager.

However, the accesses to shared database pages are still unpredictable and would eventually

lead to scalability bottlenecks with increased hardware parallelism. On the other hand, online

repartitioning is very cheap under this design since no data movement is necessary [146]. Part I

enhances logical partitioning and partitions physical data page accesses as well; this eliminates

contention on both database records and pages while still remaining in a shared-everything

setting.

Lock-free Techniques and Multiversion Concurrency Control

The OLTP system designs that choose to scale up without relying on partitioning use lock-free

techniques while maintaining the consistency of their internal data structures, and optimistic

and multiversion concurrency control to ensure isolation and atomicity of concurrent trans-

actions. There are various commercial OLTP systems that follow this approach: Hekaton

[46], MemSQL [127], TokuDB [182], SAP HANA [117], etc. In addition to typical OLTP work-

loads, this design especially benefits workloads that combine short-running transactions that

might modify the database and long-running read-only transactions since it does not block

transactions with pessimistic locking techniques.

14

2.3. Exploiting Modern Hardware while Running OLTP

However, most of the lock-free algorithms proposed by these systems do not eliminate the

possible central communication points or unbounded critical sections (Section 3.2.1), which

all the worker threads in the system have potential to execute. They rather minimize the

time spent in such points through optimistic concurrency control, decentralized record locks,

frequent use of atomic operations, or read-copy-update mechanisms [116, 119, 196]. Even

though these operations perform and scale very well on architectures with a few (one to four)

processor sockets, scaling them up on multisocket multicore hardware with more than four

processors or emerging many-core processors is not straightforward [41, 154, 204]. In addition,

these techniques suffer under update-heavy workloads with hotspots similar to the statically

partitioned designs [135].

2.3.2 Minimizing Memory Stalls

Techniques aiming to minimize memory stalls target instruction and data cache locality

and utilization for a wide variety of applications. This section groups such techniques that

specifically target OLTP-like applications into two based on whether they are hardware or

software approaches.

Hardware-Side Approaches

One of the well-studied techniques for improving instruction and data locality at various

levels of the memory hierarchy is hardware prefetching. Even though the simpler prefetching

techniques that exist on modern hardware (e.g., next-line, stream, stride prefetchers [78]) help

in terms of reducing some of the instruction and data misses, they are not enough to minimize

the memory stalls for memory-intensive applications like OLTP as we (Part II) and many other

workload characterization studies highlight [3, 54, 106, 161, 177].

Sophisticated temporal stream predictors [52, 105, 175] are an especially good fit for OLTP-

like applications where the execution follows a long but predictable path. For example,

whenever one searches a record that maps to a key value in a traditional OLTP system, first

the index lookup routine is invoked. Index lookup, then, starts the B-tree traversal from

index root page to leaves. The traversal routine, in turn, invokes the binary search routine for

each page touched during the tree traversal to find the key value. Even though this is a long

execution path, it is executed over and over in an OLTP system. The goal of temporal streaming

techniques is to exploit such recurring execution paths. However, they trade simplicity for

accuracy; i.e., the more accurate they are the more complex their functionality becomes. As

a result of the complexity of these techniques, hardware vendors still prefer using simpler

prefetching techniques such as next-line prefetching and branch prediction for instructions;

and next-line, stream, and stride prefetchers for data.

In addition to prefetching, recent work proposes computation spreading, which involves

multiple cores in the execution of a task to separate the execution of the system code from

15

Chapter 2. Background

application code in order to improve instruction cache locality [30]. In Part III, we take this

idea further and consider tasks at a finer-granularity to maximize instruction locality.

Software-Side Approaches

There are two significant approaches to reduce memory stalls from the software-side:

• improving code or data layout to increase cache line utilization and

• departing from traditional execution models to change the way instructions and data are

accessed.

In the case of instructions, the most straightforward approach would be to simplify the

code of a system. For example, databases optimized for main-memory usually adopt more

lightweight concurrency control mechanisms and omit the buffer pool component. Therefore,

they execute fewer instructions than traditional disk-based database systems. On the other

hand, for the systems where a simplified codebase is not enough to eliminate a majority of

the instruction related memory stalls, smart static or dynamic compilation techniques can

optimize the code layout [159]. A better code layout leads to smoother instruction streams

and helps programs to exploit the next-line prefetcher in a more effective way. In the database

community, such approaches are used during query compilation to compile a query (or

transaction) with an optimized instruction and data layout for that query [46, 109, 112, 136].

Alternative data page layouts have been widely studied in the data management community.

Even though the initial proposals target minimizing the overhead due to disk accesses for

disk-based systems, the main insights from these work can also be applied today to provide

more cache conscious data layouts and minimize accesses to memory. Row-stores are the

original choice for data layouts, where records of a table are allocated as a whole one after the

other in a database page. Column-stores [24, 37, 180], on the other hand, vertically partition

each table to its columns and store the values that belong to each column from a table together.

There have been proposals for hybrid data layouts [5, 9, 65] that combine these two techniques

as well. While choosing the optimal layout for an application, the data access patterns must

be observed to know which layout would maximize

• the benefits of the simple stream or next-line prefetchers via ensuring mostly sequential

data accesses and

• data cache utilization through maximizing the usage of a cache line brought into the data

cache.

For example, since OLTP workloads tend to access several columns from a few records, a row-

store is the dominant choice for the data layout. On the other hand, for analytical workloads

that go over a huge number of records by just checking a few columns, column-stores or

16

2.4. Evolution of TPC’s OLTP benchmarks

hybrids are preferred. Where the alternative data layouts target the allocation of the database

records, proposals for cache conscious index structures have the same goals given above for

index pages [32, 125, 163] through changing the size of the index pages or the way index pages

are allocated in memory.

Orthogonal to improving instruction and data layouts, one can also change the way a program

accesses instructions and data to maximize cache locality. Vectorized execution [24] is one

such technique. Unlike the Volcano-style iterator model [60] (which processes tuples/columns

one at a time), vectorized execution processes a vector of items at each database operator to

enable instruction and data reuse. Staged databases [75] or STEPS [72] are other alternative

execution models for analytical and transaction processing applications, respectively, which

also enable instruction and data reuse at the first-level caches. In Part III, we also propose

an alternative execution/scheduling model for OLTP in order to maximize instruction cache

locality through instruction reuse.

2.4 Evolution of TPC’s OLTP benchmarks

Transaction processing benchmarks are the gold standard for DBMS performance evaluation

and they are frequently used for marketing purposes. The Transaction Processing Performance

Council (TPC) [188] is a non-profit IT organization founded to define database benchmarks

and disseminate objective, verifiable performance data to the industry. This section describes

the four important database transaction processing benchmarks that have been used under

the trademark of TPC and highlights how they have evolved over the years with each new

benchmark.

2.4.1 The obsolete TPC-A and TPC-B

The first widely accepted database benchmark was formalized in 1985 [12]. That specifica-

tion included three workloads, of which the DebitCredit stressed the database engine. The

DebitCredit benchmark was an instant success. Soon database and hardware vendors started

reporting extraordinary results, often achieved by removing key constraints from the speci-

fication. Therefore, in 1988 a consortium of analysts and hardware, operating system, and

database vendors formed the Transaction Processing Performance Council in order to en-

force some order in database benchmarking. Its first benchmark specification, TPC-A [189],

essentially formalized the DebitCredit benchmark.

TPC-A is straightforward. It models deposits to and withdrawals from random bank accounts,

with the associated double-entry accounting on a database that contains x Branches, 10x

Tellers, and 100,000x Accounts. It also captures the entire system, including terminals

and network. Transactions usually originate from their home Branch, but can go anywhere.

Conflicts are possible requiring the system to recover occasionally from failed transactions.

17

Chapter 2. Background

TPC‐B TPC‐C

Figure 2.3: Schemas of the TPC-B and TPC-C benchmarks (taken from [188]).

An important aspect of this benchmark is its scaling rule: for a result to be valid, the database

size must be proportional to the reported throughput.

Even though it is simple, the TPC-A benchmark highlighted the importance of quantifying

the performance and correctness of different systems. Early benchmarking showed vast

performance differences among different vendors (400x), as well as exposing serious bugs,

which had lurked undiscovered for many years in mature products.

TPC’s second benchmark, TPC-B [190], is very similar to TPC-A, but eliminates the network

and terminal handling to create a database engine stress test. Like TPC-A, the TPC-B database

contains four tables: Branch, Teller, Account, and History. These tables are accessed

in a double-entry accounting style as customers make deposits on and withdrawals from

various tellers. The benchmark consists of a single transaction, AccountUpdate, which simply

updates one record in the Branch, Teller, and Account tables while appending a record to

the History table. Therefore, it is a very update-heavy transaction that stresses the transaction

processing engine; especially the logging and concurrency control modules.

2.4.2 The ubiquitous TPC-C

For its third benchmark specification, TPC-C [191], TPC moves away from banking to com-

merce. TPC-C models an online transaction processing database for a wholesale supplier. The

transactions follow customer orders from initial creation to final delivery and payment.

A TPC-C database consists of nine tables in total where

• one of them has fixed size (fixed),

• four of them scale proportionally with the number of Warehouses (scaling), and

• four of them might change size, mostly grow, due to insert and delete operations (growing).

18

2.4. Evolution of TPC’s OLTP benchmarks

Thereby, compared to TPC-B, TPC-C offers a more complex database schema; where the

TPC-B schema can be represented as a tree with only four nodes, the TPC-C schema is a

directed acyclic graph with nine nodes (see Figure 2.3).

Like the database schema, the TPC-C transactions are more complex than the AccountUpdate
transaction of TPC-B. The benchmark combines the five transactions listed below in a transac-

tion mix at frequencies given in parenthesis:

• NewOrder (45%) inserts a new sales order to the database. It is a medium-weight transac-

tion with a 1% failure rate due to invalid inputs.

• Payment (43%) is a short transaction, very similar to the AccountUpdate transaction of

TPC-B, which makes a payment on an existing order.

• OrderStatus (4%) is a read-only transaction that computes the shipping status and the

line items of an order.

• Delivery (4%) is the largest and the most contentious update transaction. It selects the

oldest undelivered orders for each warehouse and marks them as delivered.

• StockLevel (4%) is also a read-only transaction. It joins on average 200 order line items

with their corresponding stock entries in order to produce a report.

The specification also lays out strict requirements about response time, consistency, and

recovery in the system, and brings back the testing of an end-to-end system that includes

network and terminal handling.

TPC-C stresses the entire stack (database system, operating system, and hardware) in several

ways. First, it mixes short and long, read-only and update-intensive transactions, exercising a

wider variety of features and situations than the TPC-B benchmark. In addition, the bench-

mark has major hotspots, partly due to the way transactions access the Warehouse table and

partly due to the design of the Delivery transaction. The resulting contention and deadlocks

stress the system’s concurrency control mechanisms. Finally, the database grows throughout

the benchmark run; not just because of the append-only History table as in TPC-B, but also

because of the insert and delete operations on different tables, stressing code paths that the

TPC-B benchmark did not reach.

TPC-C has been the most popular OLTP benchmark for over twenty years. Major database

vendors have published results on TPC’s website, and on several occasions they have used

TPC-C for marketing purposes [86, 142].

19

Chapter 2. Background

2.4.3 The unexplored TPC-E

To represent real-life OLTP workloads more realistically, TPC presented TPC-E [193] as an

alternative to the dominant TPC-C. This subsection gives an overview of TPC-E while pointing

out its differences mainly from TPC-C.

Model

TPC-E models a brokerage house. The database tables keep information about customers,

brokers, and a market. The transactions simulate a workload where either the customers

initiate requests to the brokerage house (customer initiated transactions) or the market sends

ticker feeds or trade results to the brokerage house (market-triggered transactions). The

brokerage house responds to the customers, checks the orders to decide whether to submit

them or not, submits the related brokerage requests (brokerage initiated transactions), and

analyzes or updates the database. One could say that the TPC-E benchmark represents a more

complicated business model compared to the TPC-C benchmark.

Database

TPC-E has more tables than TPC-C; thirty-three tables instead of nine:

• nine of TPC-E’s tables are of fixed size,

• sixteen are scaling based on the number of Customers, and

• eight are growing.

However, the growth rate of the growing tables varies and, in general, it is greater than the

growth rates of the growing tables in TPC-C. In addition, the TPC-E tables are populated with

pseudo-real data and exhibit data skew. By contrast, TPC-C tables have randomly generated

data that face a low degree of skew.

The scaling factor determines the number of Branches in TPC-B and the number of Warehouses

in TPC-C. TPC-E has a scaling factor that controls the number of Customers in the database.

However, unlike TPC-B and TPC-C, where a single scaling factor (via the number of Branches

and Warehouses) is the only parameter that determines the initial size of the database, TPC-E

has two additional parameters that affect the database size right after database population.

In particular, the parameters called working days and scaling factor control the cardinality of

the Trade table and in turn all the other growing tables in TPC-E. TPC-E also has a growing

table, Trade_Request, which right after database population starts as an empty table and

then grows. Neither TPC-B nor TPC-C has empty tables after the initial database population.

20

2.4. Evolution of TPC’s OLTP benchmarks

Table 2.1: TPC-E transactions.

Transaction Weight Access Category Frames Executed % in Mix

BrokerVolume Mid to Heavy RO BI 1 (out of 1) 4.9
CustomerPosition Mid to Heavy RO CI 2/3 (out of 3) 13

MarketFeed Medium RW MT 1 (out of 1) 1
MarketWatch Medium RO CI 1 (out of 1) 18
SecurityDetail Medium RO CI 1 (out of 1) 14
TradeLookup Medium RO BI/CI 1 (out of 4) 8
TradeOrder Heavy RW CI 2/5/6 (out of 6) 10.1
TradeResult Heavy RW MT 5/6 (out of 6) 10
TradeStatus Light RO CI 1 (out of 1) 19

TradeUpdate Medium RW BI/CI 1 (out of 3) 2

BI: Brokerage Initiated, CI: Customer Initiated, MT: Market Triggered,
RO: Read-Only, RW: Read-Write

Transactions

TPC-E contains twelve transactions in total, which are shown in Table 2.1. Only ten of the

transactions belong to the regular transaction mix. Two of them, DataMaintenance and

TradeCleanup, get executed separately. DataMaintenance is executed periodically, every

minute, alongside the transaction mix, whereas TradeCleanup needs to be executed before

each run if one wants to clean up the submitted or pending trades from a previous run in

order to restore the initial database state. In TPC-C, all the five transactions are included in

the transaction mix.

The TPC-E transactions consist of frames, which are parts of a long transaction with a distinc-

tive task. For some transactions only a subset of their frames are executed depending on the

input values or whether they are initiated by a customer or brokerage; like in TradeLookup and

TradeUpdate. TPC-C does not contain as complicated and long transactions. All transactions

in TPC-C have only one frame.

Another significant distinction of TPC-E from its predecessors is that a majority of the transac-

tions in the mix are Read-Only (RO). That is, in TPC-E around 75% of the transactions executed

are read-only, whereas TPC-C has 92% Read-Write (RW) transactions in the mix.

TPC-E also enforces dependencies among some of its transactions. More specifically, the

market-triggered transactions, TradeResult and MarketFeed, require the TradeOrder trans-

actions to submit input for them. Therefore, they cannot be executed independently from the

transaction mix. In TPC-C none of the transactions have such dependencies.

The TPC-E specification also introduces skew in transaction inputs, harness control measures

within the transactions, and checks for referential integrity constraints, which do not exist in

TPC-C. Moreover, for high performance, TPC-E needs to perform lookups and scans through

21

Chapter 2. Background

non-primary indexes in almost all its transactions (ten out of twelve), whereas TPC-C uses

secondary indexes in only two of its transactions.

Overall, TPC-E is a much more sophisticated OLTP benchmark compared to its predecessors

and therefore, it offers a more interesting and mature environment for testing OLTP engines.

On the other hand, it is also harder to adopt for people from both industry and academia,

which have been optimizing their systems mainly based on TPC-C for the last twenty years.

Table 2.2: Evolution of TPC’s OLTP benchmarks.

TPC-A TPC-B TPC-C TPC-E

First release Nov 1989 Aug 1990 Aug 1992 Feb 2007

Last update Jun 1994 Jun 1994 Feb 2010 Apr 2014

Business model Banking Banking Wholesale supplier Brokerage house

Tables

Fixed 0 0 1 9
Scaling 3 3 4 16

Growing 1 1 4 8
Total 4 4 9 33

Transactions
RW 1 1 3 6
RO 0 0 2 6

Transaction RW 100% 100% 92% 23.1%
Mix % RO 0% 0% 8% 76.9%

Transactions using
None None 2 10

secondary indexes

Data population Random Random Random Pseudo-real

2.4.4 The evolution summary

Table 2.2 summarizes the high-level comparison of the four OLTP benchmarks of TPC, which

we detailed above. What we can conclude from this section and Table 2.2 is that with each

benchmark TPC standardized, we see a significant complexity increase, which is driven by the

facts listed below:

• A more sophisticated business model.

• A larger variety of transaction types.

• Longer-running and less deterministic transactions, causing longer and less predictable

instruction streams.

• Increase in the number of read-only transactions that need to be run together with update-

heavy ones.

• Increase in the number of scan operations and dependency on the secondary indexes,

which makes physical database partitioning less effective.

22

2.5. The TATP benchmark

• More fundamental stress within the storage manager and exploration of an increased

number of code-paths.

The above items are going to be crucial while explaining the behavior of these workloads

within a storage manager and micro-architecturally in Part II.

2.5 The TATP benchmark

In addition to the benchmarks TPC provides, the TATP benchmark [137] is another widely-

used OLTP benchmark in the database community. The benchmark was originally designed

by Nokia Networks and called TM1. The goal was to create a benchmark to test Nokia’s own

infrastructure. Therefore, the TATP benchmark simulates the actions of a telecommunication

business; e.g., call forwarding, retrieving/updating a subscriber’s information, etc.

The database has 4 tables. All of them are scaling tables; their cardinality is proportional

to the number of Subscribers. For each Subscriber, there are ∼2.5 Access_Info, ∼2.5

Specifical_Facility, and ∼3.75 Call_Forwarding records. Therefore, it is very straight-

forward to partition each table based on the Subscriber ids. On the other hand, only the

Call_Forwarding table observes insert/delete operations during the execution of the work-

load mix. Since the inserts/deletes to this table are at the same rate, however, the table’s (and

hence the database’s) size does not change visibly after the database population.

The TATP transaction mix consists of three read-only and four read-write transactions, which

are 80% and 20% of the mix, respectively. These transactions are very short compared to the

ones in TPC’s OLTP benchmarks; at most four database records are accessed in one transaction.

In addition, except for the two transactions that only touch the Subscriber table, the TATP

transactions exhibit very high abort rates leading to an abort rate of 25% in the workload mix.

The details of the TATP transactions and their frequencies in the mix are as follows:

• GetSubscriberData (35%) is one of the read-only transactions in the mix and never

fails. It just probes for one Subscriber in the database and retrieves its information (e.g.,

number, location, etc.).

• GetNewDestination (10%) is another read-only transaction in the mix. Its goal is to fetch

the information regarding a Subscriber’s call forwarding destination. However, it aborts

∼76% of the time due to a Subscriber not having an active call forwarding request.

• GetAccessData (35%) is the last read-only transaction of TATP and returns the access

validation information of a Subscriber. It can abort with a rate of 37.5%.

• UpdateSubscriberData (2%) just updates a Subscriber’s profile information. It also has

an abort rate of 37.5%.

• UpdateLocation (14%) updates a Subscriber’s location information without any aborts.

23

Chapter 2. Background

• InsertCallForwarding (2%) adds call forwarding information for a Subscriber and has

a ∼30% failure rate.

• DeleteCallForwarding (2%) removes a call forwarding request from a Subscriber and

also has a ∼30% failure rate.

Due to the short nature, low application logic, and high failure rate of its transactions, the

TATP workload mix spends majority of its execution time stressing the internals of a storage

manager.

Currently, the IBM Corporation maintains the TATP benchmark.

2.6 Shore-MT and Shore-Kits: Benchmarks on Top of Shore-MT

This thesis uses the Shore-MT storage manager to prototype the proposed ideas and perform

workload characterization and hardware simulation studies. Shore-MT [7, 172] is an enhanced

version of the SHORE storage manager [28], whose micro-architectural behavior is very close

to that of commercial disk-based database management systems [4, 6]. Shore-MT adds a

multithreaded storage manager kernel to SHORE and is particularly developed to adapt

SHORE to the multicore era, mainly by focusing on eliminating scalability bottlenecks when

running on multicore hardware [96]. Today, Shore-MT is one the most scalable open-source

shared-everything storage managers within a single database node [96, 102]. It has been

used in various research projects as a test-bed both by the team who develops and maintains

it [99, 145, 154, 155, 186] and by other well-known teams in the database and computer

architecture communities [62, 102, 144, 152, 168].

In order to study the behavior and challenges the standardized OLTP benchmarks pose on

modern storage managers, we implement them on top of Shore-MT and distribute them as an

open-source suite of database benchmarks, called Shore-Kits. Since Shore-MT does not have

an SQL front end, a query parser, and an optimizer, the benchmarks are implemented in C++

using direct calls to Shore-MT’s storage manager API, which is linked as a static library to the

executable. With some programming effort and code refactoring, one can port Shore-Kits to

other storage managers by changing the API calls to match the target storage manager’s API.

Both Shore-MT and Shore-Kits are available at [171]. The latest online version of Shore-MT

incorporates the techniques proposed in [95, 97, 145, 147], whereas Shore-Kits provides the

TPC-B [190], TPC-C [191], TPC-E [193], and TATP [137] benchmarks for transaction processing

and TPC-H [195] and SSB [139] benchmarks for analytical applications.

24

Part IScalable and Dynamically Balanced
Shared-Everything OLTP with

Physiological Partitioning

25

3 Latch-free Shared-everything OLTP

As the previous chapters discuss, scaling the performance of shared-everything transaction

processing systems to highly-parallel multicore hardware is a challenge for database system

designers. In this chapter, we initially analyze the scalability of a conventional shared-everything

transaction processing system through an analysis of its critical sections to determine the

unscalable/unbounded communication points. This analysis identifies page latching as a

significant source of unbounded communication in conventional transaction processing. Then,

with the goal of minimizing the unbounded communication in mind, we propose physiological

partitioning (PLP). PLP applies logical-only partitioning, maintaining the desired properties of

shared-everything designs, and introduces a multi-rooted B+Tree (MRBTree) index structure.

Logical partitioning and MRBTrees together enable the partitioning of the accesses to both

database records and pages, which minimizes the unbounded communication due to locking

and latching. Profiling a PLP prototype running on different multicore machines shows that

PLP acquires 90% and 75% fewer critical sections than an optimized conventional design

and a design based on logical-only partitioning, respectively. As a result, PLP also improves

performance up to 50% over the existing designs. 1

3.1 Introduction

Due to concerns over power draw and heat dissipation, processor vendors can no longer rely

on rising clock frequencies or increasingly aggressive micro-architectural techniques to boost

performance. Instead, they focus on parallelism by placing many independent processing

cores in each chip. The resulting multicore designs require software to expose enough execu-

tion parallelism in order to exploit the abundant and rapidly growing hardware parallelism.

However, this is a challenging task. Conventional systems tend to have application threads

that exhibit high resource sharing with each other since they are not designed with increasing

hardware parallelism in mind. The coordination of accesses to these shared resources prevents

systems from exploiting the multicores.

1 This chapter uses material from [147, 185].

27

Chapter 3. Latch-free Shared-everything OLTP

Online transaction processing (OLTP) is a particularly complex data management application

that needs to perform efficiently on modern hardware. Previous studies show that conven-

tional shared-everything OLTP systems face major scalability problems while running on

highly parallel hardware [96]. One significant source of scalability problems is the conven-

tional transaction-oriented work assignment policy, which assigns each transaction as a whole

to a single worker thread (mostly randomly) [145]. The transaction, along with the physical

arrangement of the records within the data pages, determines which resources (e.g., records

and pages) each thread accesses.

The random nature of transaction processing requests leads to unpredictable data accesses

[145, 174] that complicate resource sharing. Such unpredictability favors pessimistic policies

while protecting the consistency of the data and isolation among transactions, which clutter

the execution path of a transaction with many lock and latch acquisitions. These critical

sections often lead to contention that limits scalability [96] and in the best case imposes

a significant penalty to single-thread performance [76]. In addition, the performance of

shared-everything systems is vulnerable to the false sharing of database pages, where hot but

unrelated records happen to reside on the same page. Careful tuning is often needed to detect

and resolve such issues; e.g., padding problematic records to spread them out.

Following a different approach, shared-nothing systems deploy many independent database

instances that collectively serve the workload [45, 178]. In shared-nothing designs, the con-

tention for the shared data resources can be explicitly tuned; i.e. the database administrator

(DBA) can determine the number of processors assigned to each database instance. Such

designs potentially lead to superior performance as long as inter-instance communication is

not excessive. Systems like H-Store [103, 179] (or it is commercial version VoltDB [199]) and

Hyper [107] take this approach to the extreme, with single-threaded database instances that

remove critical sections altogether when there is no inter-instance communication. However,

shared-nothing systems physically partition the data and deliver poor performance when the

workload triggers distributed transactions [39, 77, 149] or when skew causes load imbalance

[39, 150, 153]. Repartitioning to minimize distributed transactions or balance load requires

the system to physically move and reorganize all affected data. These weaknesses become

especially problematic as partitions become smaller and more numerous in response to the

increasing multicore parallelism.

3.1.1 Multi-rooted B+Trees

To alleviate the difficulties imposed by page latching and repartitioning, we propose a new

physical access method, a type of multi-rooted B+Tree called MRBTree. The root of each

subtree in this structure corresponds to a logical partition of the data, and the mapping of the

key ranges to subtree roots forms the durable part of the index’s metadata. Partition sizes are

non-uniform, making the tree robust against skewed access patterns, and repartitioning is

cheap because it involves very little data movement.

28

3.1. Introduction

When deployed in a conventional shared-everything system, the MRBTree eliminates latch

contention at the index root; i.e., fewer threads access the same index root concurrently.

Furthermore, the MRBTree can also benefit systems that use shared-nothing parallelism in a

shared-memory environment (e.g., H-Store [179]).

3.1.2 Physiological Partitioning

Recent work proposes logical-only partitioning [145] to address problems with conventional

execution while avoiding the weaknesses of shared-nothing approaches. Logical-only parti-

tioning assigns each partition to one worker thread to manage the data locally without the

overhead of centralized locking. However, logical partitioning alone neither prevents the

conflicts due to false sharing of database pages nor addresses the overhead and complexity of

the page latching protocols.

Ideally, we would like to have a system with the best properties of both shared-everything and

shared-nothing designs: a centralized data store that sidesteps the challenges of moving data

during (re)partitioning and a partitioning scheme that eliminates contention and the need for

page latches.

This chapter presents physiological partitioning (PLP), a transaction processing design that log-

ically partitions the physical data accesses to alleviate the difficulties imposed by page latching.

While achieving its goal, PLP uses the MRBTree indexes to enhance logical partitioning and

enable partitioned physical data accesses in a shared-everything infrastructure. A partition

manager assigns threads to subtrees of the MRBTrees and ensures that requests distributed

to each thread reference only the corresponding subtree. As a result, threads can bypass the

partition mapping and their accesses to the subtrees are entirely latch-free. In addition, PLP

can easily extend the partitioning down to the heap pages where non-clustered records are

stored, eliminating another class of page latching (similar to shared-nothing systems).

3.1.3 Contributions and Organization

The structure and contributions of the remaining of this chapter is as follows:

• Section 3.2 categorizes the communication patterns in traditional transaction processing.

This categorization highlights the unbounded critical sections that create latent scalability

bottlenecks, which might surface with any new generation of multicore hardware since

their effect is proportional to the available hardware parallelism. We also identify page

latching as one such bottleneck in OLTP.

• Section 3.3 shows that deploying a design based on physiological partitioning can eliminate

the unbounded critical sections due to both locking and page latching during transaction

execution within a shared-everything OLTP system.

29

Chapter 3. Latch-free Shared-everything OLTP

• Section 3.4 evaluates a prototype implementation of PLP. PLP acquires 90% and 75% fewer

contentious critical sections per transaction, respectively, than an optimized conventional

design and logical partitioning. As a result, PLP improves scalability and yields up to ∼50%

higher performance on multicores.

Finally, while PLP advances the state-of-the-art design options for OLTP systems as discussed

in Section 3.5, it has some limitations as well, which we detail in Section 3.6. Nevertheless,

we conclude by promoting PLP as a very promising OLTP system design in the light of the

upcoming hardware trends in Section 3.7.

3.2 Communication Patterns

Traditional transaction processing systems excel at providing high concurrency, or the ability

to interleave multiple concurrent requests or transactions over limited hardware resources.

However, as core counts increase exponentially, performance increasingly depends on execu-

tion parallelism, i.e., the ability for multiple requests to make forward progress simultaneously

in different execution contexts. Even the smallest of serializations on the software side there-

fore impact scalability and performance [81]. Unfortunately, recent studies show that high

concurrency in transaction processing systems does not necessarily translate to sufficient exe-

cution parallelism [96, 97] due to the high degree of irregular and fine-grained communication

they exhibit.

As Section 2.3.1 mentions, proposals to tackle overhead and scalability bottlenecks fall into

two general categories:

• reducing the degree of communication and contention within shared-everything systems,

relying on efficient communication via shared caches to keep synchronization overhead

low; and

• taking a shared-nothing approach [178], relying on the low-latency of multicore hard-

ware to keep overhead manageable in spite of the challenges that accompany distributed

transactions and load balancing.

In this section we first categorize the types of communication that can occur in an OLTP

system, and from this point of view we analyze the execution of a modern shared-everything

system. Then, we revisit the debate between the shared-everything and shared-nothing

approaches.

3.2.1 Types of Communication

OLTP systems employ several types of communication and synchronization. Database locking

operates at the logical (application) level to enforce isolation and atomicity between transac-

30

3.2. Communication Patterns

fixed
(e.g., transaction management)

unbounded
(e.g., locking, latching)

cooperative
(e.g., logging)

Figure 3.1: Categorization of the critical sections of OLTP based on the type of contention they
create as the parallelism increases.

tions. Page latching operates at the physical (database page) level to enforce the consistency

of the physical data stored on disk in the face of concurrent updates from multiple trans-

actions. Finally, at the lowest levels, critical sections protect various code paths that must

execute serially to protect the consistency of the system’s internal state. Critical sections are

traditionally protected by mutex locks, atomic instructions, etc. We note that locks and latches,

which form a crucial part of the systems’ internal state, are themselves protected by critical

sections. Therefore, analyzing the behavior of critical sections captures nearly all forms of

communication in the DBMS.

Critical sections, in turn, fall into three categories depending on the nature of the contention

they tend to trigger in the system. Figure 3.1 illustrates these categories. For example, pairs

of threads that form producer-consumer pairs protect their communication with a critical

section but cannot generate significant contention. We refer to these as fixed critical sections

(leftmost part of Figure 3.1) because contention is independent of the underlying hardware

and depends only on the (fixed) number of threads that communicate. At the other extreme,

unbounded critical sections (middle part of Figure 3.1) have the highly undesirable tendency to

affect most threads in the system and lead to unbounded contention. As hardware parallelism

increases the degree of contention also increases and inevitably grows into a bottleneck.

Making these critical sections shorter or less frequent provides a little slack but does not

fundamentally improve scalability. Finally, Moir et al. [130] introduce the notion of cooperative

critical sections (rightmost part of Figure 3.1), those having the property that multiple threads

can aggregate their operations. Cooperative critical sections are highly resistant to contention

because threads take advantage of queuing delays to combine their requests and drop out of

the queue. The critical section is thus self-regulating: adding more threads to the system gives

more opportunity for threads to combine work rather than competing directly for the critical

section.

31

Chapter 3. Latch-free Shared-everything OLTP

0

20

40

60

80

Conventional SLI Logical

C
ri

ti
ca

l
S

e
ct

io
n

s

p
e

r
T

ra
n

sa
ct

io
n

Fixed

Composable

Other unscalable

Latching

Locking

Cooperative

unbounded

Figure 3.2: Breakdown of the critical sections for conventional, optimized conventional (SLI),
and logically-partitioned shared-everything OLTP designs when running the UpdateLocation
transaction of TATP.

3.2.2 Communication Patterns in OLTP

As the previous section hints, the real key to scalability lies in converting all unbounded com-

munication to either the fixed or cooperative type, thus removing the potential for bottlenecks

to arise. The three bars of Figure 3.2 compare the number and types of critical sections ex-

ecuted by a conventional OLTP system (labeled as Conventional) and two others designed

to reduce contention due to locking: speculative lock inheritance [95] and data-oriented

execution with logical-partitioning [145] (labeled as SLI and Logical, respectively). Each bar

shows the average number of critical sections entered as the system runs 10000 instances

of the UpdateLocation transaction of the TATP benchmark [137]. The critical sections are

categorized based on the classification in Figure 3.1 by looking at which storage manager

component triggers them (details about the storage manager are in Section 3.4.1).

Locking and latching form a significant fraction of the total communication for the baseline

system. SLI exploits the observation that almost all transactions request high-level locks (e.g.,

table-level locks) in compatible modes and allows the worker threads to inherit such locks

from one transaction to another without releasing them. Therefore, SLI reduces trips/requests

to the lock manager for the common case and achieves a performance boost by sidestepping

the most problematic critical sections associated with the lock manager. However, it fails to

address the remaining (still-unbounded) communication in that category. Logical partitioning,

in contrast, eliminates nearly all types of locking, replacing both contention and overhead of

centralized communication with efficient, fixed communication via message passing. With

locking removed, latching remains by far the largest source of critical sections. There is

no predefined limit to the number of threads that might attempt to access a given page

simultaneously, so page latching represents an unbounded form of communication, which

should be eliminated or converted to a scalable type. The remaining categories represent

either fixed communication (e.g., transaction management), cooperative operations (e.g.,

logging [97]), or a minor fraction of the total unbounded component (e.g., buffer pool).

32

3.2. Communication Patterns

0%

20%

40%

60%

80%

100%

TATP TPC-B TPC-C

B
re

a
k

d
o

w
n

 o
f

La
tc

h
e

s

INDEX

HEAP

CATALOG / SPACE

Figure 3.3: Breakdown of the page latches based on the page types they latch using TATP,
TPC-B, and TPC-C benchmarks.

Examining page latching more closely, Figure 3.3 decomposes the page latches acquired by

three popular OLTP benchmarks (TATP [137], TPC-B [190], and TPC-C [191]) into the different

types of database pages: pages that keep the index on database records (index), pages that

keep the database records (heap), pages that keep the metadata information (catalog). The

figure demonstrates that the majority of the page latches (60%-80%) reside in index structures

whereas the heap page latches are the next non-negligible component, accounting for nearly

all the remaining page latches.

3.2.3 Physical vs. Logical Partitioning

With the preceding characterization of communication patterns in mind, we now return to the

question of logical partitioning (shared-everything) vs. physical partitioning (shared-nothing).

As its name suggests, logical partitioning eliminates unbounded communication at the logical

level, namely database locking. However, it has little impact on the remaining communication,

which arises in the physical layers and cannot be managed cleanly from the application level.

Even when requests do not communicate at the application level, threads must acquire page

latches and potentially perform other unbounded communication.

Shared-nothing systems [45, 178], on the other hand, are an appealing design, giving the

designer explicit control over the number of threads per instance. Therefore, the contention

on each component of the system can be controlled or even eliminated. However, such designs

give up too much by eliminating all communication within the engine. Even the cooperative

and fixed types of critical sections, which do not threaten scalability, become problematic.

For example, logging is not amenable to distribution [98], and physically-partitioned systems

either use a shared log [123] or eliminate it completely [179].

In addition, one of the biggest challenges for shared-nothing systems arises due to distributed

transactions when requests access data from multiple physically distributed database in-

stances [153]. The scalable execution of distributed transactions has been an active field of

33

Chapter 3. Latch-free Shared-everything OLTP

Conventional Shared-everything Shared-nothing

PLP-Regular PLP-Partition PLP-Leaf

K1
K2
K3

K1
K2
K3

K1
K2
K3

Figure 3.4: The conventional shared-everything and shared-nothing designs and the variations
of physiological partitioning.

research for the past three decades, with researchers from both academia and industry persua-

sively arguing that they are fundamentally not scalable [27, 77]. Furthermore, the performance

of shared-nothing systems is very sensitive to imbalances in load arising from data or access

skew across different physical instances [39, 150] while non-partition aligned operations (such

as non-clustered secondary indexes) may pose significant barriers to physical partitioning.

3.3 Physiological Partitioning

We have seen how both logically- and physically-partitioned designs offer desirable properties,

but also suffer from weaknesses that threaten their scalability. In this work we therefore

propose physiological partitioning (or PLP), a hybrid of the two approaches that combines

the best properties of both. Like a physically-partitioned system a majority of physical data

accesses occurs in a single-threaded environment, which obviate the need for page latching;

like the logically-partitioned system, locking is distributed without resorting to distributed

transactions and load balancing requires almost no data movement.

3.3.1 Design Overview

Each transaction in a typical OLTP workload accesses a very small subset of records via

indexes (sequential scans are prohibitively expensive). PLP therefore centers around the

indexing structures of the database. Figure 3.4 gives a high-level overview of a physiologically-

partitioned system. We adapt the traditional B+Tree [18] (top left of Figure 3.4) for PLP by

splitting it into multiple subtrees, each covering a contiguous subset of the key space (bottom

part of Figure 3.4). A partitioning table becomes the new root and maintains the partitioning

as well as pointers to the corresponding subtrees. We call the resulting structure a multi-rooted

B+Tree (MRBTree). The MRBTree partitions the data but unlike a horizontally-partitioned

workload (top right of Figure 3.4), all subtrees belong to the same database file and can

34

3.3. Physiological Partitioning

Update
(WHAREHOUSE)

Update
(DISTRICT)

Update
(CUSTOMER)

Insert
(HISTORY)

Figure 3.5: Transaction flow graph of TPC-C’s Payment under PLP. Each node represents an
action executed by the transaction and the synchronization points (dark circles) coordinate
these actions based on the data dependencies among them.

exchange pages easily; the partitioning, though durable, is dynamic and malleable rather than

static.

With the MRBTree in place, the system assigns each subtree to a single thread, guaranteeing

exclusive access for latch-free execution. A partition manager layer controls all partition

tables and makes assignments to threads. The threads in PLP do not reference partition tables

during normal processing, which might otherwise become a bottleneck. Instead, the partition

manager ensures that all work given to a thread involves only the data it owns.

The partition manager breaks transactions into directed graphs, passing each node to the

appropriate thread and assembling the results into complete transactions. Figure 3.5 illustrates

the transaction flow graph of TPC-C’s Payment transaction under PLP. Each node represents

an action executed by the transaction. For example, the node labeled Update(WAREHOUSE)

indicates the action of updating a record in TPC-C’s Warehouse table after performing an index

lookup for that record. Each action reports to a synchronization point once it is completed.

The synchronization points maintain the data dependencies across different actions. The

final synchronization point informs all the participating worker threads (or partitions) after

committing a transaction so that these threads can release the partition-local locks they

acquired for each database record they accessed as part of the committed transaction. These

worker threads, however, can continue working on other non-conflicting transactions once

they are finished with the action they are responsible from in the current transaction. They

do not have to wait for the current transaction to commit to perform other work since the

partition-local lock managers ensure isolation among transactions [145].

PLP assigns different set of worker threads to each table. Therefore, if two actions are data

independent, they can run in parallel (e.g., the top three nodes of Figure 3.5). Since actions

on different tables are handled by different set of worker threads, whenever a transaction

35

Chapter 3. Latch-free Shared-everything OLTP

touches more than one table it becomes a multisite transaction under PLP. However, multisite

transactions are not expensive as in a shared-nothing system since the state information for

the participating sites is much less in a shared-everything environment; the synchronization

points keep only pointers for the participating actions and the data that needs to be passed

from one action to another.

All indexes in the system (primary, secondary, clustered, non-clustered) can be implemented

as MRBTrees; data are stored directly in clustered indexes, or in tightly integrated heap file

pages referenced by record ID. When the system can infer partitions from secondary (non-

clustered) index columns, the partition’s thread manages them directly (e.g., when the columns

used for partitioning form a prefix of the secondary index columns). The remaining (non-

partition aligned) secondary indexes are accessed as in the conventional system. However, the

leaf pages of the secondary index also keep the columns used for partitioning for each data

entry. Therefore, the result of each secondary index probe can be passed to the thread that

owns the partition of the probed data for further processing.

3.3.2 Multi-rooted B+Tree

The root of an MRBTree is a partition table that identifies the disjoint subsets of the key range

assigned to each subtree as well as a pointer to the root of each tree. Because the routing

information is cached in memory as a ranges map by the partition manager, its on-disk layout

favors simplicity rather than optimal access performance. We therefore employ a standard

slotted page format to store key-root pairs. If the partitioning information cannot fit on a

single page (for example, if the number of partitions is high or the keys are very long) the

routing page is extended as a linked list of routing pages. In our experiments we have never

encountered the need to extend the routing page as several dozen mappings fit easily in 8KB,

even assuming rather large keys.

Record insertion (deletion) takes place as in a regular B+Tree. When the key to insert (delete)

is given, the ranges map routes it to the subtree that corresponds to the key range the key

belongs to and the insert (delete) operation is performed as in a regular B+Tree in that subtree.

The other subtrees, ranges map, and the routing page are not affected by the insert (delete)

operation at all.

When deployed in a conventional shared-everything system, the MRBTree eliminates latch

contention at the index root; fewer threads attempt to grab the latch for the same index root

at a time. Partitioning also reduces the expected tree level by at least one, which reduces

the index probe time. Moreover, the MRBTree can also potentially benefit systems that use

shared-nothing parallelism in a shared-memory environment (e.g., H-Store [179]).

36

3.3. Physiological Partitioning

3.3.3 Heap Page Accesses

In PLP a heap file scan is distributed to the partition-owning threads and performed in parallel.

Large heap file scans reduce the concurrency of OLTP applications and PLP has little to offer.

Still, heap page management opens up additional design options, since we can extend the

partitioning of the accesses to the heap pages. That is, when records reside in a heap file rather

than in the MRBTree leaf pages, PLP can ensure that accesses to pages are partitioned in the

same way as index pages.

We propose three options on how to place and access records in the heap pages, depicted in

the bottom part of Figure 3.4:

• PLP-Regular keeps the existing heap page design,

• In PLP-Partition, each heap page keeps records of only one logical partition, and

• In PLP-Leaf, only one leaf page of the primary MRBTree points to a particular heap page.

PLP-Regular simply keeps the existing heap page operations. Without any modification, the

heap pages still need to be latched because they can be accessed by different threads in

parallel. This may be acceptable because heap page accesses are not the biggest fraction of

the total page accesses in OLTP (as low as 30% according to Figure 3.3). Thus, there is room

for significant improvement even if we ignore them. However, allowing heap pages to span

partitions prevents the system from responding automatically to false sharing or other sources

of heap page contention.

In PLP-Partition and PLP-Leaf, the MRBTree and heap operations are modified so that heap

page accesses are partitioned as well. The difference between the two is that in PLP-Partition

a heap page can be referenced by many MRBTree leaf pages as long as all the pages belong

to the same partition, while in PLP-Leaf a heap page is referenced by only one MRBTree leaf

page.

Both variations provide latch-free heap page accesses, but they suffer from some disadvan-

tages. Forcing a heap page to contain records that belong to a specific partition causes

fragmentation. In the worst case, each leaf has room for one more entry than fits in the heap

page, almost doubling the total space requirement (Section 3.4.8 measures this cost). Further-

more, in PLP-Leaf every leaf page split must also move the records that are referenced by the

new leaf page to a new heap page, increasing the overhead of record insertion (deletions are

simple because a leaf page may point to many heap pages). On the other hand, PLP-Partition,

by allowing multiple leaf pages from a partition to share a heap page, forces the system to

reorganize potentially significant numbers of heap pages with every repartitioning. Signifi-

cant reorganization costs go against the philosophy of physiological partitioning, so we favor

PLP-Leaf.

37

Chapter 3. Latch-free Shared-everything OLTP

The two extensions impose one additional piece of complexity: During record insertion, the

system must identify the correct MRBTree entry before selecting a heap page for the record.

Because the storage management layer is completely unaware of the partitioning strategy (by

design), it must make callbacks into the upper layers of the system to identify an appropriate

heap page for each insertion.

Similarly, a partition split may split heap pages as well, invalidating the record IDs of migrated

records. The storage manager, therefore, exposes another callback so the metadata manage-

ment layer can update indexes and other structures that reference the stale record IDs. We

note that when PLP-Leaf splits leaf pages during record insertion, the same kinds of record

relocations arise and the same callbacks are used.

3.3.4 Page Cleaning

In conventional systems, there is a set of background threads that periodically traverse the

whole buffer pool to write the dirty pages back to stable storage. This process is called page

cleaning. Those threads may access arbitrary pages in the buffer pool, which breaks the

invariant of PLP where a single thread can access a page at each point of time.

To handle the problem of page cleaning in PLP, each thread does the page cleaning for its

logical partition. Each logical partition has an additional input queue for system requests and

the page cleaning requests go to that queue. The system queue has higher priority than the

queue of completed actions. Their execution is not delayed by more than the execution time

of one action (typically very short since an action is part of a transaction). In addition, since

page cleaning is a read-only operation, the thread can continue to work (and even re-dirty

pages) during the write-back I/O.

3.3.5 Benefits of Physiological Partitioning

Under physiological partitioning, each partition is permanently locked for exclusive physical

access by a single thread, which then handles all the requests for that partition. This allows

the system to avoid several sources of overhead as described below.

Latching contention and overhead

Though page latching is inexpensive compared with acquiring a database lock, the sheer

number of page latches acquired imposes some overhead and can serialize B+Tree operations

as transactions crab down the tree during a probe. The problem becomes more acute when the

lower levels of the tree do not fit in memory, because a thread that fetches a tree node from disk

holds a latch on the node’s parent until the I/O completes, which might be preventing access

to 80-100 mostly memory-resident siblings. Section 3.4.3 evaluates a case where latching

38

3.3. Physiological Partitioning

becomes expensive for B+Tree operations and how PLP eliminates this problem by allowing

latch-free accesses on index pages.

False sharing of heap pages

One significant source of latch contention arises when multiple threads access unrelated

records that reside on the same physical database page. In a conventional system false sharing

requires padding to force problematic database records to different pages. PLP variations that

allow latch-free heap page accesses achieve the same effect automatically (without the need

of expensive tuning) as they split hot pages across multiple partitions. Section 3.4.3 evaluates

this case as well.

Serialization of structural modification operations

The traditional ARIES/KVL indexes [128] allow only one structural modification operation

(SMO), such as a leaf split/merge, to occur at a time, serializing all other accesses until the SMO

completes. Partitioning the tree physically with MRBTrees eases the problem by distributing

SMOs across subtrees (whose roots are fixed) without having to apply more complicated

protocols, as such those described in [92, 129]. The benefits of parallel SMOs are apparent in

the case of insert-heavy workloads, which we evaluate in Section 3.4.5.

Repartitioning

In PLP, repartitioning can occur at a higher level in the partition manager and therefore can

be latch-free as well; the partition manager can simply halt affected threads until the process

completes. Moreover, it can be performed very efficiently as it requires very few pointer

updates and data movement as the next chapter (Chapter 4) demonstrates.

Code complexity

Finally, with all latching eliminated, we can also eliminate the code paths that handle con-

tention and failure cases as well, simplifying the code significantly. In the end, the index can be

substituted with a much simpler implementation. For example, a huge source of complexity in

traditional B+Trees arises due to the sophisticated protocols that maintain consistency during

an SMO in spite of concurrent probes from other threads. The simpler code is not only more

efficient but also easier to maintain. In this chapter, we do not attempt to perform the code

refactoring needed to exploit these opportunities and the performance results we report are

therefore conservative. However, we note that B+Tree probes are the most expensive remain-

ing component of PLP. Therefore, we expect significant performance improvements if, for

example, we substitute the B+Tree implementation of our prototype with a cache-conscious

[162, 163] and/or prefetching-based [32] B+Tree.

39

Chapter 3. Latch-free Shared-everything OLTP

3.4 Evaluation

The evaluation consists of three parts.

• The first part measures how useful PLP can be. In particular, Section 3.4.2 quantifies

how different designs impact page latching and critical section frequency, Section 3.4.3

examines how effectively PLP reduces latch contention on index and heap page latches,

and Section 3.4.4 shows the performance impact of those changes.

• The second part (Section 3.4.5), quantifies how useful MRBTrees can be also for conven-

tional and logically-partitioned systems.

• The third part analyzes the possible overhead of PLP. To do that we demonstrate PLP’s

behavior under challenging workloads that seem not to fit well with physiological partition-

ing, such as transactions that require joins (Section 3.4.6) and secondary index accesses

(Section 3.4.7). In addition, Section 3.4.8 inspects the fragmentation overhead of the three

PLP variations.

Finally, Section 3.4.9 highlights the key conclusions of the whole evaluation.

3.4.1 Experimental Setup

To ensure reasonable comparisons, all the prototypes are built on top of the same version of

the Shore-MT storage manager [96, 172], incorporate the logging optimizations of [97], and

share the same driver code.

We consider five different designs:

• An optimized version of a conventional, non-partitioned system, labeled as Conventional

or Conv.. This system employs speculative lock inheritance [95] to reduce the contention

due to locking.

• Logical is a data-oriented transaction processing prototype [145] that applies logical-only

partitioning.

• PLP or PLP-Regular prototypes the basic PLP variation. This variation accesses the MRB-

Tree index pages without latching.

• PLP-Partition extends PLP-Regular, so that one logical partition owns each heap page,

allowing latch-free index and heap page accesses.

• PLP-Leaf assigns heap pages to leaves of the primary MRBTree index, also allowing latch-

free index and heap page accesses.

40

3.4. Evaluation

0

200

400

600

800

Conventional Logical PLP-Regular PLP-Leaf

P
a

g
e

 L
a

tc
h

e
s

A
cq

u
ir

e
d

T
h

o
u

sa
n

d
s

INDEX

HEAP

CATALOG / SPACE

Figure 3.6: Average number of page latches acquired per transaction by different designs when
running the TATP workload mix.

All experiments are performed on two machines: an x64 box, with four sockets of quad-core

AMD Opteron 8356 processors, clocked at 2.4GHz and running Red Hat Linux 5; and a Sun

UltraSPARC T5220 server with a 64-core Sun Niagara II chip clocked at 1.4GHz and running

Solaris 10. Due to unavailability of a suitably fast I/O sub-system, all experiments are with

memory-resident databases. But the relative behavior of the systems will be similar with larger

databases.

To get accurate time breakdowns within the storage manager, we profile our system using

the DTrace [48] framework on the SPARC machine. The profiler takes 7777 samples within

a microsecond and we report the breakdown based on these sample counts. Therefore, we

do not have a conventional time unit on the y-axes of the time breakdown graphs. However,

please note that, the relative time is sufficient to analyze these graphs.

Finally, the number of partitions for each table in the evaluated benchmarks is equal to the

number of hardware contexts available on the machine used for a particular experiment and

the load is balanced across partitions (Chapter 4 targets the problem of load imbalance).

3.4.2 Page Latches and Critical Sections

First we measure how PLP reduces the number of page latch acquisitions in the system. Figure

3.6 shows the number and type of page latches acquired per transaction by the conventional,

logically-partitioned, and two PLP design variations: PLP-Regular and PLP-Leaf. Each system

executes the same number of transactions from the transaction mix of the TATP benchmark.

Since logical-partitioning does not target page latches, it acquires the same number of page

latches as the conventional design. On the other hand, PLP-Regular reduces the amount of

page latching per transaction by more than 80%, whereas PLP-Leaf eliminates almost all the

page latching required in the conventional system. The remaining latches are associated with

metadata and free space management.

41

Chapter 3. Latch-free Shared-everything OLTP

0

10

20

30

40

50

60

Conv. Logical PLP PLP-Leaf

C
ri

ti
ca

l
S

e
ct

io
n

s

p
e

r
T

ra
n

sa
ct

io
n

UpdateLocation

0

10

20

30

40

50

Conv. Logical PLP PLP-Leaf

TATP Fixed

Composable

Other unscalable

Latching

Locking

0

30

60

90

120

150

Conv. Logical PLP PLP-Leaf

C
ri

ti
ca

l
S

e
ct

io
n

s

p
e

r
T

ra
n

sa
ct

io
n

TPC-B

0

100

200

300

400

500

600

700

800

Conv. Logical PLP PLP-Leaf

TPC-C'

Cooperative

unbounded

Figure 3.7: Breakdown of the critical sections for different shared-everything OLTP system
designs when running the UpdateLocation transaction of TATP, TATP workload mix, TPC-B
workload mix, and a 50%-50% mix of the NewOrder and Payment transactions of TPC-C.

Figure 3.7 compares the number and types of critical sections entered per transaction under

Conventional, Logical, PLP-Regular, and PLP-Leaf as we run 10000 transactions from the

TATP, TPC-B, and TPC-C workload mixes. The TPC-C mix consists of only the NewOrder and

Payment transactions. Therefore, it is marked as TPC-C’ (Section 3.6 explains the reasoning

behind this setup). Figure 3.7 also includes a graph with the results for TATP’s UpdateLocation
transaction, which is an extended version of Figure 3.2.

The two PLP variants eliminate the vast majority of locking- and latching-related critical

sections. PLP-Regular eliminates all the latching on index pages whereas PLP-Leaf eliminates

the remaining latching related critical sections. The largest remaining component of the

critical sections comes from the transaction manager. This component mostly employs fixed-

contention communication to serialize threads that attempt to modify the transaction object’s

state. Similarly, the buffer pool-related critical sections are mostly due to the communication

between cleaner threads, which again do not impact scalability. Overall, on average, PLP-

Leaf acquires 90% and 75% fewer contentious critical sections than the conventional and

logically-partitioned systems, respectively.

42

3.4. Evaluation

0

30

60

90

120

150

C
o

n
v

.

Lo
g

ic
a

l

P
LP

C
o

n
v

.

Lo
g

ic
a

l

P
LP

C
o

n
v

.

Lo
g

ic
a

l

P
LP

C
o

n
v

.

Lo
g

ic
a

l

P
LP

16 32 48 64

T
im

e
 b

re
a

k
d

o
w

n

(p
e

r
tr

a
n

sa
ct

io
n

)

of Hardware Contexts Used

Other Heap Latch Cont.

Idx Latch Cont. LatchingIndex Latch Contention

Heap Latch Contention

Figure 3.8: Time breakdown per transaction in an insert/delete-heavy micro-benchmark.

0

50
100
150

200
250
300
350

C
o

n
v

.

Lo
g

ic
a

l

P
LP

-R
e

g

P
LP

-L
e

a
f

C
o

n
v

.

Lo
g

ic
a

l

P
LP

-R
e

g

P
LP

-L
e

a
f

C
o

n
v

.

Lo
g

ic
a

l

P
LP

-R
e

g

P
LP

-L
e

a
f

C
o

n
v

.

Lo
g

ic
a

l

P
LP

-R
e

g

P
LP

-L
e

a
f

16 32 48 64

T
im

e
 b

re
a

k
d

o
w

n

(p
e

r
tr

a
n

sa
ct

io
n

)

of Hardware Contexts Used

Other Heap Latch Cont.

Idx Latch Cont. Latching

Heap Latch Contention

Index Latch Contention

Figure 3.9: Time breakdown per transaction while running the AccountUpdate transaction of
TPC-B, which suffers from false sharing on heap pages under conventional design.

3.4.3 Reducing Index and Heap Page Latch Contention

Having established that PLP effectively reduces the number of page latch acquisitions and

critical sections, we measure the impact of this change in the time breakdown of a transaction.

Figure 3.8 shows the impact on the transaction execution time as PLP eliminates the con-

tention on index page latches. The graph gives the time breakdown per transaction for the

different designs as the number of threads that run an insert/delete-heavy workload on the

TATP database increases. In this micro-benchmark, each transaction makes an insertion

or a deletion request to the Call_Forwarding table, causing page splits and contention for

the index pages that map to the records being inserted/deleted. As Figure 3.8 shows, the

conventional and the logically-partitioned systems experience contention on the index page

latches. They both spend 15-20% of their time waiting to acquire a latch, while PLP eliminates

this contention on the index pages achieving proportional performance improvements.

43

Chapter 3. Latch-free Shared-everything OLTP

0

10

20

30

40

50

60

16 40 16 40 16 40

Conventional Logical PLP-Partition

T
im

e
 b

re
a

k
d

o
w

n

(p
e

r
tr

a
n

sa
ct

io
n

)

of Hardware Contexts Used

Other

Btree

Buffer Pool

Latching

Locking

Figure 3.10: Time breakdown per transaction while running the StockLevel transaction of
TPC-C joining 2000 tuples.

On the other hand, Figure 3.9 gives the time breakdown per transaction when we run the

AccountUpdate transaction of the TPC-B benchmark. In this experiment we do not pad

records to force them onto different pages. Transactions often wait for others because the

record(s) they update happen to reside on latched heap pages. The conventional, logically-

partitioned, and PLP-Regular designs all suffer from false sharing of the heap pages. At high

utilization this contention wastes more than half of the total execution time. On the other

hand, PLP-Leaf is immune, reducing the response time by 13-60% and achieving propor-

tional performance improvement. In a way, PLP-Leaf provides automatic and more robust

padding for the workloads that suffer from false sharing and require manual padding under

the conventional system to reduce contention on the heap pages.

Finally, Figure 3.10 has the time breakdown per transaction when 16 and 40 hardware contexts

are utilized by the conventional, logically-partitioned, and PLP-Partition systems when they

run a slightly modified version of the StockLevel transaction of the TPC-C benchmark.

StockLevel contains a join operation that joins 200 tuples. In this version, we join 2000 tuples

instead of 200. We see that the conventional system wastes 20-25% of its time in contention

in the lock manager and for page latching. Interestingly, even though logical-partitioning

eliminates the contention due to locking, this elimination is not translated into performance

improvement for the case with 40 hardware contexts. Instead the contention shifts to page

latching. However, PLP eliminates the contention both inside the lock manager and for page

latches achieving higher performance than all the other designs.

3.4.4 Impact on Scalability and Performance

Since PLP effectively reduces the contention (and the time wasted) to acquire and release

index and heap page latches, we next measure its impact on performance and overall system

scalability. We initially investigate how PLP behaves for workloads with no contention. Then,

44

3.4. Evaluation

0

100

200

300

400

0 16 32 48 64

T
h

ro
u

g
h

p
u

t
(K

T
P

S
)

of Hardware Contexts Used

Niagara

PLP

Logical

Conv.
0

100

200

300

400

500

600

700

0 4 8 12 16

of Hardware Contexts Used

AMD

Conventional

Figure 3.11: Throughput while running the GetSubscriberData transaction of TATP on two
multicore machines.

0

500

1000

1500

2000

2500

0 16 32 48 64

T
h

ro
u

g
h

p
u

t
(T

P
S

)

of Hardware Contexts Used

Niagara

Conventional

Logical

PLP-Partition
0

1000

2000

3000

4000

5000

6000

0 4 8 12 16

of Hardware Contexts Used

AMD

Figure 3.12: Throughput while running the StockLevel transaction of TPC-C on two multicore
machines.

we measure its benefits for the more complex workload mixes that combine read-only and

update-heavy transactions.

Figure 3.11 and Figure 3.12 show the throughput of the three main designs under comparison

as we increase hardware utilization on the two multicore machines. The workloads consist of

clients that repeatedly submit the TATP-GetSubscriberData and TPC-C-StockLevel trans-

actions, respectively, which are read-only and ideally should impose no contention whatsoever.

As expected, PLP shows superior scalability, evidenced by the widening performance gap with

the other two systems as utilization increases. For example, from Figure 3.12 we see that for

StockLevel the logically-partitioned system delivers an 11% speedup over the conventional

system on the 4-socket Quad x64 machine. PLP delivers an additional 26% over logical parti-

tioning or nearly 50% over the conventional. The corresponding improvements in the Sun

machine’s slower but more numerous cores are 13% and 34%, respectively. Note that eight

cores of the x64 machine match the fully-loaded Sun machine, so the latter does not expose

bottlenecks as strongly despite its higher parallelism.

45

Chapter 3. Latch-free Shared-everything OLTP

0

20

40

60

80

100

120

140

0 20 40 60 80 100

T
h

ro
u

g
h

p
u

t
(K

T
P

S
)

CPU Utilization (%)

TATP

0

30

60

90

120

150

180

0 20 40 60 80 100
CPU Utilization (%)

TPC-B

0

3

6

9

0 20 40 60 80 100

CPU Utilization (%)

TPC-C'

PLP+Aether

DORA+Aether

SLI+Aether

PLP-Par++on

Logical

Conven+onal

Figure 3.13: Throughput while running the workload mix of TATP, TPC-B, and TPC-C on the
Sun Niagara server.

50.0
55.8

59.4 65.3

0

10

20

30

40

50

60

70

Normal MRBT Normal MRBT

Conv. Logical

T
h

ro
u

g
h

p
u

t
(K

T
P

S
/C

P
U

)

Conventional

Figure 3.14: Performance of the conventional and the logically-partitioned system with and
without MRBTrees while running the TATP mix.

Figure 3.13, on the other hand, shows the performance of the three design options when

running the workload mix of the TATP, TPC-B, and TPC-C benchmarks as the load on the

Sun Niagara machine increases. The TPC-C mix again consists of the NewOrder and Payment
transactions as in Figure 3.7. We observe that PLP is still superior to both conventional and

logically-partitioned systems under these complex benchmarks.

3.4.5 MRBTrees in Non-PLP Systems

The MRBTree can improve performance even in the case of conventional systems in three

ways. First, since it effectively reduces the height of the index by one level, each index probe

traverses one fewer node and hence is faster. Second, any possible delay due to contention on

the root index page is also reduced roughly proportionally with the number of subtrees. Third,

MRBTrees allow each subtree to have a structure modification operation (SMO) in flight at any

time, increasing the number of concurrent SMOs the system can perform. We see the effect of

the first two cases in Figure 3.14, whereas Figure 3.15 demonstrates the third case.

46

3.4. Evaluation

0

25

50

75

N
o

rm
a

l

M
R

B
T

N
o

rm
a

l

M
R

B
T

N
o

rm
a

l

M
R

B
T

N
o

rm
a

l

M
R

B
T

N
o

rm
a

l

M
R

B
T

N
o

rm
a

l

M
R

B
T

0% 20% 40% 60% 80% 100%

T
im

e
 b

re
a

k
d

o
w

n

(p
e

r
tr

a
n

sa
ct

io
n

)

Percentage of Inserts

Other Bpool TxMgr

Log Locking Latch-smo

Transaction Manager Buffer Pool

Figure 3.15: Time-breakdown of a transaction under conventional system with and without
MRBTrees.

Figure 3.14 highlights the difference in the peak performance of the conventional and the

logically-partitioned system when they run with and without MRBTrees. Both of the systems

run the workload mix of the TATP benchmark. In both cases the improvement in performance

is on the order of 10% when MRBTrees are used.

In workloads with high record insertion (deletion) rates, the MRBTree improves performance

by parallelizing the SMOs. Figure 3.15 shows the time breakdown of the conventional system

with and without MRBTrees as we run a micro-benchmark that consists of either a record

probe or insert as we increase the percentage of inserts in the mix. Without MRBTrees, the

system spends an increasing amount of the total execution time blocked waiting for SMOs to

complete as the insertion rate increases. When MRBTrees are used, there is no time wasted

waiting for SMOs and performance improves by up to 25%. Overall, there are compelling

reasons for systems other than PLP to adopt MRBTrees.

3.4.6 Transactions with Joins in PLP

Next we turn our attention to workloads that seem not to fit well with physiological partitioning.

Initially, we inspect how PLP behaves with transactions that have join operations, an operation

that heavily involves work from multiple partitions in a transaction.

To evaluate the performance of PLP on transactions with joins, we slightly modified the

StockLevel transaction from the TPC-C benchmark to determine the number of tuples

joined. In its un-modified version, StockLevel joins 200 tuples between two tables. We

created different versions of the transaction where 20, 200, 2000, 20000, and 200000 tuples

are joined. For each number of tuples joined, Figure 3.16 plots the maximum throughput the

conventional, the logically-partitioned, and the PLP-Partition systems achieve normalized to

47

Chapter 3. Latch-free Shared-everything OLTP

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

20 200 2000 20000 200000

N
o

rm
a

li
ze

d
 T

h
ro

u
g

h
p

u
t

of Tuples Joined

Conventional

Logical

PLP-Partition

Figure 3.16: Throughput normalized to Conventional when running StockLevel on fully-
utilized 4-socket Quad x86_64.

the maximum throughput of the conventional. The three systems achieve their maximum

throughput when the 4-socket Quad x64 machine is 100% utilized.

Figure 3.16 shows that PLP achieves higher performance than the conventional system regard-

less of the number of tuples joined. When only 20 tuples are joined PLP achieves 2.1x higher

performance than conventional, while when 200K tuples are joined PLP achieves 33% higher

performance. The main reason for this drop in PLP’s performance benefits when joining

more than 20 tuples is that Shore-MT escalates to higher-level locking from row-level locking

when a single transaction accesses more than a threshold of records (the default value is 25 in

Shore-MT) under the conventional system. Lock-escalation reduces the lock requests to the

centralized lock manager drastically for the conventional system, minimizing the bottlenecks

due to locking for this particular read-only transaction. PLP achieves higher performance

mainly because it eliminates the contention for page latches, as Figure 3.10 illustrates. That

is in contrast with the logically-partitioned system, which for large number of tuples (200K)

joined performs lower than conventional due to increased stress on page latches.

3.4.7 Secondary Index Accesses

Non-clustered secondary indexes are pervasive in transaction processing, since they are the

only means to speed up transactions that access records using non-primary key columns.

Nevertheless, secondary index accesses pose several challenges to PLP, which we explore in

Figure 3.17. We break this analysis into two cases: (1) when the secondary index is aligned

with the partitioning scheme and (2) when it is not.

If the routing columns are a prefix of the secondary index columns, then the secondary index

is aligned with the partitioning scheme. For example, subscriber_id can be the routing

column for a table where <subscriber_id, subscriber_number> is the primary key and

<subscriber_id, subscriber_location> form the secondary index columns. In this case,

a secondary index scan may return a large number of matched RIDs (record ids of entries

48

3.4. Evaluation

0

50

100

150

200

250

300

0 4 8 12 16

T
h

ro
u

g
h

p
u

t
(K

T
P

S
)

of Hardware Contexts Used

Range = 10

0

10

20

30

40

50

0 4 8 12 16

of Hardware Contexts Used

Range = 100

PLP-Aligned

PLP-NonAligned

Conventional

0

1

2

3

4

5

0 4 8 12 16

T
h

ro
u

g
h

p
u

t
(K

T
P

S
)

of Hardware Contexts Used

Range = 1000

0

0.1

0.2

0.3

0.4

0.5

0 4 8 12 16

of Hardware Contexts Used

Range = 10000

Figure 3.17: Effect of aligned and non-aligned secondary index scans on the performance of
PLP as the scan range increases.

that match the selection criteria) from several partitions. All the executors need to send a

pointer for the scanned data to a synchronization point (dark circles in Figure 3.5) where

an aggregation of the partial results takes place. As the range of the index scans become

larger (or the selectivity drops), this causes a bottleneck due to increased number of partitions

participating in data coordination.

On the other hand, if the secondary index is built on the subscriber_location column for

the table mentioned in the above example, then the secondary index is not aligned with the

partitioning scheme. In this case, on top of the above mentioned bottleneck, there is also

another important overhead. This overhead is because each record probe becomes a two-step

process, where the secondary index probe is done by one thread conventionally and then this

thread requests from the worker threads that own the partition of the scanned data to retrieve

the selected records.

To quantify the overhead of using secondary indexes with PLP, we conduct an experiment

where we modify TATP’s GetSubscriberData transaction to perform a range scan on the

secondary index: one that is built on <subscriber_id, subscriber_number> columns and

another one that is built on subscriber_number only. The original transaction probes for only

one Subscriber and the partitioning/routing column is subscriber_id. In the modified

49

Chapter 3. Latch-free Shared-everything OLTP

0

0.5

1

1.5

2

1MB 10MB 100MB 1GB 10GB 1MB 10MB 100MB 1GB 10GB

100B 1000B

N
o

rm
a

li
ze

d
 #

 o
f

H
e

a
p

 P
a

g
e

s

Database (top) and Record (bottom) Size

Conventional PLP-Regular

PLP-Partition PLP-Leaf

Figure 3.18: Space overhead of the three PLP variations.

version, we probe for 10, 100, 1000, and 10000 Subscribers, even though index scans for

thousands of records are not typical in high-throughput transactional workloads.

Figure 3.17 compares the performance of the Conventional system with PLP-Part-Aligned,

which performs partitioning aligned secondary index accesses, and PLP-Part-NonAligned,

which performs non-partitioning aligned secondary index accesses, as more hardware con-

texts are utilized in the system. PLP-Part-Aligned improves performance over Conventional by

46%, 14%, 8%, and 1%, respectively, for ranges 10, 100, 1000, 10000. On the other hand, even

though PLP-Part-NonAligned improves performance by 11% when 10 records are scanned, for

larger ranges it hinders performance. PLP-Part-NonAligned is 3%, 11%, and 38% slower than

Conventional for ranges 100, 1000, and 10000, respectively.

As expected, the performance improvement for PLP-Part-Aligned gets smaller as the range

of the index scan increases, mainly because of the lock-escalation under the Conventional

system as also discussed in Section 3.4.6. However, as long as the index scans of partitioning-

aligned secondary indexes are selective and touch a relatively small number of records, PLP

provides decent performance improvement. For PLP-Part-NonAligned, however, secondary

index scans can be very unfriendly due to the additional overhead explained above, though

unless the scan range is over 1000 records the result is not disastrous.

3.4.8 Fragmentation Overhead

PLP-Partition and PLP-Leaf create some fragmentation on the heap file since they change the

regular heap file structure (see Section 3.3.3). Given the increased number of data pages due

to fragmentation, we expect the heap file scan times to increase proportionally.

Figure 3.18 shows the ratio between the number of pages used in the three PLP variations

and the conventional system as we increase the database size. The x-axis shows the total

size of the database when each record is 100B (left-hand side of the graph) and 1000B (right-

hand side of the graph). The y-axis is the ratio between the number of pages used in each

50

3.4. Evaluation

0

0.5

1

1.5

2

1MB 10MB 100MB 1GB 10GB

N
o

rm
a

li
ze

d
 F

il
e

 S
ca

n
 T

im
e

Database Size

Conventional PLP-Regular PLP-Partition PLP-Leaf

Figure 3.19: Overhead of PLP variations during file scan.

design and the conventional system. The conventional system has one partition, where

the PLP variations have 100 and 10 partitions for the cases where record size is 100B and

1000B, respectively. The heap page size is 8KB. As expected, PLP-Regular does not create any

fragmentation since it maintains the regular heap file format. For PLP-Partition, the amount

of fragmentation becomes negligible as the database size increases for small records. However,

PLP-Leaf uses up to 80% more heap pages than a conventional system for the same case

creating a visible fragmentation on the heap file. On the other hand, as we increase the record

size, the fragmentation decreases since each heap page is able to keep fewer records, and thus

the amount of empty space on each heap page is reduced.

Figure 3.19 shows the time to scan the heap file for each PLP variation compared to the

conventional system as we increase the size of the database. The setup is the same as in Figure

3.18 when the record size is 100B. The size of the buffer pool is 4GB for each measurement.

From Figure 3.19, the fragmentation cost of PLP-Leaf does not significantly increase the file

scan time when there are no disk accesses performed (from 1MB to 1GB) because the total

number of records that are scanned is the same. However, for the larger database (10GB),

PLP-Leaf increases the heap file scan time by 60% since there are more page requests from

disk.

Overall, among the PLP variations, only PLP-Leaf may introduce some significant fragmen-

tation when a heap page can keep many database records. As the number of records a heap

page can keep decreases, this cost becomes less significant. We also note that PLP is a design

optimized for high-performance transactional applications, where entire heap file scans are

rare.

3.4.9 Summary

As the experimental results show, PLP successfully manages to eliminate two major sources of

unbounded critical sections in conventional shared-everything systems; locking and latching.

It is important to note that each PLP variation has its drawbacks. For example, PLP-Regular

51

Chapter 3. Latch-free Shared-everything OLTP

does not eliminate unbounded communication due to heap page latching (Section 3.4.2),

PLP-Leaf comes with some fragmentation (Section 3.4.8), and PLP-Partition cannot repartition

efficiently (as Section 3.3.3 mentions and Chapter 4 experimentally shows). We favor PLP-Leaf

for workloads that need dynamic load balancing. If the workload does not heavily suffer from

heap page latching, but only from index page latching, then PLP-Regular is definitely a great

design choice as well.

3.5 Related Work

The related work can be categorized in two: analyzing and reducing the critical sections in

DBMSs and partitioned B+Trees and concurrency control mechanisms.

3.5.1 Critical Sections

The complexity and overhead of database management systems are well-known. For example,

[76] shows that, even in a single-threaded OLTP system, logging, locking, latching, and buffer-

pool accesses contribute roughly equal overhead and together account for the majority of the

machine instructions executed during a transaction. Other work shows that these sources

of overhead become scalability burdens on multicore hardware [96]. PLP eliminates the

bottlenecks due to locking and latching in a shared-everything setting.

In the shared-everything arena, recent proposals for speculative lock inheritance (SLI) [95],

lightweight intent locks (LIL) [108], and data-oriented transaction execution [145] minimize

the need for interaction with a centralized lock manager. Where speculative lock inheritance

allows the system to spread lock operations across multiple transactions to reduce contention,

data-oriented systems replace the central lock manager with thread-local lock management.

Reducing lock contention with data-oriented execution is also studied for data-stream opera-

tors [40], making threads delegate the work on some data to the thread that already holds the

lock for that data and move to the next operation in their queues.

Other proposals tackle the weakness posed by the centralized log manager, [97, 98] present-

ing a scalable log buffer and [31] exploiting flash technology to reduce logging latencies.

These proposals show even seemingly-pervasive forms of communication can be reduced or

sidestepped to great effect. However, none of them addresses physical data accesses involving

page latching and buffer pool, the other two major sources of overhead in the system, which

PLP eliminates.

Oracle RAC [143], with Cache-Fusion [114], allows database instances in the shared-disk

cluster to share their buffer pools and avoid accesses to the shared-disk. It can also partition

the data to reduce both logical and physical contention on a particular portion of the data.

However, it does not enforce each partition to be accessed only by a single thread. Therefore,

52

3.5. Related Work

it does not eliminate physical latch contention while accessing pages from the shared-cache

as much as PLP does.

As discussed previously, shared-nothing systems [45, 107, 178, 179] have an appealing design

that eliminates critical sections altogether. However, they struggle both pro-actively to reduce

the need to execute distributed transactions through efficient partitioning [39] as well as

re-actively to reduce overhead when distributed transactions cannot be avoided [100]. On the

other hand, PLP, in addition to eliminating a big portion of the unbounded critical sections,

offers a less costly way of load balancing and communication for distributed (multi-site)

transactions since partitions share the same memory address space.

3.5.2 B+Trees and Alternative Concurrency Control

There are alternatives to traditional B+Tree concurrency control to allow multiple SMOs at the

same time [92, 129]. The MRBTree index structure provides an alternative to such techniques,

allowing concurrent SMOs with less code complexity. However, these techniques can be

implemented alongside MRBTrees to achieve concurrency within a partition, should that

be desirable for a conventional system. As an addition to these techniques MRBTrees also

allow multiple root split operations in parallel. Several earlier works propose B+Trees having

multiple roots to reduce contention due to locking [61, 134]. However, none of these proposals

targets physical latch contention in the system.

In addition, some latch-free B+Tree implementations use alternative synchronization methods.

CO B-Tree [21] uses load-linked/store-conditional (LL/SC), whereas Masstree [125] relies on

read-copy-update mechanisms instead of latching to synchronize operations on a B+Tree.

Bw-tree [119] is another recent latch-free index structure proposal, which does not perform in

place updates on the B-Tree pages and relies on atomic updates using compare-and-swap

(CAS) instructions. These designs minimize the time spent in unbounded critical sections

executed during index operations. However, they do not completely remove such critical

sections. In addition, even though atomic operations scale and perform well on single/two-

socket machines, they are shown to be problematic on multisocket machines with four or

more processors [41, 154]. PALM [170], on the other hand, eliminates both page latching

and contention on the B+Trees by using Bulk Synchronous Parallel model. However, it has

to perform B+Tree operations in batches in order to exploit this technique, which might

increase the average latency for individual operations and be harder to integrate within a

database management system. Overall, the latch-free B+Tree proposals can be combined

with MRBTrees, especially for the non-partitionable workloads. Instead of using fine-grained

partitions (e.g., partition per hardware-context) like in PLP, one can build coarser-grained

MRBTrees (e.g., partition per socket or close-by cores). Then, the worker threads assigned to an

MRBTree can traverse it using latch-free techniques. This way, one can bound the contention

on the unbounded critical sections that still exist in latch-free techniques to fixed number of

53

Chapter 3. Latch-free Shared-everything OLTP

worker threads that belong to a partition (i.e., downgrading unbounded contention to fixed

contention), and also minimize the drawbacks related to partitioning.

Finally, optimistic and multiversion concurrency control schemes [22, 113, 116, 196] may

improve concurrency by resolving conflicts lazily at commit time instead of eagerly blocking

them at the moment of a potential conflict. In other words, they minimize the time spent in

unbounded critical sections due to locking. When conflicts are rare this allows the system

to avoid the overhead of enforcing database locks. On the other hand, if the conflicts occur

frequently the performance of the system drops rapidly, since the transaction abort rate is

high. Prior work compares the concurrency control schemes in database systems [2, 204],

while the book of Bernstein et al. [23] and Thomasian’s survey [181] are good starting points

for the interested reader. Even though the focus of PLP is on the contention for latches

rather than the concurrency control scheme, PLP can also be integrated with multiversion

concurrency control schemes similar to the possible integration of MRBTrees with latch-free

index structures as described above.

We also note that there is a large body of work on cache-conscious index implementations

(e.g., [29, 32, 162, 163]). PLP eliminates the need for latching and concurrency control at the

index level. Therefore, we expect to get a significant performance boost if we substitute the

index implementation with a cache-friendlier B+Tree alternative, since the B+Tree probes are

the most expensive remaining component of PLP.

3.6 Limitations of PLP

Applications that have less pressure on the storage manager

First of all, PLP is designed for high performance transaction processing that imposes great

pressure on the internals of the database storage layer. Therefore, certain classes of applica-

tions may not benefit from it, or even get penalized. For example, the business intelligence

applications with large file scans or joins do not stress the parts of the storage manager PLP im-

proves; since these workloads have mostly read-only requests, the lock manager and latching

can even be disabled. In such workloads PLP may penalize performance since it may require

coordinating large volumes of data among participating threads from different partitions. It is

common practice, however, to employ dedicated database engines (usually column-stores

[24, 180]) for such workloads.

Non-partition aligned index accesses

PLP partitions each table using range-based partitioning to the keys of a specific subset of the

columns of the table. The DBA, however, may decide to build indexes (usually non-clustered

secondary indexes) that do not contain the columns that PLP uses for its partitioning. We

refer to such indexes as non-partitioning aligned indexes and they may become performance

54

3.6. Limitations of PLP

bottlenecks. Data-oriented execution and PLP handles such accesses by appending each index

leaf entry with the fields of the record that are needed for identifying the partition-owning

thread. The non-partitioning aligned index is accessed as a conventional index, without

avoiding any locking or latching, in order to retrieve the id of the record to be accessed in the

heap file and then the access is passed to the appropriate thread.

As Figure 3.17 shows, such accesses can be burdensome for PLP. However, as a proactive

measure, we implemented tools that help the application developer and the DBA to avoid

having workloads with very frequent such index accesses [146].

Breaking transactions

As mentioned previously (Section 3.3.1), the transactions need to be divided into smaller

actions based on the data accessed in different parts of the transaction. These actions are

represented as a directed graph to understand the transaction flow and dependencies among

the actions. This representation also helps us to exploit intra-transaction parallelism for the

independent actions. However, it introduces the initial cost of identifying these actions. We

implemented a tool that automatically forms such a transaction flow graph given the SQL

statement for the transaction to ease this initial cost [146].

Scheduling challenge

As mentioned in the above paragraph, PLP breaks transactions into smaller actions and

routes each action to the worker thread responsible from the data the action wants to access.

Therefore, whenever a transaction involves multiple actions, it becomes a multi-partition

transaction. Looking at the results in Section 3.4.4, we see that PLP performs well regardless of

such transactions in a variety of cases. However, such transactions also create a scheduling

challenge for PLP. In the case of TATP and TPC-B benchmarks, this is not as apparent since

the transactions are either too short (TATP) or there is not much variety in the workload mix

(TPC-B). On the other hand, for the TPC-C benchmark running the whole transaction mix

either overloads the machine, since it requires too many worker threads to be active at the

same time, or causes the critical sections of the fixed type to become problematic, which are

extensively used while coordinating the different actions of a transaction. Therefore, Section

3.4.2 and Section 3.4.4 use a simpler version of the TPC-C mix, which run only the most

frequent two transactions of TPC-C (NewOrder and Payment).

The scheduling challenge of PLP especially becomes problematic on multisocket multicore

architectures with non-uniform memory access (NUMA) latencies. We have recently dealt

with this problem through designing the ATraPos infrastructure [154], which makes PLP aware

of the underlying hardware topology and dynamically controls the scheduling of the worker

threads based on the workload characteristics. More specifically, ATraPos adjusts the number

55

Chapter 3. Latch-free Shared-everything OLTP

of partitions for each table at run-time and schedules the worker threads of the partitions that

are frequently accessed together in a transaction on the same processor socket.

3.7 PLP on Future Hardware and Conclusions

Unlike conventional systems, which either embrace fully shared-everything or shared-nothing

philosophies, physiological partitioning takes the best features of both to produce a hybrid

system that operates nearly latch- and lock-free, while still retaining the convenience of a

common underlying storage pool and log. We achieve this result with a new multi-rooted

B+Tree structure and careful assignment of threads to data.

As multicore hardware trends evolve, PLP becomes increasingly attractive for several reasons.

Conventional OLTP is ill-suited to modern and upcoming hardware since;

• the code of an OLTP system is full of unbounded critical sections [96, 99],

• the access patterns are so unpredictable [174] that even the most advanced prefetchers fail

to detect data access patterns for a transaction [175],

• the majority of the accesses are shared read-write; hence, they under-perform on caches

with non-uniform access latency [20, 69, 70].

As we have seen, PLP, combined with previous advances in logging, succeeds in all three

problems. The majority of the unbounded critical sections are completely eliminated, ac-

cess patterns are regularized by the thread assignments, and threads no longer share data to

communicate, eliminating the shared R/W problem. This regularity is going to become in-

creasingly important as hardware continues to make more and more demands of the software.

Unfortunately, OLTP will only be able to utilize these new architectures effectively if it can

eliminate the majority of accesses that are shared among multiple processors. In short, by

eliminating a large class of unbounded/unscalable communication, PLP leaves OLTP engines

much better-poised to take advantage of the upcoming hardware, whatever form it may take.

56

4 Dynamic Load Balancing for PLP

Partitioning is an increasingly popular solution for scaling up the performance of database

management systems even within a single (multicore or multisocket) machine. However, it is

not a panacea since there are many challenges associated with it. This chapter focuses on one of

the most troublesome challenges for partitioning-based transaction processing systems, which

is their behavior in skewed and dynamically changing workloads. Such workloads are the norm

rather than the exception and highly problematic for statically partitioned systems.

We demonstrate the non-optimal performance of single-node partitioning-based transaction

processing systems and analyze the costs and challenges toward robust and efficient dynamic

load balancing mechanisms for such systems. This analysis highlights that physiologically-

partitioned (PLP) shared-everything online transaction processing systems offer a good infras-

tructure for lightweight repartitioning. Based on this observation, we propose a dynamic load

balancing mechanism (called DLB) specialized for the PLP design. Evaluation on different

multicore machines shows that the overhead of DLB is low in normal operation (in the worst

case at most 8%), while it enhances the system with robust behavior achieving very low response

times in both detecting and handling load imbalances. 1

4.1 Introduction

Database management systems need to provide enough execution parallelism to exploit mod-

ern multicore and multisocket hardware. Unfortunately, exhibiting high execution parallelism

is not easy, even for transaction processing workloads, which are characterized by high con-

currency at the request level. In particular, conventional transaction processing results in

complicated and unpredictable access patterns [145]. In order for the system to maintain the

consistency of the data shared by the parallel processes, it needs to employ synchronization

points, which form critical sections that serialize transaction execution. Critical sections not

only hurt single-thread performance, especially in transaction processing workloads [76], but

they also quickly become scalability bottlenecks [96].

1 This chapter uses material from [147, 185].

57

Chapter 4. Dynamic Load Balancing for PLP

The common solution for improved scalability is to either remove critical sections completely

or reduce the contention on them. A very popular technique to achieve that is partitioning.

The database is broken into multiple partitions and the data that belong to one partition are

operated on by just one worker thread. As a result, the number of threads that share some part

of the data is reduced along with the contention on the critical sections that protect that data.

If only a single thread accesses each partition, then the need for critical sections is eliminated

[107, 145, 179].

If configured correctly, a partitioned database system (shared-nothing [45, 179] or shared-

everything [145], Chapter 3) can perform better than corresponding non-partitioned systems.

Achieving high performance, however, is not a simple task when running realistic, dynamically

changing workloads. Depending on the access patterns, the load of each partition might be

different. Skewed access patterns can lead to load imbalance and reduce or eliminate any

benefits due to partitioning. Therefore, system designers need to be careful in order to benefit

from and not to be hindered by partitioning.

There are two orthogonal ways to attack the problem of skewed access in partitioning-based

transaction processing systems:

• proactively by configuring the system with an appropriate initial partitioning scheme and

• reactively by using a dynamic balancing mechanism.

Starting with the appropriate partitioning configuration is key. If the workload characteristics

are known a priori, previously proposed techniques [39, 164] can be used to create effective ini-

tial configurations. If the workload characteristics are not known, then simpler approaches like

round-robin, hash-based, and range-based partitioning [45] would work. As time progresses,

however, skewed access patterns gradually lead to load imbalance during execution. The

initial configuration eventually becomes useless no matter how carefully it is chosen. Thus, it

is far more important and challenging to dynamically balance the load through repartitioning

based on the observed, and ever changing, access patterns. A robust dynamic load balancing

mechanism should eliminate any bad choices that might be made during initial assignments.

In this chapter, we focus on dynamic load balancing and online repartitioning in the context

of partitioned database management systems within a single node. After a thorough compari-

son of different partitioning mechanisms in terms of their repartitioning costs, we design a

lightweight yet effective dynamic load balancing and repartitioning mechanism, called DLB,

for physiologically-partitioned (PLP) OLTP systems. To collect information about the current

access patterns and load in a workload, DLB uses the existing request queues of the partitions

and employs a new data structure, called an aging two-level histogram. These structures help

in observing recent load and data access patterns across and within partitions. DLB also

exploits the multi-rooted B+Tree (MRBTree) index structure that is at the core of PLP (Chapter

3) for efficient reorganization of partitions.

58

4.2. Need for Dynamic Repartitioning

The contributions and the organization of this chapter are as follows:

• Section 4.2 demonstrates that access skew can severely hurt performance in statically

partitioned databases, rendering partitioning useless in many realistic workloads and

underlining the need for dynamic repartitioning.

• Section 4.3 devises a cost model for repartitioning and shows that PLP provides a very good

infrastructure for dynamic repartitioning, mainly due to its key component MRBTrees.

• Section 4.4 designs a lightweight yet effective dynamic load balancing and repartitioning

mechanism, DLB, for PLP.

• Section 4.5 integrates the DLB mechanism in a prototype transaction processing system

that employs PLP. The evaluation quantifies the overhead of DLB under static workloads,

which is in the worst case at most 8%, and its effectiveness during dynamic workloads,

where DLB achieves low response times in both detecting and fixing imbalances.

Finally, Section 4.6 contrasts DLB to the related work on dynamic load balancing and Section

4.7 concludes the chapter.

4.2 Need for Dynamic Repartitioning

In general one of the disadvantages of partitioning-based transaction processing designs is

that they are vulnerable to skewed and dynamically changing workloads; in contrast with

shared-everything systems that do not employ any form of partitioning and tend to suffer less

when the workload is not stable. Unfortunately, skewed and dynamically changing workloads

are the rule rather than an exception in transaction processing. Therefore, it is imperative

for partitioning-based designs to alleviate the problem of skewed and dynamically changing

accesses.

To exhibit how vulnerable partitioning-based systems are to skew, Figure 4.1 plots the through-

put of a non-partitioned (shared-everything) system and a statically partitioned system that

deploys physiological-partitioning when all the clients in a TATP [137] database submit the

GetSubscriberData read-only transaction. Initially the distribution of requests is uniform

over the entire database. However, at time point 10 (sec) the distribution of the load changes:

50% of the requests are sent to 30% of the database (see Section 4.5.1 for experimental setup).

As we can see from the graph in Figure 4.1, initially and as long as the distribution of requests

is uniform, the performance of the non-partitioned system is around 15% lower than the

partitioned one. After the load change the performance of the non-partitioned system remains

pretty much the same, while the performance of the partitioned system drops sharply by

around 35%. The drop in the performance is severe even though the skew is not that extreme;

easily a higher fraction of the requests could go to a smaller portion of the database, for

59

Chapter 4. Dynamic Load Balancing for PLP

0

100

200

300

400

0 5 10 15 20

T
h

ro
u

g
h

p
u

t
(K

T
P

S
)

Time (sec)

Not partitioned

Statically partitioned

Figure 4.1: Throughput of a statically partitioned system when load changes at runtime; at
time t=10 50% of the requests are sent to 30% of the database.

example following the 80-20 rule of thumb where the 80% of the accesses go to only 20% of the

database. Figure 4.1 clearly underlines the need for dynamic repartitioning for partitioning-

based designs.

4.3 Repartitioning Cost

A dynamic load balancing mechanism would be useless if the cost of repartitioning in a

partitioning-based transaction processing system is very high. The lower the cost of repar-

titioning, the more frequently the system can trigger load balancing procedures and the

faster it can react to load changes. This subsection models the cost of repartitioning for a

shared-nothing (physically-partitioned) system and the three PLP variations (Section 3.3.3)

to highlight the clear advantage of PLP-Regular and PLP-Leaf. It also describes the way to

perform repartitioning with PLP.

The basic case of repartitioning is when a partition needs to split into two. Therefore, for all

the PLP variations and the shared-nothing design our repartitioning cost model calculates

• the number of records and index entries that have to be moved,

• the number of update/insert/delete operations on the indexes,

• the number of pointer updates on the index pages and the routing page that keeps the

information on the key-ranges for each partition, and

• the remaining number of read operations that have to be performed

when a partition is split into two. We also discuss merging two partitions but do not give a

detailed cost model.

60

4.3. Repartitioning Cost

Algorithm 1 Splitting an MRBTree subtree.

1: {binary-search routine used below performs binary search to find the ke y on the pag e. If
an exact match for the ke y is found, f ound is returned as true and the function returns
the slot for the ke y on the pag e. Otherwise, f ound is false and the function returns at
which slot on the pag e the ke y should reside.}

2: pag e = r oot
3: f ound = f al se
4: while pag e ! = NU LL & ! f ound do
5: sl ot = binary-search(pag e,ke y, f ound)
6: sl ot s.push(sl ot)
7: pag es.push(pag e)
8: pag e = pag e[sl ot].chi l d
9: while pag es.si ze > 0 do

10: sl ot = sl ot s.pop()
11: pag e = pag es.pop()
12: Create pag enew

13: Move entries starting from sl ot at pag e to pag enew

Let’s assume that there is a heap file (table) with an index on it, which in the case of PLP is an

MRBTree. When a partition needs to split into two, a subtree in the index needs to split into

two as well. In that case we define:

• h as the height of the tree,

• n as the number of entries in a non-leaf B+Tree page,

• mi as the number of entries to be moved from the B+Tree at level i , and

• M as the number of records in the heap file that have to be moved.

The number of read operations during a key value search in the B+Tree is omitted since it is

the same for all the systems (a binary search at each level from root to leaf).

4.3.1 Splitting Non-clustered Indexes

The first case we consider is when the heap file that needs to be repartitioned has a unique

non-clustered primary and a secondary index and the data are partitioned based on the

primary index key values.

PLP-Regular

The cost of repartitioning in PLP-Regular is very low. Only a few index entries need to move

from one subtree of the MRBTree index(es) to another newly created subtree. Algorithm 1

shows the procedure that needs to be executed to split an MRBTree subtree. First, we need

61

Chapter 4. Dynamic Load Balancing for PLP

Table 4.1: Repartitioning costs for splitting a partition into two.

System #Records Moved (M)
Primary Index Secondary Index

#Entries Moved #Reads #Pages Read #Pointer Updates Changes Changes

PLP-Regular -
∑h

k=1 mk - - 2×h +1 - -

PLP-Leaf m1
∑h

k=1 mk M 1 2×h +1 M upd ates M upd ates

PLP-Partition m1 +
h−2∑
l=0

(nh−l−1 × (mh−l −1))
∑h

k=1 mk M 1+ M−m1
n 2×h +1 M upd ates M upd ates

Shared-Nothing m1 +
h−2∑
l=0

(nh−l−1 × (mh−l −1)) - M 1+ M−m1
n -

M i nser t s M i nser t s
M deletes M deletes

PLP (Clustered) m1
∑h

k=2 mk - - 2×h +1 - M upd ates

Shared-Nothing m1 +
h−2∑
l=0

(nh−l−1 × (mh−l −1)) - - - - M i nser t s M i nser t s

(Clustered) M deletes M deletes

to find the leaf page where the starting key of the new partition should reside (lines 4–8 in

Algorithm 1). Let’s assume that there are m1 entries that are greater than or equal to the

starting key on the leaf page where the slot for this key is found. All that needs to be done

is to move these m1 entries on that leaf page to a newly created (MRBTree) index page. This

procedure has to repeat as the tree is traversed from this leaf page to the root (lines 9–13 in

Algorithm 1). It is not necessary to move any entry from the pages that keep the key values

greater than the ones in the leaf page containing the starting key. Setting the previous/next

pointers of the pages at the boundaries of the old and new partitions is sufficient. Finally, a

new entry to the routing page should be added for the new partition.

The overall cost is given in the first row of Table 4.1. The cost model in Table 4.1 describes

the worst case scenario for PLP-Regular. If the starting key of the new partition is in one of

the non-leaf index pages, there is no need to move any entries from the pages that are below

this page because the moved entries from the non-leaf page already have pointers to their

corresponding child pages, resulting in fewer reads, updates, and moved entries.

PLP-Leaf

Figure 4.2 shows the three-step process for splitting a partition into two in PLP-Leaf. The

height of the subtree is two and the dark slot in Figure 4.2(a) indicates the slot that contains

the leaf entry with the starting key of the new partition. Figure 4.2(b) shows that a new subtree

is created as a result of the split. Those two steps are the same as the repartitioning process in

PLP-Regular and hence have the same cost.

However, as mentioned in Section 3.3.3, in addition to modifying the index structure, we

also have to move records from the heap file to new heap pages when repartitioning in PLP-

62

4.3. Repartitioning Cost

(a) (b) (c)

Figure 4.2: Example of splitting a partition in PLP-Leaf, which is a three-step process.

Algorithm 2 Splitting heap pages in PLP-Leaf and PLP-Partition.

1: lea f = leftmost leaf page
2: Create pag enew

3: while lea f ! = NU LL {Omit for PLP-Leaf } do
4: for all t referenced by l ea fcur r ent do
5: if pag enew does not have space then
6: Create pag enew

7: Move t to pag enew

8: Update pointers at all the secondary indexes
9: lea f = lea f .next {Omit for PLP-Leaf }

Leaf. Algorithm 2 shows the pseudocode for updating the heap pages upon a partition split

in PLP-Leaf (and also PLP-Partition). The dark records on the heap pages in Figure 4.2(b)

indicate those records that belong to the new partition (subtree) and need to move. Those

records are referenced by the m1 leaf page entries that moved to the newly created subtree.

Therefore, in the worst case m1 records have to move (lines 4-7 in Algorithm 2). Since the

index is non-clustered, we have to scan these m1 entries in order to get the record ids (RIDs)

of the records to be moved and spot their heap pages. The result of the split after the records

are moved is shown in Figure 4.2(c). Whenever a record moves, its RID changes. Thus, once all

the records are moved, all the indexes (primary and secondary) need to update their entries

(line 8 in Algorithm 2) with the new RID values.

The cost for repartitioning in PLP-Leaf is given in the second row of Table 4.1. This cost, again,

illustrates the worst case scenario. If the starting key of the new partition is found in one of

the non-leaf pages, then no record movement has to be done since there will be no leaf page

splits and the constraint of having all heap pages referenced by only one leaf page is already

preserved. Moreover, even if the key is found on the leaf page, we might not have to move

all the records that are specified by the model above. If all the records on a heap page are

referenced only by leaf entries of the new partition, then these records can stay on that heap

page.

63

Chapter 4. Dynamic Load Balancing for PLP

(a) (b)

Figure 4.3: Splitting a partition when PLP-Partition is used.

PLP-Partition

In PLP-Partition, the process for splitting the index structure is the same as in PLP-Regular

and PLP-Leaf. Therefore, it is omitted from Figure 4.3, which shows the rest of the process for

splitting a partition into two in PLP-Partition.

In the worst case, in PLP-Partition we may have to move records from all the heap pages

that belong to the old partition. Those records are indicated by the dark rectangles in the

heap pages of Figure 4.3(a). The number of records to be moved is equal to the number of

entries that are on the leaf pages of the new subtree. As in PLP-Leaf, the RIDs of the records

are retrieved with an index scan on the newly created subtree, the records are moved to new

heap pages and they get new RIDs, and all the indexes are updated with the new RIDs after

the record movement is completed (shown in lines 3-9 in Algorithm 2). The result of the

partitioning is shown in Figure 4.3(b), while the cost model for PLP-Partition is given in the

third row of Table 4.1.

Shared-Nothing

In a shared-nothing system, the cost for the record movement is equal to the worst case of

PLP-Partition since the entire old partition needs to be scanned for records that belong to the

new partition. In addition, the cost of index maintenance may be prohibitively expensive.

In a shared-nothing system, each record move across partitions results to a deletion of an

index entry (or entries if there are multiple indexes) from the old partition and an insertion

of an index entry to the new partition. This is in contrast with the PLP variant where every

record move is a result of a few MRBTree updates. The cost of index maintenance when

repartitioning shared-nothing systems sometimes can be prohibitive. In order to avoid the

index maintenance, a common technique is to drop and bulk-load the index from scratch

upon every repartition. The repartitioning cost for a shared-nothing system is given in the

fourth row of Table 4.1. Given how expensive repartitioning can be, shared-nothing systems

are reluctant to frequently triggering repartitioning.

64

4.3. Repartitioning Cost

4.3.2 Splitting Clustered Indexes

Let’s consider the case where we have a unique clustered primary index and a secondary index,

and the data partitioning is done using the primary index key columns. In this setup, no heap

file exists, since the primary index contains the actual data records rather than RIDs. Also, the

three PLP variations are equivalent, because their differences lie in how they treat the records

in the heap pages.

When the actual records are part of the clustered primary index, the cost of record movement

for PLP is equal to the number of leaf page entries that need to move, while the cost of primary

index maintenance is equal to the entry movements in the non-leaf pages of the MRBTree

index. The cost model is given in the fifth row of Table 4.1.

On the other hand, the repartitioning cost for the shared-nothing system is similar to its non-

clustered case. The only difference is there is no need to scan the leaf pages to get the RIDs of

the records to be moved since the leaf pages have the actual records. The repartitioning cost

model is given in the last row of Table 4.1.

4.3.3 Moving Fewer Records

With some additional information we can move less data during repartitioning while increasing

the number of reads. For example, in PLP-Partition instead of directly moving all the records

that belong to a new partition, we can scan all the index leaf pages to be split and collect

information for all the records. With this information, we can determine whether a heap page

has more records that belong to the old partition or the new partition and act accordingly.

More specifically, if a heap page has more records that belong to the new partition, we can

move the records that belong to the old partition instead. The number of reads while scanning

the leaf pages during this process can easily become a bottleneck in disk-resident databases,

due to the number of I/O operations that have to be performed. On the other hand, in in-

memory databases or systems that use flash storage devices, such I/O bottlenecks can be

prevented [31] and the above mentioned technique can reduce the amount of data movement

during repartitioning. This technique, unfortunately, cannot be used in a shared-nothing

system because the pages of the two partitions do not share the same storage space.

4.3.4 Example of Repartitioning Cost

Table 4.2 gives an example of the repartitioning cost for the different systems under considera-

tion based on the cost model given in Table 4.1. In this example, a partition, which contains

433MB of 100-byte data records in a heap file, is split into two. We assume that there is a

primary index of height 3 with 170 32-byte entries on each page. The first four rows of the table

assume there are a unique non-clustered primary index and a secondary index in the system,

whereas for the last two rows there are a unique clustered primary index and a secondary

65

Chapter 4. Dynamic Load Balancing for PLP

Table 4.2: Repartitioning costs when splitting a partition with 466 MB data into two (U: Updates,
D: Deletes, I: Inserts, M: Million).

System
Records Primary Index Secondary
Moved Entries #Pages #Pointer Changes Index

Moved Read Updates Changes
PLP-Regular - 8KB - 7 - -

PLP-Leaf 8.3KB 8KB 1 7 85 U 85 U
PLP-Partition 233MB 8KB 14365 7 2.44M U 2.44M U

Shared-Nothing 233MB - 14365 - 2.44M I + 2.44M D 2.44M I + 2.44M D
PLP (Clustered) 8.3KB 5.3KB - 7 - 85 U
Shared-Nothing

233MB - - - 2.44M I + 2.44M D 2.44M I + 2.44M D
(Clustered)

index. For the three PLP variations the number of moved records represents the worst case

scenario.

As Table 4.2 shows, the PLP variations, except for PLP-Partition, move very few records com-

pared to the shared-nothing one. In the worst case, PLP-Partition moves the same number

of records as the shared-nothing system. For the clustered index case, PLP is cheaper to

repartition than the shared-nothing system in terms of both record movement and index

maintenance. When we calculate the corresponding costs for a larger heap file with an index

of height 4, the repartitioning cost for the shared-nothing system and PLP-Partition becomes

prohibitive.

4.3.5 Cost of Merging Two Partitions

For any PLP variation, a merge operation only requires index reorganization and no data

movement. During the index reorganization, there are three cases to consider;

• when two subtrees have the same level,

• when the subtree with lower key values (Tl) has a higher level than the other subtree, and

• when the subtree with higher key values (Th) has a higher level than the other subtree.

When the two subtrees to be merged have the same level, the entries of Th ’s root are ap-

pended to the entries of Tl ’s root. Since the entries of the root page have information about

the pointers to the lower levels of the tree, copying the entries of the root page is sufficient for

this merge operation. In this case the cost of the merge operation only depends on the number

of entries in the root page of Th . If the number of entries destined to the new root exceeds the

page capacity, a new root page is created (through a structure modification operation), the

same way a page split happens after a record insert.

When Tl is taller than Th , Tl is traversed down to one level higher than the level of Th . Then

an entry is inserted at the rightmost page of this level that points to Th and has the key value

66

4.4. A Dynamic Load Balancing Mechanism for PLP

equal to the starting key of the key range of Th . Therefore, the cost of the merge operation

is only a tree traversal, which depends on the level difference between the two trees, and an

insert operation in this case.

When Th is taller, the merge operation is very similar to the second case and the cost is the

same. Th is traversed down to one level higher than the level of Tl and instead of the rightmost

page, the leftmost page gets the entry that points to Tl and has the key value equal to the

starting key of the key range of Tl .

After the delete operation, the partition table is updated according to the new key range and

its corresponding subtree root page id.

In a shared-nothing system, however, we have to move all the records from one partition to

the other and insert the corresponding index entries at the resulting partition. Therefore, the

cost of the merge operation is proportional to the number of records in a partition and its way

higher than the merge cost for any PLP variation.

We conclude that, in contrast with shared-nothing systems, the PLP-Regular and PLP-Leaf

designs provide low repartitioning costs that allow frequent repartitioning attempts and facili-

tate the implementation of responsive and lightweight dynamic load balancing mechanisms.

We present one such mechanism in the next section.

4.4 A Dynamic Load Balancing Mechanism for PLP

At a high level, any dynamic load balancing mechanism has the same functionality. During

normal execution it has to observe the access patterns and detect any skew that causes load

imbalance among the partitions. Once the mechanism detects the troublesome imbalance,

it triggers a repartition procedure. It is very important for the detection mechanism to incur

minimal overhead during normal operation and not to trigger repartitioning when it is not

really needed. After the mechanism decides to repartition, it should determine a new parti-

tioning configuration, so that the load is again uniformly distributed. This decision depends

on various parameters, such as the recent load of each partition and the available hardware

parallelism. Finally, after the new configuration has been determined, the system has to

perform the actual repartitioning. The repartitioning should be done in a way that minimizes

the drop in performance and the duration of this process.

Thus, any dynamic load balancing mechanism that we build on top of PLP (or any partitioning-

based system in general) should;

• perform lightweight monitoring,

• make robust decisions on the new partition configuration, and

• repartition efficiently when such decision is made.

67

Chapter 4. Dynamic Load Balancing for PLP

Figure 4.4: A two-level histogram for MRBTrees. The buckets that track the load across
partitions (left-hand side) and the sub-buckets that track the load distribution within each
partition (right-hand side).

Section 4.3 has already shown that PLP provides the infrastructure for efficient repartitioning.

In this section, we present techniques for lightweight monitoring (Section 4.4.1) and deciding

on the new partitions (Section 4.4.2). We call the overall mechanism DLB.

4.4.1 Monitoring

DLB collects information about the system’s load across partitions and stability dynamically

through monitoring some indicators of such system behavior. This monitoring is crucial to

decide:

• when to trigger a repartition operation and

• what the new partitioning configuration should be.

Candidate indicators to monitor are

• the overall throughput of the system,

• the amount of work each partition performs (the length of the request queues of each

partition’s worker thread), and

• the number of data accesses in each partition (the statistics kept by the two-level histogram

structure described below).

Throughput is one of the indicators of a system’s stability. However, it is not enough to be able

to trigger repartitioning whenever it is needed. For example, let’s consider that DLB monitors

only the overall throughput of the system and raises flags when changes in throughput are

larger than a threshold value. If the initial partitioning configuration of the system is not

68

4.4. A Dynamic Load Balancing Mechanism for PLP

10time 1: load: 1000

weight: 100 25 33 50

0 0 0

weight: 50 100 25 33
time 2: 10 0 0 load: 250020

weight: 33 50 100 25

time 3: 10 20 0 load: 433030

weight: 25 33 50 100

time 4: 10 20 30 load: 641040

50

weight: 100 25 33 50

time 5: 20 30 40 load: 8490

Figure 4.5: The aging algorithm example. Each row shows the state of a histogram sub-bucket
that corresponds to a sub-range of a partition during the indicated time period at the left-hand
side. This sub-bucket has four age-buckets; i.e., tracks four time periods. The gray age-bucket
indicates the access count to this sub-range during the current time period, which is given
higher weight while calculating the access load for this particular sub-bucket/sub-range.

optimal, then the throughput monitoring might fail in capturing the effect of load imbalance

(e.g., having load imbalance, but stable throughput from the start). Furthermore, there might

be uniform drops or increases in the incoming request traffic for each partition, which would

trigger unnecessary repartitioning. Finally, the information about the throughput is not useful

for the DLB component that decides on the new configuration (presented in Section 4.4.2).

Therefore, DLB also maintains information about the load of each partition.

To determine the load of individual partitions, DLB monitors the request queue length of

each partition (request loads) and a two-level histogram structure that employs aging (access

loads). The request queues help in detecting the load imbalance across partitions, whereas

the aging two-level histogram maintains load distribution within each partition. Figure 4.4

sketches the histogram structure. In addition to the one high-level bucket that keeps the access

count for the whole partition (left-hand side of Figure 4.4), the histogram has sub-buckets for

counting the accesses to the sub-ranges in a partition’s key range (right-hand side of Figure 4.4).

The number of sub-buckets within each partition is tunable and determines the monitoring

granularity.

Each sub-bucket in the histogram is implemented as an array of age-buckets, shown in Figure

4.5 with an example. There is one active age-bucket at a time. When a record is accessed,

the active age-bucket of the sub-bucket that this record’s partition range corresponds to is

incremented by one. At regular time intervals the age of the histogram increases. Whenever

the age of the histogram increases, the next age-bucket is reset and starts to count the accesses.

When calculating the access load of a sub-bucket in the histogram, the recent age-buckets

are given more weight than the older ones. More specifically, if a sub-bucket consists of A

age-buckets, the access count value in the i th age-bucket is li , and the current age-bucket is

69

Chapter 4. Dynamic Load Balancing for PLP

the cth bucket, then we calculate the access load L for the sub-bucket as follows:

L =
A+c−1∑

i=c

100× li mod(A)

(i − c +1)
.

DLB frequently monitors the throughput and the length of the request queues to detect load

imbalance and trigger repartitioning. On the other hand, it analyzes the histograms only after

repartitioning is triggered. The overall monitoring mechanism incurs very low overhead (as

Section 4.5.2 evaluates) and it also provides adequate information for DLB to decide on the

new partitions.

4.4.2 Deciding New Partitioning

DLB’s algorithm for reconfiguring the partition key-ranges depends on the monitoring of the

worker threads’ request queues and aging two-level histogram structure discussed previously.

This section first describes the algorithm that determines the new partition ranges for a single

table and then it adopts this algorithm for multiple tables.

Deciding on the new partitioning within a single table

To describe the algorithm, let N be the total number of partitions and Qi be the number of

requests at the request queue of the i th partition. Then, the ideal number of requests for each

partition’s queue is:

Qi deal =
N∑

i=1

Qi

N
.

Knowing Qi deal , DLB has to decide on the ideal data access load for each partition. Let Li be

the access load of the i th partition, which can be calculated as the sum of the access loads of

its sub-buckets. If the access load of the j th sub-bucket in i th partition is Li (j) (calculated as

shown in Section 4.4.1) and there are M sub-buckets in each partition, then Li is:

Li =
M∑

j=1
Li (j).

DLB calculates the ideal data access load for partition i (LIi) using the ideal request load

(Qi deal), the request load of partition i (Qi), and the access load of partition i (Li). Therefore,

LIi is:

LIi = Qi deal ×Li

Qi
.

70

4.4. A Dynamic Load Balancing Mechanism for PLP

Algorithm 3 Calculating ideal loads.
Total number of partitions is N .
Total number of sub-buckets is M .
The access load for partition i is Li .
The access load for sub-bucket j in partition i is Li (j).
Ideal access load for partition i is LIi .
The ideal access load range for partition i is [LIi − t ,LIi + t].

1: for i = 1 → N −1 do
2: while Li < LIi − t do
3: {Move leftmost (0th) sub-bucket range from i +1 to i }
4: if Li +Li+1(0) > LIi + t then
5: Split sub-bucket range for Li+1(0) into two
6: else
7: Li = Li +Li+1(0)

8: while Li > LIi + t do
9: {Move rightmost (Mth) sub-bucket range from i to i +1}

10: if Li −Li (M) < LIi − t then
11: Split sub-bucket range for Li (M) into two
12: else
13: Li = Li −Li (M)

The reason for DLB to involve both the request loads from the request queues of the worker

threads (Qi) and access loads from the aging two-level histogram (Li) while calculating the LIi

values is that not all data accesses create the same amount (or duration) of work. Qi is a better

indicator of a partition’s load in terms of the amount of work the partition has to perform,

whereas Li correlates this amount to the data access within that partition.

Since the granularity of the access load information depends on the number of sub-buckets

in the histogram, it is difficult for DLB to achieve precise ideal loads after repartitioning.

Therefore, DLB only tries to approximate the ideal value. Algorithm 3 sketches how the new

key-ranges are assigned. DLB iterates over all partitions except for the last one. While the

estimated access load Li at a partition is less than LIi − t for some t value, it moves the key

range of the leftmost sub-bucket from the (i +1)th partition to i th. Similarly, while the load at

a partition is larger than LIi + t , it moves the key range of rightmost sub-bucket from the i th

partition to (i +1)th. If the moved sub-bucket causes a significant change in the calculated

load (more than 2× t), then this sub-bucket’s range is divided into two and the sub-bucket is

substituted by two new sub-buckets. In this case, the number of sub-buckets in that partition

increases by one and the access load of the old sub-bucket is distributed equally between the

new sub-buckets.

Figure 4.6 has an example of how Algorithm 3 is applied. In the example, there are three

partitions on a table and Figure 4.6 shows the two-level histogram for each partition. The

first-level of the histogram tracks down the number of accesses to a partition’s range, which

is 40 units in this example. The second-level of the histogram, the 4 sub-buckets, keeps the

71

Chapter 4. Dynamic Load Balancing for PLP

Figure 4.6: Example of how to decide on the new partition ranges.

number of accesses to sub-ranges in a partition, which is 10 units in this example. The higher

bar in a sub-bucket indicates that the sub-range that corresponds to that sub-bucket has more

load. Initially, each partition has equal key-ranges, shown in the left-hand side of Figure 4.6.

If we assume that each partition has to perform an equal amount of work per request, the

loads in this configuration are not balanced among the partitions. Therefore, the repartition

manager triggers repartitioning. Based on Algorithm 3 the new partitions are decided by

moving around the sub-buckets to create almost-equal loads among the partitions. The result

is shown on the right-hand side of Figure 4.6; the most loaded regions end up in partitions

with smaller ranges, like the second partition in Figure 4.6, and the lightly loaded regions are

merged together.

Deciding the number of partitions of each table

The algorithm presented above is just for one table and assumes that the number of partitions

before and after the repartitioning operation does not change. To determine how many

partitions a table should have is another issue and requires knowledge of all the tables in the

database. 2

In our setting, initially, the number of partitions for a table is determined automatically to be

equal to the number of hardware contexts supported by the underlying machine. To find what

the number of partitions for a table should be dynamically, based on the workload trends; let

• T be the number of tables,

• Ntot al be the upper limit on the total number of partitions for the whole database,

• Qi be the total number of requests for table i ,

• Ni be the number of partitions for table i ,

2 In [154], we propose a more advanced version of this process.

72

4.4. A Dynamic Load Balancing Mechanism for PLP

• QTav g be the average number of requests for all the tables,

• Nav g be the average number of partitions for a table, and

• #C T X be the total number of available hardware contexts supported by the machine being

used to run the database system.

Based on the initial total number of partitions, we define Ntot al as:

Ntot al = T ×#C T X .

As a result, Nav g will be:

Nav g = Ntot al

T
= #C T X .

The QTi values are known from the request queues, and therefore, QTav g can be calculated as:

QTav g =

T∑
i=1

QTi

T
.

The goal is to find the Ni values, which can be derived from the following formula:

QTav g

Nav g
= QTi

Ni
.

4.4.3 Using Control Theory for Load Balancing

In our prototype, the system immediately tries to adjust to a new configuration, once a target

load value is determined for each partition. Thus there is always the danger of over-fitting,

especially for the workloads that observe data access skew with frequently changing hot-spots.

Since repartitioning is not expensive for PLP (except for PLP-Partition), it can repartition

again very quickly to alter the bad effects of a previous bad partitioning choice. Rather

than directly aiming to reach the target load, a more robust technique would be to employ

control theory while converging to the target load [120]. Control theory can increase the

robustness of our algorithm, prevent the system from repartitioning unnecessarily and/or

resulting with wrong partitions, and reduce the downtime faced by PLP-Partition during

repartitioning. Nevertheless, it is orthogonal to the remaining infrastructure and it could

be easily integrated in the current design. The prototype implementation does not employ

control theory techniques. But the evaluation, presented next, shows that DLB allows PLP to

balance the load effectively.

73

Chapter 4. Dynamic Load Balancing for PLP

4.5 Evaluation

The goal of this section is to first quantify the overhead of the dynamic load balancing mecha-

nism under normal operation, and then, measure how quickly and effectively it reacts against

skew and load imbalances. More specifically, the evaluation measures the following:

• the overhead of DLB during regular transaction execution in Section 4.5.2,

• the effectiveness of DLB’s dynamic load balancing and repartitioning across PLP variants

in Section 4.5.2,

• DLB’s impact while accessing the hot spots of the database in Section 4.5.2, and

• the effect of the secondary indexes on DLB’s performance in Section 4.5.3.

4.5.1 Experimental setup

We evaluate three different design options:

• a non-partitioned system, labeled Conventional.

• a statically partitioned shared-everything system that employs the three PLP variations

(Section 3.3.3), labeled PLP-Regular, PLP-Partition, PLP-Leaf.

• our prototype system that integrates the DLB mechanism on top of PLP using the PLP

prototype from Section 3.4, labeled PLP-Reg-DLB, PLP-Part-DLB, and PLP-Leaf-DLB.

To allow fair comparisons the systems are built on top of the same storage manager, Shore-MT

[96, 172], and use the same driver code. All the experiments use the GetSubscriberData
transaction from the TATP benchmark. We picked this transaction since it probes a record

from the Subscribers table, which provides 10000 tuples per scaling factor (and per partition

in our experiments). Therefore, the number of records that have to change partitions after

repartitioning is good enough to understand the record movement cost among different PLP

variations. In addition, the short nature of the transaction also stresses the update of the data

access histogram DLB uses.

Finally, the experiments are performed on the same two multicore machines that are used to

evaluate PLP (Section 3.4.1): an x64 box, with four sockets of quad-core AMD Opteron 8356

processors, clocked at 2.4GHz and running Red Hat Linux 5; and a Sun UltraSPARC T5220

server with a 64-core Sun Niagara II chip clocked at 1.4GHz and running Solaris 10. We keep

the buffer pool sizes big enough to maintain the entire database in memory.

74

4.5. Evaluation

0

100

200

300

400

500

600

700

0 5 10 15 20

T
h

ro
u

g
h

p
u

t
(K

T
P

S
)

of Hardware Contexts Used

No Histogram

No Sub-bucket

2 Sub-buckets

5 Sub-buckets

10 Sub-buckets

20 Sub-buckets

Figure 4.7: Overhead of updating histogram for DLB under normal operation.

4.5.2 Overhead in Normal Operation

Under normal operation, DLB should impose minimal overhead. DLB’s monitoring compo-

nent performs three operations:

• maintaining the histograms with access information,

• continuously monitoring the throughput, and

• periodically analyzing the request queues of the worker threads

for detecting load imbalances.

Since the monitoring of the throughput and request queues is performed by a separate thread,

it should not affect the throughput of the system at all unless all the CPUs in the system are

utilized by the threads executing transactions. Therefore, the main source of overhead for DLB

is updating the histogram.

Figure 4.7 shows the overhead caused by updating the aging histogram for each data access.

Since the number of threads that try to update the histogram increases as we utilize more CPUs,

the overhead of updating the histogram increases as well. On the other hand, increasing the

number of sub-buckets does not have much effect. We note that the histogram is not a source

of contention since each partition has their own sub-buckets that they update. Therefore, the

overhead in updating the histogram purely comes from the extra work that a partition’s worker

thread has to perform while updating the histogram.

Overall, the monitoring component of DLB is fairly lightweight. On average histogram updates

cause a 6% drop in throughput compared to the system running without a histogram and the

maximum drop is 7-8%. Considering that the transaction we execute in our system is a short

read-only transaction, we actually evaluate the worst case behavior here. For a transaction

with updates, the number of transactions executed per second, and hence, the number of data

75

Chapter 4. Dynamic Load Balancing for PLP

0

100

200

300

400

0 5 10 15 20 25 30

T
h

ro
u

g
h

p
u

t
(K

T
P

S
)

Time (sec)

Conventional

PLP-Regular

PLP-Reg- DLB

PLP-Part-DLB

PLP-Leaf-DLB

Figure 4.8: Dynamic load balancing when at time t=10 50% of the requests are sent to 30% of
the database.

accesses would be lower. Fewer data accesses would cause fewer updates in the histogram,

and therefore, less overhead.

Reacting to load imbalances

In order to evaluate how effectively DLB handles load imbalances, we perform the same

experiment as the one in Figure 4.1. The PLP variations (PLP-Regular, PLP-Reg-DLB, PLP-Part-

DLB, and PLP-Leaf-DLB) use 64 partitions, apply aging every second, and the load difference

threshold value t is 10% of the ideal access load value for each partition. Initially the requests

are distributed uniformly and at time point 10 (sec), 30% of the database starts to receive 50%

of the requests.

As Figure 4.8 shows, the change in the access pattern causes a 30% drop in the throughput

of PLP-Regular, making its performance worse than the performance of the non-partitioned

Conventional system. On the other hand, the DLB-integrated PLP variations quickly detect

the skew and bring the performance back to the pre-skew levels in less than 10 seconds. In

particular, 2 seconds after the change in the access pattern, DLB has already decided on the

new partitioning configuration, and around 8 seconds later it has performed ∼126 repartition

operations (63 splits and 63 merges). The throughput has some spikes for a short time after

repartitioning, but in the end settles down.

In PLP-Reg-DLB, very few index entries are updated, leading to a shorter dip in throughput

during repartitioning. PLP-Leaf-DLB experiences an almost equally short dip. However, PLP-

Part-DLB suffers a much longer dip. For the statically partitioned PLP, Figure 4.8 has only the

results for the statically partitioned PLP-Regular since the drop in throughput is almost the

same for the other two statically partitioned PLP variations (PLP-Partition and PLP-Leaf).

DLB triggers a global repartitioning process, which affects all the partitions in the system. PLP-

Regular and PLP-Leaf can handle this process very well. However, such global repartitioning is

76

4.5. Evaluation

B
e

fo
r
e

A
ft

e
r

Figure 4.9: Partitions before and after the repartitioning.

Table 4.3: Average index probe times (in microseconds) for a hot record, as skew increases.

Skewed region (%) Before Skew After Skew After Repartitioning

50 69 67 65

20 67 66 63

10 69 66 62

5 68 64 61

2 68 64 60

not suitable for PLP-Partition. PLP-Partition is the closest to a shared-nothing system in terms

of repartitioning cost since it reorganizes a large number of heap pages (see Section 4.3 and

Table 4.1). Therefore, its non-optimal behavior with DLB is as expected.

Speeding Up Accesses to Hot Spots

When DLB is effective, the hot regions end up in narrow partitions. The indexes for these

partitions are shallower and provide shorter access times for the hot records. In addition, hot

records that previously belong to the same partition, due to their key proximity, end up in

different partitions. Figure 4.9 illustrates graphically the impact of DLB on the ranges of 10

partitions before and after repartitioning. The area within the rectangular region highlights

the hot range; it is 10% of the total area that receives the 50% of the total load. Initially, labeled

Before, the system has equal-length range partitions. After DLB kicks in and repartitioning

completes, labeled After, the hot region has shorter-length range partitions while the not-so-

loaded regions have larger-length partitions.

Table 4.3 shows the average index probe time (in microseconds) for a hot record as we increase

the skew. For this experiment we use a single table with 640000 records. There is an index on

this table, with 8KB pages and the primary key is an integer (4B). When there are 10 equal-

range partitions, the height of each partition’s subtree is 3. Each row in the table shows the

average access time of a randomly picked record from a hot region which gets 50% of all the

77

Chapter 4. Dynamic Load Balancing for PLP

Table 4.4: Average record probes per sec for a hot record, as skew increases.

Skewed region (%) After Skew After Repartitioning

50 13 13

20 7 29

10 7 73

5 32 108

2 63 155

requests, as the range of the hot region decreases – and the skew increases. The first column

(Before Skew) shows the average access time when the requests are uniformly distributed. The

second column (After Skew) shows the average access time when DLB is disabled and the

request distribution is skewed. The third column has the average access time after DLB kicked

in and completed a repartitioning.

As Table 4.3 shows, the access times for the randomly picked record are lower after we set the

skew. This is probably due to some caching effect since the record is accessed more frequently

when there is skew in data accesses. However, the access time after repartitioning is the lowest

since the height of the subtree in the new hot partition is 2 whereas in the old partition it was

3 (the height of the subtrees for the other partitions remains as 3).

Table 4.4 shows the number of finished requests for the hot record after the skew and after

DLB’s repartitioning. Before repartitioning fewer requests are satisfied for the picked record

because its partition is highly loaded with requests for other records in the same hot partition

range. DLB distributes the hot range among multiple shorter-range partitions. Therefore, a

single partition can serve more requests for the hot record. This results in a small throughput

increase after repartitioning in Figure 4.8.

4.5.3 Overhead of Updating Secondary Indexes for DLB

In PLP-Leaf and PLP-Partition, whenever a record moves, every non-clustered index of the

table needs to be updated with the record’s new RID (see Section 3.3.3). This section measures

the overhead of updating secondary indexes during repartitioning.

Figure 4.10 shows the effect of increasing the number of secondary indexes of a table on

repartitioning under PLP-Leaf and PLP-Partition. Initially, there are 2 partitions of 320000

records each that receive uniform requests. After 5 seconds, 50% of the requests are sent to

only 10% of the table and DLB triggers a repartitioning. We measure the throughput of the

system as we increase the number of secondary indexes on the Subscribers table in the TATP

database, from none up to 4 secondary indexes (indicated by the different lines on the graph).

As Figure 4.10 shows, the overhead for PLP-Leaf to update the secondary indexes is relatively

low, because very few or none of the records needs to be moved. On the other hand, the

78

4.6. Related Work

0

3

6

9

12

15

18

0 5 10 15 20

T
h

ro
u

g
h

p
u

t
(K

T
P

S
)

Time (sec)

PLP-Leaf

0

1

2

3

4

0

3

6

9

12

15

18

0 5 10 15 20

T
h

ro
u

g
h

p
u

t
(K

T
P

S
)

Time (sec)

PLP-Partition

Figure 4.10: Overhead of updating secondary indexes during repartitioning for PLP-Leaf
and PLP-Partition. At time t=5 50% of the requests are sent to only 10% of the database,
which triggers repartitioning. Each line marked with number X indicates that the table has X
secondary indexes.

overhead for PLP-Partition is much higher. PLP-Partition has to move a lot more records and

hence update more entries in the secondary indexes. Therefore, repartitioning in PLP-Partition

takes longer as we increase the number of secondary indexes for a table.

4.6 Related Work

Most of the related work on dynamic load balancing and repartitioning targets clustered

(shared-nothing) environments. For example, Achyutuni et al. [1] analyze and compare differ-

ent approaches for index reorganization during repartitioning in shared-nothing deployments.

Lee et al. [118] propose an index structure similar to MRBTree, which eases the index reorgani-

zation during repartitioning in a shared-nothing system and Mondal et al. [131] extend this

design by keeping statistics for each branch referenced by the root page of a partition’s subtree.

While the structure of [131] enables the observation of access patterns at a fine granularity,

it gives all the accesses the same weight no matter how recent or old they are. Our aging

two-level histogram assigns higher weight to the recent accesses. This allows us to have a

more accurate view of the skewed access patterns and detect load imbalances quickly.

Our work is orthogonal to techniques that determine initial partitioning configuration. For

example, in [164] the query optimizer is used to provide suggestions for the initial partitions,

while Schism [39] creates initial static partitions in a way to minimize the number of distributed

transactions by first representing the workload as a graph, and then, using a graph partitioning

algorithm. Such tools only create the initial configuration. If the workload characteristics

change over time, however, the system has to re-calculate the partitioning configuration and

perform repartitioning.

79

Chapter 4. Dynamic Load Balancing for PLP

An extension of Schism, Sword [157], proposes a graph algorithm that allows incremental

data movement among different partitioning solutions improving the partitions over time.

Horticulture [150] is another mechanism for automatic partitioning, which uses the database

schema, stored procedures for the target workload, and a workload trace from a prior run

while determining the data partitions. Both of these techniques enable dynamic repartitioning.

However, they give much higher weight to find the best possible partitions rather than handling

the repartitioning in a fast and lightweight manner at run-time.

Shinobi [201] uses a cost model to decide whether the benefits of a new partitioning con-

figuration are worth the cost of repartitioning. Shinobi focuses on insert-heavy workloads,

where data is rarely queried and when queried the queries focus on a small region of the

most recently inserted records. Its benefits primarily come from avoiding indexing the large

infrequently accessed parts of the database. We consider mainstream transactional workloads,

where the entire database is accessed and we cannot drop any indexes.

Finally, the histogram-based technique we use is influenced by previous work on maintaining

dynamic histograms on data distributions for accurately estimating the selectivity of query

predicates [47, 59]. In our case, we are interested in the frequency of accesses to a particular

data region rather than the data distribution.

4.7 Conclusions

Evolving and skewed data distributions and access patterns are one of the most important

problems of partitioned database management systems, which become increasingly im-

portant due to their natural potential of exploiting the benefits of modern hardware. Such

partitioned systems need mechanisms that enable them to quickly and effectively react to

changes in the load. In this chapter, we discussed challenges of robust dynamic load balanc-

ing and described one such solution, called DLB, for physiologically-partitioned transaction

processing systems since they provide a good infrastructure for repartitioning. Evaluation of

the proposed technique shows that it is lightweight, yet manages to detect and react effectively

to load imbalances.

80

Part IICharacterizing OLTP Benchmarks

81

5 From A to E: Analyzing TPC’s OLTP
Benchmarks

Introduced in 2007, TPC-E is the most recently standardized OLTP benchmark by TPC. Even

though TPC-E has already been around for seven years, it has not gained the popularity of its

predecessor TPC-C: all the published results for TPC-E use a single database vendor’s product.

TPC-E is significantly different than its predecessors. Some of its distinguishing characteristics

are the non-uniform input creation, longer-running and more complicated transactions, more

difficult partitioning, etc. These factors slow down the adoption of TPC-E. In turn, there is little

knowledge in the community about how TPC-E behaves micro-architecturally and within the

database engine.

To shed light on TPC-E, we implement it on top of a scalable open-source database engine,

Shore-MT, and perform a workload characterization study, comparing it with the previous,

much better known OLTP benchmarks of TPC: TPC-B and TPC-C 1. In parallel, we study the

evolution of the OLTP benchmarks throughout the decades. Our results demonstrate that TPC-E

exhibits similar micro-architectural behavior to TPC-B and TPC-C, even though it incurs less

stall time and higher instructions per cycle. On the other hand, within the database engine it

suffers more from logical lock contention. Therefore, we argue that, on the hardware side, TPC-E

needs less aggressive processors; whereas on the software side it can benefit from designs based

on intra-transaction parallelism, logical partitioning, and optimistic concurrency control to

minimize the effects of lock contention without introducing distributed transactions. 2

5.1 Introduction

For the past decades, the data management ecosystem and in turn the database and hard-

ware markets have evolved primarily around two applications: online transaction processing

(OLTP) and online analytical processing (OLAP). Transaction processing benchmarks are the

gold standard for comparing products by different database and hardware vendors, and are

regularly used for marketing purposes [86, 142]. For the last two decades, TPC-C [191] has

1 Due to the similarities between TPC-A and TPC-B (Section 2.4.1), we omit TPC-A in this study.
2 This chapter uses material from [186].

83

Chapter 5. From A to E: Analyzing TPC’s OLTP Benchmarks

been the most widely used OLTP benchmark by the majority of industry and academia. TPC-C

consists of simple short-running transactions with frequent updates and less frequent index

scans. On the other hand, the benchmark of choice for OLAP workloads is TPC-H [195]. TPC-H

observes more complicated long-running read-only queries with frequent index and file scans.

The data management stacks, from the database down to hardware, are typically optimized

for these two extreme benchmarks.

As Section 2.4 also detailed, the Transaction Processing Performance Council (TPC) introduced

the TPC-E benchmark [193] in 2007 in order to represent OLTP workloads more realistically.

TPC-E is an OLTP workload that includes transactions for real-time business intelligence

combined with client-side requests. It acts in between a typical OLTP and an OLAP benchmark.

The design decision for TPC-E was to create a sophisticated OLTP benchmark, having more

complicated and longer transactions when compared to TPC-C, relying on the extensive use

of non-primary indexes, observing data and access skew, applying integrity and referential

constraints, and being less amenable to partitioning.

Both industry and academia are slow at adopting TPC-E. For example, even though the

benchmark was standardized seven years ago, all the published results for TPC-E use the same

database product (Microsoft SQL Server) [194]. Due to TPC-E’s significant differences from

the other benchmarks, it is not easy to extrapolate how systems perform when they run TPC-E

(and TPC-E-like applications).

Existing experimental studies typically use database benchmarks other than TPC-E. Previous

studies of OLTP and OLAP benchmarks, either micro-architectural [3, 106, 161, 177] or profiling

[95, 97, 145, 147], provide valuable results. However, they fall short of explaining the behavior

TPC-E is expected to exhibit. Recent work that analyzes TPC-E either focuses only on the I/O

behavior [33, 104] or reports micro-architectural results on only one type of machine while

running TPC-E on a commercial RDBMS and treating the database as a black-box [54]. To

date, there is neither an analysis of the TPC-E benchmark on various hardware platforms nor a

comprehensive breakdown of the execution time with respect to database engine components.

This chapter performs a detailed study of TPC-E. We characterize where it spends time within

an open-source database engine and how it behaves micro-architecturally on two different

hardware platforms, one in-order and one out-of-order machine. In parallel, we compare

TPC-E to the well-known OLTP benchmarks and observe how TPC’s transactional benchmarks

have evolved over the years. Then, we discuss what kind of changes in database and hardware

systems can be more beneficial for such a workload.

The findings of our study are as follows:

• Our micro-architectural study demonstrates that TPC-E is actually very similar to the

previous OLTP benchmarks in terms of its micro-architectural behavior. It highly suffers

from L1 instruction misses and exhibits low instructions per cycle (IPC); IPC is smaller than

one on a machine that has ability to execute four. Thus, we argue that TPC-E-like workloads

84

5.2. Related Work

need less aggressive processors with a lower instruction issue width on the hardware side.

In addition, even though simultaneous multi-threading (SMT) hides some of the stalls

caused by instruction misses and almost doubles the IPC, we need more effective solutions

like intra-transaction parallelism [36, 145] or computation spreading [14, 30] to better

utilize modern processor cores.

• Our profiling study reveals that, within the database engine, TPC-E spends 70% more time

inside the lock manager compared to both TPC-B and TPC-C for a configuration with an

order of magnitude bigger database size. TPC-E’s more complicated schema and transac-

tions make it less straightforward to physically partition a TPC-E database to eliminate its

locking overhead due to the significant number of distributed transactions such a design

would cause. However, TPC-E can benefit from shared-everything designs that aim to

minimize locking with logical [145] or physiological partitioning [147], or systems that rely

on optimistic concurrency control [46, 116] to improve system performance.

The rest of the chapter is organized as follows. Section 5.2 surveys the related work. Section 5.3

describes our TPC-E implementation on top of Shore-MT [172] and experimental methodology.

Section 5.4 and Section 5.5 present the profiling and micro-architectural analysis, respectively,

for TPC-E in comparison with TPC-B and TPC-C. Finally, Section 5.6 summarizes the analysis

results, discusses possible design optimizations for both upcoming hardware and storage

managers for OLTP systems, and then, concludes.

5.2 Related Work

There is a large body of related work on workload characterization for database workloads.

Barrosso et al. [16] investigate the memory system behavior of OLTP and DSS style workloads

using TPC-B and TPC-D [192], respectively, both on a real machine and with a full-system

simulation. They find that these two types of workloads need different architectural designs

in terms of the memory system. Ranganathan et al. [161] use the same workloads as in [16].

However, they only focus on the effectiveness of out-of-order execution on SMPs while running

these workloads in a simulation environment. Neither TPC-B nor TPC-D can be representative

of TPC-E since TPC-E has much more complicated and longer-running transactions than

TPC-B and it is not completely read-only like TPC-D.

Keeton et al. [106] experiment with TPC-C on a 4-way Pentium Pro SMP machine and perform

a similar analysis to [16, 161]. Although TPC-C is closer to TPC-E compared to both TPC-B

and TPC-D, it still has major differences from TPC-E as described in Section 2.4. Stets et al.

[177] perform a micro-architectural comparison between TPC-B and TPC-C. We add TPC-E to

this comparison and also analyze what happens within the storage manager.

Ailamaki et al. [3] examine where the time goes on four different commercial DBMSs with

a micro-benchmark to have a finer-grain understanding of the memory system behavior of

multiprocessors. Hardavellas et al. [69] analyze OLTP, with TPC-C, and DSS, with TPC-H, on

85

Chapter 5. From A to E: Analyzing TPC’s OLTP Benchmarks

both in-order and out-of-order machines by using a simulation environment. Rather than

optimizing the hardware for the workloads, these two papers focus on the implications on the

DBMS side in order to utilize the underlying hardware more effectively. In this chapter, we

consider both the hardware and the DBMS design for optimal TPC-E execution.

Johnson et al. [95, 97] and Pandis et al. [145, 147] provide detailed analysis on where the

time goes within the storage manager for typical OLTP benchmarks. Their main aim is to

highlight components that become scalability bottlenecks in the existing systems and propose

alternative designs that remove those bottlenecks. Here, we also perform the same analysis

with TPC-E and discuss which of their techniques can or cannot help TPC-E, and also expose

the bottleneck on L1 instruction misses.

There are a few performance analysis papers that use TPC-E. For example, [33, 104] use I/O

traces of a production database server running TPC-E in order to study its I/O behavior. In [33]

the authors compare the I/O behavior of TPC-C and TPC-E. We do not study the I/O behavior.

For our experiments we use memory-resident databases and focus on the micro-architectural

behavior. Ferdman et al. [54, 55, 56] present a detailed micro-architectural analysis with many

types of workloads on Intel X5670 processors, focusing on the architectural design needs

of the scale-out workloads. They provide a comparison between the scale-out workloads

and server workloads, like TPC-C and TPC-E. Our analysis uses a very similar methodology

while analyzing the OLTP benchmarks micro-architecturally on our Intel X5660 processors

and our high-level conclusions corroborate their findings. In addition, we perform such a

micro-architectural analysis on different hardware platforms to understand the behavior

when we switch from an in-order core to an out-of-order one. Moreover, we also demonstrate

which components TPC-E stresses within the storage manager as opposed to a pure micro-

architectural study. Finally, Lang et al. [115] use TPC-E to show that a cluster of wimpy

(low-power Atom-based) nodes is not as energy-efficient as a cluster of traditional server-

grade processors (Xeon-based). This chapter does not focus on energy-efficiency.

5.3 Setup and Methodology

Before diving into the analysis results, here we describe the software setup and two servers

used for the analysis.

5.3.1 Hardware

We used two servers for our experiments: a Sun UltraSPARC T5220 and a server with two

Intel Xeon X5660 processors. Table 5.1 lists the characteristics of each server in detail. The

diversity and degree of hardware parallelism on these systems make them good candidates for

this study to reflect the behavior of the workloads we evaluate on different types of modern

hardware.

86

5.3. Setup and Methodology

Table 5.1: Server properties.

Server UltraSPARC T2 Intel Xeon X5660
of Sockets 1 2

of Cores per Socket 8 (in-order) 6 (OoO)
of Hardware Contexts 64 24

Clock Speed 1.40GHz 2.80GHz
Memory 64GB 48GB

L3 (shared) size / access latency - 12MB / 29 cycles
L2 (shared) size / access latency 4MB / 20 cycles -

L2 (per core) size / access latency - 256KB / 6 cycles
L1-I (per core) size / access latency 16KB / 3 cycles 32KB / 4 cycles
L1-D (per core) size / access latency 8KB / 3 cycles 32KB / 4 cycles

OS
SunOS 5.10 Ubuntu 10.04 with

Generic_141414-10 Linux kernel 2.6.32

5.3.2 TPC-E Implementation

We implement TPC-E in Shore-Kits, which provides a platform to implement benchmarks to

be run on Shore-MT (as detailed in Section 2.6). The query plans for the TPC-E transactions

are taken from a TPC-E implementation of a major database vendor. As for the index decisions,

we initially adapted the indexes from the same kit. Later, however, we had to change some

of the indexes in order to optimize performance when running on Shore-MT. For example,

Shore-MT’s API allows Shore-Kits to use only unclustered indexes, whereas the kit of the

commercial database uses clustered ones for the primary indexes. Therefore, the optimal

index decisions varied between Shore-Kits and the kit of the commercial database. Due to its

large number of tables and longer and more complicated transactions, TPC-E was by far the

most difficult benchmark implemented in Shore-Kits.

TPC-E stresses Shore-MT in ways previous benchmarks do not. It pinpointed code-paths,

exposing previously undetected bugs and performance bottlenecks. Therefore, it helped us to

further improve Shore-MT. For example, Shore-MT had an implementation of forward and

backward index scans. But the backward index scans were disabled, because they were causing

a large number of deadlocks in some workloads. Debugging and re-enabling backward index

scans in Shore-MT improved performance of TPC-E by three orders of magnitude on the Intel

server used in this study (Table 5.1).

5.3.3 Software Setup

We chose the most optimal configuration options we determined empirically for all the bench-

marks running on top of Shore-MT to make sure that we run them without any obvious

scalability bottlenecks and better utilize the hardware resources. In TPC-B we pad the records

of Branch and Teller tables so that a single database page only has a single record. This

87

Chapter 5. From A to E: Analyzing TPC’s OLTP Benchmarks

minimizes false sharing of database pages and avoids latching contention, which can be a fun-

damental bottleneck for typical shared-everything architectures (Chapter 3). We also enable

speculative lock inheritance (SLI) [95] and logging optimizations from Aether [97, 98] to reduce

the bottlenecks coming from the lock and log managers, respectively, for the benchmarks that

benefit from these techniques.

We use memory-resident databases for our experiments and flush the log to RAM due to

not having a suitably fast I/O sub-system. A configuration that allows I/O in our infrastruc-

ture might cause an unreasonably slow and highly suboptimal OLTP system, and therefore,

unrealistic micro-architectural conclusions.

Furthermore, for TPC-B and TPC-C we spread the requests based on the primary key of the

Branch and Warehouse tables, respectively, to reduce logical lock contention. In order to do

that, we picked scaling factors that are equal to the number of hardware contexts available on

the machine where a specific experiment is run, since the scaling factor is equal to the number

of Branches in TPC-B and Warehouses in TPC-C. In other words, on the Intel machine we

picked a scaling factor of 12 and 24 when hyper-threading is disabled and enabled, respectively,

and on the SPARC machine we picked a scaling factor of 64. Unfortunately, for TPC-E, it is not

straightforward determining how to spread the requests due to its more complex schema and

transactions that do not have correlation based on any primary key column for the majority of

the database tables. To be able to run an in-memory database, we picked a database size that

contains 1000 customers for TPC-E. We set the working days and scaling factor parameters

to 300 and 500, respectively, which are the default values for these parameters in the TPC-E

specification.

5.3.4 Experiments

On the Intel machine, we experiment with two cases; when hyper-threading (HT) is off

and when it is on. When hyper-threading is on, the Intel machine supports two hardware

contexts running at the same time on one core to be able to overlap the stall time of one of

the threads with the execution of the other. This property is analogous to the simultaneous

multi-threading (SMT) support in the SPARC machine where each core has support for eight

hardware contexts by default, which is actually one of the main design principles of the

UltraSPARC T2 architecture.

Before taking any measurements, we start with a newly populated database, make each worker

thread in the system execute 1000 transactions to warm-up the caches, and then perform a

one-minute run. The tools used to collect the hardware counter values and profiling results

during these runs are mentioned in the related sections.

88

5.4. Profiling Analysis

Table 5.2: High-level statistics of each benchmark per scaling factor.

TPC-B TPC-C TPC-E
of records ∼ 10 thousand ∼ 600 thousand ∼ 117 million

of heap pages 147 ∼ 12 thousand ∼ 1 million
of index pages 91 ∼ 6 thousand ∼ 1 million

Average per xct
of records accessed 4 36 149
of row-level locks 10 54 171

of higher-level locks 10 36 69
of unique heap pages accessed 4 23 40
of unique index pages accessed 4 33 33

of heap pages accessed 7 49 125
of index pages accessed 4 90 211

5.4 Profiling Analysis

In order to further understand the high-level characteristics of each benchmark, first, we

report statistical information collected from the storage manager in Section 5.4.1. Then, in

Section 5.4.2, our profiling analysis identifies the components of the storage manager each

benchmark spends the most time in.

5.4.1 High-level Analysis

Table 5.2 contains the high-level statistics of each benchmark to further highlight the changes

in complexity with each OLTP benchmark standardized by TPC. These statistics are indepen-

dent of the underlying hardware. We chose a scaling factor of one for each benchmark in

this part of the analysis. This corresponds to one Branch in TPC-B, one Warehouse in TPC-C,

and one-thousand Customers in TPC-E. For the initial database, we measure the number of

records each benchmark has and how many pages it uses in Shore-MT, which uses 8KB pages

by default. Then, we use the existing statistic measurements within Shore-MT to see how

many records, locks, and pages on average a transaction accesses for each benchmark while

performing a run with one worker thread executing transactions.

As expected, Table 5.2 re-emphasizes the complexity increase from TPC-B to TPC-E. TPC-E

has several orders of magnitude more records per scaling factor compared to TPC-B and

TPC-C, and a much larger database size as the total number of heap and index pages indicates.

TPC-B only touches one record per table; hence, it accesses few database locks and pages.

TPC-C accesses almost ten times the records TPC-B accesses per transaction in its transaction

mix, increasing the number of locks and database pages it accesses as well. Finally, TPC-E

performs around four times the record accesses of TPC-C, which is also reflected in the higher

number of row-level locks it has to acquire. However, the total number of locks acquired

does not increase accordingly since Shore-MT escalates to higher-level locking from row-level

89

Chapter 5. From A to E: Analyzing TPC’s OLTP Benchmarks

0

20

40

60

80

100

4 8 16 32 48 60 4 8 16 32 48 60 4 8 16 32 48 60

TPC-B TPC-C TPC-E

T
im

e
 B

re
a

k
d

o
w

n
 (

%
)

of Hardware Contexts Used

Other

Btree

Catalog

SM

BPool

Xct Mgr

Logging

Latching

Locking

Figure 5.1: Time breakdown as the machine load increases on UltraSPARC T2.

locking when a single transaction accesses more than a threshold of records (the default value

is twenty-five in Shore-MT).

Table 5.2 reports two values for the average number of pages accessed in a transaction: the

unique number of pages accessed and the total number of pages accessed, which is also the

number of times a page is requested from the buffer pool. Such a separation reveals that

even though TPC-E accesses more than twice the index pages that TPC-C does, the number

of unique index page accesses is the same for both workloads. The main reason for this is

TPC-E’s extensive index scans (Section 2.4.3). TPC-C does not re-access most of the index

pages it touches, while TPC-E does this very frequently for the index leaf pages during its index

scans; it sequentially reads an index leaf page and hence frequently reuses that page. This

results in TPC-E exhibiting lower L1 data cache miss rates as Section 5.5 shows.

5.4.2 Time breakdown

To get accurate time breakdowns within the storage manager, we use DTrace [48] on the SPARC

machine. Figure 5.1 presents the results of the profiling as we increase the machine utilization,

i.e., as we run more clients in the system.

Figure 5.1 highlights that the lock manager is one of the components where the OLTP bench-

marks spend most of their time in a shared-everything database management system, which

corroborates the results of [145]. The lock manager becomes the main bottleneck especially

for TPC-E, making it unable to utilize more than eight hardware contexts, while both TPC-B

and TPC-C are able to almost fully utilize the machine with smaller database sizes.

Looking at the other components in Figure 5.1 reveals that Logging is the next problematic

component for TPC-B and TPC-C. It becomes, however, less significant as we increase the

system utilization since we adopt the logging optimizations of [97] that benefit from combining

logging requests as the number of clients in the system increases. Btree and BPool (buffer-

90

5.4. Profiling Analysis

0%

20%

40%

60%

80%

100%

4 16 48 4 16 48 4 16 48

TPC-B TPC-C TPC-E

In
si

d
e

 t
h

e
 L

o
ck

 M
a

n
a

g
e

r
-

T
im

e
 B

re
a

k
d

o
w

n

of Hardware Contexts Used

Lock-PC

Lock-LC

Lock

Figure 5.2: Time breakdown inside the lock manager as the machine load increases on Ultra-
SPARC T2.

pool) come after Locking and Logging, since a transaction’s execution is highly dependent

on its index operations. The rest of the major components of a storage manager are Catalog

(metadata manager), SM (storage manager API functionality), Xct Mgr (transaction manager),

and Latching; in which none of the workloads spends a major part of their execution time.

Figure 5.2 focuses on the time spent inside the lock manager and shows the time breakdown

of sub-categories:

• Physical lock contention, Lock-PC, represents the time spent while a thread tries to append

its lock request to the linked-list of lock requests for a particular record or table lock.

• Logical lock contention, Lock-LC, represents the time spent until a record or table lock is

granted after the lock request is appended to the list of requests for this lock.

• Finally, locking, Lock, is the time spent on performing the locking operation aside from the

waiting time.

TPC-E mainly suffers from logical lock contention (Lock-LC) even though we use a larger

database size for it compared to TPC-B and TPC-C. There are three main reasons for this

outcome:

• TPC-E observes data and access skew, turning some of the data regions into hotspots (e.g.,

Last_Trade table),

• TPC-E transactions acquire on average more locks since they access a larger number of

database records, and

• TPC-E transactions hold the locks they acquire for a longer duration since they are more

complicated, longer running, and scan-heavy transactions.

91

Chapter 5. From A to E: Analyzing TPC’s OLTP Benchmarks

Table 5.3: Number of worker threads used for benchmarks on the two machines.

Server UltraSPARC T2
Intel Xeon X5660
No HT HT

TPC-B 48 10 18
TPC-C 60 10 18
TPC-E 4 12 24

TPC-B and TPC-C, on the other hand, do not suffer from logical lock contention since the

system can properly spread the requests and SLI [95] prevents physical lock contention from

becoming problematic, leaving only the actual locking operation as the main time-consuming

component within the lock manager.

However, as we will see in Table 5.3, the lock contention is not as problematic when we run

TPC-E on the Intel machine, which has faster processors than the SPARC machine. The faster

the processor, the faster the lock acquisitions and releases are, and hence the less time spent

on lock contention. We come across this fact also when we run TPC-B. When two threads want

to access the same Branch in a TPC-B database, they first acquire a read lock on the wanted

Branch during the index probe according to ARIES/IM [129] (the default concurrency control

scheme in Shore-MT). Later, when they want to upgrade their read locks to exclusive ones

to update the Branch, they both wait for each other and they deadlock. While on the SPARC

machine we observe such deadlocks, TPC-B runs without deadlocks on the Intel machine since

the lock acquisitions are faster. Switching to ARIES/KVL [128], which has stricter concurrency

control rules than ARIES/IM, makes this type of deadlocks disappear on the SPARC machine

as well.

5.5 Micro-architectural Analysis

While performing a micro-architectural analysis for the OLTP benchmarks, we try to answer

the following questions:

• Where do CPU cycles go on different types of modern hardware? Are they wasted on

memory stalls or used to retire an instruction?

• Do stalls happen mainly due to instructions or data?

• What are the instruction and data miss rates?

• How much instruction-level (ILP) and memory-level (MLP) parallelism do OLTP bench-

marks exhibit?

• What is the effect of simultaneous multi-threading (or hyper-threading)?

All the numbers reported in this section were obtained when the workloads have their peak

performance on the corresponding server with their optimal configuration on Shore-MT. Table

92

5.5. Micro-architectural Analysis

0%

20%

40%

60%

80%

100%

No HT HT No HT HT No HT HT

TPC-B TPC-C TPC-E

E
xe

cu
ti

o
n

 T
im

e
 B

re
a

k
d

o
w

n

Stalled (App)

Stalled (OS)

Busy (App)

Busy (OS)

Figure 5.3: Execution time breakdown for three OLTP benchmarks on an OoO processor with
and without hyper-threading.

5.3 shows the number of worker threads executing transactions in the system when the peak

throughput is achieved for each workload on each server. Adding more worker threads to the

system on top of the numbers reported in Table 5.3 causes degradation in throughput, either

due to contention on shared records and storage manager objects or over-saturation of the

machine being used.

5.5.1 OLTP on an Out-of-Order Processor

This section presents micro-architectural results from the Intel Xeon X5660 processors. We

use VTune [89], which provides an API to ease the use of the hardware counters on this

machine. We emphasize that the execution time breakdown on a superscalar out-of-order

(OoO) processor cannot be precise due to overlapping of different execution components [51].

However, considering the low IPC of the workloads we are experimenting with (Figure 5.6

and Figure 5.8), we can assume that not much work is overlapped. Nevertheless, we draw the

execution cycles that might be overlapped side-by-side rather than on top of each other.

Intel Xeon X5660 processors support hyper-threading, running two hardware contexts on one

core at the same time. The goal of hyper-threading is to overlap the stall time of one thread

with the execution of another. In the following subsections, for each experiment we present

results when hyper-threading is disabled and when it is enabled.

Execution time breakdown

Figure 5.3 shows the breakdown of the execution cycles into busy and stall time for the three

benchmarks. We count the cycles in which at least one instruction is retired as busy and where

no instruction is retired as stalled.

In Figure 5.3, we see that more than half of the execution time is spent on stalls for all the OLTP

benchmarks. While TPC-B and TPC-C show very similar behavior in terms of the percentage

93

Chapter 5. From A to E: Analyzing TPC’s OLTP Benchmarks

0%

20%

40%

60%

80%

100%

No HT HT No HT HT No HT HT

TPC-B TPC-C TPC-E

C
o

re
 S

ta
ll

s
B

re
a

k
d

o
w

n

Frontend (Instruction) - App

Frontend (Instruction) - OS

Backend (Resource) - App

Backend (Resource) - OS

Figure 5.4: Core stalls breakdown for three OLTP benchmarks on an OoO processor with and
without hyper-threading.

of busy and stalled cycles, TPC-E seems to observe fewer stalled cycles. This behavior results

in a higher IPC value for TPC-E (see Section 5.5.1). As expected, when hyper-threading is

enabled, the stalled cycles increase in the overall execution time since two threads instead of

one share the private L1 and L2 caches, evicting each other’s data and instructions from the

cache, thus, causing more cache misses.

Figure 5.3 also breaks the execution time into time spent on the operating system operations

(OS) and application itself (App). This separation demonstrates that for our configuration, the

OS does not contribute much to the overall execution time.

Core stalls

As presented in the previous section, stalls dominate the total execution time of OLTP bench-

marks. The estimated breakdown of these stalls into resource, which also includes data, and

instruction stalls are given in Figure 5.4. We count resource stalls within a core, mainly stem-

ming from the re-order buffer (ROB) being full, as backend/resource stalls while the remaining

stalls as frontend/instruction stalls. We, again, separate OS and application stalls even though

the OS does not contribute significantly to the total stall time.

As Figure 5.4 demonstrates, the main cause of core stalls is the frontend stalls for the OLTP

benchmarks. In other words, a core spends most of its execution cycles waiting for instructions,

since it cannot find them in its private L1 instruction cache. The percentage of the frontend

stalls is higher for TPC-E compared to both TPC-B and TPC-C. We link this behavior to the

lower data miss rate of TPC-E (see Figure 5.5), which increases the percentage of stalls for

instructions.

In addition, hyper-threading increases the percentage of the backend stalls. Two threads shar-

ing the resources of one core with hyper-threading can increase the hit rate of the instruction

cache more than the data cache, because transactions tend to share more instructions than

data (as Section 6.6 shows).

94

5.5. Micro-architectural Analysis

0

20

40

60

80

100

No

HT

HT No

HT

HT No

HT

HT

TPC-B TPC-C TPC-E

M
is

se
s

p
e

r
k

-I
n

st
ru

ct
io

n
s LLC L2D L1D L2I L1I

0

50

100

150

200

250

300

350

400

450

No HT HT No HT HT No HT HT

TPC-B TPC-C TPC-E

S
ta

ll
 C

y
cl

e
s

p
e

r
k

-I
n

st
ru

ct
io

n
s

Figure 5.5: Number of misses per 1000 (k-) instructions for three OLTP benchmarks on an OoO
processor with and without hyper-threading and the estimated number of cycles spent on
these misses.

Data and instruction misses

Figure 5.5 shows the number of misses per k-instructions on the left-hand side and the

estimated number of cycles spent on these misses on the right-hand side. As we mentioned

before, we demonstrate the cycles spent on various cache misses side-by-side rather than on

top of each other because of the unknown overlapping cycles for these misses. We categorize

the cache misses into L1 instruction cache misses (L1I), L2 instruction misses (L2I), L1 data

cache misses (L1D), L2 data misses (L2D), and L3 or last-level cache misses (LLC). For stall

cycles due to cache misses, we use the expected penalty for that particular miss on the machine

being used. For LLC misses, we average the penalty for going to local memory and remote

memory.

What we observe is that L1 instruction cache misses dominate both the total number of

misses and the total number of cycles spent on those misses for all the OLTP benchmarks.

As mentioned previously, enabling hyper-threading increases the total number of misses in

general due to more threads sharing the cache resources.

TPC-E exhibits ∼35% fewer data misses and almost the same number of instruction misses,

regardless of its longer running and more complicated transactions. Since it performs more

scan operations, TPC-E can reuse the cache lines for data and instructions it needs more often

(as also mentioned in Section 5.4.1).

Instruction- and memory-level parallelism

Finally, Figure 5.6 shows how many instructions per cycle (IPC) these OLTP benchmarks can

execute per core on the left-hand side and how many long-latency misses (L2 miss) can be

overlapped (MLP) on the right-hand side.

95

Chapter 5. From A to E: Analyzing TPC’s OLTP Benchmarks

0

0.2

0.4

0.6

0.8

1

1.2

TPC-B TPC-C TPC-E

IP
C

No HT HT

0

0.4

0.8

1.2

1.6

2

2.4

2.8

TPC-B TPC-C TPC-E

M
L
P

Figure 5.6: Instructions committed per cycle (IPC) and memory-level parallelism (MLP) on an
OoO processor with and without hyper-threading.

An Intel Xeon X5660 processor has the ability to retire four instructions per cycle. However, by

looking at Figure 5.6, we see that OLTP benchmarks can hardly retire even one instruction per

cycle even though enabling hyper-threading provides some benefit. Overall, as the complexity

of the benchmark increases, going from TPC-B to TPC-E, the IPC also increases. It is expected

that TPC-E has a higher IPC value since it spends less of its execution time on stall cycles

compared to the other two workloads (Figure 5.4). Higher IPC stems from TPC-E observing

fewer L1 data misses (Figure 5.5) because of its frequent scan operations.

From the MLP values given in Figure 5.6, we also conclude that OLTP benchmarks do not

exhibit high MLP. Even though there are 48-entry load-store queues in this processor, OLTP

benchmarks do not have more than 2.7 outstanding long-latency misses even when hyper-

threading is enabled. While TPC-B and TPC-C observe very similar MLP values, TPC-E exhibits

less memory-level parallelism.

5.5.2 OLTP on an In-Order Processor

This section presents micro-architectural results from the Sun UltraSPARC T5220 server. We

use the hardware counters on this machine through the cputrack command [38], which

allows us to count various types of cache misses and number of instructions executed by each

thread.

UltraSPARC T2 is an in-order processor that supports simultaneous multi-threading. A core

provides support for eight hardware contexts and collocates two hardware contexts in the

pipeline in one cycle. Therefore, each of these hardware contexts uses one cycle in every four

cycles, aiming to overlap the stall time of other hardware contexts.

96

5.5. Micro-architectural Analysis

0

20

40

60

80

100

TPC-B TPC-C TPC-E

M
is

se
s

p
e

r
k

-I
n

st
ru

ct
io

n
s

L2D L1D L2I L1I

0

200

400

600

800

1000

1200

TPC-B TPC-C TPC-E

S
ta

ll
 C

y
cl

e
s

p
e

r
k

-I
n

st
ru

ct
io

n
s

Figure 5.7: Number of misses per 1000 (k-) instructions for the three OLTP benchmarks on an
in-order processor with simultaneous multi-threading and the estimated number of cycles
spent on these misses.

Data and instruction misses

Figure 5.7 shows the number of misses per k-instructions on the left-hand side and the

estimated number of cycles spent on these misses on the right-hand side as in Figure 5.5. On

this processor, we also cannot infer the overlapped operations and, as in Figure 5.5, we draw

the execution cycles that can be overlapped side-by-side rather than on top of each other. We

report L1 instruction cache misses (L1I), L2 instruction misses (L2I), L1 data cache misses

(L1D), and L2 data misses (L2D). For stall cycles due to misses, we use the expected penalty for

that particular miss on this machine.

Similar to the Intel machine, the main source of misses and stall cycles are also L1 instruction

cache misses as Figure 5.7 shows. On the other hand, the last-level cache (L2) maintains

almost all the instructions for these workloads running on Shore-MT. Due to having smaller

L1 data caches and more hardware contexts using the same private L1 cache in a core, L1

data cache misses contribute to a bigger portion of the total stall cycles compared to the Intel

machine.

The comparison among the three benchmarks in terms of misses look similar to the compari-

son we have on the Intel machine (Figure 5.5). The instruction miss numbers are very close to

each other for all the workloads and TPC-E has 50% fewer data misses compared to TPC-B

and TPC-C.

Instruction-level parallelism

Figure 5.8 shows the IPC values for the three OLTP benchmarks running on UltraSPARC T2.

Considering that this is an in-order machine, being able to execute instructions from two

hardware contexts in a cycle, the IPC being higher than one shows a more effective use of

the hardware resources compared to the Intel machine. While on the Intel machine OLTP

97

Chapter 5. From A to E: Analyzing TPC’s OLTP Benchmarks

0

0.4

0.8

1.2

1.6

TPC-B TPC-C TPC-E

IP
C

Figure 5.8: Instructions committed per cycle (IPC) on an in-order processor with simultaneous
multi-threading.

benchmarks can barely leverage less than half of the instruction issue width, on SPARC they

can utilize more than half of it.

5.6 Summary of Results and Conclusion

We present a thorough workload characterization study for TPC-E. We rely on profiling results

to determine where the time goes within the storage manager while executing TPC-E on top.

Furthermore, we use performance counters to investigate the micro-architectural behavior

on two different camps of modern hardware: aggressive out-of-order and lean in-order. We

compare TPC-E with previous OLTP benchmarks standardized by TPC, the well-studied TPC-

C and the obsolete TPC-B, to better understand what TPC-E-like workloads need from the

software and hardware.

As our micro-architectural analysis shows TPC-E has a higher IPC, observes lower miss rates,

and spends less of its execution time on memory stalls compared to TPC-B and TPC-C.

However, the fact that OLTP benchmarks commonly observe low IPC, spend most of their

execution time on memory stalls, and mainly suffer from L1 instruction cache misses still

remains. Going from an aggressive out-of-order processor to an in-order processor does not

change the micro-architectural characteristics of the OLTP benchmarks much. Therefore,

less aggressive processors (with fewer instruction issues) might be preferable for OLTP as

previously suggested [54, 161]. On the other hand, we observe that simultaneous multi-

threading (or hyper-threading) helps to overlap the stall time caused by cache misses to some

extent.

To minimize L1 instruction misses several software and hardware mechanisms might be

adopted. Software-side techniques that exploit intra-transaction parallelism [36, 145] divide

the transactions into smaller actions and run independent actions in parallel on different

nearby cores. Each action has smaller instruction footprint than the entire transaction and

a higher chance of fitting its instructions in the L1-I cache. Techniques like STEPS [72, 74],

98

5.6. Summary of Results and Conclusion

on the other hand, also splits transactions into smaller actions and batches transactions

on one core to ensure that the same actions from different transactions are executed one

after the other to maximize L1 instruction locality. On the hardware side, as Part III details,

computation spreading through thread migration [14, 30, 187] uses multiple cores to execute a

transaction and makes newer transactions reuse the instructions brought to the L1-I cache by

the older transactions. A more effective solution, however, would be to involve both software

and hardware enhancements to minimize the stall cycles due to instructions.

By looking at the time TPC-E spends inside the lock manager, the natural choice would be to

partition the database and deploy a shared-nothing design for it. Even though for TPC-B- and

TPC-C-like database schemas this would work very well [107, 179], for TPC-E such a design

would cause a lot of distributed transactions. There are two main reasons for this:

• Due to its complex schema, not all the TPC-E tables can be correlated with a single database

column like the Branch ID in TPC-B or Warehouse ID in TPC-C.

• The TPC-E transactions access a lot of database records from various tables and perform

frequent index scans using secondary indexes.

Therefore, it is not clear based on which columns we should partition TPC-E tables in a way to

minimize distributed transactions when we deploy a shared-nothing design.

On the other hand, a shared-everything design based on logical or physiological partitioning

like in DORA [145] or PLP (Chapter 3), respectively, might be more beneficial especially for TPC-

E-like workloads. Such designs successfully minimize locking and latching overhead within

the storage manager and do not suffer from distributed transactions like in a shared-nothing

design. In addition, optimistic and multiversion concurrency control schemes [22, 116] may

especially help TPC-E-like read-heavy workloads to improve concurrency by avoiding blocking

at the time of a potential conflict and rather lazily performing checks at commit time.

To sum up our results, looking at the high-level description and statistics for each benchmark,

we see that with each new OLTP benchmark standardized by TPC, we have a significant

increase in complexity compared to the previous ones. Within the storage manager, TPC-E

stresses the lock manager the most, like its predecessors, although it gets a higher penalty

within the lock manager due to logical lock contention on hot database records whereas

its predecessors suffer more from physical lock contention. However, regardless of these

differences, micro-architecturally, all the OLTP benchmarks that exist today observe very

similar behavior.

99

6 Transactions under the Microscope

As Chapter 5 highlights, OLTP workloads cannot exploit the full capability of modern processors.

To better integrate OLTP and hardware in future systems, we first perform a thorough analysis

of instruction and data misses, the main causes of memory stalls, using the standardized

OLTP benchmarks. We demonstrate which operations and components of a typical storage

manager cause the majority of different types of misses in each level of the memory hierarchy

on a configuration that closely represents modern commodity hardware. We also observe the

impact of data working set size on these misses.

According to our experimental results, L1 instruction misses are an extensive cause of the stall

time for OLTP even for data working set sizes as large as 100GB as long as the data fits in memory.

As the data working set size grows, the long-latency data misses also become a significant part

of the overall stalls. Capacity and compulsory misses coming from the index probe operation

are the dominant cause of instruction and data stalls, respectively. During index probe (one of

the most common operations in OLTP), the B-tree, lock, and buffer management components of

a storage manager are responsible for more than half of the total misses.

Following from the capacity related instruction misses, we also analyze what constitutes the

majority of the instruction footprint for different transactions. We observe that, independently

of their high-level functionality, transactions running in parallel on a multicore system execute

actions chosen from a limited subset of predefined database operations. Performing a memory

characterization study using the standardized OLTP benchmarks demonstrates that same-type

transactions exhibit at most 6% overlap in their data footprints, whereas there is up to 98%

overlap in instructions. 1

6.1 Introduction

Despite recent advances in transaction processing and computer architecture, traditional

online transaction processing (OLTP) exploits modern micro-architectural resources very

1 This chapter uses material from [184, 187].

101

Chapter 6. Transactions under the Microscope

poorly (Chapter 5). Most of the execution time (∼80%) goes to memory stalls; as a result,

on processors that have the ability to execute four instructions in a cycle, which is the most

common on modern commodity hardware, OLTP achieves around one instruction per cycle

(IPC) [54, 177]. Such under-utilization of micro-architectural features is a great waste of

hardware resources.

Several proposals have been made to reduce memory stalls through increasing cache hit rates.

These range from cache-conscious data structures and algorithms [32, 58] to sophisticated

data partitioning and thread scheduling [154] for data, and from compilation optimizations

[136, 159] to advanced prefetching [53, 105] for instructions. Although these techniques reduce

data or instruction misses to a great extent, some specifically targeting OLTP workloads and

some being more general, none of them has detailed insights on the sources of instruction

and data footprint and misses within the storage manager.

In this chapter, we thoroughly analyze the data and instruction misses of an OLTP system to

answer the following questions: (1) What types of database operations (scan, index probe, etc.)

and which parts of a storage manager (locking, logging, etc.) are responsible for various kinds

of misses? (2) How sensitive are the results to the data working set size of the workloads? In

addition, we characterize the memory behavior of typical OLTP workloads to quantify the

shared portion of the instruction and data accesses across different transactions. Our aim is to

give insights and hints to researchers and developers who would like to optimize their code

and data accesses in order to minimize memory stalls while running OLTP.

Using Pin [124], we extract instruction, data, and function traces from the Shore-MT storage

manager [172] while running the OLTP benchmarks standardized by the Transaction Process-

ing Performance Council (TPC) [188]. We replay the traces on a cache configuration that is

typical for modern commodity hardware and give miss rates, types, and breakdowns for the

main storage manager components as well as the overlaps in instruction and data footprint

among transactions at different granularities. Our contributions are listed below:

• We show that the L1 instruction cache misses account for a significant part (40-80%) of

the overall stall time even when the memory-resident data working set size increases

(from 0.1GB to 100GB). The data misses from the last-level cache is the next problematic

component, especially for the large data set sizes.

• We demonstrate that the cache associativity of typical server hardware is sufficient to

minimize the conflict misses for both data and instructions. The capacity misses are the

single dominant factor in instruction stalls while data misses are mainly compulsory.

• We identify the index probe operation as the leading component of the cache misses. We

also highlight the B-tree, lock, and buffer managers as the storage manager parts that

contribute to most of the instruction (∼55%) and data (∼60%) misses during an index

probe.

102

6.2. Related Work

• Our characterization of the memory behavior of the TPC OLTP benchmarks reveals that

same-type transactions exhibit 53% to 98% overlap in their instruction footprint while the

data overlap is at most 6%.

The rest of the chapter is organized as follows: Section 6.2 surveys related work in more detail.

Section 6.3 describes our experimental methodology. Section 6.4 presents a sensitivity analysis

on the data size. Section 6.5 first classifies the most problematic misses into conflict, capacity,

and compulsory ones, and then, associates various instruction and data misses into storage

manager operations and components. Section 6.6 details typical database operations and

presents the findings of our memory characterization study. Finally, Section 6.7 concludes the

chapter by summarizing the results and discussing possible solutions to minimize stalls.

6.2 Related Work

There is a large body of related work that analyzes various OLTP workloads from low-level

hardware-side analysis, e.g., workload characterization studies, to high-level software-side

ones, e.g., time breakdowns.

Previous workload characterization studies [16, 106, 161] investigate OLTP workloads at the

micro-architectural level. They all conclude that OLTP cannot exploit aggressive micro-

architectural features, wasting most of its time in memory stalls and exhibiting low IPC.

More recent workload characterization studies examine the behavior of OLTP workloads on

modern commodity hardware ([54], Chapter 5). They show the same high-level conclusions

with the older workload characterization studies demonstrating that, after almost 15 years,

OLTP still exploits the micro-architectural resources of the most commonly used hardware

types today very poorly. Even though these studies highlight the lower level problems of OLTP

on modern hardware, all of them consider the data management system as a black-box. There

is no clear attribution of the hardware-side problems to the software-side components of a

typical OLTP system.

On the other hand, Wenisch et al. [200] attribute the temporal streams in data cache misses

to the application components such as various kernel activities, SQL interpreter, storage

manager, etc. Here we go one step further and focus only on the storage manager. We map

both the data and instruction misses coming from the different levels of the cache hierarchy

of a modern commodity server to storage manager components and database operations. In

addition, complementary to this work, we investigate the sources of memory access overlaps,

within transactions and database operations.

Johnson et al. [95, 97] and Pandis et al. [145, 147] provide time breakdowns for typical

OLTP benchmarks showing where they spend the most of their execution time in the storage

manager. Their primary goal is to identify components that are scalability bottlenecks on

modern hardware and propose alternative design decisions to remove those bottlenecks. We

103

Chapter 6. Transactions under the Microscope

Table 6.1: Simulated memory hierarchy.

Processor Intel Xeon E5-2660
of Sockets 2

of Cores per Socket 8 (OoO)
of Hardware Contexts 32

Clock Speed 2.2GHz
Memory / access latency 125GB / 167 cycles (average of remote & local)

L3/LLC (shared) / access latency 20-way 20MB / 19 cycles
L2 (per core) / access latency 8-way 256KB / 8 cycles
L1 (per core) / access latency 8-way 32KB, split I/D / 4 cycles

Core width 4-wide retire and issue

provide similar breakdowns to spot the storage manager components that are responsible for

the majority of data and instruction stalls.

Harizopoulos et al. [76] detail where the time goes within the storage manager during a single

threaded execution in an OLTP system. They demonstrate that logging, latching, locking, and

buffer pool altogether take 75% of the total execution time. VoltDB [199], the commercial

version of the H-Store system [179], is designed based on these findings. H-Store specifically

aims to increase performance by eliminating all four problematic components with an in-

memory shared-nothing system design where each partition has only one worker thread. This

chapter aims at providing similarly valuable insights that complement this previous work by

mapping cache misses to storage manager components, thereby guiding future software and

hardware system designs on how to minimize memory stalls.

6.3 Setup and Methodology

In this chapter, we perform a trace simulation study rather than working with hardware

counters on real hardware (unlike what we did in Chapter 5). This allows us to change some of

the hardware parameters (like in Section 6.5.1) and have the detailed function call information

to map the various cache misses to software components.

Simulator and Traces

We build a custom trace simulator to replay the traces and calculate miss rates on various

cache configurations. For this study, we model the memory hierarchy of an Intel Xeon E5-2660

server, see Table 6.1 for details [88].

The data, instruction, and function name traces are collected from Shore-MT using Pin [124],

which can instrument x86 binaries. Pin is only able to instrument application level code;

therefore, the Pin traces do not include the system-level instructions. To measure the effect

of different storage manager components on cache misses, however, the application level

104

6.3. Setup and Methodology

trace contains all the necessary information. Moreover, the system time is very low in our

setup (application time is 200X more than the system time) since we keep the contention low,

run without network communication, and have the data working set size memory-resident

throughout the experiments.

Workloads

The traces are collected for three transaction processing benchmarks standardized by TPC

[188]—TPC-B [190], TPC-C [191], and TPC-E [193]—while running their workload mix on

the Shore-MT storage manager [172]. Except where indicated in Section 6.4, we use 100GB

databases. The buffer-pool is set big enough to keep the whole database in memory and

the log is flushed to RAM due to not having a suitably fast I/O subsystem. Allowing I/O in

our analysis would cause an unreasonable bottleneck considering our infrastructure, and

therefore, lead us to unrealistic micro-architectural conclusions. To further make sure we run

the most optimal configuration possible, all the logging (Aether [97]) and locking (SLI [95])

optimizations of Shore-MT are enabled.

We run a single worker thread while executing transactions to avoid any possible contention.

High contention in our system would cause the worker threads to spin on locks, waiting

to acquire them. This would artificially increase the instruction cache hit rate since the

spinning code is a short loop (with a small instruction footprint), and give misleading micro-

architectural results. Furthermore, cache coherence related data misses would increase under

high contention due to extensive data sharing. In this study, we would like to focus on a system

where the instruction and data accesses do not exhibit any anomaly due to high contention or

data sharing.

Measurements

We collect two trace files for each workload, where each file contains traces of 1000 different

transaction instantiations from the workload’s transaction mix. One of the trace files from

the same workload is run initially to account for cache warm-up. Then, the simulator starts

collecting statistics for cache misses while running the other trace file. All the simulated caches

use a LRU replacement policy and 64B cache lines.

To calculate the stall cycles due to cache misses, we multiply the number of misses by the

expected penalty for that particular miss as given in Table 6.1. For LLC misses, we average the

penalty for going to local and remote memory.

In stall time breakdowns, we do not account for the possible overlaps of different execution

components that would normally happen on a superscalar out-of-order (OoO) processor [51],

like the one this chapter models. Therefore, even though we draw the stall times on top of each

other, some are actually hidden either by other stalls or useful execution. For instructions, the

decoupled front-end and back-end of a core would be able to hide some of the stalls. For data,

105

Chapter 6. Transactions under the Microscope

0

5

10

15

20

25

30

35

40

45

0
.1

G
B

1
G

B

1
0

G
B

1
0

0
G

B

0
.1

G
B

1
G

B

1
0

G
B

1
0

0
G

B

2
0

G
B

1
0

0
G

B

TPC-B TPC-C TPC-E

M
is

se
s

p
e

r
k

-I
n

st
ru

ct
io

n
s L3D L2D

L1D L3I

L2I L1I

0

50

100

150

200

250

300

350

400

450

0
.1

G
B

1
G

B

1
0

G
B

1
0

0
G

B

0
.1

G
B

1
G

B

1
0

G
B

1
0

0
G

B

2
0

G
B

1
0

0
G

B

TPC-B TPC-C TPC-E

S
ta

ll
 C

y
cl

e
s

 p
e

r
k

-I
n

st
ru

ct
io

n
s

Figure 6.1: Effect of data size on MPKI (left-hand side) and stall time (right-hand side).

out-of-order execution can hide some of the data stalls while prefetching would reduce the

effect of some of the data misses. Nevertheless, although such overlaps can reduce the stall

time due to misses, the relative breakdown of the software-side components would be similar

even with more complex models that would account for the overlaps. Besides, considering the

low IPC of the OLTP workloads (Section 5.5), we can also assume that not much of the work is

overlapped.

6.4 Sensitivity to Data Size

We initially investigate the effect of increasing data size on the instruction and data misses

and stalls coming from different parts of the cache hierarchy. Figure 6.1 shows the misses per

1000 instructions (MPKI) on the left-hand side and the stall time they cause on the right-hand

side for all the workloads. We pick scaling factors that populate around 0.1GB, 1GB, 10GB, and

100GB data for both TPC-B and TPC-C. Since a scaling factor of one already creates ∼20GB

data for TPC-E on Shore-MT, we run TPC-E with 20GB and 100GB data only.

Looking at the MPKI values in Figure 6.1, we see that L1 instruction misses dominate the

total number of misses regardless of the data size. The domination of the instruction misses

also affects the stall time breakdown as shown in Figure 6.1. Even with 100GB data size, on

average 50% of the stalls are because of the L1 instruction misses. On the other hand, L1 and

L2 caches, together, are sufficient to keep most of the instruction working set of the workloads

we evaluate, keeping the rate of instruction misses from L2 and L3 caches low (at most 2% of

the stalls).

Long-latency data misses from L3 caches are the next significant component in the total stall

time, even though they form only ∼2% of the total MPKI. As expected, L3 data misses increase

as we increase the data size and for 100GB data, around 30% of the stalls are due to L3 data

misses. On the other hand, L1 and L2 data misses are not as problematic and probably can

106

6.5. Breakdown of Misses

be overlapped by out-of-order execution with other outstanding data misses or execution of

another instruction.

Compared to the other workloads, TPC-E observes fewer data and instruction misses even

though the general trends in different types of misses are very similar for all the workloads.

This trend corroborates previous results in [54] and Chapter 5, and can be attributed to the

increased number of scan operations from simpler workloads, like TPC-B, to more complex

ones, like TPC-E (Section 2.4). During a file or an index scan, the routine eventually converges

to only fetching the next tuple, which has lower instruction footprint than an index probe

operation from B-tree root to leaves. Moreover, a file or an index page is scanned from start

to end so almost all the parts of the cache lines brought from a database page are touched

leading to lower data MPKI.

We also see a decrease in L1 instruction cache MPKI, especially for TPC-B, as we increase

the data size. This might stem from the short loop statements in some of the sub-routines of

various database operations that need to iterate more as there are more data. For example, the

loop statement in the binary search sub-routine within the index probe operation performs

higher number of iterations if there are more data on a particular index page. As a result, the

same small instruction working set is executed more frequently at a given time, increasing the

chances of finding the required instructions in L1-I and reducing the instruction MPKI.

6.5 Breakdown of Misses

After examining the total MPKI, this section presents why the most problematic misses happen

and where they come from within the storage manager. More specifically, we give breakdowns

of the instruction and data misses and stalls for each level of the cache hierarchy in three

different granularities:

• 3C miss categories (compulsory, capacity, and conflict),

• database operations (index probe, tuple update, etc.), and

• storage manager components (lock manager, log manager, etc.).

6.5.1 Into Miss Categories

For each workload, Figure 6.2 breaks the instruction and data MPKI of the most problematic

misses, which are the L1 instruction and L3 data misses as shown in Section 6.4, into the

3C-categorization of Hill et al. [82]:

• Compulsory misses are the ones that are missed even with an infinitely-sized cache,

• Capacity misses are the extra misses a fully-associative cache observes on top of the

compulsory misses, and

107

Chapter 6. Transactions under the Microscope

0

20

40

60

80

100

TPC-B TPC-C TPC-E TPC-B TPC-C TPC-E

L1-I L3-D

M
is

se
s

p
e

r
k

-I
n

st
ru

ct
io

n
s

(%
)

compulsory

conflict

capacity

Figure 6.2: L1-I and L3-D misses breakdown into compulsory, capacity, and conflict misses.

0

10

20

30

40

50

16 32 64 128 256 512 1024 inf

L1
-I

 M
P

K
I

Cache Size (KB)

TPC-B

TPC-C

TPC-E

Instruction working set size

Figure 6.3: 8-way L1-I MPKI as cache size increases.

• Conflict misses are the ones that happen due to two addresses mapping to the same cache

set and replacing one another due to low cache associativity.

As we can see from Figure 6.2, L1 and L3 cache associativity of the architecture we model,

which are 8-way and 20-way, respectively, are sufficient to eliminate all the conflict misses. This

leaves the capacity misses as the single cause of all the L1 instruction cache misses, whereas

compulsory data misses dominate the total L3 data misses. After the warm-up run with 1000

transaction traces, the infinite instruction cache basically captures all the instructions needed

for these workloads. On the other hand, the data working set size is a lot larger than what

is accessed in 1000 transactions since the workloads, mostly randomly, access data from a

working set of 100GB in our experiments. This explains why there are still many compulsory

misses for data even after the warm-up run while we observe none for instructions. If we run

longer traces, the percentage of the compulsory misses would be reduced while the capacity

misses increase for data as well.

Finally, Figure 6.3 shows the instruction MPKI for an 8-way L1-I cache as the cache size

increases. From Figure 6.3, one can naïvely think that enlarging the L1-I cache should solve

the problem of capacity misses since the instruction footprint of the workloads we evaluate

108

6.5. Breakdown of Misses

0

40

80

120

160

200

240

 T
P

C
-B

T
P

C
-C

T
P

C
-E L1 L2 L3 L1 L2 L3 L1 L2 L3

L1 TPC-B TPC-C TPC-E

Instructions Data

S
ta

ll
 C

y
cl

e
s

p
e

r
k

-I
n

st
ru

ct
io

n
s insert/delete

update

scan

probe

Figure 6.4: Misses breakdown into database operations at each level of the cache hierarchy.

seems to be around 128KB. However, increasing L1-I size also increases the time and energy

spent while finding an item in the cache. This, in turn, would affect the clock frequency

of a processor. Therefore, despite the growing sizes of L2 and L3 caches, today’s typical

high-performance processors limit their L1 cache sizes to about 32KB.

6.5.2 Into Operations

In Figure 6.4, we see the instruction and data stalls per 1000 instructions coming from the

three levels of the cache hierarchy separated into different database operations. Since there are

either none or very few instruction misses coming from L2 and L3 caches for all the workloads,

Figure 6.4 has breakdowns only for L1 misses for the instructions.

Figure 6.4 shows that the majority of the misses happen during the index probe operations.

This is expected since OLTP workloads do not access many records from a table in their

transactions; hence, they highly depend on the index lookups and scans. The index lookups

are especially problematic since the code-path is long and complex. It is interleaved with the

function calls to many different modules encapsulating code and data from B-tree, lock, and

buffer pool management as Section 6.5.3 also shows.

Even though we see several major contributors in instruction stalls, index probe seems to be

the dominant operation in data stalls. Update, insert, and delete operations typically access

a single tuple, hence a single heap page, whereas during an index probe several index pages

are accessed. In the case of index scans, even though initially there is a probe to find the start

point for the scan, afterward the same index and heap pages are reused frequently increasing

the hit rates.

TPC-B is an update-heavy workload and has no index scans. Therefore, updates and inserts

are the only operations causing the stalls for TPC-B after the index probes. Going from TPC-B

to TPC-E, however, index scans form a bigger portion of the overall stall time as a result of

109

Chapter 6. Transactions under the Microscope

0

40

80

120

160

200

240

T
P

C
-B

T
P

C
-C

T
P

C
-E L1 L2 L3 L1 L2 L3 L1 L2 L3

L1 TPC-B TPC-C TPC-E

Instructions Data

S
ta

ll
 C

y
cl

e
s

 p
e

r
k

-I
n

st
ru

ct
io

n
s

other

latching

logging

heap

bpool

locking

btree

Figure 6.5: Misses breakdown into storage manager components at each level of the cache
hierarchy.

increasing number of scan operations. For TPC-E, we do not see many misses due to read-

write operations like tuple inserts, deletes, and updates since majority of the transactions

(77%) in its transaction mix are read-only (Section 2.4). The trends in the breakdowns, on the

other hand, do not change much for different cache levels within each benchmark.

6.5.3 Into Components

Figure 6.5 depicts stalls from different types of caches as does Figure 6.4, but it classifies them

into storage manager components rather than database operations. Instruction stalls in L2

and L3 are again omitted since there are either none or very few of them.

Figure 6.5 does not identify a single dominant component as the cause of instruction stalls.

B-tree index operations and lock manager together form ∼45% of the instruction misses on

average. Next component is the buffer pool and heap manager with ∼23%. For TPC-B, the

heap manager also takes a significant time due to the update and insert heavy nature of

this workload. These results corroborate our findings in Section 6.5.2, where we show that

the index probe operation is the main cause of the instruction and data stalls. The index

probe traverses a B-tree from root to leaves and this process is heavily interleaved with the

concurrency control mechanism of databases, which is based on ARIES/IM [129] by default in

Shore-MT.

For the data stalls, we see the B-tree and buffer pool as the two significant factors, causing

more than half of the data stall time for each of the caches. This result also matches our

findings in Section 6.5.2 since the index probe operation requests many B-tree pages from the

buffer pool during the traversal.

We also give a breakdown within the basic database operations to see which storage manager

components affect the stall time during these operations. Figure 6.6 shows this breakdown

110

6.6. Inside Transactions

0

20

40

60

80

100

120

p
ro

b
e

u
p

d
a

te

in
se

rt

p
ro

b
e

in
s/

d
e

l

p
ro

b
e

sc
a

n

p
ro

b
e

in
se

rt

p
ro

b
e

in
s/

d
e

l

p
ro

b
e

sc
a

n

TPC-B TPC-C TPC-E TPC-B TPC-C TPC-E

L1-I L3-D

S
ta

ll
 C

y
cl

e
s

p
e

r
k

-I
n

st
ru

ct
io

n
s

other

latching

logging

heap

bpool

locking

btree

Figure 6.6: Misses breakdown into storage manager components for each database operation.

for the L1 instruction cache and L3 data stalls since Section 6.4 identifies them as the leading

causes of the overall stalls. The operations that do not contribute much to the stall time are

omitted for simplicity.

Inside the index probe and scan related stall times, we see B-tree, lock manager, and buffer

pool as the dominant components for both L1 instruction and L3 data misses. As we have

also mentioned above, this result is expected for the index probe operation considering its

characteristics. For the update or insert/delete operations, however, logging becomes more

significant as well as heap management since these operations modify the heap pages, and

therefore, require log updates.

6.6 Inside Transactions

Seeing the problem with the L1 instruction cache misses (Section 6.4) and capacity misses from

L1-I (Section 6.5.1), we also would like to understand where the majority of the instruction

footprint for a transaction comes from and how it differs from transaction to transaction.

Each transaction satisfies a different request in terms of its high-level functionality. However,

underneath, transactions execute a series of actions from the same predefined set of database

operations, as also used in the breakdowns of Section 6.5.2. These operations dictate the

interaction with the storage manager components. This section first details some of the

common database operations, and then, investigates the instruction and data overlap across

their different instantiations in a workload mix.

6.6.1 Database Operations

Most transactional workloads have five major operations: index probe, index scan, update

tuple, insert tuple, delete tuple. In the rest of this section we discuss their main characteristics;

111

Chapter 6. Transactions under the Microscope

index scan

initialize
cursor

fetch
next

25%

75%

index probe

find key

lookup

traverse lock

73%

71%

33%34%

update tuple

pin
record
page

update
page

40%

46%

insert tuple

create
record

create
index
entry

allocate
page

44% 56%

47%
65%

structural
modification

Figure 6.7: The flow graph of common database operations from the TPC-C transaction mix
with the percentage of instruction footprints corresponding to each significant code part
in these operations. An arrow from A to B with label X % means that X % of A’s instruction
footprint comes from executing B . The dashed lines indicate the code paths that are not
always taken.

we omit delete tuple because of its similarity to insert tuple. To guide the discussion, Figure 6.7

sketches the high-level call flow for each operation including the percentage of the instruction

footprint for each significant code path in it. In Figure 6.7, an arrow from box A to box B with

label X % indicates that X % of the instruction footprint of A comes from executing routine

B . For example, 34% of the instruction footprint of lookup comes from executing the traverse

routine. Solid arrows represent calls that are always made whereas dashed arrows represent

calls that are not always made, i.e., they depend on a branch condition. The footprint is

measured as the unique 64byte cache blocks requested by each operation when running

1000 transactions from the transaction mix of TPC-C (we basically use one of the trace files

mentioned in Section 6.3).

Index Probe

Index probe is the most common operation in transaction processing and is read-only. Its

input parameters are an index identifier and a key. If the key exists in the index, index probe

returns the tuple corresponding to the given key value in the index. Otherwise, index probe

returns a flag indicating the key is not found. From Figure 6.7, we see that index probe follows

a predictable call path. It starts with a call to the storage manager API, find key, which calls

the lookup routine for the corresponding index. Then, it traverses the index pages from top to

bottom to find the desired key and interacts with the lock manager to acquire the lock for the

record that maps the searched key.

112

6.6. Inside Transactions

Index Scan

Index scan is the other read-only operation used in transactions. It takes as input an index

identifier, two key values for the boundaries of the scan, and two flags indicating the inclusive-

ness of the boundary keys. It returns the set of tuples mapping to the key values within the

given boundaries. As Figure 6.7 shows, index scan has two main parts. Initialize cursor first

finds the position on the index leaf pages to be used as the starting point for the scan. This

routine forms 75% of the instruction footprint of index scan. Then, fetch next fetches all the

tuples until it reaches the scan’s ending boundary. The instruction footprint of this last, tuple

fetching code, part is three times smaller than the instruction footprint of initialize cursor;

fetch next has just a short loop that reads the tuples in sequence.

Update Tuple

Update tuple takes as input a tuple identifier and the updated tuple. Then, it rewrites the

part of the data page in the database that corresponds to the tuple identifier. It is a relatively

short operation and follows a more predictable execution compared to the other database

operations. It has two major routines as shown in Figure 6.7: pin record page pins the page

that has the tuple to be updated in the buffer pool, and update page updates the record and

inserts a log entry for the update.

Insert Tuple

Insert tuple takes a table identifier and a tuple as inputs. Create record adds the tuple to one

of the data pages that belong to the given table and has sufficient space. Create index entry

inserts the index entries for this record to all the indexes associated with the table. Figure 6.7

shows that these two routines almost equally contribute to the instruction footprint. Therefore,

inserting a tuple to a table that has indexes results in a significantly different instruction stream

than inserting a tuple to a table with no indexes. Similarly, if none of the data pages allocated

for the given table has space, then a new data page is created (allocate page). This process

requires almost half of the instructions in create record. Further deviation in the instruction

stream might happen due to the instructions needed to handle structural modifications in an

index (e.g., index page splits, merges, or new index root creation). Such modifications form

65% of all the instructions needed to create an index entry. Overall, the insert tuple operation

exhibits the most variety in its instruction flow compared to the other database operations.

6.6.2 Commonalities across Transactions

Considering the database operations transactions share, we expect to see significant overlap

in the code executed by different transactions as well as some common data accesses. To

quantify this intuition, we analyze the memory behavior of the transactions from TPC-B,

TPC-C, and TPC-E. We use one of the files with 1000 transaction traces from Section 6.3 for

113

Chapter 6. Transactions under the Microscope

[0,30)

[30,60)

[60,90)

[90,100)

100

in
se

rt

u
p

d
a

te

p
ro

b
e

TPC-B TPC-C

TPC-E

a
ll

mix mix

mix

new order

trade status

sc
a

n

p
ro

b
e

a

ll

TPC-C

TPC-E

in
se

rt

u
p

d
a

te

p
ro

b
e

a

ll

TPC-B

mix mix
TPC-C

mix
TPC-E

p
ro

b
e

sc

a
n

a

ll

instructions data

Figure 6.8: Overlaps in instruction and data footprints across different instances of the (1)
transactions in a workload mix, (2) same-type transactions, and (3) database operations
executed in a particular workload mix or transaction type. Each pie represents the instruction
or data footprint for the indicated (1) workload mix, (2) transaction type, or (3) database
operation. The legend represents the percentage of the transaction or database operation
instances that use the corresponding slice of the overall instruction and data footprint. For
example, the darkest slices (100%) are for the instructions and data that are executed in all
instances, whereas the lightest slices ([0-30)%) represent the instructions and data that are
common in less than 30% of the instances.

each benchmark. From these traces, we mark each instruction and data cache block accessed

by each database operation or transaction. Then, we measure the fraction of transaction or

database operation instances that access each cache block. Our goal is to examine instruction

and data overlap at three granularities:

• within the whole transaction mix,

• within each transaction of the same type, and

• in each database operation.

Figure 6.8 depicts the highlights of the overall analysis. Each pie-chart represents the whole

instruction or data footprint for the indicated workload, transaction, or database operation

called within that workload or transaction. Next, we detail the results in Figure 6.8 for instruc-

tion and data overlaps.

114

6.6. Inside Transactions

Instruction Overlap

The left-hand side of Figure 6.8 reports the instruction overlap results. For simplicity, Figure

6.8 only shows the most frequent operations invoked by the most frequent transaction type in

the mix in addition to the results from the overall transaction mix for all the workloads. The

pie slices group instructions based on the fraction of the database operation or transaction in-

stances accessing them. For example, the darkest slice (100%) represents the instructions that

are executed in all instances, whereas the lightest slice ([0-30)%) represents the instructions

that are common in less than 30% of the instances.

Since TPC-B has only one transaction in its mix, Figure 6.8 shows the results only for the

workload mix (the leftmost pies). The instruction footprint overlap across all probe and update

operation instances exceeds 90%. The overlap across all insert operation instances is at 60%.

TPC-B has a single transaction type, AccountUpdate, which performs only one type of insert

operation; i.e., it inserts a tuple to the History table, which has no index. Investigating where

that 40% of uncommonly executed code comes from shows that these instructions come from

the part of the insert operation code that creates a new data page. Even though there are only

six AccountUpdate instances out of the 1000 that require this routine, the large instruction

footprint of the routine (see Figure 6.7) causes a high deviation in the whole instruction stream.

The TPC-C charts show similar trends to TPC-B. Within individual transactions, e.g., NewOrder,

the instruction overlaps in probe and update operations are high: at least 70% of the instruc-

tions accessed are the same. For the insert operation, however, around half of the instructions

are not so common. NewOrder performs inserts to tables with indexes. This code has more

branches compared to TPC-B’s AccountUpdate since it also needs to execute the routine for

creating an index entry (see Figure 6.7).

Since NewOrder forms almost half of the TPC-C transaction mix, the charts for each operation

in the mix are similar to the charts for NewOrder. The slight differences are due to the different

tables accessed by the transactions in the mix. For example, Payment, which together with

NewOrder contributes to 88% of the mix, inserts a tuple to a table with no indexes. Therefore,

the instructions for creating an index entry are not common in the overall mix. Furthermore,

the degree of overlap is lower in the whole transaction mix (third column, fourth row in Figure

6.8) compared to the individual operations. This is expected since probe is the only database

operation code shared by all TPC-C transactions.

Since almost 80% of the TPC-E mix is read-only, Figure 6.8 presents the results for probe and

scan for TPC-E. TPC-E has 10 transaction types in its mix, twice the number of TPC-C, and

the most frequent transaction, TradeStatus, accounts for only 19% of the mix. Therefore,

the instruction overlap is less in the overall TPC-E mix (fifth column, fourth row in Figure 6.8)

compared to the other two benchmarks. However, among same-type transactions instruction

overlap is still significant; different TradeStatus instances observe a 98% instruction overlap.

115

Chapter 6. Transactions under the Microscope

0

500

1000

1500

2000

2500

A
v
e

ra
g

e
 R

e
u

se
 C

o
u

n
t

Instruction Cache Blocks Data Cache Blocks

Account Update

0

100

200

300

400

A
v
e

ra
g

e
 R

e
u

se
 C

o
u

n
t

Instruction Cache Blocks Data Cache Blocks

Insert Tuple

Figure 6.9: The average number of accesses to each memory address per instance of the TPC-
B’s AccountUpdate transaction and insert tuple operation. The x-axis places the addresses in
the order of their commonality across different transaction instances in the workload. The
addresses to the right of the vertical light-gray line are the ones that are used in all instances.

Data Overlap

After studying instruction overlap, we also examine the data commonality across different

transactions and database operations. The right-hand side of Figure 6.8 presents data over-

lap results for the transaction mixes only since the conclusions are the same for individual

transaction types. Figure 6.8 clearly depicts that the overlap in data is very low, at most 6%.

The dataset used while collecting the traces is around 100GB for each workload. Therefore,

there is almost no overlap for the data that represent database records or lower-levels of the

indexes. On the other hand, investigating the sources of the few, very frequently used data

shows that metadata information, lock manager, buffer pool structures, and index root pages

are commonly accessed (mostly read) across different transactions. Such data mainly stem

from the tables that are accessed in all the transactions of a workload’s mix, e.g., the Warehouse
table in TPC-C, or used by all the instances of a particular database operation, e.g., the inserts

to the History table in TPC-B.

116

6.7. Conclusions

6.6.3 Average Reuse in an Instance

Figure 6.8 demonstrates the instruction reuse frequency across different instances of transac-

tions or database operations. However, it does not indicate how frequently a memory address

is reused within each instance. Therefore, we also measure the average per instruction and

per data address accesses within one instance of each transaction and database operation.

Figure 6.9 shows the results for the AccountUpdate transaction and the insert tuple operation

in TPC-B. The results for TPC-C and TPC-E and the other database operations share similar

trends.

Figure 6.9 omits the address labels on the x-axis, but places the addresses based on their

frequency across different transaction instances (from left to right the frequency increases).

The addresses on the right of the light-gray vertical line appear in all the instances. Figure 6.9

highlights that the frequently reused addresses across transaction and operation instances are

also frequently reused within each instance.

6.7 Conclusions

Recent studies emphasize that there is still a clear mismatch between what modern hardware

offers and what OLTP systems need. Memory stalls dominate the overall execution time,

and in turn OLTP performance deteriorates and the underlying hardware remains largely

underutilized.

We conduct a detailed trace simulation of instruction and data misses in OLTP benchmarks

modeling the memory hierarchy of one of the most commonly used hardware types. The

experimental results link the most important memory-related stall types to software com-

ponents in the storage manager, and quantify the effect of increasing the data size. More

specifically, our results demonstrate that the capacity related L1 instruction misses are the

main cause of the stalls even when working with large memory-resident data sets followed by

the compulsory long-latency misses. The index probe operation, which is the most frequent

routine for OLTP workloads, is the fundamental cause of both data and instruction misses

coming from different levels of the cache hierarchy. The misses coming from the B-tree, lock,

and buffer pool management are the essential factor in the misses observed during an index

probe.

On the other hand, we also perform a memory characterization study for the same benchmarks.

The goal of this study is to better understand the similarities or differences of the instruction

and data footprint across transactions to be able to get further insights on improving cache

locality for OLTP applications. This study demonstrates that:

• Transactions exhibit high instruction overlap because of the common database operations

they execute, especially among same-type transactions. This offers an opportunity to

117

Chapter 6. Transactions under the Microscope

achieve better L1-I cache locality by scheduling transactions in a way that would enable

instruction reuse across transactions based on their common actions.

• The percentage of the data that is common across transactions is very low due to infrequent

reuse of the database tuples. The few frequently used data are small-sized and mostly

read-only. Accordingly it may be possible to pin them in the caches to improve data cache

locality.

• The cache blocks that are highly common across different transaction instances tend to

be more frequently reused within each instance. Therefore, any technique for improving

cache locality for the common instructions and data across different instances also has

potential to improve cache locality within each transaction instance.

To achieve a more graceful integration of hardware and software for OLTP systems, both of

the layers should become more aware of each other. On the software side, reducing code

complexity in the components mentioned above and designing more cache-friendly index

structures are crucial. On the hardware side, as the next part (Part III) of this thesis also shows,

dedicating several close-by cores for specific transaction operations can help reducing the

capacity misses while exploiting instruction commonality across transactions as well as create

opportunities for hardware specialization.

118

Part IIIChasing Instructions

119

7 Boosting Instruction Cache Reuse in
OLTP

The previous part highlighted that the performance of online transaction processing workloads

suffers from instruction stalls; the instruction footprint of a typical transaction exceeds by far

the capacity of an L1 cache, leading to ongoing cache thrashing. Several proposed techniques

remove some instruction stalls in exchange for error-prone instrumentation of the code, or a

sharp increase in the L1-I cache unit area and power. Others reduce instruction miss latency

by better utilizing a shared L2 cache. This chapter presents two hardware mechanisms that

change the way we traditionally schedule transactions to minimize L1 instruction misses. Both

of the mechanisms exploit the observation that OLTP transactions exhibit significant intra- and

inter-thread overlap in their instruction footprint (Section 6.6).

SLICC is a programmer-transparent and low-cost technique that migrates threads spreading

their instruction footprint over several L1 caches. Under SLICC, a transaction’s first iteration

prefetches the instructions for the subsequent iterations or similar subsequent transactions.

SLICC reduces instruction misses by 60% on average for TPC-C and TPC-E, thereby improving

performance by 70%.

On the other hand, even though SLICC is promising for high core counts, it performs sub-

optimally or hurts performance when running on few cores. Therefore, this chapter also presents

STREX, another programmer-transparent hardware technique that exploits typical transaction

behavior to improve instruction reuse in the L1 caches. STREX time-multiplexes the execution of

similar transactions dynamically on a single core so that instructions fetched by one transaction

are reused by all other transactions executing in the system as much as possible. Both SLICC

and STREX dynamically slice the execution of each transaction. Experiments show that, when

compared to baseline execution on 2 – 16 cores, STREX consistently improves performance (48%

on average) while reducing the number of L1 instruction and data misses by 36% and 13% on

average, respectively. 1

1 This chapter uses material from [13, 14, 15].

121

Chapter 7. Boosting Instruction Cache Reuse in OLTP

7.1 Introduction

As discussed in Chapter 5, existing server infrastructures are not tailored well to the needs

of OLTP applications, with memory stalls accounting for 80% of the overall execution cycles,

most of which are due to first-level instruction cache misses. Transactions of canonical OLTP

systems are randomly assigned to worker threads, each of which usually runs on one core

of a modern multicore system. The instruction footprint of a typical transaction does not

fit into a single L1-I cache, thus, thrashing the cache and incurring high instruction miss

rates. Although L2 and L3 caches are growing in size, today’s technology and CPU clock cycle

constraints prevent deploying L1-I caches larger than 32KB.

Several works propose to alleviate instruction stalls using hardware [30, 53, 91, 158] or software

[74, 159] techniques. Existing techniques effectively reduce the number of L1-I misses or the

associated penalty when running OLTP workloads, but in return either require error-prone

instrumentation to the software code base or employ hardware prefetching tables that more

than double the area devoted to the L1-I cache units. Others reduce instruction miss latency

by better utilizing the aggregate L2 cache capacity.

As Section 6.5.1 demonstrates, the instruction footprint of a typical OLTP transaction fits

comfortably in the aggregate L1-I cache capacity of modern multicore or many-core chips.

Provided that there is sufficient code reuse (Section 6.6.2), spreading the footprint of trans-

actions over multiple L1-I caches has potential to reduce instruction cache misses. There-

fore, this chapter initially proposes SLICC (Self-Assembly of Instruction Cache Collectives), a

hardware technique that utilizes thread migration to minimize instruction misses for OLTP

workloads. SLICC divides the instruction footprint of a transaction into smaller code segments

and spreads them over multiple cores, so that each L1-I cache holds part of the instruction

footprint. As part of this process the L1-I caches self-assemble to form a collective that reduces

the instruction misses for this transaction and other similar ones. SLICC exploits intra- and

inter-thread instruction locality in two orthogonal ways:

• A thread looping over multiple code segments spread over multiple caches observes a lower

miss rate (as opposed to a conventional system in which each segment would evict the

others from the cache), thereby avoiding thrashing.

• A preamble thread effectively prefetches and distributes common code segments for sub-

sequent threads, thereby reducing the total miss rate.

As execution progresses, old cache collectives are naturally disassembled and new ones are

formed to hold the footprints of new transactions.

On the other hand, as this chapter also shows, SLICC is not as effective and may hurt per-

formance when the footprint of all concurrently running transactions exceeds the available

aggregate L1-I capacity. While the number of cores on-chip in main-stream servers is expected

to grow in the future, the number of cores per application may not always be sufficient. Data

122

7.1. Introduction

center design and deployment and application trends influence the available per application

core count.

• Current data center design trends are toward consolidating more virtual machines on

servers as this increases utilization, improves security and energy efficiency, and reduces

costs and management overhead [26, 85, 198].

• A data center may run multiple OLTP workloads, each with different transaction types.

• While L1-I capacities remain cycle-time limited, OLTP transaction instruction footprints

are increasing. Transactions are becoming more complex and thus larger as a result of

additional functionality such as data analytics (e.g., WebSphere [84], WebLogic [141]), or

more complex logic.

Accordingly, it is also desirable to avoid SLICC’s performance cliff and to develop an instruction

stall reduction technique that is effective irrespective of the number of available cores.

The temporal code overlap among similar OLTP transactions (Section 6.6.2) also motivates

STREX, a transaction scheduling mechanism that exploits inter-transaction locality by group-

ing and synchronizing the execution of similar transactions into time slices. During each time

slice, a lead transaction brings into L1-I an instruction code segment that all other transac-

tions ought to reuse. Ideally, when the transactions within a group overlap perfectly, only the

lead transaction incurs all necessary misses, the misses that a transaction would incur on a

conventional system anyhow. As a result of STREX’s time slicing, the remaining transactions

find the instructions they need in L1-I.

This chapter has the following contributions and organization:

• Based on the observation that concurrent transactions on a multicore server exhibit signif-

icant code overlap (Section 6.6), Section 7.3 presents the design of SLICC, a transaction

scheduling mechanism that spreads the execution of a transaction over multiple cores to

both exploit aggregate L1-I capacity and enable instruction reuse.

• In order to avoid the drawbacks of SLICC under insufficient core counts, Section 7.4

proposes STREX, a transaction scheduling mechanism that batches transactions on a

single core to execute their common code segments one after the other, also exploiting

instruction overlap across transactions.

• Section 7.5 prototypes SLICC and STREX on an x86 multicore simulator and evaluates them

using the TPC-C [191] and TPC-E [193] benchmarks. The evaluation demonstrates that

STREX reduces L1-I miss rates (∼36%) and improves performance (35-55%) regardless of

the core counts. On the other hand, while SLICC hurts performance under low core counts,

it outperforms STREX (by ∼16% on average) when there are enough cores to spread the

instruction footprint of the workloads.

123

Chapter 7. Boosting Instruction Cache Reuse in OLTP

Transaction 1

A B C A B C A B C

Transaction 2 Transaction 3

Miss Overhead

(a) Conventional on one core

A B CA B CA B C

(b) STREX

T1 T2 T3 T1 T2 T3 T1 T2 T3

A B C

(c) Conventional
on a multicore

A B C

A B C

Core 1: T1

Core 2: T2

Core 3: T3

A A A

(d) SLICC

B B B

C C C

T1

T1

T1 T2 T3

T2

T2 T3

T3

Time

Figure 7.1: Ways of scheduling transactions.

Finally, Section 7.2 discusses how transaction behavior can be potentially exploited to improve

instruction reuse in caches while giving a high-level overview for SLICC and STREX. Section

7.6 reviews related work and Section 7.7 presents our conclusions.

7.2 Exploiting Instruction Overlap

Transactions are composed of actions that in turn may execute several basic functions. Ba-

sic function examples include probing and scanning an index, inserting a tuple to a table,

updating a tuple, etc. No matter how different the output or high-level functionality of one

transaction is from another, all database transactions are composed of a subset of such basic

functions, repeated several times for different inputs (as detailed in Section 6.6).

This section describes three ways of scheduling similar transactions: the conventional way

and the two techniques that this chapter proposes to exploit instruction commonality across

transactions.

Conventional

Figure 7.1(a) & (c) show how three transactions executing exactly the same code parts would

execute under a conventional OLTP system on one core and on multiple cores, respectively.

The example transactions execute the code segments A, B, and C in order. Each segment

fits in L1-I, but any two segments exceed its capacity. When these transactions execute in

a conventional system, they take turns thrashing the cache since each executes segments

A through C in order independent of the other transactions. Thus, each segment incurs an

overhead due to instruction cache misses.

124

7.3. Self-Assembly of Instruction Cache Collectives

SLICC

As long as there are enough cores so that the aggregate L1-I capacity can hold all code segments,

a transaction can migrate to the core whose L1-I cache holds the code segment the transaction

is about to execute. For example, as Figure 7.1(d) shows, the lead transaction can execute

segment A first on core 1, then migrate to core 2 where it would execute segment B, then

migrate to core 3 where it would execute segment C. Transactions 2 and 3 can follow in a

pipelined fashion, finding segments A, B, and C, in cores 1, 2, and 3, respectively. While

transaction 1 incurs an overhead when fetching the segments for the first time, the other

transactions do not.

STREX

Figure 7.1(b) shows another way of improving L1-I utilization where the first, lead, transaction

executes segment A incurring an overhead as previously. However, instead of proceeding to

execute segment B, transaction 1 context switches allowing, in turn, transactions 2 and 3 to

execute instead. Transactions 2 and 3 find segment A in L1-I and thus incur no overhead

due to misses. Once all three transactions execute the first segment, execution proceeds to

segment B and so on.

7.3 Self-Assembly of Instruction Cache Collectives

SLICC exploits intra- and inter-thread locality.

• It virtually increases the L1-I cache capacity observed by a thread; thus, it improves locality

within a thread.

• It pipelines similar threads, such that one thread fetches instruction cache blocks that are

reused by many threads.

7.3.1 SLICC Design

SLICC is a dynamic hardware thread scheduling and migration algorithm that is programmer

transparent. SLICC attempts to partition on-the-fly the instruction footprint of transactions

into several segments where each segment fits in the L1-I cache, but two segments do not fit

together. Ideally:

• a thread will migrate to another core when it starts touching a different segment and

• the destination core will already have the segment cached.

In the steady state, each SLICC core has a running thread and a hardware queue of waiting

threads. Using a naïve load-balancing strategy, newly arrived threads are scheduled to the

125

Chapter 7. Boosting Instruction Cache Reuse in OLTP

Figure 5: Thread Migration Algorithm.

Figure 6: SLICC Architecture.

(2) Otherwise, the thread migrates to an idle core, if any. (3) The
thread stays put. In the last case, migrating the thread would incur
overheads and would evict remotely cached segments that may be
useful for other threads. SLICC opts for incurring the instruction
misses locally avoiding the migration overhead.

To detect which, if any, remote cache has the next segment, SLICC
uses a short sequence of matched_t number of tags of recent misses,
predicting that they form the preamble of the next segment. Concep-
tually, once SLICC decides to try to migrate a thread, it searches all
remote L1-I caches for these recently missed tags. Section 4.2.3 ex-
plains how this search can be implemented including an incremental
method that uses the existing coherence protocol responses.

Figure 5 summarizes the execution stages of a thread on a core
until it migrates, or completes execution.

4.2. Implementation Requirements

Figure 6 shows that SLICC’s implementation comprises: (a) a cache
full detector, (b) a miss dilution tracker, and (c) a remote cache
segment search unit. SLICC uses hardware thread migration, and
thus, interacts with the OS as Section 4.4 explains in more detail. The
three aforementioned units, described subsequently, track all cache
accesses, including speculative ones.

4.2.1. Cache Full Detection A log2(L1I cache blocks) wide satu-
rating miss counter (MC) continuously counts the number of misses.
When MC saturates at a value of fill-up_t SLICC assumes that the
cache has now captured a full segment and may trigger migrations
accordingly. We experimentally found that using a value in the order
of cache size

2 for the fill-up_t threshold works reasonably well, with
little sensitivity to the exact value of this parameter. Other fill-up
detection mechanisms may be possible but are beyond the scope of
this paper.
4.2.2. Miss Dilution Tracking It is not always beneficial to migrate
threads immediately after a cache becomes full or when a thread
incurs a few misses. SLICC must predict whether the thread is only
temporarily diverging due to conditional control flow or whether it
is moving to a completely different segment. Furthermore, since
threads have to miss for a few blocks before migrating (matched_t
tags must be located on a remote cache), a few useful cache blocks
may be evicted, creating gaps in the exiting segment and causing a
corresponding number of misses for subsequent threads. Finally, a
thread may immediately loop back to the same code segment or may
temporarily follow a somewhat different path after being selected for
migration.

SLICC handles these cases by considering the frequency of instruc-
tion misses; it restricts migration to the cases when a thread starts to
miss more frequently. If the thread is moving to a new segment, it
will incur more misses than hits. SLICC counts the number of misses
in a window of recent accesses. When this count is above the dilution
threshold, dilution_t, migration is enabled. The miss shift-vector
(MSV) is a 100-bit FIFO shift vector recording the hit/miss history
for the last 100 cache accesses (enabled when cache is filled-up). A
logic-0 and logic-1 represent a cache hit and miss, respectively. When
the number of logic-1 bits reaches a threshold (dilution_t), SLICC
enables migration. SLICC resets the MSV with every migration.
4.2.3. Remote Cache Segment Search When SLICC decides to
migrate a thread it has to determine which cache, if any, contains the
segment the thread is executing. To do so, SLICC records recently
missed tags in the Missed Tag Queue (MTQ), which is a matched_t
entry FIFO of n-bit entries, where n is the number of cores. A
logic-1 on bit index C for MTQ entry i indicates that the ith recently
missed cache block was cached at core C. Thus, by ANDing all bits
at index C we know whether core C holds all the recently missed
cache blocks. This information does not have to be exact or accurate,
since it is used by a prediction mechanism. SLICC gathers this
information incrementally as misses occur and stores it in the MTQ.
The remote cache segment search is distributed and the decision is
made locally by the core we migrate from. A directory coherence
protocol could report the complete or partial sharing vector for misses
that are tracked by the MTQ.

Alternatively, or if the coherence protocol is snoop-based, SLICC
could broadcast the missed tags as they occur and explicitly request
that remote cores identify themselves. On snoop coherence systems,
these requests can piggyback on the existing snoop requests. Search-
ing remote L1-I caches requires extra bandwidth on the remote caches
that is proportional to the number of missed tags and cores.

To avoid this bandwidth overhead, we use an approximate cache
signature in the form of a partial-address bloom filter that supports
evictions [23]. When the index size of the bloom filter is larger than
the cache set index, collisions occur only within sets. Hence on
evictions, only the set of the evicted block is checked for collisions.
Every core maintains such a filter, representing a superset of the

Figure 7.2: SLICC’s thread migration algorithm.

least congested core (i.e., the core with the least number of waiting threads). A SLICC agent at

each core continuously monitors execution locally in order to determine

• whether the local cache is filled-up with useful instruction blocks,

• if so, whether these blocks are useful to the current thread and for how long,

• and where to migrate if needed.

Figure 7.2 summarizes the execution stages of a thread on a core until it migrates or completes

execution. The following subsections details each of these stages.

(Q1) Is the cache full with useful blocks?

As a thread starts executing on a core it may experience many misses. If the cache contains

a segment that may be useful for other threads, it is best to migrate the current thread to

another core. Otherwise, it is best to allow the current thread to load a new segment in the

cache. SLICC uses a cache full detection heuristic to make this decision. Initially, all caches

are empty. To detect whether a cache has been filled up with a segment, SLICC counts the

number of misses using a resettable, saturating miss counter (MC) local to each core. When

the number of misses exceeds the threshold, fill-up_t, the cache is considered full. In the

long run, all MCs will saturate, preventing new segments from being cached effectively due to

premature thread migration. To create opportunities for loading new segments, SLICC resets

the MC when the core’s thread queue becomes empty. The currently cached blocks are not

126

7.3. Self-Assembly of Instruction Cache Collectives

Table 7.1: SLICC thresholds.

fill-up_t the number of misses that indicates the cache is full
dilution_t the miss-hit ratio that triggers migration
matched_t the number of most recently missed cache blocks

that must be found in remote caches before migration

flushed, so if a subsequent thread requires the same segment it will still find it there. However,

a thread touching a new segment will be given the opportunity to cache it.

(Q2) Are the current cache contents useful to this thread and for how long?

When running a thread on a full cache, SLICC tries to determine whether the thread is going

over the cached segment, or whether it is about to move to a new segment. For this purpose

SLICC measures miss dilution, that is, the recent frequency of misses (detailed in Section

7.3.2). If miss dilution is low, then SLICC predicts that thread is only temporarily diverting

away from the cached segment. Since the thread will converge again soon, it is best not to

migrate to benefit from the forthcoming instruction reuse. If miss dilution is high, then SLICC

predicts that the thread is moving to a different segment. If it continues execution on this core

it will evict useful cache blocks, which could be reused by other threads. SLICC predicts that it

might be better to migrate the thread elsewhere.

(Q3) Where to migrate to?

Ideally, SLICC would migrate a thread to a cache that has the thread’s next segment. SLICC

attempts the following in order:

• If the thread is going to touch a code segment that is available on another core, the thread

migrates there.

• Otherwise, the thread migrates to an idle core, if any.

• Otherwise, the thread stays put.

In the last case, migrating the thread would incur overhead and would evict remotely cached

segments that may be useful for other threads. SLICC opts for incurring the instruction misses

locally, avoiding the migration overhead.

To detect which, if any, remote cache has the next segment, SLICC uses a short sequence of

most recent misses, predicting that they form the preamble of the next segment. Conceptually,

once SLICC decides to try to migrate a thread, it searches all remote L1-I caches for these

recently missed tags. Section 7.3.2 explains how this search can be implemented including an

incremental method that uses the existing coherence protocol responses.

127

Chapter 7. Boosting Instruction Cache Reuse in OLTP

Figure 5: Thread Migration Algorithm.

Figure 6: SLICC Architecture.

(2) Otherwise, the thread migrates to an idle core, if any. (3) The
thread stays put. In the last case, migrating the thread would incur
overheads and would evict remotely cached segments that may be
useful for other threads. SLICC opts for incurring the instruction
misses locally avoiding the migration overhead.

To detect which, if any, remote cache has the next segment, SLICC
uses a short sequence of matched_t number of tags of recent misses,
predicting that they form the preamble of the next segment. Concep-
tually, once SLICC decides to try to migrate a thread, it searches all
remote L1-I caches for these recently missed tags. Section 4.2.3 ex-
plains how this search can be implemented including an incremental
method that uses the existing coherence protocol responses.

Figure 5 summarizes the execution stages of a thread on a core
until it migrates, or completes execution.

4.2. Implementation Requirements

Figure 6 shows that SLICC’s implementation comprises: (a) a cache
full detector, (b) a miss dilution tracker, and (c) a remote cache
segment search unit. SLICC uses hardware thread migration, and
thus, interacts with the OS as Section 4.4 explains in more detail. The
three aforementioned units, described subsequently, track all cache
accesses, including speculative ones.

4.2.1. Cache Full Detection A log2(L1I cache blocks) wide satu-
rating miss counter (MC) continuously counts the number of misses.
When MC saturates at a value of fill-up_t SLICC assumes that the
cache has now captured a full segment and may trigger migrations
accordingly. We experimentally found that using a value in the order
of cache size

2 for the fill-up_t threshold works reasonably well, with
little sensitivity to the exact value of this parameter. Other fill-up
detection mechanisms may be possible but are beyond the scope of
this paper.
4.2.2. Miss Dilution Tracking It is not always beneficial to migrate
threads immediately after a cache becomes full or when a thread
incurs a few misses. SLICC must predict whether the thread is only
temporarily diverging due to conditional control flow or whether it
is moving to a completely different segment. Furthermore, since
threads have to miss for a few blocks before migrating (matched_t
tags must be located on a remote cache), a few useful cache blocks
may be evicted, creating gaps in the exiting segment and causing a
corresponding number of misses for subsequent threads. Finally, a
thread may immediately loop back to the same code segment or may
temporarily follow a somewhat different path after being selected for
migration.

SLICC handles these cases by considering the frequency of instruc-
tion misses; it restricts migration to the cases when a thread starts to
miss more frequently. If the thread is moving to a new segment, it
will incur more misses than hits. SLICC counts the number of misses
in a window of recent accesses. When this count is above the dilution
threshold, dilution_t, migration is enabled. The miss shift-vector
(MSV) is a 100-bit FIFO shift vector recording the hit/miss history
for the last 100 cache accesses (enabled when cache is filled-up). A
logic-0 and logic-1 represent a cache hit and miss, respectively. When
the number of logic-1 bits reaches a threshold (dilution_t), SLICC
enables migration. SLICC resets the MSV with every migration.
4.2.3. Remote Cache Segment Search When SLICC decides to
migrate a thread it has to determine which cache, if any, contains the
segment the thread is executing. To do so, SLICC records recently
missed tags in the Missed Tag Queue (MTQ), which is a matched_t
entry FIFO of n-bit entries, where n is the number of cores. A
logic-1 on bit index C for MTQ entry i indicates that the ith recently
missed cache block was cached at core C. Thus, by ANDing all bits
at index C we know whether core C holds all the recently missed
cache blocks. This information does not have to be exact or accurate,
since it is used by a prediction mechanism. SLICC gathers this
information incrementally as misses occur and stores it in the MTQ.
The remote cache segment search is distributed and the decision is
made locally by the core we migrate from. A directory coherence
protocol could report the complete or partial sharing vector for misses
that are tracked by the MTQ.

Alternatively, or if the coherence protocol is snoop-based, SLICC
could broadcast the missed tags as they occur and explicitly request
that remote cores identify themselves. On snoop coherence systems,
these requests can piggyback on the existing snoop requests. Search-
ing remote L1-I caches requires extra bandwidth on the remote caches
that is proportional to the number of missed tags and cores.

To avoid this bandwidth overhead, we use an approximate cache
signature in the form of a partial-address bloom filter that supports
evictions [23]. When the index size of the bloom filter is larger than
the cache set index, collisions occur only within sets. Hence on
evictions, only the set of the evicted block is checked for collisions.
Every core maintains such a filter, representing a superset of the

Figure 7.3: SLICC architecture.

7.3.2 Implementation Requirements

Table 7.1 summarizes SLICC’s thresholds and Figure 7.3 shows that SLICC’s implementation

comprises:

• a cache full detector,

• a miss dilution tracker, and

• a remote cache segment search unit.

SLICC uses hardware thread migration, and thus, interacts with the OS as Section 7.3.4 explains

in more detail. The three aforementioned units, described subsequently, track all cache

accesses, including speculative ones.

Cache full detection

A l og2(L1I cache blocks) wide saturating miss counter (MC) continuously counts the num-

ber of misses. When MC saturates at a value of fill-up_t, SLICC assumes that the cache has

now captured a full segment and may trigger migrations accordingly. We experimentally found

that using a value on the order of cache si ze
2 for the fill-up_t threshold works reasonably well,

with little sensitivity to the exact value of this parameter.

Miss dilution tracking

It is not always beneficial to migrate threads immediately after a cache becomes full or when

a thread incurs a few misses. SLICC must predict whether the thread is only temporarily

diverging due to conditional control flow or whether it is moving to a completely different

segment. Furthermore, since threads have to miss for a few blocks before migrating (matched_t

tags must be located on a remote cache), a few useful cache blocks may be evicted, creating

128

7.3. Self-Assembly of Instruction Cache Collectives

gaps in the exiting segment and causing a corresponding number of misses for subsequent

threads. Finally, a thread may immediately loop back to the same code segment or may

temporarily follow a somewhat different path after being selected for migration.

SLICC handles these cases by considering the frequency of instruction misses; it restricts

migration to the cases when a thread starts to miss more often. If the thread is moving to

a new segment, it will incur more misses than hits. SLICC counts the number of misses in

a window of recent accesses. When this count is above the dilution threshold, dilution_t,

migration is enabled. The miss shift-vector (MSV) is a 100-bit FIFO shift vector recording the

hit/miss history for the last 100 cache accesses (enabled when cache is filled-up). A logic-0

and logic-1 represent a cache hit and miss, respectively. When the number of logic-1 bits

reaches a threshold (dilution_t), SLICC enables migration. SLICC resets the MSV with every

migration.

Searching remote cache segments

When SLICC decides to migrate a thread, it has to determine which cache, if any, contains the

segment the thread is executing. To do so, SLICC records recently missed tags in the Missed

Tag Queue (MTQ), which is a matched_t entry FIFO of n-bit entries, where n is the number of

cores. A logic-1 on bit index C for MTQ entry i indicates that the ith recently missed cache

block was cached at core C. Thus, by ANDing all bits at index C we know whether core C holds

all the recently missed cache blocks. This information does not have to be exact or accurate,

since it is used by a prediction mechanism. SLICC gathers this information incrementally as

misses occur and stores it in the MTQ. The remote cache segment search is distributed and

the decision is made locally by the core we migrate from. A directory coherence protocol could

report the complete or partial sharing vector for misses that are tracked by the MTQ.

Alternatively, or if the coherence protocol is snoop-based, SLICC could broadcast the missed

tags as they occur and explicitly request that remote cores identify themselves. On snoop

coherence systems, these requests can piggyback on the existing snoop requests. Searching

remote L1-I caches requires extra bandwidth on the remote caches that is proportional to the

number of missed tags and cores.

To avoid this bandwidth overhead, we use an approximate cache signature in the form of a

partial-address bloom filter that supports evictions [151]. As Figure 7.4 illustrates, the partial-

address bloom filter uses a part of the whole cache line addresses as the key values. More

specifically, a key value is the least significant bits of the address starting from the index bits.

The number of bits to be used in the key depends on the size of the partial-address bloom

filter. Every core maintains such a filter, representing a superset of the currently cached blocks.

Once migration is triggered in a core, that core checks whether the last matched_t missed

cache lines is in the other caches through checking the partial-address bloom filters of those

caches. This way, SLICC avoids interfering with the actual cache requests of the remote caches.

129

Chapter 7. Boosting Instruction Cache Reuse in OLTP

tag set
index offset

partial address (n bits)

partial‐address bloom filter

cache line/block address

If cache line is in the cache, true
Otherwise, true or false

cache line

ca
ch
e
se
ts

L1 cache

Figure 7.4: Partial-address bloom filter.

In Section 7.5.2, we evaluate the trade-off between the bloom filter’s accuracy versus its size.

We find that for a 32KB cache, a 256B bloom filter is sufficient.

If no matching remote cache is found, SLICC attempts to find an idle core. SLICC either

broadcasts a request for idle cores to report, or piggy-backs this information on the responses

received during the miss tag search phase. Thread migrations are relatively infrequent (every

3.2K instructions on average), reducing the relative overhead of remote cache segment and

idle core searching.

7.3.3 Exploiting Transaction Type Information

As Section 6.6.2 shows, the instruction footprint overlap is higher among threads of the same

transaction type. Therefore, SLICC forms teams of similar/same-type transactions on-the-fly.

In order to perform the detection of such transactions in a programmer-transparent manner,

SLICC uses a hardware preprocessing phase to assign types to threads as they launch. SLICC

exploits the observation that in OLTP the first few instructions executed are the same for

same-type transactions, while they differ across different-type transactions. SLICC only needs

to know when a new transaction is launched. A middle-ware layer assigns transactions in

groups to a core devoted for this purpose (scout core) initially. There, each thread executes a

few tens of instructions, while the instruction addresses are hashed. The resulting values are

used as thread type identifiers.

For each transaction instance SLICC records a unique numerical ID, a type ID, and an arrival

timestamp. The timestamp of a team is that of its oldest transaction. The oldest team is

scheduled, without preemption if possible. We intuitively design a scheduling algorithm that

maximizes the core utilization and reduces the queuing delay of threads. Team sizes differ and

for an N-core architecture we categorize them into

• large (1.5× to 2× N threads),

• medium (0.5× to 1.5× N threads), and

• small (less than 0.5×N threads) teams.

130

7.4. Stratified Transaction Execution

Cores are time-multiplexed among teams. When large teams are scheduled, they are allowed

to execute on all cores. Medium size teams are limited to half the resources (0.5×N cores).

Threads of a small team are treated as stray threads, and are not grouped. Rather, stray threads

are scheduled, individually, to idle cores, or in parallel with a medium team. When a team of

threads completes execution, SLICC resets all MCs, MTQs, and MSV s.

7.3.4 Support for Thread Migration

To allow for queuing threads, the thread migration performed in SLICC transfers architectural

register files as in Thread Motion [160]. The thread’s context is saved in the L2 cache closest

to the target core and is then retrieved at the target core. This minimizes the set-up time

for the thread. Since modern commercial processor technologies (e.g., Intel Virtualization

(VT) [197] and AMD Secure Virtual Machine (SVM) [10]) provide hardware support for thread

migration, minimal modifications are required to make the migration process transparent to

higher software layers.

Canonical OS kernels are responsible for assigning threads to cores. Hardware support for

thread migration that is transparent to higher layers avoids any software overhead. Otherwise,

the OS scheduler must be informed about these migrations. An alternative is a hybrid system

in which hardware mechanisms provide counters and migration acceleration, while leaving

the policy choice to software. This enables easier integration between existing schedulers and

platforms with virtualization support.

7.4 Stratified Transaction Execution

STREX dynamically detects the points at which a transaction ought to context-switch in order

to keep inter-transaction execution synchronized, thereby maximizing instruction cache

reuse. If a transaction executes for a long time, it will end up evicting cache blocks that other

transactions could have reused. If a transaction executes for a short time, the overhead of

context switching and of a potential increase in contention in the data caches will overwhelm

performance. For these reasons, context switching at regular intervals would perform sub-

optimally at best. An optimal synchronization algorithm must rely on dynamic information:

a transaction should be allowed to execute as long as it benefits from data and instruction

locality, however, it should not be allowed to evict any blocks that would be useful for other

transactions. Moreover, the costs of context switching over the benefits of the increase in

instruction reuse must be amortized.

Breaking down the instruction footprint of several random transactions into smaller chunks

will not generally result in identical code segments. Optimally scheduling those chunks in

order to maximize instruction locality is akin to job scheduling, an NP-complete problem [57].

However, an inexpensive algorithm that performs well exists for the simpler case of a team of

same-type transactions.

131

Chapter 7. Boosting Instruction Cache Reuse in OLTP

7.4.1 STREX Synchronization Algorithm

An optimal algorithm for STREX to schedule transactions could have been possible if we had

had a team of identical transaction instances. However, different instances of the same-type

transactions have identical instruction streams very rarely due to data dependencies (Section

6.6.2). This section presents the synchronization algorithm STREX uses to improve instruction

cache reuse for the general case of multiple, non-identical transactions. Since even same-type

transactions diverge at runtime, the first transaction in a team, the lead, may not touch all

blocks that the other, subsequent threads need. Hence, non-lead transactions should also be

allowed to fetch new cache blocks.

Based on the above intuitions the STREX synchronization algorithm is as follows:

• Given a pool of transactions, STREX groups transactions of the same type into teams. STREX

places each team into a hardware thread queue in an available execution core. Then, it

flags the first transaction in the queue as the lead.

• STREX synchronizes transaction execution using a per-core phase I D counter. As a trans-

action touches an instruction block, it tags the block with the current phase I D value no

matter whether the access was a hit or a miss. Whenever the lead resumes execution, it

increments the phase I D counter.

• STREX continuously monitors victim cache blocks. Upon encountering a victim block

tagged with the current phase I D value, STREX context switches the current executing

transaction and places it at the end of the thread queue. The next ready transaction

resumes execution.

• If the lead transaction terminates, the next thread in the queue becomes the lead.

• Threads keep running in a round robin order until they all complete execution.

• Once all the threads in a team complete execution, the core becomes available for another

team to execute.

7.4.2 Implementation

STREX’s implementation requires the following components per core:

• thread execution queue,

• a phase I D counter,

• a phase I D tag per L1-I cache block,

• a victim block monitoring unit,

132

7.4. Stratified Transaction Execution

• a thread context switching unit, and

• STREX’s control logic.

STREX tags all cache blocks with phase I D values. These phase I D s can be maintained sep-

arately in a table (PIDT) to avoid impacting the L1-I design and latency. The PIDT contains

a phase I D entry per cache block and is accessed in parallel with the L1 tag and data arrays.

This work uses 8-bit phase I D tags and an 8-bit, modulo phase I D counter per core. The area

overhead of the PIDT is small as it uses only eight additional bits per cache block. A PIDT does

not contain any address tags or any additional block related information.

STREX groups similar transactions into teams by examining the address of the header instruc-

tions similar to SLICC (Section 7.3.3). The maximum number of transactions that a team can

have (team_si ze) is fixed system-wide. STREX assigns teams in the arrival order of the oldest

thread in a team. When transactions that are not part of a team (stray transactions) become

the oldest, they are scheduled individually.

Section 7.5.5 shows that by controlling the maximum allowed team size, STREX can trade-off

overall throughput and per transaction latency. Software database management scheduling

schemes that batch transactions exhibit a similar trade-off [74, 170].

STREX context switches threads by saving and restoring their architectural state to/from the

L2 cache slice nearest to the core, also similar to what SLICC does (Section 7.3.4). Like SLICC,

STREX requires support for hardware scheduling of multiple threads. Several proposals exist

for implementing hardware-level thread scheduling and context switching (e.g., [167]). STREX

serves as additional motivation for further investigating how hardware-level thread scheduling

ought to be supported.

7.4.3 Effect on Regular Execution

This section discusses some of the implications of STREX for corner cases and its overhead.

Forward progress guarantees

STREX’s effectiveness is limited by the amount of temporal overlap available across transac-

tions of the same team. More precisely, the lead transaction has the largest impact on locality.

For example, in a scenario where the lead transaction has minimal temporal overlap with the

rest of the team, only the lead thread will make forward progress, while the others will have to

wait until the lead finishes. There is no possibility of starvation as the lead is guaranteed to

finish, and in the worst possible scenario, the rest of the threads will become leads in order.

Since the lead always starts execution with a new phase I D , it has the highest authority to evict

cache blocks. If other threads do not touch these blocks and try to evict them, they will be

context switched too early. Yet, with the workloads evaluated in this chapter, this scenario

133

Chapter 7. Boosting Instruction Cache Reuse in OLTP

Table 7.2: Workloads setup.

TPC-C 10 warehouses, 1 GB, Wholesale supplier
TPC-E 1000 customers, 20 GB, Brokerage house

MapReduce Hadoop 0.20.2, Mahout 0.4 library, Wikipedia page articles (12 GB)

has never happened due to the inherent temporal overlap across transactions of the same

type. An extension to STREX might investigate placing lower limits on the amount of forward

progress a thread should make before context switching.

Context switching overhead

STREX incurs an overhead for context switching among team members. The architectural state

of each transaction has to be saved and restored. In this work, thread contexts are saved in

the second level cache to avoid thrashing L1-D. STREX amortizes this overhead by improving

instruction and data locality, which result in overall throughput improvement (see Section

7.5.4). A portion of the physical address space is reserved for storing thread contexts. For the

workloads studied, context switches are sufficiently infrequent that the overhead of saving and

restoring context is never a significant fraction of the overall execution time (as Section 8.3.8

will also show). An implementation may choose to enforce a minimum number of instructions

or cycles that a transaction ought to execute before a context switch is allowed.

7.5 Evaluation

The evaluation of SLICC and STREX is organized as follows:

• Section 7.5.2 studies the configuration parameters for SLICC.

• Section 7.5.3 demonstrates the impact of SLICC and STREX on instruction and data misses

on varying core counts.

• Section 7.5.4 shows the throughput improvement of SLICC and STREX in comparison with

a next-line prefetcher [173] and a state-of-the-art instruction prefetcher (PIF [53]).

• Section 7.5.5 investigates the trade-off between transaction latency and overall throughput

under SLICC and STREX.

• Section 7.5.6 discusses the hardware cost of SLICC and STREX.

7.5.1 Methodology

Table 7.2 lists the workloads used. TPC-C [191] and TPC-E [193] run on top of the scalable

open-source storage manager Shore-MT [172]. The client-driver and the database execute on

134

7.5. Evaluation

the same machine and the buffer-pool is configured to keep the whole database in memory.

The experiments use a 1.2 billion instructions sample from these workloads. We also perform

experiments with the MapReduce workload [42, 148] as configured for the experiments in

[54]. MapReduce has a relatively small instruction footprint and serves to demonstrate that

the proposed scheduling mechanisms are robust in that they do not hurt performance for

workloads that do not have similar behavior to OLTP. The MapReduce workload divides the

input dataset across 300 threads, each performing a single map/reduce task. For clarity,

the discussion focuses on TPC-C and TPC-E with MapReduce being included only where

absolutely necessary.

Conventional operating systems lack support for thread context switching or migration at the

hardware level. To work around this limitation, the experiments replay x86 execution traces,

modeling the timing of all events, and maintaining the original thread sequence. The traces

for TPC-C and TPC-E include both user and kernel activity, collected using QTrace [183], an

instrumentation extension to the QEMU full-system emulator [17]. For MapReduce, Pin [124]

was used to extract execution traces.

We evaluate the three scheduling mechanisms illustrated in Figure 7.1 as well as two instruction

prefetchers:

• Baseline, the conventional transaction scheduling mechanisms, where each transaction

starts and finishes its execution on one core without any interruption provided that no

context-switching occurs due to I/O, waiting for locks, etc.

• STREX (Section 7.4), which time-multiplexes a batch of transactions on the same core to

enable instruction reuse among the transactions in the batch.

• SLICC (Section 7.3), which spreads the computation of transactions over several cores to

localize common instructions to caches without any software hints.

• Next-line ([173]) is the next-line prefetcher, which is used in most commodity hardware as

an instruction prefetcher.

• PIF ([54]) is a state-of-the-art instruction prefetcher based on temporal streaming that has

near-optimal coverage.

All the evaluated mechanisms are prototyped using the Zesto x86 multicore architecture

simulator [122]. The Zesto simulator is a well-known infrastructure that has been used in

other computer architecture studies (e.g., [66, 121, 203]).

Table 7.3 details the baseline architecture. With N cores, the baseline architecture has N

hardware contexts with the OS making thread scheduling decisions. SLICC or STREX form

teams over a pool of up to 30 virtual contexts. Unless otherwise noted, each core maintains a

thread queue of up to ten threads. STREX forms teams of up to ten threads, whereas SLICC

forms teams of up to 2N threads. Throughput is measured as the inverse of the number of

135

Chapter 7. Boosting Instruction Cache Reuse in OLTP

Table 7.3: Simulated system parameters.

N OoO cores, 2.5GHz, 6-wide Fetch/Decode/Issue
Processing Cores 128-entry ROB, 80-entry LSQ, BTAC (4-way, 512-entry)

TAGE (5-tables, 512-entry, 2K-bimod)
Private L1 32KB, 64B blocks, 8-way, 3-cycle load-to-use

Cache 32 MSHRs, MESI-coherence for L1-D
L2 NUCA Shared, 1MB per core, 16-way

Cache 64B blocks, N slices, 16-cycle hit latency, 64 MSHRs
Interconnect 2D Torus, 1-cycle hop latency

Memory
DDR3 1.6GHz, 800MHz Bus, 42ns latency

2 Channels / 1 Rank / 8 Banks, 8B Bus Width, Open Page Policy

Latencies
CAS(10), RCD(10), RAS(35), RC(47.5)

WR(15), WTR(7.5), RTRS(1), CCD(4), CWD(9.5)

cycles required to execute all transactions. The experiments also report the misses per kilo

(1000) instructions for instruction (I-MPKI) and data (D-MPKI).

7.5.2 Exploring SLICC’s Parameter Space

SLICC utilizes three thresholds for its thread migration decisions: fill-up_t, matched_t, and

dilution_t (Table 7.1). It also depends on a partial-address bloom filter to reduce the overhead

of remote cache segment searching. This section explores the parameter space for SLICC’s

thresholds while measuring their impact on overall performance and how the bloom filter size

affects its accuracy.

fill-up_t and matched_t

As defined in Section 7.3, fill-up_t sets the threshold for the initial fill-up period for an L1-I

cache, during which instructions are brought in until the cache is almost full. When the miss

counter (MC) is lower than fill-up_t, a thread is not allowed to migrate. On the other hand,

matched_t sets the minimum number of tags that should be found on a remote cache before

a thread migrates to it. Larger matched_t limits migration, while smaller values trigger too

frequent migrations. To simplify the parameter search space, we first keep the dilution_t value

at zero, and explore the parameter space of fill-up_t and matched_t. In addition, we assume

zero-overhead to search for remote tags. We later model an actual search mechanism.

Figure 7.5 reports the throughput and L1-I MPKI (misses per 1000 instructions) relative to

Baseline as a function of fill-up_t and matched_t. The fill-up_t values shown correspond to

fractions of the L1-I cache capacity (512 cache blocks): 1
4 , 1

2 , and 1. The matched_t range

shown is 2−10; larger matched_t values further degrade performance.

136

7.5. Evaluation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

128 256 512

S
p

e
e

d
u

p
 o

v
e

r
B

a
se

li
n

e

fill-up_t

TPC-C

matched_t = 2

matched_t = 4

matched_t = 6

matched_t = 8

matched_t = 10
0

0.3

0.6

0.9

1.2

1.5

128 256 512

fill-up_t

TPC-E

0

0.2

0.4

0.6

0.8

1

128 256 512

I-
M

P
K

I
o

v
e

r
B

a
se

li
n

e

fill-up_t

TPC-C
0

0.2

0.4

0.6

0.8

1

128 256 512

fill-up_t

TPC-E

Figure 7.5: Relative performance of SLICC as a function of fill-up_t and matched_t thresholds
(value 1 on Y-axes represents Baseline).

The results show that SLICC is not very sensitive to the different values of fill-up_t. Fill-up_t

is actually a proxy for warming-up the caches; it affects only the first migration from a core.

Thus with more migrations, the effect of fill-up_t diminishes. On the other hand, Figure 7.5

demonstrates that for matched_t values larger than four, performance benefits drop.

dilution_t

Dilution_t is the minimum number of misses in the last 100 accesses to allow migration.

It tends to restrict migration to the cases when more frequent misses are observed by a

thread. Using a small value for dilution_t triggers more frequent migrations. Using too large a

value for dilution_t reduces migration overhead, but with a possible I-MPKI increase since

it results in partial cache thrashing. Figure 7.6 shows L1-I MPKI and throughput of SLICC

relative to Baseline for dilution_t values 1 through 30 when fill-up_t = 256 and matched_t = 4

(best configuration from Figure 7.5). As dilution_t increases, instruction misses are reduced

improving performance up to a point. Afterward, larger dilution_t leads to fewer migrations,

less overhead, but higher I-MPKI. There is a trade-off between reducing instruction misses

and reducing migration overhead. Beyond dilution_t values of 28 (TPC-C) and 24 (TPC-

137

Chapter 7. Boosting Instruction Cache Reuse in OLTP

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 10 20 30

S
p

e
e

d
u

o
 o

v
e

r
B

a
se

li
n

e

dilution_t

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30

I-
M

P
K

I
o

v
e

r
B

a
se

li
n

e

dilution_t

TPC-C

TPC-E

Figure 7.6: Relative performance of SLICC as a function of dilution_t (value 1 on Y-axes
represents Baseline).

95

96

97

98

99

100

512 1024 2048 4096 8192 512 1024 2048 4096 8192

TPC-C TPC-E

B
lo

o
m

 F
il

te
r

A
cc

u
ra

cy
 (

%
)

Bloom Filter Size (bits)

Figure 7.7: SLICC’s partial-address bloom filter accuracy with respect to bloom filter size.

E), although the overall MKPI is reduced, the performance degrades due to more limited

migration. At even higher dilution_t values, migrations cease and performance drops below

Baseline.

Bloom filter accuracy

Section 7.3.2 explains that using a partial-address bloom filter reduces the overhead of remote

cache segment searching. Figure 7.7 shows the accuracy of bloom filters of different sizes.

The smallest bloom filter requires 512 bits to support evictions for a 32KB cache, with 64B

blocks, and 512-sets. Accuracy is measured for all cache accesses and an access is accurate if

the bloom filter and the cache agree on whether this is a hit or a miss. The trend is similar for

TPC-C and TPC-E.

In the remaining parts of this evaluation, we use dilution_t = 10, fill-up_t = 256, and matched_t

= 4 as well as a bloom filter of size 2K-bits since its effect on performance is less than 0.5%

(99.3% accuracy).

138

7.5. Evaluation

0

0.2

0.4

0.6

0.8

1

2 4 8 16 2 4 8 16 2 4 8 16

TPC-C TPC-E MapReduce

I-
M

P
K

I
o

v
e

r
B

a
se

li
n

e

of Cores

STREX SLICC

0

0.4

0.8

1.2

1.6

2

2 4 8 16 2 4 8 16 2 4 8 16

TPC-C TPC-E MapReduce

D
-M

P
K

I
o

v
e

r
B

a
se

li
n

e

of Cores

Figure 7.8: Effect of SLICC and STREX on L1 instruction and data misses as the number
of available cores increase. Y-axes plot the number of misses per 1000 instructions (MPKI)
normalized over Baseline (=1 on Y-axis).

7.5.3 L1 Miss Rate

Figure 7.8 reports the relative L1 I-MPKI and D-MPKI incurred by SLICC and STREX over

Baseline for two to 16 cores. For MapReduce, SLICC and STREX do not affect the I- and

D-MPKI as context switches rarely occur. The next section shows that performance is virtually

identical as well.

STREX consistently reduces I-MPKI over Baseline with the I-MPKI remaining practically

constant (the variation is less than 2%) no matter how many cores are available. STREX reduces

I-MPKI by an average of 29% and 44% for TPC-C and TPC-E, respectively, over Baseline. STREX

also improves data locality by synchronizing their execution. The same-type transactions tend

to access the same metadata and locks for the same tables, as well as the same index roots

during index probes, and they tend to do so in the same sequence. STREX enables reuse for

such shared data items across transactions. For 16 cores, STREX reduces D-MPKI by 37% and

11% for TPC-C and TPC-E, respectively.

139

Chapter 7. Boosting Instruction Cache Reuse in OLTP

0

0.5

1

1.5

2

0 4 8 12 16

S
p

e
e

d
u

p
 o

v
e

r
B

a
se

li
n

e

of Cores

TPC-C
0

0.5

1

1.5

2

0 4 8 12 16

of Cores

TPC-E
0

0.5

1

1.5

2

0 4 8 12 16

of Cores

MapReduce

Baseline
Next-line
PIF
STREX
SLICC

Figure 7.9: Throughput of SLICC and STREX compared to state-of-the-art instruction miss
reduction techniques as the number of available cores increases. Y-axes plot the speedup over
Baseline (=1 on Y-axis).

On the other hand, SLICC reduces more instruction misses as more cores become available.

When there are less than eight or four cores for TPC-C and TPC-E, respectively, STREX outper-

forms SLICC in improving instruction cache locality. However, SLICC is more effective under

high core counts; i.e., when there are enough cores to spread the instruction footprint of the

transactions. Moreover, SLICC always increases D-MPKI. Most of the increase in D-MPKI,

however, is for stores. Stores form 45% of total memory accesses in our experiments, while

loads are nearly unaffected. This means that the increased D-MPKI with SLICC can be easily

overlapped through out-of-order execution on the architecture we simulate. Therefore, SLICC

improves performance as a result of reduced I-MPKI even though it slightly increases D-MPKI

when there are enough cores available (as the next section shows).

7.5.4 Throughput

This section compares SLICC and STREX to Baseline, Next-line prefetcher, and the state-of-

the-art instruction prefetcher PIF. Figure 7.9 reports overall throughput normalized over the

throughput of Baseline with the corresponding number of cores.

STREX consistently improves throughput over Baseline and Next-line by an average of 35–55%

and by 20–32%, respectively, for 2–16 cores. Contrary to SLICC, STREX is insensitive to the

number of cores and always improves performance.

SLICC either degrades or barely improves performance over Baseline for TPC-C with up to

eight cores and for TPC-E with up to four cores. For the same configurations the Next-line

prefetcher consistently outperforms SLICC. However, SLICC outperforms STREX and does so

considerably when there are at least eight and 16 cores, respectively, for TPC-E and TPC-C.

With 16 cores, SLICC is 11% and 21% faster than STREX for TPC-C and TPC-E, respectively.

The results of Figure 7.9 are an upper bound for PIF ’s performance as the experiment models

PIF with a 100% hit rate L1-I cache. Demand traffic is generated for cache blocks that would

140

7.5. Evaluation

0

0.2

0.4

0.6

0.8

1

2 8 14 20 26 32 38 44 50

F
re

q
u

e
n

cy

Latency (M-Cycles)

Baseline (6.37)

SLICC-2 (23.00)

SLICC-4 (12.80)

SLICC-8 (6.95)

SLICC-16 (7.49)

0

0.2

0.4

0.6

0.8

1

2 8 14 20 26 32 38 44 50

Latency (M-Cycles)

Baseline (6.37)

STREX-2T (5.96)

STREX-4T (10.48)

STREX-8T (17.42)

STREX-10T (14.83)

STREX-16T (21.77)

STREX-20T (29.68)

Figure 7.10: TPC-C transaction latency distribution as a function of team_size for STREX and
of core count for SLICC.

have otherwise missed on a real cache, thus partially modeling the contention that PIF would

incur. This is an optimistic 100% accurate prefetcher that issues perfectly timely requests.

The actual PIF prefetcher may fail to prefetch in some cases, over-prefetch in others, and

not always manage to completely hide the miss latency. For 2–16 cores, STREX achieves on

average 95% of PIF ’s performance for TPC-C, and outperforms PIF by 9% for TPC-E, with less

than 2% of the storage overhead. On the other hand, for 16 cores, SLICC is within 2% of PIF ’s

performance for TPC-C and 21% faster than PIF for TPC-E, with only 2.4% of PIF’s storage

requirements (see Section 7.5.6) per core.

MapReduce, which has an instruction footprint that fits in the L1-I cache, remains unaffected

with all techniques.

7.5.5 Transaction Throughput vs. Latency

STREX improves the overall throughput, but may increase transaction latency due to transac-

tion batching. By adjusting the maximum number of transactions per team (team_size), it is

possible to control this trade-off as Figure 7.10 suggests. Figure 7.10 shows the distribution of

transaction latencies when running TPC-C for Baseline, STREX, and SLICC. For STREX the

figure reports latency distributions as a function of team_size, noted as STREX-xT, where x is a

team size in the range of two to 20. In all preceding experiments teams had up to ten threads.

With STREX, the transaction latency is independent of the core count; hence, Figure 7.10

shows latencies for 16 cores only. For SLICC, however, the figure reports latency distributions

as a function of core count, noted as SLICC-x where x is a core count in the range of two to 16.

The legends on the two graphs report in parentheses the average per distribution latencies.

A transaction’s latency is the number of cycles elapsed from the moment it enters the transac-

tion queue until it completes execution. For STREX, as team_si ze increases, the distribution

tends to move toward longer transaction latencies. Figure 7.11 shows the corresponding

relative throughput for TPC-C and TPC-E demonstrating that throughput also increases with

141

Chapter 7. Boosting Instruction Cache Reuse in OLTP

0

0.5

1

1.5

2

0 4 8 12 16 20

S
p

e
e

d
u

p
 o

v
e

r
B

a
se

li
n

e

team_size

TPC-C

TPC-E

Figure 7.11: STREX throughput over Baseline for a range of team_size values.

the team_size. With up to 20 threads per team, throughput improvements are the highest at

59% and 80% over Baseline for TPC-C and TPC-E, respectively. It would be straightforward to

make the team_size configurable by the system, which can then set team_size according to its

specific needs. Figure 7.10 shows that with SLICC, transaction latencies become shorter as the

number of cores increases as expected.

7.5.6 Hardware Cost

Table 7.4 details the cost of SLICC’s and STREX’s hardware components.

Section 7.3.2 describes the hardware components Table 7.4 gives for SLICC except for the

thread queue, which holds threads waiting for cores. Each thread queue entry contains a

unique numerical ID, a pointer to the threads’ context, and a core ID. The thread queues can be

local to each core, or centralized to one core. The table shows the cost for a centralized queue.

Fewer entries are required when the queues are local to each core. The team management table

is responsible for forming teams of similar threads. Each entry consists of: a unique numerical

ID, a type ID, a team ID, index within a team, and a timestamp. The team management

table is best thought of as being centralized, since every core needs to know which cores are

assigned to which teams. We can either have one centralized copy or per core copies that

are kept coherent. For this work we simulated a centralized copy at one of the cores and

modeled the necessary traffic. On each core, a SLICC agent is responsible for managing the

thread queue. The thread queue is a circular FIFO buffer and the first entry is executed until

it migrates, completes, or gets blocked for I/O. On the latter case, the thread is moved to the

end of the queue. With an over-provisioned thread queue of 30 threads and a copy of the

team management table, per core, SLICC requires a maximum of 966 bytes in addition to logic.

None of the logic operations for SLICC are on the critical path of transaction execution.

On the other hand, STREX utilizes two main units: a team formation unit and a thread

scheduler unit. The team formation unit is used to group similar transactions into teams as in

SLICC. In this work STREX searches through a window of 30 threads. The team management

142

7.5. Evaluation

Table 7.4: Hardware space cost of SLICC and STREX.

Cache Monitor Unit
SLICC STREX

Missed-Tag Queue 60-bits
NA

(MTQ) (16-core, matched_t = 4)
Miss Shift-Vector

100-bits NA
(MSV)

Cache Signature
2K-bits NA

(Bloom Filter)
Total 2208 bits (276 Bytes) 0 bits

Thread Scheduler
SLICC STREX

Thread Queue 30-entries (12-bits ID, 20-entries (12-bits ID,
48-bits pointer to thread context, 48-bits pointer to thread context,

4-bits core ID) 1-bit lead flag)
phase I D Counter NA 8-bits
Auxiliary phase I D NA

8-bit per cache block
Table (512 cache blocks)
Total 1920 bits (240 Bytes) 5324 bits (665.5 Bytes)

Team Formation
SLICC STREX

Team 60-entries (12-bits ID, 30-entries (12-bits ID,
Management 32-bits timestamp, 4-bits type ID, 32-bits timestamp, 4-bits type ID,

Table 4-bits team ID, 8-bits team index) 4-bits team ID, 8-bits team index)
Total 3600 bits (450 Bytes) 1800 bits (225 Bytes)

Grand Total 7728 bits (966 Bytes) 7124 bits (890.5 Bytes)

table maintains information about threads until they are dispatched to a core and its entries

consist of the same information as in SLICC. As detailed in Section 7.4.1, the thread scheduler

unit is responsible for incrementing the phase I D counter, tagging cache blocks with the

current phase I D value, keeping track of the lead thread, monitoring instruction cache block

victims, and context switching threads. The thread queue is a circular FIFO buffer. Each entry

consists of a unique ID, a pointer to the thread’s context in the L2 cache, and a lead flag bit. The

size of the thread queue should be the maximum value allowed for the team_size configuration

parameter. Most experiments set team_size to 10 with 20 being the maximum considered.

Assuming one team management table per core, the total storage required per core by STREX

is 890.5 bytes in addition to the logic.

143

Chapter 7. Boosting Instruction Cache Reuse in OLTP

7.6 Related Work

There have been several hardware and software proposals for reducing instruction stalls

that are applicable to OLTP workloads such as instruction prefetching [52, 53, 101, 105, 161],

computation spreading [30], and transaction batching [74].

Instruction prefetching is a well-studied research area. Stream buffers [101, 161] are simple to

implement in hardware, but they provide relatively low instruction coverage. More sophisti-

cated prefetchers [52, 53] utilize bookkeeping structures to record encountered instruction

streams, and to replay them when part of the stream is touched again. Their structures in-

crease area and energy. Moreover, prefetching, unless 100% accurate, increases miss traffic for

fetching blocks that are never touched prior to being evicted. PIF [53] was reported to achieve

near-optimal instruction coverage. Section 7.5 compares SLICC and STREX with PIF and

shows that their performance is competitive while their hardware space cost is 40× lower than

PIF’s. SHIFT [105] is a recent proposal that aims to minimize the space cost of PIF through

sharing the instruction stream history across cores, which also exploits the observation of high

temporal code overlaps across concurrent threads in a system. Nevertheless, any prefetching

technique is orthogonal to the scheduling mechanisms this chapter proposes. For example,

STREX and SLICC can avoid many of the misses that PIF has to incur, thus possibly reducing

the storage, power, and bandwidth overhead of PIF. PIF could reduce execution time for the

initial transactions, thus improving performance when used in conjunction with STREX or

SLICC. Therefore, there is potential to investigate the combination of these proposals.

Chakraborty et al. show a high-degree of redundancy in instruction fragments across threads

concurrently running on multiple cores [30]. They propose CSP, which employs thread mi-

gration to distribute the dissimilar instruction code segments and group the similar ones

together. For system code, which is commonly used by multiple threads, CSP fragments and

distributes the code across a group of dedicated cores. CSP then migrates threads to these

dedicated cores to execute system code. When threads are done, they return back to their

original cores to resume execution for the user-level code. Thus CSP is limited to fragmenting

OS code, losing opportunities of fragmentation within user code. SLICC borrows ideas from

CSP, however, generalizes thread migration to include interleaved user-OS code fragmentation

points. In addition, thread migration in SLICC is managed by the hardware, while with CSP,

the OS performs the migrations.

STEPS [74], on the other hand, is a software solution whose approach is identical in spirit

to STREX. STEPS relies on manual code instrumentation, which is a cumbersome task that

requires a high level of expertise, is prone to many errors as it is manual, and results in code

that is not portable since it is platform dependent. A slightly improved version, autoSTEPS,

automates several components of the instrumentation process.

144

7.7. Conclusions

7.7 Conclusions

OLTP workloads suffer from high instruction miss stalls on high-end server processors since

their transaction instruction footprints are by far larger than current L1-I caches, thus leading

to ongoing cache thrashing. To exploit the significant temporal instruction overlap among sim-

ilar transactions, this chapter presents two programmer-transparent scheduling mechanisms

to increase instruction reuse in the caches. While SLICC adaptively spreads the execution of

a transaction over multiple cores through thread migration, STREX time-multiplexes trans-

actions on one core. They both enable reuse of common instructions by localizing them to

cores. As a result, they improve performance over conventional transaction scheduling and

exhibit competitive performance to state-of-the-art prefetchers despite significantly lower

space cost. When the available aggregate L1 instruction cache capacity is enough to spread a

workload’s instruction footprint, SLICC outperforms STREX, whereas under low core counts

STREX should be the choice of scheduling.

145

8 Transaction-aware Instruction Chas-
ing

The previous chapter (Chapter 7) aims to maximize instruction cache locality through two

hardware mechanisms and surveys related work that propose either software- or hardware-side

solutions to the same problem. However, exploiting hardware resources based on the hints given

by the software-side has not been widely studied for data management systems. This chapter

presents ADDICT, a software-guided hardware mechanism that schedules transactions in a way

to maximize the instruction cache locality.

ADDICT is based on the same observation that inspired the two hardware mechanisms in the

previous chapter: concurrent transactions exhibit high instruction commonality (Section 6.6).

However, ADDICT initially performs a profiling step to determine the most frequent actions of

database operations, whose instruction footprint can fit in an L1 instruction cache, and assigns

a core to execute each of these actions. Then, it schedules each action on its corresponding core.

This way, it requires less hardware complexity and leads to more precise scheduling decisions.

Our prototype implementation of ADDICT reduces L1 instruction misses by 85% and the long

latency data misses by 20% compared to the conventional way of scheduling transactions. As

a result, ADDICT leads up to a 50% reduction in the total execution time for the evaluated

workloads. Furthermore, it is 20% and 35% faster than SLICC and STREX, respectively, on

average. 1

8.1 Introduction

As discussed in the previous part, several workload characterization studies show that micro-

architectural resources are severely underutilized when running online transaction processing

(OLTP) applications [54, 177, 186] (and also Chapter 5). Up to 80% of the execution cycles go

to memory stalls [54]. As a result, on modern processors, OLTP barely achieves one instruction

per cycle (IPC), far below the processors peak capability of four IPC.

1 This chapter uses material from [187].

147

Chapter 8. Transaction-aware Instruction Chasing

Previous work on reducing memory stall time for data management systems aimed at reducing

cache miss rates, focusing primarily on improving locality and cache utilization for data rather

than for instructions. Proposals range from cache-conscious data structures and algorithms

[32, 58] to sophisticated data partitioning and thread scheduling [154] on the software-side,

whereas hardware techniques mainly target data prefetching [175].

However, as we have shown in Part II, for traditional transaction processing systems, the

stall time due to L1 instruction misses is at least as problematic as long-latency data misses

from the last-level cache. Improving code layout by writing better code or by compilation

optimizations [159] does improve instruction cache utilization, but does so by mainly reducing

conflict misses. However, it is capacity misses that dominate L1 instruction misses on today’s

most commonly used server hardware (Section 6.5.1); the instruction footprint of a transaction

is too big to fit in the L1 caches, thus thrashing L1-I and leading to very lengthy stalls.

Chapter 7 proposes two hardware mechanisms, STREX and SLICC, which address capacity

instruction misses in OLTP. STEPS [72, 74] is a software mechanism with the same goal as

STREX and SLICC. These proposals are motivated by the observation that threads executing

transactions in parallel on a multicore server execute a significant amount of common code

(Section 6.6). To be able to reuse the common instructions already brought into L1, STEPS [74]

and STREX [15] time-multiplex a batch of threads on the same core, whereas SLICC [13, 14]

spreads the computation of a transaction to several cores to localize the common instructions

to specific caches. Nevertheless, STREX and SLICC are completely oblivious to software and

miss the opportunity to more precisely improve instruction locality through software guidance.

STEPS, on the other hand, is a pure software technique designed to run only on a single-core

and requires significant manually-aided instrumentation. Furthermore, all three techniques

increase average transaction latency and STREX and STEPS increase the potential of deadlocks

due to extensive batching and context-switching.

The goal of this chapter is to better exploit the L1 caches when running transactions based

solely on hints from the software-side. The traditional way of scheduling transactions con-

siders each as one big, monolithic task. Therefore, the granularity of tasks assigned to run on

a core is too coarse, which leads to cache thrashing due to the large instruction footprint of

the scheduled task. This work proposes to reduce the granularity of task-to-core assignment

by scheduling the actions of common database operations. This approach bridges the gap

between a transaction’s instruction footprint and the L1 capacity.

To assign finer-grained tasks to cores while running transactions, we design ADDICT, a trans-

action scheduling mechanism that chases instruction cache locality. ADDICT first segments a

database operation into smaller actions, where the instruction footprint of each action fits

in a single L1 instruction cache. Then, it assigns specific cores for each of these actions and

migrates the transactions over multiple cores using core assignment decisions that aim to

maximize instruction locality for each action.

The contributions and the organization of this chapter are as follows:

148

8.2. ADDICT

• Based on the insights from Section 6.6, Section 8.2 describes the design of ADDICT, a

transaction scheduling mechanism that views transactions as a composition of the actions

from the database operations they execute.

• Section 8.3 evaluates our prototype of ADDICT and shows that ADDICT reduces L1 in-

struction cache misses by 85%, while also reducing the long-latency data misses from the

last-level cache by 20%. Even though ADDICT slightly increases L1 data cache misses and

average transaction latency, the improved instruction locality leads to 45% and 15% gains

in total execution time on average on shallow and deep cache hierarchies, respectively.

ADDICT also outperforms STREX (by 35%) and SLICC (by 20%).

Finally, Section 8.4 surveys related work and Section 8.5 concludes.

8.2 ADDICT

Section 6.6 emphasizes that transactions exhibit high instruction commonality whereas the

data commonality is low. Based on this finding, we design an alternative method to schedule

transactions to maximize instruction cache locality. ADDICT, an advanced instruction chasing

mechanism for transactions, departs from the traditional way of scheduling transactions,

which sees a transaction as one big task. ADDICT rather considers a transaction as a combi-

nation of the database operations it calls and migrates transactions over cores based on the

actions their operations are about to execute.

ADDICT consists of two steps, which are detailed in the subsequent subsections.

• Step 1 (Section 8.2.1) determines the migration points in each database operation.

• Step 2 (Section 8.2.2) spreads the execution of a transaction over multiple cores based on

the migration points picked in the previous step.

Step 2 is always dynamic since it orchestrates transaction execution during the actual run,

whereas Step 1 can be either static or dynamic depending on the application’s needs.

8.2.1 Finding Migration Points

To be able to determine when and where to move a transaction at run-time, ADDICT first

needs to decide on the migration points in each database operation. ADDICT picks these

points separately for each transaction type since the code paths each database operation

takes might change based on the tables accessed in a particular transaction, as we observe in

Section 6.6.2.

149

Chapter 8. Transaction-aware Instruction Chasing

Algorithm 4 Finding migration points.
Inputs: list of transactions and database operations.
Output: a list of instruction sequences that indicate the migration points picked for each
database operation invoked by each transaction.

1: m → keeps possible migration points
2: for instruction access addr in workload do
3: if a transaction entry/exit then
4: empty the L1-I cache
5: if transaction entry then
6: xct = current transaction type
7: else if a database operation entry/exit then
8: empty the L1-I cache
9: if operation entry then

10: op = current operation
11: create empty sequence
12: else
13: m[xct][op][sequence]++
14: else if addr request requires an eviction then
15: empty the L1-I cache
16: sequence.append(addr)
17: return the sequence with the highest value for each m[xct][op]

Algorithm

Algorithm 4 shows the details of ADDICT’s initial step, which finds the migration points for a

workload. It takes a list of indicators to identify the transactions and database operations in the

workload. These indicators can be function names or instruction addresses that correspond

to the entry and exit points of the transactions or operations.

In lines 1-16 of Algorithm 4, ADDICT records the sequences of instructions that cause an

eviction from each database operation invoked in a particular transaction type as migration

point candidates. In parallel, it collects the occurrence count for each of these sequences. Since

ADDICT aims to migrate transactions at the granularity of actions from database operations

that can fit in an L1-I cache, it resets the L1-I cache upon transaction or database operation

entry and exit points in this step. After collecting the candidates, ADDICT picks the most

frequent sequence of instructions for each database operation from each transaction type as

migration points (line 17 in Algorithm 4).

Example

In line 17 of Algorithm 4, ADDICT has information similar to the following in map m:

1) xct1→insert→0x8b5f5f 0x899397→9

150

8.2. ADDICT

2) xct1→insert→0x9bd97f 0x8b5fbf 0x94ffde→1

3) xct2→probe→0x98560e 0x8d97bc→10

4) xct2→update→0x9557f0→5

Each entry in m correspond to a migration point sequence candidate from a particular

database operation called within a particular transaction type. The entries also keep the

number of times the corresponding migration point sequence is observed during the profiling

phase. For example, (1) from above indicates that the migration point sequence 0x8b5f5f
0x899397 are the sequence of instructions that cause L1-I cache evictions in nine instances of

the insert operation called from xct1.

ADDICT goes over this information to figure out the most frequent sequence of migration

points. In this example, these are

• (1) for insert operation in xct1,

• (3) for probe operation in xct2, and

• (4) for update operation in xct2.

Migration points in (2) represent a corner case in the insert tuple operation since they only

appear once among all instances of xct1. For probe and update operations in xct2, however,

there are no alternative migration points to the ones in (3) and (4). If there are multiple

sequences of migration points that are the most frequent for an operation, ADDICT picks one

of them randomly. However, we do not observe such cases for the workloads we evaluate in

Section 8.3.

Implementation

There are several ways of deploying Algorithm 4 in practice. Adopting ADDICT as a pure

dynamic approach requires integrating Algorithm 4 with the actual workload run. ADDICT

can perform this step as a part of the ramp-up time (a few seconds) without making any

specialized scheduling decisions for transactions and then switch to migrating transactions

based on the information collected in this step. On the other hand, Step 1 of ADDICT can be

static and performed a priori as well. In this case, ADDICT would migrate transactions over

the dedicated cores as soon as the real workload run starts.

In this step, ADDICT detects cache-sized chunks from each database operation. Therefore,

given an empty L1-I cache, ADDICT should track the instructions that cause cache evictions

within each database operation. To track such instructions at run-time, ADDICT can use

either the hardware counters on the target hardware or mechanisms like informing memory

operations [83]. Upon a transaction/operation entry/exit or eviction, ADDICT must flush the

151

Chapter 8. Transaction-aware Instruction Chasing

L1-I contents to reset the instruction cache and determine the next cache-sized code chunk in

the current operation.

In addition, within the storage manager, there might be functions/routines where one should

avoid migrating. For example, migrating within short-critical sections or lock acquisition-

s/releases would increase the duration of these routines. Therefore, Algorithm 4 can take

additional input that indicates such functions and avoid picking migration points within these

functions.

8.2.2 Migrating Transactions

After determining the migration points, ADDICT applies its scheduling principles during

regular transaction execution. Since it picks the migration points separately for each transac-

tion, it batches same-type transactions to maximize instruction cache locality. Furthermore,

while processing a batch, ADDICT adjusts the core assignments based on the needs of the

application, i.e., it assigns more cores to a migration point if it is more frequently used.

Algorithm

Algorithm 5 shows the core assignment and transaction migration principles of ADDICT’s Step

2. Algorithm 5 takes as input the migration points found by Algorithm 4. It first assigns cores

to each of the migration points (lines 1-14). Then, it migrates transactions based on the core

assignments (lines 16-31).

Lines 1-14 of Algorithm 5 handle the core assignments on the target hardware. As in Algorithm

4, ADDICT considers each transaction separately. Therefore, each transaction takes core0

as their entry core (lines 3-6). For the remaining core assignments, ADDICT incrementally

assigns a unique core ID to each database operation in a transaction (lines 7-10) and its

corresponding migration points (lines 11-14). Section 8.2.2 describes how ADDICT handles the

cases where the number of migration points does not exactly match the number of available

cores. Algorithm 5 omits these details for simplicity.

Lines 16-31 of Algorithm 5 perform the actual transaction execution. To maximize cache

locality, in lines 16-17, same-type transactions from the list of client requests form a batch.

The batch size is equal to the number of available cores on the current hardware to avoid

increasing average transaction latency drastically. Then, for each instruction to be executed,

ADDICT checks whether the transaction should migrate to another core based on the prior

core assignment decisions (lines 20-26). If destination core ID has a different value than the

current core ID of the transaction being executed, ADDICT migrates the transaction provided

that there is an available destination core for the current migration point (lines 27-31).

To ensure the instruction stream is on a path that matches the migration points sequence

in the input, ADDICT also tracks the previous migration addresses for each migration point.

152

8.2. ADDICT

It migrates a transaction upon encountering a migration point only if that transaction has

already executed the previous migration point in the sequence (line 25). An instruction address

might be used several times during the execution of a database operation. However, it might

lead to migration only if it is called through a specific path. Therefore, ADDICT must check for

such order dependencies in the migration sequence.

....

Algorithm 5 Migrating transactions.
Input: migration points (output of Step 1) m.

1: cor es → keeps core assignments
2: pr ev → keeps previous migration point
3: for each transaction type xct in m do
4: cor e = 0, op = 0, pr ev = 0
5: addr = entry instruction for xct
6: cor es[xct][op][addr] =< cor e, pr ev >
7: for each operation op in m[xct] do
8: cor e ++, pr ev = 0
9: addr = entry instruction for op

10: cor es[xct][op][addr] =< cor e, pr ev >
11: for each migration address addr in m[xct][op] do
12: cor e ++
13: cor es[xct][op][addr] =< cor e, pr ev >
14: pr ev = addr
15: ..
16: for each transaction type xct in the list of requests do
17: group num_cor es transactions of type xct in batch
18: for each core do mxct = cor es[xct], op = 0, pr ev = 0
19: for each transaction t in batch do
20: for each instruction access addr in t do
21: cor edest = cor ecur r

22: if addr is in mxct then
23: op = addr , pr ev = 0
24: if addr is in mxct [op] then
25: if pr ev == mxct [op][addr].pr ev then
26: cor edest = mxct [op][addr].cor e, pr ev = addr
27: if cor edest ! = cor ecur r then
28: if cor edest is available then
29: migrate t to cor edest

30: else
31: steal an idle core from another migration point or wait in the work queue of

cor edest

153

Chapter 8. Transaction-aware Instruction Chasing

Example

Let’s assume that Algorithm 5 takes as input the output of the example in Section 8.2.1, which

is:

xct1→insert→0x8b5f5f 0x899397→9

xct2→probe→0x98560e 0x8d97bc→10

xct2→update→0x9557f0→5

At line 15 of Algorithm 5, cor es would have the assignments given below:

xct1→<core0,0>

xct1→insert→<core1,0>

xct1→insert→0x8b5f5f→<core2,0>

xct1→insert→0x899397→<core3,0x8b5f5f>

xct2→<core0,0>

xct2→probe→<core1,0>

xct2→probe→0x98560e→<core2,0>

xct2→probe→0x8d97bc→<core3,0x98560e>

xct2→update→<core4,0>

xct2→update→0x9557f0→<core5,0>

After deciding on the core assignments, ADDICT starts batching transactions. Let’s assume

that it initially batches requests of xct1 and one of the transactions in that batch has the

following instruction sequence:

xct1_entry_instr ... insert_entry_instr ... 0x899397 0x89939c 0x89939e ...
0x8b5f5f 0x8b5f62 ... 0x899397 ...

Upon xct1 and insert operation entry, ADDICT migrates the transaction to core0 and core1,

respectively. When the instruction 0x899397 is accessed for the first time, since its previous

migration point, 0x8b5f5f, is not yet encountered, ADDICT keeps the transaction on the

same core. When the transaction uses the instruction 0x8b5f5f, since it is the first migration

point in the insert operation, ADDICT migrates the transaction to core2. When the instruction

0x899397 is reused, since it comes after a migration to core2 due to 0x8b5f5f, ADDICT now

migrates the transaction to core3.

154

8.2. ADDICT

Load Balancing

Algorithm 5 presents a simplified version of the actual ADDICT algorithm as it just assigns one

core per migration point. In a typical OLTP workload running on modern server hardware,

there are

• database operations that are more frequently used than others and

• more or fewer cores than the number needed by a transaction.

We describe how ADDICT deals with such cases below.

More migration points than cores: If the migration points for a transaction require more

cores than what is available in the system, ADDICT starts ignoring the internal migration

points in less frequent database operations starting from the last migration point. For example,

in Section 8.2.2, if there were only four cores in the system, there would not be any cores

assigned to 0x9557f0 in update and 0x8d97bc in probe for xct2. 0x9557f0 in update is

ignored prior to 0x8d97bc in probe since the update operation occurs less often (5 vs. 10 in

Section 8.2.1:Example). 0x8d97bc in probe is ignored next since there are no more internal

migration points to ignore in update. In our experiments in Section 8.3, this situation arises

for some TPC-C and TPC-E transactions.

If there are too few cores available for a workload, e.g., if the number of cores is even less

than the number of operations executed by a transaction type, ADDICT can either fall back to

traditional scheduling or switch to a scheduling technique that optimizes instruction locality

for a single-core (e.g., STREX (Section 7.4), STEPS [74]).

Fewer migration points than cores: When a transaction requires fewer cores than what is

available on the machine, which is the common case in the era of multisocket multicores,

ADDICT distributes the remaining cores based on the frequency of operations. For example, in

Section 8.2.2, if there were ten cores in the system, there would be two cores assigned to each

migration point in the probe operation since it is more frequent than update. The remaining

core would be given to the entry point of update.

In the case of having enough cores to assign to the migration points from multiple transactions,

ADDICT can run multiple batches of transactions in parallel.

Dynamic reassignment of cores: After the initial core assignments, ADDICT deploys a dy-

namic approach. Whenever the destination core of migration is not available, i.e., occupied by

another transaction (line 31 of Algorithm 5), there are two options:

• if there are any idle cores that belong to another migration point, ADDICT re-assigns one

of these idle cores to the current migration point and

155

Chapter 8. Transaction-aware Instruction Chasing

• if there are no idle cores, then the transaction waits in the work-queue of the destination

core.

Implementation

We design ADDICT to be a software-guided hardware mechanism. We think of the migration

points picked by Step 1 of ADDICT as the software hints used by Step 2 of ADDICT on the

hardware side. Therefore, while Step 1 can use the already existing hardware features of

modern hardware, Step 2 requires some additional features from the hardware side. These

additional features stem from two requirements:

• keeping track of the migration points and

• performing fast and exact thread migrations.

To be able to decide when and where to migrate a transaction, each core must keep the

list of migration points for that transaction as well as an indicator for the current database

operation and the previous migration point. ADDICT distinguishes both database operations

and migration points using instruction addresses. Therefore, we can calculate ADDICT’s space

cost mainly based on the space cost of an instruction address. If we distinguish instructions

based on their unique cache block addresses during program execution, then 58bits would

be enough for an instruction on a server with 64B cache blocks and 64bit memory address

space (most common case for modern servers). Keeping the current database operation and

the previous migration point would require 116bits per core. For each migration point, we

need to map a <database operation, migration point> pair to a <core id, previous migration

point>. In this mapping, except for the core id value, the other three values are instructions.

We can keep the core ids as 8bit integers since 8bits already give us 256 distinct values. As a

result, 182bits would be enough to keep a migration point. This way, a core can keep up to

40 migration points in less than 1KB of space, which is a feasible space cost per core on most

server hardware as also stated in Section 7.5.6.

On the other hand, the hardware cost of the thread migrations is mainly algorithmic, which

Section 7.3.4 also discusses in detail. We estimate the time required per thread migration to be

∼90 cycles—the cost of writing/reading a thread’s state (e.g., the register values, last program

counter, etc.) to/from the last-level-cache (∼6 cache lines).

Deploying ADDICT as a pure software mechanism would be less straightforward than our

design. Dictating which transactions should run on which cores is harder and less efficient on

the software side. Modifying the context-switching code in the current platform in order to per-

form fast context-switches, like STEPS does [74], would help to some extent. However, this still

does not guarantee that threads are going to migrate exactly to the cores ADDICT wants them

to migrate. The functions that set a thread’s core affinity (e.g., pthread_setaffinity_np
in the POSIX library) only work well provided that the destination core is idle. Otherwise,

156

8.3. Evaluation

the OS scheduler schedules the thread to one of the underutilized cores automatically. To

prevent such undesirable migrations and cache thrashing, ADDICT requires a more drastic

design change on the software-side if a software-only design is more desirable. Deploying an

execution model similar to staged databases [73, 75] and assigning stages to each database

operation would allow us to pin each stage to a core, send requests to each stage’s work queue,

and give ADDICT more control over the core affinities.

Effect on database components

Under ADDICT, a transaction goes through the same database components as it does under

traditional scheduling. ADDICT only involves multiple cores in the execution of a transaction.

However, it does not change what a transaction executes. Therefore, ADDICT’s migrations

have no effect on ACID properties, concurrency control mechanisms, or the logging subsystem.

In addition, since ADDICT does not batch more transactions than the number of available

cores in the system, it does not change the data contention patterns.

For the cases outside the regular workload run, such as recovery or database population,

ADDICT can either fallback to traditional scheduling or find new migration points for the

specific operations or routines executed during such periods of execution.

8.3 Evaluation

The evaluation demonstrates:

• the stability of the migration points ADDICT picks across different numbers of transaction

instances in Section 8.3.2,

• ADDICT’s effect on instruction and data misses at different levels of the memory hierarchy

in Section 8.3.3,

• ADDICT’s impact on performance in Section 8.3.4,

• the effect of changing server load on ADDICT’s performance in Section 8.3.5,

• ADDICT’s behavior with simultaneous multithreading Section 8.3.6,

• ADDICT’s effectiveness under deeper cache hierarchies in Section 8.3.7, and

• ADDICT’s overhead in Section 8.3.8.

8.3.1 Setup and Methodology

Since ADDICT is a software-guided hardware mechanism (Section 8.2.2), the evaluation uses

full timing simulation. We collect x86 execution traces from transactions using Pin [124]. We

157

Chapter 8. Transaction-aware Instruction Chasing

Table 8.1: Simulated system parameters.

Processing Cores 16 OoO cores, 2.5GHz, 6-wide Fetch/Decode/Issue
128-entry ROB, 80-entry LSQ, BTAC (4-way, 512-entry)

TAGE (5-tables, 512-entry, 2K-bimod)
Private L1 Caches 32KB, 64B blocks, 8-way, 3-cycle load-to-use

32 MSHRs, MESI-coherence for L1-D
L2 NUCA Cache Shared, 1MB per core, 16-way

64B blocks, 16 banks, 16-cycle hit latency, 64 MSHRs
Interconnect 2D Torus, 1-cycle hop latency

Memory DDR3 1.6GHz, 800MHz Bus, 42ns latency
2 Channels / 1 Rank / 8 Banks, 8B Bus Width, Open Page Policy

Latencies CAS(10), RCD(10), RAS(35), RC(47.5)
WR(15), WTR(7.5), RTRS(1), CCD(4), CWD(9.5)

replay these traces on the Zesto x86 multicore architecture simulator [122], modeling the

timing of all events. Table 8.1 details the hardware parameters in our simulation.

The traces are extracted from three standard transaction processing benchmarks [188] - TPC-B

[190], TPC-C [191], and TPC-E [193] - while running their workload mix after a warm-up

period on the Shore-MT storage manager [172]. Scaling factors are set big enough to have a

100GB dataset right after database population, and the buffer-pool is configured to keep the

whole database in memory. To run the most scalable configuration for all the benchmarks, we

enable all the logging [97] and locking [95] optimizations of Shore-MT. Since we simulate 16

cores, there are 16 worker threads executing transactions during the trace collection.

We compare ADDICT against three transaction scheduling mechanisms:

• Baseline, the traditional transaction scheduling, where each transaction starts and finishes

its execution on one core provided that no context-switching occurs due to I/O, waiting for

locks, etc.,

• STREX (Section 7.4), which time-multiplexes a batch of transactions on the same core to

enable instruction reuse among the transactions in the batch, and

• SLICC (Section 7.3), which spreads the computation of transactions over several cores to

localize common instructions to caches without any software hints.

We implement all four scheduling mechanisms on the Zesto simulator. Except for Baseline,

all the mechanisms rely on batching same-type transactions. ADDICT picks a batch size that

is equal to the number of available cores by default. Therefore, except for Section 8.3.5, the

batch size is 16 in our experiments.

158

8.3. Evaluation

0

20

40

60

80

100

1000 10000 1000 10000 1000 10000

AccountUpdate NewOrder Payment

TPC-B TPC-C

%
 o

f
O

p
e

ra
ti

o
n

 I
n

st
a

n
ce

s
W

h
e

re

M
ig

ra
ti

o
n

 P
o

in
ts

 E
x
a

ct
ly

 M
a

tc
h

Total Number of Transaction Traces

probe

update

insert

Figure 8.1: Percentage of database operation instances where the migration points picked by
ADDICT have an exact match as we increase the total number of transaction instances.

We collect 11000 transaction traces for each workload. The initial step of ADDICT (Algorithm

4) uses the first 1000 traces (from 1 to 1000) to determine the migration points. Section 8.3.2

uses all the traces after the first 1000 (from 1001 to 11000), whereas the rest of the sections use

the next batch of 1000 traces (from 1001 to 2000) while evaluating the different scheduling

mechanisms.

8.3.2 Migration Points

As Section 8.2.1 describes, ADDICT picks the most common migration point sequences among

all possible migration points for a transaction type. In our experimental evaluation, ADDICT

determines the migration points based on a run with 1000 transaction traces (Section 8.3.1).

This section investigates the stability of these migration points across all the instances of a

transaction. It also shows how stability changes as we drastically increase the total number

of transaction instances. A transaction instance has stable migration points if ADDICT’s

core migration selection algorithm, when ran directly on this transaction instance alone,

picks migration points that match the migration points chosen by ADDICT during the initial

profiling phase using the first 1000 transaction instances. For brevity, Figure 8.1 shows the

results only for TPC-B’s AccountUpdate and TPC-C’s NewOrder and Payment transactions.

The results are very similar for the other transaction types.

Except for the insert tuple operation in TPC-C, the migration points ADDICT determines for

each database operation is stable in at least 90% of all the transactions. As Section 6.6.1 notes,

insert tuple is the operation that has the most variety in its instruction stream across different

instantiations. Therefore, it is expected that even the most frequent migration sequence for

insert tuple does not satisfy almost half of the instances for some transaction types.

159

Chapter 8. Transaction-aware Instruction Chasing

Furthermore, Figure 8.1 shows that the percentage of stability of the migration points stays

the same when we move from 1000 to 10000 traces. This demonstrates that the 1000 transac-

tion traces is sufficient enough to capture the differences across multiple instantiations of a

transaction type for the workloads we evaluate. Therefore, the rest of the experiments in this

section use 1000 transaction traces that is different from the 1000 transaction traces used for

determining the migration points (see Section 8.3.1).

8.3.3 Instruction and Data Misses

This section quantifies ADDICT’s impact on the instruction and data misses at the various

cache hierarchy levels. More specifically, this section measures the number of instruction

and data misses per 1000 instructions (MPKI) at the L1-I, L1-D, and L2 caches as we run

the workloads with different scheduling techniques. Figure 8.2 reports the MPKI values for

ADDICT, STREX, and SLICC normalized over the MPKI values from the Baseline.

L1-I

As Figure 8.2 illustrates, all scheduling mechanisms reduce the L1-I misses. However, ADDICT

is more effective in reducing the instruction misses compared to the two hardware-only

techniques. Specifically, ADDICT reduces instruction misses by 85% on average over Baseline,

whereas the reduction is 20% and 60% with STREX and SLICC, respectively. ADDICT makes

more precise scheduling decisions while chasing instruction locality for transactions because

of the software-guidance.

TPC-B benefits the most from ADDICT since its transaction mix has only one transaction

type. The migration points picked for TPC-B are suitable for all transactions. Therefore, after

the initial set of transactions the instructions are spread over the various instruction caches

and remain mostly resident for all other transactions. For TPC-C and TPC-E, however, if

the new batch of transactions is of a different type than the ones in the previous batch, the

non-overlapping instruction footprint must be first loaded in the instruction caches by the

first few transactions.

L1-D

The L1-D MPKI results in Figure 8.2 show that the techniques that are based on computation

spreading, SLICC and ADDICT, hinder data locality. When a transaction migrates from one

core to another, it leaves its data behind. Therefore, SLICC and ADDICT increase data misses

by 40% and 25% on average over the Baseline, respectively. STREX, on the other hand, leads

to constructive data sharing for the few overlapped read-only data cache blocks (see Section

6.6.2).

160

8.3. Evaluation

0

0.2

0.4

0.6

0.8

1

TPC-B TPC-C TPC-E

N
o

r
m

a
li

z
e

d
 M

P
K

I

L1-I

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

TPC-B TPC-C TPC-E

L1-D

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

TPC-B TPC-C TPC-E

L2

STREX

SLICC

ADDICT

Figure 8.2: ADDICT’s impact on instruction and data misses. Y-axes show the number of
misses per 1000 instructions (MPKI) normalized over Baseline (=1 on Y-axis).

Section 6.4 shows that the data misses OLTP suffers from the most are the long-latency data

misses from the last-level cache. These misses result in off-chip accesses that require a trip to

main-memory. Modern out-of-order (OoO) processor cores are capable of hiding the latency

of a few additional L1 data misses that end up being serviced by the on-chip memory hierarchy.

Moreover, it is harder to overlap L1 instruction miss stalls compared to L1 data misses on a

modern superscalar OoO processor, like the one we model (Section 8.3.1). Therefore, the slight

increase in L1-D MPKI does not outweigh the benefits of reducing the L1-I MPKI as long as we

avoid increasing the misses from the last-level cache. Section 8.3.4 supports this claim.

L2

ADDICT and SLICC both reduce the L2 MPKI by ∼20%, whereas STREX increases it by 50% on

average. Due to batching transactions on one core, STREX runs more transactions concur-

rently, which increases the stress on the requests to the last-level cache. However, STREX still

improves the performance as Section 8.3.4 shows, emphasizing the importance of reducing

the instruction misses once again. On the other hand, since all the techniques batch the same

type of transactions, they access the same tables concurrently. Therefore, the reduction in L2

MPKI for ADDICT and SLICC stems from the constructive sharing of the read-only metadata

information and higher-levels of the B-tree indexes for the same tables.

8.3.4 Performance Impact

This section measures how performance varies with ADDICT. It uses two performance metrics:

• total execution time to complete all traces and

• average time to complete a single transaction.

Figure 8.3 presents the results.

161

Chapter 8. Transaction-aware Instruction Chasing

0

0.2

0.4

0.6

0.8

1

TPC-B TPC-C TPC-E

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 T
im

e
STREX SLICC ADDICT

0

1

2

3

4

5

6

7

8

TPC-B TPC-C TPC-E

N
o

rm
a

li
ze

d
 A

v
e

ra
g

e

T
ra

n
sa

ct
io

n
 L

a
te

n
cy

Figure 8.3: Impact of different scheduling techniques on performance; total execution cycles to
complete 1000 transaction traces (left-hand side) and average transaction latency (right-hand
side). Y-axes are normalized over Baseline (=1 on Y-axis).

Total execution cycles

Figure 8.3 shows that ADDICT reduces the total execution time by 45% over the Baseline.

ADDICT is better than STREX and SLICC, which respectively improve performance by 17%

and 35% on average over the Baseline. ADDICT manages to better utilize the instruction

caches boosting instruction cache locality (see Figure 8.2).

Latency

While STREX, SLICC, and ADDICT reduce the total execution time and improve throughput,

they all depend on transaction batching. As a result, they increase the average transaction

latency in all the workloads. However, ADDICT exhibits the lowest transaction latency over-

head compared to STREX and SLICC, increasing average transaction latency by 60% over the

Baseline, whereas the latency increase is 7−8× by STREX since it overloads cores with multiple

transactions.

8.3.5 Effect of Changing Loads

By default, ADDICT picks a batch size that is equal to the number of available cores in the

system. This section investigates ADDICT’s behavior under different batch sizes, in parallel

observing the effect of changing server load on ADDICT. Figure 8.4 reports how well ADDICT

reduces the total execution cycles and L1-I misses as a function of batch size, i.e., the number of

concurrent transactions in the system, from two (lightly-loaded system) to 32 (heavily-loaded

system).

Figure 8.4 shows that while the reduction in L1-I MPKI remains the same, the total execution

time improves for larger batch sizes. This is expected since the transactions from the previous

batch might prefetch the instructions needed for the current batch. Therefore, ADDICT’s

162

8.3. Evaluation

0

0.2

0.4

0.6

0.8

1

2 4 8 16 32

T
o

ta
l

E
x
e

cu
ti

o
n

 T
im

e

(A
D

D
IC

T
 o

v
e

r
B

a
se

li
n

e
)

Batch Size

0

0.2

0.4

0.6

0.8

1

2 4 8 16 32

L1
-I

 M
P

K
I

(A
D

D
IC

T
 o

v
e

r
B

a
se

li
n

e
)

Batch Size

TPC-B

TPC-C

TPC-E

Figure 8.4: Impact of changing server load (or batch size) on ADDICT; total execution cycles
to complete 1000 transaction traces (left-hand side) and instruction cache misses per 1000
instructions – L1-I MPKI – (right-hand side). Y-axes are normalized over Baseline (=1 on
Y-axis).

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 T
im

e

#-way SMT

TPC-B

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8
#-way SMT

TPC-C

Baseline STREX

SLICC ADDICT

Figure 8.5: Behavior of different scheduling mechanisms with simultaneous multithreading
(SMT). Y-axes plot the total execution cycles to complete 1000 transaction traces normalized
over Baseline with no SMT (=1 on Y-axis) for the corresponding benchmarks.

effect on L1-I MPKI does not change as we increase the batch size. On the other hand, as we

increase the batch size more transactions exploit the improved L1-I locality at a time. As a

result, the reduction in the total execution time increases starting from a batch size of 8.

8.3.6 With Simultaneous Multithreading

So far, the experiments in Part III have simulated cores that support one hardware context (no

simultaneous multithreading). This section investigates how the behavior of the evaluated

scheduling techniques changes as we increase the number of hardware contexts available in a

core. Figure 8.5 plots the total execution cycles for the TPC-B and TPC-C benchmarks as the

different scheduling mechanisms run on hardware with 1-, 2-, 4-, and 8-way simultaneous

multithreading (SMT). To keep the simulated hardware fully utilized, the number of trans-

actions Baseline, SLICC, and ADDICT concurrently execute is equal to the total number of

163

Chapter 8. Transaction-aware Instruction Chasing

0

0.2

0.4

0.6

0.8

1

TPC-B TPC-C TPC-E

T
o

ta
l

E
xe

cu
ti

o
n

 C
y

cl
e

s

(
A

D
D

IC
T

 o
v
e

r
B

a
se

li
n

e
)

Figure 8.6: Impact of deeper cache hierarchies on ADDICT. Y-axis plots normalized ADDICT
values over Baseline (=1 on Y-axis).

hardware contexts available at that time. For example, with 4-way SMT, all three mechanisms

run 64 transactions at the same time provided that there are enough requests. In the case of

SLICC and ADDICT, this means picking a batch size of 64 transactions. On the other hand, the

machine load is kept the same in the case of STREX. STREX already executes 16 transactions

concurrently on one core with no-SMT. Increasing this number with increasing SMT degree

would drastically overload the machine. In order to keep the total load constant, STREX

batches 16, 8, 4, and 2 transactions per hardware context when run with 1-, 2-, 4-, 8-way SMT,

respectively.

SMT, in general, has a positive impact over all the scheduling mechanisms except for STREX

when running TPC-C. An 8-way SMT almost halves the total execution cycles for Baseline,

SLICC, and ADDICT since it helps in overlapping the various memory-related stall times.

However, the reduction in the execution cycles is not proportional to the degree of SMT since

running multiple transactions on the same core simultaneously also stresses the caches. For

STREX, since we do not enforce all the hardware contexts in a core to pick the same transac-

tion type while batching transactions, cores might be executing different transaction types

simultaneously. Since TPC-B has only one transaction type, this does not cause performance

degradation for STREX. However, in the case of the TPC-C benchmark, an 8-way SMT in-

creases the total execution time by 14% even though STREX still outperforms the Baseline

with no-SMT.

8.3.7 On Deeper Memory Hierarchies

This section considers a deeper memory hierarchy, which is representative of certain popular

modern chip multiprocessors. More specifically, the experiments of this section introduce an

additional 256KB per core L2 cache with 7 cycles of access latency. The previously considered

shared L2 now appears as a shared L3 and the L1 caches remain the same. Figure 8.6 shows

the total execution cycles for ADDICT normalized over the Baseline.

164

8.3. Evaluation

0

0.2

0.4

0.6

0.8

1

TPC-B TPC-C TPC-E

#
 o

f
C

o
n

te
x
t-

sw
it

ch
e

s

p
e

r
1

0
0

0
 I

n
st

ru
ct

io
n

s

STREX

SLICC

ADDICT

0

20

40

60

80

100

STREX SLICC ADDICT

E
xe

cu
ti

o
n

 C
y

cl
e

s
B

re
a

k
d

o
w

n

Rest Overhead

Figure 8.7: Number of context-switches/thread migrations per 1000 instructions (left-hand
side) and execution cycles breakdown (right-hand side).

The reduction in L1-I MPKI and LLC(=L3) MPKI are similar to those for the shallower memory

hierarchy (Figure 8.2). ADDICT remains effective at improving overall performance. As

expected, the overall performance improvements are lower compared to the results with the

shallower memory hierarchy since now the penalty for an L1-I cache miss is lower; the new L2

cache now handles some of the instruction cache misses. Considering that Shore-MT has an

instruction footprint of 128KB-256KB, most L1-I misses are now served by the 256KB L2 cache,

which effectively keeps the whole instruction footprint. However, the instruction footprint for

commercial database management systems would be higher than the instruction footprint of

Shore-MT.

8.3.8 Overhead

All three hardware mechanisms we evaluate have one major run-time overhead: they require

additional context-switches either due to time-multiplexing transactions on a single core

(STREX) or thread migrations across multiple cores (SLICC and ADDICT). Figure 8.7 compares

the three mechanisms in terms of this overhead. More specifically, we first measure the

number of times they context-switch transactions per 1000 instructions. Then, we report the

contribution of this overhead to total execution cycles.

As the graph on the left-hand side of Figure 8.7 shows, ADDICT achieves its better performance

through fewer migrations compared to both STREX and SLICC; 85% and 60%, respectively.

Therefore, its run-time overhead due to context-switches is lower compared to the other two

mechanisms. Nevertheless, the graph on the right-hand side of Figure 8.7 shows the execution

cycles breakdown averaging the results for all the workload runs. It demonstrates that none of

the mechanisms suffer due to the additional context-switches they incur. Even in the case of

STREX, only 3% of the overall cycles go to these context-switches (labeled Overhead).

165

Chapter 8. Transaction-aware Instruction Chasing

8.3.9 Summary

The evaluation shows that ADDICT is able to make effective decisions on the migration points

for a variety of transaction types. Therefore, it significantly reduces the instruction misses since

it optimizes transaction scheduling to maximize instruction locality. ADDICT encounters 85%

fewer instruction misses for typical OLTP benchmarks compared to traditional scheduling.

As a result, it reduces the total execution time by 45% under shallower cache hierarchies and

15% under deeper cache hierarchies. In addition, it incurs lower run-time cost and performs

better than the current state-of-the-art hardware scheduling mechanisms for transactions

(e.g., STREX and SLICC (Chapter 7)).

8.4 Related Work

There is a large body of work on reducing instruction stalls through improving instruction

cache locality. Here we survey the ones that target OLTP workloads specifically.

Smart static or dynamic compilation techniques [159] can optimize the code layout to mini-

mize the conflict misses. However, as Section 6.5.1 shows, even if we minimize the conflict

misses with code optimization techniques, there is a significant amount of capacity misses

that we have to reduce for more efficient OLTP execution.

On the other hand, instruction prefetching proposals designed for OLTP-like applications

have emerged from simple stream buffers [161] to highly sophisticated stream predictors

[53] that trade simplicity for accuracy. For example, PIF [53] requires ∼40KB of extra storage

per core. Therefore, modern commodity servers still prefer the low-cost next-line prefetcher,

which sequentially fetches the memory addresses [173], for L1-I. Nevertheless, both the code

optimization and instruction prefetching techniques are orthogonal to ADDICT and can be

combined with it.

In addition to these techniques, there is a line of recent work that aims to improve instruction

locality through exploiting the code commonality among concurrent transactions. These

span proposals from batching transactions and time-multiplexing their execution on one core,

STEPS [74] and STREX [15] (Section 7.4), to spreading the computation of transactions across

multiple cores, computation spreading [30] and SLICC [14] (Section 7.3). Similarly to ADDICT,

they all rely on the initial/leader thread to miss the instructions it needs as it would during

traditional transaction execution, and the rest of the threads to reuse the instructions already

brought into cache(s) by the initial thread. However, except for STEPS, they are all oblivious

to software. They cannot prevent migrations or context switches during lock acquisitions

or releases. In addition, even though their hardware costs are low, ADDICT minimizes the

space and functionality required by the pure hardware techniques since it determines its

migration decisions through software hints. On the other hand, STEPS is unable to exploit

multicore hardware and requires cumbersome code modifications to be able to perform fast

166

8.5. Conclusions

context switching at the software level. Finally, they all increase the average latency to execute

a transaction even though they improve the overall throughput.

ADDICT aims to achieve the best of both SLICC and STEPS: spread the computation of a

transaction over multiple cores to enable an ample cache capacity for instructions and get the

insights for when and where to migrate transactions from the software-side to better localize

the instructions in L1-I. In parallel, ADDICT reduces the migration costs and the transaction

latency incurred by the two techniques.

8.5 Conclusions

L1 instruction miss stalls are the main cause of the hardware underutilization when running

transaction processing applications on today’s hardware. To overcome this problem, we design

ADDICT. ADDICT assigns cores to the actions of each database operation in each transaction

at a granularity that matches the size of the L1 instruction cache being used. It dynamically

spreads the execution of transactions over multiple cores based on the core assignments

to maximize the locality for instructions. Our evaluation shows that ADDICT’s efforts in

improving the instruction cache locality offer great potential in terms of performance and

hardware utilization because of the high reuse frequency of instructions both within one and

across different transactions and database operations.

We envision ADDICT as a task scheduler on emerging heterogeneous many-core processors

where cores are specialized for various database functionalities. In such a setting, ADDICT can

also guide developers while making decisions about the granularity at which each database

operations should be specialized. Finally, in addition to OLTP workloads, ADDICT can benefit

any application that suffers from instruction stalls and has concurrent requests executing a

series of actions from a predefined set.

167

9 Future Directions and Concluding
Remarks

As the scale of the data management applications and collected data continue to grow, it

becomes even more crucial to get the best of the available and emerging computer architecture

technology for effective, fast, and user-friendly data management. The insights and techniques

described in this dissertation contribute toward this goal, but there is more to accomplish.

Most proposals with similar goals still consider the hardware and software separately from

each other; i.e., they propose changes for only one part of the whole stack. The long term

solution within this ecosystem, however, depends on both the software and hardware sides

becoming more aware of each other’s capabilities and needs. ADDICT (Chapter 8) is definitely

one of the initial steps in this direction. Further steps require interdisciplinary collaborations;

especially involving people from the data management, computer architecture, and compiler

communities. The data management systems should know which hardware they run on

and its advantages and disadvantages for various data management tasks, hardware should

frequently get hints from the data management systems to improve its predictions at the

micro-architectural level and improve the resource utilization, and compilers should help in

providing efficient communication primitives between the software and hardware.

9.1 Hardware Specialization

Hardware specialization is an area that has recently re-gained its popularity in the context of

data management applications. Where Moore’s Law prevented the rise of the database ma-

chines back in the 80s [25, 44], today the idea of building processors specialized for particular

data management operations has become more appealing. There are several factors in this

outcome, which mainly help in justifying the change at the hardware side from an economic

point of view:

• halt of exploiting Moore’s Law for free due to power concerns and emerging dark silicon

[50, 68],

• increasing availability and usage of reconfigurable hardware [87, 133], and

169

Chapter 9. Future Directions and Concluding Remarks

• growing scale of the applications that run on the cloud [67].

As a result, there are several hardware/software co-design proposals both from industry

and academia for data management applications. Widx [110] accelerates the index lookup

routine in a hash-join algorithm, whereas Wu et al. [202] design an instruction set and build a

collection of ASICs (application-specific integrated circuits) for data analytics operations in

general. On the other hand, works like Bionic DBMS [93] and Catapult [156] aim to integrate

field-programmable gate arrays (FPGAs) alongside commodity servers to accelerate some

frequent routines in OLTP and web search, respectively, where these routines are offloaded to

the corresponding FPGAs in the system. Finally, Oracle’s RAPID [140] is a hardware-software

co-design project, which targets building hardware for large-scale data analytics applications

focusing on energy efficiency.

The above examples indicate that there is an increasing demand for building hardware for

faster and more energy-efficient data management. Even though it might not be feasible

to design a whole chip specifically for a data management application, building hardware

components that accelerate frequent operations from an application might be, especially

if the accelerator can benefit similar operations from other applications as well. With this

discussion in mind, next we revisit the applicability of alternative scheduling mechanisms

proposed in Part III.

9.2 Other Applications to Benefit from Alternative Scheduling

Part III proposed and evaluated three scheduling mechanisms (SLICC, STREX, and ADDICT)

that target minimizing instruction cache misses while running transactions. It also described

the hardware cost for these techniques concluding that the cost is feasible. However, to be able

to justify the time and financial costs to build any hardware functionality, one must ensure a

large scale of applications this particular functionality benefits. Part III already demonstrated

the impact of the proposed mechanisms for OLTP applications, which already has an ample

scale [63]. However, there might be other applications that can potentially benefit from such

scheduling mechanisms.

In order to successfully adopt SLICC, STREX, and ADDICT to other applications, the target

application should have the following properties in common with the transaction processing

applications:

• suffering from first-level instruction misses due to a large instruction footprint and

• managing concurrent requests that exhibit high instruction overlap among each other

since they are composed of operations from a predefined set of operations.

Looking at these properties, we can point to a few more large-scale applications that can

exploit our scheduling mechanisms. For example, Ferdman et al. [55] show that some of the

170

9.2. Other Applications to Benefit from Alternative Scheduling

0

10

20

30

40

50

1 500

M
is

se
s

p
e

r
k

-I
n

st
ru

ct
io

n
s

of Records Probed per Transaction

L1I L2I

L1D L2D

LLC

0

100

200

300

400

1 500

S
ta

ll
 C

y
cl

e
s

p
e

r
k

-I
n

st
ru

ct
io

n
s

of Records Probed per Transaction

Figure 9.1: Misses per 1000 instructions for the in-memory OLTP system VoltDB and the
estimated number of cycles spent on these misses.

typical cloud applications (media streaming, data serving, etc.) also observe high instruction

miss rates and as any data management application their requests execute a series of prede-

fined operations. Meisner et al. [126] introduce the concept of online data-intensive (OLDI)

applications, which share the typical characteristics of an online transaction processing ap-

plication except for the fact that they have to deal with large volumes of data in one request.

Such applications span from social networking sites to web mail and they can also potentially

take advantage of the alternative scheduling mechanisms described in Part III.

Furthermore, we have used the Shore-MT storage manager [172] throughout this thesis,

which is not optimized for main-memory. Transaction processing systems optimized for

main-memory usually eliminate the buffer pool component and also adopt more lightweight

concurrency control schemes. Therefore, they have a smaller instruction footprint compared

to a disk-based system. Figure 9.1 shows the results of an opportunity study for such systems.

The left-hand side of Figure 9.1 has the number of misses per 1000 instructions from different

levels of the memory hierarchy of an Intel Sandy Bridge server and the right-hand side of Figure

9.1 plots the estimated stall cycles for these misses. We use VoltDB [199] in these experiments

and run a micro-benchmark that just probes (performs an index lookup) N records from

a database of size 100GB. Where probing 500 records in a transaction stresses purely the

storage manager part of the system, probing 1 record also stresses the other layers such as

query parsing, communication with client threads, etc. 1 The difference between the two

cases indicates that even though from the storage manager side VoltDB does not suffer from

instruction-related stalls, it does so from other layers of the system. Therefore, scheduling

mechanisms that target minimizing instruction misses can be applied to these other layers.

1 Shore-MT does not have such additional layers. Shore-Kits is linked as a static library to the executable and
does not contribute to the overall instruction footprint heavily.

171

Chapter 9. Future Directions and Concluding Remarks

9.3 Thesis Summary

In this thesis, we thoroughly investigated the dominant sources of hardware underutilization

when running transaction processing applications. The analysis demonstrated that:

• At the level of the whole machine, conventional storage managers fail to exploit explic-

it/horizontal parallelism due to sheer number of unbounded critical sections a transaction

has to go through;

• whereas within a core, the large instruction footprint of transactions leads to poor instruc-

tion locality causing OLTP applications to exhibit poor implicit/vertical parallelism.

Based on the findings above: We, first, designed a shared-everything transaction process-

ing system that logically partitions the physical data accesses, where the partitions can be

dynamically adjusted in a lightweight manner upon workload changes. We refer to this

type of partitioning as physiological partitioning (PLP). To achieve its goal, PLP replaces the

single-rooted index structure with a multi-rooted one, ensures each database record is only

reachable through a single index root, and involves multiple worker threads in the execution of

a transaction where each thread handles actions requiring data this thread is responsible from.

Through regulating more predictable data accesses to both database records and pages, PLP

eliminates the vast majority of the unbounded critical sections (due to locking and latching)

from transaction execution within a shared-everything infrastructure.

Then, we designed three alternative scheduling methods (two hardware-only and one software-

guided) for transactions that aim at maximizing instruction cache locality by exploiting the

instruction commonality across concurrent transactions. SLICC adaptively spreads the execu-

tion of a transaction over multiple cores through thread migration and enables an ample L1

instruction cache capacity for a transaction, while STREX time-multiplexes a batch of transac-

tions on the same core and does not depend on the aggregate cache capacity in the system.

ADDICT, on the other hand, migrates transactions based on hints collected via a pre-profiling

step from a sample workload run. Therefore, ADDICT requires fewer modifications at the

hardware side in terms of additional functionality and data structures required to enable

SLICC and STREX.

As a result of departing from traditional transaction scheduling, which considers each transac-

tion as an indivisible unit of work, this thesis allows better data and instruction locality for

transactions at the level it is needed. PLP achieves better thread-to-data access locality in a

transaction processing system and exploits it to eliminate the pessimistic ways of protecting

the shared data. SLICC, STREX, and ADDICT localize the instructions to first-level caches

and exploit intra- and inter- instruction overlap for transactions. We advocate that the more

parallel and heterogeneous the hardware gets with each generation, the more beneficial such

finer-grained task scheduling mechanisms will become.

172

Bibliography

[1] Kiran J. Achyutuni, Edward Omiecinski, and Shamkant B. Navathe. Two Techniques for

On-Line Index Modification in Shared Nothing Parallel Databases. In SIGMOD, pages

125–136, 1996. 4.6

[2] Rakesh Agrawal, Michael J. Carey, and Miron Livny. Concurrency Control Performance

Modeling: Alternatives and Implications. ACM TODS, 12(4):609–654, 1987. 3.5.2

[3] Anastasia Ailamaki, David J. DeWitt, Mark D. Hill, and David A. Wood. DBMSs on a

Modern Processor: Where Does Time Go? In VLDB, pages 266–277, 1999. 1.3, 2.3.2, 5.1,

5.2

[4] Anastasia Ailamaki, David J. DeWitt, and Mark D. Hill. Walking Four Machines By The

Shore. In CAECW, 2001. 2.6

[5] Anastasia Ailamaki, David J. DeWitt, Mark D. Hill, and Marios Skounakis. Weaving

Relations for Cache Performance. In VLDB, pages 169–180, 2001. 2.3.2

[6] Anastasia Ailamaki, David J. DeWitt, and Mark D. Hill. Data Page Layouts for Relational

Databases on Deep Memory Hierarchies. VLDB J., 11(3):198–215, 2002. 2.6

[7] Anastasia Ailamaki, Ryan Johnson, Ippokratis Pandis, and Pınar Tözün. Toward Scalable

Transaction Processing: Evolution of Shore-MT. PVLDB, 6(11):1192–1193, 2013. 2.6

[8] Ioannis Alagiannis, Manos Athanassoulis, and Anastasia Ailamaki. Scaling Up Analytical

Queries with Column-stores. In DBTest, pages 8:1–8:6, 2013. 1.3

[9] Ioannis Alagiannis, Stratos Idreos, and Anastasia Ailamaki. H2O: A Hands-free Adaptive

Store. In SIGMOD, pages 1103–1114, 2014. 2.3.2

[10] AMD. Secure Virtual Machine Architecture Reference Manual, 2005.

http://www.mimuw.edu.pl/ vincent/lecture6/sources/amd-pacifica-specification.pdf.

7.3.4

[11] Gene M. Amdahl. Validity of the single processor approach to achieving large scale

computing capabilities. In AFIPS, pages 483–485, 1967. 1.3

173

Bibliography

[12] Anon. et al. A Measure of Transaction Processing Power. Datamation, 31(7):112–118,

1985. 2.4.1

[13] Islam Atta, Pınar Tözün, Anastasia Ailamaki, and Andreas Moshovos. Reducing OLTP

Instruction Misses with Thread Migration. In DaMoN, pages 9–15, 2012. 1, 8.1

[14] Islam Atta, Pınar Tözün, Anastasia Ailamaki, and Andreas Moshovos. SLICC: Self-

Assembly of Instruction Cache Collectives for OLTP Workloads. In MICRO, pages 188–

198, 2012. 5.1, 5.6, 1, 8.1, 8.4

[15] Islam Atta, Pınar Tözün, Xin Tong, Anastasia Ailamaki, and Andreas Moshovos. STREX:

Boosting Instruction Cache Reuse in OLTP Workloads through Stratified Transaction

Execution. In ISCA, pages 273–284, 2013. 1, 8.1, 8.4

[16] Luiz André Barroso, Kourosh Gharachorloo, and Edouard Bugnion. Memory System

Characterization of Commercial Workloads. In ISCA, pages 3–14, 1998. 1.5, 5.2, 6.2

[17] Daniel Bartholomew. QEMU: A Multihost, Multitarget Emulator. Linux J., 2006(145):3–,

2006. 7.5.1

[18] Rudolf Bayer and Edward M. McCreight. Organization and Maintenance of Large

Ordered Indices. In SIGFIDET, pages 107–141, 1970. 3.3.1

[19] Peter Beaumont. The truth about Twitter, Facebook and the uprisings in the Arab world,

2011. http://www.theguardian.com/world/2011/feb/25/twitter-facebook-uprisings-

arab-libya. 1.1

[20] Bradford M. Beckmann and David A. Wood. Managing Wire Delay in Large Chip-

Multiprocessor Caches. In MICRO, pages 319–330, 2004. 3.7

[21] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Bradley C. Kuszmaul. Concur-

rent Cache-Oblivious B-trees. In SPAA, pages 228–237, 2005. 3.5.2

[22] Philip A. Bernstein and Nathan Goodman. Multiversion Concurrency Control—Theory

and Algorithms. ACM TODS, 8(4):465–483, 1983. 3.5.2, 5.6

[23] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control and

Recovery in Database Systems. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 1987. 3.5.2

[24] Peter Boncz, Marcin Zukowski, and Niels Nes. Monetdb/X100: Hyper-Pipelining Query

Execution. In CIDR, 2005. 2.3.2, 3.6

[25] Haran Boral and David J. DeWitt. Parallel Architectures for Database Systems. chapter

Database Machines: An Idea Whose Time Has Passed? A Critique of the Future of

Database Machines, pages 11–28. IEEE Press, Piscataway, NJ, USA, 1989. 9.1

174

Bibliography

[26] Bridget Botelho. Virtual machines per server: A viable metric for hardware selection?,

2008. http://itknowledgeexchange.techtarget.com/server-farm/virtual-machines-per-

server-a-viable-metric-for-hardware-selection/. 7.1

[27] Eric A. Brewer. Towards Robust Distributed Systems (abstract). In PODC, pages 7–7,

2000. 3.2.3

[28] Michael J. Carey, David J. DeWitt, Michael J. Franklin, Nancy E. Hall, Mark L. McAuliffe,

Jeffrey F. Naughton, Daniel T. Schuh, Marvin H. Solomon, C. K. Tan, Odysseas G. Tsatalos,

Seth J. White, and Michael J. Zwilling. Shoring Up Persistent Applications. In SIGMOD,

pages 383–394, 1994. 2.6

[29] Sang K. Cha, Sangyong Hwang, Kihong Kim, and Keunjoo Kwon. Cache-Conscious

Concurrency Control of Main-Memory Indexes on Shared-Memory Multiprocessor

Systems. In VLDB, pages 181–190, 2001. 3.5.2

[30] Koushik Chakraborty, Philip M. Wells, and Gurindar S. Sohi. Computation Spreading:

Employing Hardware Migration to Specialize CMP Cores On-the-Fly. In ASPLOS, pages

283–292, 2006. 2.3.2, 5.1, 5.6, 7.1, 7.6, 8.4

[31] Shimin Chen. FlashLogging: Exploiting Flash Devices for Synchronous Logging Perfor-

mance. In SIGMOD, pages 73–86, 2009. 3.5.1, 4.3.3

[32] Shimin Chen, Phillip B. Gibbons, Todd C. Mowry, and Gary Valentin. Fractal Prefetching

B+-Trees: Optimizing Both Cache and Disk Performance. In SIGMOD, pages 157–168,

2002. 2.3.2, 3.3.5, 3.5.2, 6.1, 8.1

[33] Shimin Chen, Anastasia Ailamaki, Manos Athanassoulis, Phillip B. Gibbons, Ryan John-

son, Ippokratis Pandis, and Radu Stoica. TPC-E vs. TPC-C: Characterizing the New

TPC-E Benchmark via an I/O Comparison Study. SIGMOD Record, 39:5–10, 2010. 5.1,

5.2

[34] E. F. Codd. A Relational Model of Data for Large Shared Data Banks. CACM, 13(6):

377–387, 1970. 1.1

[35] E. F. Codd. Relational Database: A Practical Foundation for Productivity. CACM, 25(2):

109–117, 1982. 1.1

[36] Christopher B. Colohan, Anastasia Ailamaki, J. Gregory Steffan, and Todd C. Mowry.

Optimistic Intra-Transaction Parallelism on Chip Multiprocessors. In VLDB, pages

73–84, 2005. 5.1, 5.6

[37] George P. Copeland and Setrag N. Khoshafian. A Decomposition Storage Model. In

SIGMOD, pages 268–279, 1985. 2.3.2

[38] cputrack. cputrack. http://docs.oracle.com/cd/E19253-01/816-

5165/6mbb0m9ct/index.html. 5.5.2

175

Bibliography

[39] Carlo Curino, Evan Jones, Yang Zhang, and Sam Madden. Schism: a Workload-Driven

Approach to Database Replication and Partitioning. PVLDB, 3:48–57, 2010. 2.3.1, 3.1,

3.2.3, 3.5.1, 4.1, 4.6

[40] Sudipto Das, Shyam Antony, Divyakant Agrawal, and Amr El Abbadi. Thread Cooper-

ation in Multicore Architectures for Frequency Counting Over Multiple Data Streams.

PVLDB, 2:217–228, 2009. 3.5.1

[41] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. Everything You Always Wanted

to Know About Synchronization but Were Afraid to Ask. In SOSP, pages 33–48, 2013.

2.3.1, 3.5.2

[42] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large

Clusters. In OSDI, pages 107–113, 2004. 7.5.1

[43] Robert H. Dennard, Fritz H. Gaensslen, Hwa-Nien Yu, V. Leo Rideout, Ernest Bassous,

Andre, and R. Leblanc. Design of Ion-Implanted MOSFETs with Very Small Physical

Dimensions. IEEE J. Solid-State Circuits, pages 256–268, 1974. 1.2

[44] David J. DeWitt. DIRECT - A Multiprocessor Organization for Supporting Relational

Data Base Management Systems. In ISCA, pages 182–189, 1978. 9.1

[45] David J. DeWitt, Shahram Ghandeharizadeh, Donovan A. Schneider, Allan Bricker, Hui-i

Hsiao, and Rick Rasmussen. The Gamma Database Machine Project. IEEE TKDE, 2(1):

44–62, 1990. 1.4, 2.3.1, 3.1, 3.2.3, 3.5.1, 4.1

[46] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin Mittal, Ryan

Stonecipher, Nitin Verma, and Mike Zwilling. Hekaton: SQL Server’s Memory-optimized

OLTP Engine. In SIGMOD, pages 1243–1254, 2013. 2.3.1, 2.3.2, 5.1

[47] Donko Donjerkovic, Yannis E. Ioannidis, and Raghu Ramakrishnan. Dynamic His-

tograms: Capturing Evolving Data Sets. In ICDE, page 86, 2000. 4.6

[48] DTrace. DTrace. http://dtrace.org. 3.4.1, 5.4.2

[49] EMC. The Digital Universe in 2020, 2012. http://www.emc.com/leadership/digital-

universe/2012iview/executive-summary-a-universe-of.htm. 1.1

[50] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam, and

Doug Burger. Dark Silicon and the End of Multicore Scaling. In ISCA, pages 365–376,

2011. 1.2, 9.1

[51] Stijn Eyerman, Lieven Eeckhout, Tejas Karkhanis, and James E. Smith. A Performance

Counter Architecture for Computing Accurate CPI Components. In ASPLOS, pages

175–184, 2006. 5.5.1, 6.3

176

Bibliography

[52] Michael Ferdman, Thomas F. Wenisch, Anastasia Ailamaki, Babak Falsafi, and Andreas

Moshovos. Temporal Instruction Fetch Streaming. In MICRO, pages 1–10, 2008. 2.3.2,

7.6

[53] Michael Ferdman, Cansu Kaynak, and Babak Falsafi. Proactive Instruction Fetch. In

MICRO, pages 152–162, 2011. 6.1, 7.1, 7.5, 7.6, 8.4

[54] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad Al-

isafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia Ailamaki,

and Babak Falsafi. Clearing the Clouds: A Study of Emerging Scale-out Workloads on

Modern Hardware. In ASPLOS, pages 37–48, 2012. 2.3.2, 5.1, 5.2, 5.6, 6.1, 6.2, 6.4, 7.5.1,

8.1

[55] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad Al-

isafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia Ailamaki, and

Babak Falsafi. Quantifying the Mismatch between Emerging Scale-Out Applications

and Modern Processors. ACM TOCS, 30(4):15:1–15:24, 2012. 1.5, 5.2, 9.2

[56] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad Al-

isafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia Ailamaki, and

Babak Falsafi. A Case for Specialized Processors for Scale-Out Workloads. IEEE MICRO,

34(3):31–42, 2014. 5.2

[57] M. R. Garey, D. S. Johnson, and Ravi Sethi. The Complexity of Flowshop and Jobshop

Scheduling. Mathematics of Operations Research, 1(2):117–129, 1976. 7.4

[58] Amol Ghoting, Gregory Buehrer, Srinivasan Parthasarathy, Daehyun Kim, Anthony

Nguyen, Yen-Kuang Chen, and Pradeep Dubey. Cache-Conscious Frequent Pattern

Mining on Modern and Emerging Processors. VLDB J., 16(1):77–96, 2007. 6.1, 8.1

[59] Phillip B. Gibbons, Yossi Matias, and Viswanath Poosala. Fast Incremental Maintenance

of Approximate Histograms. ACM TODS, 27:261–298, 2002. 4.6

[60] Goetz Graefe. Encapsulation of Parallelism in the Volcano Query Processing System. In

SIGMOD, pages 102–111, 1990. 2.3.2

[61] Goetz Graefe. Sorting And Indexing With Partitioned B-Trees. In CIDR, 2003. 3.5.2

[62] Goetz Graefe, Hideaki Kimura, and Harumi Kuno. Foster B-trees. ACM TODS, 37(3):

17:1–17:29, 2012. 2.6

[63] Colleen Graham, Bhavish Sood, Hideaki Horiuchi, and Dan Sommer. Mar-

ket Share: Database Management System Software, Worldwide, 2009.

http://www.gartner.com/DisplayDocument?id=1044912. 1.1, 9.2

[64] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 1992. 1.1, 2.1, 1

177

Bibliography

[65] Martin Grund, Jens Krüger, Hasso Plattner, Alexander Zeier, Philippe Cudre-Mauroux,

and Samuel Madden. HYRISE: A Main Memory Hybrid Storage Engine. PVLDB, 4:

105–116, 2010. 2.3.2

[66] Fazal Hameed, Lars Bauer, and Jörg Henkel. Dynamic Cache Management in Multi-Core

Architectures through Run-time Adaptation. In DATE, pages 485–490, 2012. 7.5.1

[67] James R. Hamilton. Internet Scale Storage. In SIGMOD, 2011. 9.1

[68] Nikos Hardavellas. The Rise and Fall of Dark silicon. USENIX, 37(2):7–17, 2012. 9.1

[69] Nikos Hardavellas, Ippokratis Pandis, Ryan Johnson, Naju Mancheril, Anastasia Aila-

maki, and Babak Falsafi. Database Servers on Chip Multiprocessors: Limitations and

Opportunities. In CIDR, pages 79–87, 2007. 1.3, 3.7, 5.2

[70] Nikos Hardavellas, Michael Ferdman, Babak Falsafi, and Anastasia Ailamaki. Reactive

NUCA: Near-Optimal Block Placement and Replication in Distributed Caches. In ISCA,

pages 184–195, 2009. 3.7

[71] Nikos Hardavellas, Michael Ferdman, Babak Falsafi, and Anastasia Ailamaki. Toward

Dark Silicon in Servers. IEEE MICRO, 31(4):6–15, 2011. 1.2

[72] Stavros Harizopoulos and Anastasia Ailamaki. STEPS Towards Cache-Resident Transac-

tion Processing. In VLDB, pages 660–671, 2004. 2.3.2, 5.6, 8.1

[73] Stavros Harizopoulos and Anastasia Ailamaki. StagedDB: Designing Database Servers

for Modern Hardware. IEEE DEBull, 28(2):11–16, 2005. 8.2.2

[74] Stavros Harizopoulos and Anastasia Ailamaki. Improving Instruction Cache Perfor-

mance in OLTP. ACM TODS, 31(3):887–920, 2006. 5.6, 7.1, 7.4.2, 7.6, 8.1, 8.2.2, 8.2.2,

8.4

[75] Stavros Harizopoulos, Vladislav Shkapenyuk, and Anastasia Ailamaki. QPipe: A Simul-

taneously Pipelined Relational Query Engine. In SIGMOD, pages 383–394, 2005. 2.3.2,

8.2.2

[76] Stavros Harizopoulos, Daniel J. Abadi, Sam Madden, and Michael Stonebraker. OLTP

Through the Looking Glass, and What We Found There. In SIGMOD, pages 981–992,

2008. 1.4, 3.1, 3.5.1, 4.1, 6.2

[77] Pat Helland. Life beyond Distributed Transactions: an Apostate’s Opinion. In CIDR,

pages 132–141, 2007. 2.3.1, 3.1, 3.2.3

[78] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative

Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2002. 1.2, 1, 2.3.2

[79] Melanie Herschel, Yannis Tzitzikas, Selcuk Candan, and Amelie Marian. Exploratory

search: New name for an old hat?, 2011. http://wp.sigmod.org/?p=1183. 1.1

178

Bibliography

[80] Anthony J.G. Hey, Stewart Tansley, and Kristin M. Tolle. The Fourth Paradigm: Data-

Intensive Scientific Discovery. Microsoft Research, 2009. 1.1

[81] Mark D. Hill and Michael R. Marty. Amdahl’s Law in the Multicore Era. Computer, 41:

33–38, 2008. 3.2

[82] Mark D. Hill and Alan Jay Smith. Evaluating Associativity in CPU Caches. IEEE TOCS, 38

(12):1612–1630, 1989. 6.5.1

[83] Mark Horowitz, Margaret Martonosi, Todd C. Mowry, and Michael D. Smith. Informing

Memory Operations: Memory Performance Feedback Mechanisms and Their Applica-

tions. ACM TOCS, 16(2):170–205, 1998. 8.2.1

[84] IBM. WebSphere Software. http://www-01.ibm.com/software/websphere. 7.1

[85] IBM. Shrinking 3900 Distributed Servers to 30 Linux Mainframes, 2007. http://www-

03.ibm.com/press/us/en/pressrelease/21945.wss. 7.1

[86] IBM. IBM Breaks Double Digit Performance Barrier With 10 Million Transactions Per

Minute, 2010. http://www-03.ibm.com/press/us/en/pressrelease/32328.wss. 1.1, 2.4.2,

5.1

[87] IBM Netezza. IBM Netezza Data Warehouse Appliances. http://www-

01.ibm.com/software/data/netezza. 9.1

[88] Intel. Intel 64 and IA-32 Architectures Optimization Reference Manual,

2012. http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-

optimization-manual.pdf. 1.3, 6.3

[89] Intel. Intel VTune Amplifier XE Performance Profiler, 2013. http://software.intel.com/en-

us/articles/intel-vtune-amplifier-xe/. 5.5.1

[90] H. V. Jagadish, Johannes Gehrke, Alexandros Labrinidis, Yannis Papakonstantinou,

Jignesh M. Patel, Raghu Ramakrishnan, and Cyrus Shahabi. Big data and its technical

challenges. CACM, 57, 2014. 1.1

[91] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely, Jr., and Joel Emer. High Performance

Cache Replacement Using Re-reference Interval Prediction (RRIP). In ISCA, pages 60–71,

2010. 7.1

[92] Ibrahim Jaluta, Seppo Sippu, and Eljas Soisalon-Soininen. B-Tree Concurrency Control

and Recovery in Page-Server Database Systems. ACM TODS, 31:82–132, 2006. 3.3.5,

3.5.2

[93] Ryan Johnson and Ippokratis Pandis. The bionic DBMS is coming, but what will it look

like? In CIDR, 2013. 9.1

179

Bibliography

[94] Ryan Johnson, Ippokratis Pandis, and Anastasia Ailamaki. Critical Sections: Re-emerging

Scalability Concerns for Database Storage Engines. In DaMoN, pages 35–40, 2008. 1.4

[95] Ryan Johnson, Ippokratis Pandis, and Anastasia Ailamaki. Improving OLTP Scalability

Using Speculative Lock Inheritance. PVLDB, 2(1):479–489, 2009. 1.4, 2.6, 3.2.2, 3.4.1,

3.5.1, 5.1, 5.2, 5.3.3, 5.4.2, 6.2, 6.3, 8.3.1

[96] Ryan Johnson, Ippokratis Pandis, Nikos Hardavellas, Anastasia Ailamaki, and Babak

Falsafi. Shore-MT: A Scalable Storage Manager for the Multicore Era. In EDBT, pages

24–35, 2009. 1.3, 1, 2.1, 2.3.1, 2.6, 3.1, 3.2, 3.4.1, 3.5.1, 3.7, 4.1, 4.5.1

[97] Ryan Johnson, Ippokratis Pandis, Radu Stoica, Manos Athanassoulis, and Anastasia

Ailamaki. Aether: A Scalable Approach to Logging. PVLDB, 3:681–692, 2010. 1.4, 2.6, 3.2,

3.2.2, 3.4.1, 3.5.1, 5.1, 5.2, 5.3.3, 5.4.2, 6.2, 6.3, 8.3.1

[98] Ryan Johnson, Ippokratis Pandis, Radu Stoica, Manos Athanassoulis, and Anastasia

Ailamaki. Scalability of write-ahead logging on multicore and multisocket hardware.

VLDB J., 21:239–263, 2012. 3.2.3, 3.5.1, 5.3.3

[99] Ryan Johnson, Ippokratis Pandis, and Anastasia Ailamaki. Eliminating Unscalable

Communication in Transaction Processing. VLDB J., 23(1):1–23, 2014. 1.3, 1.4, 2.6, 3.7

[100] Evan Jones, Daniel J. Abadi, and Samuel Madden. Low Overhead Concurrency Control

for Partitioned Main Memory Databases. In SIGMOD, pages 603–614, 2010. 3.5.1

[101] Norman P. Jouppi. Improving Direct-Mapped Cache Performance by the Addition of a

Small Fully-Associative Cache and Prefetch Buffers. In ISCA, pages 364–373, 1990. 7.6

[102] Hyungsoo Jung, Hyuck Han, Alan D. Fekete, Gernot Heiser, and Heon Y. Yeom. A Scalable

Lock Manager for Multicores. In SIGMOD, pages 73–84, 2013. 2.6

[103] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alexander Rasin,

Stanley Zdonik, Evan P. C. Jones, Samuel Madden, Michael Stonebraker, Yang Zhang,

John Hugg, and Daniel J. Abadi. H-store: A High-performance, Distributed Main Mem-

ory Transaction Processing System. PVLDB, 1(2):1496–1499, 2008. 3.1

[104] Swaroop Kavalanekar, Bruce Worthington, Qi Zhang, and Vishal Sharda. Characteriza-

tion of Storage Workload Traces from Production Windows Servers. In IISWC, pages

119–128, 2008. 5.1, 5.2

[105] Cansu Kaynak, Boris Grot, and Babak Falsafi. SHIFT: Shared History Instruction Fetch

for Lean-Core Server Processors. In MICRO, pages 272–283, 2013. 2.3.2, 6.1, 7.6

[106] Kimberly Keeton, David A. Patterson, Yong Qian He, Raphael C. Raphael, and Wal-

ter E. Baker. Performance Characterization of a Quad Pentium Pro SMP Using OLTP

Workloads. In ISCA, pages 15–26, 1998. 1.3, 1.5, 2.3.2, 5.1, 5.2, 6.2

180

Bibliography

[107] Alfons Kemper and Thomas Neumann. HyPer – A Hybrid OLTP&OLAP Main Memory

Database System Based on Virtual Memory Snapshots. In ICDE, pages 195–206, 2011.

2.3.1, 3.1, 3.5.1, 4.1, 5.6

[108] Hideaki Kimura, Goetz Graefe, and Harumi Kuno. Efficient Locking Techniques for

Databases on Modern Hardware. ADMS, 2012. 3.5.1

[109] Yannis Klonatos, Christoph Koch, Tiark Rompf, and Hassan Chafi. Building Efficient

Query Engines in a High-Level Language. PVLDB, 7(10):853–864, 2014. 2.3.2

[110] Onur Kocberber, Boris Grot, Javier Picorel, Babak Falsafi, Kevin Lim, and Parthasarathy

Ranganathan. Meet the Walkers: Accelerating Index Traversals for In-memory Databases.

In MICRO, pages 468–479, 2013. 9.1

[111] Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Olukotun. Niagara: A 32-Way

Multithreaded Sparc processor. IEEE MICRO, 25(2), 2005. 1.1

[112] Konstantinos Krikellas, Stratis D. Viglas, and Marcelo Cintra. Generating code for holistic

query evaluation. In ICDE, pages 613–624, 2010. 2.3.2

[113] H. T. Kung and John T. Robinson. On Optimistic Methods for Concurrency Control.

ACM TODS, 6(2):213–226, 1981. 3.5.2

[114] Tirthankar Lahiri, Vinay Srihari, Wilson Chan, N. MacNaughton, and Sashikanth Chan-

drasekaran. Cache Fusion: Extending Shared-Disk Clusters with Shared Caches. In

VLDB, pages 683–686, 2001. 2.3.1, 3.5.1

[115] Willis Lang, Jignesh M. Patel, and Srinath Shankar. Wimpy Node Clusters: What About

Non-Wimpy Workloads? In DaMoN, pages 47–55, 2010. 5.2

[116] Per-Ake Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman, Jignesh M. Patel, and

Mike Zwilling. High-Performance Concurrency Control Mechanisms for Main-Memory

Databases. PVLDB, 5(4), 2011. 1.3, 2.3.1, 3.5.2, 5.1, 5.6

[117] Juchang Lee, Yong Sik Kwon, F. Farber, M. Muehle, Chulwon Lee, C. Bensberg, Joo Yeon

Lee, AH. Lee, and W. Lehner. SAP HANA Distributed In-Memory Database System:

Transaction, Session, and Metadata Management. In ICDE, pages 1165–1173, 2013.

2.3.1

[118] Mong-Li Lee, Masaru Kitsuregawa, Beng Chin Ooi, Kian-Lee Tan, and Anirban Mondal.

Towards Self-Tuning Data Placement in Parallel Database Systems. In SIGMOD, pages

225–236, 2000. 4.6

[119] Justin Levandoski, David Lomet, and Sudipta Sengupta. The Bw-Tree: A B-tree for New

Hardware Platforms. In ICDE, pages 302–313, 2013. 2.3.1, 3.5.2

181

Bibliography

[120] Sam Lightstone, Maheswaran Surendra, Yixin Diao, Sujay S. Parekh, Joseph L. Heller-

stein, Kevin Rose, Adam J. Storm, and Christian Garcia-Arellano. Control Theory: a

Foundational Technique for Self Managing Databases. In ICDE Workshops, pages 395–

403, 2007. 4.4.3

[121] Song Liu, Brian Leung, Alexander Neckar, Seda Ogrenci Memik, Gokhan Memik, and

Nikos Hardavellas. Hardware/Software Techniques for DRAM Thermal Management.

In HPCA, pages 515–525, 2011. 7.5.1

[122] Gabriel H. Loh, Samantika Subramaniam, and Yuejian Xie. Zesto: A Cycle-Level Simu-

lator for Highly Detailed Microarchitecture Exploration. In ISPASS, pages 53–64, 2009.

7.5.1, 8.3.1

[123] Dave Lomet, Rick Anderson, T. K. Rengarajan, and Peter Spiro. How the Rdb/VMS Data

Sharing System Became Fast. Technical Report CRL-92-4, DEC, 1992. 3.2.3

[124] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney,

Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building Customized

Program Analysis Tools with Dynamic Instrumentation. In PLDI, pages 190–200, 2005.

6.1, 6.3, 7.5.1, 8.3.1

[125] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. Cache Craftiness for Fast

Multicore Key-value Storage. In EuroSys, pages 183–196, 2012. 2.3.2, 3.5.2

[126] David Meisner, Christopher M. Sadler, Luiz André Barroso, Wolf-Dietrich Weber, and

Thomas F. Wenisch. Power Management of Online Data-Intensive Services. In ISCA,

pages 319–330, 2011. 9.2

[127] MemSQL. MemSQL. http://www.memsql.com/. 2.3.1

[128] C. Mohan. ARIES/KVL: A Key-Value Locking Method for Concurrency Control of Multi-

action Transactions Operating on B-Tree Indexes. In VLDB, pages 392–405, 1990. 3.3.5,

5.4.2

[129] C. Mohan and Frank Levine. ARIES/IM: An Efficient and High Concurrency Index

Management Method Using Write-Ahead Logging. In SIGMOD, pages 371–380, 1992.

3.3.5, 3.5.2, 5.4.2, 6.5.3

[130] Mark Moir, Daniel Nussbaum, Ori Shalev, and Nir Shavit. Using Elimination to Imple-

ment Scalable and Lock-Free FIFO Queues. In SPAA, pages 253–262, 2005. 3.2.1

[131] Anirban Mondal, Masaru Kitsuregawa, Beng Chin Ooi, and Kian-Lee Tan. R-tree-based

Data Migration and Self-Tuning Strategies in Shared-Nothing Spatial Databases. In GIS,

pages 28–33, 2001. 4.6

[132] Gordon Moore. Cramming More Components onto Integrated Circuits. Electronics, 38

(6), 1965. 1.2

182

Bibliography

[133] Rene Mueller, Jens Teubner, and Gustavo Alonso. Data Processing on FPGAs. PVLDB, 2

(1):910–921, 2009. 9.1

[134] Peter Muth, Patrick O’Neil, Achim Pick, and Gerhard Weikum. The LHAM log-structured

history data access method. VLDB J., 8:199–221, 2000. 3.5.2

[135] Neha Narula, Cody Cutler, Eddie Kohler, and Robert Morris. Phase Reconciliation for

Contended In-Memory Transactions. In OSDI, pages 511–524, 2014. 2.3.1

[136] Thomas Neumann and Viktor Leis. Compiling Database Queries into Machine Code.

IEEE DEBull, 37(1):3–11, 2014. 2.3.2, 6.1

[137] Simo Neuvonen, Antoni Wolski, Markku Manner, and Vilho Raatikka.

Telecom Application Transaction Processing Benchmark (TATP), 2009.

http://tatpbenchmark.sourceforge.net/. 1, 2.5, 2.6, 3.2.2, 3.2.2, 4.2

[138] Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and Kunyung Chang.

The Case for a Single-Chip Multiprocessor. In ASPLOS, pages 2–11, 1996. 1.2

[139] Pat O’Neil, Betty O’Neil, and Xuedong Chen. Star Schema Benchmark (SSB), 2009.

http://www.cs.umb.edu/ poneil/StarSchemaB.PDF. 2.6

[140] Oracle. RAPID. https://labs.oracle.com/pls/apex/f?p=labs:49:::::P49_PROJECT_ID:14.

9.1

[141] Oracle. Oracle WebLogic Suite 11g White Paper, 2009.

http://www.oracle.com/partners/en/047014.pdf. 7.1

[142] Oracle. SPARC Supercluster with 27 SPARC T3-4 Servers Demon-

strates World Record Performance on TPC-C Benchmark, 2010.

http://www.oracle.com/us/solutions/performance-scalability/t3-4-tpc-c-12210-

bmark-190934.html. 1.1, 2.4.2, 5.1

[143] Oracle. Oracle Real Application Clusters White Paper, 2013.

http://www.oracle.com/technetwork/database/options/clustering/rac-wp-12c-

1896129.pdf?ssSourceSiteId=ocomen. 2.3.1, 3.5.1

[144] Ismail Oukid, Daniel Booss, Wolfgang Lehner, Peter Bumbulis, and Thomas Willhalm.

SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Recovery. In DaMoN,

pages 8:1–8:7, 2014. 2.6

[145] Ippokratis Pandis, Ryan Johnson, Nikos Hardavellas, and Anastasia Ailamaki. Data-

Oriented Transaction Execution. PVLDB, 3(1):928–939, 2010. 1.4, 2.3.1, 2.3.1, 2.6, 3.1,

3.1.2, 3.2.2, 3.3.1, 3.4.1, 3.5.1, 4.1, 5.1, 5.2, 5.4.2, 5.6, 6.2

[146] Ippokratis Pandis, Pınar Tözün, Miguel Branco, Dimitris Karampinas, Danica Porobic,

Ryan Johnson, and Anastasia Ailamaki. A Data-Oriented Transaction Execution Engine

and Supporting Tools. In SIGMOD, pages 1237–1240, 2011. 2.3.1, 3.6, 3.6

183

Bibliography

[147] Ippokratis Pandis, Pınar Tözün, Ryan Johnson, and Anastasia Ailamaki. PLP: Page

Latch-Free Shared-Everything OLTP. PVLDB, 4(10):610–621, 2011. 1.4, 2.6, 1, 1, 5.1, 5.2,

6.2

[148] PARSA. Data Analytics Benchmark with Hadoop MapReduce Framework, 2012.

http://parsa.epfl.ch/cloudsuite/analytics.html. 7.5.1

[149] Andrew Pavlo, Evan P. C. Jones, and Stanley Zdonik. On Predictive Modeling for Opti-

mizing Transaction Execution in Parallel OLTP Systems. PVLDB, 5(2):85–96, 2011. 2.3.1,

3.1

[150] Andrew Pavlo, Carlo Curino, and Stanley Zdonik. Skew-Aware Automatic Database

Partitioning in Shared-Nothing, Parallel OLTP Systems. In SIGMOD, pages 61–72, 2012.

2.3.1, 3.1, 3.2.3, 4.6

[151] Jih-Kwon Peir, Shih-Chang Lai, Shih-Lien Lu, Jared Stark, and Konrad Lai. Bloom

Filtering Cache Misses for Accurate Data Speculation and Prefetching. In ICS, pages

189–198, 2002. 7.3.2

[152] Steven Pelley, Thomas F. Wenisch, Brian T. Gold, and Bill Bridge. Storage Management

in the NVRAM Era. PVLDB, 7(2):121–132, 2013. 2.6

[153] Danica Porobic, Ippokratis Pandis, Miguel Branco, Pınar Tözün, and Anastasia Ailamaki.

OLTP on Hardware Islands. PVLDB, 5(11):1447–1458, 2012. 1.4, 3.1, 3.2.3

[154] Danica Porobic, Erietta Liarou, Pınar Tözün, and Anastasia Ailamaki. ATraPos: Adaptive

Transaction Processing on Hardware Islands. In ICDE, pages 688–699, 2014. 1.4, 2.3.1,

2.6, 3.5.2, 3.6, 2, 6.1, 8.1

[155] Iraklis Psaroudakis, Manos Athanassoulis, and Anastasia Ailamaki. Sharing Data and

Work Across Concurrent Analytical Queries. PVLDB, 6(9):637–648, 2013. 1.3, 2.6

[156] Andrew Putnam, Adrian Caulfield, Eric Chung, Derek Chiou, Kypros Constantinides,

John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth Gopal, Jan Gray,

Michael Haselman, Scott Hauck, Stephen Heil, Amir Hormati, Joo-Young Kim, Sitaram

Lanka, Jim Larus, Eric Peterson, Simon Pope, Aaron Smith, Jason Thong, Phillip Yi Xiao,

and Doug Burger. A Reconfigurable Fabric for Accelerating Large-Scale Datacenter

Services. In ISCA, pages 13–24, 2014. 9.1

[157] Abdul Quamar, K. Ashwin Kumar, and Amol Deshpande. Sword: Scalable Workload-

Aware Data Placement for Transactional Workloads. In EDBT, pages 430–441, 2013.

4.6

[158] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, Simon C. Steely, and Joel Emer. Adap-

tive Insertion Policies for High Performance Caching. In ISCA, pages 381–391, 2007.

7.1

184

Bibliography

[159] Alex Ramirez, Luiz André Barroso, Kourosh Gharachorloo, Robert Cohn, Josep Larriba-

Pey, P. Geoffrey Lowney, and Mateo Valero. Code Layout Optimizations for Transaction

Processing Workloads. In ISCA, pages 155–164, 2001. 2.3.2, 6.1, 7.1, 8.1, 8.4

[160] Krishna K. Rangan, Gu-Yeon Wei, and David Brooks. Thread Motion: Fine-Grained

Power Management for Multi-Core Systems. In ISCA, pages 302–313, 2009. 7.3.4

[161] Parthasarathy Ranganathan, Kourosh Gharachorloo, Sarita V. Adve, and Luiz André

Barroso. Performance of Database Workloads on Shared-Memory Systems with Out-

of-Order Processors. In ASPLOS, pages 307–318, 1998. 1.5, 2.3.2, 5.1, 5.2, 5.6, 6.2, 7.6,

8.4

[162] Jun Rao and Kenneth A. Ross. Cache Conscious Indexing for Decision-Support in Main

Memory. In VLDB, pages 78–89, 1999. 3.3.5, 3.5.2

[163] Jun Rao and Kenneth A. Ross. Making B+-trees Cache Conscious in Main Memory. In

SIGMOD, pages 475–486, 2000. 2.3.2, 3.3.5, 3.5.2

[164] Jun Rao, Chun Zhang, Nimrod Megiddo, and Guy Lohman. Automating Physical

Database Design in a Parallel Database. In SIGMOD, pages 558–569, 2002. 4.1, 4.6

[165] Elaine Ellis Reddy. Occupy Gezi: How Twitter Facilitated a Social Movement in Turkey,

2014. http://blog.gnip.com/occupy-gezi-twitter/. 1.1

[166] Tudor-Ioan Salomie, Ionut Emanuel Subasu, Jana Giceva, and Gustavo Alonso. Database

Engines on Multicores, Why Parallelize When You Can Distribute? In EuroSys, pages

17–30, 2011. 1.3

[167] Daniel Sanchez and Christos Kozyrakis. Flexible Architectural Support for Fine-Grain

Scheduling. In ASPLOS, pages 311–322, 2010. 7.4.2

[168] Caetano Sauer, Goetz Graefe, and Theo Härder. An empirical analysis of database

recovery costs. In RDSS, pages 1–6, 2014. 2.6

[169] Marco Serafini, Essam Mansour, Ashraf Aboulnaga, Kenneth Salem, Rafiq Taha, and

Umar Farooq Minhas. Accordion: Elastic Scalability for Database Systems Supporting

Distributed Transactions. PVLDB, 7(12):1035–1046, 2014. 2.3.1

[170] Jason Sewall, Jatin Chhugani, Changkyu Kim, Nadathur Satish, and Pradeep Dubey.

PALM: Parallel Architecture-Friendly Latch-Free Modifications to B+Trees on Many-

Core Processors. PVLDB, 4(11):795–806, 2011. 3.5.2, 7.4.2

[171] ShoreMT. Shore-MT and Shore-Kits Code Repositories, . https://bitbucket.org/shoremt.

2.6

[172] ShoreMT. Shore-MT Official Website, . http://diaswww.epfl.ch/shore-mt/. 1.3, 2.6,

3.4.1, 4.5.1, 5.1, 6.1, 6.3, 7.5.1, 8.3.1, 9.2

185

Bibliography

[173] Alan Jay Smith. Sequentiality and Prefetching in Database Systems. ACM TODS, 3, 1978.

7.5, 7.5.1, 8.4

[174] Stephen Somogyi, Thomas F. Wenisch, Nikos Hardavellas, Jangwoo Kim, Anastasia

Ailamaki, and Babak Falsafi. Memory Coherence Activity Prediction in Commercial

Workloads. In WMPI, pages 37–45, 2004. 1.4, 3.1, 3.7

[175] Stephen Somogyi, Thomas F. Wenisch, Anastasia Ailamaki, and Babak Falsafi. Spatio-

Temporal Memory Streaming. In ISCA, pages 69–80, 2009. 2.3.2, 3.7, 8.1

[176] SPEC. Standard Performance Evaluation Corporation. http://www.spec.org/. 1.5

[177] Robert Stets, Kourosh Gharachorloo, and Luiz André Barroso. A Detailed Comparison of

Two Transaction Processing Workloads. In WWC, pages 37–48, 2002. 1.3, 1.5, 2.3.2, 5.1,

5.2, 6.1, 8.1

[178] Michael Stonebraker. The Case for Shared Nothing. IEEE DEBull, 9:4–9, 1986. 1.4, 2.3.1,

3.1, 3.2, 3.2.3, 3.5.1

[179] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Harizopoulos, Nabil

Hachem, and Pat Helland. The End of an Architectural Era: (It’s Time for a Complete

Rewrite). In VLDB, pages 1150–1160, 2007. 2.3.1, 3.1, 3.1.1, 3.2.3, 3.3.2, 3.5.1, 4.1, 5.6, 6.2

[180] Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cherniack,

Miguel Ferreira, Edmond Lau, Amerson Lin, Samuel Madden, Elizabeth O’Neil, Pat

O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik. C-Store: A Column Oriented DBMS. In

VLDB, pages 553–564, 2005. 2.3.2, 3.6

[181] Alexander Thomasian. Concurrency Control: Methods, Performance, and Analysis.

ACM CSUR, 30:70–119, 1998. 3.5.2

[182] TokuDB. TokuDB. http://www.tokutek.com/. 2.3.1

[183] Xin Tong, Jack Luo, and Andreas Moshovos. QTrace: An Interface for Customizable Full

System Instrumentation. In ISPASS, pages 132–133, 2013. 7.5.1

[184] Pınar Tözün, Brian Gold, and Anastasia Ailamaki. OLTP in Wonderland – Where do

cache misses come from in major OLTP components? In DaMoN, pages 8:1–8:6, 2013. 1

[185] Pınar Tözün, Ippokratis Pandis, Ryan Johnson, and Anastasia Ailamaki. Scalable and

Dynamically Balanced Shared-Everything OLTP with Physiological Partitioning. VLDB

J., 22(2):151–175, 2013. 1, 1

[186] Pınar Tözün, Ippokratis Pandis, Cansu Kaynak, Djordje Jevdjic, and Anastasia Ailamaki.

From A to E: Analyzing TPC’s OLTP Benchmarks – The obsolete, the ubiquitous, the

unexplored. In EDBT, pages 17–28, 2013. 1, 2.6, 2, 8.1

186

Bibliography

[187] Pınar Tözün, Islam Atta, Anastasia Ailamaki, and Andreas Moshovos. ADDICT: Advanced

Instruction Chasing for Transactions. PVLDB, 7(14), 2014. 5.6, 1, 1

[188] TPC. Transaction Processing Performance Council. http://www.tpc.org. 1.5, 1.6, 1.7, 1,

2.4, 2.3, 6.1, 6.3, 8.3.1

[189] TPC-A. TPC Benchmark A Standard Specification, 1994. http://www.tpc.org/tpca. 2.4.1

[190] TPC-B. TPC Benchmark B Standard Specification, 1994. http://www.tpc.org/tpcb. 2.4.1,

2.6, 3.2.2, 6.3, 8.3.1

[191] TPC-C. TPC Benchmark C Standard Specification, 2010. http://www.tpc.org/tpcc. 2.4.2,

2.6, 3.2.2, 5.1, 6.3, 7.1, 7.5.1, 8.3.1

[192] TPC-D. TPC benchmark D standard specification, 1998. http://www.tpc.org/tpcd. 5.2

[193] TPC-E. TPC Benchmark E Standard Specification, 2014. http://www.tpc.org/tpce. 1.7,

2.4.3, 2.6, 5.1, 6.3, 7.1, 7.5.1, 8.3.1

[194] TPC-E. TPC-E Top Ten Performance Results, 2014.

http://www.tpc.org/tpce/results/tpce_perf_results.asp. 5.1

[195] TPC-H. TPC Benchmark H Standard Specification, 2014. http://www.tpc.org/tpch. 2.6,

5.1

[196] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden. Speedy

Transactions in Multicore In-memory Databases. In SOSP, pages 18–32, 2013. 2.3.1,

3.5.2

[197] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L. Santoni, Fernando C. M. Martins, An-

drew V. Anderson, Steven M. Bennett, Alain Kagi, Felix H. Leung, and Larry Smith. Intel

Virtualization Technology. IEEE Computer, pages 48–56, 2005. 7.3.4

[198] VMWare Inc. Enabling End-to-End Virtualization Solutions for Mid-market and Enter-

prise Customers. http://www.vmware.com. 7.1

[199] VoltDB. VoltDB. http://www.voltdb.com. 2.3.1, 3.1, 6.2, 9.2

[200] Thomas F. Wenisch, Michael Ferdman, Anastasia Ailamaki, Babak Falsafi, and Andreas

Moshovos. Temporal Streams in Commercial Server Applications. In IISWC, pages

99–108, 2008. 6.2

[201] Eugene Wu and Samuel Madden. Partitioning Techniques for Fine-Grained indexing.

In ICDE, pages 1127 –1138, 2011. 4.6

[202] Lisa Wu, Andrea Lottarini, Timothy K. Paine, Martha A. Kim, and Kenneth A. Ross. Q100:

The Architecture and Design of a Database Processing Unit. In ASPLOS, pages 255–268,

2014. 9.1

187

Bibliography

[203] Doe Hyun Yoon, Min Kyu Jeong, Michael Sullivan, and Mattan Erez. The Dynamic

Granularity Memory System. In ISCA, pages 548–559, 2012. 7.5.1

[204] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and Michael Stonebraker.

Staring into the Abyss: An Evaluation of Concurrency Control with One Thousand Cores.

Technical report, MIT, CMU, Department of Computer Science, 2014. 2.3.1, 3.5.2

[205] Paul Zubulake and Sang Lee. The High Frequency Game Changer: How Automated

Trading Strategies Have Revolutionized the Markets. Wiley Trading. John Wiley&Sons,

2011. 1.1

188

RESUME PINAR TÖZÜN

Pınar Tözün
Ph.D. in Computer Science

École Polytechnique Fédérale de Lausanne
CH–1015, Lausanne, Switzerland

pinar.tozun@epfl.ch
http://www.pinartozun.com

RESEARCH INTERESTS
Efficient data management on modern hardware

ACADEMIC BACKGROUND

Ph.D. in Computer Science, 2009 – 2014 École Polytechnique Fédérale de Lausanne
 Thesis: Transactions Chasing Scalability and Instruction Locality on Multicores

Advisor: Prof. Anastasia Ailamaki

Diploma in Computer Engineering, 2005 – 2009 Koç University, Istanbul, Turkey

 Department Rank: 1st

HONORS & AWARDS
 SAP Student Travel Grant, EDBT/ICDT 2013

 Best Demonstration Award, ACM SIGMOD Conference, 2011

 Google Eurosys Conference Grant and Travel Award for Women in CS, Eurosys 2010

 EPFL I&C School Fellowship Student, 2009-2010

 Vehbi Koç Honorary Award, for having SPA over 3.5, in Semester Fall 2005, Spring 2006, Fall 2006,
Spring 2007, Fall 2007, Spring 2008

 Visiting Student, Massachusetts Institute of Technology, Spring 2006, in recognition of outstanding
performance in Math 106 and Physics 101 classes in Koç University

 Full Scholarship from Vehbi Koç Foundation, founder of the Koç University, and Turkish Government
during Bachelor’s education for being among the top 200 students in the University Entrance Exam

PUBLICATIONS

 A. Ailamaki, E. Liarou, P. Tözün, D. Porobic, I. Psaroudakis. “How to Stop Underutilization and Love
Multicores.” In Proceedings of the International Conference on Data Engineering (ICDE), 2015. Tutorial

 P. Tözün, I. Atta, A. Ailamaki, A. Moshovos. “ADDICT: Advanced Instruction Chasing for Transactions.” In
Proceedings of the Very Large Databases Endowment (PVLDB), Vol. 7(14), 2014.

 I. Psaroudakis, T. Kissinger, D. Porobic, T. Ilsche, E. Liarou, P. Tözün, A. Ailamaki, W. Lehner.
“Dynamic Fine-Grained Scheduling for Energy-Efficient Main-Memory Queries.” In Proceedings of the
International Workshop on Data Management on New Hardware (DaMoN), 2014.

 A. Ailamaki, E. Liarou, P. Tözün, D. Porobic, I. Psaroudakis. “How to Stop Underutilization and Love
Multicores.” In Proceedings of the ACM SIGMOD International Conference on Management of Data,
2014. Tutorial

 D. Porobic, E. Liarou, P. Tözün, A. Ailamaki. “ATraPos: Adaptive Transaction Processing on Hardware
Islands.” In Proceedings of the International Conference on Data Engineering (ICDE), 2014.

 A. Ailamaki, R. Johnson, I. Pandis, P. Tözün. “Toward Scalable Transaction Processing – Evolution of
Shore-MT.” In Proceedings of the Very Large Databases Endowment (PVLDB), 2013. Tutorial

 P. Tözün, B. Gold, A. Ailamaki. “OLTP in Wonderland -- Where do cache misses come from in major
OLTP components?” In Proceedings of the International Workshop on Data Management on New
Hardware (DaMoN), 2013.

 I. Atta, P. Tözün, X. Tong, A. Ailamaki, A. Moshovos. “STREX: Boosting Instruction Cache Reuse in
189

RESUME PINAR TÖZÜN

OLTP Workloads through Stratified Transaction Execution.” In Proceedings of the International
Symposium on Computer Architecture (ISCA), 2013.

 P. Tözün, I. Pandis, C. Kaynak, D. Jevdjic, A. Ailamaki. “From A to E: Analyzing TPC’s OLTP
Benchmarks - The obsolete, the ubiquitous, the unexplored.” In Proceedings of the International
Conference on Extending Database Technology (EDBT), 2013.

 P. Tözün, I. Pandis, R. Johnson, A. Ailamaki. “Scalable and Dynamically Balanced Shared-Everything
OLTP with Physiological Partitioning.” In the International Journal of Very Large Databases (VLDBJ),
2013.

 I. Atta, P. Tözün, A. Ailamaki, A. Moshovos. “SLICC: Self-Assembly of Instruction Cache Collectives
for OLTP Workloads.” In Proceedings of the IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2012.

 D. Porobic, I. Pandis, M. Branco, P. Tözün, A. Ailamaki. “OLTP on Hardware Islands.” In Proceedings
of the Very Large Databases Endowment (PVLDB), Vol. 5(12), 2012.

 I. Atta, P. Tözün, A. Ailamaki, A. Moshovos. “Reducing OLTP Instruction Misses with Thread
Migration.” In Proceedings of the International Workshop on Data Management on New Hardware
(DaMoN), 2012.

 I. Pandis, P. Tözün, R. Johnson, A. Ailamaki. “PLP: Page Latch-free Shared-everything OLTP.” In
Proceedings of the Very Large Databases Endowment (PVLDB), Vol. 4 (10), 2011.

 I. Pandis, P. Tözün, M. Branco, D. Karampinas, D. Porobic, R. Johnson, A. Ailamaki. “A Data-oriented
Transaction Execution Engine and Supporting Tools.” In Proceedings of the ACM SIGMOD
International Conference on Management of Data, 2011. Best Demonstration Award.

 H. Jula, P. Tözün, G. Candea. “Communix: A Collaborative Deadlock Immunity Framework.” In
Proceedings of the International Conference on Dependable Systems and Networks (DSN), 2011.

WORKING EXPERIENCE

7/2010 – 11/2014 École Polytechnique Fédérale de Lausanne Lausanne, Switzerland

Member of the Data-Intensive Applications and Systems (DIAS) laboratory led by Prof. Anastasia Ailamaki
working on exploiting modern hardware resources more effectively for data management systems.

5/2012 – 8/2012 Oracle Labs Redwood Shores, CA

Summer Intern at Oracle Labs mentored by Brian Gold and Eric Sedlar working on memory characterization
of traditional transaction processing systems.

2/2010 – 7/2010 École Polytechnique Fédérale de Lausanne Lausanne, Switzerland

Member of the Distributed Programming Laboratory (LPD) led by Prof. Rachid Guerraoui working on
conflict avoidance in software transactional memory.

9/2009 – 2/2010 École Polytechnique Fédérale de Lausanne Lausanne, Switzerland

Member of Dependable Systems Laboratory (DSLAB) led by Prof. George Candea working on distributed
deadlock immunity.

6/2008 – 8/2008 University of Twente Enschede, Netherlands

Summer Intern at the Software Engineering Group led by Prof. Mehmet Akşit, mentored by Dr. Gürcan
Güleşir and Prof. Lodewijk Bergmans working on evolvable behavior specifications during the development
of complex software systems.

7/2007 – 8/2007 Veripark Istanbul, Turkey

Summer Intern developing applications and web interfaces using JSP and .NET.

190

RESUME PINAR TÖZÜN

CONFERENCE PRESENTATIONS AND INVITED TALKS

 “How to Stop Underutilization and Love Multicores.” At ACM SIGMOD International Conference

 “HPTS Next-Generation Panel.” At High Performance Transaction Systems (HPTS) Workshop, 2013.

 “Toward Scalable Transaction Processing.” At the International Conference on Very Large Databases
(VLDB), 2013.

 “OLTP in Wonderland.” At the International Workshop on Data Management on New Hardware
(DaMoN), 2013.

 “Transactions Chasing Instruction Locality on Multicores” At Technical University of Dortmund (TU
Dortmund), 2013.

 “From A to E: Analyzing TPC’s OLTP Benchmarks.” At the International Conference on Extending
Database Technology (EDBT), 2013.

 “A Case for Thread Migration.” At the Biennial Conference on Innovative Data Systems Research
(CIDR), 2013.

 “Transactions on Modern Hardware.” At Koç University, 2013.

 “Reducing OLTP Instruction Misses with Thread Migration.” At the International Workshop on Data
Management on New Hardware (DaMoN), 2012.

 “Critical Sections through the Looking Glass.” At High Performance Transaction Systems (HPTS)
Workshop, 2013.

 “PLP: Page Latch-free Shared-everything OLTP.” At the International Conference on Very Large
Databases (VLDB), 2011.

PROFESSIONAL ACTIVITIES

Program committees: TinyToCS 2013, IMDM 2014, CIKM 2014, SIGMOD 2015 (Demo)
Reviewer: The VLDB Journal (VLDBJ)

TEACHING

École Polytechnique Fédérale de Lausanne:

Spring 2013 TA in undergraduate course Introduction to Database Systems
Instructor: Prof. Anastasia Ailamaki (anastasia.ailamaki@epfl.ch).

Fall 2011 TA in undergraduate course Introduction to Programming
Instructor: Prof. Ronan Boulic (ronan.boulic@epfl.ch).

Spring 2011 TA in graduate course Advanced Databases
Instructor: Prof. Christoph Koch (christoph.koch@epfl.ch)

Fall 2010 TA in undergraduate course Introduction to Programming
Instructor: Prof. David Lindelöf (david.lindelof@epfl.ch)

Koç University:

Spring 2008 TA in undergraduate course Introduction to Programming
Instructor: Prof. Serdar Taşıran (stasiran@ku.edu.tr)

Spring 2007 TA in undergraduate course Structure and Interpretation of Computer Programs
Instructor: Prof. Deniz Yüret (dyuret@ku.edu.tr)

Voluntary Teaching:

Spring 2008 One of the organizers of the weekly film interpretation and discussion sessions with
female prisoners in Bakırköy Women Penitentiary in Istanbul, Turkey.

191

RESUME PINAR TÖZÜN

Spring & Fall
2006, 2007

Organizer and one of the instructors of the mathematics course in Koç University
Volunteers – Children Who Can Think Project, where sixth grade students from
neighborhood elementary schools are brought to Koç University and attend weekly
lessons and activities held by the university students.

LANGUAGES

Turkish Native
English Fluent
German Intermediate

French Beginner

PERSONAL

 Member of the mentorship program in Koç University (Fall 2007 & 2008), which helps the new students
to adapt the undergraduate life and education.

 President (2007-2008), Secretary (2006-2007), Web Designer (2008-2009), and Member (2005-2009) of
the Koç University Cinema Club.

 Participant in the Short Film Workshop given by Selim Evci, founder of IFSAK and organizer of the
AKBANK Short Film Festival in Turkey (2006).

 Player in TED Zonguldak Basketball Team (1997 – 2002).

REFERENCES

Prof. Anastasia Ailamaki École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Title: Professor
Email: anastasia.ailamaki@epfl.ch

Prof. Andreas Moshovos University of Toronto, Toronto, Canada
Title: Professor
Email: moshovos@eecg.utoronto.ca

Dr. Philip A. Bernstein Microsoft Research, Redmond, WA
Title: Distinguished Scientist
Email: philbe@microsoft.com

Shel Finkelstein Independent, Los Altos, CA
Email: shelfin68@yahoo.com

Eric Sedlar Oracle Labs, Redwood Shores, CA
Title: Vice President and Technical Director
Email: eric.sedlar@oracle.com

Prof. Ryan Johnson University of Toronto, Toronto, Canada
Title: Assistant Professor
Email: ryan.johnson@cs.utoronto.ca

Prof. Christoph Koch École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Title: Professor
Email: christoph.koch@epfl.ch

Last update: October 2014.

192

	Cover page

	Acknowledgements
	Abstract (English/Deutsch)
	Contents

	List of Figures
	List of Tables
	1 Introduction
	1.1 Data Management
	1.2 Evolution of Hardware
	1.3 OLTP on Modern Hardware
	1.4 Scaling Up on Multicores
	1.5 Utilizing Resources within a Core
	1.6 Thesis Statement and Contributions
	1.7 Roadmap

	2 Background
	2.1 Transaction Processing
	2.2 Micro-architecture of OLTP's Playground
	2.3 Exploiting Modern Hardware while Running OLTP
	2.3.1 Scaling Up OLTP
	2.3.2 Minimizing Memory Stalls

	2.4 Evolution of TPC's OLTP benchmarks
	2.4.1 The obsolete TPC-A and TPC-B
	2.4.2 The ubiquitous TPC-C
	2.4.3 The unexplored TPC-E
	2.4.4 The evolution summary

	2.5 The TATP benchmark
	2.6 Shore-MT and Shore-Kits: Benchmarks on Top of Shore-MT

	Part. I Scalable and Dynamically Balanced Shared-Everything OLTP with Physiological Partitioning

	3 Latch-free Shared-everything OLTP
	3.1 Introduction
	3.1.1 Multi-rooted B+Trees
	3.1.2 Physiological Partitioning
	3.1.3 Contributions and Organization

	3.2 Communication Patterns
	3.2.1 Types of Communication
	3.2.2 Communication Patterns in OLTP
	3.2.3 Physical vs. Logical Partitioning

	3.3 Physiological Partitioning
	3.3.1 Design Overview
	3.3.2 Multi-rooted B+Tree
	3.3.3 Heap Page Accesses
	3.3.4 Page Cleaning
	3.3.5 Benefits of Physiological Partitioning

	3.4 Evaluation
	3.4.1 Experimental Setup
	3.4.2 Page Latches and Critical Sections
	3.4.3 Reducing Index and Heap Page Latch Contention
	3.4.4 Impact on Scalability and Performance
	3.4.5 MRBTrees in Non-PLP Systems
	3.4.6 Transactions with Joins in PLP
	3.4.7 Secondary Index Accesses
	3.4.8 Fragmentation Overhead
	3.4.9 Summary

	3.5 Related Work
	3.5.1 Critical Sections
	3.5.2 B+Trees and Alternative Concurrency Control

	3.6 Limitations of PLP
	3.7 PLP on Future Hardware and Conclusions

	4 Dynamic Load Balancing for PLP
	4.1 Introduction
	4.2 Need for Dynamic Repartitioning
	4.3 Repartitioning Cost
	4.3.1 Splitting Non-clustered Indexes
	4.3.2 Splitting Clustered Indexes
	4.3.3 Moving Fewer Records
	4.3.4 Example of Repartitioning Cost
	4.3.5 Cost of Merging Two Partitions

	4.4 A Dynamic Load Balancing Mechanism for PLP
	4.4.1 Monitoring
	4.4.2 Deciding New Partitioning
	4.4.3 Using Control Theory for Load Balancing

	4.5 Evaluation
	4.5.1 Experimental setup
	4.5.2 Overhead in Normal Operation
	4.5.3 Overhead of Updating Secondary Indexes for DLB

	4.6 Related Work
	4.7 Conclusions

	Part. II Characterizing OLTP Benchmarks

	5 From A to E: Analyzing TPC’s OLTP Benchmarks
	5.1 Introduction
	5.2 Related Work
	5.3 Setup and Methodology
	5.3.1 Hardware
	5.3.2 TPC-E Implementation
	5.3.3 Software Setup
	5.3.4 Experiments

	5.4 Profiling Analysis
	5.4.1 High-level Analysis
	5.4.2 Time breakdown

	5.5 Micro-architectural Analysis
	5.5.1 OLTP on an Out-of-Order Processor
	5.5.2 OLTP on an In-Order Processor

	5.6 Summary of Results and Conclusion

	6 Transactions under the Microscope
	6.1 Introduction
	6.2 Related Work
	6.3 Setup and Methodology
	6.4 Sensitivity to Data Size
	6.5 Breakdown of Misses
	6.5.1 Into Miss Categories
	6.5.2 Into Operations
	6.5.3 Into Components

	6.6 Inside Transactions
	6.6.1 Database Operations
	6.6.2 Commonalities across Transactions
	6.6.3 Average Reuse in an Instance

	6.7 Conclusions

	Part. III Chasing Instructions

	7 Boosting Instruction Cache Reuse in OLTP
	7.1 Introduction
	7.2 Exploiting Instruction Overlap
	7.3 Self-Assembly of Instruction Cache Collectives
	7.3.1 SLICC Design
	7.3.2 Implementation Requirements
	7.3.3 Exploiting Transaction Type Information
	7.3.4 Support for Thread Migration

	7.4 Stratified Transaction Execution
	7.4.1 STREX Synchronization Algorithm
	7.4.2 Implementation
	7.4.3 Effect on Regular Execution

	7.5 Evaluation
	7.5.1 Methodology
	7.5.2 Exploring SLICC's Parameter Space
	7.5.3 L1 Miss Rate
	7.5.4 Throughput
	7.5.5 Transaction Throughput vs. Latency
	7.5.6 Hardware Cost

	7.6 Related Work
	7.7 Conclusions

	8 Transaction-aware Instruction Chasing
	8.1 Introduction
	8.2 ADDICT
	8.2.1 Finding Migration Points
	8.2.2 Migrating Transactions

	8.3 Evaluation
	8.3.1 Setup and Methodology
	8.3.2 Migration Points
	8.3.3 Instruction and Data Misses
	8.3.4 Performance Impact
	8.3.5 Effect of Changing Loads
	8.3.6 With Simultaneous Multithreading
	8.3.7 On Deeper Memory Hierarchies
	8.3.8 Overhead
	8.3.9 Summary

	8.4 Related Work
	8.5 Conclusions

	9 Future Directions and Concluding Remarks
	9.1 Hardware Specialization
	9.2 Other Applications to Benefit from Alternative Scheduling
	9.3 Thesis Summary

	Bibliography
	Curriculum Vitae

