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Abstract—Gain-Cell embedded DRAM (GC-eDRAM) has re-
cently been recognized as a possible alternative to traditional
SRAM. While GC-eDRAM inherently provides high-density,
low-leakage, low-voltage, and 2-ported operation, its limited
retention time requires periodic, power-hungry refresh cycles.
This drawback is further enhanced at scaled technologies, where
increased subthreshold leakage currents and decreased in-cell
storage capacitances result in faster data deterioration. In this
paper, we present a novel 4T GC-eDRAM bitcell that utilizes an
internal feedback mechanism to significantly increase the data
retention time in scaled CMOS technologies. A 2kb memory
macro was implemented in a low-power 65 nm CMOS technology,
displaying an over 3x improvement in retention time over
the best previous publication at this node. The resulting array
displays a nearly 5x reduction in retention power (despite the
refresh power component) with a 40% reduction in bitcell area,
as compared to a standard 6T SRAM.

I. INTRODUCTION

Modern microprocessors and other VLSI systems-on-chip
(SoCs) implemented in aggressively scaled CMOS technolo-
gies, characterized by high leakage currents, require an in-
creasing amount of embedded memories [1]. Such embedded
memories, typically implemented as 6-transistor (6T)-bitcell
SRAM macrocells, not only consume an ever growing share
of the total silicon area, but also significantly contribute to
the leakage power of the system (the leakage power being a
large share of the total power budget in deeply scaled CMOS
nodes). Unfortunately, besides several advantages like fast
access speed and robust, static data retention, the 6T SRAM
bitcell is relatively large, exhibits several leakage paths, and
has dramatically increased failure rates under voltage scaling.
Gain-Cell embedded DRAM (GC-eDRAM) [2-5] circumvents
all these limitations of SRAM while remaining fully compat-
ible with standard digital CMOS technologies. Furthermore,
GC-eDRAMs exhibit low static leakage currents, are suitable
for 2-port memory implementations, and provide non-ratioed
circuit operation. The main drawback of GC-eDRAMs is the
need for periodic, power-hungry refresh cycles to ensure data
retention.

The Data Retention Time (DRT) of GC-eDRAMs is the
maximum time interval from writing a data level into the
bitcell while still being able to correctly read out the written
level. The DRT is primarily limited by the level set by the
initial charge stored in the bitcell and the leakage currents that
degrade this level. While gain cell implementations in mature
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Fig. 1. Schematic representations of a conventional 2T Gain-Cell and its
main leakage components: (a) Level ‘1’ is stored. (b) Level ‘0’ is stored.
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Fig. 2. Storage node degradation of a 2T gain cell following a write operation
under worst case WBL bias conditions.
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Fig. 3. Schematic representation of the proposed 4T Gain-Cell.

technology nodes, such as 180 nm, have been shown to display
high DRTs of tens to hundreds of milliseconds [4,5], conven-
tional 2T gain cells in newer technology nodes, such as 65nm,
display much lower DRTs of only tens of microseconds [6].
This is a direct consequence of the substantially higher leakage
currents which result in a much faster deterioration of the
stored levels [5]. Depending on the type of write transistor
(WT), one of the data levels has a much higher retention time
than the other (‘1’ for a PMOS WT, ‘0’ for a NMOS WT) [6].
However, when determining the refresh frequency, one must
consider the deterioration of the weaker data level under worst-
case conditions, i.e. when the write bitline (WBL) is driven to
the opposite level of the stored data during retention periods.

In this paper, we present a novel 4-transistor (4T) GC-
eDRAM bitcell that selectively protects the weaker data level
by means of a feedback loop, thereby decreasing the refresh
frequency and reducing the refresh power consumption. The
resulting memory provides a 3x increase in retention time,
as compared to the best previously proposed gain cell in the
same technology [7], resulting in a 10x decrease in retention
power (static plus refresh power) as compared to the static
power of a 65nm 6T SRAM [8]. This is achieved with a 40%
smaller bitcell than a 6T SRAM cell in the same technology,
allowing for high density, low power integration.

The rest of this paper is organized as follows: Section
IT describes the proposed bitcell and operation mechanisms;
Section III shows the circuit implementation and simulation
results; and Section IV concludes the paper.

II. PROPOSED CIRCUIT AND OPERATION MECHANISMS

A conventional 2T all-PMOS gain cell [2] is composed
of a write transistor (PW), a read transistor (PR), and a
storage node (SN), as shown in Fig. 1. This circuit displays
asymmetric retention characteristics with highly advantageous
retention of data ‘1’ over data ‘0’. The worst-case biasing
during retention of a ‘1’ occurs when WBL is grounded and
subthreshold (sub-V7) leakage discharges SN, as illustrated
in Fig. 1(a). However, as the stored level decays to Vpp-
A, the overdrive of PW (Vsg — |Vp|) becomes increasingly
negative and simultaneously, the device becomes reverse body
biased. Therefore, the sub-Vr leakage is strongly suppressed
and the stored level decays very slowly. On the other hand,
when a ‘0’ is stored in the cell and WBL is driven to Vpp, as
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Fig. 4. Timing diagrams demonstrating circuit operation.

illustrated in Fig. 1(b), this self-limitation does not occur, and
the leakage currents gradually charge SN until the data level is
lost. These two worst-case biasing situations are demonstrated
in Fig. 2, showing the deterioration of the two data levels in
a 2T cell, as obtained from 1024 Monte Carlo simulations.
This figure, often used to estimate retention time, clearly
emphasizes the superiority of the data ‘1’ level in this circuit.
It also demonstrates the degraded retention times at scaled
technologies, with an estimated DRT of only approximately
200 ps, measured at the earliest intersection between the ‘0’
and ‘1’ samples. Note that this is only a rough estimation of
DRT, as for full DRT measurement, the array architecture and
the read scheme need to be taken into account [6].

The immediate conclusion from the phenomena presented
above is that the data ‘0’ state is the bottleneck that needs to be
resolved in order to increase the retention time of this bitcell.
The proposed cell addresses this by adding a buffer node (BN)
and a feedback device to the basic configuration, as show in
Fig. 3. SN is connected in a feedback loop to the feedback
device (PF), which conditionally discharges the BN according
to the stored data state. An additional buffer device (PB)
separates the stored data level from the BN to ensure extended
retention time. The resulting 4T bitcell is built exclusively
with standard threshold-voltage (V1) transistors and is fully
compatible with standard CMOS processes. PMOS devices
are selected over NMOS due to their lower sub-Vr and gate
leakages to provide longer retention times while maintaining a
small cell area. Detailed cell operation is explained hereafter.

Cell access is achieved in a similar fashion as with a
standard 2T cell. During writes, the write word line (WWL),
which is connected to the gates of both PW and PB, is pulsed
to a negative voltage in order to enable a full discharge of SN
(when writing a ‘0’). Readout is performed by pre-discharging
the read bit line (RBL) to ground and subsequently charging
the read word line (RWL) to Vpp. RBL is then conditionally
charged if the storage node is low, and otherwise remains
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Fig. 5. Storage node degradation of a 4T gain cell following a write operation
under worst case WBL bias conditions.

discharged. To save area and power, a simple sense inverter is
used on the readout path; however, other conventional sense
amplifiers can be used for improved read performance.

The novelty of the proposed cell occurs during standby
periods, when the internal feedback mechanisms come into
play. During hold, PW and PB are off (WWL=Vpp), and
we assume worst-case retention conditions, i.e., that WBL is
driven to the opposite voltage of the stored data level. For a
stored ‘1°, a self-limiting mechanism, similar to that of the
standard 2T cell, ensures that the level decays only slowly.
In addition, the transistor stack (PW and PB) provides more
resistance between SN and WBL and results in even lower
leakage and a slower decay compared to the conventional
2T cell. For data ‘1’, PF is in deep cutoff, such that its
effect on the circuit is almost negligible. However, following
a write ‘0’ operation, Vg of PF is equal to the voltage at
BN (Vpn). This is much higher than the negative Vgg of PB,
and therefore any charge that leaks through PW to BN will be
discharged through PF and not degrade the ‘0’ level at SN. In
this way, the worst-case condition of the 2T cell is eliminated
and retention time is significantly increased. In summary, the
feedback path protects the weak ‘0’ state on the SN by pulling
BN to ground, while the worst-case Vpp drop across PW and
the corresponding sub-Vr leakage do not affect the retention
time of the cell; the feedback path is disabled for the strong
‘1’ level. Note that the proposed technique only delays the
decay of a ‘0’ level, but cannot fully avoid it: gate tunneling
through PR, as well as the GIDL and junction leakage of PB
still charge SN, while sub-Vr leakage of the turned-off PB
counteracts (but does not avoid) this SN charging process.

III. IMPLEMENTATION AND SIMULATION RESULTS

A 64x32 bit (2kb) memory macro based on the proposed
cell was designed in a low-power CMOS 65 nm process. All
devices were implemented with standard Vr transistors to
provide complete logic process compatibility. The operating

voltage was selected to be 700 mV, to demonstrate compati-
bility with power-aware (near-threshold) applications.

Cell operation is demonstrated in Fig. 4 through subsequent
write and read operations to the proposed gain cell. Initially,
a ‘0’ is written to SN by pulsing WWL to a negative voltage
(-700 mV), thereby discharging SN through WBL. Next, a read
operation is performed by pre-discharging RBL by pulsing the
PC signal, and subsequently charging RWL. As required, RBL
is driven high through PR. Prior to the next assertion of WWL,
WBL is driven high in order to write a ‘1’ to SN. During the
next read cycle, the pre-discharged RBL remains low, as the
stored ‘1’ level blocks the discharge path through PR.

DRT estimation plots for the 4T cell are presented in Fig. 5
for comparison with those presented in Fig. 2. Again, 1k MC
samples were simulated in a 65nm CMOS process with a
700 mV supply, driving WBL to the opposite voltage of that
stored on SN. The level degradation of Fig. 5 is not only much
more balanced than the extremely asymmetric degradation of
the 2T cell, but it is also more than an order of magnitude
higher. The estimated DRT, extracted from these plots, is
8.29ms at 27°C and 3.98 ms at 85°C. This is over 3x higher
than the best retention time reported so far in a 65 nm CMOS
node [9]. Moreover, the symmetric behavior of the two data
states is more appropriate for differentiating between ‘0’ and
‘1’ levels, easing the design of a specific readout circuit and
potentially further enhancing the actual retention time (latest
successful read) compared to the baseline 2T cell.

Chun et al. [3] previously showed that a standard 2T GC-
eDRAM can exhibit lower retention power than a similarly
sized SRAM in 65 nm CMOS. Since the retention time of the
presented gain cell, as shown previously, is over 40x higher
than that of a standard 2T cell, the retention power, composed
of leakage and refresh power, is even lower. For the proposed
4T-bitcell memory macro, the retention power was found to
be 3.86 pW/bit at 27°C and 53.78 pW/bit at 85°C, which is
almost 5x less than the leakage power of a 6T-bitcell SRAM
operated at 0.7 V. A comparison between the proposed cell
and other embedded memories is given in Table I. The table
clearly emphasizes the benefits of this cell, achieving much
lower power due to its increased retention time.

Performance of the proposed 4T cell is summarized in
Table II. At 700mV, the active refresh energy is 6.89 fJ/bit,
composed of 5.88 fJ/bit for read and 1.01 fJ/bit for write. The
cell has a read delay of 2.32ns (using a slow but small sense
inverter) and a write delay of 0.4ns (with and underdrive of
-700mV). A conventional 2T gain-cell was measured to have
a 0.29ns write delay, which is the same order of magnitude
as the proposed cell.

IV. CONCLUSIONS

This paper proposes a novel 4T GC-eDRAM for use in
scaled CMOS nodes characterized by high leakage currents.
The bitcell design protects the weak data level (‘0’) by a
conditional, cell-internal feedback path, while the feedback
is disabled for the strong data level (‘1’). The proposed cell
is shown to enable low retention power of 3.86 pW/bit with a



COMPARISON BETWEEN PROPOSED DESIGN AND OTHER EMBEDDED MEMORY OPTIONS

TABLE I

6T SRAM [8] 2T1C gain cell [9] 2T gain cell [2] Proposed 4T gain cell
WWL RBL
WwL PCOU  RBL WWL RB
T T waL L S
PW PS MR Pw Ps PR
M s weL -
PC WBL RWL
Cell Structure = RWL RWL =
Drawn Cell Size 1.18um%(1X) 0.69um?(0.58X) 0.27um>(0.23X) 0.71um?(0.6X)
Supply Voltage (Vbp) 1.1V 1.1V 1.1V 0.7V
Worst Case Retention Time | Static 0.5ms@85°C 10 us@385°C 3.98 ms@85°C
Retention Power 264.58pW@85°C,Vpp=0.7V | 158pW@385°C 1.95uyW@85°C 53.78 pW@85°C,Vpp=0.7V
564.29 pW @85°C,Vpp=1.1V 126.9pW@85°C,Vpp=1.1V

All designs are in 65nm CMOS.

TABLE I

4T GAIN CELL PERFORMANCE SUMMARY

Technology 65nm LP CMOS

Cell Area 0.708 um?

4T eDRAM / 6T SRAM Cell Area Ratio | 0.6

Supply Voltage 700 mV

Worst Case Retention Time 8.29ms@27°C
3.98ms@85°C

Write Delay (worst) 0.4ns@85°C

Read Delay (worst) 2.32ns@85°C

Active Read Energy

5.88 f]/bit@85°C

Active Write Energy

1.01 fJ/bit@85°C

Active Refresh Energy

6.89 f]/bit@85°C

Leakage Power/bit

287 pW@27°C
51.29pW@85°C

Retention Power/bit

3.86pW@27°C
53.78 pW@85°C

(31

(6]

(7]

(8]

(91

worst case retention time of 8.29 ms at 27°C, and 53.78 pW/bit
with retention time of 2.76 ms at 85°C. The bitcell area is 40%
smaller than a 6T SRAM in the same technology, making it

an appealing high-density,

low-leakage alternative.
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