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THE ROLE OF NUMERICAL INTEGRATION IN NUMERICAL

HOMOGENIZATION ∗

Assyr Abdulle1

Abstract. Finite elements methods (FEMs) with numerical integration play a central role in nu-
merical homogenization methods for partial differential equations with multiple scales, as the effective
data in a homogenization problem can only be recovered from a microscopic solver at a finite number
of points in the computational domain. In a multiscale framework the convergence of a FEM with
numerical integration applied to the effective (homogenized) problem guarantees that the so-called
macroscopic solver is consistent and convergent. Convergence results for FEM with numerical inte-
gration are however scarce in the literature and need often to be derived as a first step to analyze
a numerical homogenization method for a given problem. In this paper we review and explain the
main ideas in deriving convergence results for FEM with numerical integration for linear and nonlinear
elliptic problems and explain the role of these methods in numerical homogenization.

Résumé. Les méthodes d’éléments finis avec intégration numérique par quadrature jouent un rôle
central dans l’homogénéisation numérique des équations aux dérivées partielles multi-échelles. En effet,
les coefficients de l’équation homogénéisée ne peuvent être déterminés que pour un nombre fini de points
du domaine considéré. Dans le cadre des méthodes multi-échelles basées sur un schéma macroscopique
avec intégration numérique en la variable macroscopique et couplées à des schémas microscopiques au-
tour des points de quadratures, la convergence d’une méthode d’élément fini avec intégration numérique
pour le problème homogénéisé garantit que la méthode macroscopique est consistante et convergente.
Comme les résultats de convergence pour les méthodes d’éléments finis avec intégration numérique ne
sont connus que pour un nombre limité de problèmes, des nouveaux résultats de ce type sont alors
un premier pas indispensable pour établir la convergence d’une méthode d’homogénéisation numérique
pour un problème donné. Dans ce papier, nous effectuons un survol des idées clés pour l’analyse des
méthodes d’éléments finis avec intégration numérique pour des problèmes linéaires et non linéaires et
expliquons le rôle de ces méthodes dans l’homogénéisation numérique.

Introduction

When partial differential equations (PDEs) have coefficients that vary over multiple scales (highly oscillatory),
classical numerical methods such as the finite element method (FEM), the finite volume method (FVM) or the
finite difference method (FDM) are inefficient, as the mesh involved in any of these methods needs to resolve
the smallest scale in the PDE to recover usual convergence rates. Such scale resolution is often prohibitive in
many applications and there is a need for other type of numerical methods, called multiscale methods.
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Among the large variety of multiscale problems, we concentrate on numerical methods for homogenization
problems. Homogenization is a mathematical theory that study the convergence of PDEs with rapidly oscillating
coefficients towards an averaged PDE describing the macroscopic or effective behavior of the physical process
modeled by the differential equation [18,31,32].

Numerical homogenization methods are numerical methods able to approximate the effective solution of a
highly oscillatory PDE without resolving the full oscillatory equation by direct discretization (see [3, 29] for
recent reviews). Such methods are also called multiscale methods as they typically couple different solvers at
different scales. The numerical analysis of numerical homogenization methods has been studied by many authors
and we refer to [15] for a contribution of a pioneer in the field and to [3] for a recent review with numerous
bibliographical entries.

In this paper, we first discuss in Section 1 the typical structure of a numerical homogenization method. We
then discuss the central role of FEM with numerical integration for such methods. We then review numerical
homogenization methods for linear elliptic homogenization problems, nonlinear monotone elliptic homogeniza-
tion problems and nonlinear nonmonotone elliptic homogenization problems in Sections 2,3,4, respectively. As
our focus is on numerical integration we explain the various steps needed to control this error in a numerical
homogenization method. We will show that for numerical homogenization, in order to obtain quantitative error
bounds, FEM with numerical integration cannot be avoided as by its nature the macroscopic solver can only be
defined at a finite number of points, which should be quadrature nodes of a macroscopic mesh. This raises the
question of quantitative error bounds results for FEM with numerical integration for the various aforementioned
problems. While the literature for the analysis of the FEM is abundant, works concerned with the analysis
of the FEM with numerical integration are sparse even though for practical problems with non-constant pa-
rameters numerical integration is unavoidable. For linear elliptic problems, this problem has been thoroughly
analyzed by Strang & Fix [37] and Ciarlet & Raviart [23]. For linear parabolic and hyperbolic problems results
by Raviart [35] and Baker & Dougalis [17] are available. However for nonlinear problems quantitative error
bounds have only recently be obtained for elliptic problems (of monotone and nonmonotone type) motivated
by numerical homogenization [7, 11,12].

We close this introduction by mentioning that while we concentrate on a specific numerical homogenization
method, namely the finite element heterogeneous multiscale method (FE-HMM) built in the framework of the
heterogeneous multiscale method (HMM) [25], the link between numerical homogenization method and FEM
with numerical integration is of general nature and not restricted to the specific framework described here.

Notations. Let Ω ⊂ Rd be open and denote by W s,p(Ω) the standard Sobolev spaces. We use the standard
Sobolev norms ‖·‖W s,p(Ω) and semi-norms | · |W s,p(Ω). For p = 2 we will use the notations ‖·‖Hs(Ω) and | · |Hs(Ω),
respectively. For k ∈ N and 1 ≤ p ≤ ∞, the broken norms ‖ · ‖W̄k,p(Ω) are given by

‖v‖W̄k,p(Ω) =
(∑

K∈TH ‖v‖
p
Wk,p(K)

)1/p

, if p <∞, ‖v‖W̄k,∞(Ω) = maxK∈TH ‖v‖Wk,∞(K),

where TH is a partition of the closure of Ω, i.e., Ω =
⋃
K∈TH K, W k,p(K) and ‖ · ‖Wk,p(K) denote the usual

Sobolev spaces and norms on a closed subset K of Ω, respectively, and W̄ k,2(Ω) is written as H̄k(Ω). The
notations |v|W̄k,p(Ω), |v|W̄k,∞(Ω) will be used for the corresponding semi-norm.

1. Numerical homogenization methods

The general methodology of a numerical homogenization method such as the FE-HMM can be described as
follows. Let Ω be an open bounded polygonal domain in Rd, V be a Hilbert space and consider the following
(multiscale) problem: find uε ∈ V such that

Lε(uε, aε) = f in Ω, (1)
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with appropriate boundary conditions. Here Lε denotes a differential operator, aε highly oscillatory data and
f a right-hand side 1. The multiscale nature of the data, the operator and the solution is emphasized by the
superscript ε (representing the typical size of a small scale in the considered problem). Assume now that uε

converges (weakly) in V to u as ε → 0, where the function u (a homogenized solution) solves a homogenized
problem of the form

L(u, a) = f in Ω. (2)

In this latter problem, the small scales have been averaged out in the homogenization process.
First, when one is not interested in the fine scale details involved in the problem (1) it is attractive to solve

(2) numerically instead of (1), as (2) can in principle be solved with a standard FEM. Second, when fine scale
features are required (often only in part of the computational domain) one can add corrector functions on the
homogenized solution u to recover small scale information [34] or couple the solution of (1) in a part ω of the
domain with the homogenized solution u in Ω\ω (in this direction see the recent results [9,16]). However, even
when the primary goal is to solve numerically (2), this cannot be done straightforwardly as the effective data
a(x), x ∈ Ω, are not known explicitly (except in very special cases) and must be computed with a micro FEM
for a problem involving the original operator (1) on patches Kδj = xj + δY (sampling domains) around a given

point xj ∈ Ω (here δ ≥ ε is a parameter usually of the size of ε and Y = (−1/2, 1/2)d). Hence a(x) can only be
approximated at a finite number of points xj , j = 1, . . . , N, in the computational domain.

Let us describe a general framework for numerical homogenization methods such as the FE-HMM. Such
methods rely on

• a macroscopic domain Ω with a family of macroscopic triangulations TH such that
⋃
K∈TH K = Ω,

where H is the maximum diameter of the element K ∈ TH and Ω is the closure of Ω;
• a family of microscopic domains (sampling domains) Kδj = xj + δY, j = 1, . . . , N, and microscopic

triangulation Th such that
⋃
T∈Th T = Kδj , where h is the maximum diameter of the element T ∈ Th.

A numerical homogenization method (such as the FE-HMM) relies on (at least) two solvers, and on a data
recovery process

(1) a macroscopic solver LHMM for the effective problem L with a priori unknown data {ah(xj)}Nj=1 defined
on a macroscopic finite dimensional subspace VH(Ω) of V based on piecewise polynomials on each
element K of the macroscopic triangulation TH of Ω;

(2) a microscopic solver involving the operator Lε constrained by the macroscopic state (usually through
boundary conditions involving the macro solution) defined on microscopic finite element spaces Vh(Kδj )
based on piecewise polynomials on each element T of the microscopic triangulation Thj ;

(3) a data recovery process in which the effective data ah(xj) at the point xj are computed using a suitable
average involving the fine scale data aε and the microscopic finite element solutions in each Kδj .

We then consider the following problem: find uHMM ∈ VH such that

LHMM (uHMM ) = f in Ω. (3)

Fundamental questions are now the following. How should we choose the nodes xj in Ω to obtain the optimal
accuracy of the numerical homogenization method with a minimal cost ? Recall that the computation of a(xj)
for each xj is expensive as it involves a (micro) boundary value problem in a patch around xj . How should we
choose the macro and micro meshsizes and the polynomial degree in order to obtain a given accuracy with the
minimal computational cost ? We note that the macroscopic meshsize H is usually both larger and independent
of ε and its size is solely dictated by the required accuracy for the effective problem. The microscopic meshsize
is smaller than ε but only on patches Kδj that are usually also of size δ ' ε. A fully discrete a priori error
estimates [1] then reveals that both meshes have to be refined simultaneously and that the computational cost,
independent of ε, is proportional to the macroscopic degrees of freedom.

1For simplicity we do not consider a highly oscillatory right-hand side (e.g., fε) but we note that this situation can usually be

handled with minor modifications of the method described below (see e.g., [10]).
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For the analysis of such a method, we usually introduce an intermediate problem, namely a macroscopic
solver LH for the effective problem L with data {a(xj)}Nj=1 assumed to be exact and computed at the same
location xj ∈ Ω as for the FE-HMM. We thus have three macroscopic solutions: u the solution of (2), uHMM

the solution of (3) and uH the solution of LH(uH) = f in Ω.
The analysis of the FE-HMM relies on the following decomposition [4]

‖u− uHMM‖ ≤ ‖u− uH‖+ ‖uH − uHMM‖. (4)

The first term in the right-hand side of (4) is usually called the macroscopic error. It depends on the type of
discretization used at the macroscopic level, the macroscopic meshsize and on the quadrature points xj chosen
in the computational domain to recover {a(xj)}. The second term in the right-hand side of (4) is usually
called the macroscopic error comprise the so-called microscopic and modeling errors and depends on the type of
discretization used at the microscopic level, the macroscopic meshsize, the sampling domain size and the type
of boundary conditions used for the micro solver.

We note that it is the second term that involves the mathematical homogenization theory for its analysis,
while the control of the first term involves a classical question in the numerical analysis of the FEM as described
in the introduction, which goes back to Strang & Fix [37] and Ciarlet & Raviart [23] for linear elliptic problem.
For numerical homogenization methods, as we will show in this paper, FEM with numerical integration cannot be
avoided as by its nature the macroscopic solver can only be defined at quadrature nodes. Thus any numerical
homogenization method for a new class of problems must come with its companion analysis of FEM with
numerical integration. These results are however not trivial already in the linear case (see [23] for a very general
analysis). In particular for nonlinear problems, quantitative error bounds have only recently be obtained for
elliptic problems motivated by numerical homogenization [7, 11, 12]. We will highlight in the following sections
the main ideas to derive error estimates for FEM with numerical integration for various linear and nonlinear
problems and show how such solvers naturally arise in numerical homogenization. We close this introduction by
noting that while we only describe here multiscale methods coupling elliptic equations at both the macro and the
micro scales, one could also couple different physics at different scales. This has been pursued for example in [6],
where the macroscopic solver discretizes an effective Darcy equation, while the microscopic solver discretizes
Stokes problems around quadrature points of the macromesh. There again, results for FEM with numerical
integration for the Darcy problem are important.

2. Numerical homogenization and numerical integration for linear elliptic
problems

In this section we first detail the abstract method described in the introduction for elliptic linear multiscale
problems of the form 2

Lε(uε, aε) = −∇ · (aε∇uε) = f in Ω, uε = 0 on ∂Ω. (5)

We assume that f ∈ L2(Ω) and that the family of tensors aε(x) ∈ (L∞(Ω))d×d indexed by ε > 0 is uniformly
elliptic and bounded, thus for any ε there exist a unique solution uε ∈ H1

0 (Ω) of Problem (5) and the family of
solution {uε} is bounded independently of ε. For such problems the homogenization theory [18, 31, 32] ensures
the existence of a subsequence of {uε} that weakly converges in H1

0 (Ω) to function u, solution of the homogenized
problem L(u, a) = −∇ · (a∇u) = f in Ω with u = 0 on ∂Ω that reads in weak form: find u ∈ H1

0 (Ω) such that

B(u, v) =

∫
Ω

a(x)∇u · ∇vdx =

∫
Ω

fvdx, ∀v ∈ H1
0 (Ω). (6)

2Here we take zero Dirichlet boundary conditions for simplicity, but stress that the FE-HMM method can be analyzed for other

boundary conditions.
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The tensor a(x) is again uniformly elliptic and bounded

∃λ,Λ > 0 such that λ|ξ|2 ≤ a(x)ξ · ξ, |a(x)ξ| ≤ Λ|ξ|, ∀ξ ∈ Rd, a.e. x ∈ Ω. (7)

We note that for locally periodic coefficients, i.e., aε(x) = a(x, x/ε) = a(x, y) Y -periodic in y, the whole
sequence {uε} weakly converges to the unique solution u of (6).

2.1. Numerical homogenization method.

For the numerical homogenization method, based on a family of triangulations TH (the triangulation defined
in the introduction), we first define the macroscopic finite element space by

V `H(Ω, TH) = {vH ∈ H1
0 (Ω); vH |K ∈ R`(K), ∀K ∈ TH}, (8)

where R`(K) is the space P`(K) of polynomials on K of total degree at most ` if K is a simplicial FE, or the
space Q`(K) of polynomials on K of degree at most ` in each variable if K is a parallelogram (rectangular)
FE. Then, for each K ∈ TH we choose quadrature nodes and weights {xKj , ωKj}Jj=1 and define the macroscopic

solver for vH , wH ∈ V `H(Ω, TH) by

BHMM (vH , wH) =
∑
K∈TH

J∑
j=1

ωKja
h
Kj∇vH(xKj ) · ∇wH(xKj ), (9)

where ahKj is an approximation of the homogenized tensor a(x) at the node x = xKj , determined by a micro

method solving a micro problem on a patch Kδj around xKj . The numerical homogenization solution is then

defined as follows: find uHMM ∈ V `H(Ω, TH) such that

BHMM (uH , vH) =

∫
Ω

fvHdx, ∀vH ∈ V `H(Ω, TH). (10)

We see from the bilinear form (9) that numerical integration is mandatory in numerical homogenization already
to define the numerical method as the effective data ahKj can only be accessed at a finite number of points

xKj ∈ Ω (unless a(x) is constant). For simplicity we do not consider numerical integration for the right-hand
side of (10) but emphasize that the generalization for that case would not introduce additional difficulties. As
mentioned in the introduction for the analysis of the method (10) we introduce an intermediate problem to
decompose the error into macroscopic error and “numerical homogenization errors”. This intermediate problem
is based here on the bilinear form

BH(vH , wH) =
∑
K∈TH

J∑
j=1

ωKja(xKj )∇vH(xKj ) · ∇wH(xKj ), (11)

where a(xKj ) is the value of the homogenized tensor at the node x = xKj . We then define uH ∈ V `H(Ω, TH)
such that

BH(uH , vH) =

∫
Ω

fvHdx, ∀vH ∈ V `H(Ω, TH). (12)

Of course some assumptions on the quadrature formula are needed to ensure that Problem (10) is well-posed,
in particular we need to ensure that the bilinear form BH is elliptic. This follows from the assumption (Q1)
below. Going back to the decomposition (4), we see that the error ‖u−uH‖ quantifies indeed the error of FEM
with numerical integration for a single scale problem. When the problem is linear the error analysis goes back
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to [23, 37]. These results that are classical are reviewed in the next subsection. We close this presentation of
the FE-HMM for linear elliptic problem by noting that the term ‖uH − uHMM‖ has been analyzed in various
publications [1, 26] for a variety of macro and micro FEM (see [3, 4] for reviews).
Micro solver. For completeness we give the definition of the micro solver that can be used to compute ahKj . For

each quadrature node xKj we consider the sampling domain Kδj , its micro triangulation defined in Section 1
and the micro FE space V qh (Kδj , Th) = {zh ∈ W (Kδj ); zh|T ∈ Rq(T ), T ∈ Th}, where W (Kδj ) is a given
Sobolev space. The choice of W (Kδj ) sets the coupling condition between macro and micro functions, typical

examples are H1
per(Kδj )/R (where H1

per(Kδj ) is the closure of smooth periodic functions on Kδj for the H1

norm) or H1
0 (Kδj ). Next for each ξ ∈ Rd and xKj ∈ Ω, ahKj ∈ Rd×d is given by

ahKjξ =
1∣∣Kδj

∣∣ ∫
Kδj

aε(x)(ξ +∇χξh,Kj )dx

and χξh,Kj solves the micro problem: find χξh,Kj ∈ V
q
h (Kδj , Th) such that∫

Kδj

aε(x)(ξ +∇χξh,Kj ) · ∇zh dx = 0, ∀ zh ∈ V qh (Kδj , Th).

Alternatively for vH ∈ V `H(Ω, TH) we can define a micro function vh,Kj , satisfying (vh,Kj −vH,lin) ∈ V qh (Kδj , Th)
and solution of ∫

Kδj

aε(x)∇vh,Kj · ∇zhdx = 0, ∀zh ∈ V qh (Kδj , Th), (13)

where vH,lin|Kδj = vH(xKj ) + (x− xKj ) · ∇vH(xKj ) is the linearization of vH at the quadrature point xKj . We

then have the relation

ahKj∇vH(xKj ) · ∇wH(xKj ) =
1

|Kδ|

∫
Kδj

aε(x)∇vh,Kj · ∇wh,Kjdx

(see [1–4] for details).

2.2. FEM with numerical integration for linear problems

We review here results for FEM with numerical integration for linear problems for simplicial or parallelogram
elements. We will assume (throughout the paper) that the family of triangulation TH is regular, i.e.

HK

ρK
≤ σ for all K ∈

⋃
H

TH , (14)

where HK is the diameter of K and ρK the diameter of the largest ball contained in K.
For each element K ∈ TH we consider a C1-diffeomorphism FK such that K = FK(K̂), where K̂ is the

simplicial or the quadrilateral reference element. Let J ∈ N and {x̂j , ω̂j}Jj=1 be a given quadrature formula

on K̂ with positive weights ω̂j and x̂j ∈ K̂. The transformation FK induces a quadrature formula on K with
integration points xKj = FK(x̂j) and weights ωKj = ω̂j |det(∂FK(x̂j))|. We will consider for simplicity affine

maps, i.e., the case of simplicial straight elements or parallelogram, 3 hence det(∂FK) is constant for each K.

We make the following classical assumptions on the quadrature formula {x̂j , ω̂j}Jj=1 on the reference element K̂
(see [23])

(Q1) ω̂j > 0, j = 1, . . . , J ,
∑J
j=1 ω̂j |∇p̂(x̂j)|2 ≥ λ̂‖∇p̂‖2L2(K̂)

, ∀p̂(x̂) ∈ R`(K̂), λ̂ > 0;

3In what follows we will refer to simplicial straight elements as simplicial elements.
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(Q2)
∫
K̂
p̂(x̂)dx̂ =

∑J
j=1 ω̂j p̂(x̂j), ∀p̂(x̂) ∈ Rσ(K̂), where σ = max(2` − 2, `) if K̂ is a simplicial FE, or

σ = max(2`− 1, `+ 1) if K̂ is a rectangular FE.

We observe that for simplicial elements (Q2) implies (Q1) and (Q1) holds with λ̂ = 1. The following lemma
ensures that the problem (12) is well-posed (see for example [22, Thm. 27.1] for a proof). We note that a
similar result holds for Problem (10) if in addition to the hypothesis of Lemma 2.1, aε(x) is uniformly elliptic
and bounded (see [1, 3]).

Lemma 2.1. Assume that (Q1) holds. Then the bilinear form BH defined in (11) is uniformly elliptic and
bounded, hence Problem (12) is well-posed.

Theorem 2.2 (Ciarlet & Raviart [23]). Consider u the solution of problem (6) and uH the solution of problem
(12). Let ` ≥ 1 and µ = 0 or 1. Assume (Q1), (Q2), (7) and

u ∈ H`+1(Ω), (15)

amn ∈W `+µ,∞(Ω), ∀m,n = 1, . . . , d. (16)

Then we have the a priori error estimates

‖u− uH‖H1(Ω) ≤ CH` (µ = 0), (17)

‖u− uH‖L2(Ω) ≤ CH`+1 (µ = 1), (18)

where C is independent of H.

Let us explain the main ingredients for the proof of the above theorem. It is important to understand these
steps as they are also useful in more complicated situation, namely for nonlinear problems.

Step 1. We start with the H1 estimate. The first step consists in a generalization of Cea’s Lemma due to
Strang [37]. Using Lemma 2.1 it is easily seen that

‖u− uH‖H1(Ω) ≤ C inf
vH∈V `H(Ω,TH)

(
‖u− vH‖H1(Ω) + sup

wH∈V `H(Ω,TH)

|B(vH , wH)−BH(vH , wH)

‖wH‖H1(Ω)

)
. (19)

For the L2 estimate, we need to consider an adjoint problem following Aubin [14] and Nitsche [33]. For g ∈ L2(Ω),
let z ∈ H1

0 (Ω) be the solution of the adjoint problem

B(v, z) =

∫
Ω

gvdx, ∀v ∈ H1
0 (Ω), (20)

where B is defined in (6). Using then

‖u− uH‖L2(Ω) = sup
g∈L2(Ω)

|
∫

Ω
(u− uH)gdx|
‖g‖L2(Ω)

together with the H2-regularity ‖z‖H2(Ω) ≤ C‖g‖L2(Ω) it is also seen that

‖u−uH‖L2(Ω) ≤ C sup
z∈H1

0 (Ω)∩H2(Ω)

1

‖z‖H2(Ω)

(
inf

zH∈V `H

(
‖u− uH‖H1(Ω)‖z − zH‖H1(Ω) + |B(uH , zH)−BH(uH , zH)|

))
.

(21)
Step 2. In the inequality (19) the first term of the right-hand side of the inequality can be dealt with by using
an appropriate interpolant for u. The first term of the right-hand side in the inequality (21) can be bounded
by using the H1 estimate and an appropriate interpolant for z. For the second term in both inequalities (19)
and (21), an appropriate consistency error estimate of B(·, ·) − BH(·, ·) is needed. This relies on quadrature
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error estimates and on the Bramble-Hilbert lemma. Consider for the reference element K̂ the quadrature error
functional defined for all continuous functions ϕ̂ on K̂

EK̂(ϕ̂) :=

∫
K̂

ϕ̂(x̂)dx̂−
J∑
j=1

ω̂jϕ̂(x̂j),

Then for any element K ∈ TH the quadrature scheme over K̂ induces a quadrature scheme over K by

EK(ϕ) :=

∫
K

ϕ(x)dx−
J∑
j=1

ωKjϕ(xKj ),

where xKj = FK(x̂j) and ωKj = |det ∂FK |ω̂j for 1 ≤ j ≤ J (recall that FK is the affine transformation such

that K = FK(K̂)) and we observe that

EK(ϕ) = |det ∂FK |EK̂(ϕ̂), (22)

where ϕ̂(x̂) = ϕ(FK(x̂)). We thus have

B(vH , wH)−BH(vH , wH) =
∑
K∈TH

EK(a∇vH · ∇wH). (23)

Consider next EK(am,nw(n)v(m)), where v(m), w(n) denote the components of∇vH |K and∇wH |K , i.e., ∂vH/∂xm,
∂wH/∂xn. In view of (22) it is enough to estimate

EK̂(âm,nv̂(n)ŵ(m)),

where we use the correspondence ϕ̂(x̂) = ϕ(FK(x̂)) for each function in the above expression. Let ` ≥ 1 and

consider for a given polynomial ψ̂ on K̂ the linear form

ϕ̂ 7→ EK̂(ψ̂ϕ̂).

This form is continuous on W `,∞(K̂) with norm ≤ C‖ψ̂‖L2(K̂), i.e.,

|EK̂(ψ̂ϕ̂)| ≤ C‖ψ̂‖L2(K̂)‖ϕ̂‖W `,∞(K̂).

Due to the assumption (Q2) this form vanishes on P`−1(K̂) if

• ψ̂ ∈ P`−1(K̂) (simplicial elements);

• ψ̂ ∈ Q`(K̂) ∩Pd`−1(K̂), the space of all derivatives of polynomials belonging to Q`(K̂), (parallelogram
elements).4

Thus, in both cases, the Bramble-Hilbert lemma [20] allows to replace the norm W `,∞ of ϕ̂ by the semi-norm
involving only derivatives of order `, i.e.,

|EK̂(ψ̂ϕ̂)| ≤ C‖ψ̂‖L2(K̂)|ϕ̂|W `,∞(K̂), ∀ϕ̂ ∈W `,∞(K̂). (24)

4Observe that if ŵ ∈ Q`(K̂) then ψ̂ = ŵ(n) ∈ Q`(K̂) ∩ Pd`−1(K̂).
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We now take ϕ̂ = âm,nv̂(n) and ψ̂ = ŵ(m), use the equivalence of norms over the finite dimensional spaces of
polynomial to obtain

|âm,nv̂(n)|W `,∞(K̂) ≤ C
∑̀
j=0

|â|W j,∞(K̂)|v̂(n)|H`−j,(K̂), (25)

where the sum starts at 1 for simplicial elements. Finally using the following inequalities for all 0 ≤ j ≤ `
(see [22, Theorems 15.1 and 15.2])

|â|W j,∞(K̂) ≤ CHj
K |a|W j,∞(K), (26)

|v̂(n)|H`−j(K̂) ≤ CH`−j
K |det ∂FK |−1/2|v(n)|H`−j(K), (27)

and |ŵ(m)|L2(K̂) ≤ C|det ∂FK |−1/2|w(m)|L2(K), we get in view of (23) and (22)

|B(vH , wH)−BH(vH , wH)| ≤ CH`‖a‖W `,∞(Ω)‖vH‖H̄`+1(Ω)‖∇wH‖L2(Ω) (28)

For the estimates in the L2 norm we need to extract an additional power of H (see [23, Theorem 8]). Define

the linear operator Π̂0 : L1(K̂)→ P0(K̂) by

Π̂0(ψ̂) =
1

|K̂|

∫
K̂

ψ̂(x̂)dx̂.

Assume âm,n ∈W `+1,∞(K̂) and consider

EK̂(âm,nv̂(n)ŵ(m)) = EK̂

(
âm,nv̂(n)

(
ŵ(m) − Π̂0(ŵ(m))

))
︸ ︷︷ ︸

E1

+EK̂

(
âm,n

(
v̂(n) − Π̂0(v̂(n))

)
Π̂0(ŵ(m))

)
︸ ︷︷ ︸

E2

+ EK̂

(
âm,nΠ̂0(v̂(n))Π̂0(ŵ(m))

)
︸ ︷︷ ︸

E3

.

The three linear forms on the left-hand side are of the form ϕ̂ ∈ W `+1,∞(K̂) 7→ EK̂(ψ̂ϕ̂). Using (Q2) we see

that the first linear form (we set ϕ̂ = âm,nv̂(m) ψ̂ = (ŵ(n) − Π̂0(ŵ(n))) vanishes on P`−1(K̂) for ψ̂ ∈ P`−1(K̂)

or for ψ̂ ∈ Q`(K̂) ∩ P2`−1(K̂)). Thus by the Bramble-Hilbert lemma we obtain

|E1| ≤ C|âm,nv̂(n)|W `,∞(K̂)‖ŵ(m) − Π̂0(ŵ(m))‖L2(K̂) ≤ C|âm,nv̂(n)|W `,∞(K̂)|ŵ(m)|H1(K̂),

where the second inequality is obtained by noting that since ψ̂ = Π̂0(ψ̂) on P0(K̂), we have ‖ψ̂− Π̂0(ψ̂)‖L2(K̂) ≤
C|ψ̂|H1(K̂) (using a result on polynomial preserving operator see [22, Theorems 15.3]). For the second linear

form (we set ϕ̂ = âm,n, ψ̂ = v̂(n) − Π̂0(v̂(n))Π̂0(ŵ(m))) a similar arguments yields the bound

|E2| ≤ C|âm,n|W `,∞(K̂)|v̂(n)|H1(K̂)|ŵ(m)|L2(K̂).

For the third linear form we set ϕ̂ = âm,n, ψ̂ = Π̂0(v̂(n))Π̂0(ŵ(m)). Then using (Q2) we see that this linear form

vanishes on P`(K̂) and applying the Bramble-Hilbert lemma yields the bound

|E3| ≤ C|âm,n|W `+1,∞(K̂)|v̂(n)|L2(K̂)|ŵ(m)|L2(K̂).
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Using (25),(26),(27) similarly as for the H1 estimate gives

|B(vH , wH)−BH(vH , wH)| ≤ CH`+1‖a‖W `+1,∞(Ω)‖vH‖H̄`+1(Ω)‖wH‖H̄2(Ω). (29)

Finally we also need for the L2 bound an error estimate of the form

|B(vH , wH)−BH(vH , wH)| ≤ CH‖a‖W 1,∞(Ω)‖∇vH‖L2(Ω)‖wH‖H̄2(Ω), (30)

for all vH , wH ∈ V `H(Ω, TH) (observe that this does not follow from (28) when ` > 1). Consider ϕ̂ 7→ EK̂(ψ̂ϕ̂),

a continuous linear form on W 1,∞(K̂), with ψ̂ ∈ P`−1(K̂) or ψ̂ ∈ Q`(K̂) ∩ Pd`−1(K̂). Due to (Q2) this linear

form vanishes on P0(K̂) and the Bramble-Hilbert lemma yields |EK̂(ψ̂ϕ̂)| ≤ C‖ψ̂‖L2(K̂)|ϕ̂|W 1,∞(K̂) and (30) is

obtained using similar arguments as in the proof of (30).

Step 3. In order to have a constant C independent of H in the estimates (17),(18), appropriate test functions
have to be used in (19),(28) and (21),(29). As u ∈ H`+1(Ω) we can take the nodal interpolant vH = IHu (recall
that the dimension d ≤ 3) in (19)-(28) and use the standard estimates

‖u− IHu‖H1(Ω) ≤ CH`|u|H`+1(Ω), ‖IHu‖H̄`+1(Ω) ≤ C‖u‖H`+1(Ω). (31)

For the L2 estimates we take the nodal interpolant zH = IHz and use and standard estimates

‖z − IHz‖H1(Ω) ≤ CH|z|H2(Ω), ‖IHz‖H̄2(Ω) ≤ C‖z‖H2(Ω). (32)

In order to bound the last term in (21) we consider

B(uH , IHz)−BH(uH , IHz) = B(uH − IHu, IHz)−BH(uH − IHu, IHz)︸ ︷︷ ︸
B1

+B(IHu, IHz)−BH(IHu, IHz)︸ ︷︷ ︸
B2

.

The term B1 is estimated using (30),(31) and (32) and the H1 estimate ‖u−uH‖H1(Ω) ≤ CH`|u|H`+1(Ω), while
the term B2 is estimated using (29),(31) and (32). Finally, both terms can be bounded by

CH`+1|u|H`+1(Ω)|z|H2(Ω).

2.3. Numerical homogenization and numerical integration for N + 1 scale problems

Consider now (5) assuming that aε varies over N + 1 scales. Precisely, assume aε = a(x, xε1 , · · · ,
x
εN

), and

ε1, . . . , εN are N positive functions εi(ε) that converge to 0 when ε→ 0 and that are well-separated in the sense

that limε→0
εi+1(ε)
εi(ε)

= 0 for i = 1, . . . N − 1. In this situation, we have one macroscopic scale and N microscopic

scales. For N = 1 we have the numerical method described in Section 2.1.
We observe that the micro problems were assumed to be solved with a FEM without numerical quadrature

in Section 2.1. Already in this situation one can ask: what are the regularity conditions needed on the micro
problems when using FEM with numerical quadrature in order to guarantee (optimal) convergence of the macro
FEM with numerical quadrature ? Next for problems with more than two scales, one is obliged to use FEM with
numerical quadrature at the meso and the macro scales as the data in these FEM methods rely on boundary
value problems at smaller scales and are only accessible at a finite number of points. We have thus a cascade
of interdepending FEM with numerical quadrature leading to a cascade of variational crimes. A generalization
of error estimates for FEM with numerical quadrature for this situation has recently be obtained in [5]. As
for two scale problems, such results are crucial to analyze the numerical homogenization method with multiple
scales in order to determine the optimal mesh refinement at each scale to obtain a given convergence rate at
the macro scale with minimal computational complexity.
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3. Numerical homogenization and numerical integration for nonlinear
monotone elliptic problems

In this section we review FEMs with numerical integration and numerical homogenization for nonlinear
monotone elliptic problems of the form

Lε(uε, aε) = −∇ · (aε(x,∇uε)) = f in Ω, uε = 0 on ∂Ω. (33)

We assume that f ∈ L2(Ω) and that the maps aε : Ω× Rd → Rd (indexed by ε) have the property that
aε(·, ξ) : Ω→ Rd is Lebesgue measurable for every ξ ∈ Rd. In addition we assume the following conditions
uniformly in ε > 0

(A0) there is some C0 > 0 such that |aε(x, 0)| ≤ C0 for almost every (a.e.) x ∈ Ω;
(A1) the map aε(x, ·) : Rd → Rd is Lipschitz continuous, i.e., there exists L > 0 such that

|aε(x, ξ1)− aε(x, ξ2)| ≤ L |ξ1 − ξ2|, ∀ ξ1, ξ2 ∈ Rd, a.e. x ∈ Ω;

(A2) the map aε(x, ·) : Rd → Rd is strongly monotone, i.e., there exists λ > 0 such that

(aε(x, ξ1)− aε(x, ξ2)) · (ξ1 − ξ2) ≥ λ|ξ1 − ξ2|2, ∀ ξ1, ξ2 ∈ Rd, a.e. x ∈ Ω.

Under these assumptions it can be seen that Problem (33) has a unique weak solution uε ∈ H1
0 (Ω) for each

ε > 0. Homogenization theory (see [38]) ensures that a subsequence of {uε} converges weakly to a function
u ∈ H1

0 (Ω), solution of the homogenized problem that reads in weak form

B(u, v) =

∫
Ω

a(x,∇u) · ∇vdx =

∫
Ω

fvdx, ∀v ∈ H1
0 (Ω), (34)

where a : Ω× Rd → Rd is the homogenized map that satisfies again (A0−2).
For the numerical homogenization method, we consider V `H(Ω, TH) defined in (8), a family of triangulations

TH and an associated quadrature formula {xKj , ωKj}Jj=1 for each K ∈ TH . We define a macroscopic solver for

vH , wH ∈ V `H(Ω, TH) by

BHMM (vH , wH) =
∑
K∈TH

J∑
j=1

ωKj a
h
Kj (∇vH(xKj )) · ∇wH(xKj ), (35)

where for ξ ∈ Rd and xKj ∈ Ω, ahKj is given by

ahKj (ξ) =
1∣∣Kδj

∣∣ ∫
Kδj

aε(x, ξ +∇χξh,Kj )dx

and χξh,Kj solves the nonlinear micro problem: find χξh,Kj ∈ V
q
h (Kδj , Th) such that∫

Kδj

aε(x, ξ +∇χξh,Kj ) · ∇zh dx = 0, ∀ zh ∈ V qh (Kδj , Th).

The numerical homogenization method is then defined as follows: find uHMM ∈ V `H(Ω, TH) such that

BHMM (uHMM , vH) =

∫
Ω

fvHdx, ∀vH ∈ V `H(Ω, TH). (36)
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Here also we introduce an intermediate problem to decompose the error into macroscopic error and “numerical
homogenization errors”. This intermediate problem is based on the form

BH(vH , wH) =
∑
K∈TH

J∑
j=1

ωKj a(xKj ,∇vH(xKj )) · ∇wH(xKj ), (37)

where a(xKj , ξ) is the value of the nonlinear homogenized map at the nodes x = xKj for ξ ∈ Rd and reads: find

uH ∈ V `H(Ω, TH) such that

BH(uH , vH) =

∫
Ω

fvHdx, ∀vH ∈ V `H(Ω, TH). (38)

The existence of a solution of Problems (36) and (38) can be shown by establishing that the forms BHMM

and BH are continuous in the second variable and Lipschitz continuous as well as strongly monotone in the
first variable. This follows from the condition (Q1) and the hypotheses (A0−2). Hence Problems (36) and (38)
have a unique solution (see [8] for details). Optimale convergence rates for the FE-HMM (in the H1 and L2

norms) for arbitrary simplicial elements for (33) have been obtained in [7]. We also mention the work [30],
where convergence rates (in the H1 norm) for P 1 macro elements have been derived for the FE-HMM for a
class of elliptic monotone PDEs (associated to minimization problems)

3.1. FEM with numerical integration for monotone problems

The effect of numerical integration for a FEM applied to (34) has been studied in [28] for the H1 norm in
dimension d = 2 and for polynomial degree ` = 1. Recently in [7] we proved optimal convergence rates in the H1

and L2 norms for FEM with numerical integration with arbitrary polynomial degree ` in dimension d ≤ 3 and
for simplicial FEs. For simplicity we discuss only the case of simplicial FEs in this section but emphasize that
error estimates for parallelogram could be derived following the same arguments with additional technicalities.
The setting (family of triangulations and quadrature formula) is the same as in Section 2.2 and we assume as
usual that (14) holds. We need however a slightly more restrictive assumption (Q2) for the L2 error estimate,
namely

(Q2’)
∫
K̂
p̂(x̂)dx̂ =

∑J
j=1 ω̂j p̂(x̂j), ∀p̂(x̂) ∈ Rσ(K̂), where σ = 2`− 1.

We discuss now the a priori error estimates for FEM with numerical integration for nonlinear monotone
problems obtained in [7]. We first state the following regularity assumptions that will be used for the H1 error
estimate for µ = 0 and for the L2 error estimate for µ = 1

a(·, ξ) ∈W 1+µ,∞(Ω), ‖a(·, ξ)‖W 1+µ,∞(Ω) ≤ C(L0 + |ξ|), ∀ ξ ∈ Rd, if ` = 1,

a ∈W `+µ,∞(Ω×BR(0);Rd), ‖a‖W `+µ,∞(Ω×BR(0);Rd) ≤ C(L0 +R), ∀R > 0, if ` ≥ 2,
(39)

for some L0 ≥ 0. The main result for FEM with numerical integration for Problem (37) has been proved in [7]
and is stated in the next theorem.

Theorem 3.1. Consider u the solution of problem (34) and uH the solution of problem (37). Assume that a
satisfies (A0−2), that u ∈ H`+1(Ω) and that the quadrature formula satisfies (Q2) and (39) for µ = 0. Then,
we have the a priori error estimate

‖u− uH‖H1(Ω) ≤ CH
`, (40)
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where C is independent of H. Assume that the quadrature formula satisfies (Q2’) and (39) for µ = 1 and in
addition

a(x, ·) ∈W 2,∞(Rd;Rd) with ‖Dξa(x, ·)‖W 1,∞(Rd;Rd×d) ≤ La for a.e. x ∈ Ω,

u ∈ H l+1(Ω) ∩W 2,∞(Ω), aij ∈W 1,∞(Ω), for 1 ≤ i, j ≤ d,
(41)

where a(x) = Dξa(x,∇u(x)) and La > 0. Then, assuming quasi-uniform meshes, there exists H0 such that for
all H < H0 the following estimate holds

‖u− uH‖L2(Ω) ≤ CH
`+1. (42)

We explain the main steps of the proof.

Step 1. For both the L2 and the H1 error estimate we consider the decomposition

‖u− uH‖H1−µ(Ω) ≤ ‖u− UH‖H1−µ(Ω) + C‖∇θH‖L2(Ω), (43)

where C depends on the Poincaré constant. We set θH = UH − uH , where UH ∈ V `H(Ω, TH) will be either the
nodal interpolant IHu for the error in the H1 norm, or an elliptic projection πH(u) described below for the
error in the L2 norm. Using the strong monotonicity of BH

λ‖∇θH‖2L2(Ω) ≤ BH(uH , θH)−BH(UH , θH)

= B(u, θH)−B(UH , θH) +B(UH , θH)−BH(UH , θH).
(44)

Step 2. We need an error estimate for |B(UH , θH) − BH(UH , θH)| in (44). This can be estimated as follows.
Let µ ∈ {0, 1} and assume (Q2) or (Q2’) and the regularity (39) of a for µ ∈ {0, 1}. Then, we have

|B(vH , wH)−BH(vH , wH)| ≤ CH l+µD(vH)‖∇wH‖L2(Ω), ∀ vH , wH ∈ V `H(Ω, TH), (45)

where C is independent of H. The term D(vH) is given by

D(vH) = L0 + ‖∇vH‖L2(Ω), if l = 1,

D(vH) =
(
L0 + |∇vH |L∞(Ω)

)(
1 + ‖vH‖l+µW̄ l−1,∞(Ω)

)(
1 +

κl∑
κ=1

|vH |κW̄ l,2κ(Ω)

)
, if l ≥ 2,

where L0 is the constant from (39) and κ2 = 2 + µ, κ3 = 1 + µ and κl = 1 for l ≥ 4.
For the proof of (45) we consider the local (componentwise) quadrature error. As ∇vH ,∇wH ∈ (P`−1(K))d,

we consider for p(x) = (p1(x), . . . , pd(x))T ∈ (P`−1(K))d and q ∈ P`−1(K) and the quadrature error functional

EiK(a,p, q) =

∫
K

ai(x,p(x))q(x)dx−
J∑
j=1

ωKjai(xKj ,p(xKj ))q(xKj ).

We next transfer this error on the reference element K̂ similarly to (22), use (Q2) and the Bramble-Hilbert
lemma to obtain ∣∣∣Ê(â, p̂, q̂)

∣∣∣ ≤ C|â(·, p̂(·))|W l+µ,∞(K̂)‖q̂‖L2(K̂). (46)

In contrast to the linear case, some care is needed to bound the term |â(·, p̂)|W l+µ,∞(K̂) in terms of derivatives

of p̂ and terms of the type ‖a‖W l+µ,∞(K×BR(0))

(
1 + ‖p‖l+µW l−2,∞(K)

)
. For that we use the Faà-di-Bruno formula,



14 ESAIM: PROCEEDINGS AND SURVEYS

the equivalence of norm on the finite dimensional space (P l−1(K̂))d and estimates of the type (26)-(27).

Step 3 (H1 error estimate). Using the Lipschitz continuity of B in (44) we obtain

λ‖∇θH‖2L2(Ω) ≤ L‖∇u−∇IHu‖L2(Ω)‖∇θH‖L2(Ω) + |B(IHu, θH)−BH(IHu, θH)|.

We use (45) with vH = IH (for µ = 0) and the standard interpolation estimate ‖∇u−∇IHu‖L2(Ω) ≤
CH`‖u‖Hl+1(Ω). It remains to bound D(IHu). Since u ∈ H l+1(Ω), it follows from the Sobolev embeddings

H l+1(Ω) ↪→W l,4(Ω),W l−1,∞(Ω), which hold for d ≤ 3, and from the interpolation estimate [22, Theorems 15.3]
that D(IHu) ≤ C‖u‖Hl+1(Ω) for l ≥ 1. Finally (43) and (44) yield (40).

Step 3 (L2 error estimate). We want to obtain an error λ‖∇θH‖2L2(Ω) ≤ CH`+1
∥∥∇θH∥∥

L2(Ω)
, where C de-

pends on some Sobolev norm of the exact solution u. The key ingredient is the following linear elliptic projection
defined by: find πH(u) ∈ V `H(Ω, TH) solution of

Bπ(πH(u), wH) = Bπ(u,wH), ∀wH ∈ V `H(Ω, TH), (47)

where the bilinear form Bπ, for v, w ∈ H1
0 (Ω), is given by

Bπ(v, w) =

∫
Ω

a(x)∇v · ∇w dx, with a(x) = Dξa(x,∇u(x)) for a.e. x ∈ Ω. (48)

The above variational problem is a linear elliptic problem. If a : Ω× Rd → Rd satisfies (A1−2) and a(x, ·) ∈
C1(Rd;Rd) for a.e. x ∈ Ω, then, Dξa(x, ξ) is uniformly elliptic and bounded (for details see [8, Sect. 5.1]).
Hence we have existence and uniqueness of πH(u). We have also for quasi-uniform meshes the following bounds

‖πH(u)‖H̄l+1(Ω) + ‖πH(u)‖W̄ l,6(Ω) + ‖πH(u)‖W̄ l−1,∞(Ω) ≤ C‖u‖Hl+1(Ω), (49)

where C is independent of H (see [12, Lemma 1] for a proof). A Taylor expansion of a(x, ·), using the
definition (47) of the elliptic projection πH(u) yields

B(πH(u); θH)−B(u, θH) = P (u, πH(u), wH), (50)

where P (u, πH(u);wH) =
∫

Ω

∫ 1

0
Dξa(x,∇u+ τ(∇πH(u)−∇u))−Dξa(x,∇u)dτ(∇πH(u)−∇u) · ∇wHdx. This

term can be estimated using the Lipschitz continuity of Dξa(x, ·) and we obtain

P (u, πH(u);wH) ≤ La‖u− πH(u)‖W 1,∞(Ω)‖∇u−∇πH(u)‖L2(Ω)

∥∥∇wH∥∥
L2(Ω)

. (51)

The maximum norm error estimate for linear FEM from [21, Sect. 8] yields ‖u− πH(u)‖W 1,∞(Ω) ≤ CH‖u‖W 2,∞(Ω),

a standard estimate for linear elliptic problem gives ‖∇u−∇πH(u)‖L2(Ω) ≤ CH l|u|Hl+1(Ω). Using (49) allows

to obtain the bound D(πH(u)) ≤ C‖u‖Hl+1(Ω). Finally using (43) and (44) allows to obtain the error bound

(42) in the L2 norm.

4. Numerical homogenization and numerical integration for nonlinear
nonmonotone elliptic problems

In this section we review FEMs with numerical integration and numerical homogenization for nonlinear
nonmonotone elliptic problems of the form

Lε(uε, aε) = −∇ · (aε(x, uε(x))∇uε(x)) = f(x) in Ω, uε(x) = 0 on ∂Ω. (52)

We assume that the tensors aε(x, s) = (aεmn(x, s))1≤m,n≤d satisfy the following conditions uniformly in ε > 0
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(A1) there exists Λ1 > 0 such that |aεmn(x, s1)− aεmn(x, s2)| ≤ Λ1|s1 − s2|, ∀x ∈ Ω,∀s1, s2 ∈ R,
∀ 1 ≤ m,n ≤ d;

(A2) there exist λ,Λ0 > 0 such that λ‖ξ‖2 ≤ aε(x, s)ξ · ξ, ‖aε(x, s)ξ‖ ≤ Λ0‖ξ‖, ∀ξ ∈ Rd,∀x ∈ Ω,∀s ∈ R.
Under these assumptions there exists a unique solution uε ∈ H1

0 (Ω) of problem (52). Then, homogenization
theory [19, Theorem 3.6] ensures the existence of a subsequence {uε} that converges weakly to u in H1

0 (Ω)
solution of the homogenized problem that reads in weak form

B(u;u, v) =

∫
Ω

a(x, u(x))∇u · ∇vdx =

∫
Ω

fvdx, ∀v ∈ H1
0 (Ω), (53)

where a(x, s) is the homogenized tensor that satisfies again (A1−2). For the numerical homogenization method,
we consider V `H(Ω, TH) as previously defined (see (8)), a family of triangulations TH and an associated quadrature
formula {xKj , ωKj}Jj=1 for each K ∈ TH . We define a macroscopic solver for zH , vH , wH ∈ V `H(Ω, TH) by

BHMM (zH ; vH , wH) =
∑
K∈TH

J∑
j=1

ωKjaKj (zH(xKj ))∇vH(xKj ) · ∇wH(xKj ), (54)

where for s ∈ R, ξ ∈ Rd and xKj ∈ Ω, ahKj (s) ∈ Rd×d is given by

ahKj (s)ξ =
1∣∣Kδj

∣∣ ∫
Kδj

aε(x, s)(ξ +∇χξ,sh,Kj )dx

and χξ,sh,Kj solves the following micro problem: find χξ,sh,Kj ∈ V
q
h (Kδj , Th) such that∫

Kδj

aε(x, s)(ξ +∇χξ,sh,Kj )) · ∇zh dx = 0, ∀ zh ∈ V qh (Kδj , Th).

The numerical homogenization method is then defined as follows: find uHMM ∈ V `H(Ω, TH) such that

BHMM (uHMM ;uHMM , vH) =

∫
Ω

fvHdx, ∀vH ∈ V `H(Ω, TH). (55)

As usual we introduce an intermediate problem to decompose the error into macroscopic error and “numerical
homogenization errors”. This intermediate problem is based on the form

BH(zH ; vH , wH) =
∑
K∈TH

J∑
j=1

ωKj a(xKj , zH(xKj ))∇vH(xKj ) · ∇wH(xKj ), (56)

where a(xKj , s) is the value of the nonlinear homogenized map at the nodes x = xKj for s ∈ R and reads: find

uH ∈ V `H(Ω, TH) such that

BH(uH ;uH , vH) =

∫
Ω

fvHdx, ∀vH ∈ V `H(Ω, TH). (57)

Using (Q1), (A1) and (A2), it can be shown that the bilinear form BHMM (zH ; ·, ·), BH(zH ; ·, ·) are elliptic
and bounded, i.e., there exist two constants c1, c2 > 0 such that

‖vH‖2H1(Ω) ≤ c1B∗(zH ; vH , vH), |B∗(zH ; vH , wH)| ≤ c2‖vH‖H1(Ω)‖wH‖H1(Ω), (58)
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for all zH , vH , wH ∈ V `H(Ω, TH), where B∗(·; ·, ·) = BHMM (·; ·, ·) or BH(·; ·, ·). The existence of a solution of
Problems (55) and (57), respectively, can can be shown by using the Brouwer fixed point theorem (see [12,13]).
The uniqueness of the solution is however more involved (see below).

4.1. FEM with numerical integration for nonmonotone problems

The effect of numerical integration for a FEM applied to (53) has first been studied in [27] for piecewise linear
FEs. Convergence of the FE method without convergence rates has been obtained in the H1(Ω) norm. Optimal
convergence rates in the H1 and L2 norms for FEM with numerical integration with arbitrary polynomial degree
` in dimension d ≤ 3 for simplicial and parallelogram FEs have been obtained in [12].

We consider a family of triangulations of simplicial or parallelogram FEs. In addition to the shape regularity
hypothesis (14), we assume that the family of triangulations satisfies the inverse assumption

H

HK
≤ C for all K ∈ TH and all TH of the family of triangulations, (59)

where H = maxK∈TH HK . The main result for FEM with numerical integration for Problem (53) has been
proved in [12] and is stated in the next theorem.

Theorem 4.1. Consider u the solution of problem (53). Let ` ≥ 1. Let µ = 0 or 1. Assume (Q1), (Q2), (59),
and

u ∈ H`+1(Ω) ∩W 1,∞(Ω),
amn ∈W `+µ,∞(Ω× R), ∀m,n = 1, . . . , d.

In addition to (A1),(A2), assume that ∂samn ∈ W 1,∞(Ω × R), and that the coefficients amn(x, s) are twice
differentiable with respect to s, with the first and second order derivatives continuous and bounded on Ω × R,
for all m,n = 1, . . . , d.

Then there exists H0 > 0 such that for all H ≤ H0, the solution uH of (57) is unique, and the following H1

and L2 error estimates hold,

if µ = 0, ‖u− uH‖H1(Ω) ≤ CH` for all H ≤ H0, (60)

if µ = 1, ‖u− uH‖L2(Ω) ≤ CH`+1 for all H ≤ H0, (61)

where the constants C are independent of H.

Remark 4.2. We note that if u satisfies a smallness assumption, i.e., Cλ−1Λ1‖u‖H2(Ω) < 1 (where C depends

only on Ω and (V `H(Ω, TH))H>0), then the uniqueness of a numerical solution uH of (57) and the H1 estimates
can be obtained by assuming only u ∈ H`+1(Ω), amn ∈ W `,∞(Ω × R), ∀m,n = 1, . . . , d and (A1),(A2). The
additional regularity assumption on amn, u and the assumption (59) are not needed. In view of Theorem 2.2,
we see that under this smallness assumption we obtain the same convergence results as for linear problems with
the same hypothesis.

One main difficulty to obtain convergence rates for the FE method for this class of nonlinear problems is
that the nonlinear form (v, w) −→ B(v; v, w) is not monotone in general, i.e.

B(v; v, v − w)−B(w;w, v − w) ≥ C‖v − w‖2H1(Ω),

does not hold in general even with C = 0 (take for example a(x, u) = b(u)I, where I is the d×d identity matrix
and b a scalar function satisfying s0b

′(s0) + b(s0) < 0 for some real s0). Such an estimate is however the first
step to obtain a Strang like lemma in the convergence results for linear or monotone problems (see Sections 2
and 3). Other techniques are needed here and the convergence results rely on a compactness argument together
with simultaneous H1 − L2 estimates. This was first suggested in [24] for FEM without numerical quadrature.
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Step 1. We first need to show that

‖u− uH‖L2(Ω) → 0 for H → 0. (62)

For that we need an estimate of the form

|BH(zH ; vH , wH)−B(zH ; vH , wH)| ≤ CH‖∇vH‖L2(Ω)(‖∇wH‖H̄1(Ω) + ‖∇zH‖Lα(Ω)‖∇wH‖Lβ(Ω)), (63)

where C is independent of H and 1 ≤ α, β ≤ ∞ and 1/α + 1/β = 1/2. Next using the boundedness of a
numerical solution in H1

0 (Ω), the uniqueness in H1
0 (Ω) of the exact solution of (53) and the compact injection

H1(Ω) ⊂ L2(Ω), estimate (63) with α = 2, β =∞ one can show (62).

Step 2. We want to derive the following H1 − L2 estimate

‖u− uH‖H1(Ω) ≤ C(H` + ‖u− uH‖L2(Ω)), for all H > 0. (64)

We note an unusual additional term ‖u − uH‖L2(Ω) in the right-hand side of (64), which is due to the non-

monotonicity of the differential operator (53). Hence already for the H1 error estimate we need an error estimate
in the L2 norm.

We start by deriving the following estimates

|BH(IHu; IHu,wH)−B(IHu; IHu,wH)| ≤ CH`‖wH‖H1(Ω), (65)

where C depends on ‖a‖(W `,∞(Ω×R))d×d and ‖u‖H`+1(Ω) but is independent of H. Here IHu denotes the usual

nodal interpolant of u in V `H(Ω, TH). To prove (65), we need to pull back the error estimates on each K to the

reference element K̂, use the Bramble-Hilbert lemma, the Faà-di-Bruno formula and the equivalence of norm
on finite dimensional spaces to obtain estimates on K via the affine transformation K = FK(K̂). Next we use
the ellipticity of BH(zH ; ·, ·) to obtain

C‖ξH‖2H1(Ω) ≤ BH(uH ;uH − IHu, ξH) = B(u;u− IHu, ξH)

+ B(u; IHu, ξH)−B(IHu; IHu, ξH)

+ B(IHu; IHu, ξH)−BH(IHu; IHu, ξH)

+ BH(IHu; IHu, ξH)−BH(uH ; IHu, ξH), (66)

where ξH = uH −IHu. For the first term we use the boundedness of B and an interpolation estimate to obtain
the bound CH`‖u‖H`+1(Ω)‖∇ξH‖L2(Ω). For the second term, we use (A1) and observe that (u− IHu) ∈ L3(Ω)

thanks to the continuous embedding H1(Ω) ⊂ L3(Ω) (recall that d ≤ 3). We then obtain

‖a(·, u)− a(·, IHu))∇IHu‖L2(Ω) ≤ C‖u− IHu‖L3(Ω)‖IHu‖W 1,6(Ω),

where we used Hölder inequality and the continuous embedding H1(Ω) ⊂ L6(Ω) for ∇IHu ∈ (H1(Ω))d. We
finally find

|B(u; IHu, ξH)−B(IHu; IHu, ξH)| ≤ C‖u− IH‖L3(Ω)‖IHu‖W 1,6(Ω)‖∇ξH‖L2(Ω),

that can be bounded by CH`‖u‖H`+1(Ω)‖∇ξH‖L2(Ω), using again the above continuous Sobolev embedding and
classical interpolation estimates [22, Theorem 16.2]. Using similar arguments for the fourth term (via mesh
dependent semi-norms) we obtain

|BH(IHu; IHu, ξH)−BH(uH ; IHu, ξH)| ≤ C‖ξH‖L3(Ω)‖IHu‖W 1,6(Ω)‖∇ξH‖L2(Ω).
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For the third term we use (65) and obtain the bound CH`‖u‖H`+1(Ω)‖∇ξH‖L2(Ω). Using all these estimates in
(66) yield

‖ξH‖H1(Ω) ≤ C(H` + ‖ξH‖L3(Ω)).

Finally combining the Gagliardo-Nirenberg inequality ‖v‖L3(Ω) ≤ C‖v‖1/2L2(Ω)‖v‖
1/2
H1(Ω) (valid for functions in

H1 for d ≤ 3) and Young inequality gives ‖ξH‖H1(Ω) ≤ C(H` + ‖ξH‖L2(Ω)). Finally the triangular inequalities

‖u− uH‖ ≤ ‖u− IHu‖+ ‖ξH‖, ‖ξH‖ ≤ ‖u− uH‖+ ‖u− IHu‖ gives the H1 a priori error bound (64).

Step 3. For the L2 estimate we first derive similarly as for (65) the estimate

|BH(πH(u);πH(u), wH)−B(πH(u);πH(u), wH) ≤ CH`+1(‖wH‖H̄2(Ω) + ‖wH‖W 1,6(Ω)) (67)

where πH(u) is the L2 projection and where C depends on ‖a‖(W `+1,∞(Ω×R))d×d and ‖u‖H`+1(Ω) but is indepen-
dent of H. The other key ingredient is an Aubin-Nitsche duality argument, where we consider the adjoint L∗
of the linearized operator associated to (53) given

Lϕ = −∇ · (a(·, u)∇ϕ+ ϕ∂sa(·, u)∇u).

We also consider its discrete counterpart denoted by f LH (linearized at IHu). Let g be an arbitrary function
in L2(Ω). A crucial step is then an estimate between the solution ϕ ∈ H1

0 (Ω) of the problem (Lϕ,w) = (g, w),
for all w ∈ H1

0 (Ω) and the FEM solution ϕH ∈ V `H(Ω, TH) of the problem (LHϕH , wH) = (g, wH), for all wH ∈
V `H(Ω, TH). This is obtained using a compactness argument of Schatz [36]. Under the assumptions of Theorem
4.1 and for H small enough, the above problems have a unique solution ϕ ∈ H2(Ω) ∩H1

0 (Ω), ϕH ∈ V `H(Ω, TH)
and the following a priori error estimates are valid

‖ϕ− ϕH‖H1(Ω) ≤ CH‖g‖L2(Ω), (68)

‖ϕH‖H̄2(Ω) + ‖ϕH‖W 1,6(Ω) ≤ C‖g‖L2(Ω), (69)

where C is independent of H. It is then possible to show that there exists H1 > 0 such that for µ = 0, 1 we
have

‖u− uH‖L2(Ω) ≤ C(H`+µ + ‖u− uH‖2H1(Ω)), for all H ≤ H1. (70)

Step 4. To prove the estimates (60),(61), we combine the H1 and L2 estimates. Substituting (64) into (70)
(with µ = 0) yields

‖u− uH‖H1(Ω) ≤ C(H` + ‖u− uH‖2H1(Ω)), for all H ≤ H1.

Substituting (62) into (64), we obtain ‖u− uH‖H1(Ω) → 0 for H → 0. There exists thus H2 small enough (but
independent of the particular solution uH) such that for all H ≤ H2 we have 0 < 1/2 ≤ 1 − C‖u − uH‖H1(Ω),
hence (60) is established for all H ≤ H0 = min{H1, H2}. The estimate (61) is deduced by substituting (60)
into (70) with µ = 1.

Step 5. The uniqueness of the numerical solution is proved via convergence of the Newton method. This
generalizes [24] to the case of FEMs with numerical integration. Given an initial guess zH,0 ∈ V `H(Ω, TH), the
sequence (zH,k) of a Newton method is defined by

NH(zH,k; zH,k+1 − zH,k, vH) =

∫
Ω

fvHdx−BH(zH,k; zH,k, vH), ∀vH ∈ V `H(Ω, TH), (71)

with

NH(zH ; vH , wH) = BH(zH ; vH , wH) + (vH∂sa(·, zH)∇zH ,∇wH)H ,

where we use the notation (v, w)H =
∑
K∈TH

∑J
j=1 ωKjv(xKj ) ·w(xKj ) (defined for piecewise continuous func-

tions v, w). Consider for all H the quantity σH = supvH∈V `H(Ω,TH) ‖vH‖L∞(Ω)/‖vH‖H1(Ω). Using (59), an inverse
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inequality and the continuous injection H1(Ω) ⊂ Lp(Ω) (with p = 6 for d = 3 and 1 ≤ p < ∞ for d = 2) one
can show the estimates

σH ≤ C(1 + | lnH|)1/2 for d = 2, σH ≤ CH−1/2 for d = 3,

where C is independent of H. Consider uH solution of (57) and define ek := ‖zH,k−uH‖H1(Ω) for the sequence
{zH,k} from (71). Then under the assumptions of Theorem 4.1, there exist H0, ρ > 0 such that if H ≤ H0 and
σH‖zH,0−uH‖H1(Ω) ≤ ρ the sequence {zH,k} for the Newton method (71) is well-defined and ek is a decreasing
sequence that converges quadratically to 0 for k →∞,

ek+1 ≤ CσHe2
k, (72)

where C is a constant independent of H, k. The convergence (72) allows to show the uniqueness of the numerical
solution of Problem (57). Indeed, given two solutions uH , ũH of (57), we consider the Newton method with
initial value zH,0 = ũH . Then, on one hand, zH,k = zH,0 for all k (as ũH solves (57)). On the other hand,
σH‖ũH − uH‖H1(Ω) ≤ CσHH

` → 0 (as both ũH , uH satisfy (60)). Hence (72) shows uH = ũH for all H ≤ H3

where H3 is small enough (observe that H3 ≤ H0, where H0 is defined in Theorem 4.1).

5. Conclusion

In this paper we have explained the role of FEM with numerical integration for numerical homogenization
methods. We have seen that variational crimes cannot be avoided and are built in the very definition of the
averaging process as effective data can only be recovered at finite locations of the computational domain. We
have reviewed numerical homogenization methods for monotone elliptic problems (both linear and nonlinear)
and nonmonotone problems and highlighted the various steps needed to derive a priori estimates in the H1 and
L2 norm. For nonlinear problems (in particular for nonmonotone problems) the analysis requires additional
tools to the interpolation results, Strang and Bramble-Hilbert lemmas that are the cornerstones for the error
estimates in the linear case.
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