Infoscience

Journal article

Dislocation shielding of a cohesive crack

Dislocation interaction with a cohesive crack is of increasing importance to computational modelling of crack nucleation/growth and related toughening mechanisms in confined structures and under cyclic fatigue conditions. Here, dislocation shielding of a Dugdale cohesive crack described by a rectangular traction-separation law is studied. The shielding is completely characterized by three non-dimensional parameters representing the effective fracture toughness, the cohesive strength, and the distance between the dislocations and the crack tip. A closed form analytical solution shows that, while the classical singular crack model predicts that a dislocation can shield or anti-shield a crack depending on the sign of its Burgers vector, at low cohesive strengths a dislocation always shields the cohesive crack irrespective of the Burgers vector. A numerical study shows the transition in shielding from the classical solution of Lin and Thomson (1986) in the high strength limit to the solution in the low strength limit. An asymptotic analysis yields an approximate analytical model for the shielding over the full range of cohesive strengths. A discrete dislocation (DD) simulation of a large ( textgreater 10(3)) number of edge dislocations interacting with a cohesive crack described by a trapezoidal traction-separation law confirms the transition in shielding, showing that the cohesive crack does behave like a singular crack at very high cohesive strengths (similar to 7 GPa), but that significant deviations in shielding between singular and cohesive crack predictions arise at cohesive strengths around 1GPa, consistent with the analytic models. Both analytical and numerical studies indicate that an appropriate crack tip model is essential for accurately quantifying dislocation shielding for cohesive strengths in the GPa range. (C) 2010 Elsevier Ltd. All rights reserved.

Fulltext

Related material