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Abstract The severe damage and collapse of many rein-
forced concrete (RC) wall buildings in the recent earthquakes
of Chile (2010) and New Zealand (2011) have shown that
RC walls did not perform as well as required by the mod-
ern codes of both countries. It seems therefore appropriate to
intensify research efforts towards more accurate simulations
of damage indicators, in particular local engineering demand
parameters such as material strains, which are central to the
application of performance-based earthquake engineering.
Potential modelling improvements will necessarily build on
a thorough assessment of the limitations of current state-of-
the-practice simulation approaches for RC wall buildings.
This work compares different response parameters obtained
from monotonic analyses of RC walls using numerical tools
that are commonly employed by researchers and special-
ized practitioners, namely: plastic hinge analyses, distributed
plasticity models, and shell element models. It is shown that
a multi-level assessment—wherein both the global and local
levels of the response are jointly addressed during pre- and
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post-peak response—is fundamental to define the depend-
ability of the results. The displacement demand up to which
the wall response can be predicted is defined as the first
occurrence between the attainment of material strain lim-
its and numerical issues such as localization. The present
work also presents evidence to discourage the application of
performance-based assessment of RC walls relying on non-
regularized strain EDPs.

1 Introduction

The idea that a structure should be able to resist minor seis-
mic shaking without damage, withstand a moderate earth-
quake possibly experiencing some non-structural damage,
and survive a major event without collapse, was born in
the late 1950s [1]. Such statement embodies the concept of
performance-based earthquake engineering (PBEE), which
builds on the definition of desired performance targets [2].
Until the early 1970s, these targets were quantified by empir-
ical criteria, e.g. for use in equations estimating the base
shear [3]. As research progressed, such empirical relations
were replaced by equations founded upon physical princi-
ples, and uncertainties were also progressively considered
[4]. At the beginning of the twenty-first century, PBEE
found its way in assessment [5–11] and design codes [12–
14]. All these guidelines share a common feature: for each
desired performance objective, they prescribe discrete, per-
formance levels—ranging from fully operational to collapse
prevention—and discrete hazard levels.

Characterising these performance levels requires the def-
inition of a set of engineering demand parameters (EDPs)
on which performance assessment can be based. The val-
ues of this set of EDPs need to be estimated from numerical
simulations. It should be noted that within a formal theo-
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retical setting of performance-based assessment, a distinc-
tion exists between EDPs and damage measures: Damage
measures describe the damage and its consequences to struc-
tural or non-structural components while EDPs include all
engineering parameters based on which such damage can
be estimated. In reinforced concrete (RC) structures, exam-
ples of damage measures are maximum crack width, spalling
of cover concrete, buckling or fracture of longitudinal steel,
crushing of core concrete, while EDPs are, for example,
member forces, inter-storey drift values or maximum tensile
and compressive strains. Floor accelerations and velocities,
residual displacements, displacement ductility, and cumula-
tive measures like hysteretic energy dissipation, are further
examples of EDPs that can be suitable to describe the build-
ing performance.

Until the 1990s, traditional EDPs were limited to member
forces and inter-storey drifts, obtained from equivalent lat-
eral force and/or response-spectrum analysis. These analysis
methods are still the basis of many current design codes.
From the early to mid-1990s, the development of nonlinear
methods of analysis led to the introduction of deformation-
based EDPs, such as member chord rotations [15] and inter-
story drifts [16]. Many commercial software packages of
structural analysis now include relatively advanced nonlin-
ear modelling and analysis features, which are used by practi-
tioners to estimate the aforementioned EDPs (e.g. Computers
and Structures Inc. [17,18]) and a number of research analy-
sis softwares have been specifically developed for seismic
analysis purposes [19–21].

EDPs such as member forces and inter-storey displace-
ments are ‘global-level’ parameters, i.e., quantities that refer
to the member or structural level. However, the advancement
of numerical simulation tools and new code and guidelines
specifications are progressively promoting the supplemen-
tary use of local EDPs, e.g. quantities that refer to the material
or sectional levels, which are considered to better and more
directly correlate to damage [22]. They include, amongst oth-
ers, rebar strains, cover and core concrete strains, maximum
curvature, and curvature ductility [23]. For instance, the rein-
forcing steel tensile strain can be defined as the EDP to assess
the maximum residual crack width, which can in turn be com-
pared to a reference value to assess if the damage level is neg-
ligible or requires a certain repair method. Other examples
are the cover and core concrete compressive strains, which
can be related to a minor spalling of the cover (slight damage
level) or a major spalling exposing the longitudinal reinforce-
ment (moderate damage level).

PBEE demands therefore an accurate estimation of both
global and local EDPs, which can be estimated from numeri-
cal analyses of different degrees of sophistication. This paper
addresses the suitability of different numerical models for the
seismic analysis of RC walls. These structural members are
frequently used to brace mid- to high-rise buildings against

earthquakes. They are often preferred to frames since they
tend to lead to smaller inter-storey drifts and therefore smaller
non-structural damage. However, the recent earthquakes of
Chile (2010) and New Zealand (2011) have shown that RC
walls did not perform as well as expected [24]. This obser-
vation calls for an assessment of the capabilities of differ-
ent numerical tools to estimate global and local EDPs of
walls. Unlike for frames, shear deformations in RC walls
contribute typically in a significant manner to the total defor-
mations even if the walls are designed to develop a flexural
mechanism. Since the shear deformations influence the axial
strain distribution in the wall section, the RC walls should
be ideally modelled using solid, shell or membrane elements
if vertical strain measures are used as EDPs. However, due
to the large computational costs associated to these models
and the expertise required for their setup, RC walls are often
analysed using beam element models or even simpler plastic
hinge models.

Starting from the following section, existing modelling
approaches are divided into three main categories: plas-
tic hinge analyses (PHAs), distributed plasticity models
(DPMs), and shell element models (SEMs). The selection
was based on a two-fold criterion. On the one hand, it was
intended to use simulation methods of distinct levels of com-
plexity, roughly spanning the existing modelling spectrum.
On the other hand, only the approaches and software that
are commonly used and available to researchers and special-
ized engineers were considered. Theoretical and numerical
features of plastic hinge analysis and distributed plasticity
models will be analysed in more detail in the following sec-
tions.

Nonlinear shell element models are powerful simulation
techniques that take into account directly the interaction
between axial force, flexure and shear [25]. Modelling the
behaviour of RC members subjected to torsion with beam
elements is a very challenging issue [26], and in such case
the use of shell elements is again shown to be a suitable
option. Although initially limited to research purposes [27],
the increase of computational power is progressively bring-
ing this modelling approach closer to being a practical tool
for design engineers, delivering reliable and robust results
[28]. Since shell elements, associated to multiaxial consti-
tutive laws, are amongst the available tools of analysis that
provide more detailed results, they have been used to improve
or calibrate modelling techniques demanding less computa-
tional power [29].

It should be noted that there are other wall modelling
strategies that do not fit clearly into any of the three pre-
viously mentioned categories. These hybrid methods tradi-
tionally borrow some features from each approach and in
general offer significant additional flexibility in terms of
definition of input parameters. Among these hybrid meth-
ods the so-called ‘multiple-vertical-line element’ and ensu-
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ing developments [30], as well as the ‘wide-column mod-
els’, composed of an assembly of vertical beam-column ele-
ments and horizontal links to represent the wall segments
[31,32], are often applied when modelling RC wall build-
ings. Three-dimensional lattice models have also been used
for the simulation of the experimental torsional and biaxial
cyclic response of RC structural members [33]. This strategy
has been further developed by Yu and Panagiotou [34,35],
who apply a 3D beam-truss model for nonplanar RC walls
which also accounts for mesh-size effects. They use nonlin-
ear beam and truss elements in the vertical and horizontal
directions, nonlinear truss elements in the diagonals to rep-
resent the diagonal field of concrete, and linear elastic beams
to simulate the out-of-plane stiffness.

Exploring the complex range of available modelling
approaches has naturally raised interest within the scien-
tific community [29,36,37]. However, most of the compar-
isons typically focus on the global level of analysis and do
not address comprehensively the relation between the latter
and the local levels of the mathematical model in consider-
ation. The present paper compares some of the most com-
mon modelling approaches for the simulation of the inelastic
behaviour of RC walls based on a joint assessment of both
global and local EDPs, as explained in Sect. 2. The modelling
approaches are compared in particular regarding the relation-
ships between the different levels of analysis (i.e., at which
top displacement a specific strain limit is attained), numeri-
cal problems, convergence issues, and the validity range of
the results. The latter is defined in Sect. 3. The manuscript
also assesses the influence of constitutive models and the
finite element formulation on the relationship between global
and local EDPs. The consideration of shear modelling in
the different approaches and confinement effects are shortly
addressed in Sects. 4 and 5, respectively.

In order to ease the interpretation of the results, a sin-
gle RC wall is subjected to a simple pushover analysis
(Sect. 6), hence avoiding the number of additional complex-
ities brought about by the use of nonlinear dynamic time his-
tories or multi-member structural systems. Different shear
span ratios are considered for the structural member, which
is intended to evaluate the influence of shear deformations.
Within the scope of the present work, it is noted that only
the SEMs accurately account for shear deformations. These
models will be used as benchmark to assess the extent to
which pure flexural models, such as beam elements based on
the Euler-Bernoulli hypothesis, can capture responses that
have non-negligible shear deformations. Confinement mod-
els and other physical phenomena can also impact signifi-
cantly the results and are thus separately addressed in a sep-
arate section of the manuscript.

It should be underlined that the purpose of this study is
not to validate the results of different modelling approaches
against experimental results, but rather to evaluate and inter-

pret the scatter of the response provided by distinct state-of-
the-practice simulation methods that build on the same (or as-
close-as-possible) input parameters, constitutive relations,
confinement models, etc. Still, for each simulation technique
there is a large number of non-obvious modelling choices
(mesh discretization, certain parameters in the material mod-
els, confinement definition, etc) that affect the outcome of the
inelastic analyses. Furthermore, there is also typically a sig-
nificant level of uncertainty associated to material properties
or reinforcement details of the RC specimen. The two facts
above combined make it generally possible to justify a com-
bination of these modelling choices that show a versatile,
at times surprising, ability to match selected experimental
results. In order to avoid such temptation, the decision of
not including comparisons against experimental results was
deliberately taken upfront.

2 Multi-level Analyses in State-of-Practice Modelling
Approaches

The present section recalls the underlying assumptions and
the distinct levels of analysis that are associated to each
of the mathematical models used in this study, pointing
out how they relate and compare. An effort was made
to summarise the most classical features of traditional
PHAs, DPMs, and SEMs in Table 1, wherein the up
arrows, down arrows, and bullet points stand for relative
advantages, disadvantages, and general comments respec-
tively. The distributed plasticity models are further subdi-
vided into displacement-based (DB) and force-based (FB)
approaches, since these two beam-column approaches cor-
respond to fundamentally distinct finite element formulations
that yield different results and hence require specific interpre-
tations (Table 2). A solid understanding of the information in
the tables below, which should be self-explanatory, enables
more insightful interpretations of the numerical results and
critical comparisons between the approaches. A few perti-
nent notes follow.

The first remark relates to the classical plastic hinge analy-
sis (PHA). It was developed for hand calculations in the mid-
twentieth century. A computational counterpart appeared
later on: it is the category of beam-column finite elements
that are commonly referred to as lumped (or concentrated)
plasticity models (LPMs), wherein a flexural hinge repre-
senting the inelastic behaviour is assigned to each extremity
of the element. To underline their common root, the ‘plastic
hinge analysis’ and ‘lumped plasticity models’ are described
together in the first row of Table 1 but the points in which they
differ are explicitly indicated by referring to the acronyms
‘PHA’ and ‘LPMs’.

Secondly, it is highlighted that there is a multitude of mod-
elling approaches spanning between the categories pointed
out in the tables below. Although it is not possible to
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Table 2 Simplified comparative overview on displacement-based versus force-based formulations (↑: relative advantage; ↓: relative disadvantage;
•: general comment)

Distributed plasticity
models

Displacement-based formulation (DB) Force-based formulation (FB)

Hypotheses • Assumed displacement field along the element: cubic
Hermitian polynomials for the transverse displacement
field and linear Lagrangian interpolation functions for
the axial displacement ⇒ Linear curvature and
constant axial strain (at the reference axis) along the
element

• The force field is obtained through an exact solution of
the differential equations of equilibrium. E.g., for
nodal loading it corresponds to a linear Lagrangian
shape function for the bending moment and a constant
approximating polynomial for the axial force along the
element

Finite element
implementation

↑ Straightforward state determination algorithm,
corresponding to classical finite element
implementation (no iterative routines are involved)

↓ The inter-element continuity of displacements is more
difficult to enforce, requiring an iterative solution
algorithm based on the transfer of residual
deformations from the section level to the element
level. Actually, both residual displacements (at the
section and at the element level) can be accepted,
which further skips the need for iterations during the
element-section state determination

Level of output detail ↓ DB elements only provide the exact solution for the
problem of an element with linear elastic material
subjected to nodal forces. Linear curvature and
constant axial strain at the reference axis along the
element are unsatisfactory for nonlinear analysis
and/or members subjected to span loads

↓ Equilibrium is only verified in average, which leads to
a number of critical issues: unrealistic variations of
axial force between different integration sections of
the element, inaccurate sectional response, etc.

↓ ‘Artificial’ consideration of span loads

↑ FB elements always provide the exact solution for
frame problems since the corresponding interpolation
functions satisfy the beam equilibrium equations
exactly (i.e., in a strict sense), irrespective of the
material constitutive behavior (even if highly
nonlinear), which explains the formulation
appropriateness for nonlinear analysis

↑ Direct (exact) consideration of the effects of span
loads

Applications ↑ DB elements are still widely used because: (i) many
FE software are still based on this approach, (ii)
curvature and strain demands in the sections are
generally smaller than with exact FB elements, which
is sometimes convenient, (iii) some authors use it to
indirectly simulate other physical phenomena such as
tension shift

↑ No meshing is theoretically required, i.e. only a single
FE is required to model each structural member

• It provides a more flexible prediction of the objective
(‘exact’) response

• The analyst should evaluate whether, in order to build
a proper mass matrix for dynamic loadings, more than
one element should be used

• It provides a stiffer and stronger prediction of the
objective (‘exact’) response

↓ Meshing of the member into several elements is
required to capture the nonlinear structural response or
the behaviour of members subjected to span loads

Localization • Localization can occur in all the integration sections of
the element

In such a case, the length of the most strained member
corresponds to the real plastic hinge length, which can
be used as a regularization criterion

• Localization takes place in only one integration
section (the one where the demand is higher). There
are a few regularization techniques available to obtain
objective results, which require the specification of the
real plastic hinge length

address herein all such hybrid proposals, they inevitably
share some of the advantages and limitations of the envelop-
ing approaches. Furthermore, the whole spectrum of math-
ematical models should be looked upon as being composed
of complementary—rather than alternative—tools, as there is
not an optimal approach as such. For example, in the absence
of detailed knowledge about a member or a structure, the most
judicious decision is arguably to carry out simple PHA to
obtain estimates of possible bounds of the inelastic response;
setting up a refined finite element model will most likely
ask for unknown (and therefore questionable) assumptions

on detailing or mechanical characteristics, and the resulting
‘detailed’ outcome will be as trustworthy as the ‘unrefined’
plastic hinge output. A similar type of rationale can also be
found in current assessment codes [5].

The third group of observations addresses issues regard-
ing the different levels of analysis. The inner one, for all
modelling approaches corresponds to the material constitu-
tive relations. The next level in the hierarchy of analysis is
the sectional level (herein considered as a local level as well),
which is shared by both the PHAs and the DPMs. However,
PHA requires a simplified approximation for the moment–
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curvature relation, traditionally in a bilinear form, whilst
DPMs take into account the complete sectional response,
considering additionally the explicit and load-dependent
interaction between axial force and bending moment(s).
Another fundamental difference between the two modelling
approaches—which again emphasizes the approximate char-
acter of the plastic hinge models—lays in the link between
the local and the global levels of analysis:

– Plastic hinge analysis. After over half a century of pro-
posals on mathematical models for this modelling tech-
nique, a universally accepted methodology for PHA has
not yet been agreed upon. For a review on the history
of PHA models the reader is referred to Hines [38]. It
is acknowledged that the top lateral displacement of a
RC cantilever wall is comprised of flexural, shear and
slip displacements. In classical plastic hinge analysis—
mainly directed to the analysis of members with large
shear span ratios—shear and slip displacements are often
neglected.1 The remaining total flexural displacement is
composed of yield and plastic components, which are
computed on the basis of assumed curvature profiles
along the member height. They have been the subject of
different proposals [37], which produce distinct estimates
of both yield and plastic displacements. Such differences
are mainly related to: (i) the fact that the assumed curva-
ture profiles account differently for the influence of ten-
sile strain penetration and the spread of plasticity caused
by the presence of diagonal cracks (tension shift), and
(ii) the mathematical hypotheses to compute the plastic
displacements: although PHAs are based on assuming
constant inelastic curvatures over an equivalent plastic
hinge length L p, some approaches consider the centre of
this plastic rotation at midheight of the plastic hinge [39],
while others assume it at the member end [40].
However, the most critical parameter in the link between
the sectional level (i.e., yield and ultimate moments and
curvatures) and the global level of analysis (i.e., yield
and ultimate top lateral displacements of the member)
is the formula for the equivalent plastic hinge length.
It should be apparent, from the discussion above, that
L p: (i) is a fictitious semi-empirical length from which
the plastic displacements can be computed, calibrated to
match the results of a selected database of experimen-
tal tests, and (ii) depends on the hypotheses of the PHA
model, in particular the assumed curvature profile, defor-
mation mechanisms considered, type of material and
members forming the database (beams, columns, walls),
etc; (iii) equivalent plastic hinge length, strain limits and
PHA formulations should only be used in combinations

1 Proposals for plastic hinge analyses wherein shear displacements are
accounted for will be analysed in the present document.

that were calibrated against experimental results. Unfor-
tunately, applications on earthquake engineering often
tend to employ indistinctly the many existing formulae
for L p, without regards for the corresponding assump-
tions of the mathematical model. This is currently one
of the main problems associated with this modelling
approach.
Terminological misuses have however seen other regret-
table developments. In fact, the very large number of
proposals for the equivalent plastic hinge length [41] has
led many authors to simplify the term to ‘plastic hinge
length’, therefore eliminating the explicit reference to the
equivalent character of L p and the reminder of the fic-
titious (conventional) nature of this quantity. This has
opened the doors to using it interchangeably with the
original concept of plastic hinge length (reworded for
clarity: ‘length of the plastic hinge’), which is a somehow
measurable or observable physical length. In the present
document, in order to clearly distinguish between the two
quantities above, the latter will be referred to as real (as
opposed to equivalent) plastic hinge length. The absence
of an internationally accepted definition for the real plas-
tic hinge length has further aggravated this flawed fusion
of meanings.
The previous status quo has constrained some researchers
to consciously avoid altogether the term ‘plastic hinge
length’ as a synonym of the real length of the plas-
tic hinge. Alternative nomenclatures have therefore
emerged, often related to flexure-controlled members:
some authors mention a ‘length of plastification’ that rep-
resents the actual length over which the ‘real distribution
of plastic curvatures’ extend [42]; others use the expres-
sion ‘critical region length’, defined as ‘the extent of the
member region that needs to be confined effectively by
transverse reinforcement so that the member can behave
according to the performance level (in terms of flexural
ductility) set by the designer’ [43]; others, still, use the
expression ‘severely damaged region’ [44], or opt for the
even more general and less compromising designation of
‘characteristic length’, taken as the ‘physical size of the
region into which the strain can localize and the dissipa-
tive softening effects take place’ [45].
From the regulatory standpoint, it is noteworthy that the
New-Zealand code and commentary [46,47] specifically
differentiate between the two concepts above, by using
the term ‘potential plastic hinge (region) length’ or ‘duc-
tile detailing length’ for the real plastic hinge length, and
the term ‘effective plastic hinge (region) length’ for the
equivalent plastic hinge length. Those documents explic-
itly underscore that the latter is generally less than half
of the former. The real plastic hinge length is denoted in
the American code [48] by ‘plastic hinge region’, while
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it is called ’length of the critical region’ or ‘dissipative
zone’ in the European norms [12].
It is noted that although an established definition for the
real plastic hinge length is still missing [43], it should
reflect the damaged member region wherein spalling of
concrete cover with penetration into the core region is
observed, as well as local buckling or yielding of longi-
tudinal rebars, and/or yielding of transversal steel.

– Distributed plasticity models. In this category of mod-
els it is not necessary to specify a value for the plastic
hinge length to connect the local level of analysis to the
global (element) level of analysis. This comes out as a
consequence of the employed formulations (see Table 2
for details on the two main approaches), which allow the
spread of inelasticity throughout several control sections
along the member. Phenomena such as strain penetration
or tension shift, which are in general indirectly accounted
for in the equivalent plastic hinge length for PHAs, would
have to be considered separately for distributed plastic-
ity models but standard approaches are yet to be estab-
lished. Shear and slip deformations also require ad hoc
modelling techniques.
However, DPMs are not exempt from the consideration
of a quantity related to the formation of a plastic hinge.
This is due to the occurrence of a numerical feature
named localization, which shows up after the peak of
the moment–curvature curve (in the controlling section
wherein it is first attained), i.e. during the softening part
of the response. In order to counteract this phenomena, a
regularization method should be applied. Unfortunately,
this is often not available in standard finite element codes.
Regularization requires the specification of a regulariza-
tion length [45–47], which should be the real plastic
hinge length and not the equivalent plastic hinge length,
as discussed above. The occurrence of localization will
be addressed later in detail.

Finally, it is noted that nonlinear geometrical effects were
explicitly considered in the numerical examples addressed
later with distributed plasticity models and refined membrane
models [51,52]. However, they play a negligible role for the
considered case studies.

3 Dependability: Strain Limits, Localization,
and Numerical Issues

The outcome of finite element analyses should be inter-
preted with a critical eye in order to identify the physi-
cally meaningful—herein named dependable—part of the
response. This range of results is bounded by one of the
following scenarios, whichever occurs at a lower value of
drift: (i) a material strain limit is reached, that is assumed as

the threshold beyond which the constitutive relation defined
in the software is no longer representative of the true mater-
ial behavior; (ii) localization occurs, i.e., a numerical feature
inducing mesh-dependent results; (iii) other numerical issues
take place, rendering the output untrustworthy. In short, the
above mentioned conditions can be expressed as:

Dependability Upper Bound

= min
{

Material Strain Limit, Localization,

Numerical Issues
}

In this document, the material strain limit (MSL), which
defines the limit of applicability of the constitutive rela-
tionship, is taken as the damage control limit state (DCLS)
defined by Priestley et al. [40]. The corresponding concrete
compression and steel tension strain limits are:

εc,dc = 0.004 + 1.4
ρvf yvεsu

f ′
cc

(1)

εs,dc = 0.6εsu (2)

where ρv and fyv are the volumetric ratio and the yield
strength of the transversal reinforcement, εsu is the monoto-
nic steel strain at maximum strength and f ′

cc is the compres-
sion strength of confined concrete. Equation (1), obtained
by equating the increase in strain energy absorbed by the
concrete to the strain capacity of the transversal steel [53],
aims at estimating the strain at which fracture of the trans-
verse reinforcement confining the concrete core occurs. This
expression is based on pure axial compression of the core
concrete and should therefore yield a conservative estimate
for flexural loading. Eq. (2), on the other hand, sets the steel
strain limit to 60 % of the ultimate capacity to account for
the possible occurrence of buckling and low cycle fatigue,
which is not considered by the chosen constitutive relation-
ships. As stated above, these limits should be regarded as
model-specific criteria. In fact, they only represent a bound
for the concrete and steel constitutive laws considered in this
study that are discussed in Sect. 6.2. For instance, if buckling
or low cycle fatigue are explicitly incorporated in the steel
model, one can arguably set a higher value for the limit εs,dc.

As a side comment, it is noted that local-level limits can be
imposed in terms of strains—such as the ones in Eq. (1) and
(2) or others [54,55]—or alternatively in terms of curvatures,
as suggested by Kazaz et al. [56]. Naturally, the latter can only
be applied directly to those modelling techniques wherein
the sectional level of analysis is considered (i.e., PHAs and
DPMs) but are not easily applicable to SEMs. For this reason,
curvature limits are not considered in this study.

As inelasticity demand increases, the analysis dependabil-
ity can also be controlled by numerical problems. As men-
tioned above, they are herein divided in two main groups,
named ‘Localization’ and ‘Numerical Issues’. This separa-
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tion was carried out because the former phenomenon, yield-
ing non-objective results related to the finite element for-
mulation, has a physical counterpart that should ideally be
simulated by a regularization method [57,58]; an example for
the physical behavior is crushing of the concrete over a crit-
ical length at the wall base. The term ‘Numerical Issues’, on
the other hand, stands for a variety of additional numerical
problems without physical equivalency that lead to sense-
less outputs; they are harder to tackle in detail since they
are usually linked to software-specific features, e.g. solu-
tion algorithm, convergence and tolerance criteria, numerical
instabilities, implementation of material models, etc. Both
groups are illustrated within the framework of the case study
in Sect. 6.5.

4 Modelling of Shear Deformation

As stated before, shear deformations in wall-type structures
can constitute a significant portion of the total deformation
and thus should in general be modelled. A review of results
from quasi-static cyclic tests on RC walls showed that the
ratio of shear to flexural deformation remains approximately
constant if the wall is developing a dominating flexural mode
and increases if it is a shear mode instead [59]. For walls
subjected to in-plane loading that failed in flexure and had
shear span ratios larger than 2.0, the ratio of shear to flexural
deformations determined from experimental results varied
between 5 and 40 % and depended mainly on the ratio of
compression zone depth to wall length and shear span ratio
[59]. The relatively crude rule-of-thumb Ls/h > 3 is useful
to select members wherein the impact of shear deformations
on global EDPs will be typically small and can possibly be
neglected [40]. If the ratio of shear to flexural displacements
is less than approximately 10 %, its effect on EDPs in stati-
cally determined systems is typically small. Note, however,
that the shear flexibility can influence the force distribution
in statically indetermined systems even if the shear flexibility
is low [29,32]. Shear deformations, as well as shear–flexure
interaction, can be accounted for in different ways depending
on the chosen modelling approach [60]. Hereinafter they are
briefly discussed for PHA, DPMs, and SEMs.

Three well-known methods of PHA accounting for shear
deformations available in the literature are now addressed.
They are based on the observation that the shear to flexural
deformation ratio (�s/� f ) of flexure-dominated walls is
roughly constant in the inelastic phase of the response [61]. A
first proposal for the evaluation of the abovementioned ratio
was made by Hines et al. [62], as a function of the shear span
ratio, the crack angle, and a correction factor accounting for
the increase in shear deformations due to poor transversal
reinforcement or thin webs. More recently, Priestley et al.
[40], based on the work of Miranda et al. [63], suggested a

method that takes into account three different stages of the
response: (i) prior to shear cracking, elastic shear stiffness
is proportional to the reduction in flexural stiffness; (ii) in-
between shear cracking and the attainment of the nominal
flexural strength, shear stiffness is computed according to
the strut and tie model proposed by Park and Paulay [64];
(iii) in the inelastic range, the ratio �s/� f is assumed to be
constant. Finally, the equation proposed by Beyer et al. [59]
accounts for the curvature demand, crack angle, shear span,
and the novel additional influence of the mean axial strain in
the shear deformations. The latter is the method adopted for
the case study in Sect. 6.2. Several LPMs, as finite element
counterparts of PHA, can obviously also account for shear
deformations and flexure–shear interaction through similar
or alternative assumptions [60,65,66].

For DPMs, the consideration of shear deformations
requires an extension of the classical Euler–Bernoulli beam
theory hypothesis, i.e. plane sections can no longer be
assumed perpendicular to the deformed beam axis. Hence,
a Timoshenko framework is generally considered, either
associated to a displacement-based formulation [26,67–69]
or a force-based approach [70–72]. Timoshenko hypothe-
sis implies a constant shear strain profile throughout the
section. However, other more advanced shear strain pro-
files have also been considered in the literature, for instance
parabolic patterns which satisfy equilibrium during elas-
tic behaviour [73]. Additionally, coupling between shear
and flexural deformation mechanisms was also modelled in
a simplified way with displacement-based [74] and force-
based element approaches [75,76]. Research in this topic is
an ongoing effort, as proven by recent proposals featuring
higher-order force-based beam formulations [77,78]. Unfor-
tunately, most of the previous proposals are not readily avail-
able in existing structural analysis software and thence they
were not considered in the present study.

In SEMs, the shear deformations are directly accounted
for by the membrane element formulation, which requires
a bidimensional or tridimensional constitutive model. In the
application example, simulated with VecTor2 [21], a plane
stress rectangle is used in association with the Modified Com-
pression Field Theory [79] and the Disturbed Stress Field
Theory [80].

5 Accounting for Confinement in Different Approaches

The effect of active and passive confinement of concrete has
raised the interest of researchers since the 1920s [81]. Con-
finement increases the strength and the deformation capacity
of concrete. However, it also plays a role in other phenom-
ena such as the brittle-to-ductile transition [82], after which
the failure surface and the residual strength surface coin-
cide. The way to account for confinement effects depends
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on the framework wherein the concrete constitutive model is
developed: nonlinear elasticity, plasticity theory, damage the-
ory, fracture mechanics, etc. Therefore, the three modelling
approaches employed in this study (PHA, DPMs, SEMs) ask
for distinct considerations.

The computation of the sectional response in PHAs
and DPMs requires the cross-sectional integration of uni-
axial stress–strain curves defined for each concrete fibre.
Those relations are adjusted through confinement models,
which typically use a coefficient to compute the compressive
strength of confined concrete f ′

cc from the specified cylinder
strength f ′

c . That coefficient depends on the passive con-
finement produced by the reaction of the transverse rein-
forcement to the lateral expansion of the concrete. A distinct
coefficient, also function of the confining stresses, allows
obtaining the confined concrete strain at maximum strength
εcc from its unconfined counterpart εc.

Many uniaxial concrete models assume that such confin-
ing stresses (and strains) are similar in the two lateral direc-
tions [83]. However, indications are often missing on how to
derive this uniform lateral pressure for the case of RC mem-
bers such as walls. Other proposals, where confining stresses
are also assumed to be identical in both directions, do how-
ever provide explicit recommendations in that regard, e.g.,
the one proposed by Cusson and Paultre [84]. The renowned
model by Mander et al. [53] considers the possibility of hav-
ing different confining stresses in the two lateral directions,
and indicates how to compute them for RC members. The
failure surface described by Willam and Warnke [85] is then
used to obtain f ′

cc. The corresponding strain is obtained fol-
lowing the indications of Richart et al. [81]. This model is of
more straightforward application than the model by Cusson
and Paultre [84], and will thus be adopted for the case study.

It is noted that the simpler form of the model by Mander
et al. [53] is mainly related to the assumption that the lat-
eral confining pressure is developed from equilibrium with
transverse reinforcement at yield. Such hypothesis is not con-
sidered in the work by Cusson and Paultre [84], who use an
iterative approach to compute the stress in the transverse rein-
forcement at the peak concrete strength. The introduction
of the previous adjustments were based on the findings by
Cusson and Paultre [86], who showed that the yield strength
may not be reached with low confinement or when transverse
reinforcement is made of high-strength steel. A more recent
improvement of the model, made by Légeron and Paultre
[87], proposes a direct procedure to compute the transverse
reinforcement stress and consequently the equivalent con-
finement pressure.

Most uniaxial concrete models for RC behaviour make
use, in general, of a geometrical effectiveness coefficient of
confinement. Originally developed by Sheikh and Uzumeri
[88], it reflects the effectiveness of the transverse reinforce-
ment in confining the concrete and accounts for the fact that

the maximum lateral pressure due to transverse reinforce-
ment is not uniformly applied throughout the volume of the
concrete core. Midway between the layers of transverse rein-
forcement, the area of effectively confined concrete is min-
imal due to arching action and can be computed from the
spacing and tie configuration.

Regarding the confinement effects in the SEMs, the
enhancement of strength and ductility in the bidimensional
concrete constitutive relation will be addressed in greater
detail in Sect. 6.7.

6 Application Example

In engineering practice, numerical tools are used to simulate
the expected behaviour of structures. The objective of this
section is to analyse a case study wall using modelling tech-
niques commonly applied in engineering practice—namely
PHAs, DPMs, and SEMs—and compare the resulting global
and local EDPs. In order to make the modelling approaches
comparable and not to inadvertently ‘compensate’, for exam-
ple, differences in element formulations with differences
in constitutive relations, the authors have made the mod-
els as coherent and comparable as possible. The details of
this process will be thoroughly addressed in the following
sections. In some cases, it entailed the conscious decision
of not exploring the full potential of a particular modelling
approach, as it will be discussed below. The prediction of the
actual wall response thus only comes as a secondary aim of
the following examples.

6.1 Case Study

The cantilever wall herein analysed depicts the effective
height of a 2/3 scale RC wall representing a typical Swiss
building of the 60s. This wall is part of a series of tests on
thin RC walls, carried out between September 2013 and Octo-
ber 2014 at the structural engineering laboratory (GIS) of
the École Polytechnique Fédérale de Lausanne (EPFL). Esti-
mates of the wall responses were required in order to assist
with the preparation of the experimental program, giving rise
to the current study. The geometry and reinforcement layout
of the reference test unit are illustrated in Fig. 1. Although
the specimen represented in the figure corresponds to the first
story, the effective height was simulated in the experimental
test setup by the application of a top bending moment, cou-
pled to the lateral displacement. Further information on the
experimental program can be found in [89].

The wall section length was h = 2.7 m and its thick-
ness t = 0.12 m. It featured a small-dimension flange at
one of the edges simulating the presence of a perpendicu-
lar member. The longitudinal and transverse reinforcement
were constituted by 6mm diameter rebars uniformly spaced
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Fig. 1 Geometry and reinforcement layout of the test unit (all dimensions in millimeters)

respectively at 95mm and 130mm. The clear concrete cover
was 15mm.

The mechanical features of the reinforcing steel were
obtained by carrying out six uniaxial tension tests, whose
mean stress–strain curve is shown in Fig. 3b. As it can be seen,
there is no evidence of yield plateau, hence for modelling
purposes the tensile strain at the beginning of the harden-
ing curve, εsh , was assumed to coincide with the yield strain
εsy . The ultimate strain εsu was evaluated as the total steel
elongation at maximum force. On the other hand, the con-
crete mechanical properties were not available at the time of
the present work. Consequently, the cylinder strength f ′

c was
assumed as the one requested to the concrete manufacturer.
The modulus of elasticity was estimated as Ec = 4700

√
f ′
c

[90]. Finally, a standard value for the concrete strain εc

at maximum stress was used, whilst the concrete tensile
strength f ′

t was computed according to Lin and Scordelis
[91] f ′

t = 0.34
√

f ′
c (MPa). The reinforcement ratios and the

mechanical properties of the employed materials are summa-
rized in Table 3. These data, together with the geometry of
the wall, contains all the input required to set up the models
for this study.

In order to assess the relative significance of shear defor-
mations in the structural behaviour, three different shear
spans were considered: Ls = 2.1 m, Ls = 4.2 m, and Ls =
8.4 m, corresponding respectively to 1, 2 and 4 times the
height of the test unit. The resulting shear span ratios Ls/h
are 0.78, 1.56, and 3.12. In all the cases a constant axial
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Table 3 Mechanical characterization of the wall: reinforcement ratios and material properties

Reinforcement ratios

Vertical Horizontal Orthogonal*
ρv (%) ρh (%) ρort (%)

Web 0.49 0.35 [–]

Flange 0.64 0.19 0.35

Material properties

f ′
c (MPa) εc (0/00) Ec (MPa) f ′

t (MPa)

Concrete 37 2 28600 2

f y (MPa) f u (MPa) Es (MPa) εsy (0/00) εsh (0/00) εsu (0/00)

Steel 484 610 210000 2.3 2.3 82

* The orthogonal reinforcement corresponds to the wall out-of-plane direction

load N = 690 kN—equivalent to an axial load ratio of
N/( f ′

c · Ag) ∼= 5 % (Ag is the gross sectional area)—was
applied at the top of the wall, at its centroid.

The presentation of results corresponding to detailed
analyses in the two directions of loading would only be jus-
tified if it would bring an additional relevant insight to the
comparison between the modelling approaches. Since that
was not the case, and in view of space limitations, it was
decided to just include the results for the case where the
flange is in tension.

6.2 Modelling Approaches

As mentioned already, three different modelling techniques
were used to predict the response of the cantilever wall
described in the previous section. As indicated in Table 1,
they rank in ascending order of complexity as follows: plastic
hinge analyses (PHAs), distributed plasticity models (DPMs)
and shell element models (SEMs). The specificities of each
model employed in the analyses are thoroughly described in
the following paragraphs.

Two plastic hinge models were considered. The first,
which does not account for shear deformations, is based on
the flexural PHA formulation proposed by Priestley et al.
[40], with the adaptations therein suggested for wall-type
structures. The equivalent plastic hinge length is expressed
as:

Lp = kLs + 0.2h + Lsp ≥ 2Lsp (3)

where k is a factor accounting for the spread of plasticity
due to strain hardening of the reinforcement, Ls is the shear
span (distance from the point of contraflexure to the critical
section of the member), 0.2h is an additional term accounting
for the effect that tension shift plays on walls, and Lsp is the
strain penetration length which is given by:

Lsp = 0.22f yldbl (4)

with fyl and dbl being the yield strength and diameter of the
longitudinal reinforcement. The ultimate flexural displace-
ment is the sum of the yield and plastic flexural displace-
ments:

�u = �y + �p = φy

3

(
Ls + Lsp

)2

+(φu − φy)Lp
(
Ls − (

0.5Lp − Lsp
))

(5)

The yield and ultimate curvatures were obtained from the
bilinear idealization of the moment–curvature curve. The
damage control strain limits, as defined in Sect. 3, were
used to define the ultimate curvature. The sectional analy-
sis was performed with the open source software OpenSees
[20]—herein labelled as ‘OS’—discretising the section into
200 fibers. Cover and core concrete were modelled using
the library uniaxial material ‘Concrete 04’, which is based
on the model proposed by Popovics [92]. The mechanical
properties of the core concrete were determined according
to Mander et al. [53] with a geometrical effectiveness coeffi-
cient of confinement Ce = 0.5, as recommended by Priestley
et al. [40] for wall-type elements. The obtained values for the
confined concrete maximum strength and the corresponding
strain were f ′

cc = 41.3 MPa and εcc = 3.16 0/00 respectively.
The Dodd Restrepo model was used for the reinforcement
bars because, as shown in Fig. 3b, it represented the solution
that best fitted the experimental data. Rebar buckling was not
considered in the model.

The second PHA model, which accounts for shear defor-
mation, was the one developed by Beyer et al. [59]. The ratio
of shear-to-flexural deformation can be expressed as:

�s

�f
= 1.5

εl

φtanθ

1
Ls

(6)
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Table 4 General features of distributed plasticity models (DPMs)

Model Element type No. of elements No. of integration points Integration rule

OS-FB-5IP Force-based 1 5 Gauss–Lobatto

OS-FB-9IP Force-based 1 9 Gauss–Lobatto

OS-DB-PH∗ Displacement-based 4 2 Gauss–Legendre

* The length of the element close to the base corresponds to the equivalent plastic hinge length

Fig. 2 Employed modelling techniques for the simulation of the wall response (SEM mesh corresponding to Ls/h ≈ 1.56)

where εl is the longitudinal strain along the centroidal axis
of the wall, Ls is the shear span, φ is the curvature demand.
εl and φ are derived from moment–curvature analysis for a
maximum steel strain of 1.5 %. θ is the crack angle at the
top of the fan-like mechanism which, according to Hagsten
et al. [93] and used by Hannewald [94], can be expressed in
function of the reinforcement ratios:

θ = arctan

(
4

√
ρv + kEρhρv

ρh + kEρhρv

)
(7)

in which kE is the ratio between the steel and the concrete
elasticity moduli, while ρv and ρh are the geometrical rein-
forcement contents in the vertical and horizontal direction.

For the distributed plasticity models (DPMs), three dis-
tinct modelling options were considered to simulate the
behaviour of the cantilever wall. They differed with regard to
the beam element formulation (displacement-based vs. force-
based, see Table 2), mesh discretization, and numerical inte-
gration scheme; their features are summarized in Table 4 and
shown in Fig. 2.

As indicated in Table 2, force-based formulations verify
exactly beam equilibrium. Therefore, only one element was

assigned to model the structural member. Additionally, in
order to simulate the concentration of inelasticity at the wall
base, a Gauss–Lobatto quadrature is preferred to a Gauss–
Legendre quadrature since the former features an integra-
tion point at the element end and therefore at the wall base,
whilst the latter does not. During the pre-peak branch of the
moment–curvature, the element response is a function of the
numerical accuracy of the integration rule, and it has been
shown that typically five integration points (IPs) are suffi-
cient [95]. However, since the post-peak element response is
highly dependent on the number of IPs, an additional scheme
with nine IPs was also considered. On the other hand, the
displacement-based model discretized the member in four
elements, each one with two Gauss–Legendre IPs. The rea-
sons for the choice of this discretization is linked to the dis-
placement interpolation functions of the DB finite element
and is based on the findings by Calabrese et al. [57]. It is
noted that the length of the bottom element was defined as
the equivalent plastic hinge length L p given by Eq. (3). From
the smaller to the larger shear span, it corresponds to 0.71 m,
0.82 m, and 1.04 m. Following the discussion in Sect. 2, it
should be underlined that the real plastic hinge length should
have been used instead of the equivalent plastic hinge length.
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Fig. 3 Adopted material constitutive laws: a concrete, b steel (numerical vs. experimental)

The reason for this intentional incongruence is two-fold: on
the one hand, the present study is simply a comparative inves-
tigation between modelling approaches, and not a validation
against experimental results; on the other hand, there are still
relatively few expressions in the literature for the real plastic
hinge length that have been sufficiently validated.

The software used to carry out the analysis of the DPMs
was OpenSees [20]. The sectional discretization and the
materials employed were the same described above regard-
ing the moment–curvature analysis. Another goal of the
study was to assess the differences between existing struc-
tural analysis packages that build on distinct uniaxial mater-
ial models, as well as numerical implementations of finite
element formulations and respective solutions. Therefore,
the case of a FB element with 5 IPs was also analysed
using the FE software SeismoStruct [19]—herein labelled
as ‘SS’—giving rise to the model ‘SS-FB-5IP’. In both Seis-
mostruct and OpenSees, the material model used to describe
the concrete follows the constitutive relationship proposed
by Popovics [92]. The model matching between the concrete
models adopted in OpenSees and SeismoStruct is almost per-
fect, as shown in Fig. 3a. On the other hand, it was not pos-
sible to find, at the time of the analyses, a steel constitu-
tive law in SeismoStruct fitting properly the experimental
results. Hence, the model by Menegotto and Pinto [96] with
the isotropic hardening rules proposed by Filippou et al. [97]
was employed, as depicted in Fig. 3b.

The shell element simulation was carried out with the 2D
membrane software VecTor2 [21], designated as ‘V2’ in the
figures, developed at the University of Toronto and based on
the Modified Compression Field Theory [79] and the Dis-
turbed Stress Field Theory [80]. The structure is discretized
by plane stress rectangles (see Fig. 2) of RC material with
smeared reinforcement. The monotonic steel stress–strain

curve is composed of three parts: an elastic branch, a yield
plateau, and a nonlinear strain hardening phase until rup-
ture. Besides the material properties, also the reinforcement
ratios in the three directions of the reference system have
to be given as input. They are reported in Table 3, both for
the elements of the web and flange. The concrete constitu-
tive law in the principal compressive direction follows the
stress–strain relationship proposed by Popovics [92] for nor-
mal strength concrete (as used in the OpenSees models). The
cover concrete was not modelled because it was shown not to
be significant neither at the global nor at the local levels at the
damage control limit state. Additionally, numerical accuracy
concerns recommend aspect ratios below 3:2 for membrane
mesh elements, which would require an extremely fine mesh
for the concrete cover in the current wall.

The base model implemented in VecTor2 considered
confinement effects by assigning explicitly the same peak
strength and associated strain indicated above for the sec-
tional analyses ( f ′

cc = 41.3 MPa and εcc = 3.16 0/00). Auto-
matic strength enhancement due to confinement was disre-
garded, as well as all the other material effects available in
the software (such as compression softening, tension soft-
ening, tension stiffening, dilation, etc.). This choice relates
to the main purpose of this study, i.e. to compare the scat-
ter of the response provided by different modelling tech-
niques. Hence, the authors were primarily interested in min-
imizing the potential for discrepancies arising from effects
at the material level that cannot be equally reproduced by
all the modelling approaches. For example, if a confinement
model had been ascribed to VecTor2 analyses, the concrete
stress–strain relation in each element would change during
loading, creating an inevitable inconsistency towards DPMs
and PHAs (which have pre-defined and constant values for
the confined concrete parameters in all the concrete layers).
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Fig. 4 Global-level response
comparison
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However, the conceivable influence in the wall response of
different confinement models and other material effects avail-
able in VecTor2 deserved detailed analyses, which are illus-
trated in Sect. 6.7.

6.3 Global-level Response

This section presents and discusses the shear force—top dis-
placement curves obtained for all the considered models and
shear span ratios. In Fig. 4 drifts instead of top displacements
are plotted on the x-axis to facilitate the comparison between

walls of different height. For each capacity curve, the mate-
rial strain limit (MSL) and the occurrence of localization (as
defined in Sect. 3) are explicitly indicated. Different markers
are used to indicate the attainment of the concrete or steel
MSLs. For the case study, they correspond to a core con-
crete strain εcc = 11.2 0/00 and of a longitudinal reinforce-
ment strain εs = 49.2 0/00 [40]. The onset of localization,
which will be discussed in detail in Sect. 6.5, is identified
with a marker indicating the limit of response objectivity. For
the shell element model (SEM), an additional point defining
the onset of numerical issues is displayed. In fact, although
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the global capacity curves resulting from the SEMs show a
smooth behaviour until the end of the analysis, it will be seen
in Sect. 6.5 that there is a drift beyond which the global results
build on an unstable ‘waggling’ local behaviour. Hereinafter
the results are presented and discussed for decreasing values
of the shear span ratio. A few general comments are however
due, which hold for all the considered cases.

Firstly, it is noted that the MSLs are attained after
the occurrence of numerical localization, as discussed in
Sect. 6.5. In other words, these cases illustrate that performan-
ce-based assessments relying solely on material limit strains
may be untrustworthy. Secondly, it is apparent that, apart
from the SEMs wherein shear can assume a relevant role,
the steel MSL is the governing condition. Further details
can be found in Sect. 6.6. Thirdly, for DPMs with one FB
element and five IPs, the differences between the models in
OpenSees (OS) and SeismoStruct (SS) can be imparted to the
distinct steel constitutive laws; the SS lower-bound stress–
strain relation, see Fig. 3b, reflects in a lower-bound pre-
diction of the associated force-displacement curves. Finally,
concerning the OS results, it is observed that the curves for
5 and 9 IPs start diverging in the post-peak branch following
the localization onset (Sect. 6.5).

Regarding the results corresponding to the shear span ratio
Ls/h ≈ 3.1 (Ls = 8.4 m), a good agreement amongst all the
proposed models can be found. The scatter in the predicted
lateral capacity of the wall is below 10 %, and the stiffness
evolution up to the peak strength is very similar for all mod-
els. The exception is obviously the PHA models, which—due
to the underlying bilinear moment–curvature assumption—
exhibit a constant stiffness up to the yield point (see Sect. 6.2).
As discussed previously, for shear span ratios Ls/h > 3,
shear deformations are expected to play a marginal role [40].
That can be confirmed by the similarity of the predictions
given by the two PHA models and by the agreement between
the DPM responses, which neglect shear deformations, and
the SEM results, which include shear deformations. Taking
the SEM force-displacement curve as benchmark, the DPMs
using force-based (FB) elements appear to give better results
than the one employing displacement-based (DB) elements.
The latter, although providing good estimates of the wall
force capacity, grossly overestimate its displacement ductil-
ity capacity (reasons discussed in Sect. 6.4).

Looking at the case of Ls/h ≈ 1.56 (Ls = 4.2 m), shear
deformations are no longer negligible and their effect on the
global response of the wall becomes rather apparent: first
off, the SEM capacity curve depicts an increased flexibility
in relation to the DPM results; furthermore, the PHA account-
ing for shear displays a 20 % higher ultimate drift than the
purely flexural PHA. It is observed that the latter—although
not applicable to the current case due to its low shear span
ratio—was included for comparative purposes against the
PHA that accounts for shear. The figure also shows that the

DB approach deviates significantly from the remaining mod-
els, not only in terms of ductility but also in terms of lateral
strength prediction (30 % higher than the SEM). Such obser-
vation does not come as a surprise since DB formulations
provide stiffer and stronger predictions of the actual member
response due to the assumption of displacement interpola-
tion functions (Table 2) [98]. An objective (‘exact’) response
can only be obtained with a larger number of DB elements.
In particular, it is advisable to adopt a small length for the
elements wherein the member demand is higher. This con-
dition is not met in the present case since the base element
length corresponds to the equivalent plastic hinge length (as
calculated for PHAs), which represents about 20 % of the
wall height. The remaining modelling techniques yield rela-
tively similar predictions of the wall capacity and of the drift
at peak strength.

The overall behaviour described above for the interme-
diate shear span is even more pronounced for the case of
Ls/h ≈ 0.78 (Ls = 2.1 m), due to the increased influence
of shear. To start with, it is noted that the results obtained
with both PHA models (with and without shear) and DB ele-
ments are of little physical meaning. In fact, the assumptions
of PHA—as discussed in Sect. 2—are not applicable to such
small shear span ratio, where the equivalent plastic hinge
length represents more than 30 % of the wall height. A some-
what similar justification can be ascribed to the DB results,
wherein the disproportionate length of the base element used
in the discretization prevents a suitable simulation of the
distribution of inelasticity (which explains the consequent
increase of strength and displacement predictions). Regard-
ing the comparison between the SEM and the FB approaches,
and notwithstanding the acceptable simulation of the member
force capacity, the clear influence of shear deformations show
that Euler-Bernoulli beam theory is no longer acceptable.

6.4 Local-level Response

The local-level response of the wall is now depicted and
interpreted for each model and shear span ratio. The ver-
tical strains of both the compressed concrete core and steel
in tension are presented respectively in Fig. 5a, b (note the
distinct scales in the abscissa). The horizontal grey dashed
line defines the concrete and steel MSLs. As discussed in
Sect. 2, the results obtained from the PHAs are not presented
since local EDPs (e.g. strains) should not be back-calculated
from the results obtained at the global level. Concerning the
DPMs, the strains of the extreme fibres are recorded at the
section corresponding to the bottom IP. It is recalled that the
position of such section corresponds to the member base for
the FB model (since a Gauss–Lobatto integration scheme is
used) and the bottom Gauss–Legendre point for DB mod-
els, which in the present case is 0.21 × L p above the base.
This can be observed in Fig. 2, which also depicts the posi-
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tion and number of the elements in the SEMs wherein the
vertical strains are tracked. In this latter category of models,
several neighbouring elements are monitored for the concrete
strains since the response amongst them differs significantly,
due to the occurrence of localization. Section 6.5 will provide
further insights into this numerical problem, which is not evi-
dent on the tensile wall side due to the low absolute values
of concrete tensile strength; therefore, only the steel vertical
strains at one element need to be recorded. Similarly to the
global-level response, the points corresponding to the MSLs
and the onset of localization are indicated in each curve.

The first fundamental observation from Fig. 5 is that the
scatter of the strain predictions with the different modelling
approaches progressively increases with the level of drift.
This is not surprising since strains are highly dependent on the
assumptions of the finite element formulation and the defor-
mation mechanisms that they account for. The current numer-
ical example thus shows that the use of strain-based EDPs
should always be carefully employed for assessment pur-
poses, and straightforwardly disregarded beyond certain val-
ues of drift. In order to define the latter threshold, it is essential
to consider the dependability range of the analyses; this, as
discussed in Sect. 3, was defined by the attainment of strain
limits, localization onset, or numerical issues, whichever
occurs first. It pinpoints a bound above which the simula-
tion becomes progressively or immediately nonsensical.

The second general remark relates to the scatter of the
strain values at the same level of drift: the simulation scatter
of the concrete and steel vertical strains increases with the
decrease of the shear span ratio. As an example, for the wall
with Ls/h ≈ 0.78, the ratio between the upper and lower-
bound concrete vertical strain estimates given by different
modelling approaches at a drift level of 0.2 % is around five.
For the wall with Ls/h ≈ 3.1, the same ratio can be found
at a drift level of approximately 1 % (i.e., 5 times larger).

Other comments can be obtained by analysing the strain
curves within each plot of Fig. 5 in more detail. For what con-
cerns concrete, an overall comparison of the SEM curves for
the four bottom corner elements show a first evident disagree-
ment: after the localization onset, the strains concentrate in
the elements no. 163 and 164 of row 1 above the foundation,
while elements no. 191 and 192 of row 2 above the foundation
show a general unloading trend. The reasons for this behav-
iour will be analysed in the next section, which will also shed
light on the deviation of the FB results for different number
of integration points after the onset of localization. On the
other hand, it is also apparent that the DB model grossly
underestimates the vertical strains when compared to the FB
approach. This discrepancy, which decreases for larger shear
span ratios, is attributable to the DB beam element formula-
tion; namely, the assumed linear curvature profile along each
element length, associated with an average verification of
equilibrium, creates an artificial restraint in the development

of inelastic curvatures amongst the IPs [57]. Regarding the
steel strains predicted by the DPMs, analogous observations
can be made; it is however noted that, for all the considered
shear span ratios, the prediction given by the SEM defines
the lower-bound (see Sect. 6.6).

To complement the information at the local level, a com-
parison of curvature profiles along the wall height is shown in
Fig. 6. The results, which refer to the most flexure-dominated
case (Ls/h ≈ 3.1), are plotted for the drift at peak base shear
of the SEM (0.8 %), as well as for pre-peak (0.5 % drift) and
post-peak (1.1 % drift) states. The curvatures for the SEM
were obtained dividing the difference of the vertical strains
at the two wall edges by the wall length.

In the pre-peak case, one notices a rather good agree-
ment amongst the different models. At the base, the cur-
vature values vary between φV 2 = 2.5 km−1 (SEM) and
φSS = 4.3 km−1 (DPM in SS-FB-5IP). At 0.8 % drift
the influence of numerical localization starts to show up
for the SEM, and the previous range increases to an inter-
val between φDB = 5.3 km−1 (DPM in OS-DB-PH) and
φO S−9I P = 11 km−1 (DPM in OS-FB-9IP). In the post-peak
branch, curvatures also localize for the FB formulations at
the bottom integration point, while for the SEM they concen-
trate in the bottom row of elements. It is rather apparent that
this numerical feature accentuates as the descending slope of
the force-displacement response increases, as shall be seen in
detail in the next section. For a drift level of 1.1 %, the range
of simulated base curvatures varies between φDB = 8 km−1

and φO S−9I P = 37.5 km−1, again for the models OS-DB-
PH and OS-FB-9IP, respectively. It is noted that the post-peak
drift level of 1.1 % for the SEM still corresponds to a pre-peak
level for the DB approach (see Fig. 4), which helps explain-
ing why this latter model provides the lower-bound estimates
of base curvatures. The previous observations confirm those
from the strain plots of Fig. 5, underscoring an inconsis-
tency between distinct simulation techniques for large drift
values.

6.5 Localization and Other Numerical Issues

The present section starts by defining the limits of response
objectivity applicable both to DPMs and SEMs; PHA is not
affected by localization issues but is also not suited for captur-
ing the post-peak response (Table 1). Beyond this threshold,
the appearance of localization issues entails mesh-dependent
results. As pointed out by Bazant [99], this phenomenon is
directly related to particular computational problems occur-
ring with materials described by softening constitutive laws.
Such descending branch of the stress–strain relation leads
to mathematical difficulties as the boundary value problem
becomes ill-posed and the response is no longer unique. Ini-
tially, localization has been studied for classic finite elements
that build on the use of displacement interpolation func-
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Fig. 5 Local-level concrete and steel strains. a1, b1 Ls/h ≈ 0.78; a2, b2 Ls/h ≈ 1.56; a3, b3 Ls/h ≈ 3.1
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Fig. 6 Curvature profiles along the wall height (Ls/h ≈ 3.1)

tions, both for uni-dimensional beam formulations [100] and
multi-dimensional SEMs, such as membranes, shells, solids,
etc [101]. Following the more recent development of force-
based beam elements, the specific features of localization
afflicting this type of approach have also been studied [49].
Hereinafter the occurrence of this issue is shown for all the
above-mentioned modelling techniques.

Starting with the DPMs (FB-5IP, FB-9IP, DB), the
moment–curvature curves of the sections located in the prox-
imity of the wall base, for the case of Ls/h ≈ 3.1, are dis-
played in Fig. 7. Each curve shows ten markers indicating
equal intervals of drift until a maximum value corresponding
to a drop of 10 % of the wall capacity. The flexural capacity
of the section for the applied axial load is also reported by
a horizontal grey dashed line. As observable in plots (a1)

and (a2) for FB-5IP, after the peak of the moment–curvature
response in the base section (attained for φ ≈ 12 km−1, 6th

marker), the deformations start concentrating at the base IP
whereas the section above begins to unload. The same behav-
iour can be noticed for FB-9IP model—plots (b1) through
(b3)—with the notable difference that the curvature concen-
tration in the base section progresses at a much faster rate:
there are roughly four equal drift intervals for the curvature
range φ ∈ [12, 32] km−1 in plot (a2), whilst an even larger
increase in curvature φ ∈ [12, 36] km−1 is covered by only
two equal drift intervals in plot (b3). This is due to the differ-
ent integration weights of the base section where the defor-
mations concentrate (0.028 for FB-9IP and 0.1 for FB-5IP,
out of a total element integration weight of 2).

A very distinct localization pattern occurs for DB for-
mulations, wherein curvatures concentrate simultaneously in
both sections of the base element: as shown in plot (c1), it
is the bottom section of the second element above the base
that starts unloading. Furthermore it is noticeable that the
maximum moments from the sectional results of the base
element, plots (c2) and (c3), differ from the maximum flex-
ural capacity of the section for the applied axial load. This
discrepancy is due to the fact that DB formulations do not
strictly verify equilibrium and hence the axial force along the
element equals only on average the load applied externally,
i.e., the axial force is different for the two IPs. One should
be aware, however, that in DB elements it is also possible to
have concentration of curvatures in only one IP [57], depend-
ing mainly on the axial load ratio, boundary conditions, and
element length.

The occurrence of localization in SEM analyses is shown
in Fig. 8a for Ls/h ≈ 3.1. It shows the vertical stress–strain
curves of the four elements located at the compressed cor-
ner of the wall (Fig. 2). The σv − εv curves are plotted up
to a drift level of 0.8 %, which roughly corresponds to the
peak of the global force-displacement response. Once again,
markers on each curve represent equally spaced drift inter-
vals. The interpretation of the results indicates that above a
certain drift level the strains concentrate in the foundation-
contiguous elements (no. 163 and 164), while the elements
of the row above (no. 191 and 192) start to unload. In this
study, the drift level at the onset of localization for SEMs has
been identified by the occurrence of the first negative post-
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Fig. 7 Numerical localization in DPMs (FB and DB), near the wall base

yield slope of the vertical compressive stress–strain relation,
amongst all the elements of the mesh. This was considered
as a cautious but reliable indicator of the beginning of mesh-
dependent results. It is however noted that in SEMs the exis-
tence of stress and strain gradients (e.g. in walls) typically
reduce the relevance of localization on the prediction of the
force-displacement response, when compared to members in
approximately uniform compression (e.g. concrete cylinders,
axially loaded column).

Figure 8b shows the same vertical stress–strain curves as
Fig. 8a, for elements no. 163 and 164, however this time
extended until the end of the analysis (drift level of 1.7 %).
The purpose of these plots is to show the occurrence of a
‘waggling’ behaviour of the stress–strain curves for strains
above approximately 5.5 %, which is indicative of unidenti-

fied numerical issues. The latter are common (e.g. conver-
gence problems) and to a certain extent inevitable in struc-
tural analysis software; however they can often be corrected,
alleviated, or even eliminated for specific combinations of
input parameters, material or element models, convergence
criteria, global solution methods, etc. Such combinations are
difficult to define a priori, hence in general the user should
be aware of the likely occurrence of numerical issues, which
render the computational output untrustworthy; therefore,
the authors decided to explicitly include the identification
of this phenomenon in the analyses, defining its manifesta-
tion under the broad designation of ‘numerical issue’. They
were pointed out, in particular, in the figures of Sects. 6.3
and 6.4, which comfortingly show that—for the specific
member under analysis and the considered software—they
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Fig. 8 SEMs: a Numerical localization; b numerical issues

took place for drift levels above the attainment of material
strain limits and localization onset. It is highlighted that the
local-level irregular behaviour of specific elements (such as
the one depicted in Fig. 8(b)) does not necessarily reflect at
the global-level response (Fig. 4); the importance of carry-
ing out a multi-level assessment of the structural analysis is
therefore, and once again, strongly recommended.

In general, MSLs may be reached before localization
occurs, even if this was not the case of the analysed walls:
for DPMs, the most strained fibres may be in the post-peak
branch of their assigned uniaxial material relation while the
moment–curvature curve has not yet reached the soften-
ing branch that triggers localization; for SEMs, the inclu-
sion of other phenomena such as explicit modelling of
confinement—which is considered in Sect. 6.7—may lead
to significantly large values of strain corresponding to com-
pressive strength and therefore facilitate the attainment of a
MSL or the avoidance of localization altogether.

Even when localization is the controlling factor (either for
DPMs and SEMs), its pernicious effects may not be neces-
sarily very significant and therefore a careful analysis of the
steepness of the post-peak branch at local level is advised.

6.6 Shear Deformation

The effect of shear deformations, as accounted for in SEMs,
is addressed in the following paragraphs. The shear dis-
placements at the effective height of the wall were com-
puted as the difference between the total and the flexural
displacements. The latter are determined as the double inte-
gration of the curvature profile along the member height. The
ratios of shear-to-flexural deformation (Δs/Δ f ) for the dif-
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ferent shear span ratios are shown in Fig. 9. As expected,
they increase for decreasing shear span ratios and are of the
order of 10 %, 20 % and higher than 50 % respectively for
Ls/h ≈ 3.1, Ls/h ≈ 1.56, and Ls/h ≈ 0.78. These values
closely agree with the estimates provided by the PHA model
accounting for shear, which are also depicted as dashed hori-
zontal lines in the same figure. Furthermore, with the excep-
tion of the least flexure-dominated case, the ratio Δs/Δ f

tends to become approximately constant as the member is
loaded into its inelastic range. This behaviour had already
been experimentally observed by Dazio et al. [61] for RC
walls whose shear transfer mechanism is not significantly
degrading.
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Fig. 10 Vertical and shear strain profiles at the wall base
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Fig. 11 Vertical and shear stress profiles at the wall base

The vertical and shear strains profiles of the wall base sec-
tion corresponding to three different drift levels are shown in
Fig. 10. They were chosen as representative of: (i) a close-
to-elastic phase, (ii) the beginning of the inelastic response,
and (iii) the attainment of the wall lateral force capacity (des-
ignated as ‘drift at peak’).

Concerning the vertical strains it is possible to notice how
the approximately linear distribution for 10 % of the ‘drift
at peak’ progressively evolves to a nonlinear distribution at
larger demands. This remark holds independently of the cho-
sen shear span ratio and points out the limitation of the plane-
section-remaining-plane hypothesis assumed for DPMs, dis-
cussed below in further detail.

The shear strain profiles, besides depending on the con-
sidered drift level, seem to be affected by the shear span ratio
as well: their absolute value increases with the drift level
and decreases with the shear span. Furthermore, it can be
observed that, for Ls/h ≈ 3.1, the shear strain distribution
remains approximately constant along the entire section of
the wall independently of the imposed drift. Such fact sug-
gests that, for elements behaving predominantly in flexure,
the constant shear strain hypothesis—as adopted by Timo-
shenko beam theory—seems to be reasonable. The previous
rationale, on the other hand, does not appear valid for smaller
shear span ratios (even for nearly elastic response) since the
shear strain profile cannot be assimilated to a constant func-
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Fig. 12 Comparison of the vertical strain profiles between the SEM
and OS-FB-9IP (Ls = 8.4 m)

tion. Eventually, for higher values of drift, shear strains tend
to clearly concentrate in the compressed part of the section
as a significant amount of the shear stress is transferred to
the foundation through the compression zone (Fig. 11).

Finally, Fig. 12 exhibits the comparison between the base
section vertical strains from the SEM and DPM OS-FB-
9IP. The results refer to the most flexure-dominated case
(Ls/h ≈ 3.1) and to levels of drift corresponding to 1/3, 2/3,
and the full attainment of the MSL. The latter, which occurs
approximately at the same drift level both for the SEM and
the OS-FB-9IP model, is actually misleading since in one
case the concrete is governing while in the other the steel
MSL is attained.

As it can be seen, for low drift levels the vertical strains
predicted by the two models are in acceptable agreement, par-
ticularly considering the profile along the section. For larger
values of top lateral displacement, the concentration of shear
strains and stresses in the compression side greatly impacts
the linearity of the vertical strain profiles simulated with Vec-
Tor2. It is therefore comprehensible that while the steel MSL
is reached for the DPM (which assumes a linear strain profile
along the section), the concrete MSL governs the SEM analy-
ses. The importance of carrying out a multi-level assessment
again becomes obvious: although the global-level response
given by the SEM and DPM shows a very similar behaviour
up to the MSL (Fig. 4), the vertical strain profiles and the
predicted failure mode are distinct.

6.7 Influence of confinement models and other physical
phenomena

The confinement effect provided to the concrete core by the
transversal reinforcement can be taken into account, during

the modelling phase, in different ways. The main approaches
used to consider this phenomenon for uniaxial constitutive
laws have been briefly described in Sect. 5. Hereafter SEMs
using different confinement options are compared at the
global and local levels. Other features influencing signifi-
cantly the outcomes of the analyses are addressed as well.

Strength and ductility enhancement due to confinement
is simulated in VecTor2 by a strength enhancement factor,
βl [52]. It modifies the concrete compression response by
increasing both the uniaxial compressive strength f ′

c and the
corresponding strain εc, as follows:

f p = β lf
′
c εp = β lεc (8)

Different models are available to calculate βl . However, in the
present section only the program default and recommended
option is considered: it consists of a combination of the rela-
tionship proposed by Kupfer et al. [102] with the one pro-
posed by Richart et al. [81]. Additionally, it is the simplest to
interpret and hence it is deemed the most suitable for engi-
neering practice. The other available confinement models
require the solution of the material failure surface [103,104],
which is more complex and computationally demanding.

Besides the strength enhancement due to confinement,
several other material effects can in general be taken into
account in shell element models. Amongst them, models
addressing features such as compression softening, ten-
sion stiffening, tension softening, tension splitting, concrete
expansion, reinforcement dowel action, and reinforcement
buckling are available. For the specific structure in analysis,
tension stiffening and tension softening turned out to impact
the results the most until the peak. The former accounts for
the average tensile concrete stresses after concrete cracking
due to the bond action with the reinforcement, whilst the lat-
ter addresses the presence of post cracking tensile stresses
in plain concrete entailed by the fact that the material is not
perfectly brittle. Both features result in a redistribution of
the concrete stresses upon cracking, which otherwise would
abruptly reduce to zero causing a discontinuous change in
the structural stiffness.

Table 5 lists the four models compared in this section
as well as the material effects that were accounted for to
distinguish them. The remaining properties of the consti-
tutive materials that are not depicted in the table are the
same as those used in the previous sections (recall, namely,
the description in Sect. 6.2); only the following adjustment
was made: in the models where concrete strength enhance-
ment is directly addressed by the use of a confinement
model (M1 and M3 in the table below), nominal values
for the cylinder strength and peak strain are given as input
( f ′

c = 37MPa, εc = 2 0/00). It is recalled that for the mod-
els labelled as Basic and M2, the confinement effect is also
accounted for by a direct input of the enhanced material prop-
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Table 5 Models for the evaluation of confinement effect and other physical phenomena

Model Confinement Tension stiffening Tension softening Compression softening Dilation Crack slip

Basic N.C.E.* N.C.** N.C.** N.C.** Constant υ*** N.C.**

M1 Kupfer-Richart N.C.** N.C.** N.C.** Constant υ*** N.C.**

M2 N.C.E.* Modified Benz Linear N.C.** Constant υ*** N.C.**

M3 Kupfer-Richart Modified Benz Linear Vecchio 1992A Variable Kupfer Walraven

* Not considered explicitly; ** Not considered; *** Poisson ratio
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Fig. 13 Confinement and other physical phenomena: global-level comparison

erties according to Mander’s model [53], and therefore a uni-
tary strength enhancement factor (βl = 1) is assumed.

The Basic model is the one employed in all the analyses so
far. M1 differs solely by the use of the Kupfer-Richart con-
finement model. M2 takes into account the tension stiffening
and tension softening effects, as discussed above. Eventually,
M3 considers all the concrete physical phenomena available
in VecTor2 default options, the most relevant of which are
indicated in Table 5.

The base shear for the three wall heights are plotted in
Fig. 13 times the corresponding shear span in order to make
the results comparable. A first immediate conclusion from the
comparison between the models Basic and M1 is that differ-
ent techniques of confinement simulation can affect substan-
tially the predicted global response of the structural member.
It is possible to argue that the results given by the M1 model
are in principle more realistic. In fact, as discussed above, the
concrete stress–strain relations along the principal directions
of the Basic model are insensitive to the multi-dimensional
strain and stress states to which they are subjected; all the
plane stress rectangles, independently of the shear span ratio
and the respective position in the mesh, follow an identical
constitutive law, fixed a priori. In the M1 model, on the other
hand, the strength enhancement factor is computed for each
element according to the assigned confinement model. The
value of βl is thus a function of the varying triaxial stress
state at the local level, increasing with the lateral confining
stress acting on the concrete.

For the present case study, the dependence of the results
on the stress flow within the structure is evident. For Ls/h ≈
0.78, the increased importance of the shear deformation
mechanism induces a shear stress state in the mesh elements
that prevents strength enhancement, i.e. βl = 1 according
to the Kupfer/Richard relation defined in VecTor2 [52]. As
a more flexural type of deformation mechanism takes place
and the shear stresses lose relative weight, as it is the case
for Ls/h ≈ 1.56 and Ls/h ≈ 3.1, the inclination of the
compression strut becomes more vertical and enables the
formation of a well confined zone at the compressed side of
the wall base. This produces relatively large enhancement
factors, of the order of βl = 1.15 for Ls/h ≈ 3.1, that lead
to an increase of the wall force and displacement capaci-
ties.

Concerning the effect of tension stiffening and tension
softening, a comparison should be made between the Basic
and M2 models. It is apparent that these features mainly
impact the ascending branch of the force-displacement
curves; in between the occurrence of cracking and the attain-
ment of the wall force capacity, the member shows a relative
increase in strength due to the presence of post-cracking con-
crete tensile stresses. As a beneficial numerical side effect,
no sudden changes of structural stiffness can be observed up
to peak, after which both models tend to provide an identical
response prediction.

The results of M3 allow a few additional observations.
Firstly, since the results are identical to those of M2 up

123



J. P. Almeida et al.

Fig. 14 Confinement and other physical phenomena: local-level comparison

to peak (for all the shear spans), this confirms that ten-
sion stiffening and softening are the modelling options that
mainly affect the ascending branch of the force-displacement
response. Secondly, it shows that the other unaddressed phys-
ical phenomena (such as variable lateral expansion, com-
pression softening, crack slip, etc) have a relevant influence
on the response; they seem to interplay with the previously
described physical effects, as well as with the different strain
and stress states imposed by the distinct shear span ratios,
in a way that cannot be straightforwardly understood from
the present set of analyses. An additional sensitivity study
would be required to untangle the problem intricacy. Along
the same line, as a last overall remark, it is noted that the
complexity of the model behaviour significantly increases
after the indicated dependability limits.

As discussed in several occasions above, a structural
analysis is not deemed complete until a multi-level assess-
ment has been performed. Therefore, Fig. 14 presents a local-
level comparison of the same models for the most flexure-
dominated case (Ls/h ≈ 3.1); in particular, it depicts the
concrete vertical strains of the four elements in the com-
pressed side of the wall, as well as the steel vertical strains
in the tensile wall edge.

The evolution of the concrete vertical strains is quite sim-
ilar for models Basic and M2. In both cases, following the
onset of localization, strains concentrate in the bottom row
elements (no. 163 and 164) while the elements above (no.

191 and 192) begin unloading. Such observation expresses
the insensitivity of the model to the effects of tension stiff-
ening and tension softening after the peak, as expected from
the global-level results, see Fig. 13. On the other hand, the
effect of explicitly considering a confinement model (in M1
and M3) seems to play a major role in the features of SEM
localization: it now occurs simultaneously in the four ele-
ments (no. 163, 164, 191, and 192), while the unloading takes
place outside the selected region. Regarding the simulation
of the tensile steel strains, Fig. 14 presents evidence of a good
agreement between the different models.2

7 Conclusions

Specialized earthquake engineering practice currently resorts
to a variety of modelling techniques to simulate the inelas-
tic behaviour of RC walls. They broadly range from sim-
ple and fast plastic hinge analyses (PHAs) based on bilin-
ear idealizations of the moment–curvature curve, to time-
consuming shell element models (SEMs) that make use of
advanced multi-dimensional concrete and steel constitutive
models. At intermediate levels of computational speed and
output detail, one can find a wealth of approaches, typically

2 Due to numerical issues, the Basic model does not reach the steel
MSL.
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developed within the framework of beam theory; amongst
them, the so-called distributed plasticity models (DPMs) are
arguably the most well-known. Each of the abovementioned
approaches is composed of different levels of analysis, which
in the current document were categorized into local (material
and sectional, if applicable) and global levels (element and
structure).

All the above techniques—mainly PHAs and DPMs—
are widely employed in performance-based assessment and
design of structures. The latter builds primarily on the accu-
racy of global-level force-displacement response curves.
However, some recent codes and guidelines are encourag-
ing structural assessment based on local-level output quan-
tities, like concrete and rebar strains, as they relate directly
to structural damage. The main goal of this study was to
evaluate the scatter of these local-level simulations, compare
it with the scatter obtained at the global level, explore the
numerical and theoretical reasons for potential discrepan-
cies, and formulate recommendations for the analysis of RC
walls. A cantilever wall with three distinct but realistic shear
span ratios, subjected to simple pushover loadings, served as
case study. The input model parameters of the different mod-
elling approaches were chosen in such a way as to minimize
the inevitable inconsistencies arising from different software
options.

Starting from the results of the more slender wall where
a predominantly flexural response is expected, the present
study showed that the employed modelling techniques pro-
vide a scatter of predictions that increases very significantly
from the global to the local level. Simulation of global quan-
tities such as stiffness evolution up to peak or force capacity
do not seem to be sensitive to the chosen modelling approach,
which can therefore convey a deceitful impression of consis-
tency between the different numerical tools. However, this
misleading agreement was shown not to hold for what regards
the prediction of local-level engineering demand parameters
(concrete and rebar strains). While during an early phase of
the response, roughly until the peak of the force-displacement
curve, such divergences are somewhat limited, even if non-
negligible, they become extremely significant after the occur-
rence of localization. This fact indicates that performance-
based assessment of RC walls relying on non-regularized
strain EDPs can in general be highly untrustworthy and hence
it is not yet recommended for current engineering practice.
The consideration of other unmodelled phenomena, such as
strain penetration or anchorage failure, would further rein-
force this conclusion.

The importance of carrying out an extensive multi-level
assessment of each output is the second conclusion of this
study. This appears fundamental to characterize the depend-
ability of the response and, hence, to evaluate the ultimate
displacement. To estimate the range of results wherein the
results can be considered dependable, it was shown that three

distinct issues should be taken into account. First off, one
should make sure that pre-defined strain limits for the mater-
ial constitutive relations, below which the models are judged
physically representative, are not exceeded. Secondly, pos-
sible unwarranted consequences of numerical localization,
which were shown to manifest in very different forms for each
modelling approach, have to be identified. Lastly, the occur-
rence of other numerical issues that can potentially impact
the reliability of the results should also be monitored. For the
case studies in the present paper, localization was shown to be
the conditioning factor. Such observation suggests the need to
concentrate research and software development efforts in the
application of consistent regularization techniques in order
to push the reliability threshold towards higher levels of dis-
placement demands. Although there are regularization meth-
ods available for beam and shell element models, they are
still not widely spread in engineering software. Perhaps more
importantly, future improvements in the prediction of local
EDPs should be based on deeper understanding and char-
acterization of damage localization in experimentally tested
wall specimens, in order to calibrate the numerical regular-
ization techniques.

Software limitation often constrains engineers to use
DPMs and classical PHAs even when the influence of mem-
ber shear deformations is expected to be non-negligible. The
two walls with the shorter span ratios were used to evaluate
the additional modelling error due to the non-consideration
of shear, in comparison with the shell model. Although there
was an unsurprising increase in the disagreement between
the simulation methods both at the global and local levels, it
was again particularly evident at the latter, which underlines
the care that should be put when using strains as engineering
demand parameters.
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