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Abstract. Higher order and spectral methods have been used with success for elliptic and
parabolic initial and boundary value problems with smooth solutions. On the other hand, higher
order methods have been applied to hyperbolic problems with less success, as higher order approx-
imations of discontinuous solutions suffer from the Gibbs phenomenon. We extend past work and
show that spectral methods yield spectral convergence of moments, even when applied to problems
with discontinuous solutions. Besides spectral Fourier methods for periodic domains we also prove
high order convergence for adjoint-consistent non-periodic numerical methods, exemplified by the
discontinuous Galerkin finite element method.
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1. Introduction. High order and spectral methods have been used extensively
for solving elliptic and parabolic problems with smooth solutions. Among the most
well-known methods is the (pseudo-)spectral Fourier-Galerkin method [14, 11, 2, 4] on
periodic domains, as a numerical tool for the study of turbulence in the incompress-
ible Navier-Stokes equation. The most appealing property of such methods is their
pointwise exponential error convergence, whenever the solution is smooth. During the
decades higher order and spectral methods have been generalized to structured and
fully unstructured meshes [3, 19] with the goal to recover high order error convergence
rates for problems in complex geometries.

In contrast, hyperbolic conservation laws with discontinuous solutions have been
targeted less by high order and spectral methods as the approximation of a non-
smooth solution suffers from the Gibbs phenomenon: Pointwise convergence of an
N -th order scheme is degraded to O(1/N) globally. Inside the 1/N -interval around
the point of discontinuity the solution is disturbed by O(1) oscillations.

However Lax, Gottlieb, Maday, Tadmor, Shu and others [21, 13, 22, 24] have
argued that, even though pointwise convergence is lost, higher order information
is still inherently available. By using post-processing techniques [18, 27, 26, 12] it
may thus be possible to extract higher order accurate information from a solution
affected by the Gibbs phenomenon. Furthermore, with the post-processing techniques
discussed in [17, 16] it is possible to reconstruct a pointwise accurate solution (with
exponentially decaying error) up to the point of discontinuity, once the location of the
discontinuity is known. If accuracy is indeed maintained, post-processing of spectral
and high order methods seems to remedy all deficiencies. Unfortunately little is
known about the way spectral methods recover spectrally accurate information. For
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more complex problems it is unclear whether or not the post-processing techniques
[18, 27, 26, 12, 17, 16] suffices to recover this information.

Only a few rigorous results on the spectrally accurate information for general
problems are available: for a linear hyperbolic PDE with smooth coefficients and a
discontinuous initial condition Abarbanel et al. [1] showed that any moment can be
recovered with spectral accuracy. However, little is known for nonlinear PDEs, even
though numerical experiments [22, 10, 24] indicate that post-processing techniques
improve the solution quality and higher order pointwise convergence can be recovered.

In this work, we are concerned with the rigorous analysis of spectral methods
for linear hyperbolic conservation laws where the discontinuity of the solution is im-
posed either by a discontinuous advection coefficient, a non-smooth reaction term or
a discontinuous source term. We prove that while moments of the exact solution are
not spectrally accurate, highly accurate information is available and can be recovered
with spectral accuracy, provided the information is properly extracted. We show that
this result generalizes to stable, adjoint-consistent discretizations. In particular, we
investigate high order discontinuous Galerkin finite element discretizations.

The outline is as follows: In Section 2 we consider the spectral Fourier-Galerkin
method. Section 2.1 briefly reviews the classical result of [1] for discontinuous ini-
tial conditions. In Section 2.2 and 2.3 we prove that higher order information is not
destroyed by the spectral Fourier method for a linear conservation law with a dis-
continuous source term or discontinuous advection-reaction coefficient, respectively.
A generalization of the results to other, non-periodic, spectral methods is given in
Section 3, where we consider the discontinuous Galerkin finite element method. We
show in Section 3.1 that an adjoint-consistent discontinuous Galerkin discretization
allows us to recover a similar convergence result. The main results also hold true
when the imposed boundary conditions are discontinuous functions along the bound-
ary. In Section 4 we use nonlinear stability results of the discontinuous Galerkin finite
element method to generalize our main results to nonlinear scalar conservation laws.
Section 5 presents several numerical experiments and we give a conclusion and a short
outlook to future work in Section 6.

2. Fourier method. We consider the linear conservation law

(2.1) ∂tu(x, t) + ∂x (L(x)u(x, t)) = 0

with the hyperbolic differential operator L(x) = ∂xL(x) on the space-time domain
Ω× (0;T ] with initial conditions

(2.2) u(x, 0) = u0(x).

Without loss of generality we consider a one-dimensional periodic domain Ω in R.
The extension to a multi-dimensional periodic Ω ⊂ Rd is straight forward by a d-
dimensional tensor product. The semi-discrete Fourier-Galerkin approximation of
(2.1) is given by

(2.3) 〈∂tuN (x, t) + ∂xL(x)uN (x, t), exp (ikx)〉L2(Ω) = 0 ∀|k| ≤ N,

where 〈·〉L2(Ω) denotes the L2-scalar product on Ω and the N -th order solution is
represented as

(2.4) uN (x, t) =
∑
|p|≤N

ûp(t) exp (ipx) .
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The initial condition uN (0) is obtained by a simple L2-projection

(2.5) 〈uN (x, 0)− u0(x), exp (ikx)〉L2(Ω) = 0 ∀|k| ≤ N.

Remark 2.1. A slightly different Fourier-Galerkin method for the linear conser-
vation law (2.1) can be written as

(2.6) 〈∂tuN (x, t) + ∂x (LN (x)uN (x, t)) , exp (ikx)〉L2(Ω) = 0 ∀|k| ≤ N,

where we have a discrete operator LN obtained by an L2-projection

(2.7) 〈LN (x)− L(x), exp (ikx)〉L2(Ω) = 0 ∀|k| ≤ N.

Even though it is a non-standard Galerkin formulation, the results of this work hold
true for this formulation, too.

Before we discuss the technical details, let us briefly outline the four key points
of our results:

(i) In addition to equation (2.1), we define an auxiliary hyperbolic equation.
This auxiliary equation is closely related to the adjoint problem.

(ii) The original equation and its auxiliary problem, as well as their semi-discrete
versions, satisfy Green’s identity, i.e moments between the two solutions, either on
the continuous or on the semi-discrete level, are conserved in time.

(iii) We show that the numerical approximations of the initial moments are spec-
trally accurate. By applying Green’s identity we conclude that this information is
conserved as we evolve the original equation and its auxiliary problem forward in
time. This holds true in the continuous and semi-discrete setting.

(iv) To prove that information about any arbitrary f ∈ C∞ moment is available
with spectral accuracy, we take advantage of the hyperbolic nature of the auxiliary
problem. This allows us to solve the continuous auxiliary problem reverse in time and
to solve the semi-discrete auxiliary problem forward in time to recover the spectrally
accurate reconstructed solution.

2.1. Smooth coefficients and discontinuous initial condition. Here we
briefly review the results of [1] for discontinuous initial condition u0(x) ∈ L2(Ω) and
smooth coefficient L(x) ∈ C∞(Ω). This serves as a starting point of the following
discussions.

We define the auxiliary problem

(2.8) ∂tv(x, t) + L(x)∂xv(x, t) = 0

with initial condition

(2.9) v(x, 0) = v0(x).

Notice that the auxiliary problem (2.8) is related to the adjoint operator L∗ =
−L(x)∂x of (2.1) by

(2.10) ∂tv(x, t)− L∗v(x, t) = 0.

The semi-discrete Fourier-Galerkin formulation of the auxiliary problem (2.8) is given
by

(2.11) 〈∂tvN (x, t) + L(x)∂xvN (x, t), exp (ikx)〉L2(Ω) = 0 ∀|k| ≤ N
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where

(2.12) 〈vN (x, 0)− v0(x), exp(ikx)〉L2(Ω) = 0 ∀|k| ≤ N,

where vN (x, t) is expressed in terms of a Fourier series with coefficients v̂q(t) for all
|q| ≤ N . The following relation for the conservation law and the auxiliary problem
(2.8) holds true:

Lemma 2.1 (Continuous Green’s identity). The solutions u, v of (2.1), (2.8)
satisfy

(2.13) 〈u(x, t), v(x, t)〉L2(Ω) = 〈u0(x), v0(x)〉L2(Ω) ∀t ∈ (0;T ].

Proof. Using integration by parts we obtain for any t ∈ (0;T ]

∂t〈u(x, t), v(x, t)〉L2(Ω) = −〈∂xL(x)u(x, t), v(x, t)〉L2(Ω) − 〈u(x, t), L(x)∂xv(x, t)〉L2(Ω)

= −〈∂xL(x)u(x, t), v(x, t)〉L2(Ω) + 〈∂xL(x)u(x, t), v(x, t)〉L2(Ω)

= 0.

Similarly, the corresponding semi-discrete identity holds:
Lemma 2.2 (Semi-discrete Green’s identity). The solutions uN , vN of the semi-

discrete Fourier-Galerkin methods (2.3), (2.11) satisfy

(2.14) 〈uN (x, t), vN (x, t)〉L2(Ω) = 〈uN (x, 0), vN (x, 0)〉L2(Ω) ∀t ∈ (0;T ].

Proof. As uN and vN are trigonometric polynomials of order N and by construc-
tion of the Fourier-Galerkin method, they satisfy

(2.15) 〈∂tuN (x, t) + ∂x (L(x)uN (x, t)) , vN (x, t)〉L2(Ω) = 0

and

(2.16) 〈uN (x, t), ∂tvN (x, t) + L(x)∂xvN (x, t)〉L2(Ω) = 0.

Hence, after integration by parts we observe

(2.17) ∂t〈uN (x, t), vN (x, t)〉L2(Ω) = 0

and the Lemma follows.
The approximation error of the initial moment can be bounded as:
Lemma 2.3. Let u0 ∈ L2(Ω) and v0 ∈ C∞(Ω) and let uN (x) and vN (x) be the

N -th order L2-approximant (given by (2.5) and (2.12)). Then the estimate

(2.18) |〈uN , vN 〉 − 〈u0, v0〉| ≤ C
‖v(s)

0 ‖L2(Ω)

Ns
∼ C‖v0‖L2(Ω)

s!

Ns
.

holds for s ∈ N ; the constant C1 is independent of N . Hence, initial moments are
exponentially accurate for N →∞.

Proof. As vN (0) is a N -th order polynomial we have

(2.19) |〈uN (0)− u0, vN (0)〉L2(Ω)| = 0,
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by Galerkin orthogonality. By using Cauchy-Schwarz we have
(2.20)

|〈u0, vN (0)− v0〉L2(Ω)| ≤ C‖u0‖L2(Ω)‖vN − v0‖L2(Ω) ≤ C‖u0‖L2(Ω)‖v
(s)
0 ‖L2(Ω)/N

s.

Combining the two previous estimates we can conclude

|〈uN (0), vN (0)〉 − 〈u0, v0〉| = |〈uN (0)− u0, vN (0)〉+ 〈u0, vN (0)− v0〉|

≤ C‖u0‖L2(Ω)‖v
(s)
0 ‖L2(Ω)/N

s

≤ C‖u0‖L2(Ω)‖v0‖L2(Ω)s!/N
s,(2.21)

which completes the proof.
The three previous Lemmas can be combined to derive the main Theorem [1].
Theorem 2.4. Let u, v be the exact solution of (2.1) and (2.8). Furthermore,

let uN , vN be the semi-discrete solutions of the Fourier-Galerkin methods (2.3),(2.11)
and let v0 be an arbitrary function in C∞(Ω). Then the following estimate holds for
t ∈ (0;T ] and s ∈ N

(2.22) |〈uN , v〉L2(Ω) − 〈u, v〉L2(Ω)| ∼ C2‖v0‖L2(Ω)
s!

Ns
,

i.e. the moments of uN (calculated with respect to v) are exponentially accurate.
Proof. Since v0 ∈ C∞(Ω) and the adjoint problem (2.8) has smooth coefficients,

we have that v ∈ C∞(Ω). Hence, we can replace v by vN in the inner products as
N →∞. Therefore, we obtain

|〈uN , vN 〉L2(Ω) − 〈u, v〉L2(Ω)| = |〈uN (0), vN (0)〉L2(Ω) − 〈u0, v0〉L2(Ω)|
∼ C‖v0‖L2(Ω)s!/N

s,(2.23)

which completes the proof.

2.2. Discontinuous source term. We are now concerned with a linear hyper-
bolic conservation law with smooth coefficients L(x), zero initial condition u0 and a
discontinuous source term f ∈ L2(Ω)

(2.24) ∂tu(x, t) + ∂x (L(x)u(x, t)) = f(x, t)

in the space-time domain Ω× (0;T ].
The exact solution of (2.24) can be found by applying Duhamel’s principle, i.e.

by representing the solution of the inhomogeneous (2.24) by the solution of a homo-
geneous initial value problem. The solution u(x, t) is given by

(2.25) u(x, t) =

∫ t

0

Pα(f)(x, t)dα,

where Pα(f)(x, t) = wα(x, t) is the solution-operator to the problem

(2.26) ∂tw
α + ∂x (L(x)wα(x, t)) = 0

with initial condition

(2.27) wα(x, α) = f(x, α)

on the space-time domain Ω× (α;T ].
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The N -th order Fourier-Galerkin approximation to (2.24) reads

(2.28) 〈∂tuN (x, t) + ∂x (L(x)uN (x, t))− f(x, t), exp (ikx)〉L2(Ω) = 0 ∀|k| ≤ N,

and the discrete initial condition is obtained by (2.5).
Lemma 2.5 (Discrete Duhamel’s priniciple). The semi-discrete solution uN (x, t)

of the Fourier-Galerkin method is given by

(2.29) uN (x, t) =

∫ t

0

PαN (f)(x, t)dα

where PαN (f)(x, t) = wαN (x, t) is the solution operator to the semi-discrete homoge-
neous initial value problem

(2.30) 〈∂twαN (x, t) + ∂x (L(x)wαN (x, t)) , exp (ikx)〉L2(Ω) = 0 ∀|k| ≤ N

(2.31) 〈wαN (x, α)− f(x, α), exp (ikx)〉L2(Ω) = 0 ∀|k| ≤ N

on Ω× (α, T ].
Proof. The proof follows by direct calculation.
This discrete version of Duhamel’s principle allows us to use the results of Section

2.1, applied to the solutions wα, wαN of the homogeneous initial values problems for
any α ∈ (0;T ].

Theorem 2.6. Let u be the exact solution of (2.24) and uN be the semi-discrete
solution obtained by the Fourier-Galerkin method (2.28). Furthermore, let v be an
arbitrary function in C∞(Ω). Then the error estimate

(2.32) |〈uN (x, t), v(x, t)〉 − 〈u(x, t), v(x, t)〉| ≤ C3

‖v(s)‖L2(Ω)

Ns
∼ C3‖v‖L2(Ω)

s!

Ns

holds for s ∈ N and N →∞. The constant C3 is independent of N . Hence we recover
exponential accuracy for moments of u.

Proof. For any α ∈ (0;T ], we define an auxiliary equation by

(2.33) ∂tv
α(x, t) + L(x, t)∂xv

α(x, t) = 0

and for the semi-discrete problem as

(2.34) 〈exp (ikx) , ∂tv
α
N (x, t) + L(x, t)∂xv

α
N (x, t)〉L2(Ω) = 0 ∀|k| ≤ N.

By solving the hyperbolic equation backwards in time, such that vα(x, t) = v ∈
C∞(Ω), we obtain an initial condition v(x, α) = v0(α, x) ∈ C∞(Ω) (smoothness of v0

follows from L(x) ∈ C∞(Ω)). For each α ∈ (0;T ] we apply Theorem 2.4 and deduce
(2.35)

|〈PαN (fN )(x, t), v(x, t)〉 − 〈Pα(f)(x, t), v(x, t)〉| ≤ C
‖v(s)

0 ‖L2(Ω)

Ns
∼ C‖v0‖L2(Ω)

s!

Ns
.

The constant C is independent of N and bounded from above in terms of α. The
Theorem follows by applying the previous results for (2.25) and (2.29).
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2.3. Conservation law with discontinuous advection-reaction coefficients.
In this section we consider a linear hyperbolic conservation law with a reaction term

(2.36) ∂tu(x, t) + ∂x (L(x)u(x, t)) + σ(x)u(x, t) = 0,

in the space-time domain Ω × (0;T ]. We assume that L(x), σ(x) ∈ L2(Ω) are dis-
continuous coefficient functions. Furthermore, we assume that the initial condition is
smooth

(2.37) u(x, 0) = u0(x) ∈ C∞(Ω).

Let us define an auxiliary equation by

(2.38) ∂tv(x, t) + L(x)∂xv(x, t)− σ(x)v(x, t) = 0

with suitable initial condition

(2.39) v(x, 0) = v0(x) ∈ L2(Ω).

Notice that the differential operator L(x)∂x is hyperbolic, provided the original dif-
ferential operator ∂xL(x) in (2.36) is hyperbolic.

Lemma 2.7. Let u, v be the exact solution of (2.36) and (2.38), respectively.
Then, for any t ∈ (0;T ]

(2.40) 〈u(x, t), v(x, t)〉L2(Ω) = 〈u0(x), v0(x)〉L2(Ω)

holds true.
Proof. The Lemma follows by using integration by parts, cf. Lemma 2.1.
Similar to the previous sections, we define the N -th order Fourier-Galerkin scheme

for (2.36) and (2.38) as

(2.41) 〈∂tuN (x, t)+∂x (L(x)uN (x, t))+σ(x)uN (x, t), exp (ikx)〉L2(Ω) = 0 ∀|k| ≤ N

and

(2.42) 〈exp (ikx) , ∂tvN (x, t) + L(x)∂xvN (x, t)− σ(x)vN (x, t)〉L2(Ω) = 0 ∀|k| ≤ N.

Lemma 2.8. Let uN , vN be the numerical solutions of the N -th order Fourier(-
Galerkin) methods (2.41) and (2.42). Then for any t ∈ (0;T ]

(2.43) 〈uN (x, t), vN (x, t)〉L2(Ω) = 〈uN (x, 0), vN (x, 0)〉L2(Ω)

holds true.
Proof. The proof of this Lemma is similar to the proof of Lemma 2.2.
The two previous Lemmas give rise to the main result of this section. We show

that high order information is still contained in the numerical data and it can be
recovered:

Theorem 2.9. Let u0 ∈ C∞(Ω) and uN be the N -th order Fourier-Galerkin
solution of (2.41), and let u be the exact solution of (2.36). Furthermore, let f ∈
C∞(Ω) be an arbitrary smooth function. As N → ∞, there exists a sequence of
functions {gN} (where gN ∈ PN (Ω) is a trigonometric polynomial of order N) with

(2.44) lim
N→∞

‖gN − f‖L2(Ω) → 0
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and for any s ∈ N
(2.45)

|〈uN (x, T ), gN (x)〉L2(Ω) − 〈u(x, T ), f(x)〉L2(Ω)| ≤ C
‖u(s)

0 ‖L2(Ω)

Ns
∼ C‖u0‖L2(Ω)

s!

Ns
,

i.e. exponentially accurate information about moments is contained in the numerical
data. Furthermore, the functions gN are uniquely determined, i.e., gN = ΓN (f), with
some mapping ΓN : C∞(Ω)→ PN (Ω).

Proof. Let f(x) = v(x, T ) be an arbitrary function in C∞(Ω). Solve the auxiliary
problem (2.38) reverse in time and find v0(x). Notice, that this could be done due
to the hyperbolic nature of the differential operator L(x)∂x. However, due to the
low regularity of the coefficient function L(x), the corresponding solution v0 of the
backward problem at t = 0 will also be of low regularity.

Now, we use v0 as the initial condition for the Fourier-Galerkin method (2.42) of
the adjoint problem, obtained by

(2.46) 〈exp (ikx) , vN (x, 0)− v0(x)〉L2(Ω) = 0 ∀|k| ≤ N,

and solve the problem forward in time to T . We set gN (x) = vN (x, T ). As L, σ
are discontinuous functions, its numerical approximations LN , σN are not spectrally
accurate. Nevertheless, they converge with first order accuracy in L2, and hence we
have ‖gN − f‖L2(Ω) ∼ 1/N . Obviously, the procedure above defines a well-posed
mapping ΓN : C∞(Ω)→ PN (Ω).

Since uN (x, 0) is a trigonometric polynomial of order N , we have

(2.47) 〈uN (x, 0), vN (x, 0)− v0(x)〉L2(Ω) = 0,

by Galerkin orthogonality. Since u0 ∈ C∞(Ω), its L2-projection uN (0) is a spectrally
accurate approximation. Combined with (2.47) we have that for N →∞ and s ∈ N

(2.48) |〈uN (x, 0), gN (x, 0)〉L2(Ω) − 〈u0(x), v0(x)〉L2(Ω)| ≤ C
‖u(s)‖L2(Ω)

Ns
,

where C is independent of N . Hence the approximation of moments of the initial
conditions is spectrally accurate, even though the initial condition v0 of the adjoint
problem is a discontinuous function. The Theorem follows by applying Lemma 2.7
and Lemma 2.8 to (2.48).

We conclude this section by two short remarks regarding the previous theoretical
considerations.

Remark 2.2. In contrast to the results of Section 2.1, where the initial condition
was discontinuous, the term

(2.49) |〈uN (x, T ), f(x)〉L2(Ω) − 〈u(x, T ), f(x)〉L2(Ω)|

is in general not exponentially small as N →∞, i.e. it is of order O(1/N). Neverthe-
less, along the line θf + (1− θ)gN with θ ∈ [0; 1], accuracy of the moments improves
continuously as θ → 0. In this sense gN and f are connected.

Remark 2.3. Notice that the results above apply not only to scalar, linear hyper-
bolic conservation laws, but also to systems of conservation laws in multiple spatial
dimensions. Hence, it shows that even counter-propagating waves do not destroy high
order information of the moments in a numerical solution obtained by the Fourier-
Galerkin method.
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In the following section we consider non-periodic numerical methods and show
how the results of Section 2 can be generalized to more generic setups. In particular,
we consider the discontinuous Galerkin finite element method and prove that the
previous results apply here as well.

3. Discontinuous Galerkin method. The discontinuous Galerkin finite ele-
ment method has emerged as a popular numerical method for hyperbolic conservation
laws over the last decade. Originally, it was introduced by Reed and Hill in [23] to
solve the steady-state neutron transport equation and subsequently it analyzed and
developed extensively, in particular through a series of papers by Cockburn and Shu
[7, 6, 5, 8]. Today, it is applied to complex linear and nonlinear problems, as well as
to high order equations and equations in non-conservative forms. For a full review of
such developments, we refer the reader to [19, 9].

Let us briefly recall the basic formulation of DGFEM for a linear system of hy-
perbolic conservation laws with source terms, as given in equation (2.36). We start
from a tesselation Υ = {Ωi|i = 1, . . . , n} of the domain Ω into a set of n non-
overlapping elements Ωi. On the tesselation we define the broken Sobolev space
W k,p(Υ) = {f : Ω → R ∈ Lp(Ω),∀Ωi ∈ Υ : f |Ωi ∈ W k,p(Ωi)} and the broken poly-
nomial space of order N order PN (Υ) = {f : Ω → R,∀Ωi ∈ Υ : f ∈ PN (Ωi)}. The
variational formulation is obtained by multiplying (2.36) with a test function, chosen
from a properly defined space, denoted by X(Ω) in the following, integrating by parts
in each element and replacing the surface integrals by properly defined numerical flux
functions. Overall, we arrive at the following variational formulation of (2.36): Find
u ∈ L2(Ω) such that for all ψ ∈ X(Ω)

(3.1) ∂t

n∑
i=1

∫
Ωi

uψdV −
∫

Ωi

Lu∂xψdV +

∫
∂Ωi

L∗(u+, u−, n)ψdS +

∫
Ωi

σuψdV = 0.

The numerical flux L∗(u+, u−, n) is a numerical approximation to the flux Lun in
Ωi’s outward outer unit normal direction n. It is a function of the inner trace u− of
Ωi on ∂Ωi and the outer trace u+.

Finally, the semi-discrete DGFEM formulation is obtained by restricting the
ansatz and test functions space to the finite-dimensional space PN (Υ). Find uN ∈
PN (Υ) such that for all ψN ∈ PN (Υ)
(3.2)

∂t

n∑
i=1

∫
Ωi

uNψNdV−
∫

Ωi

LuN∂xψNdV+

∫
∂Ωi

L∗(u+
N , u

−
N , n)ψNdS+

∫
Ωi

σuNψNdV = 0.

For convenience, we write the semi-discrete scheme (3.2) in terms of the bilinear forms
M,B, i.e. find uN ∈ PN (Υ) such that

(3.3) ∂tM(uN , ψN ) + B(uN , ψN ) = 0 ∀ψN ∈ PN (Υ).

3.1. Adjoint-consistency. In this section, we prove that adjoint-consistency
and stability are sufficient conditions to ensure that the results of Section 2 carry over
to the discontinuous Galerkin method. We start by defining adjoint-consistency for
smooth hyperbolic problems:

Definition 3.1 (Adjoint-consistency). Let L, σ be in PN (Υ). The discontinuous
Galerkin approximations (3.3) of equation (2.36) is adjoint-consistent, if

(3.4) ∂tM(φN , v) + B(φN , v) = 0 ∀φN ∈ PN (Υ)
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is satisfied for all t ∈ (0;T ] by the exact solution v(x, t) of the adjoint problem

(3.5) ∂tv(x, t)− L(x)∂xv(x, t) + σ(x)v(x, t) = 0.

The previous definition provides a variational formulation of the numerical scheme
for the auxiliary problem (2.38), i.e. find vN ∈ PN (Υ) such that

(3.6) ∂tM(φN , vN )− B(φN , vN ) = 0 ∀φN ∈ PN (Υ).

A number of discontinuous Galerkin formulations are adjoint-consistent. In the
following we focus on upwind based formulations for reasons of simplicity.

Lemma 3.2. The DGFEM formulation (3.3) based on the numerical upwind flux
is adjoint consistent.

Proof. First we consider a simple scalar conservation law with upwind based
numerical flux

(3.7) L∗(u+
N , u

−
N , n) =

{
Lu− · n , if L · n > 0

Lu+ · n , else

and prove that this formulation is adjoint-consistent. A generalization to systems
of conservation laws is straight forward by considering a fully upwinded flux along
the characteristics of the differential operators. Inserting the flux into the DGFEM
formulation we obtain, after regrouping the trace terms on the faces for all Ωi, that

(3.8)

n∑
i=1

∫
Ωi

uN
(
∂tψN − L∂xψN + σψN

)
dV +

∫
∂Ωi,n·L≤0

uNL(ψ+
N − ψ

−
N ) · ndS = 0.

For ψN = v the volume integral vanishes by definition. Furthermore, by checking the
Rankine-Hugoniot condition for the solution v of (3.5), it is easy to check that the
solution is continuous along its characteristics. In particular, it implies that

(3.9)

∫
∂Ωi,n·L≤0

L(v+ − v−) · ndS = 0

for i = 1, . . . , n. Notice, that these arguments still hold true for systems of conserva-
tion laws. This shows

∂tM(φN , v) + B(φN , v) = 0 ∀φN ∈ PN (Υ)(3.10)

and the proof is complete.
Now, we are able to state the main result of this section for adjoint-consistent

discontinuous Galerkin methods.
Theorem 3.3. Theorems 2.4, 2.9 carry over to stable adjoint-consistent discon-

tinuous Galerkin finite element methods.
Proof. The proof for L, σ ∈ C∞(Ω) and discontinuous u0 ∈ L2(Ω) follows by the

proof of Theorem 2.4, applying the auxiliary numerical method (3.6) and by applying
basic error estimates of polynomial approximations in broken polynomial spaces [9].

For discontinuous L, σ ∈ L2(Ω) and smooth u0, we notice that LN and σN are
first order approximations as N → ∞. Therefore, the numerical schemes (3.3) and
(3.6) define first order schemes in terms of N . The remaining steps follow the proof
of Theorem 2.9.
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Whenever non-periodic domains Ω are considered, properly defined boundary
conditions have to be imposed. For problem (2.36) boundary conditions have to be
imposed for all characteristics entering the domain.

Lemma 3.4. Theorem 3.3 applies for adjoint-consistent discontinuous Galerkin
methods on non-periodic domains with imposed boundary conditions, even if the bound-
ary conditions are discontinuous along the boundary:

For L, σ ∈ C∞(Ω), discontinuous u0 and discontinuous boundary conditions and
f ∈ C∞(Ω) we obatin

(3.11) |〈uN , f〉L2(Ω) − 〈u, f〉L2(Ω)| ∼ C‖f‖L2(Ω)
s!

Ns
.

For discontinuous L, σ ∈ L2(Ω), u0 ∈ C∞(Ω) and discontinuous boundary condi-
tions and f ∈ C∞(Ω) we obtain

(3.12) |〈uN , gN 〉L2(Ω) − 〈u, f〉L2(Ω)| ≤ C
‖u(s)

0 ‖L2(Ω)

Ns
∼ C‖u0‖L2(Ω)

s!

Ns
.

Proof. Imposing the boundary conditions in the DGFEM adjoint-consistently,
implies that the auxiliary numerical scheme (3.6) has consistent boundary conditions.

For L, σ ∈ C∞(Ω) and discontinuous initial and boundary condition, the ad-
joint problem has smooth initial and boundary conditions and hence it can be solved
spectrally accurate as N → ∞. Therefore, all steps from the proof of Theorem 2.4,
together with the auxiliary numerical scheme (3.6), can be used to proof this Theorem
and the moments are exponentially accurate for N →∞.

For discontinuous L, σ, smooth u0 and discontinuous boundary conditions, we
simply follow the arguments of the proof of Theorem 3.3 and use scheme (3.6). This
completes the proof.

We finish this section with the following remark regarding simple mesh refinement,
i.e. h-convergence (where h ∼ 1/n), of an N -th order scheme (for fixed N):

Remark 3.1. The proofs of Theorem 3.3 and Lemma 3.4 show that for h-
convergence of on an N -th order scheme, high order accuracy is maintained, i.e.; let
uhN be the numerical solution on n ∼ 1/h elements of degree N , and let f ∈ C∞(Ω).
If the numerical schemes (3.3), (3.6) are optimal order convergent, we obtain, for the
discontinuous initial condition setup (with smooth coefficients), that

(3.13) |〈uhN , f〉L2(Ω) − 〈u, f〉L2(Ω)| ≤ ChN+1,

for h→ 0. For the discontinuous coefficient problem with smooth initial condition we
have

(3.14) |〈uhN , ghN 〉L2(Ω) − 〈u, f〉L2(Ω)| ≤ ChN+1,

where ghN are the auxiliary numerical results on n ∼ 1/h elements of degree N , and
‖ghN − f‖L2(Ω) ∼ h for h→ 0.

4. Some remarks for nonlinear conservation laws. Nonlinear conservation
laws

(4.1) ∂tu+ ∂xF (u) = 0
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require additional consideration as: Convergence of uN towards the entropy solution u
of the original equations is not always ensured. Let us give a small example to demon-
strate the problem with smoothing procedures for spectral methods: if we consider
the spectral-viscosity Fourier method [25] for Burgers equation ∂tu+ ∂xu

2/2 = 0, we
obtain

(4.2) 〈∂tuN + ∂x
1

2
u2
N − ∂xν(I − Pm)∂xuN , exp (ikx)〉L2(Ω) = 0 ∀|k| ≤ N

with ν = ν(N) and m = m(N) and Pm is the L2-projection onto the first m Fourier
modes. While it can be shown by compensated compactness arguments that uN
converges to the entropy solution , its formal auxiliary problem, given by

〈exp (ikx) , ∂tvN +
1

2
uN∂xvN + ∂xν(I − Pm)∂xvN 〉L2(Ω) = 0 ∀|k| ≤ N,(4.3)

is anti-dissipative in nature, and is therefore ill-posed.
The DGFEM is exceptional in the following sense: Jiang and Shu [20] showed

that if the method converges (for arbitrary N), it converges to the entropy solution,
provided a monotone numerical flux is used, and the flux is convex. Hence, the
viscosity introduced by the numerical flux suffices to guarantee that the solution
converges to the entropy solution. Since no additional dissipation is necessary, this
allows us to maintain the hyperbolic framework introduced in the previous sections.
In the following we focus on Burgers equation for simplicity. However, the basic ideas
are not limited to it. We assume for simplicity that u is either strictly positive or
strictly negative.

The semi-discrete DGFEM formulation for Burgers equation is

(4.4) ∂t

n∑
i=1

∫
Ωi

uNψNdV −
∫

Ωi

F (uN )∂xψNdV +

∫
∂Ωi

F ∗(u+
N , u

−
N , n)ψNdS = 0,

where we apply the Lax-Friedrich flux

(4.5) F ∗(u+
N , u

−
N , n) =

1

2

(
F (u−) + F (u+)

)
n+ α

(
u− − u+

)
with α being an upper bound of the absolute wave-speed in the normal direction. For
convenience we rewrite it in operator notation with the trilinear form F

(4.6) ∂tM(uN , ψN ) + F(uN , uN , ψN ) = 0 ∀ψN ∈ PN (Υ).

Lemma 4.1. The semi-discrete, Lax-Friedrich based DGFEM formulation for
Burgers equation is adjoint-consistent, i.e.; let u be the exact solution of the Burgers
equation, then

(4.7) ∂tM(φN , v) + F(φN , u, v) = 0 ∀φN ∈ PN (Υ)

for the exact solution v(x, t) of

(4.8) ∂tv(x, t)− u(x, t)

2
∂xv(x, t) = 0.

Proof. The local volume integrals in equation (4.4) clearly vanish for uN = u, φN
and ψN = v for all φN ∈ PN (Υ). To show that the numerical flux integral vanishes,
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we consider a unique face ∂κ and consider the two flux terms from its left (superscript
L) and right (superscript R) elements and sum them up
(4.9)∫

∂κ

1

2

(
F (u, φLN ) + F (u, φRN )

) (
vL − vR

)
nLdS +

∫
∂κ

α
(
φLN − φRN

) (
vL − vR

)
dS.

According to the Rankine-Hugoniot condition v ∈ C0(Ω) along its characteristics (i.e.
α(vL − vR) = 0 and un(vL − vR) = 0). Hence, the proof is complete.

Similar to Section 3, the previous discussion gives rise to a numerical scheme for
the auxiliary problem

(4.10) ∂tv(x, t) +
u(x, t)

2
∂xv(x, t) = 0

to recover vN ∈ PN (Υ) such that

(4.11) ∂tM(φN , vN )−F(φN , uN , vN ) = 0 ∀φN ∈ PN (Υ).

Theorem 4.2. Let u0 ∈ C∞(Ω) and uhN be the N -th order DGFEM solution on
1/h ∼ n elements. Let u be its exact solution and let f ∈ C∞(Ω). If uhN converges as
h → 0, it converges to the entropy solution and there exists a sequence of functions
{ghN} (where ghN ∈ PN (Υ)) with

(4.12) lim
n→∞

‖ghN − f‖L2(Ω) → 0

and

(4.13) |〈uN (x, T ), ghN (x)〉L2(Ω) − 〈u(x, T ), f(x)〉L2(Ω)| ≤ ChN+1.

Hence, high order accurate information about moments is contained in the numerical
data. Furthermore, the functions ghN are uniquely determined, i.e. ghN = ΓhN (f, u0),
with some mapping ΓhN : C∞(Ω)× C∞(Ω)→ PN (Υ).

Proof. Due to the strictly hyperbolic nature of the conservation law, we observe
that the auxiliary problem (4.10) is strictly hyperbolic, too. Hence, it can be solved
back and forth in time. The Theorem follows by applying the local entropy results
of [20] and by using arguments as in the proof of Theorem 3.3. Notice that ghN =
ΓhN (f, u0) is now a function of f and u0, as the auxiliary problem is dependent on the
exact solution u.

5. Numerical results. This section seeks to demonstrate the validity of the
theoretical considerations through numerical experiments. The problems in Sections
5.1-5.3 are solved by the Fourier-Galerkin method, while the problems in Sections 5.4-
5.5 are solved by the discontinuous Galerkin finite element method. All semi-discrete
systems are evolved forward in time by a classical fourth-order Runge-Kutta method
and we choose a sufficiently small time step to remove any temporal discretization
error. Before we begin the discussion of the numerical results, we briefly recall the
procedure of the numerical approach, which can be decomposed in the following steps

(i) Solve the original problem forward in time and obtain u(x, T ).
(ii) Solve the auxiliary partial differential equation backwards in time with given

f(x) = v(x, T ) ∈ C∞(Ω) and obtain v(x, 0).
(iii) Use v0(x) = v(x, 0) to advance the discrete auxiliary problem forward in

time and obtain gN (x) = vN (x, T ) ∈ PN .
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(iv) Compute 〈uN , f〉L2(Ω), which we refer to as the smooth moment), compute
〈uN , gN 〉L2(Ω), which we refer as the oscillatory moment, and consider convergence of
the two quantities towards the exact value 〈u, f〉L2(Ω).
We would like to emphasize that this procedure is a proof of concept only. In realistic
applications, where the reverse auxiliary problem cannot be solved exactly, post-
processing techniques like [18, 27, 26, 12, 17, 16] have to be applied. Furthermore,
it should be noted that the previous procedure requires a stable discretization of the
original and auxiliary problem. Stability of spectral Fourier-Galerkin methods for
variable coefficient problems has been shown in [15]. For the discontinuous Galerkin
method stability has been considered for example in [19].

5.1. Advection equation with discontinuous coefficient. We consider the
one-dimensional scalar advection equation ∂tu+ ∂xau = 0 on the space-time domain
[0; 2π]× (0; 1]. The advection coefficient is given by

(5.1) a(x) =

{
1 , if x ≤ 2π/3

0.5 , else

and the initial condition is set to

(5.2) u0(x) = cos(5x+ 0.1) + 0.1 cos(9x) + 0.001 sin(20x) + 0.0001 sin(44x).

Now, we investigate the convergence of moments for the numerical solutions uN to-
wards the the exact moments of u. In the following we set f(x) = sin(x), however
any other smooth function is possible. The resulting moment-error plots are shown
in Figure 1. The left plot shows the (raw) error of the first ten Fourier coefficients;
the error of the Fourier coefficients decays with 1/N as N → ∞. The right plot
shows the convergence of the moment 〈u, f〉L2(Ω) at T = 1. The smooth moment
〈uN , f〉L2(Ω) converges only like 1/N towards 〈u, f〉L2(Ω), while the oscillatory moment
〈uN , gN 〉L2(Ω) converges exponentially fast towards 〈u, f〉L2(Ω) as N → ∞. Overall,
the plots are in perfect agreement with the theoretical predictions of Section 2.

5.2. Reaction equation with discontinuous coefficient. Now consider the
reaction equation ∂tu + σu = 0 on the space-time domain [0; 2π] × (0; 1] with the
initial condition

(5.3) u0(x) = cos(5x+ 0.1) + 0.1 cos(9x) + 0.001 sin(20x) + 0.0001 sin(44x)

and the reaction coefficient

(5.4) σ(x) =

{
1 , if x ≤ 2π/3

0 , else.

Figure 2 shows the resulting error for the moments of uN ; the left plot shows the error
of the first ten Fourier coefficients, while the right plot illustrates the convergence
towards the exact value 〈u, f〉L2(Ω) with f = sin(x). Again we observe slow 1/N
convergence for the smooth moments, while the oscillatory moment is exponentially
accurate as N →∞.

5.3. Wave equation with discontinuous coefficients. We now consider the
wave equation

(5.5) ∂tu(x, t) + ∂x

(
0 a(x)
b(x) 0

)
· u(x, t) = 0
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/2/2

/2/2

Fig. 1. Error for C∞(Ω) moments of advection equation test case in Section 5.1 at time t = 1.0.
The left plot shows the error of the first ten Fourier coefficients for various orders. The right plot
shows the error for the C∞(Ω) moment 〈u, sin〉. Smooth moment refers to |〈uN , sin〉−〈u, sin〉|, while
oscillatory moment refers to |〈uN , gN 〉−〈u, sin〉|. The smooth moment converges only as 1/N , while
the oscillatory moment converges exponentially fast.



16 J. ZUDROP AND J. S. HESTHAVEN

/2/2

/2/2

Fig. 2. Error for C∞(Ω) moments of reaction equation test case in Section 5.2 at time t = 1.0.
The left plot shows the error of the first ten Fourier coefficients for various orders. The right plot
shows the error for the C∞(Ω) moment 〈u, sin〉.
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on the space-time domain [0; 2π]×(0; 0.6]. In contrast to the scalar advection equation,
the wave equation test case has characteristics pointing in both spatial directions, i.e.,
counter-propagating waves. The initial condition is set to

(5.6) u0(x) =

(
cos(4x+ 0.2) + 0.1 cos(7x) + 0.001 sin(16x) + 0.0001 sin(44x)
sin(5x+ 0.1) + 0.1 sin(9x) + 0.001 cos(20x) + 0.0001 cos(42x)

)
and the coefficients are

(5.7) a(x) = b(x) =

{
1 , if x ≤ 2π/3

0.5 , else.

Notice that the two waves of the given system propagate with speed
√
ab and −

√
ab.

By setting a, b as in equation (5.7) we have two counter-propagating waves through
the entire simulation domain.

Figure 3 shows the resulting error plots for the moments of u. The left plot gives
the error of the first ten Fourier coefficients of u1 (the first component of u). The
right plot provides error convergence of the moment for f = (sin, sin)T . Both plots
are in good agreement with our theoretical predictions, i.e.; they provide numerical
evidence that our theory also applies to setups with counter-propagating waves. The
smooth moment converges slowly with 1/N , while the oscillatory moment converges
exponentially fast as N →∞.

5.4. Advection equation with discontinuous coefficient and DGFEM.
We return to the scalar advection equation ∂tu+∂xau = 0, but discretize the equation
in space by the upwind discontinuous Galerkin method. The adjoint problem, to
obtain gN , is solved according to the naturally arising scheme in (3.6). We consider
the space-time domain [0; 2π]×(0;π/8], which is discretized by 6 elements and various
orders. We use a modal Legendre basis for the discontinuous Galerkin method and
apply quadrature rules of sufficient order to integrate all terms exactly. As initial
condition we use

(5.8) u0(x) = sin(x) + sin(2x+ 0.32) + sin(9x+ 1.31) + 0.1 sin(12x+ 2.11).

The coefficient a(x) is set to

(5.9) a(x) =

{
1.0 , if 1.0 ≤ x ≤ 2π/3 + 1.0

0.5 , else.

Notice that the discontinuity does not coincide with one of the internal element bound-
aries. The resulting error plot for the oscillatory moment with f(x) = sin(x) is shown
in Figure 4. Clearly, exponential error convergence in terms for N → ∞ can be
observed, in perfect agreement with the theory of Section 3.

5.5. Burgers equation and DGFEM. We consider the inviscid Burgers equa-
tion ∂tu+ ∂xu

2/2 = 0 with initial condition

(5.10) u0(x) = 2 + 0.5 sin 2x

on the periodic domain [0; 2π]. We apply a DGFEM discretization with 12 elements
and various orders. For this numerical test, we set

(5.11) v0(x) =

{
0 , if |x− c| > ε
1
ε exp −1

1−((x−c)/ε)2 , else
.
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/2/2

/2/2

Fig. 3. Error for C∞(Ω) moments of the wave equation test case in Section 5.3 at time t = 0.6.
The left plot shows the error of the first ten Fourier coefficients of u1 for various orders. The right
plot shows the moment error convergence for the smooth and oscillatory moment towards the exact
value of the moment 〈u, sin〉.
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/2/2

Fig. 4. Convergence of oscillatory moment 〈uN , gN 〉 towards 〈u, sin〉 for DGFEM discretized
advection equation test case of Section 5.4. The domain Ω is discretized by 6 elements. Spectral
convergence towards the exact moment can be observed.

We advance u, v forward in time until u develops a shock. For simplicity, we do not
solve the auxiliary problem backwards in time and set c = π and ε = 0.25. Figure 5
shows the resulting convergence plot for Burgers equation, confirming that high order
information is also available in the nonlinear setup. In Figure 6 the solutions uN ,vN
for N = 16 are shown at t = 0, π/4, π/2.

6. Conclusion. In this publication, we considered spectral methods for linear
hyperbolic conservation laws with discontinuous coefficients. Even though numerical
results suffer from Gibbs oscillations, degrading convergence at first glance, high order
information is still contained in the numerical results and can be recovered. This ap-
plies to spectral Fourier-Galerkin methods as well as other methods, like the DGFEM,
whenever these methods are adjoint-consistent and stable. In both cases information
about the moments converges exponentially fast after extraction, including L2-stable
nonlinear problems.
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