Probabilistic speed-density relationship for pedestrians based on data driven space and time representation

Marija Nikolić Michel Bierlaire Bilal Farooq

WORKSHOP ON PEDESTRIAN MODELS 2014

April 10, 2014
Introduction

Objective
Mathematical framework providing the detailed characterization of the pedestrian flow

Motivation

- Heterogeneity
- Complex interactions
- Multidirectional flows
Data

Data collection

• Surveys and counting
• Pedestrian tracking

Pedestrian studies

• Field data

 (Fruin, 1971; Navin and Wheeler 1969; Lam et al. 2003; Rastogi et al. 2013)

• Controlled experiments

 (Daamen and Hoogendoorn 2003; Seyfried et al., 2010; Kretz et al., 2006; Wong et al., 2010)
Data

Visiosafe technology

- Spin-off of EPFL
- Gare de Lausanne
- Anonymous sensor based pedestrian tracking
 - Thermal sensors
 - Range sensors
- Vision processing outcome
 \[(t, x(t), y(t), \text{pedestrian}_{id})\]

Ga re de Lausanne

Pedestrian underpass West

- The busiest walking area in the station
- Area $\approx 685 \text{m}^2$
- The maximum occupation ≈ 250 pedestrians
- Area covered by 32 sensors
Fundamental flow indicators

- Density \((k)\)
- Speed \((v)\)
- Flow \((q)\)
- Fundamental diagram

\[q = v \cdot k \]

source: (Daamen et al., 2005)
Fundamental flow indicators

Issues

- Spatio-temporal discretization is arbitrary
 - Results may be highly sensitive
 - Loss of heterogeneity
- Pedestrian flow is multidirectional
 (Lam et al. 2003; Wong et al., 2010)

Pedestrian-oriented flow characterization

- Detailed pedestrian tracking input
- Data driven space and time discretization
Density indicator

Pedestrian flow
- Number of pedestrians per unit of space at a given time

Spatial discretization
- Discretization units are too small - many remain empty
- Discretization units are too large - loss of information
Spatial discretization

Voronoi tessellations

- \(p_1, p_2, \ldots, p_N \) is a finite set of points
- Voronoi space decomposition assigns a region to each point

\[
V(p_i) = \{ p \mid \| p - p_i \| \leq \| p - p_j \|, i \neq j \}
\]

Spatial discretization

Numerical instability
- Small polygons allocated to pedestrians in very dense areas

Delaunay triangulation
- Clustering of critical cells
- ξ, threshold distance

$$d(p_i, p_j) < \xi, \forall i, j$$
Spatial discretization

Numerical instability

- Small polygons allocated to pedestrians in very dense areas

Sensitivity analyses

- $\xi = 0.4m$
- ω_i, weight associated to the corresponding space
Spatial discretization

Presence of obstacles

• Assumption: two points can be connected by a straight line
• Voronoi diagram for points and Voronoi diagram areas

\[
d(p_i, O) = \min_{o_j} \{ \|p_i - o_j\| \mid o_j \in O \}
\]
Density indicator

Definition

- Set of points: pedestrians
 \[p_i = (x_i, y_i, t_i) \]
- Pedestrian-oriented density indicator
 \[k_i = \frac{\omega_i}{|V(p_i)|} \]

Voronoi density map
Speed indicator

Pedestrian flow

- Instantaneous speed - rate of change of position of a pedestrian with respect to time and at a particular point.

Time discretization

- Discretization interval is too small - noisy observations
- Discretization interval is too large - lower precision
Time discretization

<table>
<thead>
<tr>
<th>Moment</th>
<th>$\Delta t=0.1s$</th>
<th>$\Delta t=0.2s$</th>
<th>$\Delta t=0.3s$</th>
<th>$\Delta t=0.4s$</th>
<th>$\Delta t=0.5s$</th>
<th>$\Delta t=0.6s$</th>
<th>$\Delta t=0.7s$</th>
<th>$\Delta t=0.8s$</th>
<th>$\Delta t=0.9s$</th>
<th>$\Delta t=1s$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1161</td>
<td>1.1158</td>
<td>1.1156</td>
<td>1.1155</td>
<td>1.1153</td>
<td>1.1152</td>
<td>1.1150</td>
<td>1.1149</td>
<td>1.1148</td>
<td>1.1147</td>
</tr>
<tr>
<td>2</td>
<td>0.4175</td>
<td>0.3296</td>
<td>0.2956</td>
<td>0.2747</td>
<td>0.2591</td>
<td>0.2465</td>
<td>0.2358</td>
<td>0.2263</td>
<td>0.2179</td>
<td>0.2104</td>
</tr>
<tr>
<td>3</td>
<td>5.7853</td>
<td>2.5957</td>
<td>1.7703</td>
<td>1.4310</td>
<td>1.2544</td>
<td>1.1476</td>
<td>1.0740</td>
<td>1.0188</td>
<td>0.9744</td>
<td>0.9363</td>
</tr>
</tbody>
</table>

- Kruskal-Wallis test ($H=4.61$, df=9, $p=0.87$)
 The moments represent the same population at 95% confidence level
Speed indicator

Definition

• Space-time representation
 \[p_i = (x_i, y_i, t_i) \]

• Pedestrian-oriented speed indicator
 \[v_i = \frac{\|p_i(t+\Delta t) - p_i(t-\Delta t)\|}{2\Delta t}, \quad \Delta t = 1s \]
Empirical speed-density relationship

Speed-density profiles

February 11.-15., 2013.: morning peak hour
Probabilistic approach

Kumaraswamy distribution

- Defined on the bounded region $[l, u]$
- Two non-negative shape parameters α and β
- The simple closed form of pdf $f(x)$ and cdf $F(x)$

$$f(x) = \frac{\alpha \cdot \beta \cdot (x-l)^{\alpha-1} \cdot ((u-l)^{\alpha} - (x-l)^{\alpha})^{\beta-1}}{(u-l)^{\alpha \cdot \beta}}$$

$$F(x) = 1 - (1 - \left(\frac{x-l}{u-l}\right)^{\alpha})^{\beta}$$

Probabilistic approach

Speed-density relationship

\[V \sim f(\alpha(k), \beta(k), l(k), u(k)) \]

- \(f \) - Kumaraswamy pdf
- \(V \) - speed
- \(k \) - density level
- \(\alpha, \beta \) - shape parameters
- \(u, l \) - boundary parameters
Probabilistic approach

Specification of speed-density relationship

\[V \sim f(\alpha(k), \beta(k), l(k), u(k)) \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification#1</th>
<th>Specification#2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha(k))</td>
<td>(a_\alpha k^3 + b_\alpha k^2 + c_\alpha k + d_\alpha)</td>
<td>(a_\alpha k^3 + b_\alpha k^2 + c_\alpha k + d_\alpha)</td>
</tr>
<tr>
<td>(\beta(k))</td>
<td>(a_\beta \exp(b_\beta k))</td>
<td>(a_\beta \exp(b_\beta k))</td>
</tr>
<tr>
<td>(u(k))</td>
<td>(a_u \exp(b_u k))</td>
<td>(a_u k^3 + b_u k^2 + c_u k + d_u)</td>
</tr>
<tr>
<td>(l(k))</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Probabilistic approach

Maximum likelihood estimation

\[
\log L = \sum_{i=1}^{n} \log(\alpha(k_i)) + \sum_{i=1}^{n} \log(\beta(k_i)) + \sum_{i=1}^{n} (\alpha(k_i) - 1) \log(v_i - l(k_i)) + \sum_{i=1}^{n} (\beta(k_i) - 1) \log((u(k_i) - l(k_i))^\alpha(k_i) - (v_i - l(k_i))^\alpha(k_i)) - \sum_{i=1}^{n} \alpha(k_i) \beta(k_i) \log(u(k_i) - l(k_i))
\]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification #1</th>
<th>Specification #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_\alpha)</td>
<td>-0.0076</td>
<td>0.0498</td>
</tr>
<tr>
<td>(b_\alpha)</td>
<td>0.0961</td>
<td>-0.2823</td>
</tr>
<tr>
<td>(c_\alpha)</td>
<td>-0.3781</td>
<td>-0.0207</td>
</tr>
<tr>
<td>(d_\alpha)</td>
<td>2.2185</td>
<td>2.0089</td>
</tr>
<tr>
<td>(a_\beta)</td>
<td>44.8191</td>
<td>45.362</td>
</tr>
<tr>
<td>(b_\beta)</td>
<td>-0.1057</td>
<td>-0.5945</td>
</tr>
<tr>
<td>(a_u)</td>
<td>7</td>
<td>0.0002</td>
</tr>
<tr>
<td>(b_u)</td>
<td>0</td>
<td>-0.0002</td>
</tr>
<tr>
<td>(c_u)</td>
<td>0.0010</td>
<td>8.0017</td>
</tr>
</tbody>
</table>

\(<log \ L> = -891880 \quad -932990.<\/div>
Probabilistic approach

Speed-density relationship

\[V \sim f(\alpha(k), \beta(k), l(k), u(k)) \]

\[\alpha(k) = a_\alpha k^3 + b_\alpha k^2 + c_\alpha k + d_\alpha \]
\[\beta(k) = a_\beta \exp(b_\beta k) \]
\[u(k) = 7 \]
\[l(k) = 0 \]

\[a_\alpha = -0.0076, \, b_\alpha = 0.0961, \, c_\alpha = -0.3781, \, d_\alpha = 2.2185 \]
\[a_\beta = 44.8191, \, b_\beta = -0.1057 \]
Probabilistic approach

Validation

- Moments of empirical and predicted discrete joint distributions
- Kruskal-Wallis test ($H=0.33$, df=1, $p=0.5637$)

The model and data represent the same population at 95% confidence level

<table>
<thead>
<tr>
<th>Moments</th>
<th>Data</th>
<th>Model prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.9333</td>
<td>0.9856</td>
</tr>
<tr>
<td>2</td>
<td>0.1845</td>
<td>0.2376</td>
</tr>
<tr>
<td>3</td>
<td>0.0426</td>
<td>0.0648</td>
</tr>
<tr>
<td>4</td>
<td>0.1521</td>
<td>0.1769</td>
</tr>
</tbody>
</table>
Conclusion

- Pedestrian-oriented flow characterization
- Data-driven space and time discretization
- Probabilistic methodology to describe observed heterogeneity
- Model estimation and validation based on pedestrian tracking input
- Case study: Gare de Lausanne
Future directions

- The framework is insufficient to explain the multidirectional nature of pedestrian flows
- Solution investigated: a stream-based approach
- Final objective: integration of the stream-based concept with the developed probabilistic framework
Thank you
References

References

Rastogi, R., Chandra, S. et al. (2013). Pedestrian flow characteristics for different pedestrian facilities and situations.
