000202527 001__ 202527
000202527 005__ 20181203023635.0
000202527 0247_ $$2doi$$a10.1103/PhysRevLett.113.023604
000202527 022__ $$a0031-9007
000202527 02470 $$2ISI$$a000341315100008
000202527 037__ $$aARTICLE
000202527 245__ $$aQuantum-Limited Amplification and Parametric Instability in the Reversed Dissipation Regime of Cavity Optomechanics
000202527 260__ $$bAmerican Physical Society$$c2014$$aCollege Pk
000202527 269__ $$a2014
000202527 300__ $$a5
000202527 336__ $$aJournal Articles
000202527 520__ $$aCavity optomechanical phenomena, such as cooling, amplification, or optomechanically induced transparency, emerge due to a strong imbalance in the dissipation rates of the parametrically coupled electromagnetic and mechanical resonators. Here we analyze the reversed dissipation regime where the mechanical energy relaxation rate exceeds the energy decay rate of the electromagnetic cavity. We demonstrate that this regime allows for mechanically induced amplification (or cooling) of the electromagnetic mode. Gain, bandwidth, and added noise of this electromagnetic amplifier are derived and compared to amplification in the normal dissipation regime. In addition, we analyze the parametric instability, i.e., optomechanical Brillouin lasing, and contrast it to conventional optomechanical phonon lasing. Finally, we propose an experimental scheme that realizes the reversed dissipation regime using parametric coupling and optomechanical cooling with a second electromagnetic mode enabling quantum-limited amplification. Recent advances in high-Q superconducting microwave resonators make the reversed dissipation regime experimentally realizable.
000202527 700__ $$uUniv Basel, Dept Phys, CH-4056 Basel, Switzerland$$aNunnenkamp, A.
000202527 700__ $$0245939$$g201058$$aSudhir, V.
000202527 700__ $$0247304$$g234786$$aFeofanov, A. K.
000202527 700__ $$aRoulet, A.
000202527 700__ $$aKippenberg, T. J.$$g182444$$0244694
000202527 773__ $$j113$$tPhysical Review Letters$$k2
000202527 909C0 $$0252348$$pLPQM
000202527 909CO $$particle$$ooai:infoscience.tind.io:202527$$pSB$$pSTI
000202527 917Z8 $$x182444
000202527 937__ $$aEPFL-ARTICLE-202527
000202527 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000202527 980__ $$aARTICLE