Abstract

The function of EspI, a 70kDa protein in Mycobacterium tuberculosis, has remained unclear. Although EspI is encoded by a gene within the esx-1 locus, in this study we clarify previous conflicting results and show that EspI is not essential for ESX-1-mediated secretion or virulence in M. tuberculosis. We also provide evidence that reduction of cellular ATP levels in wild-type M. tuberculosis using the drug bedaquiline completely blocks ESX-1-mediated secretion. Remarkably, M. tuberculosis lacking EspI fails to exhibit this phenotype. Furthermore, mutagenesis of a highly conserved ATP-binding motif in EspI renders M. tuberculosis incapable of shutting down ESX-1-mediated secretion during ATP depletion. Collectively these results show that M. tuberculosisEspI negatively regulates the ESX-1 secretion system in response to low cellular ATP levels and this function requires the ATP-binding motif. In light of our results the potential significance of EspI in ESX-1 function during latent tuberculosis infection and reactivation is also discussed.

Details