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Mathematical modelling of active contraction in isolated cardiomyocytes
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We investigate the interaction of intracellular calcium spatio-temporal variations with the self-sustained
contractions in cardiac myocytes. A consistent mathematical model is presented considering a hyperelas-
tic description of the passive mechanical properties of the cell, combined with an active-strain framework
to explain the active shortening of myocytes and its coupling with cytosolic and sarcoplasmic calcium
dynamics. A finite element method based on a Taylor-Hood discretization is employed to approximate the
nonlinear elasticity equations, whereas the calcium concentration and mechanical activation variables are
discretized by piecewise linear finite elements. Several numerical tests illustrate the ability of the model
in predicting key experimentally established characteristics including: (i) calcium propagation patterns
and contractility, (ii) the influence of boundary conditions and cell shape on the onset of structural and
active anisotropy and (iii) the high localized stress distributions at the focal adhesions. Besides, they also
highlight the potential of the method in elucidating some important subcellular mechanisms affecting,
e.g. cardiac repolarization.
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Fic. 1. Schematic representation of the functional components of an individual cardiomyocyte. Influx of Ca?* into the cell
increases intracellular [Ca?*], inducing a release of Ca?* from the sarcoplasmic reticulum towards cytosol and activating the
myofilaments.

1. Introduction

Although it has been widely accepted, since several years, that numerous cell types respond to
mechanical stimuli, no unanimous agreement can be found as to which specific stimuli cells directly
respond: stress, strain, strain-rate, strain energy, etc. (Humphrey, 2001). From a physical point of view,
it is well established that stress and strain concepts are fundamental in order to gain essential information
necessary in building up phenomenological constitutive models in mechanobiology. Such a procedure
is rapidly becoming a standard approach towards both the basic understanding of the biological system
properties and the design of experiments and medical applications. From a biomechanical point of view,
therefore, cardiovascular functions and development need the partnership of several different scientific
fields (Taber, 2001), i.e. biology, physics, mathematics, engineering, statistics and medicine.

In the last decade, several examples of different muscle organizations have been presented on an
experimental basis (Parker et al., 2008; Goldmann, 2012; Marshall & Lumpkin, 2012). The leading
ideas consider muscular organization as the product of a full functional adaptation of the cell spanning
from the sarcomere to the muscle bundle (Sheehy et al., 2012). Through such an approach boundary
constraints in the extracellular space have been recognized to potentiate the organization of cytoskele-
tal scaffolds for sarcomerogenesis, generating a positive feedback loop which polarizes the contrac-
tile cytoskeleton towards the functional organization of the tissue (Grosberg et al., 2011). Moreover,
cell—cell and cell-matrix adhesions have been suggested to cooperate for the cardiac function as an
electromechanical syncytium (McCain et al., 2012).

The excitation—contraction mechanisms in the cardiac muscle are coordinated by an autonomous
electrical activation generated in the sino-atrial node and propagated through the heart wall (Keener
& Sneyd, 1998). The cardiomyocyte is composed of myofibrils bundles containing sarcomeres, the cell
contractile units, consisting of thick and thin myofilaments, myosin and actin proteins. At the microscale
(see Fig. 1), the exchange of calcium between cytosol and the sarcoplasmic reticulum influences the
interaction of these myofilaments which onsets the shortening of the sarcomeres and drives the pro-
cess of excitation—contraction of the whole cardiac cell. During excitation the depolarization of the
sarcolemma induces the influx of extracellular calcium into the cardiomyocytes; the increase of intra-
cellular calcium induces more Ca* to be released from the sarcoplasmic reticulum; cytosolic Ca?* ions
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bind to troponin-C and activate the myofilaments. Although the excitation—contraction mechanism and
the specific process of Calcium-induced calcium release (CICR) taking place at the sub-cellular level
have major evidences both at the theoretical (Stern, 1992) and experimental (Fabiato, 1989) levels, the
full understanding of the exact interplay between the different processes is still lacking. These processes
play a key role in the overall cardiac function, and therefore understanding of these mechanisms can be
of utmost importance and interest for the study of many physiological and pathological heart conditions
(Hatano et al., 2011; Bers, 2002).

Several systemic effects of cardiac mechano-electric interactions can be studied by regarding elastic
properties of isolated cardiac myocytes (Iribe et al., 2009; Grosberg et al., 2011; McCain et al., 2012;
Sheehy et al., 2012). Experimental evidences (Deshpande et al., 2006) highlight that the largest forces
recorded are often present at locations where no visible stress fibres exist. Therefore stresses are induced
by micro-structure remodelling acting on a much finer scale. This important point justifies the choice of a
contractility model formulated at the continuum level, capable of characterizing such phenomena rather
than the description of an ensemble of discrete particles. These homogenization and generalization
procedures are based on the following key assumptions: (i) there is sufficient calcium in the cell so that
the mechanical activation is not limited by its availability; (ii) a representative volume element, much
smaller than the dimensions of the cell, can be identified; and (iii) the mechanical response is observable
from any direction.

In particular, we provide a quantitative simulation of the behaviour of single cells under a pre-
cise set of experimental conditions by proposing a novel chemo-active approach. lonic kinetics and
voltage-dependent equations describing potential generation and propagation at the cellular level are
important ingredients in cardiac electrophysiology (Pullan et al., 2005). However, in this preliminary
study, we focus on describing quantitatively the behaviour of the principal calcium quantities inside the
cardiomyocyte, noting that physiological models for [Ca?*] dynamics are able to mimic the coupling of
Ca®* with voltage (Bers, 2002).

Our mathematical model is based on an active-strain formulation for the description of the car-
diomyocyte active mechanical response following Cherubini et al. (2008) and Ruiz-Baier et al. (2013).
In this approach, the mechanical activation may be represented as a virtual multiplicative splitting of
the deformation gradient into a passive elastic response, and an active deformation depending directly
on the nonlinear dynamics that describe chemical reactions between calcium species, CICR. Although
the adopted calcium model is a well-established simplified version of the more complex ionic dynamics
of the cell physiology (Goldbeter et al., 1990; Sneyd et al., 2005; Tracqui et al., 2008), we are able to
quantitatively represent, at the same time, both the anisotropic passive intracellular organization, i.e. the
T-tubule system, and the anisotropic active emerging cellular structures, that may be important in the
single myocyte deformation and calcium regulation.

Inspired by Stalhand et al. (2008), we derive a model that is thermodynamically consistent in the
sense that the second law of thermodynamics is satisfied. Such a generalized model must be able to
characterize interactions among the ionic quantities, the cellular mechanical properties and the envi-
ronmental effects. Moreover, it must explain the influence of cell shape and boundary conditions on
the onset of structural anisotropies and stress concentrations. We demonstrate that the present model
is capable of addressing all of these requirements. With the aid of finite-element-based simulations we
will address the feasibility and adequateness of employing a macroscopic description of the mechano-
chemical behaviour of a single cell adopting an active strain approach. Such a modelling strategy can
therefore be used to explain the relation between microscopic cell dynamics and macroscopic cardiac
function. Model validation is performed in terms of calcium wave propagation velocity and active force
vs. sarcomere length relationship.
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The outline of the present work is as follows. In Section 2, we introduce the notation and the main
elements of the mechano-chemical model, namely, the elastic properties of the single cell, its activa-
tion and the mechanisms driving the propagation of intracellular calcium. Section 3 is devoted to the
presentation of our numerical method and to the discussion of the application to cardiomyocyte self-
sustained contractions. We also address some numerical experiments validating models and methods.
Some conclusions and discussion about limitations and potential extensions of this work are provided
in Section 4. Finally, details on the linearized momentum equations and algorithmic description are
addressed in the Appendix.

2. Coupled model based on an active-strain description
2.1 Kinematics

Let x represent the current position of a material particle of the myocyte $2; that occupied the position
X in the reference configuration 2 ¢ RY, d = 2, 3. By I" we denote the smooth boundary of £2 decom-
posed into a stress-free and a fixed boundary, I'y and I'p, respectively (defined on the reference domain).
From the deformation gradient tensor F = Vx, we derive the right and left Cauchy-Green deformation
tensors, C=F'F and B =FF', respectively, and the Jacobian J = det F characterizing the tangential
volume map. Here V = (3/9Xy &) stands for the material gradient.

The properties of hyperelastic materials are characterized by scalar stored energy functions whose
derivatives with respect to strain give stress measures. \We suppose that the passive material response
of the isolated cell can be described through an incompressible transversely isotropic constitutive law.
The strain energy function reads (see, e.g. Holzapfel, 2000; Holzapfel & Ogden, 2009)

W(F) = % exp(b[l; — d]) + %[exp(bf [ar — 1) — 1] — p(d — 1),

where p is a Lagrange multiplier to impose incompressibility, usually identified as the pressure field, a
is a shear modulus (a summary of the required parameter values and units is provided in Table 1), d is
the spatial dimension, as, b, by are experimentally fitted, and the invariants I; are defined as I; :=tr(C),
l4s :=Ffo - Ffo, where fq is a unitary direction vector in the reference configuration representing the
myofibrils direction and - is the scalar product of two vectors. The first Piola—Kirchhoff stress tensor
then reads

P= % =aexp(b[ly — dDF + 2as (145 — 1) exp(bs [las — 1]°)Ffo @ fo — pJFT.

In order to account for the activation of the cardiac contraction, we follow a model of active strain
(Nardinocchi & Teresi, 2007; Cherubini et al., 2009; Rossi et al., 2012), where we assume a multi-
plicative decomposition of the deformation gradient into a passive and an active component, F = FgFa.
This assumption means that the energy is not stored as strain energy, rather it corresponds to an internal
rearrangement of the material that does not produce macroscopic deformation. This fictitious process
is represented by an elastic intermediate configuration between the reference and the current configura-
tions (Fig. 2). The active deformation gradient assumes the generic form

Fa=1+ yfo ® fo + 155 ® S + yaNo ® No,

where yf, s and y;, are smooth scalar activation functions and ® stands for the usual tensor product
of two vectors. For convenience we introduce an orthogonal frame of reference (fg, S, No), where the
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TaBLE 1 Values and units for the material and CICR parameters
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F1c. 2. Sketch of the multiphysics coupling strategy.

directions 5y and ng can be chosen arbitrarily, orthogonal to fo, and we also denote any of these direc-
tions by the generic vector |y € {fg, S, No}. In this manner F5 describes the active deformations of the
cell in the three principal directions. We can accordingly define the following quantities for the inter-
mediate motion: Ca = FAFa, FE =FF,", Cg = F5' CF,%, and Ja = det Fa, Jg = detFg, J = JeJa. In
the aforementioned new configuration, the strain energy function is rewritten in terms of Fg, and then
pulled back to the reference configuration. This new stored energy can now be written as a function of
the following modified invariants:

- iy +2)
If ==tr(Ce) =tr(FTC'F) =1 — Y == ""Flo - Fly,
g n+1
" 2
|5 = Fefo - Fefo = FFA'fo - FFA o = (1 -1 —|—fy ) Ffo - Ffo = (1 + ) 2las.
f

The field y represents the active shortening of the cardiomyocytes, whereas ys, v, will take into account
the corresponding thickening, in order to satisfy the incompressibility of the cell itself (Iribe et al.,
2007), incorporated through the condition Ja = 1. Such an assumption also permits ys and y;, to be
defined in terms of y. In two dimensions we set y, =0, such that ys = (5 + 1)~ — 1, while ford =3
we put v, = ys = (v + 1)~/2 — 1. The (activated) Piola—Kirchhoff stress tensor assumes the following
expression:

P=2yr [(L+ »°F — g(Ffo ® fo| + Y Ffo ® fo — pIFT, (2.1)

1+ 0?
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where  g(y)=1/1+y)?—A+y? and yf=(a/2)expb[If —3]), i =ar(l5 — 1) exp(by
[I4E'f — 17%) (details on the derivation can be found in Rossi et al., 2012). Note that the second term of
the RHS in (2.1) represents an extra stress associated with an elastic deformation of the cross-bridges
(Stalhand et al., 2011). The precise constitutive form of the activation will be postponed to Section 2.3.

2.2 Calcium dynamics

The mechanisms of calcium wave propagation show diffusion of [Ca®*], coupled to CICR, from
channels sensitive to ryanodine release in the sarcoplasmic reticulum (Subramanian et al., 2001). Dig-
ital imaging techniques and intracellular calcium indicators provide insights concerning calcium dis-
tribution inside myocytes (Bdl et al., 2012). Here, the interaction between cytosolic and sarcoplasmic
calcium concentrations will be modelled following Tracqui et al. (2008) and Goldbeter et al. (1990).
The system of partial differential equations governing the simplified nonlinear dynamics of the CICR
behaviour consists of the mass balance equations

otwe = div(D(F)Vw,) + K(we, ws),

. (2.2)
oW = L(we, W) in 2 x (0,T),

where w; and w; represent the concentrations of cytosolic and sarcoplasmic calcium, respectively.
Only two calcium species are considered under the assumption that the level of IP; remains con-
stant during external stimulation (Goldbeter et al., 1990). The anisotropy of the calcium propagation
(Subramanian et al., 2001) along with the effect of the domain motion are modelled by the tensor
D = F~'diag(Ds, Ds, D,)F~T, where Dy, Ds, D, are diffusivities of cytosolic calcium in three orthogo-
nal directions. This expression is obtained from a pull-back of the diffusion in the deformed configu-
ration. All differential operators involved are considered with respect to Lagrangian coordinates. The
nonlinear reaction terms are given by

2 A\p 2
VoW V3W W,
K(We, Ws) = vg — £ LS — VgWe,
ko + w2 (kg + w3) (ks +W2)
2 A2
VoW V3W W,
L(we, Ws) = < € s V5Ws.

Ko+ W2 (ks +W2) (ke + W)

The term v; represents an inflow flux plus intracellular calcium pulses originated from the asynchrony
of calcium pools receptors (Goldbeter et al., 1990), v, and vz account for low and high levels of free
cytosolic calcium flux pumped from the sarcoplasmic reticulum, and v4 models an efflux of calcium out
of the cell following a chemical exchange process (Tracqui & Ohayon, 2009). In Fig. 3, we observe the
periodic behaviour of the associated dynamical system

ath = K(Wc: Ws): ath = L(W01 Ws)1

where sustained oscillations tend to a limit cycle. Even if such a formulation represents a simplifica-
tion of the complex intra-extracellular calcium dynamics, our choice is motivated by the more general
framework we consider from the chemo-mechanical viewpoint.
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F1G. 3. Phase portrait for the dynamical system associated to (2.2). The system nullclines for K =0 and L =0 are the curves in
green and red, respectively. Three computed trajectories after 2500 time steps are displayed starting from the states A= (0.1, 2),
B =(0.25,0.75) and C = (1.85, 1.35).

2.3 Calcium-induced activation and thermodynamic considerations

We derive a mathematical description of the activation mechanisms in the myofilaments using
macroscopic arguments from thermodynamics, mainly motivated by analogous arguments widely used
for the modelling of the overall cardiac function. A somewhat different macroscopic description,
based on averaging the kinetics of the cross-bridges (as in the early model by Huxley, 1957) has
been employed by Zahalak (1981). Another common strategy is based on a mean field approxima-
tion (see, e.g. Landesberg & Sideman, 1994; Negroni & Lascano, 2008; Katsnelson et al., 2009 and
the references therein), where the complex behaviour of the myofilaments is described by a represen-
tative cross-bridge. Although this method is known to fail in reproducing the cooperative interactions
in the sarcomeres (Rice & de Tombe, 2004), promising results correlating well with Monte Carlo sim-
ulations of spatially detailed models are shown in Washio et al. (2012). More detailed descriptions for
the cross-bridge kinetics could be independently incorporated in the present model without much effort.
This aspect will be addressed in a forthcoming contribution. For the sake of simplicity, in our minimal
model the activation is assumed to depend solely on the cytosolic calcium concentration, and the active
shortening field ¢ obeys the differential equation

3y = G(We, ¥p) (2.3)

representing the accumulation of a dimensional activation proportional to the exchange of cytosolic
calcium concentration (Laadhari et al., 2012). As discussed in Stalhand et al. (2011), the internal power
of the overall mechano-chemical system is

PZPSl.:-FPAZFA-FQW,

where P, is the stress generated by the cell through the power stroke (see Stalhand et al., 2008), w =
(We, Ws) T is the vector of calcium concentrations and Q is a chemical potential that drives the calcium
currents. The internal total energy satisfies £ =P + 7, where 7 is the thermal power. The second law
of thermodynamics then implies that T — 7 > 0 (where 7 is the entropy and T stands for temperature),
which, after introducing the free energy ¥ = T'(F, Fa, W, T) =& — T, rewrites as ¥ <P — 5T, and
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F1G. 4. Shape of the active force Pa given by (2.5) (solid line), and experimental results from Strobeck & Sonnenblick (1986)
(dots).

equivalently we arrive at

AT\ . AT\ . Y T\ -
P—— ) :F+(Pa——):F —— ] W— — | T>0. 24
( 8F) +( A BFA> A+ (Q BW) w (YH- 8T) 0 (2.4)

Since the mechanical energy W is written in an intermediate configuration and then pulled back to
the reference state, by assuming the vanishing of the first term in (2.4) we get the constitutive equation
(2.1). In addition, we impose Q =97 /ow and n = —97" /T, so that (2.4) holds whenever

T .
Ppr — — = BFa, 2.5
AT 9Fs PPA (2.5)
for some constant 8 = B(w, Fa) > 0. Given the particular form of Fa, we can rewrite the free energy
as a function of the minimal set of variables T = 7" (F, 5, w, T) and subsequently recast (2.5) in terms
of v and its time derivative as P — 97" /0y = Bys, for B = B(w, 35) > 0. In this way, we provide a
specification for the reaction term G in (2.3) as follows:

GWe, ) =p"" (PA —[R2A+ ol + 9 ) laslyE — Lo wf,f) :

1+ )8

where g’ (y) = —2(1 + yr) — 2/(1 + y)°. It only remains to assign a value to 8 and to the thermody-
namic force Pa driving the sarcomere contraction. We here propose to use g = 1/2w? > 0 and

Pa=§

do o, .
5>+ > “dysin(nl) + e, cos(nl)} ,

n=1

which depends directly on the sarcomere length I=1Io(1 + y5), where o is the average length in
an unloaded resting state. Here dy = 303.7033, d; = —89.9638, d, = —46.5338, d3 = —3.6730, e; =
71.8140, e, = —10.5776 and e3 = —7.6431 are parameters of a truncated Fourier series fitted to match
the experimental length—force relations reported in Strobeck & Sonnenblick (1986). A plot of the active
force is given in Fig. 4.
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F1G. 5. Typical temporal progression of the proposed coupling of calcium concentrations w; (solid), ws (dashed-dotted) and
mechanical activation ys (dashed) on a single material point, governed by (2.2) and (2.3).

The delay and amplitude of the calcium-activation interactions can be tuned with the specifica-
tion (2.3). The described model corresponds to a phenomenological, only qualitative, representation
of actin-myosin binding kinetics with typical timings and calcium function shapes (calcium sparks,
calcium gradients and calcium waves leading to local excitations) in agreement with more accurate
models coupling voltage and calcium kinetics. The reaction Kinetics of calcium concentrations and
active shortening of the sarcomeres regarded on a single material point behave as depicted in Fig. 5,
where it is possible to see a delay of activation (red dashed line) with respect to the cytosolic calcium
concentration which is qualitatively comparable with the results in Rice et al. (2008) (see also lyer et
al., 2004; Nobile et al. (2012)). On the other hand, the present model is not yet capable of correctly
describing force—velocity relationships, as we neglect the microscopical information about sarcomere
dynamics.

2.4 Complete Lagrangian formulation of the model

Summarizing, the following quasi-static system of coupled partial differential equations, written in
a pure Lagrangian formulation, describes the interaction between displacements of the hyperelastic
medium, mechanical activation and propagation of calcium concentrations:

. IW(FFY )

div (JA SF pF =0,
J=1,

we — div(D(F)Vwe) = K(we, Ws),

OWs = L(Wc, Ws),

(26)

oy = G(W, y1),

in 2 x (0,T). A sketch of the domain and boundaries is presented in Fig. 6. The problem is equipped
with suitable initial data for wc, ws, y¢ (see Table 3); the cytosolic calcium is subject to zero-flux bound-
ary conditions,

D(F)Vw;-v=0 onT,
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FiG. 6. Triangular mesh used in all numerical examples, consisting of 2781 nodes and 5560 elements. The cardiomyocyte dimen-
sions are ~ 109 um x 26 um. The 2D geometry has been reconstructed from confocal images of Srinivasan (2011). The sketch

of the domain boundaries represents only the case when I = I'p |J I'n.

whereas the boundary data for the mechanical problem are

u=0 onIp,
(2.7

Pv=0 on Iy,
Pv+au=0 on Iy,

where the boundary I" contains different regions for Dirichlet, Neumann and Robin conditions, respec-
tively. In this way, we are able to reproduce different experimental conditions related to cell-cell and
cell-matrix adhesions, in which (1) the displacement field is assumed to vanish on I'p, meaning that the
cell is fixed to a wall of the dish where the cell is located or it is in contact with a very rigid substrate; (2)
stress-free conditions are assumed on I'y where v is the normal vector to I", meaning that the cell has no
contacts or it is located on a very compliant substrate; (3) Robin boundary conditions are imposed on I'g,
where « is a parameter representing the elastic response due to the presence of a surrounding tissue, i.e.
contact with other myocytes, or fluid hindering and constraining the motion of the cell (see, e.g. Moireau
et al., 2012). This last configuration is the most biophysically tunable even if more complex boundary
conditions could be introduced in order to consider multiscale effects. (See Section 4.2 for a critical
discussion.) In practice, for our numerical tests, whenever we apply Robin-type data, we do it on the

whole boundary, i.e. IR =T
The weak form of the equations (2.6) and (2.7) (needed to obtain approximate solutions using finite
element methods) consists in finding at every t> 0, (u,p,We, Ws, ¥1) € H}, (£2) x L2(£2) x H1(£2) x

L2(£2) x L2(£2) such that

/P(u,p,yf):Vv=0, /q(J(u)—l)=0,
2 2

3 Wc¢c + / D(U)VWC ' V¢c - / K(Wc-Ws)¢c =0,
it Jo 2 2

d
5 Ws(bs _/ L(Wc:Ws)¢s=01
2 2

d
Vit —/ G(we, yp)¢r =0,
2

at /o
for all test functions (v,q, ¢, ¢s, 1) € HT, (2) x L2(2) x HL(2) x L?(22) x L*(£2), where

H} (£2) :={ve H'(£):v|p, =0}.
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To approximate this problem, we use a Galerkin finite element discretization, which results in a
system of nonlinear, coupled differential equations. In view of the discrete inf-sup (or LBB) condition
for mixed problems (Quarteroni & Valli, 1997) such as the linearized elasticity equations coming from
(2.6), we employ elements of the Taylor-Hood type, i.e. piecewise quadratic finite elements for the
spatial approximation of displacements, whereas the discretization of all other fields is accomplished
using continuous piecewise linear elements. A Newton method is used for the set of nonlinear equa-
tions (see Appendix), and the resulting linear systems are solved using the GMRES method with a
Cahouet—Chabard preconditioner (see, e.g. Quarteroni & Valli, 1997). A Picard (fixed-point) algorithm
is employed for the coupling, i.e. we first solve the nonlinear mechanics for fixed calcium concentra-
tions and activation and the second step consists in solving the reaction—diffusion system for wc, ws, y¢
for a fixed displacement. If needed, this process is repeated until a given tolerance is reached. Such
a strategy has been chosen basically to preserve modularity at the implementation level. Certainly, a
full monolithic approach (see Wong et al., 2013, and the references therein) is also feasible. The time
interval (0, T) is discretized into subintervals [t",t"*1], n=0, 1, ..., with t" = nAt where At =0.01ms
is a fixed timestep. The time integration is performed using an implicit Euler method.

3. Numerical results

The spatial convergence of the finite element method for the coupled system is first studied by consid-
ering the following steady version of problem (2.6):

—div (1 + yp)F — ag(yn)Ffo ® Ffo — pF ") =0,
J=1, (3.1)
—div(D(F) V) + vays = j(Ws),

imposing in (2.1) the parameters b =0 and a; = 0 on the dimensional domain 2 = (0, 1)> and where
j(ws) = (divs/da)ws — (dyv1/d2). We compare the numerical results with the following exact solution

of (3.1):
_ A
B <_A +1

where we set A = 0.1, ¢ = 0.1 and impose boundary conditions as follows:

T 2
1+ .
x,/\y) , p=aﬁ, yf = CSINX,

u-v=0 on][0,1] x {0} U {0} x [0, 1],

[+ — @ +mw4 "
py_J@ ( AT 03+ 907 ,0) on [0, 1] x {1},
0 on {1} x [0, 1],

D(F)Vys-v= {0 , on [0,1] x {0,1},
(1+2)*Dys cosxvyon {0, 1) x [0, 1],

This preliminary system is solved monolithically with a quasi-Newton method, linearizing with respect
to displacements u and pressure p only. This quasi-Newton scheme features linear convergence and
the total number ngy of iterations depends on the initial guess. We have employed (u, p, y) = (0,0, 0),
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TaBLE 2 Mesh-size, computed errors in H*- and L2-norms and observed convergence rates for the
numerical approximation of the steady-state problem (3.1) with P, — IP; — PP finite elements

h e1(u) ry(u) eo(p) ro(p) e1(vp) ry(yf) er rr

0.1 2.298107e—4 — 2.723865e—1 — 1.54062163 — 1.81323797 —

0.05 5.104010e—5 2.170743 1.410617e—1 0.949328 7.671277e—1 1.005973 9.082405e—1 0.997422
0.025 1.211586e—5 2.074733 7.172121e—2 0.975855 3.827318e—1 1.003133 4.544651e—1 0.998905
0.0125 2.956262e—6 2.035051 3.615468e—2 0.988217 1.911534e—1 1.001603 2.273110e—1 0.999502
0.00625 7.304491e—7 2.016918 1.815042e—2 0.994180 9.552305e—2 1.000810 1.136742e—1 0.999763
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FiG. 7. Mesh-size and computed errors in H!- and L2-norms for the numerical approximation of the steady-state problem (3.1)
with P, — IP; — IP; finite elements.

leading to ngy = 16. The unknowns (u, p, yf) are discretized using P, — P; — IP; elements. By
em(U) i=|U — Uplum(2)/IUlHm (@),

we denote relative errors in the H™-semi-norm and by rp (u) we denote the experimental rate of con-
vergence between two consecutive meshes, one with half meshsize h. Table 2 and Fig. 7 report the
convergence history for the coupled problem, where convergence rates of O(h) are observed for ¢, wg
in H! and for p in L2, while for u the convergence rate in the H!-norms is of order O(h?). In the
energy norm the total relative error ey is defined as the sum of the relative errors and the total order of
convergence rt is the minimum order among rp, (U), rm(p) and ry (vf).

We now provide a set of numerical experiments demonstrating some desirable features of the
mathematical model of transient mechano-chemical interactions. Confocal images of a single adult
rat cardiomyocyte in a stress-free/strain-free configuration (Srinivasan, 2011) are employed to create
a computational domain from which a triangular mesh 7y, of 2781 nodes and 5560 linear elements (see
Fig. 6) was carefully generated using the open source mesh manipulator Gmsh (Geuzaine & Remacle,
2009). The main axis of the cell has an approximate length of 109 um, while its diameter is about 26 . m.
The (passive) hyperelastic behaviour of the cell will be represented by setting in (2.1) the parameters
b =0and a; = 0 for the examples based on the confocal microscopy of the isolated cardiomyocyte and a
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transversely isotropic material law will be used in section 3.4. The semi-discrete problem will be solved
using the procedure illustrated in Algorithm 1.

A preferred direction of contraction for the 2D cases has been initially set to fo = (1,0)". Such
an assumption is inspired by the fact that the activation is generated along the direction given by the
sarcomeres’ orientation (Tracqui et al., 2008). If we regard a compound of cells instead, we may assume
that the myocytes are aligned along the direction of the collagen fibres (Stalhand et al., 2011). We specify

Algorithm 1 Semi-discrete mechano-chemical coupling
1: set initial conditions and Newton tolerance e
2: from the known values u", wl, wg, yf”
3 fort=(+1)At,..., T do

4 setinitial increment (5u ™, spj™™) = (0,0)
5. initialize Newton residual ex = 2¢
6:  given the known values uj*™*, pi+?
7. fork=0,... do
8: find (supt1, 8pRt) such that
/Q DP[suff1]: Vv + DPy[sppii]: Vv = — /Q Pc: Vv
/ qdcFy T VouRTl =~ / qd — 1), Wv,q.
2 2
9 update up T = uptt ++ suptt and pRtT =pptt + oppti
10: compute Newton residual eyy1
11: if e <ethen
12: break
13: end if
14:  endfor

: i i n+1 _ 0+l n+l _ ntl
15:  update mechanical solution u™™* =u, 71, p" = p 7

16:  compute F"*1 and D"+1
17:  update w2+t and wl*? from

1 1
—witlge + DIVl v — Kwd T wlype = — / Widc,
o At At Jo

1 1
o EW2+1¢S - L(W21W2+l)¢s = At /Q W2¢s| Ye, ¢s.

18:  update 3" from

1 1 f
| st —eoto =7 [ v .
19:  if the fixed point tolerance is not met then
20: repeat fort=n+1
21:  €ese
22: continue
23 endif

24: end for
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TaBrLe 3 Initial conditions for Examples 1-4

Variable Value Unit
u 0 pm
Vi —0.001 —
We 0.1 wM
Ws 1.6 wM

initial data for displacements, calcium concentrations and activation variables as in Table 3 that agree
with the tests in Tracqui & Ohayon (2009).

3.1 Boundary conditions effects

The simulations of self-sustained chemical and mechanical interactions are initiated with a protocol of
spark of cytosolic calcium near the nucleus of the cell (Iribe et al., 2009). As in Tracqui et al. (2008) and
Tracqui & Ohayon (2009), these are incorporated through an instantaneous increase in the parameter v;
(we use vy o = 2.45v7) on the desired location. These correspond to the smallest values that are able to
onset the calcium wave propagation.

In this first example, we discuss the importance of boundary conditions on the overall dynamics
emerging from the active-strain coupling, thus mimicking different physiological and/or experimental
scenarios under which the single myocyte could be studied. We present two simulations where the
displacements u are (1) of Robin type (left panels) on I" with Robin coefficient « =1 x 1072; (2) of
Dirichlet type (right panels), setting zero displacements on the left part of the boundary I (see Fig. 6)
and letting I'y with stress-free boundary conditions (spring boundary data).

In Fig. 8, we observe the propagation of w, towards the extremities of the cell comparing the two sets
of boundary conditions. In accordance with Fig. 5, we also see that the activation causes a contraction of
the cardiomyocyte. Already from the second pair of snapshots, the calcium propagation is qualitatively
different in both cases and the second final activation at later times confirms such a difference. The
propagating wave presents asymmetric maxima, and for case 2 in particular, a higher calcium wave
moves towards the fixed boundary. In general, however, a calcium accumulation is obtained at the
corners of the geometry.

The mechanical response presents differences in the shape of the deformations (see Fig. 9 as well).
Fixing the left part of the cell, one obtains an eventual bending of the myocyte (reached at the maximum
contracted state) that cannot be appreciated in the case of the spring boundary data. This numerical
example also points to the difficulty of predicting the exact motion of a single cardiomyocyte, since in
experimental settings it is observed to take place in ‘unexpected’ directions due to the irregularity of
gap junctions, or location and size of adhesion regions. However, some characteristic motions can be
recovered in our case, such as movement with respect to the principal direction and bending (Delbridge
& Roos, 1997).

A careful inspection of the velocity field in Fig. 8 and of the boundary motion in Fig. 9 highlights the
characters of the movement, with an almost perfect symmetry for the spring boundary case. In addition,
the model is able to reproduce the experimental values of the calcium conduction velocity as shown in
Fig. 10.
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calciumc

0.4 0.8 1.2 1.6
| -
0.19843 1.89425

Fic. 8. Example 1: Snapshots of the propagation of cytosolic calcium on the deformed configuration for times t=
0.2,1.0,2.1,3.0,4.0ms (from top to bottom), for Robin boundary conditions (left panels) and Dirichlet data (right panels). The
grey surface in each plot depicts the cell domain in the reference configuration. The colour code refers to the cytosolic calcium
concentration and the arrows represent the velocity field.

3.2 Calcium sparks initiated at different regions

Now we turn to the study of different stimulation regions to assess the importance of spatial localization
of Ca* release in determining the overall physiological output of a myocyte. We will stick to the case
of Robin boundary data as defined in the previous section. In the first test, we apply a calcium spark
originated from the left part of the cell and we observe a calcium wave propagating from left to right (see
Fig. 11). In all cases, we found a mean contraction amplitude of about 11 um and a mean contraction
duration of 1.2s.

The second test case we perform consists in initiating two calcium waves from the opposite sides
of the cell. The observed behaviour corresponds to the collision (annihilation) of the propagating waves
at the cell centre (see Fig. 12), as reported in the experiments by Ishide et al. (1990) and Zimmermann
& Walz (1997). We also see that the pressure remains controlled in both cases, but, as expected, it
accumulates near the zones of irregular boundaries.

In our third test case, we perform a double stimulation by calcium sparks from a region near the cen-
tre (with an initial increase v; o = 2.45v;) and one side of the cell (with an initial increase v; o = 1.3vy).
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F1G. 9. Example 1: Cell motion for pure Robin (top), Dirichlet—-Neumann (middle) and Dirichlet-Robin (bottom) boundary con-
ditions. The snapshots are taken at timest=0.2,0.6,1.0,...,3.0ms.
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F1G. 10. Example 3: Local variation in calcium wave propagation velocity (thick line) and comparison with results from Okada
et al. (2005) for unloaded (thin line) and isometric (thin line) tests (left). Propagation of the [Ca®"] waves (thick dashed line) and
comparison with unloaded (thin line) and isometric (thin line) tests from Okada et al. (2005) (right).

Such a setting simulates the calcium release from the nucleus and its entering from outside in the case
of coupling with a neighbouring cell. In Fig. 13, we see that the stronger wave coming from the nucleus
completely overtakes the wave starting from the left side, the latter being hardly noticeable already at

early times.

3.3 Analysis of stresses and calcium velocities

In Fig. 14, we present a set of snapshots of the trace of the Cauchy stress tensor and the principal stretch.
Robin boundary conditions are employed for the first set of plots, where we observe complex stress
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F1G. 11. Example 2a: Single calcium spark initiated on the left part of the cell. Snapshots of calcium concentrations w, (solid), wg
(dashed-dotted), rescaled mechanical activation y; (dashed) and velocity norm (dashed-dotted) computed along the main axis of
the cell (left panels) and pressure and velocity fields (right panels), at times t = 1.0, 3.0, 4.0 ms (a, b and c).

patterns only in the proximity of the stimulation region. On the other hand, when applying boundary data
of Dirichlet type, we can readily see regions of stress and stretch accumulation near the fixed boundary
and near the boundary irregularities. We obtained an average propagation velocity of 123 um/s for the
calcium wave. A comparison with results from Okada et al. (2005) in terms of local variation in the
calcium wave propagation velocity (computed as the ratio between the local maximal calcium gradient
and the time needed to reach the corresponding local maximal distance) and propagation of calcium is
presented in Fig. 10. We see that the velocity of propagation of the wavefront increases along the cell
length.

3.4 Active contraction on a cylinder

Finally, we test our model in its full complexity and we close with a series of computations performed
on an idealized myocyte represented by a cylinder of size 24 x 24 x 120 um. Here, the hyperelas-
tic behaviour of the cell is modelled by the anisotropic law (2.1) where the parameters are chosen
as in Holzapfel & Ogden (2009): a; = 15.193 KPa, b =20.417, by =11.176. The computational mesh
consists of 9486 vertices, 4660 triangles (lying on the boundaries) and 49500 tetrahedral elements.
We simulate the propagation of a calcium wave and its interaction with mechanical response using
the same parameters as in the previous examples. The sarcomere directions are initially chosen as
fo=(0,0,1)T. The elastic body is fixed on the boundary z =0 and stress-free conditions are imposed



276 R. RUIZ-BAIER ET AL.
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F1G. 12. Example 2b: Two calcium sparks initiated at both ends of the cell. Snapshots of pressures and velocities (left panels),
and calcium concentrations w, (solid), ws (dashed-dotted), rescaled mechanical activation ys (dashed) and velocity norm (dashed-
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dotted) computed along the main axis of the cell (right panels), at times t = 1.0, 3.0, 4.0 ms (a, b and c).

F1G. 13. Example 2c: Two calcium sparks initiated at the nucleus and left end of the cell. Snapshots of the propagation of calcium
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concentrations we (left) and ws (right) along the main axis of the cell at timest=0.2,0.4,...,3.4,3.6 ms.

elsewhere (see Fig. 15). As in Example 1, we observe a bending behaviour, also in accordance with
simulations in Tracqui & Ohayon (2009), and in general expected for an fibre-dependent activation (see

Rossi et al., 2012).
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FiG. 14. Example 3: Snapshots of the trace of the Cauchy tensor tr(PFT) (a), and principal stretches 15+ (b) plotted on the deformed
domains at times t = 0.1, 0.4, 0.8 ms (from top to bottom).

calciume
0.4 0.8 12 1.6

| |
0.19843 1.89425

Fic. 15. Example 4: From top left to bottom right, snapshots of a deformable cylinder and calcium concentration w; at time
t=0.17,0.25,1.23,2.68ms.

4. Discussion & concluding remarks

We have presented a mathematical model of the mechano-chemical coupling in individual cardiomy-
ocytes based on an active-strain approach (Ruiz-Baier et al., 2013). The proposed activation mechanism
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is consistent with a thermodynamic framework, as derived in Stalhand et al. (2011), and it entails a non-
linear interaction among calcium dynamics and local stretches. Our continuum approach is on the line
of recent bio-chemo-mechanical models of single cells (Deshpande et al., 2006, 2008; Ronan et al.,
2012) even if active-strain hyperelasticity has been adopted in this work. Our model reproduces the
propagation of calcium waves and the corresponding spontaneous contraction interacting within the
cell (Takamatsu et al., 1990). A finite element method is used to discretize the model equations; a set
of numerical experiments give evidence of the main features of the model and its ability in predicting
calcium propagation patterns and contractility in good agreement with experimental observations.

4.1 Experimental vs. modelled boundary conditions

Experimental evidences in adult rat myocyte demonstrated how the spatial segregation of cell-matrix
and cell-cell adhesions to myocyte borders have fundamental effects for effective electromechanical
coupling and arrhythmogenesis (Li et al., 2006). From the biomechanical point of view, such adhesions
play the role of specialized and localized boundary conditions, anchoring cells and tissues to the extra-
cellular matrix. However, being mechanosensitive in the cardiomyocytes, they act as tunable constraints
modifying the stress concentration according to the cell function and modulating tissue organization.
The effects of boundary conditions on cardiomyopathies have been experimentally well recognized
by increased fibrosis and tissue stiffening (Berry et al., 2006; Goktepe et al., 2010). In fact diseased
myocardium is usually studied throughout interaction between cells and stiff substrates, analysing the
increase in force generation, remodelling and adhesion. Extracellular space conditions have been further
hypothesized to potentiate the organization of cytoskeletal scaffolds and the contractile response as well
(Grosberg et al., 2011). Moreover, focal adhesions have been recently proposed to mechanically stabi-
lize myocyte form and functions (McCain et al., 2012) by analysing stiff micro-environment effects on
the intrinsic myocyte loading.

In this work, we studied the boundary conditions effects on the overall myocyte dynamics. In par-
ticular, we simulated self-sustained chemical and mechanical interactions mimicking different physio-
logical and/or experimental scenarios via Robin and Dirichlet boundary conditions: i.e. fixed regions
of the geometrical boundary, representing adhesion regions (Delbridge & Roos, 1997) or spring-like
boundaries, reproducing the presence of contact myocytes.

A careful inspection of calcium wave propagation and stress analysis confirmed several experimen-
tal evidences: (i) calcium activation timing and conduction velocities; (ii) asymmetric calcium maxima
and stress concentrations; (iii) myocyte bending and driving contraction due to internal calcium sparks.

4.2 Limitations and perspectives

Several limitations of this study should be mentioned. First, we point out that a critical aspect to obtain
physiological displacements of the cell is the correct treatment of boundary conditions other than a care-
ful representation of its anisotropic internal structure, its external geometry and its nonlinear chemical
dynamics. In the novel chemo-mechanic approach presented here, we have shown that Robin boundary
conditions can reproduce better the experimental observations, but there is still the issue of tuning the
Robin coefficient « in (2.7).

From the mechanical point of view an effective alternative (Laadhari et al., 2012) is to consider a
Eulerian description of a fluid-structure interaction problem where actual fluid is modelled outside the
elastic cell, and capturing the interface using a level-set approach.
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Other intracellular microstructures, i.e. intercalated discs, should be taken into account for a more
accurate geometric model. However, the complex multiscale phenomena involved and the lack of
knowledge of the specific mechanical properties of such structures require the fine tuning of simpli-
fied cellular models. In this perspective, the model proposed here represents an alternative approach in
terms of continuum mechanics theory.

From a chemical viewpoint, however, more complex boundary conditions should be introduced in
order to represent complete membrane ionic exchanges other than calcium, i.e. Na and K. The role of
gap junctions has been discarded in the present study. However, it would be crucial to capture a correct
propagation of electrical activation in non-isolated cardiac myocytes and the whole cardiac tissue, since
it provides a physiological description of the anisotropic electrical coupling. In addition, the contractile
dynamics of cardiomyocytes depends strongly on their spatial localization (ventricular, atrial, epi, endo)
and on the end terminal effects (McCain et al., 2012), which suggests that time delays of excitation
should be also considered.

A more accurate modelling of the calcium dynamics itself (here limited to two calcium concentra-
tions only) by introducing the Sodium-Calcium Exchanger and the NCX-NKA system, e.g. would help
in analysing rate-dependent effects, i.e. the positive force-frequency staircase effects, even if thermody-
namic and mechanical instabilities would deserve a more careful inspection in that case.

These effects will be incorporated in a forthcoming contribution. In particular, our perspective is
to couple the model presented here with accurate voltage plus calcium electrophysiological dynamics,
i.e. Luo—Rudy or Beeler—Reuter models (Pullan et al., 2005). Moreover, an experimental fine-tuning
of our model with stretch-activated channels (Seol et al., 2008) would introduce a further level of
complexity, allowing for a full bidirectional electromechanical coupling. Therefore, novel simulation-
based predictions of single myocyte contraction could be obtained both for physiological (Nishimura
et al., 2008) and pathological conditions (Ward et al., 2008). We foresee the application of our model
in describing the organization and remodelling of the internal myocyte structures during contraction
(Kockskamper et al., 2008) and the description of the diastolic calcium homeostasis as well, via a care-
ful modelling of the interplay between the SR calcium re-uptake and the calcium extrusion systems
(Louch et al., 2012). This allows our modelling approach to be extended and analysed for the failing
myocardium conditions. Non-local constitutive laws could be adopted for mimicking microstructure
cellular adaptation to the external substrate (Novak et al., 2004). The present model could be further
adopted to answer the cell biomechanics challenges regarding the measure of the mechanical proper-
ties of living cells that react to the measurement tools. Because the model captures the effects of the
external environment on the cellular structure, it could be used as a framework to design and inter-
pret advanced experiments in this direction. Finally, we stress that our model could be employed as
a building block for a multiscale cardiac model integrating cell, tissue and organ levels, with partic-
ular interest for the role of mechanoelectric feedback in the vulnerability to electric shocks (Li et al.,
2008) and in tissue pinning phenomena associated with arrhythmias (Pumir et al., 2005; Cherubini et
al., 2012).

Another limitation of the present work consists of the lack of a detailed description of cross-bridge
dynamics (Rice et al., 2008). Although calcium velocities of the proposed model show satisfactory
results, several features of contracting cardiomyocytes, like isometric force—length relationship, iso-
tonic force—velocity relationships (Iribe et al., 2009) and stimulation frequency effects on calcium
cycling (Louch et al., 2012), have not been tested. A following contribution will also take these
aspects into account. We consider the present approach as a trade-off between sophisticated ionic
models that do not consider a continuum mechanics description of the cell itself, and hyperelastic
anisotropic models for cardiomyocytes not including interaction with precise calcium dynamics. In this
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perspective a direct experimental test bed for such a modelling is represented by cell culture studies
(Parker et al., 2008; Zhang et al., 2008; Grosberg et al., 2011; McCain et al., 2012). On these bases,
a consistent validation of the feedback of the proposed calcium-active contraction coupling could be
obtained.
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Appendix. Linearized equations

The derivatives of the usual and modified invariants of the Cauchy-Green deformation tensor C with
respect to the deformation gradient F are

A, Iy JIE ,

— =2F, — =2Ffi®f, — =21 F-2 Ffo ® fo,
oF oF 0®fo oF A+ g(ypFfo ® fo
iy 21 “2Ff, @ f

O T A+ 0 & Tp.

In addition, we write the derivatives of the following quantities in the direction of a material displace-
ment increment Su:

DF[su] = Véu, DJ[Su]=JF TVéu, DF T[sul=—F T (Vsu)'FT,
8'1 a|4,f _
D (8F> [u]=2VéuF, D <8F> [6u] = 2VSuFfy ® fo,
DP[su] = 4byE(1 + y0)[(1 + y1)F : V8U + g(y1)Ffo - VSufo]F + 2(1 + y) v Evsu
+ {(4byEg (v [(L + y0)F : VU + g(yr)Ffo - Véufo]
+ (1 + yp *[4br (15 — DYy + 2a5 exp(by [15; — 1]))]Ffo - VSufo}Ffo @ fo
+2[90NYE + L+ v 2yE]Veufo ® fo — p(F™ : VSu)F T + pIFT(Véu)TF .

and the derivative of the stress tensor in the direction of a pressure increment 8p is DP[sp] = —8pJF .
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