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CH-1015 Lausanne, Switzerland
dDipartimento di Fisica e Astronomia, Università di Padova,
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Abstract: We introduce a model-independent strategy to study narrow resonances which

we apply to a heavy vector triplet of the Standard Model (SM) group for illustration.

The method is based on a simplified phenomenological Lagrangian which reproduces a

large class of explicit models. Firstly, this allows us to derive robust model-independent

phenomenological features and, conversely, to identify the peculiarities of different explicit

realizations. Secondly, limits on σ × BR can be converted into bounds on a few relevant

parameters in a fully analytic way, allowing for an interpretation in any given explicit

model. Based on the available 8 TeV LHC analyses, we derive current limits and interpret

them for vector triplets arising in weakly coupled (gauge) and strongly coupled (composite)

extensions of the SM. We point out that a model-independent limit setting procedure must

be based on purely on-shell quantities, like σ × BR. Finite width effects altering the

limits can be considerably reduced by focusing on the on-shell signal region. We illustrate

this aspect with a study of the invariant mass distribution in di-lepton searches and the

transverse mass distribution in lepton-neutrino final states. In addition to this paper we

provide a set of online tools available at a dedicated webpage [1].
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1 Introduction

Ensuring proper communication among theory and experiment is an important and stimu-

lating task, particularly in the context of hypothetical TeV-scale extensions of the Standard

Model (SM) which have to be compared with LHC data. The central aspect is that the

theory is not developed enough to provide sharp predictions of the experimental observ-

ables. Indeed, as of today, no single explicit complete model of New Physics, by which

precise predictions could be made, has emerged as a particularly motivated or compelling

possibility. Instead, we have interesting and motivated generic “frameworks” which are

defined as a set of broad assumptions on the New Physics and can not be translated into

a single concrete model. Robust qualitative predictions, like the existence of a given set

of particles, can be made within each framework but a quantitative comparison with the

data requires some explicit implementations of the general idea. Several models can be

constructed within each framework and since we have no idea how to choose one we would
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need all of them to be compared with the data. Obviously, this program can not be com-

pleted directly by the experimental collaborations because it would require tens of different

models for each New Physics analysis and a separate presentation of the results for each of

them. Moreover even if we knew the “true” New Physics theory, it would typically depend

on so many free parameters that a direct comparison with data, obtained by scanning the

multi-dimensional parameter space with numerical simulations, would be impossible. The

typical example of this situation is the Minimal Supersymmetric Standard Model (MSSM)

which, in spite of its well-known limitations, is still sometimes regarded as a plausible

benchmark model of low-energy supersymmetry. A full scan over its parameters is not

feasible, and one is forced to one of its restricted versions.

While the problem of data/theory comparison is probably too hard to be tackled in full

generality, progress can be made if we restrict our attention to direct experimental manifes-

tations of New Physics which consist of the production of reasonably narrow new particles.

In this case one can conveniently adopt the so-called “Simplified Model” strategy [2] which

has by now become a standard method in supersymmetry searches and starts to be devel-

oped also in non-supersymmetric frameworks [3–16]. The idea is extremely simple and after

all just the standard strategy adopted in hadron spectroscopy where, exactly like in the

present case, no complete predictive model is available. The point is that resonant searches

are typically not sensitive to all the details and the free parameters of the underlying model,

but only to those parameters or combinations of parameters that control the mass of the

resonance and the interactions involved in its production and decay. Therefore one can em-

ploy a simplified description of the resonance defined by a phenomenological Lagrangian

where only the relevant couplings and mass parameters are retained. Aside from symmetry

constraints, the Simplified Model Lagrangian does not need to fulfill any particular theoret-

ical requirement. Its sole goal is to provide a phenomenological parametrization of a broad

enough set of explicit models and should thus contain all and only those terms which are

present in the explicit constructions. The experimental results should be presented in the

parameter space of the phenomenological Lagrangian, expressed by confidence level curves

or, if possible, in terms of a likelihood function. In this way they could be easily translated

into any specific model where the phenomenological parameters can be computed explic-

itly. The advantage of this two-step approach is that the phenomenological parameters can

always be expressed analytically in terms of those of the “fundamental” theory. No matter

how complicated the model is, the comparison with the data will always be performed

analytically rather than with numerical simulations, in a way that furthermore does not

require any knowledge of the experimental details of the analysis.

The procedure is conveniently depicted as a two-span bridge, shown in figure 1, where

the Simplified Model constitutes the central pillar and the two spans represent the funda-

mental/phenomenological parameter relations and the comparison of the Simplified Model

with the data respectively. In the figure, we denote collectively as ~c the parameters of

the phenomenological Lagrangian and as L(~c) the likelihood function, or the CL curves,

as extracted from the experimental data. Notice that L(~c) could very well be the result

of a combination of different analyses, which can be preformed directly on the Simplified

Model parameter space. Once the likelihood or the CL limits are known, the experimental
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Figure 1. Pictorial view of the Bridge Method.

information is immediately translated into the free parameters ~p of any explicit model by

computing the phenomenological/explicit parameter relations ~c(~p).

When comparing the Simplified Model with the data, some care is required. The crucial

point is that the Simplified Model, differently for instance from the SM or the MSSM, is

not supposed to be a complete theory and attention must be paid not to use it outside its

realm of validity. Namely, the Simplified Model is constructed to describe only the on-shell

resonance production and decay. A good experimental search should thus be only sensitive

to the on-shell process and insensitive to the off-shell effects. The simplest example of

this situation, which we will discuss in detail, is the Drell-Yan (DY) process where the

invariant mass distribution of the final state is studied. Aside from the resonant peak,

the distribution is characterized by a low mass tail which can become prominent, because

of the rapidly-falling parton distribution functions, when the resonance approaches the

kinematical production threshold or when a large interference with the SM background is

present. Many different New Physics effects, not included in the Simplified Model, might

contribute to the tail and radically change the Simplified Model prediction. This could

come, for instance, from extra contact interactions or from heavier resonances produced in

the same channel. Around the peak, and only in this region, these effects are negligible

and the Simplified Model prediction is trustable. Indeed the peak shape is well described,

through the Breit-Wigner (BW) formula, in terms of purely on-shell quantities such as the

production rate times the Branching Ratio (BR) to the relevant final state, σ×BR, and by

the resonance total decay width. Experimental searches should focus on the peak and avoid

contamination from the other regions as much as possible. More in general, any resonance

search relies on the measurement of a given observable, either the number of events or

a distribution, restricted by suitable identification and selection cuts. Only “on-shell”

observables, which are exclusively sensitive to the resonance formation and decay, should

be employed in Simplified Model searches. Notice that whether an experimental observable

is on-shell or not can crucially depend on the cuts and must be checked case by case.

Aside from addressing the conceptual issues previously outlined, the usage of on-shell

observables is also an important practical simplification. Because of factorization of the

production cross-section and the decay BR, on-shell observables are “easy” to predict within

the Simplified Model since they do not depend on all the parameters of the phenomeno-

logical Lagrangian in a complicated way but only on few combinations that describe the

on-shell re-sonance. In the example of the invariant mass distribution, a search performed

at the peak can be turned into limits on σ×BR as a function of the resonance mass and
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possibly of its width. The width and BRs are simple analytical functions of the Simplified

Model parameters and also the total production rate can be expressed semi-analytically in

terms of the parton luminosities at each mass point. The mass- and width- dependent limits

can thus be mapped analytically into the phenomenological parameter space. Obviously,

taking the experimental efficiencies properly into account is essential. This is typically

rather easy because, as in the examples discussed in the following, the efficiencies only

depend on the resonance mass and can be extracted from a few benchmark simulations.

The tail of the invariant mass distribution, instead, has a more complicated dependence on

the model parameters and can not be predicted analytically. Therefore a search which is

sensitive to the tail can not be cast into a limit on σ×BR and it can be interpreted within

the model only by scanning the parameter space with long and demanding simulations.

The aim of the present paper is to illustrate these general concepts in detail by focusing

on the simple but well-motivated example of electroweak-charged spin one resonances which

are a common prediction of many New Physics scenarios. The latter can be weakly coupled,

like for instance Z ′ [6, 17–27] or W ′ [7, 8, 10, 11, 28–32] models, or strongly coupled

constructions such as Composite Higgs models [33–39] and some variants of Technicolor [40–

48]. The experimental searches for these particles, performed by ATLAS [49–59] and

CMS [60–69], provide theoretical interpretations of the results in terms of an extremely

small subset of the possible models and moreover restrict to limited benchmark regions of

the parameter space. This strategy does not provide a sufficient coverage of the theoretical

possibilities and furthermore it precludes reinterpretation in other models. In this paper

we will show that a great improvement can be achieved with the Bridge method.

The paper is organised as follows. In section 2 we introduce the Simplified Model

Lagrangian and discuss some basic aspects of its phenomenology. We also show how the

resonance production cross-section in the two relevant channels, DY and Vector Boson

Fusion (VFB), can be parametrized semi-analytically in a way that, as previously described,

allows for an efficient comparison of the model with the experimental results. We restrict,

for definiteness, to the case of an SU(2)L iso-triplet of resonances. The extension to other

representations should be straightforward and is left to future work. Section 3 is a survey

of the present experimental situation where, based on the present experimental limits,

we derive 95% CL exclusion bounds in the Simplified Model parameter space. This is

done by taking the experimental results at face value, i.e. by assuming that the limits are

properly set on σ×BR as a function of the resonance mass as presented by the experimental

collaborations. However this might not be completely correct, since important effects

associated with the finite resonance width could affect the σ×BR currently extracted by the

experiments, which would result in an incorrect definition of the quantity on which the limit

is set. In section 3.3 we will illustrate these effects in detail by focusing on the examples

of di-lepton and lepton-neutrino searches. In section 4 we relate the Simplified Model

to explicit constructions. Two examples are considered as representatives of weakly and

strongly coupled theories, showing that the Simplified Model is general enough to describe

both cases in different regions of the parameter space. The examples are the extension of

the SM gauge group described in ref. [17] and the effective description of Composite Higgs

models vectors of ref. [36]. In section 5 we present our Conclusions. Our Simplified Model is

implemented in a series of tools described in appendix C and available on the webpage [1].
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2 A simple simplified model

In addition to the SM fields and interactions we consider a real vector V a
µ , a = 1, 2, 3,

in the adjoint representation of SU(2)L and with vanishing hypercharge. It describes one

charged and one neutral heavy spin-one particle with the charge eigenstate fields defined

by the familiar relations

V ±µ =
V 1
µ ∓ iV 2

µ√
2

, V 0
µ = V 3

µ . (2.1)

Similarly to ref. [12], we describe the dynamics of the new vector by a simple phenomeno-

logical Lagrangian

LV =−1

4
D[µV

a
ν]D

[µV ν] a +
m2
V

2
V a
µ V

µ a (2.2)

+ i gV cHV
a
µH

†τa
↔
D
µ
H +

g2

gV
cFV

a
µ J

µ a
F

+
gV
2
cV V V εabcV

a
µ V

b
νD

[µV ν]c+g2
V cV V HHV

a
µ V

µ aH†H− g
2
cV VW εabcW

µ ν aV b
µV

c
ν .

The first line of the above equation contains the V kinetic and mass term, plus trilinear

and quadrilinear interactions with the vector bosons from the covariant derivatives

D[µV
a
ν] = DµV

a
ν −DνV

a
µ , DµV

a
ν = ∂µV

a
ν + g εabcW b

µV
c
ν , (2.3)

where g denotes the SU(2)L gauge coupling. Notice that the V a
µ fields are not mass eigen-

states as they mix with the W a
µ after EWSB and the mass parameter mV does not coincide

with the physical mass of the resonances.

The second line contains direct interactions of V with the Higgs current

iH†τa
↔
D
µ
H = iH†τaDµH − iDµH†τaH , (2.4)

and with the SM left-handed fermionic currents

Jµ aF =
∑
f

fLγ
µτafL , (2.5)

where τa = σa/2. The Higgs current term cH leads to vertices involving the physical

Higgs field and the three unphysical Goldstone bosons. By the Equivalence Theorem [70],

the Goldstones represent the longitudinally polarized SM vector bosons W and Z in the

high-energy regime which is relevant for the resonance production and decay. Thus cH
controls the V interactions with the SM vectors and with the Higgs, and in particular its

decays into bosonic channels. Similarly, cF describes the direct interaction with fermions,

which is responsible for both the resonance production by DY and for its fermionic decays.

In eq. (2.2) we reported, for shortness, a universal coupling of V to fermions, but in our

analysis we will consider a more general situation with different couplings to leptons, light

quarks and the third quark family. The interaction in eq. (2.2) should thus be generalized to

cFV · JF → clV · Jl + cqV · Jq + c3V · J3 . (2.6)
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Given the strong constraints on additional sources of lepton and light quark flavor viola-

tion further generalizations seem unnecessary. The proliferation of fermionic parameters

is a complication, but the effects of cl, cq, and c3 can be easily disentangled by combining

searches in different decay channels including third family quarks.

Finally, the third line of eq. (2.2) contains 3 new operators and free parameters, cV V V ,

cV V HH and cV VW . None of them, however, contains vertices of one V with light SM fields,

thus they do not contribute directly to V decays1 and single production processes which

are the only relevant for LHC phenomenology. As we will discuss in the following section,

they do affect the above processes only through the mixing of V with the W , but since the

mixing is typically small their effect is marginal. Therefore to a first approximation the

operators in the third line can be disregarded and the phenomenology described entirely

by the four parameters cH , cl, cq and c3, plus the mass term mV .

In eq. (2.2) we adopted a rather peculiar parametrization of the interaction terms, with

a coupling gV weighting extra insertions of V , of H and of the fermionic fields. Similarly,

the insertions of W in the last line is weighted by the SU(2)L coupling g. We take gV
to represent the typical strength of V interactions while the dimensionless coefficients “c”

parametrize the departures from the typical size. The parametrization of the fermion

couplings is an exception to this rule. In this case one extra factor of g2/g2
V has been

introduced. This is convenient because in all the explicit models we will be interested in,

both of weakly- and strongly-coupled origin, this factor is indeed present and the cF ’s,

as defined in eq. (2.2), are of order one. The other c’s are typically of order one, except

for cH which is of order one in the strongly-coupled scenario but can be reduced in the

weakly coupled case as described in section 4. In all cases, the c’s are never parametrically

larger than one, with the notable exception of the third family coupling c3, which could

be enhanced in strongly-coupled scenarios where the top quark mass is realized by the

mechanism of Partial Compositeness, see for instance [71]. The coupling gV can easily

vary over one order of magnitude in different scenarios, ranging from gV ∼ g ∼ 1 in the

“typical” weakly-coupled case up to gV ' 4π in the extreme strong limit. Therefore it is

useful to factor it out of the operator estimate. Notice that there is no sharp separation

between the weak and strong coupling regimes as nothing forbids to consider theories with

a “weak” UV origin but with large gV , of the order of a few, and “strong” models where gV
is reduced by the large number of colors of the strong sector, gV = 4π/

√
Nc. This provides

one additional motivation for our approach which interpolates between the two cases.

Our parametrization of the operators is useful at the theoretical level but obviously

redundant as gV could be reabsorbed in the c’s and is not a genuine new parameter of the

model. For instance, one could resolve the redundancy by setting cV V V = 1 and thus define

gV as the V self-interaction strength. However for practical purposes, and in particular

for presenting the experimental limits of the model, it could be easier to treat gV cH and

g2/gV cF , the combinations that enter in the vertices, as fundamental parameters.

1A priori, they could contribute to cascade decays. However, as we will see below, the mass splitting

between the neutral and the charged state is very small and cascade decays are extremely suppressed.
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In the Bridge approach, as discussed in the Introduction, the Simplified Model does

not need to fulfill any particular theoretical requirement and its only goal is to be simple

enough while still capable to reproduce a large set of explicit models. Therefore a com-

plete justification of our phenomenological Lagrangian has to be postponed to section 4

where the matching with explicit constructions will be discussed. However we can already

appreciate the general validity of the description by noticing that eq. (2.2) is the most

general Lagrangian compatible with the SM gauge invariance and with the CP symmetry

restricted to operators of energy dimension below or equal to 4. Assuming CP , which we

take to act on V as on the SM W

V a(~x, t)→ −(−)δa2V a(−~x, t) ⇔
{
V ±(~x, t)→ −V ∓(−~x, t)
V 0(~x, t)→ −V 0(−~x, t) , (2.7)

is very convenient as it avoids the proliferation of operators constructed with the Levi-

Civita tensor. Furthermore, it leads to a unique coupling of V to the Higgs parametrized

by only one real coefficient cH . CP is often also a good symmetry of explicit models so

that it is not a too restrictive assumption. It is important to note that the Lagrangian

with the imposed CP symmetry is also accidentally invariant under the custodial group

SO(4) = SU(2)L×SU(2)R, with V in the (3,1) representation. The custodial symmetry is

of course broken, but only by the gauging of the hypercharge. This makes our setup very

efficient in reproducing strongly-coupled scenarios where custodial symmetry is imposed

by construction.

One invariant low-dimensional operator, the W -V kinetic mixing

D[µV
a
ν]W

µνa , (2.8)

is not reported in eq. (2.2) because, following ref. [72], it can be eliminated from the

Lagrangian by a field redefinition of the form{
W a
µ →W a

µ + αV a
µ

V a
µ → βV a

µ

. (2.9)

More details on this can be found in appendix A. We also ignored dimension four quadri-

linear V interactions because they are irrelevant for the LHC phenomenology.

The choice of restricting to low-dimensional operators is clearly well-justified in the

weakly-coupled case where the underlying model is a renormalizable theory, but it is ques-

tionable in the strongly-coupled one where higher-dimensional operators are potentially

relevant. However in all strongly-coupled scenarios that obey the SILH paradigm [71] we

do have a reason to stop at d = 4. In the SILH power-counting the most relevant higher

dimensional operators are those involving extra powers of the Higgs or the V field which

are weighted by the Goldstone-Boson-Higgs decay constant f . Their effects are generically

suppressed by the parameter

ξ =
v2

f2
,

where v ' 246 GeV is the EWSB scale. Since ξ controls the departures from the Standard

Higgs model, compatibility with the ElectroWeak Precision Tests (EWPT) and the LHC
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Higgs coupling measurements [73, 74] requires ξ . 0.2. If the higher dimensional operators

do not induce any qualitatively new effect and only give relative corrections of order ξ

to the vertices, they can be safely ignored given the limited accuracy of the LHC direct

searches. This will be confirmed by the analysis of section 4.2

There exist however other scenarios where higher dimensional operators are unsup-

pressed and the parametrization of eq. (2.2) is insufficient. These are technicolor-like mod-

els where the strong sector condensate breaks the EW symmetry directly and the observed

Higgs boson is a light composite particle with couplings compatible with the SM expec-

tations. This might occur by accident or in hypothetical scenarios with a light Higgs-like

dilaton [77, 78]. In spite of the tension with EWPT and with the Higgs data it would be

interesting to generalize our framework in order to test also these ideas.

2.1 Basic phenomenology

Masses and mixings. Having introduced our Simplified Model in eq. (2.2), let us discuss

its phenomenology starting from the mass spectrum. After EWSB, the only massless state

is the photon which can be identified as the gauge field associated with the unbroken

U(1)em. It is given by the SM-like expression3

Aµ = cos θWBµ + sin θWW
3
µ , where tan θW =

g′

g
. (2.10)

The orthogonal combination, the Z field, instead acquires a mass and a mixing with V 0.

Notice that since the photon is given by the canonical SM expression, its couplings are also

canonical. The electric charge in our model is therefore simply given by

e =
gg′√
g2 + g′2

, ⇒
{
g = e/sin θW
g′ = e/cos θW

. (2.11)

In what follows we will trade g and g′ for e and sin θW , taking e as an input parameter

and setting it to the experimental value e ≈
√

4π/137.

The two other neutral mass eigenstates are the SM Z boson and one heavy vector of

mass M0 which are obtained by diagonalizing the mass matrix of the (Z, V 0) system by a

rotation (
Z

V 0

)
→
(

cos θN sin θN
− sin θN cos θN

)(
Z

V 0

)
. (2.12)

The mass matrix is

M2
N =

(
m̂2
Z cHζm̂Zm̂V

cHζm̂Zm̂V m̂2
V

)
, where


m̂Z = e

2 sin θW cos θW
v̂

m̂2
V = m2

V + g2
V cV V HH v̂

2

ζ = gV v̂
2 m̂V

. (2.13)

2Notice that this does not need to be the case a priori. There are plenty of examples concerning for

instance the LHC phenomenology of Composite Higgs Top Partners [13, 75, 76] where the Higgs non-

linearities can not be ignored.
3This only holds in the field basis where the W -V mixing of eq. (2.8) is set to zero, otherwise the photon

acquires a component along V 0.
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In the above equations v̂ denotes the Higgs field Vacuum Expectation Value (VEV) defined

by 〈H†H〉 = v̂2/2, which in our model can differ significantly from the physical EWSB scale

v = 246 GeV. The mass eigenvalues and the rotation angles are easily obtained by inverting

the relations

Tr
[
M2

N

]
= m̂2

Z + m̂2
V = m2

Z +M2
0 ,

Det
[
M2

N

]
= m̂2

Zm̂
2
V

(
1− c2

Hζ
2
)

= m2
ZM

2
0 ,

tan 2θN =
2 cHζm̂Zm̂V

m̂2
V − m̂2

Z

. (2.14)

Notice that the tangent can be uniquely inverted because the angle θN is in the range

[−π/4, π/4] in the parameter region we will be interested in, where m̂Z < m̂V .

The situation is similar in the charged sector where the mass matrix of the (W±, V ±)

system reads

M2
C =

(
m̂2
W cHζm̂W m̂V

cHζm̂W m̂V m̂2
V

)
, where m̂W =

e

2 sin θW
v̂ = cos θW m̂Z , (2.15)

and it is diagonalized by

Tr
[
M2

C

]
= m̂2

W + m̂2
V = m2

W +M2
+ ,

Det
[
M2

C

]
= m̂2

W m̂
2
V

(
1− c2

Hζ
2
)

= m2
WM

2
+ ,

tan 2θC =
2 cHζm̂W m̂V

m̂2
V − m̂2

W

. (2.16)

The charged and neutral mass matrices are connected by custodial symmetry, which can

be shown in full generality to imply

M2
C =

(
cos θW 0

0 1

)
M2

N

(
cos θW 0

0 1

)
. (2.17)

By taking the determinant of the above equation, or equivalently by comparing the charged

and neutral determinants in eq. (2.14) and eq. (2.16), we obtain a generalized custodial

relation among the physical masses

m2
WM

2
+ = cos2 θWm

2
ZM

2
0 . (2.18)

From the simple formulas above we can already derive interesting features of our model.

First of all, we can identify the physically “reasonable” region of its parameter space. We

aim at describing new vectors with masses at or above the TeV scale, but of course we also

want the SM masses mW,Z ∼ 100 GeV to be reproduced. Therefore we require a hierarchy

in the spectrum, which can only occur, barring unnatural cancellations in the determinant

of the mass matrices, if m̂W,Z and m̂V are hierarchical, i.e.

m̂W,Z

m̂V
∼ mW,Z

M+,0
. 10−1 � 1 . (2.19)
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The parameter ζ, instead, can be either very small or of order one. Both cases are realized

in explicit models. While ζ � 1 is the most common situation, ζ ∼ 1 only occurs in

strongly coupled scenarios at very large gV .

In the limit of eq. (2.19) we obtain simple approximate expressions for mW and mZ

m2
Z = m̂2

Z

(
1− c2

Hζ
2
) (

1 +O(m̂2
Z/m̂

2
V )
)
,

m2
W = m̂2

W

(
1− c2

Hζ
2
) (

1 +O(m̂2
W /m̂

2
V )
)
.

Since m̂W = cos θW m̂Z , the W -Z mass ratio is thus given, to percent accuracy, by

m2
W

m2
Z

' cos2 θW . (2.20)

In order to reproduce the observed ratio, which satisfies the ρ = 1 SM tree-level relation

to ∼ 1%, we need4

cos2 θW ≈
(
cos2 θW

)
exp

= 1− 0.23 . (2.21)

Similarly to the electric charge, also the weak mixing angle θW defined by eq. (2.10),

and therefore in turn the couplings g and g′, has to be close to the SM tree-level value.

Eq. (2.20) also has one important implication on the masses of the new vectors. When

combined with the custodial relation (2.18), it tells us that the charged and neutral V s are

practically degenerate

M2
+ = M2

0 (1 +O(%)) , (2.22)

and therefore they are expected to have comparable production rates at the LHC. Combin-

ing experimental searches of charged and neutral states could thus considerably improve

the reach, as discussed in ref. [12]. Furthermore, the small mass splitting implies a phase-

space suppression of cascade decays, which can be safely ignored. In the following, when

working at the leading order in the limit (2.19), we will ignore the mass splitting and denote

the mass of the charged and the neutral states collectively as MV . It is easy to check that

in that limit MV = m̂V .

Because of the hierarchy in the mass matrices, the mixing angles are naturally small.

By looking at eqs. (2.14) and (2.16) we estimate

θN,C ' cHζ
m̂W,Z

m̂V
. 10−1 . (2.23)

The couplings of the physical states are thus approximately those of the original Lagrangian

before the rotation. In particular, the W and Z couplings to fermions and among them-

selves mainly come from the SM Lagrangian and thus are automatically close to the SM

4The reader might be confused by the fact that m2
Z/(cos2 θWm

2
W ) is not strictly equal to one at tree-level

in our model, as eq. (2.20) shows, in spite of custodial symmetry. The reason is that custodial symmetry

provides a relation, reported in eq. (2.17), among the charged and neutral mass matrices and it does not

directly imply a relation among the W and Z mass eigenvalues appearing in eq. (2.20). Moreover, θW
defined by eq. (2.10) does not correspond to the physical one. Custodial Symmetry also implies that the T̂

parameter of EWPT, defined in terms of zero-momentum correlators and not of the pole masses, vanishes.

This fact is explicitly verified to hold in our model in appendix B.
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prediction thanks to the hierarchy (2.19) and to the parameter choice (2.21). Obviously

this is not enough to ensure the compatibility of the model with observations. The W

and Z couplings are very precisely measured, and the deviations due to new physics are

constrained at the per mil level. These measurements translate into limits on the so-called

EWPT observables [79–81], which we will compute in appendix B. This will allow us to

quantify the additional restrictions on the parameter space, besides eq. (2.19).5

Decay widths. Let us now turn to the resonance decays. The relevant channels are

di-lepton, di-quark and di-boson. The latter category includes final states with W s, Zs

and the Higgs boson. Decay into Wγ is also possible, but always with a tiny BR, as we

will show below.

After rotating to the mass basis, the couplings of the neutral and charged resonances

to left- and right-handed fermion chiralities can be written in a compact form6{
gNL = g2

gV
cF
2 cos θC +

(
gZL
)
SM

sin θN ' g2

gV
cF
2

gNR =
(
gZR
)
SM

sin θN ' 0
,{

gCL = g2

gV
cF√

2
cos θC +

(
gWL
)
SM

sin θC ' g2

gV
cF√

2

gCR = 0
, (2.24)

for each fermion species F = {l, q, 3}. In the above equation,
(
gW,ZL,R

)
SM

denote the ordi-

nary SM W and Z couplings (with the normalisation given by gWL = g/
√

2) that originate

from the fermion covariant derivatives and contribute to the V interactions because of the

rotation. Given that the rotation angles are small, the couplings further simplify, as also

shown in the equation. We see that the V s interact mainly with left-handed chiralities and

that all the couplings for each fermion species are controlled by the parameter combination

g2/gV cF . This gives tight correlations among different channels

Γ
V±→ff

′ ' 2 ΓV0→ff ' Nc[f ]

(
g2cF
gV

)2
MV

48π
, (2.25)

where Nc[f ] is the number of colors and is equal to 3 for the di-quark and to 1 for the

di-lepton decays. The parameters cF = {cl, cq, c3} control the relative BRs to leptons, light

quarks and the third family. Furthermore through the partial width to qq, cq controls the

DY production rate, as we will discuss in the following section.

The analysis is more subtle in the case of di-bosons. Obviously it is straightforward to

compute the V couplings to W , Z and Higgs in the Unitary Gauge, after rotating to the

mass eigenstates, and to obtain exact analytical formulas for the widths. We will not report

the resulting expressions because they are rather involved and not particularly informative.

5In the following we will not ask EWPT to be strictly satisfied since this would be in contrast with the

spirit of the Simplified Model approach adopted in this paper. We will take care of additional contributions

to EWPT, not calculable within the Simplified Model, by considering bounds looser than the strict 95%

CL limits.
6Because of quark mixings, the charged vector couplings should actually be multiplied by the appropriate

CKM matrix elements.
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It is instead useful to derive approximate decay widths in the limit of eq. (2.19), but the

Unitary Gauge is not suited for this purpose. In the Unitary Gauge there are no direct

couplings of V to the SM vectors, these interactions only emerge from the mixing and

are thus suppressed by the small mixing angles θN,C . 10−1. On this basis, one would

naively expect small di-boson widths and negligible BR. While this conclusion is correct

for the processes involving transversely polarized SM vectors, the decay to zero-helicity

longitudinal states is actually unsuppressed and potentially dominant. This is because

the longitudinal polarization vectors grow with the energy of the process and even a tiny

Unitary Gauge coupling can have a large effect in a high-energy reaction such as the decay

of V . Rather than in the Unitary Gauge, one could work in an “Equivalent Gauge” [82]

where the growth of the polarization vectors is avoided and the decay to longitudinals is

straightforwardly estimated. However for the present analysis, it is sufficient to rely on a

well-known result, the “Equivalence Theorem” [70], according to which the longitudinal

W and Z are equivalent to the corresponding Goldstone Bosons in the high energy limit.

Namely, the theorem states that if we parametrize the Higgs doublet as

H =

(
π2+i π1√

2
v̂+h−i π3√

2

)
≡
(

i π+
v̂+h−i π0√

2

)
, (2.26)

the longitudinal W s and Zs will be described by π+ and π0, respectively, with h being the

physical Higgs boson. The vector fields Wµ and Zµ can be safely ignored, and the terms

in the Lagrangian (2.2) which are relevant for the decay process are only

Lπ = −1

4
∂[µV

a
ν]∂

[µV ν] a +
M2
V

2
V a
µ V

µ a − cHζMV V
a
µ ∂

µπa

+
gV cH

2
V a
µ

(
∂µhπa − h ∂µπa + εabcπb∂µπc

)
+ 2 gV cV V HHζMV hV

a
µ V

µa +
gV
2
cV V V εabcV

a
µ V

b
ν ∂

[µV ν] c . (2.27)

We omitted the kinetic term of the massless Goldstones and of the physical Higgs for

shortness and we used m̂V ≡MV ≈M±,0.

We now see clearly why the longitudinal decays are unsuppressed. The second line of

the Lagrangian (2.27) contains a direct interaction of the resonance with the Goldstones.

This term gives a universal contribution to di-boson decays of the charged and neutral reso-

nances, which are all controlled by the same parameter combination gV cH . If it dominates,

all the relative BRs in these channels are fixed and uniquely predicted. This is indeed what

happens in most of the parameter space of our model where, as discussed in the previous

section, ζ is small. When instead ζ is of order one, the widths receive additional contribu-

tions because the V -π mixing in the first line of eq. (2.27) can not be ignored and must be

eliminated by a field redefinition before reading the physical couplings. The redefinition is

performed in two steps, first we shift

V a
µ → V a

µ +
cHζ

MV
∂µπ

a , (2.28)
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and we cancel the mixing from the variation of the mass term. Second, in order to restore

the canonical normalization of the π kinetic term we rescale

πa → 1√
1− c2

Hζ
2
πa . (2.29)

Notice that 1 − c2
Hζ

2 is necessarily positive to avoid negative-defined mass matrices, see

eqs. (2.14) and (2.16).

After these redefinitions, the relevant interactions become7

gV cH
2(1− c2

Hζ
2)

[
1 + cHcV V V ζ

2
]
εabcV a

µ π
b∂µπc

− gV cH√
1− c2

Hζ
2

[
1− 4cV V HHζ

2
]
hV a

µ ∂
µπa , (2.30)

and the partial widths are immediately computed

ΓV0→W+
LW

−
L
' ΓV±→W±L ZL

' g2
V c

2
HMV

192π

(1+cHcV V V ζ
2)2

(1− c2
Hζ

2)2
=
g2
V c

2
HMV

192π

[
1+O(ζ2)

]
,

ΓV0→ZLh ' ΓV±→W±L h
' g2

V c
2
HMV

192π

(1− 4cV V HHζ
2)2

1− c2
Hζ

2
=
g2
V c

2
HMV

192π

[
1 +O(ζ2)

]
.

(2.31)

We checked that these expressions reproduce the exact widths up to O(m̂2
W,Z/m̂

2
V ) correc-

tions, as expected. The channels which are not reported in the above equations are either

forbidden, like hh and γγ decays, or suppressed like the decays to transverse polarizations

which follow the estimate based on the Unitary Gauge and experience mixing angle sup-

pressions. In particular, the Wγ final state is generically suppressed, and exactly vanishes

in the explicit models described in section 4 that obey Minimal Coupling [8]. Notice that

the dominance of the longitudinal polarizations in the di-boson decays is an important sim-

plification for the interpretation of experimental searches. Indeed, the boosted vector boson

reconstruction could slightly depend on the helicity because different helicities would lead

to different kinematical distributions of the final decay products. In our case one can safely

restrict to the longitudinal case when computing the efficiencies and ignore the transverse.

From the analysis of the present section a very simple picture emerges. At small ζ,

all the decay widths are fixed, for a given resonance mass, by the couplings g2cF /gV and

gV cH , which therefore control the BRs in all the relevant channels. Furthermore, since

the dominant processes are 2→ 1 reactions and can be parametrized, as we will do in the

following section, in terms of the corresponding decay widths, the two parameters g2cF /gV
and gV cH also control the production rate. Therefore the phenomenology of the model is

entirely described, to a good approximation, in terms of the two couplings g2cF /gV and

gV cH and the mass MV , making, as anticipated in section 2.1, cV V V , cV V HH and cV VW
basically irrelevant. When studying our model at the LHC the latter parameters can be

safely ignored, or set to benchmark values inspired by explicit models, and the limits can

7To obtain the equations that follow we also made use of the V equations of motion or, equivalently, of

further field redefinitions.
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be presented in terms of the relevant couplings. Additional plausible assumptions, like the

universality of lepton and quark couplings, could further simplify the analysis.

Now that the general picture is clear, we can get an idea of the expected widths and

BRs by studying explicit models. We consider two benchmark models, A and B, which

correspond to two explicit models describing the heavy vectors, namely those in refs. [17]

and [36], respectively. As discussed in detail in section 4, all the c’s are fixed to specific

values in these models and the only free parameters are the resonance coupling gV and its

mass MV .8 We refer to the benchmark points at fixed gV = ḡV with the notation AgV =ḡV

and BgV =ḡV . Moreover, since models A and B are inspired, respectively, by weakly coupled

extensions of the SM gauge group and strongly coupled scenarios of EWSB, i.e. Composite

Higgs models, we will consider them in different regions of gV , relatively small, gV . 3,

and relatively large, gV & 3, respectively.

In figure 2 we show the BRs (upper panels) and the total widths (bottom panels) as

functions of the mass in models A (left panels) and B (right panels) for different values of

gV . As expected from the discussion above, model AgV =1, which predicts

gV cH ' g2cF /gV ' g2/gV , (2.32)

has comparable BRs into fermions and bosons, with a factor of two difference coming from

a numerical factor in the amplitude squared (cfr. eq. (2.31) with eq. (2.25)). The difference

between the BRs into leptons and quarks is due to the color factor, since cF is universal

both in A and B. The total width in model A decreases with increasing gV because of the

overall suppression g2/gV in eq. (2.32). In model B, on the contrary, cH is unsuppressed

gV cH ' −gV , g2cF /gV ' g2/gV . (2.33)

Therefore, for model BgV =3 the dominant BRs are into di-bosons and the fermionic decays

are extremely suppressed, of the order of one percent to one per mil. Moreover, the total

width increases with increasing gV since it is dominated by the di-boson width which grows

with gV as expected from eq. (2.33). Finally, in model B we see that a very large coupling

gV (the case of gV = 8 is shown in the figure) leads to an extremely broad resonance,

with Γ/M � 0.1, for which the experimental searches for a narrow resonance are no longer

motivated. For this reason we expect, if no further suppression is present in the parameter

cH , to be able to constrain heavy vector models from direct searches only up to gV of the

order 6 − 7. For larger couplings different searches become important, like for instance

those for four fermion contact interactions (see for instance refs. [83, 84]).

8Actually the model of ref. [36] has an additional freedom in the choice of cH , which depends on the

additional parameter aρ = mρ/(gρf) as in eq. (4.17), we define the benchmark model B by setting aρ = 1.
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Figure 2. Upper panel: branching Ratios for the two body decays of the neutral vector V 0 for the

benchmarks AgV =1 (left) and BgV =3 (right). Lower panel: total widths corresponding to different

values of the coupling gV in the models A (left) and B (right).

2.2 Production rates parameterized

The two main production mechanisms of the new vectors are DY and VBF.9 They are both

2→ 1 processes, therefore their cross-section can be expressed as

σ(pp→ V +X) =
∑
i,j ∈ p

ΓV → ij

MV

16π2(2J + 1)

(2Si + 1)(2Sj + 1)

C

CiCj

dLij
dŝ

∣∣∣∣∣
ŝ=M2

V

, (2.34)

in terms of the partial widths ΓV → ij of the inverse decay process V → ij. In the equation,

i, j = {q, q,W,Z} denote the colliding partons in the two protons, and dLij/dŝ|ŝ=M2
V

is

the corresponding parton luminosity evaluated at the resonance mass. The factor J is the

spin of the resonance and C its color factor, Si,j and Ci,j are the same quantities for the

initial states. If needed, the cross-section above could be corrected by a k-factor taking

into account higher order QCD corrections. It is important to remark that the only terms

in the above equation that carry some dependence on the model parameters are the partial

widths ΓV → ij , while the parton luminosities are completely model-independent factors

that can be encoded in universal fitted functions. Since the widths are analytical functions

of the parameters, this allows us to compute the production rates analytically, making the

exploration of different regions of the parameter space extremely fast as we will do in the

9We ignore the production in association with a gauge boson because it is always negligible for V masses

and couplings in the interesting region.
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following section. Simple approximated expressions of the partial widths are reported in

eqs. (2.25) and (2.31), however in the following we will make use of the exact expressions

embedded in a Mathematica code and available through a web interface in [1].

While the meaning of eq. (2.34) is completely obvious for DY, and the corresponding

luminosities are immediately computed by convoluting the quark and anti-quark Parton

Distribution Functions (PDF), the case of VBF requires additional comments. In eq. (2.34)

we are regarding the W and Z bosons as “partons”, or constituents of the proton, relying on

the validity of the Effective W Approximation (EWA) [85]. By the EWA, the vector bosons’

PDFs and in turn the corresponding luminosities are obtained by convoluting those of the

initial quarks with appropriate splitting functions. More details can be found, for instance,

in ref. [86]. A priori, all the W and Z polarizations should be taken into account, as well

as photons. However we saw above that the only sizable partial widths are those with

longitudinal vectors, thus we can safely restrict to the W+
LW

−
L and W±L ZL initial states for

the production of the neutral and the charged V , respectively. It is also important to remark

that the EWA has a limited range of validity and it is not expected to reproduce the full

partonic process pp→ V jj in all possible regimes [87]. It might fail if the W collision is not

sufficiently hard, which however is never the case for MV & 1 TeV, or if other kinematically

enhanced configurations exist, besides the standard VBF ones with forward energetic jets,

and contribute to the partonic process. Also this second issue does not arise in our case.

Finally, it might happen that other processes give a sizable contribution to the V jj final

state. This occurs in our case when the V coupling to fermions is much larger than the

one to vector bosons. In this case the V jj final state could arise, for instance, by dressing

the DY process with QCD initial state emissions. However when this happens the ordinary

DY, without extra parton-level jets, is necessarily the dominant production mechanism and

the failure of the EWA is irrelevant at the practical level. We checked that the partonic

cross-section is extremely well reproduced by eq. (2.34) in all regions of parameter space,

where the VBF rate is not completely negligible, up to order 1% of the DY one.

The parton luminosities for the various production processes are shown in figure 3. The

VBF luminosity is obviously much smaller than the DY one because of the αEW suppression

in the vector boson PDFs. Therefore VBF only has a chance of being comparable to DY

if the widths in qq are much smaller than those in di-bosons. We see from eqs. (2.25)

and (2.31) that this can happen only at large gV , and in the strongly coupled scenario, i.e.

model B, where cH is not suppressed. In the left panel of figure 4 we show the ratio of the

production cross-section by DY and VBF (for the V + for illustration) as a function of the

cF /cH ratio, for different masses at the LHC at 8 TeV and 14 TeV and at a hypothetical

100 TeV pp collider.10 Since, as shown by eq. (2.34) the production cross-section only

depends on the corresponding partial widths, we expect the ratio of the cross-sections to

depend only on cF /cH , up to small corrections of order ζ2. The overall normalization of

the cH , cF parameters has been set to cF = 0.1. This is necessary because for large gV ,

which is the case of interest, when the ratio cF /cH becomes small, a cF of order one would

10Studies of new vector resonances at future hadron collider were done in the context of the Snowmass

2013, see refs. [88–90].
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Figure 3. Value of the dL/dŝ for quark initial states (left plots) and longitudinal vector boson

initial states (right plots) for 8 TeV (first row) and 14 TeV (second row) LHC and for a hypothetical

100 TeV (last row) pp collider.

imply a large cH , which would lead to an unacceptably large total width. The left panel

of figure 4 shows that even for a large coupling gV = 6, a ratio of the order of 3(5) at

14(8) TeV is needed for VBF to become comparable with DY. This ratio can be regarded

as the needed suppression in cF with cH still being of order one. This further suppression

is not expected in general in explicit models, making VBF typically less relevant than DY.

For this reason we will ignore VBF in the analysis of the following section and consider only

DY production. For the 100 TeV option the situation is different, since for cF ≈ cH the DY

and VBF production cross-sections are comparable for resonances with masses in the few

TeV region. Obviously, for higher masses in the range of a few tens of TeV, close to the

reach of the 100 TeV collider, we expect VBF to be again subleading with respect to DY.
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Figure 4. Left panel: ratio of DY over VBF production cross-section for different masses and

collider energies. Right panel: expected number of events from VBF production for different masses,

collider energies and integrated luminosities, assuming cF = 0. For illustration we consider only V +.

If the coupling to fermions is suppressed for some reason, cF ≈ 0, VBF becomes the

dominant production mechanism and it is worth asking ourselves what the mass reach of

the LHC would be in this case. In order to answer, we notice that for cF ≈ 0 the fermionic

decays are suppressed and thus the total resonance width Γ is simply twice the di-boson

one which controls, by eq. (2.34), the production rate. Therefore, for a given mass, the

expected number of produced vectors (again V + for illustration) can be expressed as a

function of the Γ/MV ratio as shown in the right plot of figure 4 for different masses,

collider energies and integrated luminosities. The Γ/MV ratio is an important parameter,

as it quantifies to what extent the resonance can be reasonably regarded as a particle. By

requiring, for instance, Γ/MV . 0.3 we can obtain an upper bound on the expected signal.

We see that at the 8 TeV LHC with 20 fb−1 a reasonable number of events can be obtained

only for very low masses, around 1 TeV, where however we expect the resonance to be

excluded already by EWPT. At the LHC at 14 TeV with 100 fb−1, a sizable number of

events for a narrow resonance (Γ/M . 0.1) seems possible even for relatively high masses,

up to around 2.5 TeV. This makes VBF more interesting at the LHC at 14 TeV, at least to

explore specific scenarios where the coupling to fermions is suppressed.

3 Data and bounds

The ATLAS and CMS collaborations have performed a number of searches for heavy reso-

nances, not only spin-1, decaying into different final states both at the 7 and 8 TeV LHC.

A summary of the relevant searches for the study of a heavy vector boson, either charged

or neutral, is given in table 1. Most of those analyses present limits on the production

cross-section times BR, σ×BR, as a function of the resonance mass.11 If taken at face

value, these results are thus very easy to interpret because, as explained in the previous

section, both σ and BR can be expressed in analytical form. This allows us to draw exclu-

sion contours in the parameter space of our model in a very efficient way, as we will show

11We will not consider the ATLAS and CMS di-jet searches [59, 64] because the limits are given in terms

of an acceptance factor. Furthermore the sensitivity of the latter channels is rather reduced.
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Experiment Channel Reference

ATLAS
l+l−

[57]

CMS [66]

ATLAS
lν

[56]

CMS [65]

ATLAS ττ [55]

ATLAS
WZ → 3lν

[58]

CMS [69]

CMS qW, qZ,WW/WZ/ZZ → jj [63]

CMS WW → lνjj [60]

ATLAS
jj

[59]

CMS [64]

CMS bb̄, bg [62]

ATLAS
tt̄

[54]

CMS [67]

ATLAS
tb̄

[53]

CMS [68]

Table 1. Summary of experimental searches relevant for heavy vector resonances. We have not

mentioned the searches of refs. [52, 61] in the ZZ final state, since this channel is not present in

our Simplified Model. The gray entries will not be used when showing bounds in figure 5 since the

acceptances for a heavy vector are not reported in the experimental analyses.

in section 3.2. However, an important message of our paper, on which we will elaborate in

section 3.3, is that in some cases the experimental limits, depending on the details of the

analysis, are not properly set on σ×BR because of the effects of the finite resonance width.

This problem is particularly acute in strongly coupled scenarios, where the resonance is

broader and should be more carefully investigated by the experimental collaborations.

3.1 A first look at the LHC bounds

Before starting a detailed analysis, let us try to get an idea of the present experimental

bounds by discussing two illustrative examples. We consider the benchmark models AgV =1,

BgV =3 and BgV =6 described in the previous section (see e.g. eqs. (2.32) and (2.33) and the

related discussion) as representatives of the “typical” weakly coupled (A) and strongly

coupled (B) models with intermediate (gV = 3) and rather strong coupling (gV = 6).

In the benchmarks, all the parameters of the model are fixed except for the resonance

mass, so they can be very easily compared with the data by looking at figure 5 where we

report the bounds on the production cross-sections obtained by rescaling the experimental

bounds on σ×BR by the corresponding BRs and superimpose the theoretical predictions

for the production of the positively charged and neutral states. Let us discuss the results

separately for the two cases.

Weakly coupled heavy vector. This case is depicted in the upper plots of figure 5.

A weakly coupled vector resonance, arising for example as a new gauge boson from an
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pp Æ V0 pp Æ V±
V0 Æ tt

V0 ÆWW Æ jj V0 ÆWW Æ lnqq
_

'

V±Æ W±ZÆ 3l±n V±Æ W±ZÆ jj

V0 Æ ll V±Æ l±n

V0 Æ tt V± Æ tb

Figure 5. Bounds on the production cross-section for some of the searches listed in table 1 (except

for the ones in grey) for the models AgV =1 (upper plots), BgV =3 (middle plots) and BgV =6 (lower

plots) for the CMS (left) and ATLAS (right) collaborations. The black dashed curves represent the

theoretical prediction for the corresponding benchmark points (pp → V ± in the legend stands for

the sum of the production cross section of the V + and V − vectors).
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extension of the SM gauge group, is excluded for masses below around 3 TeV for gV = 1.

The limit deteriorates for larger coupling because the DY rate is reduced according to

eq. (2.25). For this reason, much weaker bounds will be obtained in the strongly-coupled

case described below. The bound is dominated by searches into di-lepton and lepton neu-

trino final states. The searches in di-bosons, i.e. namely in hadronic and semileptonic WW

and hadronic and fully leptonic WZ are less constraining, but still able to set a bound

around 1− 2 TeV. Also relevant is the search of ATLAS into the ττ final state which sets a

bound around 2 TeV. Definitely less constraining are the searches involving the top quark

in the final state, like tt̄ and tb.

Using the ratio of the parton luminosities shown in figure 3 we can obtain a naive

estimate of the mass reach of the 14 TeV LHC and of a hypothetical 100 TeV pp collider.

The exclusion in the weakly coupled region MV ∼ 3 TeV for 20 fb−1 corresponds to a parton

luminosity ∼ 4 · 10−2 pb (see figure 3). Using this number and rescaling to a luminosity

of 300 fb−1 at the LHC at 14 TeV and to 1 ab−1 at the 100 TeV collider we naively find a

sensitivity up to MV ∼ 6 TeV and MV ∼ 30 TeV respectively.

Strongly coupled heavy vector. This case is depicted in the middle and lower plots

of figure 5 for an intermediate, gV = 3, and rather stronger, gV = 6, coupling. A strongly

coupled vector resonance like a new composite vector boson, analogous to the ρ in QCD,

arising for example in Composite Higgs models is excluded up to ∼ 1.5− 2 TeV for inter-

mediate coupling of the strong sector and almost unconstrained for large enough coupling

(gV & 5). The most constraining searches are those into di-boson final states because, as

described above, the BRs into vector bosons are much larger than those into fermions. tt̄

and tb searches are not particularly sensitive. Notice, however, that we are working under

the assumption of a universal coupling to fermions. In potentially realistic strongly coupled

scenarios the parameter c3 is actually expected to be enhanced, improving the sensitivity

of third family searches. A careful assessment of this interesting effect is left to future

work. Notice that a large portion of the mass range is theoretically excluded, as shown in

the plots. This corresponds to regions where it is not possible to reproduce the SM input

parameters αEW, GF and MZ for such a small physical mass and large gV coupling.

Assuming a rather weak strong coupling gV = 3, the same naive rescaling made for

the weakly coupled vector gives a naive reach of MV ∼ 3− 4 TeV and MV ∼ 15− 20 TeV

at the LHC at 14 TeV with 300 fb−1 and the 100 TeV collider with 1 ab−1 respectively.

3.2 Limits on the simplified model parameters

The experimental limits on σ × BR can be simply converted into limits on the relevant

parameters of the Simplified Model. In section 2 we showed that the most relevant param-

eters are the mass of the resonance, the overall scale of its couplings gV and the parameters

cF and cH describing the interactions with SM fermions and bosons respectively. In or-

der to give an idea of the bounds coming from present analyses we make the simple choice

cF = cq = cl = c3 and show the bounds, for given mass and coupling, in the two-dimensional

(cH , cF ) plane. The results, as expected from the discussion of section 2, are very weakly

sensitive to the other parameters cV VW , cV V V and cV V HH . In the plots we fixed the latter
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Figure 6. Current experimental constrains in the (cH , cF ) plane for the four benchmark points at

2 TeV. The yellow region shows the exclusion from V → lν searches [65] while in blue are regions

excluded by V → WZ searches with WZ → jj [63] in light blue and WZ → 3lν [69] in dark blue.

The solid black lines depict constrains from EWPT at 95% CL and the dashed black line twice this

limit. The points corresponding to models A and B for the different values of gV are also shown.

to their values in model A (see section 4.1) and checked explicitly that the results do not

change significantly by setting them to model B.

In figure 6 we show the allowed and excluded regions in the (cH , cF ) plane for fixed MV

and gV = 1, 3, 6 corresponding, respectively, to weak, intermediate and strong coupling.

As an illustrative example we chose MV = 2 TeV as an intermediate mass scale where the

experimental constraints are neither too strong nor too weak and thus more interesting.

For simplicity, we did not report all the relevant limits in the plots, but only the ones from

charged vector searches. The neutral ones could be easily added but would just give com-

parable constraints and not change the result significantly. Obviously, the situation could

have changed if we had performed a statistical combination of the limits in the different

channels rather than a superposition of the corresponding excluded regions. However, we

think that correlations among the different channels should be taken into account by the

experimental collaborations. In the plots, the yellow region represents the exclusion from

the CMS l+ν analysis of ref. [66], while the dark and light blue ones show the limits from

CMS WZ → 3lν [69] and WZ → jj with W/Z tagged jets [63] respectively.12 The black

curves represent constraints coming from EWPT, i.e. from the Ŝ parameter, which we com-

puted in appendix B. The black solid curve corresponds to the strict 95% C.L. bound on Ŝ

of ref. [73],13 while the dashed line is obtained by artificially enlarging the latter bound by

a factor of two. This second line is a more realistic quantification of the constraints than

the strict limits because the EWPT observables are eminently off-shell observables and

thus not calculable within the Simplified Model. Extra contributions, of the same order as

the ones coming from the resonance exchange, can easily arise in the underlying complete

model. By enlarging the bound on Ŝ we take these contributions into account and obtain

a conservative exclusion limit.

12For recent theoretical developments in the search for vector resonances using boosted techniques see,

for instance, in refs. [91–93].
13The bound quoted in ref. [73] is S = 0.04 ± 0.10 obtained from an STU fit.
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Figure 7. Current experimental constraints in the (MV , gV ) plane in models A and B. The notation

is the same as in figure 6.

Any given explicit model corresponds to one point in the plots of figure 6. The two

points indicated by A and B correspond to the prediction of the two benchmarks models

for the assumed values of gV and MV . For small gV the lepton-neutrino search dominates

the exclusion (first plot) and only a narrow band around −1 . cF . 1 remains allowed.

Here EWPT are not competitive with direct searches and the di-boson searches are al-

most irrelevant due to the relatively small di-boson BR (see the discussion at the end of

section 2.1). Moreover, for small gV both our benchmark models are excluded. As gV
increases we notice four main features: the constraints from EWPT become comparable to

the direct searches, di-boson searches become more and more relevant due to the enhanced

BRs, model B evades bounds from direct searches more and more compared to model A

which remains close to the excluded region, and bounds from EWPT constrain model B

more than model A. The last two features are due to the larger value of cH predicted by

model B, corresponding to a region which is very difficult to access with direct searches.

A second interesting way to present the experimental limits is to focus on explicit

models and draw exclusion curves in the plane of their input parameters. In both models

A and B we have two parameters, the coupling and the mass of the new vector. The

limits in the (MV , gV ) plane are reported in figure 7. We find similar exclusions in the two

models at low gV , where the limit is dominated by leptonic final state searches, but the

situation changes radically for large coupling. In particular the limit in model B is rather

weak and barely competitive with EWPT already for intermediate couplings gV ∼ 3 and

it disappears when the coupling is large.

Finally we want to check that, as expected from the discussion of section 2.1, the

parameters cV VW , cV V V and cV V HH affect the exclusion only marginally. We thus plot

the same constraints shown in figure 6, in the (cH , cV VW ), (cH , cV V V ) and (cH , cV V HH)

planes in figure 8 for the benchmark models A and B at gV = 3. The plots represent a

horizontal slice at cF = 4 in the second plot of figure 6 using the same coloring as previously.

We find cV VW and cV V V indeed to be sub-leading with no variation in their direction. A

slight tilt can be observed in the direction of cV V HH , on the other hand. This is due to

the enhanced sensitivity on cV V HH induced by the term (1− 4cV V HHζ
2)2 in the width in
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Figure 8. Current experimental constrains in the (cH , cV VW ), (cH , cV V V ) and (cH , cV V HH) planes

for gV = 3, MV = 2 TeV and cF = 4 (all the other parameters are fixed to their value in model A).

The notation is the same as in figure 6.

eq. (2.31) for relatively large ζ. The correction induced by this term can be of the order

of 20% for cH ∼ −0.5 (ζ ≈ 0.4). One could expect the same enhancement in the central

plot, due to the term (1 + cHcV V V ζ
2)2 in the width in eq. (2.31). However, the absence of

the factor of four only gives an effect of the order of the percent for cH ∼ −0.5, not clearly

observable in the central plot.

3.3 Limit setting for finite widths

The final goal of a resonance search is to set experimental limits, for either exclusion or

discovery, on the resonance production cross-section times the BR into the relevant final

states for different mass hypotheses. This way of presenting the experimental results is

obviously the simplest and most convenient, as it is completely model-independent and

can be very easily interpreted in any given model as we did above. However whether this

goal can be really achieved or not, and with which accuracy, can depend crucially on the

details of the analysis and on the assumed total width of the resonance. The aim of this

section is to illustrate two kinds of effects associated with the finite particle width that

can make the extraction of σ×BR limits from an experimental search rather involved.

Both effects are well-known. Recent discussions can be found in refs. [27, 32, 94]. Here

we will quantify their importance for heavy vector searches at the LHC and propose some

strategies to minimize their impact. The results of this section are obviously not conclusive.

A detailed analysis of these issues and their impact on the searches should be performed

by the experimental collaborations. The final goal should be to quantify, and minimize,

the systematic uncertainties associated with the determination of σ×BR.

The example of the di-lepton invariant mass. Let us study the width effects in

detail by focusing on the simple case of di-lepton searches for the neutral vector. The

relevant observable is the di-lepton invariant mass distribution which we show in figure 9

for different V 0 masses, widths and collider energies. We took a vector resonance with a

mass of 2 TeV, both narrow (Γ/MV = 2%) and broad (Γ/MV = 10%) at the LHC at 8 TeV
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Figure 9. Di-letpon invariant mass distribution for different choices of M0 and Γ0/M0 at the

LHC at 8 TeV (first three plots) and 14 TeV (last two plots) c.o.m energy. The figures show the

dependence of the difference between the full 2 → 2 calculation and a simple BW distribution

normalized to the on-shell production cross-section and multiplied by the corresponding BR into

di-leptons on Γ0/M0. The “inset” plots show the percentage agreement between the cross-sections

obtained by integrating the full simulation with a y-dependent interference in the shaded “bin”

(varying continuously from fully constructive (y = 1) to fully deconstructive (y = −1)) and the

simple sum of the BW plus the background.
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(first row of plots) and 14 TeV (last row of plots) as reference. Finally, in the central plot

we show the example of a resonance at 3.5 TeV with Γ/MV ∼ 11% at the 8 TeV LHC.

The first effect to be discussed is the distortion of the signal shape which can depart

significantly from the prediction of the BW formula. This can be seen in the figure by

comparing the dashed red curves, which are obtained by the BW distribution normalized

to σ×BR, where σ is defined by eq. (2.34) with the red solid lines obtained by MadGraph5

simulations of the 2 → 2 process pp → V ∗0 → l+l−. We see that in the peak region the

distortion is rather mild when the resonance is light (2 TeV) at both the 8 and 14 TeV LHC.

The effect is barely visible for Γ/M = 2% and more pronounced for a broad resonance

Γ/M = 10%. The distortion is more significant for a 3.5 TeV mass but the deviation is still

under control. This can be seen by comparing the area of the two curves in the interval

[M − Γ,M + Γ] depicted as a shadowed region in the plots. The relative deviation is

depicted in the inset plots for y = 0. We see that it is of around 10% in the worst case

of MV = 3.5 TeV and Γ/MV ∼ 11%. Outside the peak, on the contrary, the situation is

worrisome already for MV = 2 TeV. The simulated signal has a long tail extending towards

small invariant masses which is due to the steep fall of the parton luminosities.

By focusing on the peak, where the signal is well approximated by the BW prediction,

extracting the limit on σ×BR is straightforward. For instance one could simply measure the

cross-section of the 2→ 2 process integrated in a window around the resonance mass and

convert it into a bound on σ×BR by rescaling for the fraction of events that, according

to the BW distribution, are expected to fall in the selected window. Alternatively, one

could perform a shape analysis by assuming a BW signal shape and extract a limit on

its normalization. Also in this second case the analysis should be restricted to the peak

region because the tail is not well-described by the BW formula. Notice in particular that

the total area of the simulated signal, that gives the total 2 → 2 cross-section, can differ

considerably from σ×BR. The low-mass tail, which extends in a wide range of masses, can

indeed give a sizable contribution to the total integral.

In order to understand the effect in more detail, let us briefly remind the reader of the

assumption under which the BW formula is derived. The measured signal is pp → l+l−

whose partonic cross-section is

σ̂S(ŝ) =
4πŝ

3M2
V

ΓV→qiqjΓV→l+l−

(ŝ−M2
V )2 +M2

V Γ2
. (3.1)

After convoluting with the PDFs, and using ŝ = M2
l+l− , the total differential cross-section

reads

dσS

dM2
l+l−

=
∑
i,j

4π

3

ΓV→qiqjΓV→l+l−

(M2
l+l− −M2

V )2 +M2
V Γ2

M2
l+l−

M2
V

dLij
dŝ

∣∣∣∣∣
ŝ=M2

l+l−

. (3.2)

In the peak region, namely for Ml+l− −MV ∼ Γ, and only in that region, it is reasonable

to approximate

M2
l+l−

M2
V

dLij
dŝ

∣∣∣∣∣
ŝ=M2

l+l−

' dLij
dŝ

∣∣∣∣∣
ŝ=M2

V

, (3.3)
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from which, using eq. (2.34), the differential cross-section can be written in terms of the

on-shell σ×BR, times a universal function

dσS

dM2
l+l−

= σ × BRV→l+l−BW(M2
l+l− ;MV ,Γ) , (3.4)

where BW denotes the standard relativistic BW distribution

BW(ŝ;MV ,Γ) =
1

π

ΓMV

(ŝ−M2
V )2 +M2

V Γ2
. (3.5)

Whether eq. (3.4) is a good description of the 2→ 2 shape or not depends on how accurately

the assumption (3.3) holds, namely it depends on how fast the parton luminosities vary

in the peak region. Therefore the agreement is better for smaller widths when the peak is

narrower. But the level of agreement also depends on the resonance mass and decreases

when the resonance approaches the kinematical production threshold of the collider. This

is because after a certain threshold the parton luminosities start to decrease extremely

fast, more than exponentials, so that regarding them as constants is less and less justified

even for a narrow width. This threshold corresponds, in figure 3, to the point where the

luminosities become concave functions in logarithmic scale around 3 or 3.5 TeV at the

8 TeV LHC. This explains why the peak distortion is so pronounced at the 3.5 TeV mass

point. Notice that the peak distortion could be modelled, starting from eq. (3.2), and the

agreement with the simulated signal improved by employing a “distorted” BW shape. We

will not discuss this possibility because we consider the BW description to be sufficiently

accurate in the cases at hand. However such an improvement could be helpful in order to

deal with more problematic situations.

The second important effect to be taken into account originates from the quantum

mechanical interference of the resonance production diagrams with those of the SM back-

ground. Differently from before the strength of this second effect crucially depends on the

amount of background which is present in the peak region or, more precisely, on the signal

to background ratio. Notice that only the strictly irreducible backgrounds matter, because

interference can only occur among processes with the exact same initial and final states

at the partonic level. In figure 9, the upper and lower boundaries of the green shaded

region are the result of two complete simulations, including interference, of the pp→ l+l−

process as obtained at two different points of the parameter space of our model. For each

mass and collider energy the two points are chosen to have identical production rates and

partial widths but, respectively, constructive and destructive interference. The two points

are simply related by flipping the relative sign of cq and cl, which leads to identical rates

and widths but opposite interference. The green solid lines correspond instead to the “sig-

nal plus background” prediction, obtained by ignoring the interference and summing the

background, reported in black, with the “signal only” line in red. In dashed green we

show the signal plus background curves obtained by the BW prediction of the signal. No-

tice that the interference never vanishes in any model so that the signal-plus-background

shape does not represent any point of the parameter space. However the interference could

be reduced, and most of the shaded region could be populated by some explicit model.
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Therefore, imagining for simplicity that the interference can be continuously varied from

constructive to destructive we define

dσFull

dMl+l−
(y) =

dσB

dMl+l−
+

dσS

dMl+l−
+ y

dσI

dMl+l−
. (3.6)

By varying y among −1 and 1 we can get a rough idea of how much the interference effect

can change the shape in different regions of the parameter space.

We see in the figure that the shape distortion due to the interference is considerable,

and in most cases more significant than the one due to the PDFs. Notice however that we

are voluntarily considering pessimistic cases where the interference distortion is enhanced.

The idea is that if we manage to deal with these situations we will have no problems in

covering more favorable cases. As mentioned above, the interference distortion depends on

the signal to background ratio, therefore for a given mass and collider energy, where the

background is fixed, the effect is maximal for the smallest possible signal cross-section. For

the plots in figure 9 we thus selected the minimal cross-sections that can be excluded at the

8 TeV LHC with 20 fb−1 and at 14 TeV with 100 fb−1. Stated in a different way, we placed

ourselves at the boundary of the excluded σ×BR region for each mass hypothesis. In the

bulk of the excluded region, where σ×BR is well above the one assumed in the plots, the

signal shape would grow and the interference effect would become relatively less important.

With this choice, the interference is more important at 14 than at 8 TeV because with the

assumed luminosity the exclusion will be set in a region where the background is larger.

For the 3.5 TeV mass point the interference is negligible because the background is very

small and the distortion is mainly due to the PDF effect as described above.

Notice that, differently from the PDF effect, the distortion due to the interference can

not be modeled in any simple way. Namely, it is impossible to cast it in a way that only

depends on the production rate and on the widths, indeed we saw above that it depends on

other parameter combinations. Obviously it could be computed by a simulation, but the

resulting shape would depend in a complicated way on all the model parameters and could

not be taken as a universal template. Therefore by proceeding in this way it would not be

possible to set model-independent limits on σ×BR and the comparison of the model with

the data should be performed by scanning the parameter space with simulations on a grid

of points.

Two different attitudes could be taken towards this problem. One could insist with

a shape analysis, assuming a BW signal, and accept the intrinsic systematic uncertainty

associated with this assumption. Of course the uncertainty should be quantified by com-

paring with the limits obtained with the “true” shape, taken for instance from eq. (3.6) for

different values of y. Alternatively, one could turn to a simpler cut-and-count experiment

and try to reduce the impact of the interference by exploiting the following observation. In

general, the interference contribution to the partonic cross-section has the functional form

σ̂I(ŝ) ∝
(ŝ−M2

V )

(ŝ−M2
V )2 +M2

V Γ2
, (3.7)

so that it vanishes exactly at ŝ = M2
V as is odd around this point. This explains why the

shaded green region shrinks to a point for an invariant mass equal to the resonance mass.

– 28 –



J
H
E
P
0
9
(
2
0
1
4
)
0
6
0

After PDF convolution one can show that, provided the approximation of constant parton

luminosities in eq. (3.3) holds accurately enough, the interference contribution to the signal

shape is also an odd function around Ml+l− = MV and thus it cancels when integrated over

a symmetric interval. The signal in the [MV −Γ,MV +Γ] region is thus much less sensitive

to the interference than the shape itself.14 This is confirmed by the inset plots, where we

report the relative deviation of the total signal in the window, compared to the BW signal

plus background prediction as a function of the parameter y. We see that the deviation

is typically below 10% even in cases where the shape distortion due to the interference is

considerable.

In view of the above results, let us briefly discuss the limit setting procedure employed

by CMS [66] and ATLAS [57] in the di-lepton searches. After suitable selection and iden-

tification cuts, both analyses perform a shape analysis on the di-lepton invariant mass

distribution based on an un-binned (CMS) or binned (ATLAS) likelihood. The only rele-

vant difference among the two methods is the choice of the assumed signal distribution and

the mass-range where the analysis is performed. CMS employs a gaussian shape obtained

by convoluting a narrow resonance peak with the detector resolution function and the anal-

ysis is performed in an invariant mass window around the resonance mass. If the resonance

is assumed to be extremely narrow, the CMS strategy is definitely correct and leads to an

accurate determination of σ×BR. However, no finite width effect is taken into account with

this method. It is not even clear, and we plan to study this and related aspects in a future

publication, how narrow the resonance must be in order to make this method reliable.

Notice that asking for a width below the experimental resolution might not be sufficient

as the distortion effects outlined above take place already in the theoretical distribution

and are completely unrelated with the detector resolution. Furthermore, assuming a too

small width might be inconsistent with the amount of signal needed for exclusion. A given

DY cross-section requires, at fixed mass, a given qq partial width and thus a minimal total

width. Moreover, a non-vanishing BR into di-leptons is needed, leading to a larger minimal

width. By exploiting this observation it is possible to compute the minimal width needed,

at a given mass, for 3 or more signal events at the 8 TeV LHC. For a mass of 3.5 TeV, for

instance, the minimal width is Γ/MV & 10% and therefore it would be inconsistent to set

an exclusion limit for a very narrow resonance at this mass. The existence of a minimal

width is the reason why we have not considered the case of a narrow 3.5 TeV resonance in

figure 9. The ATLAS strategy is different from CMS in two respects. First, it performs the

shape analysis in the full mass range rather than around the peak. In light of the above dis-

cussion, this is definitely a limitation. Second, it employs a template signal shape obtained

by a sequential Z ′ model [21]. In this manner ATLAS somehow takes the effect of the width

into account, but in a rather incomplete way because at each mass point the width is the

one predicted by the sequential Z ′ model. In other scenarios, with larger gV , the width

could be larger and the limit could change significantly. One might argue that at least the

14For a complete cancellation one should consider a domain which is symmetric in the squared invariant

mass variable. The cancellation is only approximate in the window we have chosen. However we prefer to

stick to this simpler prescription of a symmetric domain in Ml+l− , because the cancellation would not be

exact anyhow due to the PDF variation in the peak region.
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ATLAS limit, differently from the CMS one, is strictly correct within the specific model

assumed in the simulation. However this is questionable as the interference effects, which

are relevant close to the exclusion limit as shown above, are not included in the simulations.

The case of lepton-neutrino. In the discussion above we focused on the simple example

of the di-lepton final state, however our considerations are more general and apply to all

those searches where the resonance invariant mass distribution can be reconstructed. This

clearly includes di-jets [59, 64] and di-bosons in the hadronic channels [63], but also searches

with one leptonic W and reconstructed neutrino momentum [58, 69]. In all these cases,

the invariant mass distribution approximately follows the BW formula and the distortions

due to the PDF and interference effects could be analyzed along the lines described above.

Of course we expect that in these more complicated examples the experimental resolution,

which we could safely ignore for di-leptons, could play an important role and should be

taken into account. However, no qualitative difference is expected.

A radically different situation is instead encountered when the invariant mass can not

be reconstructed, as in the CMS and ATLAS searches [56, 65] in the lepton-neutrino final

state. Setting a model-independent limit on σ × BR might seem hopeless in this case,

because one can not rely on the BW formula which of course only describes the invariant

mass distribution while the relevant observable is now the transverse mass MT . This

problem has been studied in detail in ref. [32] with the conclusion that indeed a model-

independent limit can not be set and that the search must be reinterpreted in each given

model separately. However, there could be a way out. Any pair of massless leptons, of any

chirality, produced by the DY mechanism through the s-channel exchange of one vector,

are characterized by a universal angular distribution relative to the beam direction in the

center of mass frame. Namely, the angular dependence of the partonic cross-section is

effectively 1 + cos2 θ because the term linear in cos θ cancels out for a symmetric proton-

proton collider such as the LHC.15 Given that the angular dependence is fixed, the pT
distribution of the final states can be uniquely computed and expressed, as usual in the

limit (3.3) of slowly varying PDFs, in terms of σ×BR. If the resonance is produced at rest

in the transverse plane, which we expect to be a good approximation when it is sufficiently

heavy, we have MT = 2pT and we predict

dσ

dM2
T

= σ × BRV→lνTBW(MT ;MV ,Γ) (3.8)

where we denote as TBW a “transverse BW” distribution defined by the following integral

TBW(MT ;MV ,Γ) =
3Γ

8πMV

∫ s

M2
T

dŝ√
ŝ−M2

T

2ŝ−M2
T

(ŝ−M2
V )2 + Γ2M2

V

1√
ŝ
. (3.9)

Needless to say, eq. (3.8) is obtained by neglecting the interference, and in the approx-

imation of slowly-varying PDF. The level of agreement with the “true” signal is illustrated

by figure 10. We considered the same points of the parameter space that were used in

15Of course it does not cancel for asymmetric beams and this is why Z boson asymmetries could be

studied at the Tevatron.
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Figure 10. Lepton-neutrino transverse mass distribution for the choices of M+ and Γ+/M+ anal-

ogous to the ones of the first two plots of figure 9 at the LHC at 8 TeV. The figures show the

dependence on Γ+/M+ of the difference between the full 2→ 2 calculation and a simple TBW dis-

tribution normalized to the on-shell production cross-section and multiplied by the corresponding

BR into lepton-neutrino. The notation (dashing, coloring, “inset” plots) is identical to figure 9.

figure 9 for the 2 TeV neutral resonances at the 8 TeV LHC and we show the MT shape of

the associated charged state. We see that the signal, defined as the cross-section in the win-

dow MT ∈ [MV − Γ,MV ], is described by eq. (3.8) at the 10% level. However in this case,

differently from the previous one, most of the signal is lost when restricting to the window

we have selected, decreasing the sensitivity of the analysis. One should probably try to

enlarge the window, accepting a larger error. Notice however that the interference, which

is the dominant distortion effect, has been maximized in figure 10 by choosing the smallest

possible rate as described above. The accuracy of the method would improve for higher

rates, allowing at least to set a more conservative, but robust and model-independent limit.

4 Explicit models

In this section we present two examples of explicit models to populate the parameter space

of the Simplified Model. The first one, called model A, describes the vector triplet emerging

from the symmetry breaking pattern SU(2)1×SU(2)2×U(1)Y → SU(2)L×U(1)Y achieved

through a linear σ-model [17]. The second model, B, describes the vector triplet considered

in ref. [36] based on a non-linearly realized SO(5)/SO(4) global symmetry.

4.1 Model A: extended gauge symmetry

We consider the gauge theory SU(2)1×SU(2)2×U(1)Y [17]. The SM fermions are assumed

to be charged under SU(2)1 and U(1)Y with their usual quantum numbers. The SM Higgs

doublet transforms as a (2,1)1/2 under the enlarged gauge group. We also introduce an

additional scalar field Φ transforming as a real bidoublet (2,2)0. The bosonic part of the

Lagrangian is

L = − 1

4g2
1

W a
1µνW

aµν
1 − 1

4g2
2

W a
2µνW

aµν
2 +DµH

†DµH + Tr(DµΦ†DµΦ)− V(H,Φ) . (4.1)
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In order to obtain the SM at low energies we assume the potential V in eq. (4.1) to be such

that Φ obtains a vacuum expectation value

〈Φ〉 =

(
f 0

0 f

)
. (4.2)

This VEV breaks the SU(2)1 × SU(2)2 gauge symmetry to its vectorial subgroup which is

identified with the SM SU(2)L gauge group. By going to the unitary gauge for the heavy

vector triplet one obtains the following mass term from the kinetic term of Φ

Tr(DµΦ†DµΦ) ⊃ f2

2
(W a

1µ −W a
2µ)2. (4.3)

A single gauge invariance under which both W1 and W2 shift in the same way is preserved.

It is thus useful to perform the following field redefinition

W a
2µ = V a

µ +W a
1µ. (4.4)

In this way V transforms as the triplet of section 2 and W1 is just the SM W boson field

(the index “1” will be dropped from now on).

The only part of the Lagrangian that transforms non trivially under the field redefini-

tion in eq. (4.4) is the kinetic term of W2. One has

W a
2µν = D[µV

a
ν] + εabcV b

µV
c
ν +W a

µν , (4.5)

which leads to

W a
2µνW

aµν
2 = W a

µνW
aµν +D[µV

a
ν]D

[µV aν] + 2W a
µνD

[µV aν]

+ 2εabcW a
µνV

bµV cν +O(V 4) .
(4.6)

After the redefinition, the Lagrangian develops a kinetic mixing between V and W and

thus it can be matched with eq. (2.2) only after the mixing is removed by one further

redefinition. This is performed in appendix A, starting from a“tilded” field basis in which

the kinetic mixing term is present. By identifying

gV ≡ g2 and
1

g2
≡ 1

g2
1

+
1

g2
2

, (4.7)

we have

m̃V = gV f, c̃VW = −c̃V VW = c̃V V V = −1, c̃H = c̃V V HH = c̃F = 0 , (4.8)

from which we obtain the parameters in eq. (2.2) by the relations in eq. (A.4). In particular,

we see that in all cases, g∗ ∼ g or g∗ � g

cH ∼ −g2/g2
V and cF ∼ 1 . (4.9)

Depending on the precise form of the potential V(H,Φ) and in particular depending

on the presence of a λ|H|2Tr Φ†Φ term, an additional contribution to cV V HH proportional

to λg2
2f

2/m2
Φ is generated by integrating out the physical mode of Φ. We define our

benchmark model setting λ = 0. However, finite λ effects can be easily accounted for by

modifying eq. (4.8). We will come back to this point in section 4.3. Notice that integrating

out Φ also generates (irrelevant) contributions to the quartic interaction of V .
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4.2 Model B: minimal composite Higgs model

Models in which the Higgs boson emerges as a light state (a pseudo Nambu-Goldstone

boson) from an underlying strong dynamics predict the existence of heavy vector resonances

with electroweak quantum numbers. In the case of the Minimal Composite Higgs Model

(MCHM), where the Higgs doublet emerges from the spontaneous breaking of a global

SO(5) symmetry to an SO(4) subgroup, these resonances have been discussed in refs. [36,

74]. Here we want to show how the lightest vector resonance in these models can be

described by our Simplified Model. In order to enforce the constraints imposed by the

underlying symmetry structure a minimal amount of technical complications is required.

Here we follow ref. [36] which uses the Callan-Coleman-Wess-Zumino (CCWZ) formalism

reviewed, for instance, in appendix A of ref. [13]. The matching with the Lagrangian of

the Simplified Model can be found at the end of this section and the reader who is not

interested in the derivation can jump there directly.

We introduce a spin 1 field ρµ transforming under the unbroken SO(4) subgroup as a

(3,1) irreducible representation

ρµ ≡ ρaµta → h4ρµh
T
4 − ih4∂µh

T
4 for a = 1, 2, 3 , (4.10)

where ta are generators of the SU(2)L subgroup of SO(4) in the vector representation and

h4 is a non-linear SO(4) transformation whose construction is described in appendix A of

ref. [13]. We consider the following Lagrangian

Lρ = − 1

4ĝ′2
(Bµν)2 − 1

4ĝ2
(W a

µν)2 +
f2

4
diµd

µi − 1

4g2
ρ

(ρaµν)2 +
m2
ρ

2g2
ρ

(
ρaµ − eaµ

)2
. (4.11)

The ρ field strength is given by ρaµν = ∂µρ
a
ν − ∂νρaµ − εabcρbµρcν . The full expressions for the

d and e symbols for SO(5)/SO(4) are given in appendix A of ref. [13]. Here we will only

need approximate formulas in the large f limit

diµd
µ i =

4

f2
|DµH|2 +

2

3f4

[
(∂µ|H|2)2 − 4|H|2|DµH|2

]
+O(1/f6) , (4.12)

and

ρaµ − eaµ = ρaµ +W a
µ −

i

f2
H†τa

←→
DµH +

i

f4
|H|2H†τa

←→
DµH +O(1/f6). (4.13)

We can thus define the triplet V , which does not shift under the SM gauge group, as

V a
µ ≡ ρaµ +W a

µ . (4.14)

Under this field redefinition the ρ kinetic term transforms as

ρaµν = D[µV
a
ν] − εabcV b

µV
c
ν −W a

µν , (4.15)

and using the large f expressions in eq. (4.12) and (4.13) it is now straightforward to match

Lρ with the “tilded” basis of appendix A. By identifying

gV = gρ,
1

g2
=

1

ĝ2
+

1

g2
ρ

and g′ = ĝ′ , (4.16)
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and after normalizing the kinetic term of V we obtain

m̃V =mρ, c̃VW = c̃V VW = c̃V V V =1, c̃H =−
m2
ρ

g2
ρf

2
≡−a2

ρ, c̃V V HH = c̃F =0, (4.17)

where aρ is an O(1) free parameter as defined in ref. [36]. Using eq. (A.4) we see that

cH ∼ cF ∼ 1 . (4.18)

The difference with the linear model of the previous section arises from the fact that c̃H is

now non vanishing.

In order to perform the matching we ignored both higher dimension operators coming

from subleading corrections to eq. (4.13) and higher derivative terms which could be added

to the Lagrangian in eq. (4.11). We will discuss their effects in the next section.

4.3 The role of higher dimensional operators

The simple phenomenological Lagrangian in eq. (2.2) has been the starting point of our

discussion. Its usefulness stems from the fact that it contains just a handful of parameters

due to neglecting all the higher dimensional operators.

As already stressed throughout the paper eq. (2.2) has to be understood as an interme-

diate step to compare a more or less complete model of New Physics with the experimental

data. That is, not as the leading subset of terms of the effective field theory describing the

interactions of V with the SM. From this point of view the fact that eq. (2.2) is all that is

needed has to be guaranteed by the underlying theory. We will now check this assumption

for the two models we presented in the last two sections.

This discussion is almost straightforward in the context of the linear model. Since the

model is renormalizable higher dimensional operators can only be generated by integrating

out the heavy physical fluctuations of the scalar field Φ. A hierarchy of masses mΦ � mV

is understood in order to be allowed to study the vector in isolation. The real bidoublet Φ

can be written as

Φ =
φ0

2
+ iτaφa. (4.19)

In this way eq. (4.2) can be rephrased as 〈φ0〉 = 2f . The three scalar fields φa are unphysical

and only φ0 remains in the spectrum with a mass mΦ which depends on the parameters in

the potential V(H,Φ). In the unitary gauge for Vµ, the only relevant φ0 interactions come

from the kinetic term of Φ and from a mixed Φ-H quartic coupling which can be present in V

Tr(DµΦ†DµΦ)− λH†HTr(Φ†Φ) =
1

2
(∂µφ0)2 +

g2
V

8
φ2

0V
a
µ V

µa − λ

2
φ2

0H
†H. (4.20)

By integrating out the heavy φ0 field we obtain the following Lagrangian containing oper-

ators up to dimension 6

∆LA =
2λ2f2

m2
Φ

|H|4 − λg2
2f

2

m2
Φ

V a
µ V

µa|H|2 +
3

2

λ2g2
2f

2

m4
Φ

V a
µ V

µa|H|4 +O(V 4, |H|6, . . .) . (4.21)
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The first term is an unobservable modification of the Higgs quartic coupling while the sec-

ond is the contribution to cV V HH that was already anticipated in section 4.1. It modifies

the matching in eq. (4.8) by

c̃V V HH =
λf2

m2
Φ

. (4.22)

The operator

O′V V HH ≡ V a
µ V

µa|H|4 , (4.23)

is new and not included in the phenomenological model. It is easy to verify that all its

effects, both in the mass matrix and in the couplings of V to WL, ZL and h, are sup-

pressed by a factor λv2/m2
Φ with respect to those emerging from c̃V V HH in eq. (4.22). In

a reasonably weakly coupled theory these effects are small and can be safely neglected.

A similar discussion for the non-linear model described in section 4.2 is necessarily more

involved. This is due to its intrinsically finite energy range of validity. In order to have any

predictive power the theory has to be endowed with a criterion to estimate the size of the

coefficients of the higher dimensional operators. Using this criterion one must be able to

show that only a finite number of operators is relevant to achieve a given precision. Here

we adopt a slight modification of the partial UV completion criterion used in ref. [36]. We

assume that a New Physics mass scale m∗ is defined (which could for instance characterize

the mass scale of other resonances) such that mV � m∗. We furthermore assume that

all “composite” states in the theory, which include V , H and the other resonances at m∗,

interact with a strength of order g∗ when probed at energies of order m∗. More in detail

we require that for E ∼ m∗, amplitudes involving “composite” fields have size g∗m∗ and g2
∗

for three and four point functions respectively. Applying this to the scattering amplitude

of four Goldstone bosons, it implies in particular that m∗ ∼ g∗f . This criterion has to

be extended to estimate the size of those amplitudes involving weakly coupled fields, for

instance insertions of the SM gauge bosons. These amplitudes originate from the EW force

and not from the strong sector interactions. We thus require them to be suppressed by an

additional factor (g/g∗)
n where n is the number of weakly coupled field insertions. In this

last point we depart from the prescription of ref. [36]. The first intuitive consequence of this

criterion is the fact that, in order for the model defined by eq. (4.11) to be consistent, it is

not only necessary to havemV � m∗, but also to have the vector ρ weakly coupled, gρ � g∗.

Before discussing the role of higher derivative terms in the model of section 4.2, it is

worth noticing that the Lagrangian in eq. (4.11) already contains dimension-6 and higher

operators which have not been included in the matching with the Simplified Model. The

existence of these operators, even in the absence of heavy matter fields to be integrated

out, is due to Higgs non-linearities emerging from the σ-model structure. Using eqs. (4.12)

and (4.13) one finds at the dimension-6 level

∆LB =
1

6f2

(
1−

3m2
ρ

4g2
ρf

2

)[
(∂µ|H|2)2 − 4|H|2|DµH|2

]
+

m2
ρ

gρf4
|H|2iV a

µH
†τa

↔
D
µ
H + . . . .

(4.24)

The first term renormalizes the Higgs and Goldstones kinetic terms and through this af-

fects all their interactions. However its contribution is suppressed by ξ = v2/f2 which is
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necessarily small in this scenario as mentioned already in section 2. The second term is a

new dimension-6 operator

O′H = |H|2iV a
µH

†τa
↔
D
µ
H , (4.25)

with a coefficient of order gV /f
2 (one should recall that gV ≡ gρ and mρ = aρgρf ∼ gρf).

Qualitatively O′H has the same effect as the cH operator both in the mass matrix and in

the coupling of V to WL, ZL and h and it induces small O(ξ) corrections relative to the

latter. Additional operators collectively denoted by “...” in eq. (4.24) and containing extra

insertions of |H|2 are always accompanied by more powers of 1/f2 so their contribution to

the mass matrix and to the decay widths are further suppressed by powers of ξ.

The addition of higher derivative terms to the leading order Lagrangian of the non-

linear model is thoroughly discussed in ref. [36]. The analysis shows that only two CP even

operators can give a relative contribution to physical processes which is larger than the

typical size of a higher derivative correction, m2
V /m

2
∗. The two operators are

O1 = Tr(ρµνi[dµ, dν ]) and O2 = Tr(ρµνAµν). (4.26)

Here Aµν is defined by

Aµν = U †
(
T aLWµν + T 3

RBµν
)
U , (4.27)

in terms of the Goldstone matrix U and the SO(4) generators T aL,R, which are defined in

appendix A of ref. [13]. The two operators can be expanded at order 1/f2

Tr(ρµνi[dµ, dν ]) = − 4i

f2
ρµν aDµH

†τaDνH +O(1/f4) , (4.28)

Tr(ρµνAµν) = −W a
µνρ

a
µν

(
1− |H|

2

2f2

)
+

1

f2
Bµνρ

a
µνH

†τaH +O(1/f4). (4.29)

According to our refined partial UV completion they should appear in the Lagrangian as

∆LB = c1
1

gρg∗
O1 + c2

1

g2
ρ

O2 , (4.30)

with c1,2 ∼ 1. Let us start focusing on O1. Applying the field redefinition in eq. (4.15) and

normalizing the kinetic term of V , we obtain

∆LB = − 4c1

g∗f2
iD[µV

a
ν]DµH

†τaDνH. (4.31)

We did not write operators contributing only to 4-point functions involving V , nor operators

involving only the SM fields. The main effect of O1 is to modify the width of V to

longitudinal gauge bosons. Using the equivalence theorem and the field redefinitions in

eqs. (2.28) and (2.29) we obtain the corrections to eq. (2.30)

− gV
4(1− c2

Hζ
2)

[
4c1

M2
V

g2
ρf

2

MV

m∗

]
εabcV a

µ π
b∂µπc

+
gV

2
√

1− c2
Hζ

2

[
4c1

M2
V

g2
ρf

2

MV

m∗

]
hV a

µ ∂µπ
a. (4.32)
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Relative to the leading term which is proportional to cH ∼ m2
ρ/g

2
ρf

2 the above contributions

are suppressed even though only by a single power of MV /m∗, the parameter controlling

the derivative expansion.

To discuss the effects of O2, we apply the shift of eq. (4.15) and obtain

∆LB = − c2

gV
D[µV

a
ν]W

µν a + c2εabcW
µν aV b

µV
c
ν (4.33)

− c2

2f2
|H|2εabcWµν aV b

µV
c
ν +

c2

2gV f2
|H|2D[µV

a
ν]W

µν a

− c2

f2
BµνεabcH

†τaH V b
µV

c
ν +

c2

gV f2
BµνD[µV

a
ν]H

†τaH + . . . .

The first line of eq. (4.33) contains O(1) corrections to the matching conditions in eq. (4.17)

which now become

c̃VW = c̃V VW = 1− 2c2. (4.34)

All the other operators except for the last one in eq. (4.33) induce negligibleO(ξ) corrections

to the spectrum and to the width of V into transverse gauge bosons. Finally the effect of

OV B = BµνD[µV
a
ν]H

†τaH , (4.35)

is qualitatively new. After EWSB it generates a kinetic mixing between the hypercharge

gauge boson and V 3

∆LB ⊃ c2 tan θW ζ
m̂W

mV

(
mV

gρf

)2

BµνV 3
µν . (4.36)

Such a mixing can be eliminated by a field redefinition of the form given in eq. (2.9) but

involving Bµ {
Bµ → Bµ + αV 3

µ

V 3
µ → βV 3

µ

, (4.37)

with α ∼ mW /MV and β ∼ 1. It is simple to show that after this field redefinition the

spectrum is only modified by corrections of order m2
W /M

2
V . The shift also affects the

couplings gNL,R of V 3 to fermions. The corrections are at most of order mW /MV , hence

safely negligible.

To summarize, our study of higher derivative terms in the context of the non-linear

model shows that the only additional structure to consider is the operatorO2. Its effects can

be included in the dimension four phenomenological Lagrangian by the modified matching

conditions in eq. (4.34). Notice that among those dimension-6 operators that have not

been listed in eq. (4.33) because they only involve SM fields one operator is particularly

relevant as it contributes to the Ŝ parameter

∆LB ⊃ −
c2

g2
V f

2
BµνW aµνH†τaH, ∆Ŝ = c2

m̂2
W

g2
V f

2
. (4.38)

If c2 ∼ 1 this correction is of the same size as those calculated in appendix B and can have

both signs.
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5 Conclusions

We described a model-independent strategy to study heavy spin one particles in the triplet

of the SM gauge group. Our method, depicted as a bridge in figure 1, is based on a

Simplified Model Lagrangian, introduced in section 2, designed to reproduce a large class

of explicit descriptions of the heavy vector in different regions of its parameter space. Two

explicit examples, describing vectors with rather different properties and physical origin,

are discussed in section 4. Those are denoted as model A and model B and correspond,

respectively, to heavy vectors emerging from an underlying weakly-coupled extensions of

the SM gauge group [17] and a strongly coupled Composite Higgs scenario [36].

By studying the Simplified Model we derived a set of generic phenomenological features

of the heavy vectors in section 2. In particular, we have seen that the charged and neutral

states are essentially degenerate in mass and thus have comparable production rates. As

discussed in ref. [12], this fact is a strong motivation for combining the searches of the two

charge states. We have also seen that the heavy vector always has a negligible coupling

with the transversely polarized EW bosons and the only relevant interactions are with the

longitudinals. The longitudinal coupling is generically comparable with the one to the SM

fermions in the region of the parameter space that corresponds to weakly coupled models

and it becomes dominant in the strongly-coupled case. This is the main phenomenological

difference between the two scenarios. Finally, we showed that not all the parameters of the

model are equally relevant. The partial decay widths, and in turn the single production

rate, are to a good approximation completely determined by the parameter combinations

gV cH and g2cF /gV . If we assume, for simplicity, a universal coupling to fermions, then the

experimental limits on the heavy vector can be conveniently represented, for a given mass,

on a two-dimensional plane as we did in figure 6. The dependence on the other parameters

is extremely mild and can be safely ignored. Moreover, the phenomenology being controlled

by a few parameters implies tight model-independent correlations among different observ-

ables. For instance, the relative BRs of the charged and neutral states in different bosonic

decay channels, including the ones with the Higgs boson in the final state, are basically

fixed. This would make the combination of different experimental searches extremely easy.

In section 3 we quantified the impact of the present experimental searches. Following

the Bridge method we firstly translated the experimental results into limits on the Simpli-

fied Model parameters (figure 1) and afterwards converted them into the “fundamental”

parameters of the explicit models A and B. The results are shown in figure 7 in a mass-

coupling two-dimensional plane. We see that model A is excluded for masses below around

2 or 3 TeV, depending on the coupling, while the limit is weaker in model B. For large

coupling, which is expected in model B as this is supposed to represent a strongly-coupled

scenario, the exclusion never exceeds 2 TeV and is still comparable with the indirect limits

from EWPT.

For our analysis we took all the experimental results at face value, and used the exclu-

sions on σ×BR at each mass point. However we pointed out in section 3.3 that this might

not be completely correct because of the effects associated with the finite resonance width,

which might affect the limit setting procedures adopted by the experimental collaborations.

– 38 –



J
H
E
P
0
9
(
2
0
1
4
)
0
6
0

We illustrated the expected impact of these effects on the invariant mass and transverse

mass distributions that are employed in the di-lepton and in the lepton-neutrino searches

respectively. Our conclusion is that finite-width effects can be considerable and can distort

the signal shape in a significant way. In spite of this, we identified some strategies by which

their impact could be reduced and a robust model-independent limit on σ×BR could be

extracted. We plan to elaborate more on these aspects in a forthcoming publication.

Our work could be extended in at least three directions. First, one could easily con-

sider other representations of the SM group. Aside from the triplet which we studied in the

present paper, another relevant representation is the singlet, either neutral like a Z ′ [21–23]

or charged like a W ′ [8]. These particles emerge together in strongly-coupled models where

they arise from a (1,3) representation of the custodial group. Another interesting represen-

tation, which is present in models with a Composite pseudo-Nambu-Goldstone boson Higgs,

is the doublet with 1/2 hypercharge [35]. A second limitation of our approach, which could

be easily overcome, is the assumption of a linearly realised EW group, broken by the VEV of

the Higgs doublet like in the SM. This is clearly a well-motivated assumption, but it might

be worth studying also technicolor-like theories where the strong sector condensate breaks

the EW symmetry directly. For this purpose our parametrization is insufficient because

some higher dimensional operators involving extra powers of the Higgs field would be unsup-

pressed and should be included in the Simplified Model Lagrangian. Finally, in this paper

we did not discuss the possibility of non-universal fermion couplings cF = {cl, cq, c3} in de-

tail. In particular, c3 being different from the light fermions couplings cl,q is well-motivated

in strongly coupled scenarios with partial fermion compositeness [71]. In this case, the large

compositeness of the top quark induces a potentially large coupling to the third family

quarks. Its effect on the searches with third family final states should be investigated.

Note added. During the publication process of this paper new experimental searches

and updates to previous ones have been published. We updated the searches in the paper

as follows: ref. [57] supersedes ref. [95], ref. [56] added, ref. [59] supersedes ref. [96], ref. [58]

supersedes ref. [97] and ref. [69] supersedes ref. [98].
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A The tilded basis

The field redefinition in eq. (2.9) allows many equivalent Lagrangian description of the

Simplified Model. In all but one of them a kinetic mixing between V and W is present.

We define each of these bases by the same Lagrangian in eq. (2.2) with all the couplings

replaced by “tilded” ones

c→ c̃, mV → m̃V , (A.1)

and with the addition of the kinetic mixing term

c̃VW
g

2gV
D[µV

a
ν]W

µνa. (A.2)

Using the field redefinition of eq. (2.9) with

α =
g c̃VW√

g2
V − c̃2

VW g
2

and β =
gV√

g2
V − c̃2

VW g
2
, (A.3)

we get the following relations between the parameters in the two bases

m2
V =

g2
V

g2
V − c̃2

VW g
2
m̃2
V ,

cV VW =
g2
V

g2
V − c̃2

Wρg
2

[
c̃V VW −

g2

g2
V

c̃2
VW

]
,

cV V V =
g3
V(

g2
V − c̃2

VW g
2
)3/2[c̃V V V − g2

g2
V

c̃VW (c̃V VW + 2) + 2
g4

g4
V

c̃3
VW

]
,

cH =
gV√

g2
V − c̃2

VW g
2

[
c̃H +

g2

g2
V

c̃VW

]
,

cV V HH =
g2
V

g2
V − c̃2

VW g
2

[
c̃V V HH +

g2

2g2
V

c̃VW c̃H +
g4

4g4
V

c̃2
VW

]
,

cF =
gV√

g2
V − c̃2

VW g
2

[c̃F + c̃VW ] .

(A.4)

B Electroweak precision tests

In this appendix we discuss the constraints of EWPT on the Simplified Model parameter

space. In order to do this we integrate out the vector triplet and describe the resulting

theory as the SM supplemented by higher dimensional operators. We expect all the relevant

corrections to be oblique, that is encoded in corrections to the vacuum polarization of the

SM gauge bosons. This is not immediate to see in the basis of eq. (2.2) as V couples,

though universally, to the light fermions. It is then useful to remove this coupling through

the field redefinition16

W a
µ →W a

µ − cF
g2

gV
V a
µ . (B.1)

16For convenience we work in the basis in which the gauge coupling appears only in front of the gauge

kinetic term.
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The resulting Lagrangian reads

LV = −1

4

(
1 + c2

F

g2

g2
V

)
D[µV

a
ν]D

[µV ν] a +
m2
V

2
V a
µ V

µ a

+ i gV

(
cH − cF

g2

g2
V

)
V a
µH

†τa
↔
D
µ
H +

cF
2gV

D[µV
a
ν]W

µνa

+ g2
V

(
cV V HH +

c2
F

4

g4

g4
V

− cF cH
2

g2

g2
V

)
V a
µ V

µ aH†H + . . . ,

(B.2)

while the coupling of V to the light fermions is removed. Notice that a kinetic mixing

between the W and V is reintroduced. The dots include terms of order WV 2, V 3, V 4.

These are not relevant in the discussion of the EWPT. Normalizing the kinetic term gives

the leading order equation of motion of V[
(�+ µ2

V )gµν − ∂µ∂ν
]
V a
ν = −igV γHH†τa

←→
DµH + γF

1

gV
DνW

a
νµ ≡ J aµ , (B.3)

where (
1 + c2

F

g2

g2
V

)
µ2
V = m2

V + 2

(
cV V HH +

c2
F

4

g4

g4
V

− cF cH
2

g2

g2
V

)
g2
V |H|2, (B.4)(

1 + c2
F

g2

g2
V

)1/2

γH = cH − cF
g2

g2
V

, (B.5)(
1 + c2

F

g2

g2
V

)1/2

γF = cF . (B.6)

The solution of eq. (B.3) is

V a
µ = DµνJ aν , Dµν =

gµν + ∂µ∂ν/µ
2
V

�+ µ2
V

. (B.7)

Plugging this solution into eq. (B.2) (with normalised kinetic terms) and expanding in

derivatives we get the leading terms contributing to the EWPT

LV = − 1

2µ2
V

(
−igV γHH†τa

←→
DµH + γF

1

gV
DνW

a
νµ

)2

+
1

2µ2
V

(
−igV γHH†τa

←→
DµH

)
�Tµν
µ2
V

(
−igV γHH†τa

←→
DνH

)
+ . . . ,

(B.8)

where we defined �Tµν = gµν� − ∂µ∂ν . All other terms in the expansion, represented by

the dots, give subleading contributions to the EWPT in a m̂2
W /µ

2
V expansion. Following

ref. [81] we rewrite the quadratic part of LV as

L = −1

2
W 3
µΠ33(p2)Wµ3 − 1

2
BµΠ00(p2)Bµ −W 3

µΠ30(p2)Bµ −W+
µ Π±(p2)Wµ− . (B.9)

The various form factors are then expanded in powers of p2

Π(p2) = Π(0) + p2Π′(0) +
p4

2
Π′′(0) + . . . . (B.10)

– 41 –



J
H
E
P
0
9
(
2
0
1
4
)
0
6
0

Starting from eq. (B.8) and following the procedure we outlined above we get the leading

order contributions (as in the text we define z ≡ gV v̂/2µV , m̂W = gv̂/2 and tW ≡ tan θW =

g′/g)

Π00(0) = Π33(0) = Π±(0) = −Π30(0) = − v̂
2

4

(
1− z2γ2

H

)
, (B.11)

Π′00(0) =
1

g′2

(
1 + t2Wγ

2
Hz

2 m̂
2
W

µ2
V

)
,

Π′30(0) =
1

g2

(
γ2
Hz

2 m̂
2
W

µ2
V

− γHγF
m̂2
W

µ2
V

)
,

Π′±(0) = Π′33(0) =
1

g2

(
1 + γ2

Hz
2 m̂

2
W

µ2
V

+ 2γHγF
m̂2
W

µ2
V

)
,

Π′′±(0) = Π′′33(0) =
1

g2m̂2
W

(
2γ2

F

g2

g2
V

m̂2
W

µ2
V

)
.

We thus obtain the following relations

v2|exp ≡ −4Π±(0) = v̂2
(
1− z2γ2

H

)
, (B.12)

1

g2

∣∣∣∣
exp

≡ Π′±(0) =
1

g2

(
1 + γ2

Hz
2 m̂

2
W

µ2
V

+ 2γHγF
m̂2
W

µ2
V

)
,

1

g′2

∣∣∣∣
exp

≡ Π′00(0) =
1

g′2

(
1 + t2Wγ

2
Hz

2 m̂
2
W

µ2
V

)
.

The relevant custodial invariant oblique parameters are defined by

Ŝ = g2Π′30(0), W =
g2m2

W

2
Π′′33(0). (B.13)

The natural size of the coefficients γH and γF is γH ∼ γF ∼ 1. This implies that the

oblique parameters will be at most of order m̂2
W /µ

2
V , while

g|exp = g +O(m̂2
W /µ

2
V ), g′|exp = g′ +O(m̂2

W /µ
2
V ) , (B.14)

so that the corrections to g and g′ can be neglected in the calculation of the oblique

parameters. Notice on the other hand that v̂ can depart from its measured value 246 GeV

by O(1) corrections

v2|exp = v̂2(1− γ2
Hz

2). (B.15)

One thus finds

Ŝ = γ2
Hz

2 m̂
2
W

µ2
V

− γHγF
m̂2
W

µ2
V

, W = γ2
F

g2

g2
V

m2
W

µ2
V

. (B.16)

where one has still to express v̂ in terms of the physical v ' 246 GeV. Notice that under the

assumption that γF ∼ 1 the correction to the V kinetic term which is present in eq. (B.2)

is always subleading in a m̂2
W /µ

2
V expansion and can be neglected.
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C Tools provided with this paper

In addition to the present paper we provide a set of tools useful to perform analyses using

the Simplified Model. We make them available on the webpage of this project [1].

The Simplified Model Lagrangian in eq. (2.2) in the mass eigenstate basis and in the

unitary gauge was implemented into different Matrix Element Generators (MEG) using the

FeynRules [99, 100] Mathematica package. Model files for the CalcHEP [101, 102] and

MadGraph5 [103] MEG and the FeynRules source model are registered in the HEPMDB

model database [104] with the unique number hepmdb:0214.0151 and are available at the

link [105].

The model was implemented into FeynRules taking αEW , GF and MZ as SM elec-

troweak input parameters and the mass of the neutral heavy vector M0, the overall cou-

pling gV and all the parameters ci’s as described in the paper as the new vector input

parameters. The Higgs mass is also an input parameter, that we fix to a default value of

125.5 GeV. All the other parameters appearing in this paper are dependent parameters, de-

fined as functions of the aforementioned inputs. Free parameters a, b, c, d3, d4 for the Higgs

sector are also implemented with the notation of ref. [106]. For a = b = c = d3 = d4 = 1

the Higgs sector is exactly SM like.

In addition to the MEG model files, we make available different Computable Document

Format CDF c© [107] files on the webpage [1]. For each CDF we make available both a

web interface and a downloadable file which can be opened with Mathematica (version

9 or later). The web version is intended for simple studies, while for more intensive tasks

we recommend the use of the local versions. The first CDF file allows the user to compute

the dependent parameters, the widths and the BRs in the model and to plot the relevant

cross-sections at 8, 14 and 100 TeV by simply inputing the independent parameters. It

also automatically generates the MadGraph5 “param card.dat” for the chosen point of

the parameter space. The second CDF file allows the used to simply scan cross-sections,

widths and BRs over all the independent parameters by simply setting initial and final

values and number of points. Further information and possibly additional tools can be

found directly on the webpage of this project [1].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[37] B. Bellazzini, C. Csáki, J. Hubisz, J. Serra and J. Terning, Composite Higgs sketch, JHEP

11 (2012) 003 [arXiv:1205.4032] [INSPIRE].

[38] E. Accomando, L. Fedeli, S. Moretti, S. De Curtis and D. Dominici, Charged di-boson

production at the LHC in a 4-site model with a composite Higgs boson, Phys. Rev. D 86

(2012) 115006 [arXiv:1208.0268] [INSPIRE].

[39] A.E. Cárcamo Hernández, C.O. Dib and A.R. Zerwekh, The effect of composite resonances

on Higgs decay into two photons, Eur. Phys. J. C 74 (2014) 2822 [arXiv:1304.0286]

[INSPIRE].

[40] M.S. Chanowitz and W. Kilgore, Complementarity of resonant and nonresonant strong

WW scattering at the LHC, Phys. Lett. B 322 (1994) 147 [hep-ph/9311336] [INSPIRE].

[41] R. Barbieri, G. Isidori, V.S. Rychkov and E. Trincherini, Heavy vectors in Higgs-less

models, Phys. Rev. D 78 (2008) 036012 [arXiv:0806.1624] [INSPIRE].

– 45 –

http://dx.doi.org/10.1007/JHEP03(2010)010
http://arxiv.org/abs/0911.1450
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.1450
http://arxiv.org/abs/1007.0490
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.0490
http://dx.doi.org/10.1103/PhysRevD.84.035014
http://dx.doi.org/10.1103/PhysRevD.84.035014
http://arxiv.org/abs/1102.3672
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.3672
http://cds.cern.ch/record/1431857
http://dx.doi.org/10.1007/JHEP10(2013)153
http://arxiv.org/abs/1304.6700
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.6700
http://dx.doi.org/10.1103/PhysRevD.40.1569
http://inspirehep.net/search?p=find+J+Phys.Rev.,D40,1569
http://dx.doi.org/10.1103/PhysRevD.66.075011
http://arxiv.org/abs/hep-ph/0207290
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0207290
http://dx.doi.org/10.1088/1126-6708/2007/05/037
http://dx.doi.org/10.1088/1126-6708/2007/05/037
http://arxiv.org/abs/0704.0235
http://inspirehep.net/search?p=find+EPRINT+arXiv:0704.0235
http://dx.doi.org/10.1103/PhysRevD.83.035001
http://arxiv.org/abs/1010.5809
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.5809
http://dx.doi.org/10.1103/PhysRevD.85.115017
http://dx.doi.org/10.1103/PhysRevD.85.115017
http://arxiv.org/abs/1110.0713
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.0713
http://dx.doi.org/10.1103/PhysRevD.76.115015
http://dx.doi.org/10.1103/PhysRevD.76.115015
http://arxiv.org/abs/0709.0007
http://inspirehep.net/search?p=find+EPRINT+arXiv:0709.0007
http://dx.doi.org/10.1103/PhysRevD.80.075007
http://arxiv.org/abs/0810.1497
http://inspirehep.net/search?p=find+EPRINT+arXiv:0810.1497
http://dx.doi.org/10.1103/PhysRevD.81.096002
http://arxiv.org/abs/0911.0059
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.0059
http://dx.doi.org/10.1007/JHEP10(2011)081
http://arxiv.org/abs/1109.1570
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.1570
http://dx.doi.org/10.1007/JHEP11(2012)003
http://dx.doi.org/10.1007/JHEP11(2012)003
http://arxiv.org/abs/1205.4032
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.4032
http://dx.doi.org/10.1103/PhysRevD.86.115006
http://dx.doi.org/10.1103/PhysRevD.86.115006
http://arxiv.org/abs/1208.0268
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.0268
http://dx.doi.org/10.1140/epjc/s10052-014-2822-6
http://arxiv.org/abs/1304.0286
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.0286
http://dx.doi.org/10.1016/0370-2693(94)90503-7
http://arxiv.org/abs/hep-ph/9311336
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9311336
http://dx.doi.org/10.1103/PhysRevD.78.036012
http://arxiv.org/abs/0806.1624
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.1624


J
H
E
P
0
9
(
2
0
1
4
)
0
6
0
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